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EDITORIAL

The Conference on "PROBLEMS OF FUNDAMENTAL PHYSICS” (the
7th Lomonosov Conference on Elementary Particle Physics) was held from 24 to 30
August, 1995 at Moscow State University, Moscow, Russia.

The conference was organized by the Interregional Centre for Advanced
Studies in cooperation with the Skobeltsyn Institute of Nuclear Physics and the
Faculty of Physics of the Moscow State University and supported by the Joint
Institute for Nuclear Research (Dubna), the Institute for High Energy Physics
(Protvino) and the Institute for Nuclear Research (Moscow), and was also
sponsored by the Ministry of Science and Technical Policy of Russia.

It was more than fourteen years ago when the first of the series of
conferences, now called the "Lomonosov Conferences on Elementary Particle
Physics”, was held at the Department of Theoretical Physics of the Moscow State
University (June 1983, Moscow). The second conference was held in Kishinev,
Republic of Moldavia, USSR (May 1985).

After the four years break this series was resumed on a new conceptual basis
for the conference programme focus. During the preparation of the third conference
(held in September 1989, Maykop, Russia) a desire to broaden the programime to
include more general issues in particle physics became apparent. At subsequent
meetings in this series (August 1990, Minsk, Republic of Belorussia, USSR April
1992, Yaroslavl, Russia; August 1993, Moscow, Russia} a wide variety of
interesting things both in theory and experiment of particle physics, field theory,
gravitation and astrophysics were included into the programmes. During the
conference of 1992 in Yaroslavl it was proposed by myself and approved by
numerous participants that these irregulary held meetings should be transformed
into regular events under the title "Lomonosov Conferences on Elementary Particle
Physics". It was also decided to enlarge the number of organizations that would
take part in preparation of future conferences.

Mikhail Lomonosov (1711-1765), a brilliant Russian encyclopaedist of the
era of the Russian Empress Catherine the 2nd, was world renowned for his
distinguished contributions in the fields of science and art. He also helped establish
the high school educational system in Russia. Moscow State University was



founded in 1755 based on his plan and initiative, and the University now bears the
name of Lomonosov.

The Sixth Lomonosov Conference on Elementary Particle Physics
"Cosmomicrophysics and Gauge Fields" was held at Moscow State University
(August, 1993) and was sponsored by the Interregional Centre for Advanced
Studies. The publication of the volume containing articles written on the basis of
presentations at the 5th and 6th Lomonosov Conferences was supported by the
Accademia Nazionale dei Lincei (Italy).

The idea to devote the 7th Lomonosov Conference to "Problems of
Fundamental Physics" appeared because the year 1995 marked the ninetieth
anniversary of the special theory of relativity (1905), the eightieth anniversary of
the general theory of relativity (1915) and also seventy years after the foundations
of quantum mechanics had been formulated (1925 - 1926). That was the reason to
included the following set of items into the programme of the 7th Lomonosov
Conference:

1) Quantum mechanics and paradoxes,

2) Foundations and developments of theory of space-time,

3) Frontiers of particle physics (the Standard Model and beyond, strings,

particle astrophysics, neutrino mass and oscillations).
The aim of the Conference was to review the present situation and results so far
obtained to the end of the twentieth century and discus perspectives for the future.

On behalf of the Organizing Committee I should like to warmly thank the
speakers and all of the participants of the 7th Lomonosov Conference. We are
grateful o the Directors of the Skobeltsyn Institute of Nuclear Physics, Mikhail
Panasyuk and the Joint Institute for Nuclear Research, Viadimir Kadyshevsky, and
the Dean, Vladimir Trukhin, and Vice Dean, Yury Pirogov, of the Faculty of
Physics of the Moscow State University for the support in the organization of the
Conference. I should like to thank the Secretaries of the Conference, Vladimir
Galkin, Gennady Likhachev and Artem Mishurov.

These Proceedings were published by the Publishing Division of the
Interigional Centre for Advanced Studies. Special thanks are due to Vladimir
Galkin for his contribution in preparation of this volume.

Alexander Studenikin
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Quantum field perturbation theory with convergent
series does exist.

V.V.Belokurov !,

Nuclear Physics Institute, Lomonosov Moscow State University, 119899
Moscow, Russia

E.T.Shavgulidze ? and Yu.P.Solovyov 3

Department for Mathematics and Mechanics, Lomonosov Moscow State
University, 119899 Moscow, Russia

Abstract

Asymptotic expansions, employed in quantum physics as series of
perturbation theory, appear as a result of the representation of func-
tional integrals by power series with respect to coupling constant.
To derive these series one has to change the order of functional in-
tegration and infinite summation. In general case, this procedure
is incorrect and is responsible for the divergence of the asymptotic
expansions.

In the present work, we suggest a method of construction of 2 new
perturbation theory. In the framework of this perturbation theory,
a convergent series corresponds to any physical quantity represented
by a functional integral. The relations between the coefficients of
these series and those of the asymptotic expansions are established.

1F mail: belokur@theory.npi.msu.su
2E mail: shav@nw.math.msu.su
SE-mail: solo@difgeo.math.msu.su



1. Nowadays, perturbative quantum field theory is a very well developed
theory that car be considered as the most realistic theory of fundamental
interactions [1]. In the framework of this theory, the coupling constant g is
supposed to be a small parameter and any physical quantity is represented
by the expansion over powers of this parameter [2].

However, it is well known [3] that power series in quantum field theory
diverge and are nothing but asymptotic expansions of functions under study
in the region of sufficiently small values of g. A sum of finite number of terms
gives an approximation to the function. But, for g fixed, irrespective of the
number of terms in the sum, the accuracy of approximation can not be
made arbitrary.

The power series divergence is due to nonanaliticity in coupling constant
of the studied functions. In particular, they are known to have the essential
singularity at g = 0 (see e.g. [4]).

