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Zusammenfassung

300 ppt Messung des g-Faktors des Protons

Im Rahmen dieser Arbeit wurde die Messung des Proton g-Faktors um mehr als eine Größenord-

nung verbessert, verglichen mit dem vorherigen Experiment. Um das magnetische Moment des

Protons zu messen, wird ein isoliertes Proton in einer kryogenen Doppelfalle gespeichert. Die Präzi-

sionsfalle dient der Hochpräzisionsmessung der freien Zyklotronfrequenz und der simultanen Anre-

gung mit der Larmorfrequenz. Anschließend wird das Teilchen in die Analysefalle transportiert, um

den Spinzustand zu bestimmen. Diese Messsequenz wird mehrere hundert Male wiederholt, um

die Spin-Flip-Wahrscheinlichkeit als Funktion der eingestrahlten Larmorfrequenz zu messen. Das

magnetische Moment in Einheiten des Kernmagnetons ist dann gegeben durch das Verhältnis aus

Larmorfrequenz und freier Zyklotronfrequenz. Um den Spinzustand des Protons zu bestimmen,

wird der kontinuierliche Stern-Gerlach-Effekt in der Analysefalle angewandt. Dieser verwendet ein

inhomogenes magnetisches Feld, um den Spinzustand nicht-destruktiv auszulesen. Diese Methode

wurde zum ersten Mal mit großem Erfolg für Elektron/Positron g−2 Experimente von Dehmelt im

Jahr 1986/1987 verwendet. Verglichen mit dem Elektron erfordert das Proton ein mehr als 10 000-

fach empfindlicheres Experiment aufgrund der intrinsischen Kleinheit des magnetischen Moments.

Um die Limitationen der vorherigen Messung zu beseitigen, wurde die Apparatur und die ex-

perimentelle Routine signifikant modifiziert. Dies beinhaltet eine höhere magnetische Homogen-

ität, eine höhere Magnetfeldstabilität mittels einer quasi-aktiven Magnetfeldabschirmung, eine opti-

mierte Anregungsamplitude und neue supraleitende Nachweissysteme mit verbesserten kryogenen

rauscharmen Verstärkern. All diese Verbesserungen führten zu einer 12 mal schmäleren Linienbreite

und zu einer doppelt so hohen Datensammelrate.

Das endgültige Ergebnis mit einer Genauigkeit von 3× 10−10 stellt die präziseste Messung eines

Kernmoments dar. Ein direkter Vergleich mit dem magnetischen Moment des Antiprotons erlaubt

einen verbesserten Test einer fundamentalen Symmetrie zwischen Materie und Antimaterie, der

kombinierten CPT (Ladung, Parität, Zeit) Invarianz.

Ein weiterer Test der CPT-Symmetrie wurde durch die Messung des Ladungs-zu-Masse-Verhält-

nisses zwischen Proton und Antiproton mit einer Genauigkeit von 69× 10−12 im Rahmen der BASE-

Kollaboration am CERN mitentwickelt.
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Summary

300 ppt Measurement of the Proton g-Factor

As a part of this work the measurement of the proton g factor was improved by more than one order

of magnitude compared to the previous experiment. To measure the proton magnetic moment, a

single isolated particle is stored in a cryogenic double Penning-trap system. The precision trap is used

for the high-precision measurement of the particle’s free cyclotron frequency and the simultaneous

excitation with a Larmor drive. Subsequently, the particle is transported to the analysis trap where

spin-transition spectroscopy is performed. This sequence is repeated several hundred times to mea-

sure the spin-flip probability as a function of the Larmor drive. The magnetic moment in units of

the nuclear magneton is then obtained by the ratio of the Larmor frequency and the free cyclotron

frequency. To detect the proton spin state the continuous Stern-Gerlach effect is applied in the anal-

ysis trap. Here, an inhomogeneous magnetic field to detect the spin state in a nondestructive way

is used. The method was first introduced and applied with great success in electron/positron g−2

experiments by Dehmelt in 1986/1987. In comparison, its application to the proton system requires

a more than 10 000-fold as sensitive apparatus due to the intrinsic weakness of the proton magnetic

moment

To overcome the limitations of the previous measurement the apparatus and the experimental

routines were significantly improved. This includes a higher magnetic homogeneity, a more stable

magnetic field by means of quasi-active magnetic shielding, an optimized drive strength and new

highly sensitive superconducting detection circuits with improved cryogenic ultra-low-noise ampli-

fiers. These modifications led to a 12 times narrower linewidth and a two times higher data collection

rate.

The final result with a fractional precision of 3× 10−10 is the most precise measurement of any

nuclear magnetic moment to date. A direct comparison to the antiproton magnetic moment allows

for an improved direct test of a fundamental symmetry between ordinary matter and antimatter, the

combined CPT (Charge, Parity, Time) invariance.

An additional CPT test was achieved by comparing the charge-to-mass ratio of proton and an-

tiproton with a fractional precision of 69× 10−12 as part of the BASE collaboration at CERN.
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1

Chapter 1
Introduction

It is an old ideal to build a theoretical framework for the description of the world based on a funda-

mental underlying principle. Democritus, for example, around 400 B.C. introduced such a concept

with an atomic theory in which all matter was composed of “uncuttable” objects – atoms. While this

was a rather philosophical approach, modern physics has made tremendous advances in the devel-

opment of a “theory of everything”. However, such a theory that provides a full explanation of all

known physical phenomena in the universe has not yet been achieved.

Currently, the most complete model of modern physics is the Standard Model (SM) of particle

physics, based on 12 fermions and their unified fundamental interactions. The first unification of

fundamental forces was achieved in 1865 by Maxwell [1] when he united electricity and magnetism

in a set of coupled equations. This enabled a new perspective of electromagnetic phenomena such as

light. Later, in 1934, Fermi published his ideas [2] describing the theory of beta decay, and the concept

of the weak interaction was born. It was not until the 1960s that Glashow, Salam and Weinberg

unified the weak interaction with the electromagnetic force [3, 4, 5]. For the development of the

electroweak unification they received the Noble Prize in 1979. The Standard Model of particle physics

incorporates both the electroweak interaction and the strong interaction, the third fundamental force

which is responsible for holding nuclei together.

The SM is capable of explaining a tremendous amount of experimental results and predicted

many new phenomena, such as the top quark [6, 7] and the Higgs Boson [8, 9]. Another impressive

example is the Z-Boson, predicted by the electroweak theory in the 1960s with first experimental in-

dications in 1973 [10, 11], and finally discovered in 1983 [12]. However, even with these remarkable

successes, the SM is known to be incomplete. For example, gravity, despite being one of the four

fundamental forces, is not included in the SM. Another example is the yet to be understood compo-

sition of the universe. According to the analysis of data from the PLANCK space telescope, which

provided high resolution scans of the cosmic microwave background, about 95% of the universe is

made of dark matter and dark energy and only 5% of its energy content is described by the SM [13].
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Fig. 1.1: Selection of several CPT tests in matter-antimatter systems. The red bars show the relative precision

of the experiments, while the blue bars shows the energy resolution ∆E = h∆ν which is typically used in the

Standard Model Extension.

Yet even these 5% are not fully understood. One of the prominent questions of modern physics is

the striking imbalance between matter and antimatter. In the Standard Model, particles and their

antimatter counterparts, apart from signs, have identical properties and should have been created

in equal amounts during the Big Bang. This is a consequence of a fundamental symmetry of the

Standard Model – CPT invariance [14, 15]. It implies that the relativistic quantum field theories of

the SM are invariant under the combined transformation of charge (C), parity (P) and time (T). This

is in strong contradiction to the matter dominated universe. If matter and antimatter should behave

symmetrically, what caused the apparent matter abundance?

Sakharov, in 1967, introduced three necessary conditions [16] that could cause an imbalance be-

tween matter and antimatter: (1) a violation of the baryon number, (2) C and CP violation, and (3)

a deviation from thermal equilibrium. All of these conditions are compatible with the current SM.

However, the experimentally observed asymmetry [17]

ηexp =
NB − NB

Nγ
∼ 10−10 , (1.1)

with today’s baryon number NB and antibaryon number NB, cannot solely be explained by the SM

since the asymmetry produced by known SM-CP violation is far too weak ηSM ∼ 10−20 � ηexp

[18]. Nowadays, many experiments have been inspired by this mystery and are trying to pin down

the source of the asymmetry, for example, by testing CPT symmetry. Any discovered violation of

CPT would indicate physics beyond the SM and could provide mechanisms which contribute to our

symmetry understanding of the imbalance between matter and antimatter [19].

A variety of experiments have tested CPT symmetry [20] in different sectors, because neither

the physical system nor the level of precision is known where CPT might be broken. The Standard

Model Extension (SME) [21], a framework that compares different CPT tests, provides a quantita-



Chapter 1. Introduction 3

1940                                    1960                                     1980                                     2000                                   2020

0

10–3

10–6

10–9

re
la

tiv
e 

pr
ec

is
io

n

year

Antiproton
Proton This work

BASE

[Hu]
[Roberts]

[Winkler]

[Stern]

[Kreissl] [Pask]

[Nagahama]

[Rodegheri]
[DiSciacca ]

[Mooser]
[Smorra]

[DiSciacca]

[Rabi]

[Rabi]

[Fox]

directindirect

[Bloch]

[CODATA]
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tive measure that defines the sensitivity of an experiment on an absolute energy scale. It couples

the Standard Model with General Relativity and incorporates all possible operators for Lorentz and

CPT violation [20] in an effective field theory. The Lorentz and CPT violating operators scale with

coefficients which are constrained by experimental results.

The results of several matter-antimatter comparisons are shown in figure 1.1 together with the

energy resolution in GeV, the conventional unit in the SME that characterizes the sensitivity. For

example, a recent study with antihydrogen by the ALPHA collaboration had a sensitivity of 2 ×
10−18 GeV [24] while another measurement in the neutral kaon system yielded a sensitivity of 5×
10−19 GeV [25, 18] by comparing the decay channels of K0 and K 0. Other measurements in the

leptonic sector have set bounds through a comparison of the electron/positron g factors [26, 27]

and the muon g factors [28]. This work, produced in the framework of the BASE collaboration [29],

contributes to these CPT symmetry tests by comparing the fundamental properties of the proton

and the antiproton at low energies and with high precision. The BASE collaboration operates two

dedicated experiments, one in Mainz, Germany and the other at CERN, Geneva, Switzerland to

determine the charge-to-mass ratios (q/m)p/(q/m)p and the magnetic moment

µ = g
q

2mp
S , (1.2)

which is connected to the spin S of the proton/antiproton by the dimensionless g factor.

The history of proton magnetic moment measurements includes several groundbreaking discov-

eries and developments of new techniques that had great influence on modern physics. The first

pioneering measurement of the proton magnetic moment was conducted by O. Stern in 1933 [30]

with a value of µp = 2.5(3) µN, in units of the nuclear magneton µN = qh̄/(2mp). The magnetic

moment was determined by measuring the splitting of a molecular hydrogen beam in an inhomo-
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geneous magnetic field. In 1943 Stern was rewarded the Noble Prize for the historic discovery that

the experimental value µp/µN differed from the expected value of 1 predicted by the Dirac the-

ory [31]. This was the first indication that the proton is not an elementary particle and has some

sort of sub-structure. Another measurement was conducted by Rabi [32] with a value of 3.25(33)

that, while inconsistent with the measurement of Stern, confirmed the approximately three times

larger than expected magnetic moment. After laying the ground for the nuclear magnetic resonance

(NMR) method in 1938 [33] Rabi’s group used this famous scheme for an improved measurement

of µp = 2.785(30)µN [34]. Bloch, the winner of the Noble Prize in 1952, further developed on these

ideas [35] and achieved a precision of 70 ppm by measuring the ratio between the nuclear resonance

frequency and the orbital rotation frequency [36] in a proton beam. Since then, many measurements

have been conducted [22, 23] culminating in the measurement of Winkler [37] at a precision of 10 ppb

by measuring the ground-state hyperfine splitting of atomic hydrogen with a MASER. In the same

year, the magnetic moment of the antiproton was measured for the first time by Fox [38], and later

improved by Roberts [39], Hu [40] and Kreissl [41] with measurements of the fine-structure splitting

in antiprotonic atoms with the antiproton acting as a “heavy electron”. The most recent indirect mea-

surement of the magnetic moment was performed by Pask [42] who studied the hyperfine splitting

in antiprotonic helium, however, still with a precision of 10−3.

Dramatic advances were achieved in 2013 when for the first time a direct measurement of µp in

a Penning trap at the level of 10−6 was achieved [43], based on the methods demonstrated in the

proton case [44, 45]. These experiments perform a simultaneous measurement of the free cyclotron

frequency ωc and the Larmor frequency ωL, which yield the magnetic moment in units of the nuclear

magneton∣∣∣∣µp,p

µN

∣∣∣∣ ≡ gp,p

2
=

ωL

ωc
. (1.3)

An improved measurement of the antiproton g factor was achieved in 2017 by Nagahama [46]. How-

ever, this measurement, as well as the previous direct measurements, were limited to the 10−6 level

due to linewidth broadening in the inhomogeneous magnetic field used for the detection of the spin

state. This fundamental limit was overcome in case of the proton by employing the double-trap

method [47] in 2014 [48] which enabled a factor of 3 more precise measurement of µp than the MASER

measurement. The double-trap method separates the traps for the spin-flip detection and for the high

frequency determination, which allows a much higher frequency resolution. This paved the way for

a drastically improved measurement, by a factor of 350, of the antiproton g factor [49] which used a

novel two particle three-trap scheme.

This thesis discusses the 11-fold improved measurement, recently published in Science [50], of the

proton magnetic moment with a precision of 0.3 parts per billion which constitutes the most precise

measurement of any nuclear moment to date. The techniques developed can be directly applied

to the antiproton and other nuclear moments. Moreover, a direct comparison between proton and

antiproton magnetic moments provides a stringent test of the CPT invariance in the baryonic sector.

The thesis is organized as follows: Chapter 2 introduces the theoretical concepts required for the

final g-factor measurement, such as the measurement principle and the detection techniques. Chap-
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ters 3 and 4 discuss properties and characterizations of the two Penning traps used in the experiment.

Chapter 5 introduces the phase method used for the frequency determination and experimental re-

sults as well as experimental implications are discussed thoroughly. Chapter 6 introduces different

algorithms which are used to determine the spin state of the proton with the focus on a Bayesian

approach. Chapter 7 discusses the g factor measurement of the proton and the statistical analysis

along with the systematic corrections. Chapter 8 covers the charge-to-mass ratio measurement for

proton/antiproton which was conducted by the BASE collaboration at CERN. Chapter 9 discusses

an upgrade of the current experiment and future techniques to improve the precision even further.
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Chapter 2
Theoretical Basics

2.1 Ideal Penning trap

The longtime storage of a single particle under stable conditions is an ideal environment to perform

high-precision measurements and can be achieved by the combination of a static magnetic field and

an electrostatic quadrupole potential. The magnetic field along the axial direction z forces the particle

on an orbit in the xy-plane due to the Lorentz force. To prevent the particle from moving along the z-

axis the superimposed quadrupole with a repulsive force in z and an attractive force in the xy-plane

is used, compare figure 2.1 A. Such a configuration is called a Penning trap [51] and was first used in

its present form by H. G. Dehmelt who named it after F. M. Penning.

Starting with the classical view a particle with charge q and mass m in a magnetic field moves

on a circular orbit where the Lorentz force and the centrifugal force equal each other. The associated

cyclotron frequency1

ωc =
q
m

B (2.1)

scales with the strength of the magnetic field B = |B| = |Bz êz|. For the complete description of the

particle motion the quadrupole potential

φ = Vr C2

(
z2 − ρ2

2

)
with ρ =

√
x2 + y2 (2.2)

must be taken into account as well, which is proportional to the ring voltage Vr as defined in fig-

ure 2.1 B and a trap specific parameter
√

C2 with the dimension of an inverse length. Based on the

Lorentz force F = m r̈ = q(E + v× B) with the electric field E = − grad φ this leads to the equations

1Throughout this thesis ν and ω = 2πν will both be referred to as frequency
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Fig. 2.1: (A) The superposition of a magnetic field in axial direction z and an electrostatic quadrupole poten-

tial allows stable storage of particles and is called a Penning trap. (B) Experimental realization of a cylindrical

Penning trap. By choosing appropriate voltages Vi and electrode lengths li a quadrupole potential can be ap-

proximated in the center of the trap.

of motion [51]
ẍ−ωcẏ− ω2

z
2 x

ÿ + ωc ẋ− ω2
z

2 y

z̈ + ω2
zz

 = 0 . (2.3)

The axial motion, along the magnetic field lines, is a simple harmonic oscillator with the axial fre-

quency

νz =
1

2π

√
2qC2Vr

m
, (2.4)

and is typically tuned by adjusting the ring voltage Vr. The eigenmodes in the radial plane form a

coupled set of harmonic oscillators with frequencies

ν± =
1
2

(
νc ±

√
ν2

c − 2ν2
z

)
, (2.5)

the modified cyclotron frequency ω+ and the magnetron frequency ω−. Stable particle storage requires

ν2
c − 2ν2

z > 0⇔ Vr <
q

4mC2
B2 which can be used to deliberately remove a particle species by increas-

ing Vr beyond the critical level. This is especially useful since protons have the lowest q/m and are

the last species to become unstable.

The combined particle motion with all three eigenmotions is shown in figure 2.2 A. Typical num-

bers for a Penning trap as operated by the proton experiment in Mainz are ν+ ≈ 28.96 MHz, νz ≈
640 kHz and ν− ≈ 6930 Hz with the distinct hierarchy ν+ � νz � ν−. For further experimental num-

bers refer to appendix A.3.1. The frequencies are related to each other by the important invariance

theorem [51]

ω2
c = ω2

+ + ω2
z + ω2

− (2.6)
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that links the three physical eigenmotions of the particle in the trap to the free cyclotron frequency.

This equation holds in the presence of trap imperfections or misalignment [52]. For example, a tilted

trap with respect to the magnetic field lines leads to a lower axial frequency and a higher magnetron

frequency. However, these effects cancel in the invariance theorem leaving the free cyclotron fre-

quency invariant. Additional relations are

ω− =
ω2

z
2ω+

and ωc = ω+ + ω− (2.7)

which are, however, only valid for an ideal trap. The first equation for the magnetron frequency,

for example, can be a well suited estimate depending on the desired level of precision. The whole

system of three harmonic oscillators can be expressed by the Hamiltonian

H = h̄ω+

(
n+ +

1
2

)
+ h̄ωz

(
nz +

1
2

)
− h̄ω−

(
n− +

1
2

)
(2.8)

and is illustrated in figure 2.2 B. The magnetron mode has the unique property that an increase in

the principal quantum number n− leads to a decrease of the total energy. The magnetron motion is

metastable since removing energy

E− =
1
2

mω2
−r2
− −

1
4

mω2
z r2
− ≈ −

1
4

mω2
z r2
− (2.9)

increases the magnetron radius r−, which eventually leads to particle loss when the particle hits

the trap surface. Assuming that the only loss mechanism is radiation damping a decay time can be

calculated to [51]

τ− =
1

γ−
=

(
1

4πε0

4q2

3mc3
ω3
−

ω+ −ω−

)−1

≈ 3× 1020 s = 2× 1015 y (2.10)
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and has no experimental relevance. The relationship (2.9) shows that the total magnetron energy

E− is almost completely potential energy. In contrast, the total modified cyclotron energy is mainly

kinetic

E+ =
1
2

mω2
+r2

+ −
1
4

mω2
zr2

+ ≈
1
2

mω2
+r2

+ . (2.11)

Finally, the axial kinetic and potential energy can be expressed by the total energy

Ez =
1
2

ω2
zr2

z (2.12)

with rz the peak value of the axial coordinate. The average total mode energies of the particle can be

related to effective temperatures by

〈E+〉 = kBT+ 〈Ez〉 = kBTz 〈E−〉 = kBT− < 0 (2.13)

with the magnetron energy being negative with respect to the perfectly centered particle. While the

temperature is only defined for an ensemble or a distribution of energies the term cooling will be used

in this thesis to indicate a reduction of the radius of a single particle.

2.2 Cylindrical Penning trap

A cylindrical five-pole Penning trap [53] as shown in figure 2.1 B has the advantage that systems

of several traps can be easily connected with additional cylindrical transport electrodes. Further-

more, the cylindrical design allows a very precise manufacturing with tolerances below 10µm. A

quadrupole potential in the trap is realized by an appropriate choice of the trap lengths li and the

electrode voltages Vi. For a given radius a the central ring electrode voltage Vr, the voltage on the ad-

jacent correction electrodes Vc and their respective lengths lr and lc are considered as free parameters.

The length of the outermost electrodes, the end electrode or endcaps, are set to le � a and the potentials

are assumed to be grounded. The electrodes are separated by a small gap with length d.

The solution for a potential inside a cylinder is a well known theoretical problem [54] described

by the Laplace equation in free space

∆Φ = 0 ⇒ 1
ρ

∂

∂ρ

(
ρ

∂Φ
∂ρ

)
+

1
ρ2

∂2Φ
∂ϕ2 +

∂2Φ
∂z2 = 0 , (2.14)

where cylindrical coordinates were chosen due to the symmetry of the trap. This second-order partial

differential equation can be solved with the separation ansatz

Φ(ρ, z) =
∞

∑
n=1

I0(knρ)An sin(knz) , kn =
nπ
Λ

, n ∈N , (2.15)

with the Bessel-functions of the first kind I0. Λ = z9− z0 denotes the total length of all five electrodes

where the zi are axial coordinates as defined in 2.1 B. After integrating
´ Λ

0 Φ(a, z)dz and solving for
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the coefficients An the solution reads

Φ =
∞

∑
n=1

(
V1 cos(knz0)−V5 cos(knΛ)

kn
+

4

∑
i=1

Vi+1 −Vi
k2

nd
(sin(knz2i)− sin(knz2i−1))

)

× 2
Λ

I0(knρ)

I0(kna)
sin
(

kn

(
z +

Λ
2

))
. (2.16)

It is important to note that for the integration on the boundaries at r = a the potential between two

neighboring electrodes is linearly interpolated. In addition, the solution was shifted by half the trap

length, Λ/2, to set the origin z = 0 to the center of the ring electrode.

Next, the potential on the z-axis for ρ = 0 is expanded in a Taylor series based at the origin

Φ(0, z) = V3

n

∑
j=0

Cj zj (2.17)

with the coefficients

Cj =
∞

∑
n=1

[
V1 cos(knz0)−V5 cos(knΛ)

kn
+

4

∑
i=1

Vi+1 −Vi
k2

nd
(sin(knz2i)− sin(knz2i−1))

]

× 2
j!ΛV3

(nπ
Λ

)j 1
I0(kna)

sin
(π

2
(n + j)

)
. (2.18)

These coefficients with the assignment V1 = V5 = 0, V2 = V4 = Vc, V3 = Vr and l2 = l4 = lc, l3 = lr
fully describe the on-axis potential of a five pole trap. Odd coefficients in an ideal trap are equal to

zero due to the mirror symmetry with respect to the ring electrode. Furthermore, a comparison with

equation (2.2) shows that in an ideal Penning trap all coefficients j > 2 vanish with C2 6= 0.

During the experiment the axial frequency ωz ∼
√

Vr of the particle is kept constant usually

determined by the resonance frequency of the detection system. Thus, the ring voltage Vr is set and

the correction voltage Vc can be expressed by the tuning ratio

TR =
Vc

Vr
. (2.19)

Since the ring voltage is fixed the tuning ratio is adjusted by changing the correction voltages. The

trap radius is typically constrained by the detection system performance. A better detection system

allows for a larger radius which is preferred because larger radii lead to smaller systematic frequency

shifts in the presence of machining errors. The discussion leaves only three free parameters, lr, lc and

TR, to optimize the two important trap properties compensation and orthogonality.

A well compensated trap is designed such that the coefficients C4 = 0 and C6 = 0 vanish si-

multaneously for a specific ideal TR and a quasi-ideal quadrupole potential is realized. If higher

orders, such as C8 or C10, should also vanish a seven pole trap with two additional free parameters

is required.

In an orthogonal trap the axial frequency is not a function of TR which makes a systematic TR

scan in practice much more convenient. Each Cj coefficient can be expanded by Cj = Ej + DjTR with

a constant term and one that is proportional to the tuning ratio. An orthogonal trap is designed such
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(mm) PT AT PT AT

a 3.5 1.8 TRid 0.8809 0.8804

lr 0.9877 0.4402 C2 (m−2) 30 580 115 360

lc 2.7152 1.3309 D4 (m−4) 3.5× 109 4.98× 1010

le 7.0000 4.4780 νc (Hz) 28.97× 106 17.98× 106

Dc 7.9 4.2 ν+ (Hz) 28.96× 106 17.97× 106

De 19.7 9.7 νz (Hz) 633 640 740 240

Dc+e 5.6 2.9 ν− (Hz) 6 933 15 279

Table 2.1: Theoretical parameters of the precision and the analysis trap. Dc is the axial effective electrode dis-

tance for the correction electrode, ’e’ for the endcap and ’c+e’ for a combined pick-up.

that D2 = 0

ωz ∼
√

C2 =
√

E2 + D2TR
∣∣∣
D2=0

=
√

E2 = const , (2.20)

and the axial frequency is not a function of TR.

Five pole traps are used in a large variety of experiments [55, 56]. The demand for higher preci-

sions over the years has drawn the attention to seven pole traps due to their superior compensation.

Recently, the first seven pole trap has been successfully commissioned [57].

An important property related to the cylindrical trap design is the effective electrode distance [58]

which describes how well a particle signal can be “picked up” by e.g. a single correction electrode

or an endcap. For the detection of the axial signal on a correction electrode the effective electrode

distance is given by

Dz =
2Λ
8

(
∞

∑
n=1

sin(knlc) · sin(kn(lc + lr + 2d))
I0(2kn a)

)−1

with kn =
nπ
Λ

. (2.21)

The factor 2 in the front is due to the pick-up on only one correction electrode. If both correction

electrodes are used for pick-up Dz reduces by a factor of 2. This expression can of course also be

used to calculate Dz for an endcap by setting the length of the ring electrode to lr → 2lc + lr + 2d

and lc → le. In the case of the detection of a radial signal the pick-up is achieved by a segmented

electrode. The effective electrode distance for a segmented correction electrode [58] is

D+ =
πΛ
8

 ∞

∑
n=1

cos
(

k2n−1
2 (lc + lr)

)
· sin

(
k2n−1

2 lc
)

I1(k2n−1 a)

−1

with k2n−1 =
(2n− 1)π

Λ
. (2.22)

A summary of theoretical trap values for the Mainz trap setup is found in table 2.1.

2.3 Determination of the spin magnetic moment

The previous sections introduced the particle dynamics of a spinless particle in a Penning trap. In

case of the proton the spin and the associated magnetic moment must be considered. The spin and
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magnetic moment are related by the dimensionless g-factor

µ = g
q

2m
S ⇒ µ =

g
2

µN (2.23)

with the nuclear magneton µN = q
2m h̄ and m the proton mass. In a Penning trap the magnetic

moment couples to the external magnetic field and spin up and spin down give rise to an energy

level splitting

∆E = g
qh̄
2m

B = h̄ωL , (2.24)

where ωL is the Larmor frequency, the spin precession frequency in a given magnetic field. In order

to determine g a measurement of the Larmor frequency ωL and the magnetic field B suffices. For a

known charge-to-mass ratio the measurement of the free cyclotron frequency ωc is equivalent to a

measurement of B and the g factor can be expressed as

g = 2
ωL

ωc
. (2.25)

Frequencies can be measured very precisely and are thus an elegant tool to determine the magnetic

moment. The free cyclotron frequency is obtained from the three eigenfrequencies and the invariance

theorem while the Larmor frequency poses a much larger challenge and requires the implementation

of the continuous Stern-Gerlach effect discussed in section 2.8.

2.4 Electric and magnetic field imperfections

The on-axis electric potential of a cylindrical Penning trap is described by the coefficients Cj and

non-vanishing higher order terms characterize trap imperfections. Odd terms C2j+1 are suppressed

due to the symmetry of the trap but can arise in the presence of small offset potentials on individual

electrodes which break the symmetry. In practice, once identified, small offset potentials can be easily

compensated by applying offset voltages to the correct electrodes.

Even terms C2j+1 for j ≥ 4 lead to systematic frequency shifts on all particle eigenmotions as

a function of particle energy. The equation of motion of the axial eigenmotion becomes a Duffing

equation [59]

z̈ = − q
m

∂z

(
Vr

∞

∑
j=1

C2j z2j

)
= − 2qC2Vr

m
ω2

z

(
z +

2C4

C2
z3 +

3C6

C2
z5 +O(C8)

)
(2.26)

in the presence of anharmonicities, which become more pronounced for larger oscillation ampli-

tudes. Besides the electrostatic field properties also magnetic field imperfections lead to shifts on

the frequencies. The field is expanded similarly to the electrostatic case along the z-axis B(z) =

B0 + B1z + B2z2 +O(z3)

The derivation of frequency shifts in the presence of magnetic and electric imperfections is tech-

nical and can, for example, be found in [51, 60], which use, however, a slightly different definition of
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the potential. The conversion is given by

Cj =
Cj

2dj (2.27)

with C2 ≡ 1. This defines the geometrical parameter d often used in literature for hyperbolic traps.

