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Abstract 

A Fokker-Planck equation that accounts for fluctuations in 

field and its conjugate momentum is solved numerically for the 

case of a XI$’ potential. Although the amount of inflation agrees 

closely with that expected classically, in certain cases (large ini- 

tial fields or large dispersions) the “slow rolling” approximation 

appears invalid. In such cases inflation would stop prematurely 

before possibly restarting. 
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The new inflationary universe model [l] is able to solve a number of 

important cosmological problems. It has been argued that in order to 

account for the observed fluctuations in the matter density spectrum, the 

field causing inflation has to be very weakly coupled [z]. This results in 

high temperature effects being irrelevant for the behaviour of the field. It 

is therefore surprising that the field should be sitting in just the right place 

when spontaneous symmetry breaking occurs to produce a false vacuum 

state. 

However Linde’s chaotic universe model [3] suggests that phase transi- 

tions are not necessary for inflation: all what is needed is for the initial field 

to be displaced sufficiently from its minimum. In order for chaotic inflation 

to occur the scalar potential V(d) must be larger than i) kinetic energy 

(a&)’ and ii) spatial variations (&cS)‘. In fact the first condition is not 

serious since if the kinetic energy is large it redshifts rapidly with time t: 

as - l/t*, whereas the field decreases only ss log(t) enabling the potential 

to eventually dominate [4]. Therefore we only need to consider a domain 

(of size A1 - M;‘) with (a,#~)” < V(d); see however [5]. It should also 

be mentioned that inflation can also result from higher order corrections 

to Einstein’s field equation (R* or conformal anomaly terms) provided the 

initial value of the Ricci scalar is large enough [6]. 

In the context of the new inflationary universe model Vilenkin [7] argued 

that a distribution function W for the scalar field is an important quantity 
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for characterizing the dynamics. W satisfies a diffusion equation while in 

the false vacuum state: the coefficient of diffusion D is related to the Hubble 

parameter (D = H3/85r2). When the slope of the potential is included a 

Fokker-Planck equation results [8-131 

g = $(&W)+-$($W), whereV’=g (1) 

Grazisni and Olynyk [9] found that for a “Mexican hat” Higgs potential 

fluctuations in momentum could dramatically affect the evolution of the 

field during new inflation. Following their approach, we develop the Fokker- 

Planck equation for a X4’ potential while improving upon their work by 

making the Hubble term a function of the scalar field. 

We assume the distribution function is Gaussian to simplify computa- 

tions. The inclusion of an initial dispersion o is expected to increase the 

mean velocity since the classical force W/&4 is now greater. For a XC$’ po- 

tential any initial dispersion will tend to decrease as the field rolls down the 

potential, but if fluctuations are large enough the dispersion can increase 

instead. In fact, a small increase in dispersion can result in an eternal 

universe since the number of “trials” is so large u e3nt that some domains 

have large fields and are always inflating [7,14-171. 

Previous work on solving es.(l) numerically for chaotic inflation has 

been carried out by Bardeen and Bublick for the case of a massive scalar 

field [12]: they found a broadening of the distribution, which they mention 

can have an effect on the roll down time. 
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The Hubble constant is determined from one of the Einstein equations, 

and ignoring the curvature term is given by [1,3] 

(2) 

where p = 4. If we assume that the kinetic energy is much smaller than 

the potential energy term, then we may make the following approximation 

for the Hubble term: 

3Mr 
where hr = p 

2rX 

We always check that the solution of the equations of motion are consistent 

with the approximation of small conjugate momentum of the scalar field. 

It has been demonstrated by Wigner that quantum mechanics can be 

formulated in terms of a Fokker-Planck type equation. Although this rep- 

resentation is not well known, it is completely equivalent to the familiar 

Heisenberg or Schrodinger pictures of quantum mechanics. To lowest order 

in h, the Fokker-Planck equation can be recast as a stochastic differential 

equation, a Langevin equation. We shall present the derivation of the equa- 

tions of motion for this semiclassical (order h ) case. However, it should 

be remembered that the result is a semiclassical approximation to a fully 

correct formulation of quantum mechanics. 

The Langevin equation corresponding to the Linde-Albrecht-Steinhardt 

equation [l] for the long wavelength modes of the scalar field is’ 

‘neglecting spatial gradients, for a discussion of thii see [12]. 



;b = -3H45 - f-$@ + f)(t) (4) 

The noise term n(t) is assumed to have a Gaussian nature, that is, the 

ensemble averages of the noise terms must satisfy 

W) = 0 

(tl(h)v(tz)) = N6(h -b) (5) 

To give N a value, we have applied this stochastic analysis to the motion 

of a free massless scalar field in de Sitter space. One Ends that initially 

(V) = iVt/(3H)*. In order for this result to agree with the solution that 

uses the quantum field theory methods [18] we require 

The Fokker-Planck corresponding to the Langevin eq.(4) has the general 

form 

aw a(Pw) a(iw + pww) -=-__-- 
at a4 ap 2 apz (7) 

To simplify this equation we use the approximation for the Hubble term, 

so that eq.(4) can be written as 

I, = -37 - A& + 7)(t) 

Resealing the variables such that 

t G b-‘t 

(9) 
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Leads to the dimensionless equation 

dP z= A&j - h$p + q(t) (10) 

where q(E) E a-‘bezq(t). We are free to choose the scales a and b as we 

wish. A particularly convenient choice is defined by 3ar = bh and Xa* = b*. 