In this paper, we propose a new perturbation theory with convergent
series for any quantity represented by a functional integral. Here, we for-
mulate the basic ideas of the method and apply it to obtain convergent series
for ordinary integral that can be considered as a toy model for functional
integrals in quantum field theory. In the following papers, convergent series
will be obtained for functional integrals appearing in quantum mechanics
and quantum field theory. '

2. Consider the "zero-dimensional” analog of functional integral in
quantum field theory with the interaction V = g9¢* (¢ > 0), that is, the
ordinary integral

+oo
I(g) = / e g 1)
-0
If we expand the integrand into power series with respect to g and rearrange
the operations of integration and infirite summation

T & (=g 2 (o F
52 i 4n = -z2_4n
-ée‘ugo o zda:—bﬂz::‘) o :e/oe z'"dz, (2)
then we obtain the asymptotic expansion for g—0)
E F.g",
n=0
_ (= (411 + 1) _ (=17 (4n)
= T ) = ey @)

2



The series is obviously divergent.
At the same time, for g > 0, the integral (1) is finite. And the result is

mexp( LK (L) - = T exp( L
10) =k () 75 = iz (755) - @

Here, K 1 is the Mcdonald function and D_g is the function of the parabolic
cylinder.

To understand why the divergent series (3) appears for the convergent
integral (1), notice that the procedure (2) is incorrect. Actually, the condi-
tions for it to be correct are given by the following theorem ([5}):

Let (a,b) be a finite or infinite segment and u,(z) be a sequence of real
or complex functions satisfying the following conditions:

(1) all u,(z) are continuous in (a,d);

(2) the series T°22, un(z) converges uniformly on every finite segment in
(a,b),

(3) at least one of the expressions

b

/ (S ), 3 /’ e

is finite. Then b o
/ (nz=:o u,,(z)) dz = Z_:o/u,,(z)dz ;

It is easy to see that for the transformation (2) these conditions are not
fulfilled.

3. Now we are ready to formulate a method that gives us the possibil-
ity to construct a new perturbation theory with convergent series. Let us
consider the integral (1). Denote by $(p) the Fourier transformation of the
function exp(—r*) :

400

o(p) = -217 / e e dr . (5)

-0

For large values of |p| the following inequality takes place [6)
1
3(p) < —=|p+}
lB)i<C exp( glel ) . (6)

3



Rewrite the integral (1) as follows:
+oo +oco . *
Ig)= [ ( [ e "dp) dz . (7)
In view of the equation (6) we obtain
= ao)et | < Cexp (~2tort - 7). ®)
Therefore,the following Lebesgue integral

400 400
[ [ @)t dpiz )

=00 —00

converges absolutely. Hence, the conditions for the Fubini theorem are
fulfilled and we may change the orders of the integrations with respect to P

and r :
+c0 +o0 g
I9)= [ #(p) ( [eer "dz) dp. (10)
The integral I(g) can be represented as a limit of proper integrals with
respect to p :

+R +00 1
I(g) = Jim _/ #(p) f e "dx) dp. (11)
-R o0

If R is sufficiently large (R ~ —In¢) then the integral
+R +00 )
e R)= [ $(o) (/ e'*’e"*“dz) dp (12)
-R 00

approximates the integral (1) with an accuracy ¢ :
[J(9, B) - I{g)| < e.

We will show that for any finite R, J(g, R), that is the regularization of
the integral (1), can be expanded into absolutely convergent series.



Expanding the function exp(ig} px) into power series and substituting it
into the integrand of (12) we obtain

J(g,R) = ‘,,(,,)(/ i ’”")dz)dp. (13)

Let us prove that here we can change the order of operations 3324 and
400

J . Consider the function exp (—%z’) 7. It has the maximum at the point
-00 i

z = /. So, taking into account the Stirling formula we get the inequality
e In? e~¥n? 1

e?
< - i
n!  ~ mnre  V2rnF

<

(14)

1,2z
exp(—57)

From here, it follows that

I, R) = _/‘P()( SR (/ ol dz))d (15)

Using the inequality (6) we also prove that

an +R +co
B(o)pndp [ eFamda. (16)
R -

J(g,R) =

00

Now let us estimate the terms of this series and prove that the series
obtained converges absolutely. The series (16) looks as follows

J{g,Ry=3_ un(9, R). (i7)
n=0
Since
N 1. /1
16(0)| < / ar=2T(5), (18)
we have n .
+ +
R
2 i < ke =
L P(p)p"dpl < C-_ﬁ lpf"dp = 2C— 1 (19)




Taking into account the equation

+co

-z2 _n _ F(l;—l), n=2k
/e zdz_{ 0 n=2k41"° (20)

and using the Stirling formula we get

1. 2R™_(nt1 Ll
<lwgBip(tl) g BN
[un(g, R)| < n!ZCg n+1 2 ) <Cig (n+1)ir (EF) )

Therefore, the series (17) converges absolutely.
Let us examine in more detail the structure of the terms of this series.
Rewrite the series (16) as

J(g,R) = g (2—2)-!,;’451‘ (?%) Ax(R), (22)

where
+R P +R +oo0
—_ - n . n -t _—ipr —
An(R) =i ésp(p)p "P-z,ré" ue ¢ dr)dp-

1 +R+°°d"
-t i
2—1/ /dr_"e € "df‘dp. (23)

“R—-o00

We see that the Fubini theorem is applicable here and

dr. (24)

+
1 d® _.sinRr
An(R) = ;_Z arm® r

In view of the equation (20), the series (22) contains the evén-numbered
terms only ( it follows directly also from the formula (24) which gives
Azk.H(R) = 0).

Consider the coefficients A,(R) at R large. First, notice that if we
substitute the limiting values

Au(0) = lim A,(R)



into the series (22) we get the divergent series (3). Actually,

o[ e S{E )

(25)
’ 1 . [4n+1
Fn = (4_)"' ( 9 ) A‘n(m)
Awia(o0) = — M (.g::o (-r 4)---)r=0 ~0. (26)
For large R, we also have
al®) - Au(e) < S8, gy« EEED o)
and

4n+1 D(4n)
L p (80 4 ] < 20,
lF ) A4,.(R)| S
The method is also applicable for the integrals that lead to the so-called
nonperturbative contributions. The typical example is the integral

= [ (8

-0

dz {28)

{see, e.g. [4]). The terms of the corresponding divergent series in the com-
mon perturbation theory have the same sign.
If we rewrite the integral (28) as

I(7) = exp (—ﬂ) Te"’ ~Prlldz (29)

where P,(z) = Iz* — Az + % , all the above proof is valid and we get
J=Ahi+J2 )

Ji =exp( f’) > 4k)'Au(R) / Pm)edz,  (30)
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7\ & 1 il "
J2 = exp ( 47)2( T 2),A.k+,(3) l Py 3 (z)e Ml dz.  (31)

k=0

The convergent series that approximate integrals

+co
I(m,g)= [ e 4z (32)

-00

can be obtained in the similar way. The result is

I(m,g) = lim J(m,g, R), (33)

Iom0, 1) = 3 matt () dumm), (o0
+00 .