The relative frequency shifts under the typical experimental condition ω− � ωz � ω+ are then


∆ω+/ω+

∆ωz/ωz

∆ω−/ω−

∆ωL/ωL

 = (MC4 +MB2)


E+

Ez

E−

+MC6



E2
+

E2
z

E2
−

E+Ez

E+E−
EzE−


+O(C8, B4) (2.28)

with the corresponding matrices

MC4 =
1

qV0

C4

C2
2


3
4 Ω4 − 3

2 Ω2 −3Ω2

− 3
2 Ω2 3

4 3

−3Ω2 3 3

0 0 0

 MB2 =
1

mω2
z

B2

B0


−Ω2 1 2

1 0 −1

2 −1 −2

−Ω2 1 2

 (2.29)

MC6 =
1

q2V2
0

C6

C3
2


− 15

16 Ω6 − 45
16 Ω2 − 45

4 Ω2 45
8 Ω4 45

4 Ω4 − 45
2 Ω2

45
16 Ω4 15

16
45
4 − 45

8 Ω2 − 45
2 Ω2 45

4
45
8 Ω4 45

8
15
2 − 45

2 Ω2 − 45
2 Ω2 45

2

0 0 0 0 0 0

 , (2.30)

where Ω = ωz/ω+ is introduced for simplicity and the magneton energy is assumed to be negative

E− < 0.

It is worth highlighting that electrostatic imperfections only affect the three frequencies ω+, ωz

and ω− of the particle and not the Larmor frequency. This is particularly important for a g-factor

measurement as the effect does not cancel in the ratio between cyclotron and Larmor frequency and

leads to a systematic shift on g.MB2 shows, that the modified cyclotron frequency ω+, which domi-

nates the determination of ωc, and the Larmor frequency ωL have the same relative shifts. Therefore,

the shift due to B2 is strongly suppressed for the g-factor determination, discussed in more detail in

chapter 7.

2.5 Detection principle

To determine the free cyclotron frequency νc via the invariance theorem the precise measurement of

the proton’s three eigenfrequencies is required. A technique to non-destructively detect the particle’s

eigenfrequencies was first introduced in 1975 by Wineland and Dehmelt [61]. Any particle stored in

Penning trap induces tiny image currents on the trap electrodes due to their motion. The induced

current for the axial motion

I =
q

Dz
ż (2.31)
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Fig. 2.3: (A) The particle in a Penning trap induces small image currents on the trap electrodes which are de-

tected by connecting a tuned resonant circuit. The voltage signal is then amplified. A Fast Fourier Transforma-

tion of the signal allows the measurement of the proton’s eigenmotions. (B) The particle is represented with its

equivalent circuit diagram – a series resonance circuit. Two noise sources are added to account for the Johnson-

Nyquist noise of the resonator and the input noise of the amplifier due to the input resistance Rin. κ describes

the decoupling of the amplifier to the resonator as it is typically used in the experiment.

depends on the charge q, and the velocity ż in axial direction. Dz is the axial effective electrode

distance, a geometrical measure to describe the strength of the particle coupling to an electrode,

compare equation (2.21). For typical experimental parameters the current is in the order of 10−15 A

and a large impedance is required to obtain a measurable voltage signal. However, even measuring

the voltage drop across an infinitely large resistor would not be sufficient to get a sufficient signal

Umeas = lim
R→∞

∣∣∣∣∣I
(

1
R
+ iωzCT

)−1
∣∣∣∣∣ ≈ 10 pV (2.32)

due to the parasitic trap capacitance CT in parallel which usually is in the order of 10 pF. Instead of

a large resistor an inductor Lres is connected to the trap as shown in figure 2.3 A. Inductor and trap

capacitance form a resonant tuned circuit with resonance frequency

ωres =
1√

Lres(CT + Cres)
. (2.33)

Cres describes the self capacitance of the connected inductor, which cannot be neglected in a real

setup. The total impedance of this parallel resonance circuit, referred to as detector or resonator, is

Zres(ω) =
1

Rres
+

1
iωLres

+ iω(Cres + CT) , (2.34)

where Rres is a dissipative component that accounts for losses in the circuit. At its resonance fre-

quency ωres the capacitive component is compensated by the inductance and the total impedance

yields lim
ω→ωres

Zres(ω) = Rres. Thus, a resonator with sufficiently high parallel resistance Rres, equiva-

lent to small losses in the circuit, is suitable to achieve a measurable voltage drop and detect the tiny

image currents. To describe the interaction of the particle with the previously introduced parallel res-

onance circuit the particle’s equation of motion as a damped harmonic oscillator must be considered,

following the arguments in [61, 62]

z̈(t) + γ ż(t) + ω2
z z(t) =

Fe

m
. (2.35)
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Fig. 2.4: (A) The red line shows the theoretical resonance curve of a parallel resonant circuit with 3 dB width

∆ωres and resonance frequency ωres. The gray line represents a simulated dip spectrum of a particle with axial

frequency ωz. The slightly detuned particle ωres − ωz > 0 leads do a dispersive spectrum. The signal-to-noise

ratio S/N defines the difference between signal level and noise background. (B) Double dip spectrum with the

characteristic two dips ωl and ωr separated by Ω. Together with the excitation frequency ωrf such a spectrum

allows the determination of ω+ or ω−.

The external force Fe originates by two effects and can be expressed as

Fe =
q

Dz
Uind + FC . (2.36)

The force FC is a result of the Coulomb interaction between induced image charge and ion. For a

single particle this force is small and is neglected for now. The first term originates from the induced

image current I which leads to a voltage drop Uind = Zres I on the electrode with the connected

resonator. The result is an electric force due to the potential difference with respect to the electrode

on the opposite side which has no resonator connected. Together with equation (2.31) the equation

of motion can be rewritten to

Uind = m
D2

z
q2

dI
dt

+ m
D2

z
q2 I γ + mω2

z
D2

z
q2

ˆ
I dt

= lp
dI
dt

+ Reff I +
1
cp

ˆ
Idt (2.37)

with the definitions lp = m D2
z

q2 and cp = 1
mω2

z

q2

D2
z
. The damping is related to the effective resistance

of the resonator Reff = m D2
z

q2 γ = Re(Zres(ω)) with the real part as the dissipative component. The

equation of motion is the same as for an lp cp series circuit with applied voltage Uind across it which

motivates the description of the particle by the equivalent circuit diagram shown in figure 2.3 B.

To describe the measured signal in the frequency domain, which characterizes the lineshape, the

total impedance Ztot of the particle Zp = iωlp + (iωcp)−1 and effective resonator resistance Reff(ω)

is considered

Re(Ztot(ω)) = Re
(

1
Zp

+
1

Reff

)−1
= Reff(ω)

(ω2 −ω2
z)

2

(ω2 −ω2
z)

2 +
(

ωReff(ω)
lp

)2 , (2.38)
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where the relation ω2
z = 1

cplp
was used. Figure 2.4 shows the lineshape with a resonance curve in red

due to Reff(ω) and a dip due to the particle interaction. A series circuit acts as a short on its resonance

frequency, therefore the particle “shorts” the resonator spectrum.

The parallel resistance Rres which characterizes the losses in the system can also be described by

the dimensionless quality factor Q

Rres = Q ωresLres . (2.39)

This quantity is easily found by measuring the 3 dB width of the resonance curve on a logarithmic

scale

Q =
ωres

∆ωres
. (2.40)

A high Q-value, or a sharp resonance, corresponds to a system with small losses. The width of the

dip ∆ωz is related to the damping constant in equation (2.37)

∆ωz ≡
1
τz
≡ γ =

Reff
m

q2

D2
z

. (2.41)

The parameter τz denotes the associated cooling time constant of the detection system.

In case of more than one particle similar arguments can be made starting with an induced image

charge of I = N q
Dz

Ż with the particle number N and the center of mass motion Z. The dip width

∆ωz becomes, to first order, a linear function in N which is a very helpful relation to characterize the

amount of particles stored in the trap.

To actually detect a spectrum as shown in figure 2.4 A the Johnson-Nyquist noise [63] must be

considered. Any resistor at given temperature T has intrinsic electronic noise and can be modeled as

an ideal resistor with a noise voltage source in series. The associated noise amplitude at a spectral

width ∆ν is un =
√

4kBTR∆ν. The resonator noise source ures is included in figure 2.3 B and adds

to the intrinsic input noise uin of the cryogenic low-noise amplifier which defines the signal-to-noise

ratio

S/N =

√
(ures κ)2 + u2

in

uin
. (2.42)

The dimensionless factor κ accounts for the coupling of the resonator to the amplifier, for example by

an inductive or capacitive voltage divider with 1:10 decoupling. The noise sources are uncorrelated

and thus added quadratically. To extract the axial frequency from such a noise spectrum the line

model is fit to the Fast Fourier Transformed (FFT) time signal. The precision of such a fit depends on

the signal-to-noise ratio S/N, the linewidth ∆ωz, the measuring time tavg and the resolution. The fit

routine is discussed in more detail in section 4.6.

So far the detection principle has been discussed for the axial detection system. A typical dip

width for axial detection lies in the range of 1 Hz, which can be measured easily with an FFT spectrum

analyzer in about one minute [64]. In order to determine the free cyclotron frequency two more

frequencies ω± are required. However, using the typical numbers of a cyclotron resonator one ends
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up with a dip with of about 4 mHz. The width is limited by the three order of magnitude smaller

inductance and the lower Q-value of the detector. A direct detection of the cyclotron frequency via

a dip detection is possible but technically challenging and fortunately, a far better tool to measure

magnetron and free cyclotron frequency exists - the technique of sideband coupling.

2.6 Sideband coupling

The technique of sideband coupling is used to measure ω± by coupling the radial modes to the axial

mode which leads to a unique signature in the dip spectrum, a double dip. Starting with the equation

of motion (2.3) an additional driving force is introduced by applying an external radiofrequency

drive with frequency ωrf

Frf = q E0 Re
(

eiωrft
)

z

0

x

 (2.43)

which couples the x to the z component and vice versa. E0 is the amplitude of the coupling-field

gradients. It can be shown [51, 65] that for an excitation frequency of ωrf = ω± ∓ωz the axial mode

exchanges energy with the modified cyclotron frequency or magnetron mode, respectively2. The

corresponding energy exchange rate between two modes is defined by the Rabi-frequency

Ω =
qE0

2m
√

ωzω±
. (2.44)

As a consequence sidebands occur in the single dip spectrum at ωl/r as illustrated in figure 2.4 B. For

experimental conditions an unknown detuning δ must be taken into account since the real sideband

excitation frequency ωrf is not known ab initio. Assuming a detuned excitation frequency

ωrf = ω± ∓ωz + δ (2.45)

the sidebands have the frequencies

ωl = ωz ∓
δ

2
− Ωδ

2
and ωr = ωz ∓

δ

2
+

Ωδ

2
, (2.46)

where the Rabi frequency with detuning

Ωδ =
√

Ω2 + δ2 (2.47)

was used. Thus, for a detuning δ > 0 the magnetron sidebands are shifted toward higher frequency

whereas in the case of the modified cyclotron frequency the sidebands are shifted towards lower

frequencies.

2Notation: Throughout this section the upper signs in all equations describe the case of the modified cyclotron frequency

ω+, whereas the lower signs belong to the case with the magnetron frequency ω−.
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Fig. 2.5: (A) Axial noise spectrum of three cyclotron double dips for different radiofrequency excitations with

detuning. The vertical gray line shows the position of the axial frequency. The double dip position shifts as a

function of the applied detuning. (B) Position of the two sideband νr,l in blue and red based on several cyclotron

double dip measurements as a function of the detuning. The arrows correspond to the three double dips in (A).

For a detuning of δ = 0 the double dip is symmetric around the axial position (horizontal gray line).

Based on an independent measurement of ωz and a successive measurement of ωl and ωr the

frequencies ω± can be calculated from these measurements by

(ω±)meas = ±ωl ±ωr ∓ωz + ωrf

= ±
(

ωz ∓
δ

2
− Ωδ

2

)
ωl

±
(

ωz ∓
δ

2
+

Ωδ

2

)
ωr

∓ωz + (ω± ∓ωz + δ)

ωrf

= ω± . (2.48)

The unknown detuning cancels and the measured frequencies (ω±)meas are independent of δ and

yield the true frequencies ω±.

Apart from its importance for the measurement of the radial mode frequencies sideband coupling

is also used to control the mode energies. Based on the relation between radii and mode energies,

section 2.1, sideband coupling is used to achieve a smaller particle radius which leads to smaller

frequency shifts in the presence of trap imperfections. During the excitation with the sideband fre-

quency ωrf the two respective modes reach a thermal equilibrium with 〈n±〉 = 〈nz〉 [51]. Since the

axial detection system has a temperature of Tz the energies of the coupled modes can be expressed

by

〈E±〉 = ±
ω±
ωz

kBTz (2.49)

weighted by the frequency ratio. Each time the coupling occurs the modified cyclotron mode or

the magnetron mode will acquire a fixed energy. The probability for a certain energy is Boltzmann

distributed with an expectation value of 〈E±〉, thus characterized by the detector temperature. Due

to the probabilistic nature several cooling attempts might be required to reduce the radius below a

desired threshold. The shape of this Boltzmann distribution can be manipulated by changing the

temperature of the axial detector Tz with the technique of active electronic feedback.
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Fig. 2.6: (A) Schematic scheme for feedback control. The signal is fed back, attenuated and phase shifted to

damp or excite the particle’s motion. (B) Result of the feedback control on a resonator. The Q-value can be

changed by properly adjusting phase and attenuation.

2.7 Electronic feedback control

The application of electronic feedback [66] is used to manipulate the temperature of detection sys-

tems by feeding the signal back on the detection system. A voltage controlled attenuator, as shown

in figure 2.6 A, is made use of to control the signal’s strength. The phase shifter is used to apply

positive (ϕ = 0), negative feedback (ϕ = π), or any desired phase in between.

Reference [67, 68] describes in detail how the effective feedback temperature TFB is related to the

original Q-value of the detection system

TFB

Tz
≥ QFB

Q
(2.50)

with QFB the quality factor during feedback application. This is shown in figure 2.6 where the Q-

value is varied with negative feedback and the blue curve is the original resonance spectrum. The

inequality is a result of the not neglectable amplifier input noise which prevents the temperature to

be lowered to arbitrarily small values. For very high feedback strengths more and more noise is cou-

pled back on the particle and effectively increases the temperature. Thus, the minimum achievable

temperature is limited by the input noise of the amplifier. This becomes important in case of the

cyclotron detector which must be preperated as cold as possible, see section 4.1.

2.8 Continuous Stern-Gerlach effect

The spin precession frequency ωL is not accompanied by an image current induced in the trap elec-

trodes and can thus not be measured by the method of image current detection. Instead, the spin-flip

probability pSF(ωrf), which is the probability to change the spin state from up to down or vice versa,

is probed as a function of an applied excitation frequency ωrf. The result is the Larmor resonance

with characteristic lineshape which can be fit to extract ωL. To measure pSF experimentally the spin
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made of ferromagnetic material. The vertical magnetic field lines pass through the standard copper electrodes

but are distorted by the ring electrode. This leads to the characteristic shape of the magnetic bottle. (B) The

potential Vm = −µ · B modifies the axial potential. As a consequence the particle has a different axial frequency

as a function of the spin state.

state before and after an excitation must be known and this demands a spin state sensitive detection

scheme.

The spin state is measured by employing the continuous Stern-Gerlach effect [69] which leads to a

coupling between the spin magnetic moment µ in equation 2.23 and the axial motion via a strong

inhomogeneous magnetic field, called magnetic bottle

B(z, ρ) = B0ez + B2

((
z2 − ρ2

2

)
ez − ρ z eρ

)
(2.51)

with quadratic component B2 in superposition on the homogeneous field B0. In contrast to the fa-

mous experiment by Stern and Gerlach [70] the spin state is read out continuously and without

particle loss. The coupling between magnetic moment and magnetic field with potential energy

Vm = −µ · B leads to an additional force −∂zVm and adds to the equation of motion of the axial

frequency. As a result of this coupling the absolute axial frequency

ωz,SF =

√
2qC2Vr

m
± 2µB2ez

m
≈ ωz ±

∆ωz,SF

2
with ∆ωz,SF =

2µzB2

mωz
=

g
2

qh̄B2

m2ωz
(2.52)

becomes a function of the spin state with a frequency difference between up and down of ∆ωz,SF.

This allows the direct non-destructive readout of a change in the spin state by measuring the axial

frequency. This elegant scheme was introduced by Dehmelt and was first applied with great success

to electrons [26] and later also on hydrogen-like ions [71, 72]. A comparison between the proton and

the electron shows that the frequency difference ∆ωz,SF is much smaller due to the ratio

∆ωz,SF ∼
(

µz

mpωz

)
proton

�
(

µz

me ωz

)
electron

. (2.53)

Assuming the same magnetic bottle B2 the frequency change due to a proton spin flip is more than

10 000 times smaller at νz,p = 0.6 MHz and νz,e = 60 MHz. It was not until 2011 that such proton
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Fig. 2.8: The method starts in the AT where the spin state is determined, e.g. spin down. The particle is then

transported to the PT where ωc is measured in the homogeneous magnetic field. Simultaneously the Larmor

frequency is probed with an excitation. Depending on the excitation frequency the proton spin state has changed

with probability pSF. To determine the spin state after the excitation the particle is again transported to the AT

and the final spin state is read out.

spin flips were statistically detected for the first time [73]. Finally, in 2013 further improvements in

the axial stability allowed the observation of single discrete spin flips [74]. These advances became

possible through the implantation of a very strong magnetic bottle B2 = 298 000 T m−2 and the sys-

tematic reduction of background noise. Even today the reduction of the background noise is still one

of the crucial experimental difficulties towards detecting single proton spin flips, as will be discussed

in detail in section 3.1.

2.9 Double trap scheme

The usage of a strong magnetic bottle is essential for the determination of the proton spin state. Its

strength, however, poses a fundamental limitation for the determination of the eigenfrequencies.

The axial motion oscillates with an amplitude rz which is a function of its energy. For typical axial

energies of Ez = kBTz ≈ 4 kB the axial amplitude is around 50µm. In the presence of the magnetic

bottle a change of 50µm corresponds to a change in the magnetic field of 0.8 mT. This leads to shift

on the Larmor frequency by 20 kHz on a total frequency of 50 MHz.

An accurate description of the width of the Larmor resonance line yields

δωL =
1

mω2
z

B2

B0
kBTz ωL (2.54)

and it was demonstrated that the g factor is limited at the ppm (part per million) level [45, 73]. This

technique was also recently used to measure the antiproton g factor with 0.8 ppm [46]. In order to

reach precisions at the ppb level or below, a line width reduction is mandatory. However, neither

the frequencies ωz and ωL nor the magnetic field B0 can be changed as they are constrained by the
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Fig. 2.9: (A) The red line shows the lab temperature. Each work day the ventilation is started in the morning.

The temperature in the box is shown in blue. The temperature set point well above the room temperature to

have a well decoupled system. (B) The red line shows the temperature in helium recovery line. To stabilize the

pressure in the cryostat and in the magnet a setpoint of 1030 mbar is used.

experiment. Furthermore a reduction of the axial temperature to the mK range is not feasible and

also a decrease of the magnetic bottle strength B2 cannot be done without losing the ability to detect

spin flips.

An elegant solution to this problem is the spatial separation of spin state detection and high-

precision frequency measurements by utilizing two traps. This double trap technique was first intro-

duced by H. Häffner and co-workers [47] and later successfully implemented in the proton g-factor

experiment [75]. The analysis trap (AT) contains the magnetic bottle is used for the spin state detec-

tion, whereas the precision trap (PT) has an about 100 000 more homogeneous magnetic field and is

used for the high-precision frequency determination.

A double trap measurement is schematically shown in figure 2.8. The measurement starts in the

AT where the spin state is identified. In the next step the particle is transported to the precision trap

and the free cyclotron ωc is measured at the same time as a probe frequency ωrf ≈ ωL is applied to

induce a change in the spin state. Since the spin state after the excitation is not known, the particle is

finally transported back to the AT and the spin state is read out once more. The information about the

initial and the final spin state is used to decide whether a spin flip occurred in the PT. Repeating this

sequence for several hundred probing frequencies the Larmor resonance is scanned and eventually

the g factor can be determined.

2.10 Experimental setup

The experimental setup is shown in figure 2.10 and is similar to the setup of the prior proton run

[76, 48]. The Penning trap system is placed in the horizontal bore of a superconducting magnet at

B = 1.9 T which is oriented with its north pole facing north-northwest (342(5)◦). A cryostat filled

with liquid helium and nitrogen cools the setup down to temperatures near 4 K at the position of the

trap. The 4 K stage is surrounded by an additional 77 K shields to reduce the thermal load. The table
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with the cryostat on top can be rotated in all directions which allows the adjustment of the angle of

the trap with respect to the magnet bore. Also the relative position of the trap with respect to the

magnet center can be adjusted due to a flexible bellow.
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Fig. 2.10: (A) 3D and cut view of the whole experiment (temperature stabilization not shown) The magnet bore

is tilted by 18◦ with respect to the geographic north. The various electronic boxes contain switches, filters and

feedthroughs to the vacuum chamber. (B) Zoomed view of inner setup composed of electronic segment and trap

chamber. The electronic segment contains the two axial resonators as well as the axial amplifiers. The cyclotron

resonator is placed in the trap chamber below the trap system of AT and PT. An additional electron gun allows

the in trap production of protons.
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The whole setup is surrounded by a (not shown) wooden box for an active temperature stabi-

lization. Within the box all room temperature electronics, such as supplies, switches and excitation

generators are placed. The box is typically heated by a conventional space heater to about 29◦C..

This allows a decoupling from the lab temperature which typically varies by 19− 21◦C. The heater

is controlled by a PID controller whose temperature sensor is placed in the air of the box. Heater

pulses are integrated by the thermal mass of the apparatus. Temperature data of the stabilized box

is shown in figure 2.9 A.

The helium reservoir is connected to a helium recovery line. The temperature of the 4 K stage is

correlated to the pressure in the helium cryostat vessel, and pressure fluctuations thus lead to particle

instabilities. To reduce pressure fluctuations the Helium reservoir of cryostat and magnet are actively

stabilized to about 30 mbar above atmospheric pressure, see figure 2.9 B. The nitrogen reservoirs have

a reduced influence on the particle due to their indirect coupling to the 4K trap chamber.

The inner part of the experiment inside the magnet bore contains the electronic segment and the

trap chamber, both at 4 K. Two superconducting axial resonators are placed in the electronic seg-

ment [64] and are directly connected to the pinbase where all electrical feedthroughs are placed. The

feedthroughs lead into the trap chamber which is hermetically sealed. This is achieved by pump-

ing the trap chamber at room temperature to pressures of 10−7 mbar through a small copper tube

soldered in the trap chamber. The copper tube is then pinched-off which effectively seals the inner

volume by cold welding the copper tube. The pinched-off volume allows pressures below 10−14 Pa

[77] which ensures a clean environment for stable particle storage.

Inside the chamber the trap system is assembled consisting of the electrode gun, the analysis trap

(AT) and the precision trap (AT). On top of the trap system the cyclotron resonator is attached. The

electrodes are made of oxygen-free copper and galvanically gold plated with a layer of 8µm gold on

top of 7µm silver. Both traps are designed in orthogonal and compensated design [45]. To electrically

isolate them from each other sapphire rings are placed in between. The ring electrode of the AT is

made of ferromagnetic Co/Fe to create the strong magnetic inhomogeneity.

The electron gun is used to create electrons at defined energies by field emission. The electrons

hit a polyethylene target on the opposite side of the trap system where, due to the impact, atoms

are sputtered of the surface and are subsequently ionized by the electron beam. Positively charged

fragments are captured in the precision trap. Dedicated cleaning procedures such as voltage ramps

or selective excitations allow the preparation of a single proton.

An extract of the complete connection diagram (appendix B.1) is shown in figure 2.11 for the PT.

The first column (I) shows the instruments connected to the apparatus at room temperature. The

second column (II) lists all electronic boxes at room temperature. The connections are guided by

vacuum feedthroughs to the vacuum part of the experiment. (III) and (IV) are filter stages at 77 K

and at 4 K, respectively. The pinbase between (IV) and the trap chamber (V) contains all electronic

feedthroughs. The various types of connections are labeled with 1− 11 and are similar to the con-

nections in the rest of the trap system. Line (1) shows a feedback line which is guided by a low

temperature coax cable. The end is mounted in close proximity to the axial detection line to allow for

a capacitive signal coupling. Line (2) and (3) are part of the axial detection system. The green box in
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Fig. 2.11: Exemplary connection scheme of the precision trap. Details are explained in the text.

(I) is the high-precision voltage source UM1-14 from Stahl-Electronics. This DC connection is filtered

three times in (II)-(IV) by low pass filters. If not indicated otherwise the RC filters have R = 500 kΩ

and C = 8.2 nF. The axial resonator coil is shown as a gray box. One end of the coil is connected to

the DC line. The other end is directly connected to a sapphire feedthrough on the pinbase. The signal

is picked up by an inductive voltage divider with κ = 0.1. The signal is amplified at (IV) and at (II)

indicated by the triangles. The cryogenic amplifier requires 5 DC connections shown by connection

(4). The axial detector is then directly connected to the endcap of the precision trap. Lines (5),(6) and

(8) are the precision channels of the voltage source to bias the trap electrodes. As all DC connections

they are filtered at all three stages (II)-(IV). Line (7) is the connection for the spin-flip coil positioned

in the trap chamber (V) to drive magnetic dipole transitions between the spin states. The spin-flip

coils are also used to drive quadrupole excitations such as a magnetron coupling in the AT, where

no segmented electrode is mounted. The two lines (9) and (11) are excitation lines. The connection

is made with a coaxial cable in combination with a twisted pair. The rf-signals merge on the pinbase

with the DC lines (8) and (10) which are blocked by a 500 kΩ resistor. To reduce external noise on

the unfiltered excitation lines a capacitive voltage divider is used. Inside the trap chamber the lines

are connected with the electrodes by coax cables. (9) is used for the quadrupole excitation to drive

sidebands and is thus connected to a segmented electrode. The two segments are connected by a

25 MΩ resistor. The other segment is used for a connection to the cyclotron resonator which is placed

inside the trap chamber to minimize the wire length.

The experiment is controlled by LabVIEW from National Instruments which allows the readout

and programming of all instruments related to the experiment. The signal readout is performed with

a SR780 Dynamic Signal Analyzer by Stanford Research Systems (SRS) which was modified to accept a

10 MHz clock input. The frequency lock is supplied by a FS725 Rubidium Frequency Standard from

SRS and is used for all instruments such as various frequency generators.
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Chapter 3
The Analysis Trap (AT)

The analysis trap is used to measure the proton spin state and is thus indispensable to the double-

trap technique. Due to the intrinsic weakness of the proton magnetic moment a strong magnetic

inhomogeneity is required to couple the proton spin to the axial motion. However, this magnetic

bottle makes the analysis trap a challenging environment to work with. This chapter introduces

the theoretical description of the axial frequency stability followed by experimental results. Several

optimizations were implemented to reach the highest stability ever achieved in a proton analysis

trap. Finally, the AT is characterized with respect to trap harmonicity and detector temperature..

3.1 Stability of the axial frequency

3.1.1 Theoretical description

It was shown before in section 2.8 that in the analysis trap the axial frequency depends on the spin

state of the proton due to the presence of the magnetic bottle characterized by B2,AT. A change of the

spin state ∆ms = ±1 leads to a measurable frequency change of

|∆νz, SF| = g
qh̄B2,AT

8π2m2νz
≈ 1

4π2
hν+
mνz

B2,AT

B0,AT

g|∆ms|
2

= 172(3)mHz . (3.1)

A large magnetic bottle B2,AT = 298 000(5000)T m−2 is beneficial to obtain a significant change in

the axial frequency but also introduces energy dependent frequency shifts as introduced in equation

(2.28). The absolute axial frequency is given by

∆νz(E+, E−, ms) =
1

4π2
hν+
mνz

B2,AT

B0,AT

[(
n+ +

1
2

)
+

ν−
ν+

(
n− +

1
2

)
+

g
2

ms

]
, (3.2)

where the energies were replaced with the corresponding energy levels of a quantum harmonic oscil-

lator with principal quantum number n± and ms = ± 1
2 . A change of the principal quantum number

n+ → n+ ± 1 introduces a frequency shift of ∆νz = 62 mHz and a change from n− → n− ± 1 a
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Fig. 3.1: (A) Schematic sequence of axial frequency measurements in the analysis trap in the presence of a spin

flip (blue arrow) for low and high energy. In case of low energy the background noise is sufficiently low to assign

a spin flip event based on the axial frequencies. In case of high energy and thus large background fluctuations

no spin flip can be identified. (B) The axial fluctuation is a function of energy which is directly correlated to the

spin detection fidelity in blue. 100% fidelity is never reached because the background noise never reduces to

zero.

shift of ∆νz = 52µHz, respectively. In the presence of many quantum transitions the spin state

detection becomes less reliable or even impossible which is characterized by the spin state detection

fidelity. The probability to determine the correct spin state, greatly depends on the ability to dis-

tinguish the frequency change due to a spin flip from the background noise on the axial frequency.

Figure 3.1 A illustrates subsequent measurements of the axial frequency over time. During the axial

frequency measurements a spin flip occurs, indicated by the blue arrow. As a consequence the ax-

ial frequency changes which can be seen easily in case of the low energy particle. In the case of a

high energy particle the background fluctuations are large compared to ∆νz,SF and the spin flip is not

detected.