This leads to a simple Langevin equation given by 

dP - = -pp - $3 + q(t) 
& 

The order tL Fokker-Planck equation corresponding to this simplified di- 

mensionless Langevin equation is -cf. es.(l) 

aw -= at -%$ + -g [(#P + 43) w] 

where c = X/1087?. The bars over the dimensionless 4’s and p’s have been 

neglected for notational clarity. From this point one should assume that 

the fields are dimensionless unless indicated otherwise. 

From eq.(12) we can make some general remarks ss to when we expect 

fluctuations induced by the diffusion term to become important. Assuming 

@p - 43 in the 2nd term on the RHS which we compare with the final 

term i.e. 

~3~~dL29.L 
108a2p 108r2 



so that we expect fluctuations to be important when 4 > X-‘/6. 

Another scale when fluctuations become important can be seen from 

es.(s) when the diffusion term is large, that is when H > 1 which occurs 

when X4’ > 1 i.e. 4 > X-r/‘, however this size field corresponds to Planck 

energy densities. 

By using a general equation of motion for the momenta of the variables 

p and 4 we can convert eq.(lZ) into a set of coupled ordinary differential 

equations. Thii is not an approximation, however, this means that an in- 

finite set of coupled ordinary differential equations is generated, coupling 

an infinite tower of modes. We therefore make the standard approximation 

that not all the modes are independent by assuming that the scalar field 

distribution in the &direction is Gaussian. All of the Gaussian approxima- 

tions may be summarized as the expression of the expectation values (a) as 

functions of (4) and o G ((4 - (4))‘). A set of five coupled non-linear ordi- 

nary differentialequations in terms of the variables [(d), (p),(V), (p*), (q5p)] 

are obtained. The equations of motion are straight forward to derive and 

the numerical solutions were obtained using standard algorithms. 

We present here the solution for the case of X = lo-‘. We have con- 

firmed that similar behavior is found for X = 10-s and 10-r* with the scalar 

field appropriately scaled. The dispersion o of the distribution is plotted 

against the mean field (4) for various initial field values in Fig.(l). The 

linewidth of the Gaussian distribution - or/* first ‘increases as the mean 



field moves towards the origin; it then decreases due to the classical ten- 

dency to contract once the quantum fluctuations become less significant. 

Usually, the dispersion in momentum decreases as the distribution moves 

towards the origin. However, for large initial fields (c$), the momentum fluc- 

tuations are found to grow until the lines are discontinued when p* - X4’ 

(in our units when (p*) - (4’)). At such time the approximation for the 

Hubble parameter in es.(Z) is no longer valid and the de Sitter stage ends. 

The Planck energy density - MS occurs in our units for (4) - 40 

(since the scaling constant a is - 0.25). For such 4 the dispersion is seen 

to rapidly increase: it has been suggested that this might be interpreted 

as creation of an inflationary universe by diffusion from space-time foam 

[l&17,8]. 

In Fig.(2) the initial field (4) is fixed at 5 and its evolution is followed 

for various initial dispersions. The dispersion decreases as the distribution 

evolves for small initial u’s but, sa the dispersion is increased the “diffusion 

term” takes over and the dispersion increases instead. Again the momen- 

tum fluctuations stop the de Sitter stage, indicated by the discontinued 

lines. 

According to the results of [4] once inflation has finished due to large 

momenta the kinetic energy could redshift away rapidly while the field 

decreases only slightly so that once again X4’ kpz, and the de Sitter stage 

would resume. A possible trajectory is represented by the dotted line in 

8 



Fig.(l) during which the kinetic energy decays before the de Sitter stage 

restarts at A. This might proceed a number of times but so long as the 

total expansion during the de Sitter stages is 2 70 e-foldings the flatness 

and horizon problems would still be solved. 

Unlike for the Mexican hat potential where the fluctuations in momen- 

tum could dramatically slow down the evolution of the field [Q] no such 

effect occurs for this simple X4’ potential. In fact the field evolves slightly 

faster than the pure classical motion would suggest but the effect is very 

small 5 5%, which is in agreement with the results of [12]. However, we 

have found that for large or broad initial fields the “slow rolling” approxi- 

mation is inadequate. Certain ‘creation of the universe” solutions to es.(l) 

[14,16,17,13,8] may need to be modified. 

Ideally we would like to solve eq.(7) with an exact Hubble parame- 

ter which included both kinetic and potential terms. Alternatively, the 

Langevin equation (eq.(4)) might be solved directly using a Monte Carlo 

method. The problem is further compounded by the fact that the under- 

lying metric need not be constant: a time dependent noise term is required. 

This work w&s supported in part by the DOE and NASA through Fer- 

milab. 
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Figure Captions 

Fig. 1) The evolution of the dispersion o ss a function of mean field (4). 

The lines stop when (p*) - (4’) which indicates that the approximation 

for the Hubble parameter is no longer valid. The dotted line indicates a 

possible path during which the kinetic energy decreases before resuming a 

de Sitter expansion at A. As the Planck energy density is reached (4) - 40 

the dispersion starts to increase dramatically: rapid difusion regime. 

Fig. 2) The evolution of the distribution for 6xed initial field (4) = 5 

and various initial dispersions. The trajectories are again discontinued once 

(PZ) - (4’). 
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