An(m, R) = 1 ;"ﬂ exp(~ ’_zm)sanrdr’ 35)
1Y e

#(m,p) = 5 / e dr., (36)

In this case, the parameter of power expansion is g-n and the absolutely
convergent series for J(m, g, R) can be dmded mt.o m convergent series with
the following powers of g : gw™™, g&¥" . 55+ glin (n=0,1,...).

4. Now we generalize the suggested method for t,he multiple integral

I(g) = / e elP-9P(e) gz (37)
RN

Here, P(z) is a nonnegative homogtmeous polynomial of the fourth power
(P(z) 2 0, Yz € RM). Let Q(z) = Pi(z). Q(z) is a homogeneous function
of the first order.

Then

400
) = [ Gp)er R dpde (38)

-0

where ((p) is defined by the formula (5).
The integral (37) satisfies the requirements of the Fubini theorem.



Hence,

+R
I(g) = };1_120 / é(p) (a/ e—llrll’eig*pQ(z) d:l:) dp. (39)
-R N
Consider the integral
+R .
Je.R) = [ #(p) (h/ P it oate d=) dp (40)
-R N

Expanding the function exp (iy} pQ(z)) into the series and changing the
order of the summation and the integration we obtain

(-]

He.R)=Y 2gtAa(R) [ @) aa, (@)
RN

n=0 """

where A,(R) is given by equation (24).
Similarly to one-dimensional case, the series (41) can be divided into the
sum of two convergent series

J=J1+J27

h = io: i 4k)'g"A4k(R) / P"(:)e""’"zdz (42)

k3 (gl
=S¢ > @ + Ty ViAsa(R) R[v PrHi(g)e ety (43)

The generalization to polynomials of the 2m power is obvious. In that
case, we have

Tm,g,R) = iggm"(m,m [awera,

where Q(z) = Pa%(z) and A,(m, R) is given by equation (35).

All these results are valid for the functional integrals in Euclidean quan-
tum field theory if the exponent in Caussian measure is defined by means of
a nuclear operator. In that case, the above proof can be generalized directly

[.



5. Now let us discuss in more detail the main points where the suggested
approach differs from the standard one.

In the standard or common perturbation theory any quantum field func-
tion (written as a functional integral) is represented by a power series in
coupling constant g. The series is divergent and can be considered as an
asymptotic expansion valid in the region of sufficiently small values of ¢
only. A sum of finite number of terms gives an approximation to the func-
tion. But, for g fixed, irrespective of the number of terms in the sum, the
accuracy of approximation can not be made arbitrary.

The essence of the method suggested in this paper is in the following.
First, the initial functional integral I(g) is approximated by some other
functional integral J(g, R) that depends on an auxiliary parameter R. An
arbitrary accuracy of the approximation can be achieved by the appropriate
choice of the auxiliary parameter. Then, in some special way, the integral
J(g, R) is expanded into absolutely convergent series. Now, to calculate
the initial integral I(g) with an arbitrary accuracy for every value of g it is
possible to take proper but finite number of terms in this series.

In the common approach, there are nonperturbative terms that can not
be calculated in the framework of standard perturbation theory in any way.
In the suggested approach, due to an arbitrary accuracy of calculation there
are no incalculable terms.

The convergent series of new perturbation theory have an unusual prop-
erty. Besides the terms with integer powers of the coupling constant g,
there are terms with fractional powers of g¢. Although, for some first or-
ders of perturbation theory, the coefficients at these "shadowy” terms are
relatively small, their contribution becomes significant for large orders.

We are grateful to D.I.Kazakov, V.A.Rubakev, D.V.Shirkov and O.G.
Smolianov for useful discussions and to S.0.Krivonos for the help in numer-
ical calculations.

Research is supported in part by Russian Fund for Fundamental Re-
searches.
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Abstract

Different approaches to the fermion mass problem are reviewed. We il-
lustrate these approaches by summarizing recent developments in models of
quark and lepton mass matrices. Dynamical calculations of the top quark
mass are discussed, based on (a) infrared quasi-fixed points of the renormal-
isation group equations, and (b) the multiple point criticality principle in
the pure Standard Model. We also consider Yukawa unification and mass
matrix texture. Models with approximately conserved gauged chiral flavour
charges beyond the Standard Model are shown to naturally give a fermion
mass hierarchy.

1 Introduction

The explanation of the fermion mass and mixing hierarchies and the three gen-
eration structure of the Standard Model (SM) constitutes the most important
unresolved problem in particle physics. We shall discuss recent developments in
three of the approaches to this problem:

1. The dynamical determination of the top quark mass.
2. Mass matrix ansitze and texture zeroes.

3. Chiral flavour symmetries and the fermion mass hierarchy..

Neutrino masses, if non-zero, have a different origin to those of the quarks and
charged leptons; we do not have time here to discuss recent applications of the so-

called see-saw mechanism, which seems the most natural way to generate neutrino
masses.
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2 Dynamical Top Quark Mass

There is presently a lively interest [1, 2, 3, 4] in determining the top quark mass m,
(or more generally third generation masses) dynamically. Most of the discussed
models lead to the top quark running Yukawa coupling coastant g.(s:) being
attracted to its infra-red quasi-fixed point value. We have very recently pointed
out [4] that the top quark (and Higgs) mass can be calculated within the pure
SM, assuming the multiple point criticality principle. We now discuss these two
possibilities.