The origin of the background fluctuations are spurious transition rates p+ = dn+/dt = ṅ+ and

p− = dn−/dt = ṅ− which must be minimized to achieve a high fidelity. It can be shown with time

dependent perturbation theory [78, 58], that the transition rates scale proportionally to the principal

quantum numbers p± ∼ n± ∼ E± which means that a particle with lower energy exhibits smaller

heating rates.

To further investigate the axial stability in the analysis trap a series of axial frequency measure-

ment {ν1, ν2 . . . , νn} is assumed. To measure the axial stability independently of slow drifts of the

axial frequency, which are for example caused by temperature drifts in the voltage supply, the axial

fluctuation δi = νi − νi+1 is introduced with i ∈ {1, . . . , n − 1}. The standard deviation for this set

of axial frequency differences Ξ = sd(δi) is to first order normally distributed and characterizes the

axial stability.

In order to achieve the highest possible spin state detection fidelity the axial fluctuation must be
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Fig. 3.2: (A) Allan deviation of the axial stability for a proton with T+ = 5(5)mK. The blue line shows a fit based
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220 s a stability of 40 mHz is achieved. The random walk in this data set corresponds to in average one quantum

jump each 12 min. (B) Axial stability as a function of modified cyclotron energy. All data was recorded with an

averaging time of tavg = 60 s. Typically, proton temperatures E+ ≤ kB 600 mK are used for the experimental

g-factor routine.

minimized. The background fluctuation Ξbg is composed of two components

Ξbg =
√

Ξn(tavg)2 + Ξw(tavg)2 =

√
s2

n
tavg

+ s2
wtavg , (3.3)

which are illustrated in figure 3.2 A. The white noise component Ξn(tavg) decreases with increasing

FFT averaging time with square root of tavg and predominantly arises due to fit and voltage noise.

The random walk component, which mainly arises due to the modified cyclotron transition rate,

increases with time. A minimization with respect to tavg shows that the ideal measurement time is

given by tid =
√

s2
n/s2

w with an ideal stability Ξid =
√

2snsw. At the measurement time tid white

noise Ξn and random walk Ξw have the same contribution to the overall fluctuation. To connect the

fluctuation to the model of cyclotron quantum jumps the walk contribution can be expressed as a

function of the cyclotron transition rate [58]

Ξw =

√
1√
2

∆ν2
z,+p+tavg ⇒ s2

w =
1√
2

∆ν2
z,+p+ . (3.4)

p+ = p+(E+) is a linear function of the modified cyclotron energy and is the essential parameter to

obtain a suitable axial stability. For a constant averaging time the expected behavior is described by

Ξbg =

√
s2

n
tavg

+
1√
2

∆ν2
z,+p+(kBT+) tavg ∼

√
a + b T+ , (3.5)

where a and b are constants. Such a behavior is shown in figure 3.2 B with a non-zero offset at E+ = 0.

In contrast, if the ideal averaging time tid is chosen, the behavior is

Ξbg =

√√√√2sn

√
1√
2

∆ν2
z,+p+(kBT+) ∼ c T1/4

+ (3.6)
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shows the slopes as introduced in (A). For offsets ∆V2 = −∆V4 = −13.7(2)V on the correction electrodes the

frequency shifts are identical and the trap asymmetry is compensated.

with constant c. In the ideal case, the fluctuations vanish for E+ → 0 with an averaging time of tid →
∞. During the measurement a fixed averaging time is typically chosen, but it can be advantageous

to characterize the noise carefully in order to determine the ideal averaging for several cyclotron

energies.

3.1.2 Experimental optimization and characterization

To characterize the axial stability as a function of temperature and averaging time the particle is tuned

into resonance with the axial detector and the particle signal is measured in the time domain with

an M-AUDIO FastTrack Pro soundcard. Afterward, the data is processed by a Fast Fourier Transform

(FFT) algorithm with variable settings. The result of a 16 h time signal is shown in figure 3.2 A where

the same signal was analyzed for different averaging times. The theoretical model for random walk

and white noise contribution is in excellent agreement with the measured data. The best stability is

achieved for an averaging time of about 220 s with Ξid = 40 mHz. This is a significant improvement

of 15 mHz compared to the previous experimental run [76] and improves the spin state detection

fidelity by about 10%, compare figure 3.1 B. The stability during the g-factor measurement is shown

in figure 3.2 B as a function of the modified cyclotron energy at a constant averaging time.

To reach the stability stated here many optimizations of the analysis trap were required and are

discussed briefly within this section as well as adjustments that had little or no effect. It should also

be noted, that not for all steps the improvement in mHz was explicitly measured because some steps

were performed at the same time.

• Axial temperature and trap anharmonicity

The temperature of the axial resonator and the trap’s anharmonicity play an important role

for a high axial stability due to the coupling of the particle energy to the axial frequency in
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the presence of electrostatic imperfections. A lower resonator temperature leads to a narrower

distribution of particle energies and thus a sharper axial dip. As a consequence of the im-

proved measurement precision and the smaller white noise contribution a higher axial stability

is achieved. The resonator temperature was reduced by active feedback and the trap anhar-

monicity was minimized by scanning the trap’s tuning ratio.

• Asymmetry compensation

Small potential offsets on the order of several mV on individual electrodes or small machining

and alignment errors in the trap setup break the symmetry of the trap and cause deviations

from the ideal potential. These asymmetries can be partially compensated with small offset

potentials ∆Vi on the trap electrodes [58]. Typically, asymmetries are compensated for the cor-

rection electrodes V2 and V4 as well as for the endcaps V1 and V5. An offset on the ring electrode

is of no concern because it effectively shifts the absolute value of TR which is optimized inde-

pendently.

As a first step, the endcap offsets are set to zero ∆V1 = ∆V5 = 0 and only the correction

electrodes are tuned. A voltage variation δV2 on one correction electrode shifts the center of

the potential and changes the Cj coefficients (section 2.2) which leads to an axial frequency

shift ∆νz(δV2). In a perfectly symmetric trap a change δV4 on the opposite correction electrode

would lead to the same frequency shift ∆νz(δV4) and a comparison between both frequency

shifts enables the minimization of the asymmetry. Figure 3.3 A shows such a measurement of

the axial frequency as a function of applied offset voltages on the correction electrodes. The

two offsets ∆V2 and ∆V4 to compensate the asymmetry are varied until the frequency behavior

is identical for variations δV2 or δV4. The result of such a measurement sequence is shown in

figure 3.3 B with the point of intersection at ∆V2 = −∆V4 = −13.7(2)mV when a symmetric

frequency change is measured. Note, that this kind of compensation is arbitrary in a sense, that

any offset on one correction electrode, for example of 1 mV, can either be compensated by a

1 mV offset on the opposite correction electrode, by −1 mV on the same correction electrode or

by two offsets with +0.5 mV and −0.5 mV on both electrodes.

In the next step, a global asymmetry compensation is performed by applying a voltage to one

endcap. However, this offset on the endcap changes the offset on the correction electrodes that

minimize the trap asymmetry and for each new voltage ∆V1 the correction electrode compen-

sation ∆V2/4 has to be redone. The process is repeated until both slopes are identical and, in

addition, dνz/dδV4 = 0 = dνz/dδV2. This led to the final setting of ∆V1 = −462 mV and

∆V2/4 = ∓27.9 mV.

After the implementation of the global asymmetry compensation the axial frequency stability

changed from 40(1)mHz to 37(2)mHz. During the g-factor measurement only the correction

electrode compensation was used because the influence of the global compensation on the sta-

bility was too small to justify the usage of second UM1-14 voltage supply which would have

been necessary to apply a stable voltage to the endcap.
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• Endcap switches

All traps in the experiment are operated with a UM1-14 voltage supply which provides three

ultra-stable channels for the ring electrode and the two correction electrodes (typically 0.1µV

fluctuations) along with less stable, additional channels for the endcaps (typically 10µV fluctu-

ations). To get rid of the much higher fluctuations on the endcaps KEMET EE2-5SNUH signal

relays were implemented. These are used to short the endcaps to ground instead of apply-

ing 0 V with the UM1-14. Fluctuations on the endcap have a significant impact on the axial

frequency stability and the switches immediately improved the quality of the dip S/N.

• Temperature stabilization

The external temperature of the laboratory has a large influence on the axial frequency which

is mostly due to temperature dependent voltage drifts of the voltage source. A change of 1 K

on the voltage supply temperature corresponds to a voltage change of 10µV which shifts the

axial frequency by 3.7 Hz. To achieve a temperature stability of 10 mK, which corresponds to an

axial stability of > 36 mHz, the whole setup is surrounded by a temperature stabilized box with

an internal temperature of 29 ◦C. The voltage source is furthermore surrounded by a massive

copper block to remove small fluctuations.

• Low-pass filters To reduce short-time fluctuations of the voltage source film capacitors with

47µF were connected to all channels at room temperature. With these filters connected the

voltage requires a couple of minutes to settle down to its final value. At the current level of

precision no effect on the stability was observed which indicates that the measurement was

not limited by the voltage stability. However, for future applications when limited by voltage

fluctuations such filters might prove useful.

• Cable connectors

The original setup used several BNC cables to guide the ultra-stable voltage channels to the

trap. These allowed quick access to the channels for probing or to apply higher voltages for trap

cleaning. However, measurements confirmed that such BNC connectors are highly sensitive

to external temperature changes such as heating pulses from the PID controlled temperature

stabilization. Temperature fluctuations change the contact potentials between the male and the

female plug which creates offset voltages in the order of several µV and shifts the particle by

a few Hz. Soldered connections, SMA-connectors or gold-plated banana plugs are typically

less sensitive to such influences by around one order of magnitude. For that reason, all BNC

connections were replaced with solder joints and SMA-connections which greatly improved

the stability.

• Cryo-liquid pressure stabilization The pressure in the helium cryostat has a direct influence

on the temperature of the 4 K stage and is thus correlated to the frequency stability of the pro-

ton. A pressure stabilization for the helium reservoir was installed and set to 1030 mbar. The

frequency dependence also applies to the nitrogen reservoir. However, due to a negligible ef-

fect on the stability at the current level of precision no pressure stabilization was installed. Such
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a stabilization will be of potential interest for a further improved apparatus.

3.2 Detection system temperature

During the detection with a dip spectrum, the proton is in constant thermal equilibrium with the de-

tector and the expectation value of the axial energy is related to the detector temperature 〈Ez〉 = kBTz.

Due to the continuous energy thermalization the axial frequency permanently changes in the pres-

ence of B2AT and electrostatic imperfections C4, as described by equation (2.28). The dip spectrum

“smears out” resulting in a smaller signal-to-noise ratio. A smaller S/N leads to a larger white noise

contribution or equivalently to a larger uncertainty on the frequency measurement. Thus, a small

axial temperature is crucial and must be optimized carefully.

To measure the axial temperature of the detection system the technique of sideband cooling is

being used. During the excitation with the coupling drive at νz − ν− the magnetron mode and axial

mode exchange energy and reach an equilibrium state defined by

〈E−〉 = −
ν−
νz
〈Ez〉 = −

ν−
νz

kBTz ⇒ T− = −ν−
νz

Tz < 0 , (3.7)

where the average magnetron energy is connected by the frequency ratio to the temperature of the

axial detection system. Once the coupling drive is turned off in cycle (i) the magnetron temperature

acquires an arbitrary but fixed value T(i)
− on a Boltzmann distribution

ρ(T(i)
− ) = − 1

kBT−
exp

(
−

T(i)
−

T−

)
. (3.8)

Due to the magnetic bottle the axial frequency is shifted as function of the magnetron temperature

∆νz(T
(i)
− ) =

1
2π

1
mωz

B2,AT

B0,AT
kBT(i)
− = 71.4 Hz K−1 T(i)

− (3.9)

after each coupling. The process of coupling both modes and measuring the axial frequency ν(i) is

repeated several hundred times. The resulting frequency distribution {ν(1), . . . , ν(n)} is transformed

to extract the temperature information

{T(1), . . . , T(n)} =
{

ν(1) − νmin

72 Hz K−1 , . . . ,
ν(n) − νmin

72 Hz K−1

}
(3.10)

with νmin = min({ν(1), . . . , ν(n)}) which defines the “cut” of the Boltzmann distribution with Tmin =

0 K. Note that the routine must run sufficiently long to have a high probability that the estimated cut

is likely to be the real cut.

Figure 3.4 A shows the result of such a measurement with the result of Tz = 18.1(6)K.1 This

rather high temperature is due to undesired positive feedback from the amplifier which became
1The data was analyzed using a maximum likelihood analysis based on the probability density ρ(T)(1− Θ(T − Tmax)).

Tmax denotes the highest temperature that could have been recorded based on the limited frequency span on the FFT. The

Heaviside Theta function Θ cuts off the upper tail of the Boltzmann distribution that was outside the experimental resolution.

This becomes important for large temperatures when a large fraction of data points lies not within the frequency window that

is recorded.
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worse over time since the Q-value of the resonator increased by almost a factor of two within two

years. To obtain a lower temperature and thus a better axial frequency stability negative feedback

was used [67]. The Q-value was decreased to 13600 which corresponds to an expected temperature

change of Tz,FB = Tz QFB/Q = 18.1 · 13600/40500 = 6.1 K. This theoretical expectation is in good

agreement with the directly measured value of Tz = 6.4(4)K, figure 3.4 B.

3.3 Tuning ratio optimization

In the presence of electrostatic field imperfections and the magnetic bottle the axial frequency shifts

as a function of energy which limits the frequency stability. While the magnetic bottle cannot be

reduced, the anharmonicities of the electrostatic potential can be minimized by optimizing the tuning

ratio TR. Typically, two different methods are used to minimize the anharmonicities.

The first is the optimization of the dip signal-to-noise ratio. This is illustrated in figure 3.5 where

several spectra can be seen as a function of the tuning ratio. At the step size of ∆TR = 5× 10−5 the

ideal TR can be clearly identified as the black spectrum.

The behavior of the S/N as a function of TR, indicated by the dashed line, can be described ana-

lytically. Starting from the lineshape for the dip as introduced in equation (2.38) and (2.42) the trap

anharmonicities in case of a non-ideal tuning ratios must be taken into account, because they intro-

duce energy dependent frequency shifts. Due the continuous energy exchange between the axial

detector and the proton the thermal Boltzmann distribution has to be convoluted with the original

lineshape of the dip, resulting in

χ(ω) = Reff(ω)
1
Tz

ˆ
(ω2 − ω̃2

z)
2

(ω2 − ω̃2
z)

2 +
(

ωReff
lp

)2 e−
T
Tz dT , (3.11)
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This characterizes the trap dependent parameter D2 with ∆νz = −19.75(15)Hz TR−1.

where

ω̃z = ωz

(
1 +

3
4

D4 ∆TR
C2

2

kB

qV0
Tz

)
(3.12)

is the shifted frequency due to the anharmonicities. The ideal tuning ratio is defined by the condition

ωz = ω̃z or equivalently ∆TR = TR− TRid = 0. The logarithmic signal-to-noise ratio is then obtained

by

S/Ntheory = 10 log10


(√

4kBTzχ(ω) κ
)2

+ u2
in

u2
in

 . (3.13)

The result of this equation is shown by the dashed line in figure 3.5 A and is in good agreement with

the observed behavior. The parameter D4 only depends on the trap geometry and can be calculated

from potential theory. The S/Ntheory relation can also be used the other way around to obtain the un-

known axial detector temperature Tz by measuring the scaling of the S/N. However, the decoupling

κ and uin must be known to ensure precise predictions. Furthermore, it must be ensured that higher

order contributions such as C6 have no significant impact on the axial frequency.

The second method uses feedback to find the ideal tuning ratio. Feedback can be used to change

the temperature of the axial detector with the relation Tz,FB = Tz QFB/Q where Q is the quality factor

of the resonator without feedback and FFB with feedback. To find the ideal tuning ratio, the axial

frequency is measured at various tuning ratios with and without feedback and the each frequency

difference is related to the theoretical expectation

∆ω̃z = ωz

(
1 +

3
4

D4 ∆TR
C2

2

kB

qV0
Tz

)
−ωz

(
1 +

3
4

D4 ∆TR
C2

2

kB

qV0
Tz,FB

)
(3.14)

= ωz

(
1 +

3
4

D4 ∆TR
C2

2

kB

qV0
(Tz − Tz,FB)

)
. (3.15)
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Fig. 3.6: (A) For each tuning ratio the axial frequency was measured with and without feedback. The difference

between both measurements is shown in the plot as a function of TR. The ideal tuning ratio is the point where the

axial frequency is energy independent and the difference between feedback and no feedback vanishes. (B) The

ideal TR depends on the applied ring voltage. Each of the presented data points is a result of an optimization as

shown in part A.

Minimizing ∆ω̃z yields the ideal tuning ratio ∆TR = 0 as shown figure 3.6 A. As for the S/N method

the procedure can be repeated to reduce the statistical error. The advantage of the feedback TR scan

compared to the S/N analysis is the simpler behavior. The root of a weighted linear fit immediately

allows the determination of the ideal tuning ratio without a detailed analytic description or further

assumptions. In practice, the S/N method is the typical way to quickly optimize TR or to get a rough

first estimate.

The axial frequency in the AT is a function of the absolute particle energy and each particle energy

is associated with a different TR and a different ring voltage that centers the particle on the resonator.

To avoid scanning TR for each new energy the ideal tuning ratio as a function of the ring voltage was

calibrated and is shown in 3.6 B.

3.4 Spin-flip probability

In the presence of spin flips during a measurement sequence of axial frequencies the fluctuation ΞSF,

induced by the spin flips [58], adds to the background fluctuation Ξbg in equation (3.3)

Ξ =
√

Ξ2
bg + Ξ2

SF =
√

Ξ2
bg + pSF,AT ∆ν2

z, SF . (3.16)

Equation 3.16 can thus be used to measure the spin-flip probability in the analysis trap for a known

background fluctuation. The measurement is conducted by repeating the sequence

νz,1 → νref → νz,2 → νL, off → νz,3 → νL → νz,4 (3.17)

where the νz,i indicate 60 s axial frequency measurements and νL = 49.995 MHz and νL,off = 45 MHz

are 20 s excitations with an on-resonant and an off-resonant excitation to drive spin transitions. Dur-
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undesired side effects are neglected. (B) The measurement in (A) was repeated four times to gain more statistics.

The data was then used to calculate the spin-flip probability. The result is the blue line with gray error band.

The small inset shows a schematic Larmor resonance with relative position of the applied excitation drive.

ing νref no excitation is performed. The corresponding fluctuations are calculated by

Ξνref = sd({νz,1 − νz,2}), ΞνL,off = sd({νz,2 − νz,3}), ΞνL = sd({νz,3 − νz,4}) , (3.18)

where the argument of sd contains normally distributed frequency differences. The result of such

measurements is shown in figure 3.7. The background fluctuation is consistent between reference

and off-resonant measurement, which indicates that no additional dynamic was induced due to the

spin-flip drive (such as for example heating effects that change the background fluctuation). The

overall result is

pSF, AT = 0.366(16) . (3.19)

Because the Larmor resonance in the analysis trap is shaped like a Boltzmann distribution due to the

thermally distributed axial energy [51, 79], the Larmor drive frequency for the g-factor measurement

was tuned a bit higher than the actual ideal Larmor frequency. This ensures that in the event of mag-

netic field drifts the spin-flip probability does not drop to 0% at the sharp left edge of the distribution

but rather moves to the right flank, compare inset in figure 3.7 B .
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Chapter 4
The Precision Trap (PT)

In contrast to the analysis trap the purpose of the precision trap is the measurement of the proton

eigenfrequencies with highest precision in a homogeneous magnetic field. This chapter introduces

a considerably improved cyclotron detector which enabled a two times faster data taking rate in the

final g-factor measurement. Furthermore, several trap characteristics such as the tuning ratio, the

detector temperature, and the magnetic field are explained in detail, as they will become important

for the systematics of the g-factor evaluation. The fit model used to extract the eigenfrequencies from

the axial frequency spectra is briefly explained along with its role in future experiments, and finally

the lineshape of the g-factor resonance in the PT is discussed.

4.1 Improved cyclotron detector

Section 3.1 discussed the correlation between the cyclotron energy and the axial stability during

the determination of the spin state. Low cyclotron energies are crucial to reach a high spin read-

out fidelity. However, each cyclotron frequency measurement via sideband coupling increases the

cyclotron energy to

〈E+〉 = kBT+ = kB
ω+

ωz
Tz ≈ kB 600 K , (4.1)

leading to a far too high energy to detect spin flips in the analysis trap. To reduce the cyclotron

energy to 〈E+〉 < kB 1 K during each cycle, the particle is coupled to a cyclotron resonator and

resistively cooled. The cyclotron detector with physical temperature T+ and coupling constant τ+ is

connected to a segmented correction electrode of the precision trap and acts as a thermal bath. The

modified cyclotron mode thermalizes with the resonator as long as it is coupled. Once the coupling is

interrupted by tuning the cyclotron resonator frequency away from the particle’s modified cyclotron

frequency ω+, the mode energies “freezes” to a fixed energy. The individual “frozen” energies are

Boltzmann distributed and connected to the detection system temperature T+.
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Fig. 4.1: The left part shows a schematic setup of the superconducting coil within the copper housing. The green

area shows where the amplifier is placed. The amplifier board layout is shown in the middle, and a schematic

of the used electronic components is displayed on the right.

In the previous g-factor measurement [48] the reduction of the particle energy consumed about

100 min out of a total cycle time of 160 min per data point, which is a dramatic limitation for high

statistics. For more efficient cooling, a resonator with smaller temperature and smaller coupling time

is beneficial, as it decreases the number of cooling attempts and the time per attempt, respectively.

The design of the new cyclotron resonator is shown in figure 4.1 and is based on the prior design

discussed in [58]. A hollow cylindrical Teflon core with a diameter of 23.1 mm is placed in a polished

copper housing. The resonator coil is made out of NbTi superconducting wire and consists of 12.2

turns and a spacing of 2.83 mm between adjacent turns. The cold end of the coil is grounded to the

housing while the hot end is connected to the segmented trap electrode and the amplifier input. To

minimize parasitic capacitance, parasitic inductance, and sensitivity to stray noise the resonator is

placed inside the trap chamber in close proximity to the PT together with the cryogenic ultra low-

noise amplifier which is located inside the copper housing of the resonator assembly. The amplifier

layout is the well established design that has been used over several experimental generations [80].

A tunable varactor diode (MACOM MA46H072) is used to tune the resonator frequency at 28.96 MHz

within a range of about ±600 kHz.

To optimize coupling time τ+ and temperature T+ the resonator was systematically characterized.

The unloaded (bare coil, no trap or amplifier attached) quality factor is Q = 16 200 at a resonance

frequency of 85.5 MHz with an inductance of L+ = 1.7µH. In the next step amplifier, trap and

varactor are connected to the resonator as shown in figure 4.1. The varactor is decoupled with a

5.1 pF capacitor which is chosen such that the modified cyclotron frequency is located in the middle

of the tunable resonator frequency range. The amplifier is decoupled with Cc = 1.8 pF. The whole

assembly was tested at 4K for various coupling factors κ defined by

κ =
Cc

Cc + Cin
(4.2)
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to analyze the scaling of S/N and Q. The theoretical expectation

S/N ≈
√

4kBTReff κ

en
, Q =

Reff
ωL+

(4.3)

is used to measure the input capacitance Cin = 1.3(1)pF and the input resistance Rin = 730(30) kΩ

of the amplifier assuming the independently measured amplifier input noise en = 0.8 nV
√

Hz
−1

. Reff

is the effective parallel resistance of the whole system composed of Rin and the parallel resistance of

resonator and varactor Rp

Reff =
Rinκ−2Rp

Rinκ−2 + Rp
. (4.4)

Both S/N and Q can be tuned by an appropriate choice of κ. This behavior is shown in figure 4.2 A.

For large values of κ the signal increases at constant background noise and thus increasing the S/N.

At the same time the Q-value usually decreases, since Rin � Rres and with larger coupling the input

resistance limits the effective parallel resistance more and more. In the opposite case with κ → 0

no signal passes to the amplifier and S/N → 0. The Q-value, however, increases to the unloaded

Q-value unless limited by the varactor. The resonator, as measured during the experimental run is

shown in figure 4.2 B and has a quality factor of Q+ = 1400 and a signal-to-noise of S/N = 15 dB.

A high Q-value ensures the required small coupling time between particle and resonator for the

cooling

τ+ =
m

Q+ ω+ L+

D2
+

q2 ≈ 40 s . (4.5)

as introduced in section 2.5. Furthermore, the lowest achievable temperature with feedback cooling,

Tmin ≈ 2
√

TGT+

∣∣∣
T+=9.6 K

= 3.4 K with TG = 10
S/N
10 T+ (4.6)
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is derived in [67] and scales with the signal-to-noise ratio and the initial temperature of the detector

T+ = 9.6(5)K. That is why both a high Q and a high S/N are beneficial but exclude each other.

In practice the varactor is the limiting contribution to the overall effective resistance but cannot be

decoupled stronger without losing tuneability. As a result, a rather strong coupling of κ = 0.6 is

chosen.

To verify the theoretical expectation of Tmin the temperature of the resonator is characterized for

different feedback strengths. This is done following the method described in section 3.2. After cou-

pling the proton to the resonator, it is transported to the analysis trap and the energy is measured.

This process is repeated until a Boltzmann distribution is recorded that characterizes the tempera-

ture. Independent measurements show that the transport itself has negligible influence on the energy

and heating effects can be neglected. However, the temperature measure in the analysis trap has to

be corrected due to the fact that the magnetic moment is an adiabatic constant [81]

µ+ =
E+

B
. (4.7)

This implies that the radial energies change when transporting the particle through a magnetic gra-

dient and the measured energy distribution in the analysis trap is thus corrected by a factor of

B0,PT/B0,AT = 1.6. The final result of three temperature measurements is shown in figure 4.3. By

applying strong feedback a temperature reduction by a factor of three was achieved.

Compared to the previous run [76] the minimum temperature was decreased from 8 K to 3.2 K

while the cooling constant was reduced more than a factor of 2. This allows a cold particle to be

prepared in the final proton g-factor measurement in about 25 min with an energy < 0.6 K kB, which

is a difference by a factor of 4 compared to the previous measurement. This is a substantial im-

provement of the new cyclotron resonator – effectively doubling the data acquisition rate during the

g-factor measurement.
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4.2 TR optimization

The tuning ratio TR in the PT constitutes a critically important parameter for the g-factor measure-

ment since a non-ideal TR leads to systematic shifts on g, see section 2.4. The usual, quick approach

to optimize the tuning ratio is to record several dip spectra for different TR and optimizing the signal-

to-noise ratio. This was discussed for the analysis trap in section 3.3 but is not as well suited for a

high quality TR optimization as the method of magnetron bursts.

The principle is based on equation (2.28) where the axial frequency as a function of the magnetron

energy is given by

∆νz

νz
=

1
qV0

C4

C2
2

3

c4

E− +
1

q2V2
0

C6

C4
2

45
4

c6

(
E2
− − 2

(
νz

ν+

)2
E+E− + EzE−

)
+O(Cn)

≈ c4E− + c6E2
− +O(cn) (4.8)

with the new coefficients cj for simplicity. The linear scaling with E− in the C6 term is neglected

since for small detunings from the ideal TR the behavior is dominated by the term c4E−. To measure

the frequency shift as a function of the magnetron energy the particle is excited with a burst at the

magnetron frequency with fixed excitation time (equivalent to the number of excitation cycles). The

number of cycles n of the excitation pulse is proportional to the radius the particle is excited to

n ∼ r−, hence the energy scales with E− ∼ n2.

The measurement is conducted by first determining the axial frequency of the proton in thermal

equilibrium. The proton is then excited with a predefined number of cycles and the shifted axial

frequency is measured. With sideband cooling the magnetron energy is brought back to thermal

equilibrium and the same scheme is applied again for several different numbers of cycles. The whole



44 Chapter 4. The Precision Trap (PT)

0.20

0.15

0.10

0.05

0.00

pr
ob

ab
ili

ty

cyclotron temperature (K)

A B

attempts

cy
cl

ot
ro

n 
te

m
pe

ra
tu

re
 (K

)

0               100               200             300              400 0              100           200           300           400          500

400

300

200

100

0

Fig. 4.5: (A) Result of more than 400 energy measurements in the AT after coupling the axial mode to the mod-

ified cyclotron mode in the PT. (B) Histogram of the energy distribution. The slope is proportional to the axial

temperature of the PT.

process is done for several different TR around the expected ideal TR which is shown in figure 4.4 A.

Each color in the plot represents one tuning ratio and is fit with the function defined in equation (4.8).

Figure 4.4 B shows the fit parameters c4 (blue) and c6 (red) as a function of TR. The root of this curve

yields the ideal tuning ratio defined by C4 = E4 + D4TRid = 0. A scaling of c6 in this scanning range

cannot be resolved.

The method described here enables the measurement of TRid with a precision of δTR = 1.9 · 10−6

within about 12 days. During a test measurement various parameters were changed such as the

external temperature of the apparatus, the pressure stabilization or variation with time. No effect on

the tuning ratio was observed at the current level of precision. The only influence on TR which can

be significant up to shifts of 1 · 10−4 is a reloading of the trap which changes offset potentials on the

electrodes and thus influences the ideal potential configuration. During the g-factor measurement,

the tuning ratio was optimized for each individual proton separately. Finally, the tuning ratio was re-

measured after two months of continuous operation to verify the original value. Both measurements,

TR = 0.885262(3) and TR = 0.885264(3), are in perfect agreement.

4.3 Temperature of the axial detection system

The availability of the magnetic bottle in the analysis trap can be used to directly measure the tem-

perature of the axial detection system in the precision trap. To measure Tz the modified cyclotron

mode and the axial mode are coupled. The Boltzmann distributed energy E+ is then determined in

the AT as in section (3.2). The slope T+ of the Boltzmann distribution yields the axial temperature

T+ =
ν+
νz

Tz . (4.9)

Due to the larger energy spread ν+/νz � ν−/νz, the temperature determination with the cyclotron

sideband provides a more sensitive and robust measurement than the magnetron sideband. Small

spurious changes in the magnetron energy during the transport between the traps have insignificant
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influence on the E+ measurement. Independent measurements showed that the energy spread due

to the transport is more than three order of magnitude smaller than the cyclotron induced spread

which is

Tz
ν+
νz

∆νz = 4 K
28.96 MHz
633665 Hz

72 Hz
K
≈ 13 kHz (4.10)

for e.g. Tz = 4 K. Typically, spectra with a span of 800 Hz are recorded to search for the particle

signal in the analysis trap. Ring voltage, as well as the tuning ratio, are then adjusted such that the

axial frequency changes about −600 Hz. This is repeated until a particle dip is found within one of

these spectra. The distribution of such a measurement sequence is shown in figure 4.5. The measure-

ment was repeated several times and with various feedback strengths. Ultimately, a temperature of

3.65(25)K was measured. Correcting by the ratios of magnetic fields as introduced in the previous

section the temperature of the PT axial resonator, Tz = 5.9(1.0)K, is obtained.

4.4 D4Tz characterization

An important input parameter used in the final g-factor evaluation is the product D4Tz which char-

acterizes systematic electrostatic shifts. After thermalization of each mode with the axial mode, the

three mode energies can be expressed by the temperature of the axial detection system 〈E+〉 =

kB
ω+
ωz

Tz, 〈Ez〉 = kBTz and 〈E−〉 = −kB
ω−
ωz

Tz. The electrostatic shifts in equation (2.28) then become

∆ω+

ω+
=

D4Tz ∆TR
C2

2
κ+ ,

∆ωz

ωz
=

D4Tz ∆TR
C2

2
κz ,

∆ω−
ω−

=
D4Tz ∆TR

C2
2

κ− , (4.11)

where C4 = E4 + D4(TRid + ∆TR) = D4 ∆TR was used. The three parameters κ+/z/− are known

from equation (2.28) and depend on numerical constants and frequency ratios. By measuring the

axial shift ∆ωz as a function of the detuned tuning ratio ∆TR = TRid − TR the parameter D4Tz can

be characterized.

However, the quantity ∆ωz = ωz,shifted − ωz,0 is not directly accessible because the unshifted

frequency ωz,0 is unknown. Instead two measurements are conducted at the same tuning ratio, thus
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same ωz,0, but different temperatures

∆∆ωz = (ωz,shifted(Tz,1)−ωz,0)− (ωz,shifted(Tz,2)−ωz,0)

= ωz,shifted(Tz,1)−ωz,shifted(Tz,2)

=
D4Tz ∆TR

C2
2

κz

(
1− Q1

Q2

)
ωz . (4.12)

The temperature change is achieved by varying the Q-value of the detection system with feedback.

The temperatures are then related by Tz,1 = Tz and Tz,2 = Q1/Q2Tz. The absolute temperature

is not required to calculate the relative temperature change. The results of such a measurement is

presented in figure 4.6. In total four such measurements were performed and yield the final result of

D4Tz = 4.75(14)× 1010 m−4 K

This measurement can also be used to estimate the axial detection system temperature Tz by using

the theoretical value for D4. Since D4 = 3.50(35)× 109 m−4 depends only on the trap geometry, the

error can be conservatively chosen to be 10% based on the machining tolerances. This leads to an

estimated temperature of Tz = 13.6(1.4)K which is in disagreement with the previously measured

temperature. Great effort was made to understand this discrepancy and many measurements were

conducted but the problem remains yet to be understood. To incorporate both methods, the error

was increased to Tz = 13.6(8.1) and the systematic errors for the final g-factor are based on this

value.

4.5 Magnetic field contributions

The strong magnetic field inhomogeneity in the analysis trap B2,AT has a relevant influence on the

homogeneity of the precision trap described by B1,PT and B2,PT.

The linear magnetic field B1,PT has no direct consequence for the g-factor measurement but was

characterized for completeness. To measure B1,PT the free cyclotron frequency is measured which

characterizes the magnetic field through the relation B = m/q ωc. This is repeated for several offsets

on one of the correction electrodes. Using the analytic description of the trap potential a change on

the correction electrode can be related to a position change of the particle by 0.81µm mV−1. The

result of the B1,PT measurement is shown in figure 4.7 B and leads to 68.5(1.5)µT mm−1.

The quadratic term B2,PT was one of the major limitations of the previous g-factor measurement

[48] due to its contribution to the linewidth. A reduction of this limitation was thus a primary task

for the new experimental run. To reduce B2,PT the distance between both traps was increased by an

additional transport electrode as shown in figure 4.7 A.

In order to characterize the field inhomogeneity after the modification the axial frequency in the

presence of a non-zero B2,PT is considered and depends on the modified cyclotron energy

∆νz =
1

4π2mνz

B2,PT

B0,PT
E+ (4.13)

see equation (2.28). Thus, thermal fluctuations in the modified cyclotron energy E+ have a direct

impact on axial stability. Furthermore, the stability of the axial frequency has a direct impact on the
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modified cyclotron frequency measurement because it is measured with sideband coupling, section

2.6. Each time ν+ is measured the modified cyclotron energy acquires a different fixed value on a

Boltzmann distribution with expectation value 〈E+〉 = ν+
νz

kBTz. This leads to an axial frequency shift

∆νz =
1

4π2mνz

B2,PTTz

B0,PT

ν+
νz

kB ≈ 8 mHz× B2,PTTz (4.14)

parametrized by the product B2,PTTz. A small B2,PT is important for high stability and the associated

narrow linewidth of the g-factor resonance. Furthermore, a small B2,PT also reduces the systematic

shift on ∆ν+ and ∆νL which, however, cancel in the g-factor ratio to first order.

The product B2,PTTz is measured by recording a series of axial frequency measurements with

a ν+ − νz coupling drive in between. Each coupling drive changes the modified cyclotron energy

according to a Boltzmann distribution

ρ+(x) = Θ(x)
1

∆νz
exp

(
− x

∆νz

)
. (4.15)

This must be added to the normal distributed scatter of the axial frequency

ρz(y) =
1√

2π σ
exp

(
− y2

2σ2

)
. (4.16)

The result is an asymmetric frequency distribution expressed by the convolution

ρ+ ∗ ρz =
1

2∆νz
e
−2∆νzx+σ2

2∆ν2
z erf

(
−∆νzx + σ2
√

2∆νzσ

)
, (4.17)

where erf is the error function. The asymmetry can be increased by raising the detector temperature

with feedback. A characteristic measurement is shown in figure 4.8 A. The frequency distribution of
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surements. The red dots represent the median value of the adjacent 50 measurements. The black line is an

interpolation to third order. (B) Distribution of the axial frequency with value of interpolation subtracted. The

asymmetry characterizes B2,PTTz.

interest is superimposed by a walk caused by temperature and pressure effects on the apparatus that

cannot be easily avoided. To track the walk over time the median of 50 measurements is evaluated

each 25 measurements. The resulting red points were interpolated to third order and yield the black

background curve which can be subtracted from each individual measurement. The parameters of

the resulting distribution ρ+ ∗ ρz are determined by a maximum likelihood analysis. The evaluation

process was tested with simulations to verify that the analysis procedure yields reliable results and

does not, for example, depend on the bin size of the background determination.

Figure 4.8 B shows the histogram of the resulting frequency distribution with a feedback strength

of Q1/Q0 = 17500/6600. The measurement was repeated with different feedback strengths for

consistency. The final result is B2Tz = 1.306(38)T m−2 K. The second parameter σ = 38.5(9)mHz

can be compared to an independent measurement of the axial frequency where no sideband was

driven, σref = 40.5(2.6), which is in good agreement and independently justifies the analysis. The

contribution to the overall cyclotron stability in equation (4.14) can now be calculated to be ∆νz =

10 mHz. The stability of the cyclotron frequency is thus not limited by the thermal fluctuations

in E+ but by the stability of the axial frequency caused by thermal drifts, voltage instabilities and

averaging. Based on a detector temperature of Tz = 13.6(8.1)K the result above corresponds to a

residual magnetic field inhomogeneity of B2,PT = 0.10(6)T m−2. This is a reduction by a factor of

37(26) compared to the previous experimental run [76].

External magnetic field fluctuations are another influence on the cyclotron frequency stability,

namely short term fluctuations or sudden changes in the external field caused by cryo-filling or work

in the lab. Therefore, a superconducting self-shielding coil [82] was wound around the trap chamber,

its center aligned with respect to the precision trap’s ring electrode. An SMD (Surface-Mounted

Device) quench resistor placed on the superconducting wire is used to switch between active mode

(superconducting) and non-active (quenched) mode. A heat dissipation with a power of > 1.4 mW is

sufficient to obtain an immediate quench. The shielding factor of 69(1) was measured in a test setup
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Fig. 4.9: (A) Test measurement of the shielding factor with external sinusoidal excitation. The gray line repre-

sents the measured data starting with an active coil which is then quenched. The red lines are fits that are used

to obtain the shielding factor of 69(1).(B) Stability of the free cyclotron frequency with self-shielding coil active

(blue) and quenched (red). Several red points are missing because the double dip was not sufficient for the fit to

converge.

by comparing the amplitudes of an external sinusoidal magnetic field disturbance for both states.

Figure 4.9 B shows the performance in the actual experiment. The free cyclotron frequency was

continuously measured for both the active and quenched coil. The active self-shielding coil has a

tremendous impact and increases the stability by more than a factor of 10. The exact number cannot

be calculated because many double dip spectra are not sufficient for the fitting routine to converge

and the free cyclotron frequency cannot be determined properly. This is indicated by the missing red

points in the figure.

Continuous logging of the cyclotron frequency similar to the blue data over a few days allows the

assignment of the long term drift stability

1
t

∆νc

νc
= 2.9(3)× 10−9 h−1 . (4.18)

This value is comparable with, for example, the superconducting magnet at the antiproton g-factor

experiment at CERN with 3.2(4)× 10−9 h−1. Such slow drifts constitute no limitation for a 300 ppt

g-factor measurement since measurements are typical performed on a minute timescale and νL and

νc are measured in parallel, for details see section 7. One reason for these drifts, among others, is the

stress on the horizontal setup as a function of the cryo-liquid fill levels. The variation in the weight

of the cryostat induces small movements of the trap chamber in the magnetic field which leads to a

drift in the cyclotron frequency.

The overall free cyclotron stability is shown in figure 4.10. The previous apparatus from 2014

enabled a measurement with 3.3 ppb fractional precision based on a cyclotron stability of∼ 400 mHz.

The developments presented in this work made it possible to improve the stability by an order of

magnitude to ∼ 40 mHz and ultimately allowed a g-factor measurement in the sub-ppb regime. In

contrast to 2014 the stability is not limited by the influence of B2,PT anymore but by the axial stability

which is at ∼ 40 mHz. A further reduction either requires the direct measurement of the modified
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Fig. 4.10: Comparison of the cyclotron frequency stability from 2014 and the current experiment. The new

stability allows for sub-ppb measurements. The improvement was mainly achieved by optimizing the trap

geometry and by the implantation of a self-shielding coil. The cyclotron frequency determination is limited by

axial frequency stability.

cyclotron frequency with the phase method, see section 9.2, or an improved axial stability by an

increased averaging time and a further stabilized high-precision voltage source.

4.6 Frequency fitting

4.6.1 Analytic model

To calculate the line shape of the dip spectrum with resonator the lumped circuit model is used [62].

The particle is modeled as a series tuned RLC circuit in and the resonator as a parallel tuned RLC

circuit. The impedance of particle and resonator in parallel is given by

Z(ω) =

(
1

1
iωc1

+ iωl1 + r1
+ iωC0 +

1
iωL0

+
1

R0

)−1

, (4.19)

where C0, L0 and R0 are defined by the resonator, and l1, c1 and r1 by the particle. The corresponding

Johnson-Nyquist noise is defined by

un =
√

4kBT∆ν Re[Z] (4.20)

with the real part of the impedance as the resistive component. To simplify the expression the sub-

stitution

C0 →
1

ω2
0 L0

c1 →
1

ω2
1 l1

(4.21)
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with ω0 the resonator frequency and ω1 the particle frequency is used. The real part finally reads

Re[Z] =
A

B + C + D
(4.22)

A = L2
0R0ω2ω4

0(R0r1ω2 + r2
1ω2 + l2

1(ω
2 −ω2

1)
2)

B = 2L2
0R0r1ω4ω4

0

C = L2
0ω2ω4

0(r
2
1ω2 + l2

1(ω
2 −ω2

1)
2)

D = R2
0

(
r2

1(ω
3 −ωω2

0)
2 + (L0ω2ω2

0 − l1(ω2 −ω2
0)(ω

2 −ω2
1))

2)
)

.

Expressed with the Johnson-Nyquist noise on a logarithmic scale

ulog = 10 log
[( un

1 V

)2
]
= 20 log

[√
4kBT ∆ν Re[Z]

]
(4.23)

the lineshape can be fit to a real dip spectrum as shown in figure 4.11 A and to a resonator spectrum,

figure 4.11 B . The resonator model shows a small discrepancy on the edges due to a small asymmetry

in the background.

To account for the real background a heuristic approach is used and the real part of the impedance

is substituted by

Re[Z′] = A0 · Re[Z] + B0 + C0(ω−ω0) , (4.24)

where A0 accounts for the amplitude, or an offset on a logarithmic scale, and does not affect the shape

of the resonator or the fit. B0 is used to introduce background noise for example by the amplifier and

C0 is an asymmetry parameter to match real-world spectra. The analytic model can now be used to

analyze the robustness of the fitting algorithm, which will be introduced in the next section.

4.6.2 Fit algorithm

To understand the fit algorithm a brief introduction to the fit model parameters is necessary. Only

the single dip will be discussed but the same arguments apply to double dip. The description of the
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single dip is based on a simplified lineshape model

ρ(ν) = n0 +
4(ν− ν1)

2n1

d2
1

(
4(ν−ν1)2

d2
1

+
(

1 + 4(ν−ν0)(ν−ν1)
d0d1

)2
) (4.25)

on a linear scale as shown in figure 4.12 B. Offset and signal-to-noise ratio are defined by n0 and

n1. The dip width and frequency are governed by d1 and ν1 and in case of the resonator with d0

and ν0. In this simplified model the dip always shorts the resonator perfectly, which means that the

resonator background n0 is at the same level as the dip minimum. Typically, this is not realized in

the experiment and introduces limitations for the fit algorithm. Another question is, how well the

parameters approximate the real values for a spectrum as shown in figure 4.11 A where only limited

information of the resonator is included in the spectrum. A well-defined resonator frequency ν0 can

often not be guaranteed for small frequency spans because the resonator is almost flat and noisy.

To analyze the limitations systematically, dips that match the experimental spectra in the precision

trap are simulated with the full analytic model in equation (4.24). The particle frequency is fixed at

ν1 = 633 666 Hz and defines the dip position. A slight asymmetry is chosen defined by C0 to match

the experimental background. The span is set to 50 Hz and the S/N is chosen to be around 6 dB.

The simulated input parameter for the resonator frequency is then varied from ν0 = 633656 Hz to

633666 Hz. Each simulated spectrum is fit with the simplified model and the output parameters

of the fit algorithm are compared to the input parameters of the simulation. Figure 4.12 A shows

the deviation of ν0,fit and ν1,fit from the real input frequencies. The deviations vanish if the particle

frequency matches the resonator frequency. The results scale only weakly with typical asymmetries

C0 and this presents no limitation for typical experimental asymmetric backgrounds.

Figure 4.12 A has important consequences for the g-factor measurement. If the particle is centered

with respect to the resonator frequency within an uncertainty of 2 Hz, the deviation of the axial

frequency is smaller than 1.8 mHz which corresponds to < 10−10 ppb shift. If the S/N is changed to
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around 4 dB this changes to 2 mHz.

In conclusion, it is highly important to determine the real resonant frequency of the detection

system with high precision and center the particle dip with respect to this frequency. This ensures

that the fit leads to robust results that do not limit the frequency determination on the 100 ppt level.

Here, all parameters of the fit are varied for the optimization. It is also possible to use the real

resonator frequency, determined by a reference spectrum, as input and keep ν0 fixed during the fit.

This is discussed in the next section.

4.6.3 Determination of the resonator frequency

Ideally, the resonator would be completely symmetric and finding the resonator frequency would be

straight-forward. However, an experimental spectrum has an asymmetric background which must

be taken into account. Resonator spectra are simulated which match the experimental conditions. As

a starting point, a large spectrum of the resonator with background was measured with a spectrum

analyzer and is shown in figure 4.13 A. The blue line is a heuristic fit with a series g(ν) = ∑5
i=−5 aiν

i.

Around the resonator peak a Taylor series up to second order is sufficient to describe the background.

The analytic model of the resonator is derived the same way as the complete dip model before

Re[Zres] =
1

1
R0

+ 1
L2

0

(
1

ω2 − 1
ω2

0

)2 . (4.26)

Combined with the background this leads to the model for the resonator

Re[Z′res] = A0 · Re[Zres] + B0 + C0(ω−ω0) + D0(ω−ω0)
2 . (4.27)

Asymmetric PT spectra without white noise are generated for different frequency spans. Afterward,

the deviation of the fit resonator frequency from the real resonator frequency is calculated for differ-

ent asymmetries. The asymmetry is characterized in dB by the difference between the first frequency
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point (left side of the spectrum) and the last frequency point (right side of the spectrum). The de-

viation between input and output resonator frequency is shown in figure 4.13 as a function of the

used frequency span for the spectrum. A reference spectrum of 800 Hz is suitable to determine the

resonator frequency well below 1 Hz.

In the final g-factor routine several reference spectra of the resonator were recorded during each

cycle to continuously track the frequency ν0 of the resonator. The resonator frequency was then used

as a fixed input parameter during the fits of the dip spectra. The result with fixed parameter ν0 is

compared to the free parameter case during the fit in detail in chapter 7.

4.7 Line shape of the g-factor resonance

A detailed understanding of the lineshape in an inhomogeneous magnetic field is essential for the

measurement of the g-factor and depends on the trap characteristics such as the detector. The g-

factor lineshape has been discussed in great detail in [79]. To derive the lineshape in the precision

trap the results are briefly discussed within this section.

In an inhomogeneous magnetic field B = B0,PT + B2,PT z2 along the axial direction the particle’s

Larmor frequency depends on the axial energy Ez = 1
2 mω2

zr2
z, or equivalently on the position. Due

to the axial motion a modulation of the Larmor frequency occurs with

ωL(t) = ωL,0

(
1 +

B2,PT

B0,PT
z(t)2

)
. (4.28)

Averaged over time 〈z(t)2〉 = r2
z/2 the change of the Larmor frequency ∆ωL, the linewidth parameter,

can be expressed as

∆ωL = ωL
B2,PT

2B0,PT
r2

z

∣∣∣∣
r2

z=
kBTz
mω2

z

≈ 0.09 Hz . (4.29)

This parameter is compared to the coupling between the particle and the axial detector
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γ =
1
τz

=
Reff
m

(
q

Dz

)2
∣∣∣∣∣
Reff=QzωzLz

≈ 2.24 Hz . (4.30)

For the case γ � ∆ω the axial motion is strongly coupled to the thermal bath which is one of the two

limits where the line profile can be evaluated as a simple function. The lineshape can be expressed

as a Lorentzian profile

χ(ω) =
1
π

∆ω2
L

γ

(ω−ωL − ∆ωL)2 +

(
∆ω2

L
γ

)2 (4.31)

that is shifted by ∆ω. This shift also affects the free cyclotron frequency and, to first order, cancels

during the g-factor measurement. To account for the cyclotron frequency instability the lineshape is

convoluted with a normal distribution N(0, σ), where the width σ is given by the frequency stability.

Finally, the convoluted lineshape χL = χ ∗ N(0, σ), a Voigt profile, is used to express the spin-flip

probability as a function of the applied drive frequency

P(texc, χL) =
1
2

(
1− exp

[
−1

2
ω2

R texc χL(ω)

])
(4.32)

with excitation time texc = 120 s and Rabi frequency ωR. The full lineshape is approximated with a

normal distribution as shown in figure 4.14, in comparison to the full analytic solution [79]. Devia-

tions in the expectation value, e.g. due to a slight asymmetry of the full solution, are more than one

order of magnitude smaller than the experimental error. Furthermore, the discrepancy between both

lineshapes at the top and on the sides is beyond the experimental resolution. For more details refer

to the g-factor evaluation in chapter 7.
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Chapter 5
First Steps in phase space

The idea to measure the phase of a particle’s motion to determine the g factor of a bound electron

was introduced by S. Stahl [83]. The detection of spin flips demands resolving tiny frequency changes

∆νz,SF which can be tracked by measuring the phase of the motion rather than the frequency. Typ-

ically, such a phase measurement is about one order of magnitude faster which increases the range

of modified cyclotron energies that can be accepted to detect spin flips in the analysis trap. In con-

sequence, shorter experimental cycle times can potentially be reached. The first part of this chapter

discusses the theoretical concepts of the phase method, whereas the second part focuses on experi-

mental results.

5.1 Phase method

Figure 5.1 shows the basic principle of a phase sensitive measurement. First, the axial motion is

excited with a frequency close to the expected axial frequency νrf ≈ νz. This excitation imprints a

defined but unknown phase. Next, the phase evolves with the true axial frequency for a time tevol.

During the evolution time the detector is detuned with negative feedback to reduce the decay time of

the particle motion. Finally, the detector is brought into resonance again and the peak in the spectrum

is read out to extract the phase information with a fast Fourier transformation. A change in the axial

frequency ∆νz results in a phase change

∆ϕ = 2π∆νz tevol (5.1)

and scales with the evolution time. To obtain a large phase difference the choice of longer evolution

time is beneficial but requires a coherent evolution for a greater amount of time. In case of a spin

flip with ∆νz,SF = 172 mHz a phase change of ∆ϕ = 62◦ s−1 must be resolved and the single readout

error must be well below ∆ϕ. The following sections will discuss various parameters that must be

optimized to achieve small single phase readout errors.
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Fig. 5.1: Measurement principle of the phase method. During the phase imprint the amplitude increases due to

the excitation pulse. The particle is then decoupled from the resonator and evolves for the time tevol. Finally, the

resonator is brought into resonance again, a decaying peak signal is observed, and the phase read out during

tavg.

5.1.1 Phase stability as function of S/N

One apparent parameter to achieve a high phase resolution in measurements is the signal-to-noise

ratio, the level between excited proton peak and noise floor of the resonator. To calculate the de-

pendence of the phase stability as a function of S/N the phase space is considered generated by the

coordinates x and ẋ/ω = v/ω, compare figure 5.2 A. The particle moves on a circle around the origin

described by the vector ρ ≡ (x,−v/ω) where the length is defined by

ρ ≡ |ρ| =
√

2E
mω2 (5.2)

which is the same as the axes vertices

x̂ ≡
√

2E
mω2 and v̂/ω ≡

√
2E

mω2 , (5.3)

as a result of Etotal =
1
2 mω2 x̂2 = 1

2 mv̂2 = 1
2 mω2ρ2.

The vector can be described in polar coordinates by (ρ, ϕ) with a probability distribution assigned

to each. The angular component ϕ is evenly distributed in the interval [0, 2π) since no angle can be

preferred due to noise. For the radial component the energy distribution is given by

f (E) =
1

E0
e−E/E0 dE . (5.4)

Substituting E = 1
2 mω2ρ2 and adding the angular dependence leads to

f (ρ, ϕ) = 2λ ρ e−λρ2
dρ

dϕ

2π
with λ =

mω2

2E0
. (5.5)

This result can also be obtained by considering the covered area in the phase diagram. It is propor-

tional to the Boltzmann distributed energy. In the case above the circle has an area proportional to ρ2

and thus ρ2 must be Boltzmann distributed or ρ like equation (5.5).
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Fig. 5.2: (A) Phase space diagram (B) Particle in phase space after excitation for S/N calculation.

To calculate the phase stability as a function of the S/N Figure 5.2 B is considered [58, 84, 85]. The

blue circle describes the phase scatter due to interaction of the particle with the resistive detection

system at temperature Tz. The particle is excited to an amplitude |ρexc| and the phase of the resulting

signal is measured. However, the measured phase of the signal ϕsg differs from the ideal phase ϕexc

due to the excitation pulse because the random phase of the noise floor adds to amplitude and phase

(ρsg = ρbg + ρexc).

To derive the phase stability the shifted two dimensional probability density f (ρ, ϕ, ρexc) is re-

quired, that describes the probability to find a particle at any given point (ρ, ϕ) assuming that the

energy is Boltzmann distributed. The solution is given by shifting equation (5.5) to ρexc = (xexc, yexc).

For that purpose the polar coordinates are changed to Cartesian coordinates using the determinant

of the Jacobian matrix dx dy = ρ dρ dϕ and the usual transformation (x, y) = (ρ cos ϕ, ρ sin ϕ)

f (ρ, ϕ) =
λ

π
ρ e−λρ2

dρ dϕ =
λ

π
e−λ(x2+y2) dx dy = f (x, y) . (5.6)

This result can now be shifted by (xexc, yexc) and translated back to polar coordinates

f (x− xexc, y− yexc) =
λ

π
e−λ((x−yexc)2+(y−yexc)2) dx dy (5.7)

= ρ
λ

π
e−λ((ρ cos(ϕ)−xexc)2+(ρ sin(ϕ)−yexc)2)dρ dϕ = f (ρ, ϕ, ρexc) . (5.8)

An integration over the complete phase space Ω shows thatˆ
Ω

dA f (ρ, ϕ, ρexc) =

ˆ ∞

0
dρ

ˆ π

−π
dϕ f (ρ, ϕ, ρexc) = 1 . (5.9)

The radius of the blue circle in Figure 5.2 B describes the average amplitude of the particle due to

the energy distribution. It can be determined analytically in case of no offset by calculating the

expectation value

|ρbg| =
ˆ

Ω
dA f (ρ, ϕ, 0) ρ =

1
2

√
π

λ
(5.10)

and similar in case with offset for the resulting signal (only numerically)

|ρsg| =
ˆ

Ω
dA f (ρ, ϕ, ρexc) ρ . (5.11)
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Fig. 5.3: Calculated phase stability as a function of the signal-to-noise ratio, prediction and measured data.

The S/N in decibel is defined as

S/Nlog(ρexc) = 20 log

(
|ρsg|
|ρbg|

)
(5.12)

and can now be calculated for any offset (xexc, yexc). The actual phase stability for successive mea-

surements at the same excitation strength is given by the standard deviation

σϕ(ρexc) =

√ˆ
Ω

dA f (ρ, ϕ, ρexc) (ϕ− ϕexc)2 . (5.13)

Equation (5.12) for the x-axis and (5.13) for the y-axis are combined to obtain Figure 5.3. The theo-

retical prediction is indicated as the solid black line. The experimental data where the phase stability

was measured as a function of the signal-to-noise ratio is in good agreement with the expectation.

It can be instructive to consider the limit of σϕ for 0 dB signal-to-noise. The noise circle is then

exactly centered around the origin and no phase information is contained anymore

lim
ρexc→0

σϕ(ρexc) ≈ 103.923◦ . (5.14)

This is the same result as the standard deviation of a uniform distributed interval [0, 2π) given by

σ̃ϕ =

√
2π− 0

12
≈ 103.923◦ (5.15)

or in other words maximum uncertainty.

5.1.2 Optimization of the averaging time

The excited particle cools due to the interaction with the detector. As a result an exponentially decay-

ing signal is measured. The chosen averaging time of the FFT has a large influence on the measured

S/N and thus on the phase stability. For short FFT times the white noise still limits the stability while

for long FFT times the signal has already decayed and only noise is measured. In order to incor-

porate the averaging time behavior the S/N is analytically derived for a decaying signal, following

arguments in [58].
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The voltage signal due to the excited particle is

U = Reff I . (5.16)

The current is expressed by

I =
q

Dz
ż (5.17)

as introduced earlier. Using effective values this equation can be written as

I =
1√
2

q
Dz

vz =
1√
2

q
Dz

ωzrz =
q

Dz

√
Ez

m
, (5.18)

where Ez = 1
2 mω2

zr2
z was used in the last step. In case of an excited particle that cools down to thermal

equilibrium an exponential decay must be added to the equation resulting in I · e−t/τ . Furthermore,

the signal is averaged for the time tFFT which leads to

U = Reff
q

Dz

√
Ez

m

(
1

tFFT

ˆ tFFT

0
e−t/τdt

)
(5.19)

= Reff
q

Deff

√
Ez

m
τ

tFFT

(
1− e−tFFT/τ

)
. (5.20)

The signal-to-noise ratio is defined as

S/N =

√
(Reff I)2 + ∑ e2

n√
∑ e2

n
, (5.21)

where the numerator takes into account that the signal is always the real signal together with the

noise sources en. This subtlety becomes especially important when working with very low S/N. On

a logarithmic scale the S/N, as defined here, has an effective range of [0, ∞). Based on the input noise

of the amplifier the Johnson-Nyquist noise reads

en =
√

4kBTRin∆ν
∣∣∣
∆ν=(tFFT)

−1 ∼
A0√
tFFT

(5.22)

which scales with the square root of the FFT time. Combined with the signal this leads to

S/Nlog(tFFT) = 20 log


√(

B0/tFFT
(
1− e−tFFT/τ

))2
+
(

A0/
√

tFFT
)2

A0/
√

tFFT

 (5.23)

with scale parameters A0 and B0. To test the theoretical prediction the phase stability was measured

as a function of the FFT averaging time with an exponentially decaying signal (τ = 250 ms) generated

by a function generator. The measured signal-to-noise ratio is shown in figure 5.4 B. Based on the S/N

the expected phase stability can be calculated. The result is shown in Figure 5.4 A with the expected

behavior as the solid black line. Data and expectation are in good agreement. The ideal averaging

time is found for roughly tavg ∼ τ.