2.1 Top Mass as a Renormalisation Group Fixed Point

The idea that some of the properties of the quark-lepton mass spectrum might
be determined dynamically as infrared fixed point values of the renormalisation
group equations (RGE) is quite old [5, 6, 7). In practice one finds an effective
infrared stable quasifixed point behaviour for the SM quark running Yukawa
coupling constant RGE at the scale 4 ~ m,, where the QCD gauge coupling
constant gs(p) is slowly varying. The quasifixed point prediction of the top
quark mass is based on two assumptions: (a) the perturbative SM is valid up to
some high (e.g. GUT or Planck) energy scale My ~ 10'S — 10'® GeV, and (b)
the top Yukawa coupling constant is large at the high scale g;,(Mx) Z 1. The
nonlinearity of the RGE then strongly focuses g;(y) at the electroweak scale to
its quasifixed point value. We note that while there is a rapid convergence to the
top Yukawa coupling fixed point value from above, the approach from below is
much more gradual. The RGE for the Higgs self-coupling A{p) similarly focuses
A(p) towards a quasifixed point value, leading to the SM fixed point predictions
[7] for the running top quark and Higgs masses:

me ~ 225 GeV  my ~ 250 GeV (1)

Unfortunately these predictions are inconsistent with the CDF and DO results
[8], which require a running top mass m; ~ 170+ 12 GeV.

However the fixed point top Yukawa coupling is reduced by 15% in the Mini-
mal Supersymmetric Standard model (MSSM), with supersymmetry breaking at
the electroweak scale or TeV scale, due to the contribution of the supersymmetric
partners to the RGE. Also the top quark couples to just one of the two Higgs
doublets in the MSSM, which has a VEV of v, = (174 Gev)sin 3, leading to the
MSSM fixed point prediction for the running top quark mass {9]:

my(m,) ~ (190 Gev)sin 3 (2)
which is remarkably close to the CDF and DO results for tan 3 > 1.
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For large tan f it is passible to have 2 bottom quark Yukawa coupling satis-
fying gy(Mx) 2 1 which then approaches an infrared quasifixed point and is no
longer negligible i the RGE for g(u). Indeed with tan 8 ~ m,(m,)/my(m;) ~ 60
we can trade the mystery of the top to bottom quark mass ratio for that of a
hierarchy of vacuum expectation values, va/vy = my(m,)/mi(m,), and have all
the third generation Yukawa coupling constants large:

9(Mx)21 g(Mx)21 g.(Mx)21 (3)

Then m;, m, and R = my/m, all approach infrared quasifixed point values com-
patible with experiment [10]. This large tan 8 scenario is consistent with the idea
of Yukawa unification [11]:

9:(Mx) = g)(Mx) = g,(Mx) = g (4)

as oceurs in the SO(10) SUSY-GUT model with the two MSSM Higgs doublets in
2 single 10 irreducible representation and gz 2 1 ensures fixed point behaviour.
However it should be noted that the equality in Eq. (4) is not necessary, since
the weaker assumption of large third generation Yukawa couplings, Eq. (3), is
sufficient for the fixed point dynamics to predict [10] the running messes m, =~
180 GeV, m; ~ 4.1 GeV and m, ~ 1.8 GeV in the large tan 3 scenario. Also the
lightest Higgs particle mass is predicted to be myo ~ 120 GeV (for a top squark
mass of order 1 TeV).

The origin of the large value of tanf is of course a puzzle, which must be
solved before the large tan§ scenario can be said to explain the large m,/m,
ratio. It is possible to introduce approximate symmetries [12, 13] of the Higgs
potential which ensure 2 hierarchy of vacuum expectation values - a Peccei-Quinn
symmetry and a continuous R symmetry have been used. However these symme-
tries are inconsistent with the popular scenario of universal soft SUSY breaking
mass parameters at the unification scale and radiative electroweak syminetry
breaking [14]. Also, in the large tan g scenario, SUSY radiative corrections to
my are generically large: the bottom gquark mass gets 2 contribution propor-
tional to v, from some one-loop diagrams with internal superpartners, such as
top squark-charged Higgsino exchange , whereas its tree level mass is proportional
to v; = v;/ tan B. Consequently these loop diagrams give a fractional correction
bmy /my to the bottom quark mass proportional to tan § and generically of order
unity [13, 14]. The presence of the above-menticned Peccei-Quinn and R sym-
metries and the associated hierarchical SUSY spectrum (with the squarks much
heavier than the gauginos and Higgsinos) would pratect m, from large radiative
corrections, by providing a suppression factor in the locp diagrams and giving
émy/my < 1. However, in the absence of experimental information on the super-
partner spectrum, the predictions of the third generation quark-lepton masses in
the large tan f scenario must, unfortunately, be considered unreliable.
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2.2 Criticality and the Standard Model

Here we consider the idea [15] that Nature should choose coupling constant val-
ues such that several “phases” can coexist, in a very similar way to the stable
coexistence of ice, water and vapour (in a thermos flask for example) in a mix-
ture with fixed energy and number of molecules. The application of this so-
called multiple point criticality principle to the determination of the top quark
Yukawa coupling constant requires the SM (renormalisation group improved) ef-
fective Higgs potential to have coexisting vacua, which means degenerate minimas:
Veps(@min1) = Vegs(Smin 2)- The important point for us, in the analogy of the
ice, water and vapour system, is that the choice of the fixed extensive variables,
such as energy, the number of moles and the volume, can very easily be such
that a mixture must occur. In that case then the temperature and pressure {i. e.
the intensive quantities) take very specific values, namely the values at the triple
point, without any finetuning. We stress that this phenomenon of thus getting
specific intensive quantitities is only likely to happen for stongly first order phase
transitions, for which the interval of values for the extensive variables that can
only be realised as an inhomogeneous mixture of phases is rather large.