62 Chapter 5. First Steps in phase space

A B

 0                1000             2000            3000             4000

80

60

40

20

0

tavg (ms)

ph
as

e 
st

ab
ili

ty
 (d

eg
)

12

10

8

6

4

2

0

tavg (ms)

S/
N

 ra
tio

 (d
B)

0                1000             2000             3000            4000

Fig. 5.4: (A) The measured S/N as function of the FFT averaging time. (B) Phase stability as a function of the

FFT averaging time. The black line is a fit with the expected behavior. The blue data points were measured with

an FFT and a decaying signal with time constant of 250 ms.

5.1.3 Fourier vs Laplace transform

So far only the Fourier transform F was considered to determine the phase, however, also the two-

sided Laplace transform B (bilateral Laplace transform) is suitable. Fourier and two-sided Laplace

transform are connected by

B{ f (t)} =
ˆ ∞

−∞
f (t)e−stdt s ∈ C

=

ˆ ∞

−∞
f (t)e−(σ+iω)tdt

=

ˆ ∞

−∞
( f (t)e−σt) e−iωtdt

=
√

2πF{ f (t)e−σt} σ ∈ R (5.24)

which means that taking the two-sided Laplace transform is basically as taking the Fourier transform

of a by e−σt scaled version of the original function. The scaling with e−σt can also be understood as a

weighting of the original time data where for σ > 0 early data has a higher weight while later data is

suppressed. For the decaying particle signal this is advantageous. In case of the FFT it was found that

the ideal averaging time is close to the decay time of the particle. Averaging for longer times does

not increase the S/N anymore since more and more noise is added and outweighs additional signal

information. The idea of weighting the data allows to use this additional information by averaging

longer without losing S/N.

To test this a simulation was made that generates time data of a decaying sinus with defined

phase and noise. For each data set a Fourier transform was performed. In addition the data was

multiplied by a factor of e−t/tdecay and then Fourier transformed. Figure 5.5 A shows the result of the

Laplace transform for different tdecay times. The minimum is found for tdecay = τ. For tdecay → ∞

the phase stability converges against the value of the Fourier transform.

Figure 5.5 B shows a direct comparison between Laplace and Fourier transform. The amplitude
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Fig. 5.5: (A) A numeric simulation is used to generate tiem data of a decaying signal (τ = 100 ms). The phase

stability is calculated for different decay estimates tdecay in the Laplace transformation. Ideal stability is achieved

when the real decay time matches the decay time in the Laplace transformation. For large decay time estimates

the phase stability converges against the Fourier phase stability (B) Comparison between Laplace and Fourier

transform. The averaging time is set to the decay time which is ideal for the Fourier transform. The decay

estimate is also set to the decay time which is ideal for the Laplace transform. It can be seen that for identical

transients the Laplace transform results in a higher S/N and thus in a higher phase stability. Both methods are

consistent with the theoretical expectation.

of the simulated signal was varied and the ideal phase stability for the Fourier and for the Laplace

transform were calculated. As expected the S/N is slightly higher with the Laplace transform due

the noise suppression and thus the phase stability is slightly better.

Even at the ideal averaging time of the Fourier transform the Laplace transform is already advan-

tageous. However, the Laplace transform allows also to average for even longer times without losing

phase stability. Instead of speaking about phase stability it is equivalent to discuss the S/N. In the

next part the analytic expressions shall be discussed for a detailed understanding of the averaging

process.

Similar to the Fourier case an analytical expression can be derived for the Laplace where the data

is scaled by e−t/tdecay . The scaling of the noise changes to

un ∼
1

tFFT

ˆ tFFT

0

1√
t
e−t/tdecaydt

∼ A0

tFFT
erf(B0

√
tFFT) , (5.25)

where erf(x) is the error function. This leads to the modified function

S/N =

√(
C0

tFFT

´ tFFT
0 e−t/τe−t/τdt

)2
+
(

A0
tFFT

erf(B0
√

tFFT

)2

(
A0

tFFT
erf(B0

√
tFFT

) . (5.26)

Using the fit parameter A0, B0 and C0 the behavior can be described precisely as shown in Figure

5.6 A and B. Here signal (numerator) and noise level (denominator) are plotted separately. Finally,

the individual parts can be combined to obtain the signal-to-noise ratio as a function of the averaging
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Fig. 5.6: (A) Signal (blue) and noise (gray) level evaluated with a Fourier transform as a function of the averaging

time. (B) Signal (red) and noise (gray) level evaluated with a Laplace transform as a function of the averaging

time. (C) Comparison of the S/N based on the Fourier and Laplace analysis. The Laplace transformation con-

verges against a fixed value for long averaging times.

time for the Fourier and the Laplace case. Figure 5.6 C shows that the Fourier transform looses for

long averaging time while the Laplace transform converges against a finite value that is better than

the best value of the Fourier case.

In practice the Laplace transformation allows to “squeeze out” a little more information but

should be seen as fine tuning if other parameters are already rather well optimized. The Laplace

equation requires to record the whole time signal for each averaging and perform the processing

separately. The Fourier transform, on the other hand, is a built-in function and the phase can be

analyzed with e.g. an SRS SR1 Audio Analyzer directly.

5.1.4 Bleeding and zero padding

Any experimentally determined time signal is recorded with a certain sample number n for a specific

time tavg ≡ ∆t. This leads to discrete time steps dt = ∆t
n . In the frequency spectrum a frequency

range of ∆ν = n
∆t is governed with frequency intervals dν = 1

∆t . The maximum frequency that can

be sampled is the Nyquist frequency νmax = ∆ν
2 = n

2∆t . The phase method, as described above, relies

on a signal within one bin where phase and amplitude are calculated. However, due to the discrete
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Fig. 5.7: Signal optimization with zero padding. A detailed description is found in the text.

nature of the frequency spectrum with frequency steps dν the signal is not in general confined within

a single frequency bin. Instead the signal “bleeds” to adjacent bins and the phase information is not

contained in a single bin anymore. A continuous logging of the axial frequency accompanied by a

random walk necessarily leads to such bleeding effects between bins.

In order to confine all available information within a single bin the time data is post-processed

with zero padding. This means that k zeros are added to the time data leaving the time steps invariant

dt′ =
∆t′

n′
=

∆t + k dt
n + k

=
∆t
n

= dt (5.27)

but changing the frequency steps

dν′ =
1

∆t′
=

1
∆t + k dt

6= dν . (5.28)

This process does not add any information to the transient but modifies the position of a signal

relative to the bins. Choosing an appropriate number of zeros allows to center a signal within a bin

which typically leads to an improved measured phase stability.

To get a clearer understanding of the process an example is given. Ten transient time signals with

∆t = 256 ms and n = 214 at a frequency of 9998 Hz are generated and Gaussian white noise with a

standard deviation of 10 Hz is overlayed. Based on this data the phase can be acquired 10 times. The

frequency is chosen such that the signal is not well centered within a single bin

n = 9998 Hz× 256 ms = 2559.49 . (5.29)

The averaged amplitude of the ten measurements is shown in figure 5.7 A as the gray line. In the

next step zeros are added to the time transient and the signal is analyzed again. The peak amplitude
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Fig. 5.8: Simplified experimental setup for the phase method consisting of a delay generator, a feedback gener-

ator, an excitation generator and an SR1 audio analyzer for the time data recording.

in bin 2560 as a function of these appended zeros is shown in D with a maximum for k = 3. This

corresponds to the blue line in A. The signal is centered significantly better within a single bin. The

absolute phase in bin 2560 for the individual measurements is plotted in C. The first observation

is, that the absolute phase scales with the number of applied zeros, as shown in F with an addi-

tional phase jump of 2π. The second observation is the improved scatter of the phase, as indicated in

figure E showing the average phase stability (standard deviation of the 10 individual phase measure-

ments). Finally, B shows the same averaged phase stability for ± 10 bins around 2560. Once again

the phase information is distributed over several bins in the unoptimized case (gray line) while after

zero padding (blue line) the signal is better centered.

Zero padding has important consequences for the analysis. When dealing with long continuous

measurements it allows to compensate drifts by centering the signal in the analysis. This leads to

a significantly improved phase stability. Due to the scaling of the absolute phase with the number

of zeros this must be carefully considered. However, since only relative frequencies matter for the

spin state analysis in the AT, changing the absolute phase is of less concern. Finally, one should

note that the ideal average amplitude does not necessarily correspond to the ideal average phase

stability, compare D and E. Simulations show that the ideal number of zeros should be defined by

maximizing the amplitude in the bin rather than by minimizing the phase stability. This leads in

average to a better result with less scatter regarding the predicted absolute phase. The impact of zero

padding on the data analysis is discussed at the end of section 5.2.4 on experimental results.

5.2 Experimental results

5.2.1 Setup

A simplified setup for the phase measurement is shown in figure 5.8. All instruments are phase

locked with a Stanford Research Systems FS725 Rubidium Frequency Standard (not shown). Once

the SRS Digital Delay Generator DR645 receives the trigger command by the computer it starts its

trigger sequence. First, the local oscillators used for down- and up-mixing (not shown) are triggered

to initialize their internal phases to ensure they are the same for each new measurement. In the
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Fig. 5.9: (A) Signal-to-noise ratio measured in the PT as a function of excitation time texc and amplitude Eexc.

The same behavior is found in the AT. The white area was not covered by the parametric measurement scheme.

(B) Simulation of a driven Duffing oscillator (with C4 6= 0 and C6 6= 0) similar to experimental conditions. The

plot shows the maximum amplitude (equivalent to the S/N) after the excitation time. The red borders indicate

roughly the parts between measurement and simulation that correspond with each other.

second step the excitation generator is triggered and applies an excitation signal to the trap for the

time texc with amplitude Eexc. The next trigger pulse activates the feedback to increase the resonator’s

time constant and the particle can evolve for tevol. In the last step the feedback is turned off (or

changed based on the measurement scheme) simultaneously with the transient readout with an SR1

Audio Analyzer. The SR1 allows the direct readout of the phase or the storage of the full time signal.

Afterward, a time tcool is added to ensure that the particle is back in equilibrium before the next

excitation is applied.

5.2.2 Excitation pulse optimization

The initial excitation, defined by its frequency νexc, excitation time texc and amplitude Eexc, is highly

important for the phase stability because it defines the S/N. The ideal frequency can be matched

easily with a sufficiently broad excitation pulse but the ratio between time and amplitude remains

to be optimized. In case of an ideal harmonic oscillator a longer time or amplitude both improve

the resulting amplitude of the particle. However, the larger S/N does not necessarily lead to higher

phase stability in a real Penning trap because larger axial amplitudes are accompanied by stronger

deviations from the ideal quadrupole potential C4 6= 0 and C6 6= 0 introducing incoherent evolution.

The better the ability to compensate the trap the larger amplitudes can be used to improve the phase

stability by maximizing S/N.

The S/N as a function of texc and Eexc was measured in the PT and is shown in figure 5.9 A with
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Fig. 5.10: (A) Scaling of the phase stability with the magnetron energy. The measurement was conducted at an

early stage where the ultimate stability was not yet reached. The dashed line shows a two parameter fit based

on the theoretical noise behavior
√

a + b E− for a fixed averaging time. (B) Scaling of the phase stability with the

modified cyclotron energy where the number of averages was set to the ideal averaging time based on the Allan

deviation. The dashed line shows the same expected ∼ E1/4
+ behavior as for measurements with dip spectra.

However, due to the shorter measuring time the phase method allows a larger temperature acceptance.

a notable periodic structure. The same behavior was verified experimentally for S/N and the phase

stability in the AT. The structure can be understood by solving the Duffing equation [59] (for simpli-

fication q = m = V0 = 1)

z̈ + γż + 2C2

(
z + 2

C4

C2
z3 + 3

C6

C2
z5
)
= (Θ(t)−Θ(t− texc)) Eexc sin

(√
2C2t

)
(5.30)

and evaluating the achieved amplitude after the excitation time. The result of such a numerical sim-

ulation is presented in figure 5.9 B and is in fair qualitative agreement with the measured result. The

larger the excitation amplitude, or excitation time, the more sensitive the phase evolution becomes on

anharmonicities and the areas of good S/N smaller which can be seen on the diagonal of figure 5.9 A.

For the measurement optimization the first maximum was chosen. Because of its wider distribution

the optimization point is less sensitive to small changes of the ideal parameters.

5.2.3 Temperature optimization

The phase stability does not only depend on the parameters of the method but also on the axial sta-

bility itself. All typical optimization procedures outlined in the AT section 3.1.2 are also applicable

for the phase stability. As discussed before in section 3.1 the axial stability strongly depends on the

energy in the respective eigenmodes and scales with
√

a + b E± for a fixed averaging time and cE1/4
±

for the ideal averaging time, where the parameters a, b and c depend on the individual contributions

of noise and walk component. Figure 5.10 A shows an early measurement of the stability for differ-

ent magnetron energies. For each point 50 phase measurements were performed and the stability

evaluated.

The measurement with high impact for a g-factor measurement is shown in B. For each energy

the phase was measured about 15 000 times. Naturally, during this time the phase passes 2π mul-
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tiple times. A dedicated self-developed Mathematica algorithm was used to “unwrap” the phase

and obtain a continuous evolution. Based on this signal the Allan deviation was calculated which

yields the ideal number of measurements to reach the highest possible phase stability. For the lowest

temperature of 0.1 K the ideal number of averages was found to be 9 corresponding to about 18 s

of total measurement time. At 4 K the random walk is much stronger and only 2 number of aver-

ages should be chosen, about 4 s. The tremendous advantage of the phase method is the increase

in temperature acceptance for the actual g-factor measurement. Typically, during the g-factor mea-

surement cyclotron energies that correspond to < 100 mHz axial stability are accepted and allow for

single spin-flip resolution. This corresponds to about 40◦ in phase stability which can be reached

with particles up to 2 K instead of 600 mK in case of the normal dip spectrum method. In addition,

the higher temperature acceptance allows for a faster particle preparation during the g-factor mea-

surement. For typical parameters of the cyclotron detector temperature T+ = 3.2 K the number of

attempts to find a particle with sufficient energy can be reduced by about a factor of three.

5.2.4 Application to a Larmor resonance

The phase method was implemented in the analysis trap to measure the Larmor resonance in the

presence of the magnetic bottle. For this purpose the phase is measured 10 times and averaged, fol-

lowed by an excitation at νexc to drive spin transitions. Subsequently, another 10 phase measurements

are conducted. The comparison between both average phases ϕi and ϕi+1 yields the probability that

a spin-flip occurred due to the excitation. For an evolution time of tevol = 1 s and an averaging time

of tavg = 0.256 s the expected phase difference per spin-flip is ∆ϕSF = 70◦. The sequence is repeated

for several different excitation frequencies many times. Each phase measurement requires about 2 s

and a measurement of ϕi about 20 s. This is a factor of 3 faster than the conventional method with a

dip spectrum.

Analogously to section 3.4 a phase fluctuation can be defined as δi = ϕi − ϕi+1. In the presence

of spin-flips the standard deviation of the phase fluctuation Ξ increases weighted by the spin-flip

probability

Ξ =
√

Ξ2
bg + pSF,AT ∆ϕSF , (5.31)

where Ξbg is the background fluctuation without spin flips. Figure 5.11 A shows the equivalent data

compared to figure 3.7 A but measured with the phase method. On- and off-resonant data points are

clearly separated. The off-resonant background corresponds to an axial stability of

∆ν =
1

tevol

∆ϕ

360◦
=

1
1.128 s

46.8◦

360◦
= 115 mHz . (5.32)

Using the threshold method (described in section 6.2.2) the data can be analyzed to assign the mea-

sured spin-flip probability to each excitation frequency. Due to the finite detection fidelity F the

measured spin-flip probability pmeas is connected to the real spin-flip probability pSF,AT by

pmeas = pSF,AT F + (1− pSF,AT)(1− F) , (5.33)
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Fig. 5.11: (A) Evolution of the standard deviation of the phase fluctuation for different spin-flip drive frequen-

cies. (B) The true spin-flip probability as a function of the Larmor excitation frequency is shown and was mea-

sured with the phase method.

where the fidelity is know by an off-resonant reference measurement. The final result in figure

5.11 B shows the Larmor resonance in the analysis trap measured with the phase method. The data

was analyzed with zero-padding where it was ensured that for each pair of ϕi that are compared the

same number of zeros was added. This is no limitation since usually the same number of zeros is

required for subsequent measurements to center the frequency in a bin. The reason is that not more

than 7 zeros (tavg = 256 ms, n = 214, νsignal ≈ 10 kHz) are required to center the particle within the

next adjacent bin of width dν ≈ 3.9 Hz. Thus, each zero can correct for about 600 mHz frequency

misplacement. This is about one order of magnitude more than the background stability and thus of

no concern between to measurements. Using zero padding the background stability was improved

from 53.7(2.0)◦ to 46.8(0.8)◦, a significant improvement for the spin-flip measurement.

5.2.5 Single spin-flip resolution

The successful measurement of the Larmor resonance in the analysis trap demonstrated the ability

to measure statistical spin-flips. However, the double trap method requires single spin-flip resolu-

tion with a stability below 40◦ for an evolution time of 1.128 s. This has been demonstrated before

by measuring the axial frequency with dip spectra [74]. After careful optimization of all relevant

parameters of the phase method discussed throughout the previous sections single spin flips were

detected.

The result is shown in figure 5.12 and uses the same experimental scheme as explained for the

Larmor resonance. The difference to the statistical demonstration is an improved background stabil-

ity and the ϕi were obtained with only 7 measurements which leads to about 14 s to determine the

spin state. The phase method allows the determination of the spin state about a factor of four faster

which would reduce the total cycle time (compare section 7) by up to 33%. In addition, the higher

temperature acceptance saves another 15% which in total almost doubles the data acquisition time.

Eventually, the final g-factor measurement was done with the measurement of frequency spectra
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Fig. 5.12: Demonstration of single spin-flip resolution with the phase method. Discrete jumps are repeatedly

observable overlayed by a small drift.

rather than the phase method. The reason is the temporal instability of the optimization parameters.

Typically, an excellent stability was reached for a several hour measurement but afterward the stabil-

ity at this parameter set became worse. This does not correlate with the stability measured with dip

spectra and the reason for this behavior is not yet fully understood. The phase method would have

required to re-optimize the parameters on a regular basis which cancels out the time savings.

One aspect, that was not discussed throughout this section, is the possibility to measure the mod-

ified cyclotron motion by the phase method using the methods PnP or PnA [86, 87]. This will become

inevitable for future g-factor measurements due to the fact that the dip measurements reach a pre-

cision where the fit routine is limited. Furthermore, a direct measurement of the modified cyclotron

frequency makes the result independent of the axial stability, which is the current limit in the exper-

iment.
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Chapter 6
Spin analysis

The experimental difficulty to find the Larmor frequency in the precision trap is due to the not di-

rectly accessible spin state in the precision trap. To determine whether a spin flip was induced during

the Larmor excitation the spin state must be analyzed in the analysis trap where the spin state cou-

ples to the axial frequency. This is done twice, before and after the excitation of spin transitions in the

precision trap, and a comparison before and after the procedures in the PT enables the assignment of

a spin flip. In the first part of the chapter a likelihood function is derived which uses the information

obtained in the AT to find the g-factor resonance parameters. The likelihood evaluation is based on

probability theory and was first used in the previous g-factor measurement [76]. The second part

discusses the algorithm to extract the spin state information based on axial frequency measurements

in the AT. To that end, two different approaches are discussed, the threshold method which assigns

binary values to the spin state up/down and the Bayes method which assigns continuous probabili-

ties to be in a spin state. The last part describes simulations that test these methods and verify their

validity.

6.1 Spin analysis in the precision trap

For the derivation of the likelihood function some basic relations are required and shall be presented

without proof. Bayes’ theorem connects the conditional probabilities of two events A and B

P(A|B) = P(B|A)
P(A)

P(B)
. (6.1)

A new parameter C can always be introduced with the relation

P(A) = P(A|C)P(C) + P
(

A|C
)
P
(
C
)

(6.2)

with the complementary event P
(
C
)
. Finally, reduction can be used to remove conditions if they

add no additional information or are already included in other conditions

P(A|B C) = P(A|B) . (6.3)
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Fig. 6.1: The figure introduces many of the symbolic expressions used throughout this section for the k-th cycle

of the g-factor measurement. Two axial series S (k)ini and S (k)fin are shown (left and right). The fluctuation data

(δn)
(k)
ini and (δn)

(k)
ini are combined in the set D(k). The Bayes or the threshold method is used to determine the

initial (σN)
(k)
ini and the final spin state (σ1)

(k)
fin and thus the probability p(k) for a spin flip in the precision trap.

The center shows the g-factor resonance. The value of Γ(k) is defined by the Larmor excitation frequency and

the measured free cyclotron frequency. Each cycle defines a tuple (Γ(k), p(k)).

To begin, all necessary quantities shall be briefly defined, see figure 6.1. The evaluation assumes a

g-factor resonance G with lineshape pSF,PT(Γ) = χ(Γ ; g0, w0, A0) which yields the spin-flip probabil-

ity as a function of Γ based on a resonance parameter set {g0, w0, A0}. The parameters describe the

position g0 of the resonance, the width w0 and the amplitude A0. In each cycle (k) a spin-flip attempt

is performed at the frequency ratio Γ(k) = 2ν
(k)
L /ν

(k)
c , where ν

(k)
c is the measured cyclotron frequency

during cycle (k) and ν
(k)
L is the applied radiofrequency excitation to drive a spin flip in the PT. To de-

termine whether the spin state changed during the excitation, two series of axial frequency measure-

ments S (k)ini = {ν1, . . . , νN}
(k)
ini and S (k)fin = {ν1, . . . , νM}

(k)
fin , before and after the spin-flip attempt, are

measured in the AT to define the initial (σN)
(k)
ini and the final spin state (σ1)

(k)
fin . The two fluctuation

series of the k-th cycle are combined by the definition D(k) = {{δ1, . . . δN−1}
(k)
ini , {δ1, . . . , δM−1}

(k)
fin }

where the δn = νn − νn+1 are the usual frequency differences of each series.

Now all parameters are introduced to define the probability for a specific g-factor resonance G

under the condition that the axial fluctuations D(k) were measured

P
(

G|D(1) . . .D(K)
)
= P(G|{D}) , (6.4)

where the curly brackets are used as an abbreviation to indicate the set of fluctuations with K entries

based on K measurement cycles. With Bayes’ theorem this can be rewritten as

P(G|{D}) (6.1)
= P({D}|G)

P(G)

P({D}) , (6.5)

where the term P(G) is the so-called prior probability which can be used to insert additional infor-

mation. However, no such “additional knowledge” will be used. Instead, it is assumed that the prior

is uniform over all resonance parameters which is a rather general assumption and certainly true.

The term P({D}) can be understood as an appropriate normalization constant and is of no further
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concern at the moment. The remaining term can be simplified in the following calculation where the

cycle index (k) is replaced on all terms by ∗ for simplicity:

P({D}|G) =
K

∏
k=1
P(D∗|G) (I)

(6.2)
= ∏

k

[
P(D∗|F∗ G) P(F∗|G)

=χ∗

+P(D∗|F∗ G)P(F∗|G)
]

(II)

(6.3)
= ∏

k

[
χ∗ P(D∗|F∗) + (1− χ∗) P(D∗|F∗)

]
(III)

(6.1)
= ∏

k

[
χ∗
P(F∗|D∗)P(D∗)

P(F∗)
+ (1− χ∗)

P(F∗|D∗)P(D∗)
P(F∗)

]
(IV)

= ∏
k

[
χ∗
P(F∗|D∗)

α
+ (1− χ∗)

P(F∗|D∗)
1− α

]
P(D∗) (V)

= ∏
k

[
χ∗ p∗

α
+

(1− χ∗)(1− p∗)
1− α

]
P(D∗) . (6.6)

Step (I) assumes that the fluctuation series of individual cycles are logically independent. In that

case it can be rewritten as a product over the total cycle number K. In step (II) a new parameter is

introduced that describes whether a spin flip occurred F(k) = F∗ in cycle (k) or not F(k)
= F∗. The

term P(F∗|G) describes the probability for a spin flip under the condition of a specific resonance G.

This is the spin-flip probability in cycle (k) which is given by the lineshape pSF,PT(Γ(k)) = χ(Γ(k)) =

χ∗. Step (III) removes the resonance condition G, because it is included in the information whether

a spin flip occurred F∗or not F∗. For step (IV) the Bayes theorem is used once more. The factor

α = P(F∗) lacks a physical interpretation because it describes the probability to have a spin flip

without any background information. Finally, the term P(F∗|D∗) in the last step is replaced with

p(k) = p∗ which is associated with the information obtained by the axial series in the AT, namely the

probability for a spin flip based on the information of two axial series.

Equations (6.5) and (6.6) can be combined as

P(G|{D}) = ∏
k

[
χ(k) p(k)

α
+

(1− χ(k))(1− p(k))
1− α

]
P(G) . (6.7)

The probability P(G|{D}) can be maximized with respect to the parameters of the lineshape χ(k) =

χ(k)(g0, w0, A0). During the maximization the prior is kept constant or can be set to 1 which has no

effect on the maximum of the function. The parameter α is set to 0.5 to give equal weighting of both

summands1. Finally, this defines the log-likelihood function to analyze the g-factor data

L = 2 ∑
k

log
[
χ(Γ(k); g0, w0, A0) p(k) + (1− χ(Γ(k); g0, w0, A0))(1− p(k))

]
, (6.8)

where the data consists of K tuples {Γ(k), p(k)}k∈[1,...,K]. The Γ(k) values are directly measured in each

cycle and are a direct input parameter. This leaves only the values p(k) to be derived, which is done
1Instead of fixing α it can also be used as a parameter during the maximization. Simulations clearly show, however, that

even for a fixed α the results are reliable and bias free. Thus maximizing with respect to α was not further investigated.
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by analyzing the spin state in the analysis trap by comparing the initial and final spin state.

p(k) = P
(

F(k)|D(k)
)

= P
(
↑N

∣∣∣{δn}(k)ini

)
P
(
↓1

∣∣∣{δn}(k)fin

)
+ P

(
↓N

∣∣∣{δn}(k)ini

)
P
(
↑1

∣∣∣{δn}(k)ini

)
1− p(k) = P

(
F(k)|D(k)

)
= P

(
↑N

∣∣∣{δn}(k)ini

)
P
(
↑1

∣∣∣{δn}(k)fin

)
+ P

(
↓N

∣∣∣{δn}(k)ini

)
P
(
↓1

∣∣∣{δn}(k)ini

)
. (6.9)

The probability for a spin flip in the PT during cycle k based on the two fluctuation series in the AT

can be expressed as the probability to be ↑ at the end of the initial series P(↑N |{δn}(k)ini ) and ↓ at the

beginning of the final series P(↓1 |{δn}(k)fin ), or vice versa and similarly in case of no spin flip during

cycle (k). Each term on the right hand side has the same structure and gives the probability to be

either spin up or spin down based on an observed fluctuation series.

To express the probability to be in a specific spin state based on measured data two methods will

be discussed in the next section. The threshold method will assign the discrete values {0, 1} to these

probabilities. The Bayes method, however, allows assignment of continuous values in the interval

[0, 1]. It can already be seen at this point, that the threshold method weights each data point equally,

while the Bayes method includes the uncertainty in the measurement, an obvious advantage.

6.2 Spin analysis in the analysis trap

6.2.1 Measurement principle

To determine the spin state in the analysis trap an axial frequency series is measured where in be-

tween each two measurements a Larmor excitation is applied to change the spin. Such a series can be

written as a set of axial frequencies given by S = {ν1, ν2 . . . νN}. The axial fluctuation δn = νn − νn+1

of such a frequency series in the AT is shown in figure 6.2 as a histogram. The stability of the axial

frequency for a given modified cyclotron energy is described by the blue normal distribution, where

the left part of the figure shows a particle with low energy and the right part with high energy and

a broader frequency distribution. The red curves shifted by ±∆νz,SF are the distributions for events

with a spin flip.

Based on these distributions each fluctuation point δn has some probability to belong to either the

red or the blue curves and thus can be assigned to a spin state. If, for example, a jump of ±200 mHz

is observed during an axial series the probability that the particle is in spin down/up afterward

is almost 100% for the left part of the plot with small background noise, whereas in the right plot

this would correspond to 66% probability that the spin changed. This leaves a chance of 34% that

the jump was just noise. To ensure that the spin state is always known with >97 % certainty at the

end of such a series, the measurement continues until the stop criterion is met |δN−1| = |νN−1 −
νN | > ∆νstop(E+). This energy dependent threshold is chosen based on the noise model in the AT as

introduced in section 3.1.
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Fig. 6.2: Both plots show the probability to observe an axial frequency change during a sequence of axial mea-

surements with spin-flip excitation in between. In the case of no spin flips only the blue curve h0 is measured

and defines the axial stability. The red curves h± describe cases with spin flips and their relative amplitudes are

defined by the spin-flip probability pSF,AT = 0.36. In the case of a higher cyclotron energy the particle exhibits

larger heating rates and thus a decreased stability which is shown by the broadened curves on the right hand

side.

The stop criterion is a reliable choice to ensure high spin state detection fidelities at the end of a

series. In principle, arbitrarily high detection fidelities can be reached by choosing a sufficiently large

threshold. However, with increasing threshold the series becomes longer and consumes a significant

amount of time (for example, in the g-factor measurement two axial series typically took 40 min

which corresponds to 40 % of the total cycle time).

The more challenging and limiting factor for the spin state analysis is the determination of the

spin state at the start of the series. Due to the fact that the first fluctuation point |δ1| = |ν1− ν2| is not

necessarily significant relative to the background noise. Furthermore, it cannot even be ensured that

a spin flip occurred during the first fluctuation point. In the next two section two methods shall be

discussed to assign spin states to the series.

6.2.2 Threshold method

The threshold method is discussed based on figure 6.3 where a typical axial series is shown in A with

S = {ν1, . . . , ν8} and corresponding fluctuation {δ1, . . . , δ7} in B. The series presented here is in case

of small background fluctuations and the discrete step when a spin flip occurred can be identified

easily. While such a clean trace of a spin flip will not be given for higher energies in general it is

beneficial to discuss the method on a clear example.

Goal of the threshold method is to assign a spin state to the start and the end of the series. The

true spin states σi can be written as {σ1 =↑, . . . , σ8 =↑} and need to be identified by the threshold
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Fig. 6.3: (A) Typical axial frequency series in the analysis trap where the frequency is a function of the spin

state. Once a frequency change larger than the stop condition, defined by the red threshold, is measured, the

axial series ends and the spin state can be identified. To define the spin state at the start of the series, the green

threshold criterion is being used, for more details see text. (B) Frequency fluctuations δ of corresponding axial

series in (A). The final frequency change δ7 meets the stop condition defined by the red lines, whereas δ3 suffices

the green threshold criterion.

method. The rule to assign a spin state with the threshold method is

δn > ∆νth → σn = ↓ ∧ σn+1 = ↑ spin flip

−∆νth < δn < ∆νth → σn = σn+1 no spin flip

δn < −∆νth → σ1 = ↑ ∧ σn+1 = ↓ spin flip . (6.10)

When applied to the example in figure 6.3, no spin flip occurred during ν1 to ν3 and ν4 to ν7 because

|δn| < ∆th for n ∈ {1, 2, 4, 5, 6}. Based on the first threshold event δth in a series the spin state σ1 is

determined. In this example, the first spin-flip event is δ3 where the spin state changed from σ3 =↑
to σ4 =↓. Thus, the threshold method treats all prior spin states n < 3 with the same assignment and

σ1 =↑. The stop criterion always ensures a significant frequency change |δN−1| = |δ7| > ∆νstop > δth

at the end of series and the final spin state can be determined with σ8 =↑. In the same manner,

one can assign spin states to all frequencies of the whole series. In the example presented here, the

threshold method is able to predict all values with correct values. However, for the general case

with higher energies this will not be true and the method can even lead to inconsistencies. For

example, two consecutive events with δn > 0 and δn+1 > 0 both above the threshold would imply

σn+1 =↑ ∧ ↓. This problem occurs when the overlap of blue and red distribution in figure 6.2 is large

and a frequency change by noise is assumed to be a spin flip and vice versa.

The choice of the threshold ∆νth has a significant influence on the accuracy of the algorithm. From

a heuristic point of view two limits may be considered. A very small threshold will almost always

lead to the (usually false) identification of a spin flip. A very large threshold, on the other hand,

will greatly reduce the false identification of spin flips in the presence of noise but also reduce the

identification of real spin flips. None of these limits is desirable and the ideal threshold is in between.

To analyze the accuracy of the algorithm axial series with 100 000 frequency points were simulated
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Fig. 6.4: The fidelity to detect a spin flip was evaluated for different thresholds and different background fluc-

tuations Ξbg. The left plot was simulated with 36% spin-flip probability and the right plot with 50%. It can be

seen that the ideal threshold parameter is a function of the background noise level and the spin-flip probability.

A first estimate for an appropriate threshold is ∆νSF,AT/2.

based on the noise model in the AT. The threshold method was then used to analyze the spin states

and compare them to the original spin states. The fidelity, defined as

F =
Ncorrect

Ncorrect + Nincorrect
(6.11)

is the number of correctly identified spin states Ncorrect divided by the total number of spin states in

the series. Note that the fidelity takes values between 50% and 100%. The result of such simulations

is shown in figure 6.4 for two different spin-flip probabilities. The result clearly indicates that the

threshold that maximizes the fidelity depends on the background noise and the spin-flip probability.

A higher threshold reduces noise related false detections but at the same time more real spin flips are

missed. The latter is suppressed in case of a low spin-flip probability which yields a higher fidelity

at a higher threshold.

A big advantage of the threshold method is its simplicity. If a fixed threshold is chosen, instead of

a varying function of the background noise, the threshold method is even independent of the noise

model and requires only the frequency jump due to a spin flip ∆νz,SF as input parameter. On the other

hand, it does not offer any information about the significance of a spin flip and the determination is

binary. The Bayes method, as described in the next section, will introduce probabilities between 0

and 1 that provide a weighting.

6.2.3 Bayesian method with random walk

The calculations in this section are closely related to [88] and lead to the same final result. The Bayes

method as introduced here is a simplification of the original Bayes method which is discussed in

great detail in [76]. While the simplified model allows less improvement compared to the thresh-

old method it still presents an important consistency check. The Bayes approach with the full noise

model (white noise + walk) has a larger noise model dependence and thus requires more input pa-

rameters which might prove less robust. The simplified model, on the other hand, only requires an
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effective walk amplitude Ξw,eff =
√

Ξ2
n + Ξ2

w, compare section 3.1. The greater model independence

is won at the cost of a smaller detection fidelity. However, both algorithms were tested and led to the

same consistent result within error bars and the same error.

The Bayes method is used to assign the probability, as introduced in (6.9), to be either spin up

or down based on an observed frequency series. The calculation is based on the probability P↑n =

P(↑n |{δn}) = P(σn =↑ |{δn}) to be in the spin up state at position n of an axial frequency series

under the condition that the fluctuation of the whole series is known. Recall that the fluctuation of a

frequency series S = {ν1, . . . , νN} is abbreviated with {δn} = {δ1, . . . , δN−1} and the spin states with

{σ1, . . . , σN}. Additional abbreviations, ↑n=↑, ↑n−1=↑′, ∆ = {δ1, . . . , δn−1} and ∆′ = {δ1, . . . , δn−2},
indicate that the last element is removed from the list. Furthermore the complementary event of

P(↑n) is written as P(↓n):

P↑n = P(↑n |{δn})
(6.3)
= P(↑n |∆)

(6.2)
= P

(
↑ | ↑′ ∆

)
· P
(
↑′ |∆

)
+ P

(
↑ | ↓′ ∆

)
· P
(
↓′ |∆

)
(6.1)
=
P(δn−1| ↑↑′ ∆′)P(↑ | ↑′ ∆′)

(((((((P(δn−1| ↑′ ∆′)
·(((((((P(δn−1| ↑′ ∆′)P(↑′ |∆′)

P(δn−1|∆′)
+ (with ↓′)

=
P(δn−1| ↑↑′ ∆′)
P(δn−1|∆′)

P
(
↑ | ↑′ ∆′

)
1−pSF,AT

P
(
↑′ |∆′

)
P↑n−1

+ (with ↓′)

=
P(δn−1| ↑↑′ ∆′)
P(δn−1|∆′)

(1− pSF,AT) P↑n−1 +
P(δn−1| ↑↓′ ∆′)
P(δn−1|∆′)

pSF,AT (1− P↑n−1)

(6.3)
=
P(δn−1| ↑↑′)
P(δn−1)

(1− pSF,AT) P↑n−1 +
P(δn−1| ↑↓′)
P(δn−1)

pSF,AT (1− P↑n−1) . (6.12)

The last step is justified if the fluctuation is uncorrelated and the frequency change δn−1 only depends

on the spin states σn and σn−1. This assumption is true for a frequency series with a walk defined by

νn = νn−1 + N(0, σw) where N(0, σw) stands for a normally distributed random number. In compar-

ison, a frequency series with white noise νi = ν0 + N(0, σn) does have uncorrelated frequencies, but

the fluctuation is correlated. This is the key difference compared to [74, 76] where not the fluctuations

are treated as independent but the absolute frequencies.

Equation (6.12) can be used recursively for a known starting parameter P↑1 . The only missing

ingredient is the calculation of P(δn−1| ↑↑′) and P(δn−1). Both probabilities can be expressed with

the three normal distributions shown in figure 6.2. The probability P(δn−1) to observe a frequency

change in the interval I = (δn−1 − ε, δn−1 + ε) is

P(δn−1) = lim
ε→0

ˆ
I

dν (1− pSF,AT) h0 + P↑n−1 pSF,AT h− + (1− P↑n−1) pSF,AT h+ . (6.13)

The h0 term is the probability that no spin flip occurs, weighted with 1− pSF,AT. The last two terms

h± take into account that a spin flip occurred based on the probability P↑n−1 that the spin state was up

before. If, for example, it is known that the spin state was up P↑n−1 = 1, the spin state can only change

to down with probability pSF,AT, which is described by the distribution h−. Similar to P(δn−1) the
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Fig. 6.5: (A) Fidelity comparison of the threshold and the Bayesian method for various noise parameters. The
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probability P(δn−1| ↑↑′) to observe a frequency change δn−1, if both spin states before and after are

known, can be defined as

P
(
δn−1| ↑↑′

)
= lim

ε→0

ˆ
I

dν h0 , P
(
δn−1| ↑↓′

)
= lim

ε→0

ˆ
I

dν h+ . (6.14)

Although all limits converge to 0 due to the infinitesimally small interval the ratio has a finite value

which can be calculated with L’Hôpital’s rule [89]. For example, in the case of lim f (x) = lim g(x) =

0 the limes lim f (x)/g(x) can be calculated with L’Hôpital’s rule lim f ′(x)/g′(x). Together with

(6.12) – (6.14) this leads to result

P↑n =
(1− pSF,AT) h0 P↑n−1 + pSF,AT h+ (1− P↑n−1)

(1− pSF,AT) h0 + P↑n−1 pSF,AT h− + (1− P↑n−1) pSF,AT h+
, (6.15)

and similarly, for the probability to be spin down at the n-th position

P↓n =
pSF,AT h− P↑n−1 + (1− pSF,AT) h0 (1− P↑n−1)

(1− pSF,AT) h0 + P↑n−1 pSF,AT h− + (1− P↑n−1) pSF,AT h+
(6.16)

which necessarily fulfill the relation P↑n + P↓n = 1.

With the algorithm at hand any series can now be analyzed to define the spin states. The first

frequency measurement of the series contains no information about the spin state of the particle,

because at least two measurements are required. This maximum uncertainty is expressed by setting

P↑1 = P↓1 = 0.5. The second frequency measurement yields the first fluctuation data point δ1 which

can be used to calculate

P↑1 =
(1− pSF,AT) h0(δ1) 0.5 + pSF,AT h+(δ1) 0.5

(1− pSF,AT) h0(δ1) + 0.5 pSF,AT h−(δ1) + 0.5 pSF,AT h+(δ1)
. (6.17)
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and likewise for additional frequency measurements. This is repeated until the probability to be

spin up at the end of the series P↑N is known. To calculate P↑1 the fluctuation series is inverted

{δN − 1, . . . δ1} and the algorithm is applied again. Necessary input parameters of the algorithm

are the spin-flip probability in the AT pSF,AT, the effective background fluctuation for a given energy

Ξw,eff(E+) and the size of a frequency jump due to a spin flip ∆νz,SF.

The algorithm is compared to the previously discussed threshold method and to the full Bayes

model described in [76, 74] and shown in figure 6.5 for various noise parameters and as a function

of the spin-flip probability in the analysis trap. In general, the performance of the Bayes method

exceeds the threshold method due its more efficient use of available information. While the threshold

method only takes into account a single frequency change the Bayes method continuously updates

the probability and uses all available information of the whole series. It is important to note, that this

advantage does not come from any information added by the prior and no theoretical assumptions

about the measurement enter the evaluation.
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Chapter 7
The g-Factor Measurement

This chapter discusses the measurement of the proton g factor at a fractional precision of 300 ppt.

The measurement is the main part of this thesis and constitutes the most precise measurement of any

nuclear moment to date. In the first part, the measurement scheme and experimental procedures are

explained in detail. The next part covers the statistical analysis and introduces several crosschecks,

such as Monte-Carlo simulations, that were performed to justify the analysis. After the discussion of

all systematics the final result is used to set new improved constraints on CPT symmetry violation in

the baryonic sector.

7.1 Measurement scheme

A detailed scheme of the g-factor measurement is shown in figure 7.1 as a flow chart. The measure-

ment cycle, with index k, begins with a single proton stored in the precision trap (boxes in green).

To initialize the proton spin state the particle’s modified cyclotron mode is cooled to sub-thermal

energies, referred to as Cooling, which ensures that the cyclotron energy is below the threshold Eth,+

which is essential for sufficient high fidelity spin state detection. To efficiently cool the proton with

energy 〈E+〉 = kBT+ = kB
ω+
ωz

Tz ≈ kB 600 K (as a result of the previous sideband coupling between

cyclotron and axial mode in cycle k− 1) a cyclotron axial sideband coupling with feedback is carried

out. The feedback reduces the axial energy and the proton typically ends up with E+ ≈ kB 150 K.

Next, the cyclotron resonator is tuned to resonance with the modified cyclotron frequency and the

particle thermalizes with the thermal bath of the resonator at T+ = 6 K. After 60 s, feedback is ap-

plied to the cyclotron resonator which decreases the temperature to about 3 K. The reason for this

two step process is the cooling time of the resonator which becomes larger if negative feedback is

applied. Thus, cooling the particle from high energies with feedback is less efficient. Next, the mag-

netron mode is cooled and the proton is transported to the AT (boxes in red) where the absolute

energy can be measured in the magnetic bottle. A comparison of the axial frequency with a previ-
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Fig. 7.1: Detailed measurement scheme as a flow diagram with cycle number k. Green/red boxes indicate the

position of the proton in the PT/AT. Timings in seconds are shown in brackets. The first column typically

requires 30 min, the Cooling about 20 min and the Preparation and Series another 40 min. This leads to a total

cycle time of 90 min in average. Further details are explained in the text.

ously calibrated 0 K cut yields the temperature of the proton, compare section 3.2. If the energy is

below the threshold energy, E+ < Eth,+ = 0.6 kB, the spin state analysis is performed. Otherwise,

the proton is transported back to the PT and thermalized once more by coupling it to the cyclotron

resonator with feedback.

The Preparation-procedure in the AT starts by centering the particle with respect to the axial res-

onator by adjusting the AT ring voltage. To achieve a small magnetron energy magnetron sideband

cooling with feedback is repeatedly applied followed by a measurement of the axial frequency. After

acquiring 6 such frequencies, corresponding to 6 magnetron temperatures, the minimum frequency

νz,min is used to define the threshold νz(Eth,−) = νz,min + 1 Hz. This method is a compromise between

two limits. In the first limit, the particle is coupled only once which can result in a high magnetron

energy due to the probabilistic nature of the thermalization process. In the second limit, the particle

is coupled many times to record a Boltzmann distribution with well-defined 0 K cut. The measure-

ment of 6 magnetron energies is thus a subset of a Boltzmann distribution but less time consuming.

By shifting the cut by 1 Hz (this is an energy shift of ∆E− = kB 14 mK) a small preparation time is
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guaranteed. Otherwise it can occur that the axial frequency drifts upwards due to external changes

(e.g. temperature drift) and the routine would never find a particle that fulfills E− < Eth,−. The

preparation procedure cools the magnetron mode by ∆E− = kB 55(14)mK, on average. The highest

energy reduction was 180 mK which improves the axial fluctuations by about 10 mHz.

The proton is now prepared with the magnetron and the modified cyclotron energy below the

threshold energies which corresponds to an axial stability suitable to determine the spin state in Series

I. Measurements with a temperature sensor close to the trap clearly indicate that the trap system is

heated up by at least 50(5)mK during the application of the Larmor drive. To ensure that each

axial frequency measurement is conducted with the same background temperature an off-resonant

drive is applied to heat up the trap. Next, the axial frequency is measured alternating with resonant

Larmor excitations until the threshold criterion for the axial series is fulfilled (see section 6.2). After

the first axial series the particle is re-centered because a long series can easily consume more than an

hour and during such a time window the walk nature of the motion leads to shifts of several Hz. The

second axial series, Series II, is not necessary for the double trap method because the spin state was

already defined by the first series. However, measuring two series provides an important measure

for the fidelity of the double trap method. No spin flip is driven between Series I and Series II, thus,

comparing the measured spin-flip probability between both with the ideal probability of pSF,AT = 0%

immediately allows to see whether problems are present in the routine. Especially in the beginning,

when the resonance shape is not yet known, it is beneficial to have such a reference measurement.

After the spin state initialization, the particle is transported to the precision trap to perform the

high-precision frequency measurements. Once the transport routine is finished the magnetron mo-

tion is coupled to the thermal bath of the axial resonator again to ensure that the energy of the mag-

netron mode is well-defined. In addition, the Waiting period consists of successive measurements of

a reference axial resonance spectrum, νz and ν+, respectively, which are repeated three times. This

waiting period of 15 min is necessary for the temperature of the apparatus to settle down from the

heated state due to the already mentioned heating effect of the trap, which is induced by the high-

power spin-flip drive. It should be noted that even after this waiting period the apparatus is not in

equilibrium but is sufficiently stable for a sub-ppb measurement.

The cyclotron search is the first part of the Γ(k)-measurement. It accounts for magnetic field drifts

and is a small routine in its own that autonomously finds the cyclotron frequency by probing the side-

band frequency. Usually this search is not necessary and a successful double dip is established during

the first attempt using the k− 1 coupling frequency of the previous cycle. To define the cyclotron and

the Larmor frequency, and thus the ratio Γ(k) = 2νc/νL,exc, first the sequence νz → ν+ → νz is mea-

sured, followed by the measurement of ν+ while the Larmor drive is applied, and finally another

sequence νz → ν+ → νz. These numerous measurements allow to precisely track drifts in the axial

and modified cyclotron frequency which can be accounted for in the systematics. The Larmor exci-

tation is done at a frequency of νL,exc = νL + ∆νL with randomized offset ∆νL around the expected

Larmor frequency νL. After the determination of all relevant frequencies another resonator reference

spectrum is measured. The measurement of the modified cyclotron frequency via sideband coupling

unavoidably increases the cyclotron energy and the particle needs to be re-cooled again which is the
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Fig. 7.2: (A) The points δn of all series are shown at their respective energies. The width of these points charac-

terized by the standard deviation is a measure for the stability of the motion in the presence of spin flip and is

shown in (B) by the blue points with error bars. The red line is a fit to the data as described in the text.

point where the cycle starts at its beginning once again.

The total cycle time of the g-factor routine is about 90 min. The initial particle cooling requires

about 20 min and is followed by the preparation and the two axial series with in total 40 min. The

frequency measurement in the PT then adds another 30 min, including the 15 min waiting period.

The cycle time greatly varies due the probabilistic nature of the cooling procedure as well as due to

the spin state analysis. For example, the shortest cycle lasted only 50 min while the longest cycle was

225 min.

7.2 Data analysis

7.2.1 Statistical g-factor

The data that was taken during the g-factor measurement consists of 1314 Γ(k)-ratios with initial and

final spin state determination in the AT and was acquired during August 2016 and December 2016.

Three individual protons with 420, 317 and 577 Γ(k)’s were measured. To determine the g-factor

resonance the likelihood function in equation (6.8)

L = 2 ∑
k

log
[
χ(Γ(k); g0, w0, A0) p(k) + (1− χ(Γ(k); g0, w0, A0))(1− p(k))

]
(7.1)

is considered, where Γ(k) and p(k) are defined by the measurement data. It has been shown in chapter

6 that the probability for a spin flip in the precision trap is the result of two series of axial frequency

measurements before and after the Larmor excitation in the PT. To derive p(k) based on equation (6.9)

the adjacent series to each Γ(k) are considered

. . . Γ(k−1) → S (k−1)
1 → S (k−1)

2

cycle k−1

| Γ(k) → S (k)1 → S (k)2

cycle k

| Γ(k+1) → S (k+1)
1 → S (k+1)

2

cycle k+1

. . . (7.2)
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namely S (k−1)
2 = S (k)ini and S (k)1 = S (k)fin to define the initial P(↑N |{δn}(k)ini ) = (P↑n )

(k)
ini and the fi-

nal P(↑1 |{δn}(k)fin ) = (P↑1 )
(k)
fin probability to be in the spin up state as in section 6.2.3. The Bayesian

algorithm requires the axial frequency stability as a function of the particle energy as input param-

eter. This was evaluated in a global analysis over all axial series in all measured cycles. Each series

contributes between 1 and N − 1 points for a known energy. After several hundred such series the

whole energy range is covered and the data can be binned, see figure 7.2. In order to separate the

background fluctuation Ξbg, as introduced in section 3.1, from the total fluctuation Ξ, that includes

spin flips, the data is fit by

Ξ =
√

Ξ2
n + Ξ2

w + pSF,AT∆νz,SF , Ξ2
w ∼ T+ (7.3)

with free parameters Ξn, for the white noise contribution and Ξw for the walk contribution. The

spin-flip probability is determined by a separate measurement, see section 3.4, and found to be

pSF,AT = 0.366(16). The result of the fit are the correlated parameters Ξn = 40.0(5.0)mHz and

Ξw = 124.0(5.3)mHz. This analysis assumes that the fluctuations were stable over time, which is

supported by independent measurements of the fluctuations before and after the g-factor measure-

ment.

Γ(k) is defined based on the frequency measurements in the precision trap. Each ratio Γ(k) is

defined as

Γ(k) = 2
ν
(k)
c

ν
(k)
L,exc

(7.4)

with measured cyclotron frequency ν
(k)
c , and Larmor excitation ν

(k)
L,exc = νL + ∆ν

(k)
L . The result of the

cyclotron frequency search is used to calculate the expected Larmor frequency which is then shifted

by a random offset ∆ν
(k)
L to scan the resonance. The knowledge of the resulting excitation frequency

ν
(k)
L,exc is limited only by the external Rubidium FS725 frequency standard which is negligible for the

measurement with an accuracy of 5× 10−11. The more challenging part is the determination of the

free cyclotron frequency which is obtained through the invariance theorem. During the excitation

with ν
(k)
L , only the frequencies νl and νr are measured. To avoid systematic shifts of the g factor

induced by axial frequency drifts a careful study of the axial drift behavior is essential.

To prevent a systematic shift on g it must be ensured that the axial frequency during the excitation

is interpolated correctly based on the axial frequency measurements conducted before and after the

excitation. The main uncertainty are possible drifts of the proton’s eigenmotions due to temperature

drifts induced by the Larmor drive in the analysis trap. The effect of the excitation pulses on the

temperature of the apparatus is shown in figure 7.3 A and was measured with a temperature sensor

(CERNOX CU-CX-1050) on the 4 K stage of the experiment. Each peak is caused by an excitation

pulse in the AT where the first peak is slightly higher due to an off-resonant drive. The custom filter

setup, used to reduce external noise signals, led to a slightly higher power dissipation at the off-

resonant drive frequency. After the last drive of the second series the temperature of the apparatus

slowly settles down. The average temperature drop after the last excitation is shown in 7.3 B .
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Fig. 7.3: (A) The Larmor drive in the analysis trap leads to significant heating of the setup. The figure shows

the temperature of the inner setup measured with a temperature sensor on the 4 K stage of the experiment.

Each peak corresponds to the application of a Larmor drive where the first peak is slightly higher during the

off-resonant excitation due to the filter setup. (B) The temperature drop after the final spin-flip drive in the AT

was averaged over several recorded cycles. t = 0 corresponds to the time when the particle is back from the AT.

Figure 7.4 shows the influence of this temperature change on the axial and the modified cyclotron

motion. Even 20 min after transporting back to the PT an axial drift is still observable in the PT. The

modified cyclotron motion after that time is consistent with a flat line but a drift cannot be excluded.

The waiting time of 15 min was chosen to ensure that the frequency measurements are performed in

a region where the drifts can be assumed to be linear. This is an important aspect because nonlinear

drift contributions in the eigenmotions contributed to the major limitations of the previous g-factor

measurement in 2014 [48].

Eventually, the free cyclotron frequency can be calculated by

ν2
c = ν2

+,6 + ν2
z,eff + ν2

− , (7.5)

where the index of the cycle k is omitted for simplicity. The effective axial frequency νz,eff during

the Larmor excitation in the PT (indicated by the red area in figure 7.4) is obtained from a linear fit

(red line) to the data {νz,5, . . . , νz,8} which is evaluated at the time tLarmor (red dot) in the center of

the Larmor excitation time window. Only the last four axial frequency measurements (shown in the

inlet) are used for the linear fit. Small residual nonlinear contributions lead to an uncertainty on g of

∆g < 1 ppt. The modified cyclotron frequency is derived by ν+,6 = νrf + νl,6 + νr,6 − νz,eff where the

two sidebands νr/l,6 enter that were measured exactly during the Larmor excitation. The magnetron

frequency is finally approximated by ν− = ν2
z,eff/(2ν+,6). Further possible options to to extract Γ(k)

are discussed later on.

Given all these careful considerations the final resonance is shown in figure 7.5 A. The statistical

result in parts per billion (ppb)

g =

(
Γ(k)

gCODATA
− 1

)
109 (7.6)

is referenced to the present CODATA [90] value gCODATA = 5.585 694 702(17). The combined analysis



Chapter 7. The g-factor measurement 89

time (min)

ν z
 −

 o
�s

et
 (m

H
z)

0

−20

−40

−60

−80

−100

20

15

10

5

0

time (min)

A B

0             5            10           15            20           25 0             5            10           15            20           25

ν +
 −

 o
�s

et
 (m

H
z)

waiting search Γ(k)-measurement waiting search Γ(k)-measurement

−106

−108

−110

−112

20           22           24            26           28

νz,1

νz,8

ν+,1

ν+,7

νz,5

νz,6 νz,7

νz,8
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show the time windows for the different steps during the waiting, search and measurement period. The red

line is a linear fit to the last four axial measurements, zoomed on in the inlet. The red point is the interpolated

value of the axial frequency during the Larmor excitation, indicated by the red shaded area. Together with the

modified cyclotron frequency in red the free cyclotron frequency is evaluated.

of all three protons leads to 1264 Γ(k)-ratios where all ratios with frequency fit errors in the initial dip

spectra were excluded. The distribution is shown in figure 7.5 B , as a result of an uniform distributed

randomized scanning convoluted with a normal distribution due to the frequency stability. Finally,

the new g-factor result based on the likelihood estimate is

( g
2

)
stat

=
µp

µN
= 2.792 847 345 00(75)

with a fractional precision of 268 ppt. The standard error mean (s.e.m.) is extracted by maximizing

the likelihood function L(g0, A0, w0) with respect to A0 and w0 for fixed values of g0 = gstat − ∆g

that are shifted from the ideal value. The result is a nearly quadratic function with argument ∆g.

The values where the function drops by 1/2 from its maximum value are denoted ∆gl = −268.15 ppt

and ∆gr = +268.52 ppt and correspond to the 1σ error. Since the upper and lower error bounds are

almost perfectly symmetric the total error is obtained by ∆gstat = (∆gr − ∆gl)/2 = 268 ppt as stated

before. In the same manner the errors for A0 and w0 can be calculated and are summarized in table

7.1.

To understand the resonance width independent measurements of the cyclotron frequency were

performed. During the ω+ measurement a Larmor drive was applied to ensure a similar situation

compared to the actual measurement. The stability of the free cyclotron frequency σ = 40.8(8)mHz

leads to a theoretical width of 1.41(2)ppb which is in good agreement with the measured resonance

width and is the dominant effect for the linewidth.
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is for visualization only and is not used for the maximum likelihood estimate. (B) Distribution of performed

measurements. The shape roughly corresponds to a uniform distribution convoluted with a normal distribution

due to the finite cyclotron stability..

value ∆l ∆r (∆r − ∆l)/2

g0 (ppb) −2.150 −0.268 0.269 0.268

σ0 (ppb) 1.345 −0.193 0.229 0.211

A0 (%) 26.21 −4.73 5.31 5.02

Table 7.1: Results of the maximum likelihood estimate relative to the CODATA value. ∆l/r are the upper and

lower boundaries of the s.e.m. The last column shows the average error on the parameter.