In the SM, the top quark Yukawa coupling and the Higgs self coupling cor-
respond to intensive guantities like temperature and pressure. If these couplings
are to be determined by the eriticality condition, the two phases corresponding
to the two effective Higgs field potential minima should have some “extensive
quantity”, such as [ d*z|¢(z)}?, deviating “strongly” from phase to phase. If, as
we shall assume, Planck units reflect the fundamental physics it would be natu-
ral to interpret this strongly first order transition requirement to mean that, in

d=zlel=)1
=

Planck units, the extensive variable densities = < |¢f* > for the two

vacua should differ by a quantity of order unity. Phenomenologically we know
that for the vacuum 1 in which we live, < ¢ >yocuum 1= 246 GeV and thus we
should really expect < ¢ >yacuum 2 in the other phase just to be of Planck order
of magnitude. In vacuum 2 the ¢* term will a priori strongly dominate the ¢?
term. So we basically get the degeneracy to mean that, at the vacuum 2 mini-
mum, the effective coefficient A(¢,acuum 2) Must be zero with high accuracy. At
the same ¢-value the derivative of the renormalisation group improved effective
potential V,;;(¢) should be zero because it has a minimum there. Thus at the
second minimum the beta-function () vanishes as well as A(4).

We use the renormalisation group to relate the couplings at the scale of vac-
num 2, i.e. at § = Pyocuum 2, t0 their values at the scale of the masses themselves,
or ronghly at the electroweak scale g & Guacuum 1. Figure 1 shows the running
A(¢) as a function of log(¢) computed for two values of doacuum 2 (where we im-
pose the conditions 8, = A = 0) near the Planck scale Mpigncr = 2 X 107° GeV.
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Figure 1: Plot of A as a function of the scale of the Higgs field ¢ for degenerate
vacua with the second Higgs VEV at the scale (2) bvacyum 2 = 102° GeV and (b)
Puacuum 2 = 10'° GeV. We formally apply the second order SM renormalisation
group equations up to a scale of 102 GeV.

Combining the uncertainty from the Planck scale only being known in order of
magnitude and the agep(Mz) = 0.11740.006 uncertainty with the calculational
uncertainty , we get our predicted combination of top and Higgs pole masses:

M;=1734+4GeV Mg =135+9 GeV. (5)

3 Ansitze and Mass Matrix Texture
The best known ansatz for the quark mass matrices is due to Fritzsch [16]:
0 C o 0 C 0
My={C o B MD=‘(C' 6 B (6)
0 B 4 0 B 4

Wwhere it is necessary to assume: |4| > |B] > ICl, 14| > |B'] > |C’| in order
to obtain 2 good fermion mass hierarchy. However, in addition to predicting
> generalised version of the relation @ = , /24 for the Cabibbo angle, which
originally motivated the ansatz, it predicts the relationship:

IVdIzI /ﬁ_e-ioz [T
my m,

16

(7)



which cannot be satisfied with a top quark mass m, > 100 GeV {17]. Consistency
with experiment can be restored by, for example, introducing a non-zero 22 mass
matrix element [18]. In fact a systematic analysis [19] of symmetric quark mass
matrices with 5 or 6 “texture” zeros at the SUSY-GUT scale has been made,
yielding 5 ansitze consistent with experiment. Recently ansitze incorporating
the Georgi-Jarlskog [20] SUSY-GUT mass relations between leptons and quarks,
my(Mx) = m.(Mx), m,(Mx) = m,(Mx)/3 and my(Mx) = 3m.(Mx), have
been studied. In particular a systematic analysis of fermion mass matrices in
S0O(10) SUSY-GUT models [12, 21} has been made in terms of 4 effective oper-
ators. A scan of millions of operators leads to just 9 solutions consistent with
experiment of the form:

0 HHC 0 0 C 0 6 C 0
Y, = (g,lc 0 x(,B) Y;= (C Eé® :{,B) Y= (C 3E€? z;B)
6 =zB A 0 z4B A 0 B A &)
For each of the 9 models the Clebschs z; and =} have fixed values and the Yukawa
coupling matrices Y; depend on 6 free parameters: A, B, C, E, ¢ and tan 5. Each
solution has Yukawa unification and gives 8 predictions consistent with the data.

4 Chiral Flavour Symmetry and the Mass Hierarchy

It is natural [5] to interpret the fermion mass hierarchy in terms of partially
conserved chiral quantum numbers beyond those of the SM gauge group. Mass
matrix elements are then suppressed by powers of a symmetry breaking param-
eter, which may be thought of as the ratio of the new chiral symmetry breaking
scale to the fundamental scale of the theory. The degree of forbiddenness of a
mass matrix element is then determined by the quantum number difference be-
tween the left- and right-handed SM Weyl states under consideration and the
assumed superheavy fermion spectrum. For example the four effective operators
in the ansatz of Eq. (8) can each be associated with a unique tree diagram, by
assigning an approximately conserved global U(1); flavour charge appropriately
to the quarks, leptons and the superheavy states, which are presumed to belong
to vector-like SO(10) 16 + 16 representations. The required parameter hierarchy
A > B, E » C is naturally obtained in this way and, in particular, the tex-
ture zeros reflect the assumed absence of superheavy fermion states which could
mediate the transition between the corresponding Weyl states.

We now turn to models in which the chiral flavour charges are part of the
extended gauge group. The values of the chiral charges are then strongly con-
strained by the anomaly conditions for the gauge theory. It will also be assumed
that any superheavy state needed to mediate a symmetry breaking transition ex-
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ists, 5o that the results are insensitive to the details of the superheavy spectrum.
The aim in these models is to reproduce all quark-lepton masses and ixing
angles within a factor of 2 or 3.

Ibanez and Ross [22] have constructed an anomaly free MSSM x U(1),
model. The U(1), charges assigned to the quarks and leptons generate Yukawa
matrices of the following form:

é & & & e a e 20
Y.,:(e3 € e) Yd:(e"” E) Y,z(?" € 0) 9)

e e 1 & 1 0 01

LIL

which are symmetric up to factors of order unity. The correct order of mag-
nitude for all the masses and mixing angles are obtained by fitting ¢, € and
tanf. This is a large tan 8 ~ m,/m, model, but not necessarily having exact
Yukawa unification. The U/(1); symmetry is spontaneously broken by two Higes
singlets, ¢ and 6, having U(1); charges +1 and —1 respectively and equal vac-
uum expectation values. The U(1);U(1)y gauge anomaly vanishes. The UQ1)3
anomaly and the mixed U(1); gravitational anomaly are cancelled against un-
specified spectator particles neutral under the SM group. However cancellation
of the mixed SU(3)?U(1);, SU(2)*U(L); and U(1)3U(1); anomalies is only pos-
sible in the context of superstring theories via the Green-Schwarz mechanism {23]
with sin? 6 = 3/8. Consequently the U( 1); symmetry is spontaneously broken
slightly below the string scale.

A number of generalisations of this model has been considered during the last
year. By using non-symmetric mass matrices an anomaly free model has been
constructed [24] without the need for the Green-Schwarz mechanism. Models
have 2lso been considered [24, 25], in which the U (1); symmetry is broken by
just one chiral singlet field § having a U(1); charge, say, —1. It then follows, from
the holomorphicity of the superpotential, that only positive U/ (1); charge differ-
ences between left and right handed Weyl states can be balanced by & tadpoles.
Consequently mass matrix elements corresponding to negative U(1); charge dif-
ferences have texture zeros {26]. Furthermore if the two Higgs doublet fields carry
U(1); charges that do not add up to zero, the pH A, term is forbidden in the
superpotential [27]. Finally we remark that in effective superstring theories the
role of the U(1); symmetry can be played by modular symmetry [2], with the
U(1); charges replaced by the modular weights of the fermion fields.
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Abstract

The decay matrix elements of exclusive weak decays of heavy mesons
are studied in the framework of the relativistic yuark model based on the
quasipotential approach in quantum field theory. It is shown that the heavy
quark 1/mg expansion considerably simplifies the analysis both for heavy-
to-heavy and heavy-to-light decays. The comparison is made with the model-
independent predictions of heavy quark effective theory and available exper-
imental data.

1 INTRODUCTION

The investigation of weak decays of mesons is important for the determination
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and testing quark
dynamics in a meson. Recently a significant progress has been achieved in the the-
oretical understanding of weak decays of mesons and baryons with heavy quarks.
It has been found that in the limit of infinitely heavy quarks new spin-flavour
symmetries in the heavy-to-heavy weak transitions arise (1], which considerably
simplify their description. All weak decay form factors become related to a single
universal form factor ~ Isgur-Wise function [1]. This allows to get some model-
independent predictions and establish relations between different decay processes.
However, the corrections in inverse powers of the heavy quark mass mg can be
substantial. The heavy quark effective theory (HQET) {2] provides a framework
for systematic 1/mq expansion of weak decay amplitudes. The number of in-
dependent form factors at each order of heavy quark expansion is considerably

"Supported in part by the Russian Foundation for Fundamental Research under Grant No.94-
02-03300-a
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reduced due to heavy quark symmetry and QCD. These form factors originate
from the infrared region and thus cannot be calculated without model assump-
tions.

The methods of HQET are less powerful in the case of heavy-to-light decays,
because there is no heavy quark in the final state. Only the relations between
different decays can be established in the heavy quark limit [2]. However, the
ideas of heavy quark expansion can be applied here too. It is easy to see that the
final light meson has a large recoil momentum compared to its mass almost in
the whole kinematical range. At the point of maximum recoil of the final meson
it bears the large relativistic recoil momentum |Ap,y| of order mg/2 and the
energy of the same order. Thus at this kinematical point it is possible to expand
the matrix element of the weak current both in inverse powers of heavy quark
mass of the initial meson and in inverse powers of the recoil momentum A . of
the final light meson. As a result the expansion in powers 1/mg arises.

In this talk we present the heavy quark expansion for heavy-to-heavy and
heavy-to-light decays in the framework of relativistic quark model and compare
the results with model-independent predictions of HQET. Our relativistic quark
model is based on the quasipotential approach in quantum field theory with the
specific choice of the ¢7 potential. It provides a scheme for calculation of meson
properties with the consistent account of relativistic effects.

2 RELATIVISTIC QUARK MODEL

In the quasipotential approach a meson is described by the wave function of the
bound quark-antiquark state, which satisfies the quasipotential equation [3] of
the Schrodinger type [4]

2 2 &

where the relativistic reduced mass is

MY —(m2—md)?
BR = ——mz—‘b—~ {2)
[M? — (mq + mp)2)[M? — (m, — )]

aM? ; (3)

b*(M)

M, are the quark masses; M is the meson mass; p is the relative momentum
of quarks. While constructing the kernel of this equation V(p,q; M) — the
quasipotential of quark-antiquark interaction — we have assumed that effective
interaction is the sum of the one-gluon exchange term with the mixture of long-
range vector and scalar linear confining potentials. We have also assumed that
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at large distances the vector long-range potential contains the Paulj interaction.
The quasipotential is defined by [5]:

VpaM) = wp)i(-p){5esDu v
+ Voone (R)T4T 0 + V5ne(K) bua()us(—g), (4)

where as is the QCD coupling constant, Dy, is the gluon propagator; Y. and
u(p) are the Dirac matrices and spinors; k = p — q; the effective long-range vector
vertex is i '

Fu(k) =7+ Py
& is the Pauli interaction constant. Vector and scalar confining potentials in the
nonrelativistic limit reduce to

Vent(r) = (1=-¢)(Ar+B),
Vant(r) = &(Ar+ B), (6)

ouk’, (5)

reproducing V.20 (r) = V5 .+ VY ¢ = Ar+ B, where ¢ is the mixing coefficient.
The explicit expression for the quasipotential with the account of the relativistic
corrections of order v?/c? can be found in ref.[5]. All the parameters of our
model: quark masses, parameters of linear confining potential 4 and B, mixing
coefficient ¢ and anomalous chromomagnetic quark moment x were fixed from the
analysis of meson masses [5] and radiative decays [6]. Quark masses: m; = 4.88
GeV; m. = 1.55 GeV; m, = 0.50 GeV; myg = 0.33 GeV and parameters of
linear potential: A = 0.18 GeV% B = —0.30 GeV have standard values for
quark models. The value of the mixing coefficient of vector and scalar confining
potentials £ = —1 has been chosen from the consideration of meson radiative
decays [6] and of the heavy quark expansion [8] {see below), which are very
sensitive to the Lorentz-structure of the confining potential: the resulting leading
relativistic corrections coming from vector and scalar potentials have opposite
signs for the radiative Ml-decays [6]. The universal Pauli interaction constant
& = —1 has been fixed from the analysis of the fine splitting of heavy quarkonia
3Py~ states [3].