7.2.2 Statistical crosschecks

To verify that the used statistical analysis leads to the correct results several statistical crosschecks

were performed. These crosschecks are based on Monte-Carlo simulations [91] of the measurement

routine that were implemented in Wolfram Mathematica. The starting point is the full lineshape [79]

with a width based on independent cyclotron frequency stability measurements. During the sim-

ulation the true g-factor is a known input parameter. A random number generator picks a Γ(k) for

each cycle and spin flips are simulated based on the probability pSF,PT(Γ(k)) of the lineshape. For

each cycle two axial frequency series are simulated based on known noise input parameters for a

randomly selected Boltzmann distributed cyclotron energy. The resulting data is then analyzed in

the same way as the original data described in section 6.2.3.

As a first consistency check the threshold method is used for comparison. The result relative to

the CODATA value is gstat,threshold = −2.375(261)ppb which agrees with the Bayes approach. This

is illustrated in figure 7.6 together with the variation of several other input parameters. Next, the

Bayes method is tested for consistency, bias and robustness [92]. The tests were performed for the

estimation of g0 since this is the only critical parameter and e.g. a non-biased result on the width of
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the resonance has no significant impact.

Robustness describes the reliability of the method to produce the correct result under the assump-

tion that false input parameters were used or false data with outliers was not excluded. To verify the

robustness of the analysis the three correlated parameters Ξn, Ξw and pSF,AT were varied within ±4σ

of their errors, see figure 7.6. The simulations not only show that the g-factor estimate is in perfect

agreement with the original value but also that the initial input noise parameters are reproduced

well. In addition, even 4σ shifts lead to consistent results.

Consistency means that for an increasing number of data points the result converges to the true

value. If â is the estimator for the sample than the estimator converges to the true value a0 for a large

number of measurements, lim
n→∞

â = a0. To test the method for consistency the whole double trap

routine was simulated in a Monte-Carlo-simulation with 106 data points. The requirement of consis-

tency is fulfilled with an upper bound of 6 ppt limited by the simulation. To reduce it even further a

simulation with more data points is required, however, at the current experimental precision this is

not necessary.

Bias, not to be confused with consistency, is verified by generating a large number of data sets

with fixed sample size. Estimators are obtained for each of these data sets individually. To ensure

an unbiased method the expectation value of the distribution of estimators must be equivalent to

the true value. 75 000 resonances with 1000 data points each were generated so that a bias can be

excluded with an upper bound 1.6 ppt.

The N = 75 000 generated resonances can also be used to check whether the predicted error based

on the maximum likelihood estimation result in the correct 68.3% error. To do so, the error on g0 is

individually calculated for each resonance and the expectation value for the distribution of all these

errors is computed. This is compared to the width of the normal distributed N values of g0. The 1σ

width yields the boundaries where 68% of all g0 values are included. Based on the simulated data

it cannot be excluded that the error is slightly overestimated with 71%. In conclusion, the calculated

error is a conservative estimate and well suited for the statistical analysis.
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Another simulation was performed to assure that cumulated data taking at an off-center position

of the resonance does not influence the true estimated value on g0 (all simulation above were sim-

ulated with symmetric data taking around the true value). To that end, the highest data acquisition

was shifted by 2 ppb from the true value of g0. An effect can be excluded with an upper bound of

5 ppt.

Figure 7.6 shows another important crosscheck – the averaging of ν+. As pointed out earlier

three measurements of ν+ in the linear drift region were performed ν+,5, ν+,6 and ν+,7. For the final

g-factor evaluation only measurement #6 was used but the resonance can also be evaluated by aver-

aging all three measurements #5− #7 or averaging #5 and #7. All results are in excellent agreement

with each other and the averaging of all three even provides a smaller error due to more informa-

tion. The reason, however, that only #6 was used for the final evaluation is the cleaner implication

for the systematics. If Larmor drive νL and modified cyclotron frequency ν+ are measured exactly

simultaneously many systematic effects are greatly suppressed.

The variation of the resonator is a unique property that must be taken into account in the used fit

routine for the frequency determination. Since this leads to a systematic error it is discussed in detail

in section 7.3.1.

In summary, the techniques demonstrated here to analyze the data present a robust and accurate

way to extract an estimate for the true value of the g-factor resonance. All relevant effects that would

cause systematic deviations were excluded way beyond the experimental error.

7.3 Systematics

7.3.1 Systematic errors

Systematic corrections on g = 2νL/νc arise due to shifts of the free cyclotron frequency νc or the

Larmor frequency νL and can be calculated by linear error propagation

∆g
g

=
∆νL

νL
− ∆νc

νc
. (7.7)

These energy- and time-dependent shifts typically arise from potential or magnetic field imperfec-

tions characterized by C4 and B2 or higher orders Cn and Bn, as introduced in equation (2.28). In the

next sections the individual contributions will be discussed and calculated.

Electrostatic shifts

In order to optimize the electrostatic potential and minimize systematic shifts, the tuning ratio was

optimized for each proton with magnetron bursts as discussed in section 4.2 with an uncertainty

δTR < 1 · 10−5.

The systematics based on the electrostatic shift are not accompanied by a systematic shift, only

by a systematic uncertainty, because TR was optimized to C4 = 0. To acquire the systematic uncer-

tainty on g the sidebands used to determine ν+ must be considered. In the case of non-vanishing C4
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all eigenfrequencies will be shifted by ∆ω+, ∆ωz and ∆ω−, the Larmor frequency, however, is un-

shifted. To understand how these shifts affect the measured frequencies, the sideband measurement,

introduced in section 2.6, is considered:

ω+,measured = ωl + ωr −ωz + ωrf

=

(
ωz + ∆ωz −

δ

2
− Ωδ

2

)
+

(
ωz + ∆ωz −

δ

2
+

Ωδ

2

)
− (ωz + ∆ωz) + (ω+ + ∆ω+ −ωz − ∆ωz + δ) (7.8)

= ω+ + ∆ω+ .

This means that the measured modified cyclotron frequency is in fact the shifted frequency ω+ +

∆ω+. The same argument can be made for the magnetron motion. The axial frequency is measured

directly and naturally includes the shift ∆ωz. The relative effect of all measured frequencies on the

g-factor is described by

∆g
g

= −
√
(ω+ + ∆ω+)2 + (ωz + ∆ωz)2 + (ω− + ∆ω−)2 −ωc

ωc
(7.9)

with ωc the unshifted free cyclotron frequency. All shifts are theoretically well known and written

down in equation (2.28). The energies can be related to the temperature Tz of the axial detection

system 〈E+〉 = kB
ω+
ωz

Tz, 〈Ez〉 = kBTz and 〈E−〉 = −kB
ω−
ωz

Tz. Together with C4 = E4 + D4(TRid +

∆TR) = D4 ∆TR this leads, in the case of the modified cyclotron frequency for example, to

∆ω+

ω+
=

1
qV0

kBD4Tz∆TR
C2

2

(
3
4

(
ωz

ω+

)4 ω+

ωz
− 3

2

(
ωz

ω+

)2
+ 3

(
ωz

ω+

)2 ω−
ωz

)
. (7.10)

Since the product D4Tz was directly measured (section 4.4), this shift, as well as the axial and the

magnetron frequency shift, can be calculated. To account for the measurement uncertainties full

correlation between D4Tz and TRid is assumed which is why the expression is evaluated at D4Tz +

δD4Tz and ∆TR = δTR. The final systematic uncertainty due the trapping potential is δg/g = 9 ppt.

Magnetic field

Systematics due to the magnetic field scale with the two parameters B1,PT and B2,PT. These are the

linear and quadratic field components due to the magnetic bottle in the analysis trap. Corrections

based on B1,PT arise if the cyclotron and Larmor frequency are measured at different energies, which

cause different center points of their motion. Consequently, the shifted motional center points result

in different magnetic fields during both measurements in a linear field gradient. During the g-factor

measurement the sideband measurement for the free cyclotron measurement and the Larmor excita-

tion were executed in parallel which ensures the same energy and same magnetic field. Thus, only

systematic effects based on B2,PT must be taken into account.

The relative shift on g in the presence of a quadratic inhomogeneity is described by

∆g
g

=
∆ωL

ωL
−
√
(ω+ + ∆ω+)2 + (ωz + ∆ωz)2 + (ω− + ∆ω−)2 −ωc

ωc
(7.11)
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with ∆ωL/+/z/− from equation (2.28). As usual the energies are replaced with the detection system

temperature Tz = 13.6(8.1)K and the respective frequency ratios. This leads to a systematic shift of

∆g/g = −8(4)ppt where the error is due to the error of the temperature measurement.

Relativistic shift

Due to the relativistic mass increase both the cyclotron and Larmor frequency are shifted. These

shifts [51] lead to a relative shift on g

∆g
g

= − 1
mc2

(
2
9
〈E+〉 − 〈E+〉

)
(7.12)

which contributes with 44(26)ppt. The other modes were not included since they have a negligible

contribution.

Image charge

A particle in a Penning trap induces image charges on the electrode surfaces. These image charges

lead to a back action on the particle due to a modified potential. Due to the cylindrical symmetry of

the trap the modified potential will only affect the radial eigenfrequencies. This effect is calculated

in [93]

∆ω± ≈ ∓
q2

4π ε0 m r3
0 ωc

(7.13)

with the trap radius r0 for an infinite cylinder without any slits. The value of r0 is obtained by cal-

culating the radius from the room temperature value a with the integrated thermal expansion coeffi-

cient [94] r0 = αCu a = 1.0033−1 × 3.5 mm = 3.488 mm. The measured value of C2 = 31 127(20)m−2

is used to estimate how well this radius is fulfilled. This C2 is theoretically expected for a trap ra-

dius of rth = 3.469 mm. By conservatively estimating the error from the C2 prediction the radius is

r0 = 3.488(30)mm and can be used to calculate the relative shift on g

∆g
g

= −
√
(ω+ + ∆ω+)2 + ω2

z + (ω− + ∆ω−)2 −ωc

ωc
= 98(3)ppt . (7.14)

The image charge shift is the major systematic shift for the final result.

Fit routine limitations

In section 4.6 the fitting algorithm to extract the motional frequencies was discussed in detail. It was

pointed out, that a centered particle with respect to the resonator frequency is highly important as is

the knowledge of the resonator frequency. The resonator frequency drifts during each cycle similar

to the drift of the eigenfrequencies. This effect is shown in figure 7.7 A and was measured with

four resonance spectra at different times of the cycle. Two of these measurements were averaged to

estimate for resonator frequency of each cycle, compare figure 7.7 B. The data is sufficient to pin down

the resonator frequency with a resolution of < 1 Hz. Furthermore the total variation is confined

within ±2 Hz.
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Fig. 7.7: (A) The resonator frequency was measured four times during each cycle. The blue points represent the

average behavior over all cycles. A drift of the resonator frequency can be observed due to thermal effects similar

to the eigenfrequencies. The measurements 3 and 4 of each cycle are used to estimate the resonator frequency

with νres,avg.(B) The plot shows the evolution of the estimated resonator frequency νres,avg as a function of the

cycle number. The resonator frequency was stable to within ±2 Hz.

With the resonator frequency of each cycle at hand this can be used as input parameter to the fit

routine, where the resonator frequency is fixed to the independently measured value. To estimate

the impact on the g-factor the result of a fixed input resonator frequency can be compared to the

case where the resonator frequency is kept as a free parameter. Furthermore, the g-factor was also

calculated for fixed resonator frequencies deliberately shifted by ±5 Hz. The results are shown in

figure 7.6 at the right hand side under resonator variation. The difference between the fixed and the

free case is 29 ppt, an order of magnitude lower than the statistical uncertainty. From the manually

shifted frequencies the effect on the g-factor is limited to 21 ppt Hz−1.

This bound was also verified with an independent measurement of the free cyclotron frequency

where the dips were centered with respect to the resonator frequency and subsequently detuned

±5 Hz. The measured difference in the cyclotron frequency corresponds to a shift on g-factor of

17(10)ppt Hz−1 which is in good agreement with the result obtained by the fit routine. Together

with the result of the total resonator variation a systematic uncertainty of δg/g = 80 ppt is added to

the final result.

Summary

The systematic corrections are summarized in table 7.2. A total shift of 133(123)ppt must be cor-

rected on the statistical g-factor. The error was conservatively estimated by the sum of all individual

errors. This also accounts for correlations between errors and results that were not obtained through

a statistical measurement.
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name shift ∆g/g (ppt) error δg/g (ppt)

electrostatic 0 9

B2 8 4

relativistic −44 26

image current 1 1

image charge −98 3

fitting 0 80

∑ −133 123

Table 7.2: Summary of systematic corrections that must be applied to the statistical g-factor result. The total

error is obtained by summing up all individual errors to account for correlations and non statistical results.

7.3.2 Systematic crosschecks

This section discusses several crosscheck measurement that did not contribute to the final systematics

of this g-factor measurement but can be of potential interest for future measurements.

Axial energy variation during double and single dip

It cannot be initially guaranteed that the same conditions are present for a single dip measurement

and a double dip measurement since the rf-drive during the double dip can have an influence on the

experimental conditions. For example, in the analysis trap the spin-flip drive has a significant effect

on the temperature of the whole experimental setup due to its high-power dissipation.

Figure 7.8 A shows two averaged spectra of all single and double dips recorded during the g-

factor measurement. A shift of ∆S/Nlog = 0.158(4)dB is observable on the background. However,

the data is not sufficient to say whether the signal-to-noise ratio changed or the resonator spectrum

as a whole increased due to an overall increase in the background noise level. Assuming that the

signal-to-noise has changed the S/N difference can be related to an effective temperature change of

the resonator

S/Nlog + ∆S/Nlog = 10 log10


(√

4kB(Tz + ∆Tz)Reff ∆ν κ
)2

+ u2
n

u2
n

 , (7.15)

where S/Nlog = 19.6(5)dB is the static signal-to-noise ratio. κ is the coupling factor of the axial

detector and the effective input noise of the amplifier un is calculated from ∆S/Nlog = 0 = ∆Tz. This

means that a S/N change of 0.158(4)dB can be related to a change in temperature of 500(20)mK.

Due to the thermal coupling of the axial mode to the axial resonator it can’t be excluded that the

axial energy is different between single and double dips. The axial frequency, however, does not

depend on the axial energy since B2 does not lead to such a dependency (equation (2.28)) and C4 was

optimized to zero. The effect of a non-zero C4 is already included in the systematics with an error

estimate far larger then the measured effect here.
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Fig. 7.8: (A) All axial and double dip spectra used for the g-factor resonance were averaged. The background

is fit with a quadratic polynomial with the dip areas between the gray vertical lines excluded. The average

difference between both backgrounds is 0.158(4)dB. (B) The cyclotron frequency was continuously measured

by subsequent single and double dip measurements. The vertical lines show where the measurement routine

was paused for filling. The double dips were alternatingly driven with amplitudes of−12 dBm (as in the g-factor

measurement) and −24 dBm. The difference between both amplitudes is consistent with zero −2(48)ppt. The

small inset shows the overall distribution of the free cyclotron fluctuations νc,i − νc,i+1 with a standard deviation

of 53(3)mHz.

Power splitting

During a double dip measurement an rf-drive is applied. Power splitting refers to the problem that

different drive amplitudes might result in different measured frequencies and only the limit for small

amplitudes converges to the true value. To test whether the drive amplitude of −12 dBm during

the g-factor measurement had an influence on the measured frequency, the measurement sequence

νz → ν+(−12dBm) → νz → ν+(−24dBm) is conducted with two different drive amplitudes. This

allows the continuous logging of the free cyclotron frequency νc at two different amplitudes. The

result is shown in figure 7.8 B. The difference −2(48)ppt between both amplitudes is consistent with

zero.

Larmor dynamic

It must also be checked whether the application of the Larmor drive either has influence on the

modified cyclotron frequency or the measurement of the axial frequency similar to the analysis trap.

For that purpose a continuous axial series is recorded with an applied Larmor drive during every

other spectrum. The difference between both measured axial frequencies is −0.9(1.4)mHz. Applied

to the g-factor this leads to a contribution of −1.8(2.9)ppt and is negligible.

A similar measurement is conducted for the determination of ν+. During every other double dip

the Larmor drive is applied. Once again the result is consistent with zero 3(62)ppt and even if a

shift were observable this has no impact on the g-factor since the Larmor frequency is measured in

parallel with ν+.
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Fig. 7.9: All instruments in the experiment are referenced to a Rubidium frequency standard. Assuming that

the frequency standard has a relative unknown error η the measured frequencies νmeas are changed. The same

applies for any excitation signal that is applied to the trap.

Magnetron frequency

The magnetron frequency is not measured continuously throughout the measurement sequence but

approximated through ω− ≈ ω2
z

2ω+
which is not correct for a misaligned or elliptical trap. A com-

parison of the calculated and the directly measured magnetron frequency [51] via sideband coupling

ω−,meas ≈ ω−,calc

(
1− 3

2
sin2 θ

)
(7.16)

yields a misalignment of θ < 0.5◦ which corresponds to < 3 ppt.

External reference

In order to provide a precise and accurate g-factor measurement all instruments are referenced to

an external FS725 Rubidium 10 MHz frequency standard. The short term stability of the frequency

standard is < 2× 10−11 and presents no limitation for the setup. The standard is, however, affected

by aging and the absolute output frequency of 10 MHz can change over time. Due to the ratio mea-

surement between cyclotron and Larmor frequency this of no concern and any offset cancels in the

ratio as shall be shown next.

Based on figure 7.9 a reference clock that oscillates at νcl(1 + η) with η 6= 0 is assumed, where

η is the relative deviation of the clock frequency. The detuned clock frequency affects all excitations

applied to the trap as well as the frequency detection. For an excitation the frequency that is typed

in the instrument νexc deviates by a factor of 1 + η from the signal that is seen by the particle in the

trap. In case of the frequency detection the real particle frequency is denoted νsig. In the experiment

an SR780 Network Signal Analyzer to record all spectra is used. This analyzer has an input range

between 0 and about 100 kHz. From the factory it does not support an external reference. Instead

a homemade modification is used where the build-in crystal oscillator signal at νref = 30.933 MHz

is replaced with a square signal of a frequency generator which itself is referenced to the clock. To
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match the particle signal to the input range, the frequency is down-mixed with a local oscillator (LO).

The resulting signal νsig − νLO(1 + η) is read out with the analyzer. If η > 0 (η < 0 ) the internal

analyzer clock is running too fast (slow) and the measured signal will be measured by a factor of

1 + η smaller (larger) than it actually is νsig/(1 + η)− νLO. In the final step the initial LO frequency

is added to obtain the measured frequency

νmeas =
νsig

1 + η
. (7.17)

Applied to the the case of the axial frequency this result immediately yields

νz,meas =
νz

1 + η
. (7.18)

In the case of the modified cyclotron frequency the sidebands are affected by the detuned clock as

well,

ν+,meas =
νl

1 + η
+

νr

1 + η
− νz

1 + η
+ νrf , (7.19)

while the true frequency is

ν+ = νl + νr − νz + νrf(1 + η) , (7.20)

where the rf-drive frequency was corrected according to the arguments made for excitations with a

detuned clock. Combining both equations, this results in

ν+,meas =
ν+

1 + η
(7.21)

and likewise for the magnetron frequency. Thus, the measured cyclotron frequency based on the

invariance theorem scales the same as all individual frequencies

νc,meas =
νc

1 + η
. (7.22)

Finally, the Larmor excitation is taken into account. To excite the particle in the trap with the fre-

quency νL an excitation at νexc = νL/(1 + η) is required. The ratio the particle “sees” is then νc/νL

and is based on the cyclotron measurement νc,meas and the excitation frequency νexc

νc,meas

νexc
=

νc

1 + η

1 + η

νL
=

νc

νL
(7.23)

in perfect accordance with the real ratio. Clock drifts η are thus completely irrelevant for a g-factor

measurement

However, it must be ensured that the FFT measures a self-consistent input signal by calibrating

the signal from the frequency generator that is used as external reference for the 30.933 MHz. The

deviation of a 100 kHz test signal at a span of 195.3 mHz with an acquisition time ≈ 4 ks is zero with

an error of 8.2µHz. This corresponds to an upper limit for a shift on g of < 0.28 ppt and is completely

negligible.
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Fig. 7.10: Historic overview of proton g-factor measurements starting with an indirect measurement of Winkler

et al. [37] from 1972. The recent measurement [50] presented in this thesis is shown in red. gstat is the statistical

result with no systematic corrections. The green data point represents the currently best antiproton g-factor

measurement at CERN [49].

7.3.3 Final result

The final result of the g-factor measurement based on the statistical value gstat and all systematic

corrections is

( g
2

)
2017

=
µp

µN
= 2.792 847 344 62(75)(34)

where the first parenthesis indicates the 68.3% statistical error and the second the systematic. The

measurement has a total fractional precision of 295 ppt and improves the previous g-factor measure-

ment [48] by a factor of more than 11. The new value is consistent with the current CODATA value

[90], but 10 times more precise. Figure 7.10 illustrates historic g-factors in comparison to this mea-

surement. The value is also consistent with the latest antiproton g-factor measurement [49]. The

proton g-factor which has been determined in this thesis can thus be used for an improved test of

CPT invariance in the baryon sector.

7.4 Improved CPT Test in the baryonic sector

The improved proton g-factor of this work allows for an improved CPT test in the vector sector by

comparing protons and antiprotons. Together with the result of the antiproton [49] new constraints
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can be set on parameters of the Standard Model Extension (SME) [21]. The SME is a framework which

is used to study Lorentz and CPT violating terms within an effective field theory. This extension

of the Standard Model is a test model that shows the sensitivity of measurable quantities with re-

spect to CPT violation, but does not relate the introduced CPT odd bi-linear operators to any more

fundamental physics mechanisms. The effective field theory is built with Lorentz-violating operators

combined with coefficients that define their strength. These coefficients are constrained by numerous

experiments that e.g. look for time dependent variations of fundamental constants or that compare

properties of matter and antimatter systems [20].

Based on [49] the combined result of antiproton and proton g-factor (95% CL)(
gp

2
−

gp

2

)
= 5(74)× 10−10 (7.24)

shows that CPT invariance is preserved at the current level of precision. In order to constrain CPT-

odd b coefficients within the SME the theoretical description in [21] and the application for the pro-

ton/antiproton case [46] is used. The g-factor difference introduced above can be rewritten as(
gp

2
−

gp

2

)
=

2

ω
p
c ω

p
c

(
Σω

p
c ∆ω

p
a − ∆ω

p
c Σω

p
a

)
(7.25)

which uses the abbreviations

∆ω
p
c =

1
2

(
ω

p
c −ω

p
c

)
∆ω

p
a =

1
2

(
δω

p
a − δω

p
a

)
(7.26)

and

Σω
p
c =

1
2

(
ω

p
c + ω

p
c

)
Σω

p
a =

1
2

(
δω

p
a + δω

p
a

)
. (7.27)

These expressions use the cyclotron frequency of the proton ω
p
c and the antiproton ω

p
c . δω

p
a and

δω
p
a are the differences in the anomaly frequencies due to possible CPT violation, where the anomaly

frequency is defined by ωa = ωL − ωc. It can be shown [21], that differences in ∆ω
p
c are, to leading

order, not caused by possible CPT-violation and any non-vanishing difference is due to different

magnetic fields.

In order to make different experiments comparable the same coordinate system, the sun-centered

frame, is used. The apparatus coordinates xa are connected to the sun-centered coordinates X J by

xa(T⊕) = RajRjJ(T⊕)X J . (7.28)

The 3× 3 matrix Raj relates the apparatus coordinates to the laboratory coordinates using three Euler

rotations with α, β and γ. The 3 × 3 matrix RjJ which transforms to the sun-centered frame is a

function of the co-latitude χ and of the local sidereal time T⊕ (for an explicit form refer to [21]).

This transformation is used to transform single-index laboratory frame coefficients (b̃3
p) as well as

multi-index coefficients (b̃33
F,p).

The two experiments operated by the BASE collaboration are located in Mainz and at CERN have

a co-latitude of χM = 40◦ and χC = 44◦, respectively. The laboratory frame is defined with x along
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coefficient constraint old constraint new

|b̃Z
p | < 1.8× 10−24 GeV < 6.9× 10−25 GeV

|b̃XX
p + b̃YY

p | < 1.1× 10−8 GeV−1 < 3.9× 10−9 GeV−1

|b̃ZZ
p | < 7.8× 10−9 GeV−1 < 3.3× 10−9 GeV−1

|b̃∗Zp | < 3.5× 10−24 GeV < 1.3× 10−24 GeV

|b̃∗XX
p + b̃∗YY

p | < 7.4× 10−9 GeV−1 < 2.8× 10−9 GeV−1

|b̃∗ZZ
p | < 2.7× 10−8 GeV−1 < 1.0× 10−8 GeV−1

Table 7.3: Constraints at 95% based on the proton and antiproton magnetic moment measurement in 2017. The

old constraints were limited by the precision of the previous proton measurement.

the North-South direction and y along West-East. Both experiments have a horizontal bore which

is oriented with respect to the local x-axis with γM = −162◦ and γC = 120◦. Both magnets are

operated at B ≈ 1.9 T which makes them ideal candidates to be compared. The measurement time

for both g-factor runs is long compared to the period of a sidereal day with 23 h 56 min and time

variations of the measured quantities can be neglected. Using the experimental parameters and the

transformation to the sun-centered frame this finally leads to the two relevant frequency shifts

Σω
p
a =

[
b̃x

p − b̃xx
F,pB

proton

]
+
[

b̃∗zp − b̃∗zz
F,p B∗

antiproton

]

=

[
b̃Z

p sin(χM) cos(γM) +
1
2

(
b̃XX

F,p + b̃YY
F,p

)
B
(

cos2(χM) cos2(γM) + sin2(γM)
)

+ b̃ZZ
F,p sin2(χM) cos2(γM)

]
+

[
b̃∗ZZ

F,p sin2(χC) cos2(γC)

+ b̃∗Zp sin(χC) cos(γC) +
1
2

(
b̃∗XX

F,p + b̃∗YY
F,p

)
B∗
(

cos2(χC) cos2(γC) + sin2(γC)
) ]

(7.29)

and likewise for ∆ω
p
a with a negative sign between the two square brackets. The left hand side in

equation (7.29) is measured experimentally and the right hand side can be expressed as a function

of SME coefficients. Thus, the experimental uncertainty can be used to apply constraints to the

coefficients. Note that constraining each coefficient individually assumes that at the same time all

other coefficients vanish, which is a typical procedure for such an analysis. The result is shown in

table 7.3 in a comparison to the previously best constraints [49].

The energy resolution in the b-coefficients can be compared to similar experiments. The measure-

ment of the muon magnetic moment [28] sets constraints at the level of < 10−23 GeV to < 10−24 GeV.

Other experiments with electrons and positrons [27] applies constraints at a level of < 7× 10−24 GeV

to < 6× 10−25 GeV. The improved measurement of the proton magnetic moment in this work al-

lowed the constraints to be improved by a factor of about 2.7. Provided the techniques utilized at

Mainz are applied to the antiproton a CPT test with an energy resolution of < 4× 10−25 GeV in the

baryonic sector will be possible.
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Chapter 8
Antiproton-to-Proton

Charge-to-Mass Ratio

This chapter summarizes the results of the antiproton-to-proton charge-to-mass ratio measurement

published in Nature [95] by the BASE collaboration at CERN. The data taking was during the beam-

time in 2014. The trap layout of this experiment as well as one detection system were developed

over an extended time period [78]. The measurement is based on the comparison of cyclotron fre-

quencies between proton and antiproton and thus presents another stringent and direct test of the

fundamental CPT symmetry in the baryonic sector.

8.1 Experimental setup

The relevant trap section for the q/m-ratio measurement is illustrated in figure 8.1 and consists of two

five-pole traps with a diameter of 9 mm. The measurement trap (MT) is used for the high-precision

measurement of the free cyclotron frequency and the reservoir trap (RT) for the long-time storage

of antiprotons [77]. The RT can provide antiprotons, independent of CERN’s duty cycle, in case of

particle loss.

The antiprotons are acquired by an on-axis antiproton beam at an energy of 5.3 MeV provided

by the CERN Antiproton Decelerator (AD) [96]. Each “shot" contains about 3× 107 antiprotons which

enter the pinched-off trap chamber through a degrader structure made of copper meshes, aluminium

and stainless steel foil. As a consequence, the antiprotons are slowed down with an energy distri-

bution peaking at around 200− 300 keV. The downstream high-voltage (HV2) electrode is used to

capture antiprotons with energies below 1 keV. The upstream HV electrode is subsequently ramped

up, triggered by the injection pulse to capture the on HV2 reflected antiprotons. Prior to the injection

electrons are loaded to the MT by an electron gun. These allow an efficient cooling of the antiproton’s

axial mode by Coulomb interaction and subsequent radiative cyclotron cooling of the light particles.
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Fig. 8.1: The BASE Penning-trap system for the charge-to-mass ratio comparison measurement contains the

measurement and the reservoir trap. The first is used for the high-precision measurement of ωc while the latter

is an antiproton reservoir in case of particle loss. The antiproton beam enters from the left and is captured

between the two HV electrodes.

Once a cold cloud of antiprotons, typically several 100, is stored in the MT the particles are shut-

tled to the reservoir trap where they can be stored for months. The RT was recently used to give an

improved constraint on the directly measured antiproton lifetime [97].

Both traps are equipped with axial detectors to measure the axial frequency. The measurement

trap has a segmented correction electrode to allow for quadrupole excitation. Using the technique

of sideband coupling, section 2.6, the frequencies ω± are measured and yield the free cyclotron fre-

quency ωc by the invariance theorem [52].