The matrix element of the local current J between bound states in the
quasipotential method has the form [7]

" dPpdiq -
M1 ©OM) = [ b B (p, (0, ™
where M(M’) is the initial (final) meson, T'.(p,q) is the two-particle vertex

function and Wps pqr are the meson wave functions projected onto the positive
energy states of quarks.
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Figure 1: (a) Lowest order vertex function Pf,l). (b} Vertex function I‘f:‘,) with ac-

count of the quark interaction. Dashed line corresponds to the effective potential
{4). The bold line denotes the negative-energy part of the quark propagator.

This relation is valid for the general structure of the current J = Q'G,Q,
where G, can be an arbitrary combination of Dirac matrices. The contribu-
tions to I come from Figs. 1(a) and 1(b). Note that the contribution I'?} is
the consequence of the projection onto the positive-energy states. The form of
the relativistic corrections resulting from the vertex function '} is explicitly
dependent on the Lorentz-structure of gg-interaction.

The general structure of the current matrix element (7) is rather complicat-
ed, because it is necessary to integrate both with respect to d®p and d3¢. The
§-function in the expression for the vertex function I'(!) permits to perform one
of these integrations. As a result the contribution of I'!} to the current matrix
element has usnal structure and can be calculated without any expansion, if the
wave functions of initial and final meson are known. The situation with the
contribution I'® is different. Here instead of §-function we have a complicated
structure, containing the potential of gg-interaction in meson. Thus in general
case we cannot perform one of the integrations in the contribution of I'2) to the
matrix element (7). Therefore, it is necessary to use some additional consider-
ations. The main idea is to expand the vertex function I'?) in such a way that
it will be possible to use the quasipotential equation (1) in order to perform one
of the integrations in the current matrix element (7). The realization of such
expansion differs for the cases of heavy-to-heavy and heavy-to-light transitions.
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3 HEAVY-TO-HEAVY DECAYS

3.1 Decay matrix elements

In the case of the heavy-to-heavy meson decays we have two natural expansion
parameters, which are the heavy quark masses in the initial and final meson.
The most convenient point for the expansion of vertex function I'? in inverse
powers of the heavy quark masses for semileptonic decays is the point of zero
recoil of the final meson, where A = 0 (A = par — pasr). 1t is easy to see that
% contributes to the current matrix element at first order of 1/mg expansion.
We limit our analysis to the consideration of the terms up to the second order.
After the expansion we perform the integrations in the contribution of I'®) to the
decay matrix element. As a result we get the expression for the current matrix
element, which contains the ordinary mean values between meson wave functions
and can be easily calculated numerically.

3.2 Comparison with heavy quark effective theory

The leading approximation of HQET is the infinitely heavy quark Lmit. As
mqQ —+ oo, the properties of hadron become independent of the heavy quark
fiavour and spin. The arising spin-flavour sym metry relates all the hadronic form
factors to a single Isgur-Wise function [1]. In our model the heavy symmetry
relations [1, 2] are exactly satisfied [8]. We get for the Isgur-Wise function the
expression after approximating the wave functions by Gaussians

R O L= N

wsv-v'=ﬁMb+M§4'_q2

2Mpy Mg
with the slope parameter p? ~ 1.02, which is in accordance with recent CLEO II
measurement [9] p? = 1.01 £ 0.15 + 0.09.

At first order of 1/mg expansion only four additional independent form factors
arise [2]. One of these su bleading form factors & (w) emerge from the corrections
to the current and three functions xi{w) (i = 1,2,3) - from the corrections to
the effective Lagrangian in HQET [2]. For determination of these four functions
we get 28 equations. We find that this structure of first order corrections can be
reproduced in our model [§] only if we set long-range Pauli interaction constant
& = —1, which coincides with the value obtained from meson mass spectra [5].
For subleading form factors we find [8]:

2w—1

&) = (h-mp) (1432 gu),
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xi(w) = Aw—-i-lf(w)'
Xalw) =~ =t(w),
xs(w) = ehaie(w), Q

where the HQET parameter A = M — mg in our model is equal to the mean
value of light quark energy in heavy meson A=< gy >~ 0.54 GeV.

The structure of the second order power corrections predicted by HQET at
the point of zero recoil of the final meson [2] can be reproduced in our model
if the mixing parameter of vector and scalar confining potentials ¢ = —1 [8].
Therefore we get QCD and heavy quark symmetry motivation for the choice
of the main parameters of our potential model. The found values of ¢ and &
imply that confining quark-antiquark potential has predominantly Lorentz-vector
structure, while the scalar potential is anticonfining and helps to reproduce the
initial nonrelativistic potential.

Our model predicts that the second order 1/mg corrections to the decay rate
B — Dr*ev, which is protected from the first order 1/mg corrections by Luke’s
theorem (2], are small [8]

51/,,% = —(2.0+0.5)%.
Then for the hadronic form facter of this decay at zero recoil, we obtain
F()=na{l+ Jl/mz) =0.9440.03,

where 74 = 0.965 £ 0.020 accounts for the short distance corrections [2]. Com-
paring this prediction with the experimental determination [9] of the product
F(1){V.al, we get for the CKM matrix element

[Vl = (38.2+£1.94+ 1.5) x 1073, (10)

where the first erroris experimental and the second is theoretical one. This result
agrees with the |V;;| value obtained from the comparison of our mode! predictions
for exclusive B — D{D")ev decay rates with experimental data [10].