To compare the proton q/m ratio to that of the antiproton both free cyclotron frequencies must be

measured in quick succession to ensure that the magnetic field is the same and cancels in the ratio

Rpp =
ωc,p

ωc,p
=

(q/m)p

(q/m)p
. (8.1)

However, it proves advantageous to use an H− ion instead of a bare proton because this allows

to store both negatively charged species in almost exactly the same trap configuration without the

necessity to switch the polarity. Any systematic positional shift due to a switch in polarity is greatly

suppressed with the choice of an H− ion. Furthermore, an H− ion presents no limitation at the

current level of precision because its mass is very well known

mH− = mp

(
1 + 2

me

mp
+

αpol,H−B2
0

mp
− Ebin

mp
− Eaff

mp

)
(8.2)

with the electron mass me [56], the polarizability shift αpol,H−B2
0 [98], the binding energy Ebin [99] and

the electron affinity of hydrogen Eaff [100]. The new theoretical ratio in case CPT is conserved is

RpH− =
ωc,p

ωc,H−
=

(q/m)p

(q/m)H−
= 1.001 089 218 754(2) (8.3)
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Fig. 8.2: (A) 1© and 2© show the two different potential configurations in the trap setup. During 1© the antipro-

ton is stored in the measurement trap, while the H− ion is parked in one of the HV electrodes. After the transport

of both particles H− is measured 2© while p is parked. The reservoir is unaffected by the routine. (B) Each ωc

measurement is started by the AD trigger. The free cyclotron frequency is then determined by measuring a sin-

gle and a double dip spectrum. Afterward, the particles are transported according to the potential configuration

in (A).

and was limited at the time of the measurement by the accuracy of the proton mass [101]. Currently

the proton mass is known by a factor of three more precise [57].

To measure RpH− the scheme illustrated in figure 8.2 is used. A measurement of the antiproton

free cyclotron frequency starts with the AD trigger for the injection of antiprotons from the proton

synchrotron into the AD target area. ωc,p is then measured by the determination of νz with a single

dip and νr/l with a double dip which allows the calculation of ν+. The magnetron frequency is

obtained by ν− = ν2
z /(2ν+). During the measurement of the antiproton the H− ion is stored in one

of the HV electrodes. Next, the antiproton is transported to the other HV electrode while the H− is

transported to the measurement trap. Again starting with the AD trigger ωc,H− is measured the same

way as before. A single ratio measurement can thus be obtained within typical 220− 240 s. This is

about a factor of 60 times faster than earlier experiments for the charge-to-mass ratio [102].

The reason to trigger the measurement with respect to the AD cycle time is the background mag-

netic field. The deceleration process to slow antiprotons from 3.6 GeV to 5.3 MeV requires several

magnetic field changes which are seen by the experiment at a level of 300 nT, which corresponds

to relative cyclotron frequency variation at the level of 10−7. An untriggered measurement would

thus be limited by a fluctuating background field where the magnetic field of p and H− vary. The

triggered measurement ensures that the ωc measurements are conducted at a similar magnetic field,

which is independently monitored by magnetic field sensors.

8.2 Results

During a time period of 35 days a number of 6 521 frequency ratios were measured. To account

for small magnetic field drifts the free cyclotron frequencies are interpolated between subsequent
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Fig. 8.3: The left side shows the ideal case in the presence of no trap asymmetries. Switching the polarity

has no effect on the position of the particles and both ωc are measured at the same magnetic field. The right

side shows the case with a voltage offset ∆V on one correction electrode. A polarity switch leads to different

axial positions of p and p, which causes magnetic field difference ∆Bpp. The H− drastically reduces this effect

∆BpH− � ∆Bpp 6= 0, because no polarity switch is requires. However, offset are not negligible and must still be

characterized carefully.

measurements of the same species. Based on the normal distributed data set an antiproton-to-H−

ratio of

RpH− , exp = 1.001 089 218 872(64) (8.4)

is extracted. As a consistency check also the ratios for identical particles can be derived with Rid, exp−
1 = −3(79) × 10−12, which is consistent with zero and independently verifies the experimental

sequence.

The main systematic contribution arises from small asymmetries in the trap layout such as ma-

chining imperfections, misalignments or potential offsets in combination with a residual gradient

B1 = 7.58(42)mT m−1. To center p and the H− ion on the axial resonator slightly different ring

voltages are required due to the different mass

νz =
1

2π

√
2qC2Vr

mp
≈ 1

2π

√
2qC2(Vr + ∆V)

mH−
(8.5)

for a voltage adjustment of ∆V = 5 mV. In the case of small asymmetries, as shown in figure 8.3, the

p and the H− ion will have slightly different axial positions. This, on the other hand, leads to different

magnetic fields seen by the two species in the case of a non-vanishing magnetic field gradient as it is

present in the setup. All asymmetries were determined by a careful characterization of the trapping

potential offsets (a discussion in great detail can be found in the supplementary material of [95]) and

the ratio was corrected by −114(26)ppt.
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Additionally, the necessary adjustment of the ring voltage ∆V leads to a slight detuning of the

ideal tuning ratio TR, which causes C4 6= 0. The shift of the eigenfrequencies, see section 2.4, is

accounted for with a correction of −3(1)ppt.

The final result of the p-to-H− ratio after applying the corrections is

RpH− , fin = 1.001 089 218 755(64)(26) . (8.6)

This result is equivalent to the antiproton-to-proton charge to mass ratio comparison of

Rpp, fin − 1 =
(q/m)p

(q/m)p
− 1 = 1(64)(26)× 10−12 (8.7)

in perfect agreement with CPT symmetry at a precision of 69 ppt. The first error is the statistical

uncertainty while the second is due to systematics. The result can be interpreted in the framework

of the standard model extension (SME) [103] which uses the figure of merit

rH− = (1− RpH− , fin)
hνc,H−

mH− c2 (8.8)

with the Plank constant h and the speed of light c. The presented result allows to set a new limit

rH− < 9× 10−27 which exceeds the previous limit [102] by a factor of four. The data can also be

analyzed as a function of the sidereal time t⊕ = 86164.1 s to check the variation of fundamental

constants as a function of the earth’s rotation. Based on the data such a variation can be excluded

with an upper limit of 0.72 ppb on the ratio RpH− , fin.
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Chapter 9
Outlook

This chapter briefly introduces the new measurement setup to implement the concept of sympathetic

laser cooling which will significantly improve the overall cycle time. The new trap design was de-

veloped as part of this thesis and is explained in detail. In the second part of this chapter several

additional future improvements to reach a higher precision are discussed.

9.1 Laser cooling

9.1.1 Motivation

The value of the g-factor presented in this thesis is limited by statistics and in order to improve the

current value an optimization of the cycle time is essential. Reviewing the time budget, initially pre-

sented in figure 7.1, shows that the first column (Waiting and Γ(k)-measurement) typically requires

30 min. The particle preparation is performed in about 20 min and the spin state detection (Series 1

& 2) in 40 min.

The first block is mainly composed of the waiting period and the frequency measurement together

with the Larmor excitation. A single spin-flip drive in the AT already heats the trap such that the

waiting period becomes necessary to avoid nonlinear drifts during the frequency measurement and a

reduction of this effect is challenging. The timing of the second and the third block are closely related

to each other. The lower the temperature cut during the preparation the longer the preparation

lasts until the cut requirement is met. On the other hand a lower temperature allows for a higher

fidelity in the analysis trap, compare figure 9.1 A. A higher fidelity has the advantage that the axial

series is potentially shorter and it requires less time until a significant change in the axial frequency

related to a spin flip is observed. In addition, the data points with higher fidelity have a larger

impact on the total result. Thus, any improvement on the cooling either by a faster preparation

or a lower temperature immediately improves on the cycle time. The cycle time was one of the

major improvements of the current work due to the implantation of a new superconducting cyclotron



110 Chapter 9. Outlook

cyclotron energy (E+ / kB)

sp
in

 d
et

ec
tio

n 
�d

el
ity

 (%
)

ax
ia

l �
uc

tu
at

io
n 

(H
z)

A B

0.30

0.20

0.10

0.00

100

80

60

40

20

0
0.001             0.01                0.1                  1                  10

Ξn = 40 mHz
Ξw = 113 mHz

Laser cooling

resitive cooling

~

CT
l2

c2

l1

c1

p trap Be trap

commen endcap

Fig. 9.1: (A) The figure shows the reachable spin-state detection fidelity as a function of the modified cyclotron

energy. Note that the fidelity was rescaled to the range [0%,100%]. The technique of laser cooling should allow

the preparation of energies below 0.1 K kB on a minute scale. (B) Lumped circuit model of a proton and a

Beryllium cloud connected by a common endcap. The particles are replaced by series tuned circuits. CT is the

parasitic trap capacitance of the common endcap.

resonator with smaller time constant and lower temperature. It should be noted that the time which

is required for the spin state detection can immediately by halved by performing only one axial

series. The second series serves no direct purpose for the g-factor resonance and is only a control

mechanism to check whether the routine and the background noise behave as expected. This is,

nonetheless, a very helpful feature but once the measurement routine runs well about 20 min per

cycle can be easily gained by skipping the second series.

Summarizing the discussion above shows that the cycle time can possibly be reduced to 60 −
70 min by removing the second series and implementing an even improved cyclotron detector. How-

ever, a technique that allows a quasi-deterministic cooling of the proton within about 5 min to the

low mK range, which allows spin-state detection in about 5 min, would be preferred. This would

not only lead to a cycle time of 40 min, which already is an substantial improvement, but also to

much higher fidelities and thus less required total data points for the same resonance. An attractive

option to reach this goal is the technique of sympathetically cooling the proton by a cloud of laser-

cooled beryllium ions. The mK beryllium cloud acts a thermal bath which the proton is coupled to.

Ultimately, this should allow quasi-deterministic cooling of the proton.

9.1.2 Working principle

The original idea of coupling a laser-cooled cloud of ions to another particle by a common endcap

was introduced early by Heinzen and Wineland [104]. The scheme is shown in figure 9.1 B in a

lumped circuit representation. The proton and the Beryllium ions are both modelled as series tuned

circuits connected by a common endcap represented in blue. The image charge of the laser-cooled

Beryllium interacts with the common endcap and represents a thermal bath which is seen by the

proton. This coupling leads to an energy exchange between both reservoirs. The advantage of this

coupling scheme, compared to having both ion species in the same trap, is the spatial separation with
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(mm) PT ST CT/BT AT

a 4.5 2.5 2.0 1.8

lr 1.3099 0.6656 0.5046 0.4402

lc 3.5300 1.9007 1.4937 1.3309

le 9.0000 3.7870 7.9480 4.4780

Dc 10.0 5.7 4.6 4.2

De 25.6 14.1 10.9 9.7

Dc+e 7.2 4.1 3.2 2.9

TRid 0.8810 0.8807 0.8806 0.8804

C2 (m−2) 18 510 59 900 93 500 115 360

D4 (m−4) 1.28× 109 1.34× 1010 3.27× 1010 4.98× 1010

Table 9.1: Typical trap parameters for ring electrode (r), correction electrode (c) and endcap (e)) of precision trap

(PT), source trap (ST), coupling trap(CT), Beryllium trap (BT) and analysis trap (AT). D is the effective electrode

distance and a the radius of the trap.

no need to isolate the proton after the cooling.

To derive the energy exchange time the circuit model is assumed. The connection to the particle

properties was already introduced in section 2.5. In [104] the exchange time was calculated

τex =
πωzD1D2√

N1N2
CT

√
m1m2

|q1q2|
(9.1)

with the assumption that both species are tuned to the same axial frequency ωz. The effective elec-

trode distance Di is determined by the geometrical properties of the trap. By choosing a symmet-

ric trap configuration with the same geometry for both species the effective electrode distance is

D1 = D2 = Deff. Furthermore, N1 = 1 since only a single proton is used. To reach short exchange

times the three relevant parameters to optimize are the number of beryllium ions, the self-capacitance

of the common endcap and the effective electrode distance.

9.1.3 Coupling trap design

The trap design is based on the requirements in section 2.2, orthogonality and compensation. The

main challenge in the trap design is the minimization of the effective electrode distance and of the

self-capacitance to reach a short coupling time. All new trap parameters are summarized in table

9.1. The coupling trap (CT) contains the proton and the beryllium trap (BT) the beryllium cloud. A

discussion of the other new traps will be presented in the following section.

A small radius, similar to the AT, is chosen for BT/CT due to the direct impact on the effective

electrode distance, which decreases for smaller radii. For a fixed radius of a = 2 mm the effective

electrode distance of the common endcap is evaluated with equation (2.21) to be 10.9 mm. To achieve

a smaller electrode distance the common endcap is used together with the two neighboring elec-
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Fig. 9.2: (A) Schematic of the trap layout for BT and CT with endcaps (EC), correction electrodes (CE) and ring

electrode (RE). The common endcap is a combination of four electrodes (CE+EC+EC+CE) that are connected

capacitively. (B) Simplified zoomed view of the critical region that shows the major contribution to the total

capacitance between ring electrode and correction electrode.

trodes to increase the signal pick-up. The electrodes are capacitively coupled and the total electrode

distance decreases to 3.2 mm, a factor of three improvement.

The trap is designed in such a way that the capacitance of these three electrodes with respect

to the rest of the setup becomes small, shown in the schematic 9.2 A. The original idea to have one

common endcap was modified by having two separate endcaps because for a small radius-to-length

ratio the electrode becomes a drift tube and stable transport is not possible. The two endcaps (EC)

as well as the two correction electrodes (CE) are capacitively coupled to short them AC-wise and

keep different DC potentials. The capacitance of CE+EC+EC+CE versus the rest of the setup can be

simulated by a finite-element-method (FEM) simulation using the program COMSOL Multiphysics.

The simulation confirms that the main contribution for the capacitance arises between the correction

electrodes and the ring electrodes. The geometry optimization is based on the simple model of a

parallel-plate capacitor

C = ε0εr
A
d

. (9.2)

The capacitance can be minimized by reducing the area A seen between both electrodes (ring &

correction electrode), by increasing the distance d or by reducing the amount of dielectric material

with relative permittivity εr. To reduce the relative permittivity the sapphire (Al2O3) rings between

ring and correction electrode were replaced with quartz (SiO2) rings. This corresponds to a reduction

of 2.5 from εr = 11.3 for sapphire to εr = 4.43 of quartz. Figure 9.2 B highlights the geometrical

steps to minimize the capacitance of the common endcap assembly CT. As a first step, the area seen

by the ring electrode was minimized by reducing the overlap between ring electrode and quartz

ring to 500µm. A further reduction is not meaningful for the mechanical stability. The quartz ring

was chosen with the thickness of 2.4 mm which increases the distance between ring and correction

electrode. A further increase is constrained by the inner length of ring and correction electrode.

In total the simulated capacitance of the whole assembly is 8.8 pF with a sapphire ring for the
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spacing between ring and correction electrode. If quartz is used instead the simulation yields 5.6 pF,

an improvement by 25%. The capacitance was also obtained directly by connecting a tuned circuit

and measuring the shift in the resonance frequency, which is a function of the connected capacitance.

The result is 5.5(5)pF which is in good agreement with the simulation. Compared to other standard

electrodes with typically 10 − 15 pF this design is a substantial improvement with impact for the

exchange time by up to a factor of 2 faster cooling.

To improve the trap capacitance even further the electrodes itself could be produced with sap-

phire and only the inner trap layer is gold-plated. This would drastically reduce the capacitance

but is difficult to manufacture as well as very expensive. Another alternative to improve the design

discussed before, is the removal of material from the ring and correction electrode by milling holes

along the trap axis. While technically possible by wire erosion the missing material can lead to a

distortion such as elliptical electrodes.

Based on equation (9.1) and the designed trap the typical timescale for the cooling procedure

can be derived [105]. For a cloud of about 100 Beryllium ions, the common endcap configuration

of CE+EC+EC+CE, and an axial frequency of about 600− 700 kHz coupling times below 1 min are

feasible even if additional stray capacitances by wires with several pF are taken into account.

9.1.4 Experimental setup

The trap chamber setup [105] for the next-generation experiment to measure the proton g factor is

shown in figure 9.3. The setup includes five traps, four of which were designed as part of this thesis.

On the right hand side coupling trap (CT) and beryllium trap (BT) are located for the coupling of the

proton to the beryllium cloud. Next to it is the new precision trap (PT) with a larger radius of 4.5 mm

which allows a better compensated electric field. The AT is the same as in the previous run followed

by the new source trap (ST) which is used to load protons.

To load protons the electron beam emitted from the field emission point (electron gun) is reflected

by a negative voltage on e.g. the AT ring electrode. Subsequently, the electrons undergo multiple

reflections and their magnetron radius increases in the presence of trap imperfections. Eventually,

the electron beam hits the surface of the electron gun and protons can be loaded to the ST.

The Beryllium ions are produced with an ablation laser at 532 nm which sputters Beryllium of

the Be target. The atoms are then ionized by electrons emitted from the electron gun. The cooling

laser in the UV at 313 nm addresses the 2 S1/2 → 2 P3/2 transition and directly cools the axial motion.

The other modes are cooled indirectly due to Coulomb interaction and trap imperfections. A six-

split electrode in the BT allows for the detection of fluorescence through the slits by dedicated silicon

photomultipliers.

The cooling laser is guided through a fiber to the new second pinbase on the right hand side.

A dedicated fiber mount allows the positioning with respect to all spatial coordinates as well as an

angular adjustment. The mount also provides space for lenses and apertures. The lasers are guided

through indium sealed sapphire windows into the cryogenically sealed trap chamber. The electrical

pinbase on the left hand side is equipped with an additional sapphire window feedthrough. The
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Fig. 9.3: New trap layout for laser cooling. The electrical pinbase on the left contains electrical feedthroughs for

DC, detection and excitation lines. The five traps are mounted in the center of the trap chamber. The new optical

pinbase on the right guides two lasers into the chamber through sapphire windows.

electron gun was modified such that the laser can pass through the whole chamber on axis and

leaves through the window on the opposite side. A diode behind the window allows continuous

tracking of the laser power and position, especially during cooldown.

All parts have been manufactured and assembled. First initial tests, such as beryllium loading,

were successfully performed with the new setup. The implementation of laser cooled beryllium ions

to cool a single isolated proton is the next big step towards an improved proton g-factor measure-

ment.

9.2 Additional improvements towards < 300 ppt

This section covers additional considerations in order to reach a higher precision below the 300 ppt

level. Partially these ideas are already implemented in the new setup for laser cooling.

• Statistics

The current measurement is limited by statistics which can be improved e.g. by performing

only one axial series in the analysis trap. Moreover, the scheme of laser cooling, once suc-

cessfully implemented, will speed up the cycle time drastically due to an improved particle

preparation time and a higher spin-state detection fidelity.

• Drive amplitude

The g-factor resonance in the current run reaches a spin-flip probability of about 26% at its

maximum which is well below saturation. An optimized Larmor excitation drive strength will

allow a better signal-to-noise ratio without saturating the resonance. A higher S/N allows a

higher precision with the same amount of data which speeds up the total measurement.

• Phase method

The phase method allows two different significant improvements for the g-factor experiment.



Chapter 9. Outlook 115

The first improvement is the up to 33% faster readout of the proton spin state in the analysis

trap. This technique was demonstrated in this thesis in chapter 5. Once implemented in a

robust manner, the phase method in the AT also enables a higher temperature cut which will

improve the cycle time by another 15%.

The second even more important improvement is the direct measurement of the modified cy-

clotron frequency via the phase method. The current cyclotron frequency measurement is lim-

ited by the stability in the axial mode due the technique of sideband coupling. During the

measurement of the modified cyclotron frequency any fluctuation in νz directly adds to the

measurement of ν+. This can be avoided by measuring ν+ by the Pulse-and-Phase (PnP) [65] or

Pulse-and-Amplify (PnA) [87] method. Similar to the phase method in the analysis trap an initial

phase is imprinted on the modified cyclotron mode. After a specific evolution time the phase

information is transferred to the axial mode and read out. Performing such a phase readout for

various evolution times allows the determination of ν+ at the level of 10−11 [57].

Ultimately, the PnP or PnA technique becomes inevitable for a second reason. The current

method of fitting dip spectra becomes more and more sensitive to undesired effects such as

thermal broadening of the dip spectra or asymmetries on the resonator. The simplified dip-

model which is used at the moment has reached a critical point where an optimization and a

more accurate model is required. Such a model needs, however, additional input parameters

such as the detection system temperature or the resonator center. Both of these information

are not necessarily constant over time and continuous logging is time consuming and far less

efficient then the implantation of the phase method.

• PT optimization

The major systematic correction at the moment is the effect of the image charge. Even though

the error is comparably small, it is appealing to reduce this systematic shift. The image charge

scales with the trap radius a−3 and a larger trap radius significantly lowers this shift. In addi-

tion, a larger trap is less sensitive to manufacturing imperfections leading to a better compen-

sation. The compensation can be further improved by implementing a seven-pole trap recently

used in the measurement of the proton mass [57]. Such a trap is used to compensate higher

orders in the potential with C8 = C10 = 0. As a consequence, the particle can be excited to

much higher radii without shifting the eigenfrequencies, which is, for example, beneficial for

the phase method.

• Level and pressure stabilization

Currently, the Helium pressure is stabilized due to its correlation to the particle’s frequencies.

During the last run measurements indicated that also the pressure in the nitrogen vessel has

a relevant influence on the stability of the axial frequency. The behavior requires further char-

acterization but due to the straight-forward implantation with an additional PID-controller it

should be implemented to the system.

As a consequence of the horizontal mounting of the experimental setup in the magnet bore the
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trap position is very sensitive on the weight that rests on the table with the cryostat. Especially,

different levels in the nitrogen or helium tank have a direct impact on the position of the trap

inside the magnet bore, which effectively causes a different magnetic field. Even though this

long-term drift (2-3 days), while the cryo-liquids evaporate, was no limitation in the current

setup it might be worthwhile to optimize it in the future.

In summary, the implementation of the phase method will allow for a direct detection of the modified

cyclotron frequency and should have high priority. An order of magnitude improved measurement

at the level of < 10−11 seems feasible with this modification. However, such a measurement would

be time consuming which is why the realization of laser cooling is very appealing to drastically

improve the particle preparation time and reach much higher spin readout fidelities.
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Chapter 10
Summary and conclusion

In this work the magnetic moment of the proton in units of the nuclear magneton was measured with

a fractional precision of 3× 10−10 which is a factor of 11 more precise than the previous measurement

in 2014 [48].

( g
2

)
2017

=
µp

µN
= 2.792 847 344 62(75)(34)

This improvement became possible by implementing several significant upgrades on the setup. An

optimized trap geometry allowed to get rid of the previous limitation caused by a residual magnetic

field inhomogeneity in the precision trap. A new superconducting cyclotron resonator was devel-

oped to obtain a 3 times faster particle preparation which led to a 2 times faster experimental cycle

time. The successful implantation of a self-shielding coil enabled a significant reduction of external

magnetic field disturbances. New cryogenic ultra low-noise amplifiers were used to improve the ax-

ial detection systems. Finally, the drive amplitude was optimized over several months to eliminate

line width broadening and the simultaneous measurement of ωc and ωL reduced systematic shifts.

The measurement is limited by statistics and by the stability of the axial frequency. A further

improvement will become possible by a direct measurement of the modified cyclotron frequency

which makes it independent of the axial stability. Furthermore, a new experimental approach is

on-going and aims for the sympathetic cooling of a single isolated proton by a laser-cooled cloud

of beryllium ions. If successfully implemented, this method will not only drastically speed up the

particle preparation procedure but also increase the spin state readout to much higher fidelities.

The expertise made at the current setup in Mainz will as well be used by the CERN experiment

for the antiproton and within the collaboration a continuous exchange of techniques takes place. E.g.

the superconducting cyclotron resonators is used by both experiments at the moment as well as the

self-shielding coil.
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By comparing this result to the most recent antiproton g-factor measurement [49] new limits on

possible CPT violating effects can be derived in the framework of the Standard Model Extension. At

the current level of precision no CPT violation can be observed and an improved measurement of

the antiproton magnetic moment is required. Together with the techniques achieved in Mainz such

an improvement is in reach.

Besides the achievements in the g-factor regime the BASE collaboration at CERN measured the

antiproton-to-proton charge-to-mass ratio with

(q/m)p

(q/m)p
− 1 = 1(69)× 10−12 (10.1)

which shows that CPT symmetry is conserved at the 69 ppt level and limited by statistics.. This is an

improvement by a factor of four compared to the previous best value [102]. The leading systematic

shift is due to small trap asymmetries together with a residual magnetic field gradient.

Penning traps have proven powerful tools to investigate fundamental properties at low-energies

with very high precision. Technological advances continue to push back the boundaries and an end

of this development is yet to come.
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Appendix A: Experimental values
Note, that some of the presented values, such as the frequencies or voltages, are not constant over

time and the values stated here are a “snapshot”.

A.1 Analysis trap

A.1.1 Overview

• Vr = −1.0335 V — ring voltage for 0 K

• TRid = 0.489881 ·Vr + 1.34041 — ideal tuning ratio as function of ring voltage

• pSF, AT = 0.366(16) — spin-flip probability during g-factor measurement

• Ξn = 40.0(5.0) — white noise contribution during g-factor measurement

• Ξw = 124.0(5.3) — walk contribution during g-factor measurement

• B0, AT = 1.17952(10)T — absolute magnetic field

• B2, AT = 298 000(5000)T m−2 — strength of magnetic bottle

• ∆νz, SF = 172(3)mHz — axial frequency change due to induced spin flip

• ∆νz,+ = 62 mHz — axial frequency change due to cyclotron quantum jump

• ∆νz,− = 52µHz — axial frequency change due to magnetron quantum jump

• ∆νz(T) = 71.4 Hz K−1 ∆T — axial frequency change per change of 1 K

• ∆νz(TR) = −15.4(7)Hz mUnit−1 — axial frequency change per milliunit of TR

• ∆νz(Vr) = 397 000 Hz ∆V−1
r — axial frequency change per ring voltage

• C2,AT = 109 090(50)m−2 — measured trap parameter

• D4,AT = 4.98× 1010 m−4 — theoretical trap parameter

A.1.2 Axial resonator

• Dz = 10 mm — effective electrode distance axial

• Qz = 21 700 — quality factor axial resonator

• Lz = 1.91 mH — inductance of axial resonator

• S/N = 29.6(4)dB — signal-to-noise ratio
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• κPT = 0.2 — coupling factor

• Tz = 18.1(6)K — temperature of the axial detection system

A.2 Precision trap

A.2.1 Overview

• Vr = −2.65682 V — ring voltage

• TRid = 0.885262 — ideal tuning ratio

• B0, PT = 1.900(1)T — absolute magnetic field

• B1, PT = 66.8(1)mT m−1 — linear magnetic field

• B2, PT = 0.1(1)T m−2 — quadratic magnetic field

• ∆νz = 21.0(2)Hz mUnit−1 — axial frequency change per milliunit of TR

• C2,AT = 31127(20)m−2 — measured trap parameter

• D4,PT = 3.50× 109 m−4 — theoretical trap parameter

• V0 = −2.65681 V — ring voltage

• D4Tz = 4.75(2.82) · 1010 m−4 K

• B2Tz = 1.306(38)T m−2 K

• a = 3.5 mm — ideal trap radius

• r0 = 3.488(30)mm — estimated trap radius at 4 K

A.2.2 Axial resonator

• Dz = 21.5 mm — effective electrode distance

• Qz = 6400 — quality factor

• Lz = 2.65 mH — inductance

• S/N = 19.6(5)dB — signal-to-noise ratio

• κPT = 0.1 — coupling factor

• Tz = 13.6(8.1)K — temperature
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A.2.3 Cyclotron resonator

• D+ = 15.6 mm — effective electrode distance

• Q+ = 1400 — quality factor

• L+ = 1.7µH — inductance

• S/N = 14.7(9)dB — signal-to-noise ratio

• κ+ = 0.6 — coupling factor

• T+ = 9.6(5)K — temperature

A.3 g-factor related measurement parameters

A.3.1 Precision trap

• tavg,+ = 120 s — double dip averaging time

• tavg,z = 60 s — single dip averaging time

• Eexc,SF = −28 dBm — Larmor excitation strength

• ∆νFFT = 50 Hz — FFT span

• νc = 28 968 064 Hz — free cyclotron frequency during g-factor routine

• ν+ = 28 961 132 Hz — modified cyclotron frequency during g-factor routine

• νz = 633 664 Hz — axial frequency during g-factor routine

• ν− = 6 933 Hz — magnetron frequency during g-factor routine

• νrabi = 7.83 Hz — Rabi frequency during g-factor routine for cyclotron sideband

A.3.2 Analysis trap

• tavg,z = 60 s — single dip averaging time

• Eexc,SF = −5 dBm — Larmor excitation strength

• texc,SF = 20 s — Larmor excitation length

• ∆νFFT = 100 Hz — FFT span

• ATH = 0.1 mHz — threshold parameter (ATh · T+ + BTh)

• BTH = 0.19 mHz — threshold parameter (ATh · T+ + BTh)
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A.3.3 Miscellaneous

• pstab = 1030 mbar — pressure stabilization setpoint

• Tstab = 29◦C — temperature stabilization setpoint

• FFT settings: Time record increment 12.5%, RMS averaging, Type linear
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Appendix B: Connection diagram
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Fig. B.1: Schematic connection diagram of the whole experiment
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