4 HEAVY-TO-LIGHT DECAYS

4.1 Decay matrix elements

In the case of heavy-to-light decays the firal meson contains only light quarks
(u, d, s), thus, in contrast to the heavy-to-heavy transitions, we cannot expand
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matrix elements in inverse powers of the final quark mass. The expansion of
T'®) only in inverse powers of the initial heavy quark mass at A = 0 does not
solve the problem. However, as it was already mentioned in the introduction, the
final light meson has the large recoil momentum almost in the whole kinematical
range. At the point of maximum recoil of final light meson the large value of recoil
momentum Amax ~ mg/2 allows for the expansion of decay matrix element in
1/mg. The contributions to this expansion come both from the inverse powers
of heavy mq from initial meson and from inverse powers of the recoil momentum
|Amax| of the final light meson. We carry out this expansion up to the second
order and perform one of the integrations in the current matrix element (7) using
the quasipotential equation as in the case of heavy final meson. As a result we
again get the expression for the current matrix element, which contains only the
ordinary mean values betweer meson wave functions, but in this case at the point
of maximum recoil of final light meson.

4.2 Rare radiative decays of B mesons

Rare radiative decays of B mesons are induced by flavour changing nreutral cur-
rents. These decays are described by one-loop {penguin) diagrams with the main
contribution from virtual top quark and W boson. The momentum transfer is
fixed at the maximum value for the processes with the emission of real photon,
such as B — K*y. The hadronic matrix element (see e.g. [12]) in this case
is parameterized by one form factor Fi(¢® = 0). We have performed the 1/my
expansion for this form factor up to the second order [11]. Here we present only
the numerical results. Our values of rare radiative form factors are presented in
Table 1 in comparison with recent calculations within the light-cone QCD sum
rule {12] and hybrid sum rule [13] approaches. There is an overall agreement
between the predictions within errors.

Table 1: Rare radiative decay form factors F; (0)

Decay our results [12] [13]
B> K*y 0.32+0.03 0.32+0.05 0.308 4+ 0.039
B — py 0.26 1+ 0.03 0.24+0.04 0.27 £+ 0.034
B; = ¢y 0.27£0.03 0.29 £+ 0.05

B, = K*y 0.23 £ 0.02 0.20 £+ 0.04

Our value of form factor FlB K7 yields for the ratio of exclusive to inclusive
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decay rates
I{B— Ky) _

T(B— Xs7)
Combining this result with the QCD-improved inclusive radiative branching ratio
B(B — X,v) = (30£1.2) X 1074 [12], we find

R(B— K™y)= (154 3)%. (11)

B™B — K™y) = (4.5 1.5) x 107°. (12)
This branching ratio agrees well with experimental measurement by CLEO [14)

B*P(B — K=y) = (4.5 1.5+ 0.9) x 107°.

4.3 Semileptonic heavy-to-light decays of B mesons

The heavy quark 1/mj expansion for the form factors of semileptonic decays
B — m(p)ev has been carried out up to the second order at the point of maximum
recoil of the firal light meson in [15]. The calculated values of form factors,
defined in the usual way [16], are presented in Table 2. There we compare our
results for the form factors of B — m(p)ev decays with the predictions of quark
models [16, 17], QCD sum rules [18, 19, 12] and lattice calculations (20, 21]. We
find an agreement, between our value of f£(0) and QCD sam rule and lattice
predictions. Our B — per form factors agree with lattice and QCD sum rule
ones [12], while they are approximately 1.5 times less than QCD sum rule results
of refs. [18, 19].

Table 2: Semileptonic B — = and B — p decay form factors at ¢% = 0.

Ref. fB-m(0) AF7P(0) A7 (0) vB-e(g)
our (18] 0.20 £ 0.02 0.26£0.03 0.31 % 0.03 0.29 + 0.03
[16] 0.33 0.28 0.28 0.33

[17) 0.09 0.05 0.02 0.27

[18) 0.26 + 0.02 05401  04£02 0.6+0.2
[19] 0.23 + 0.02 0.38+0.04 0.45+0.05 0.45 & 0.05
[12] 0.24 4 0.04 0.28 + 0.06
[20] 0.35 £ 0.08 0.24+0.12 0.27+0.80 0.53 4 0.31

[21] 0.30+0.14+0.05 0.22+0.05 0.49+021+£0.05 0.37+0.11

To calculate the B — (p) semileptonic decay rates it is necessary to deter-
mine the g2-dependence of the form factors. Analysing the A2, dependence of
the form factors, we find [15] that the ¢*-dependence of these form factors near
¢% = 0 could be given by
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M, -
fold) = %&(m)f+(A:.ax). (13)

(@) = 2L L0 4 i) A (ak),

M(e”) = JERE (AR, (149

Vi) = g EErbuv(al.. (15)

We have introduced the function [15]

e 2 Alw—1

&w) = 211 (_nﬁw_ﬁ) ’ (16)
which reduces to the Isgur-Wise function (8) in the limit of infinitely heavy quarks
in the initial and final mesons.

It is important to note that the form factor A, in (14) has a different ¢2-
dependence than the other form factors (13), (14), (15). In the quark models it is
usually assumed the pole [16] or exponential (17) g%-behaviour for ail form factors,
However, the recent QCD sum rule analysis indicates that the form factor A; has
g*>-dependence different from other form factors {18, 19, 12).

We have calculated the decay rates of B — m{p)er using our form factor
values at ¢° = 0 and the g2-dependence (13)~(15) in the whole kinematical re-
gion. The results are presented in Table 3 in comparison with the quark model
(16, 17], QCD sum rule [18, 19] and lattice [20] predictions. The predictions for
the rates with longitudinally and transversely polarized p meson differ consid-
erably in these approaches. This is mainly due to different g%-behaviour of A;.
Thus the measurement of the ratios I'(B — pev) /T{B — mev) and Tr/T't may
discriminate between these approaches.

Recently CLEO reported {22] about the experimental measurement of B
semileptonic decays to 7 and p:

B(B° 5 x7I*y) = (1.3440.35+0.28) x 1074,

B(B® = p7I*y) = (2.2840.36+0.5972%) x 1074,
[(B° — p~ity)
['(B® - n-Itv)

I

1703580 £ 0.5813:%9.

We see that the experimental ratio of the ¢ and 7 rates supports the models
with a specific ¢>-behaviour of A, form factor. For the CKM matrix element 7
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Table 3: Semileptonic decay rates I'(B — mev}, (B — pev) (x|Vup|? x 10M%s71),
the ratio of the rates for longitudinally (L) and transversely (T') polarized p meson
and the ratio of p and 7 rates.

Ref. (B — mev) T(B—pev) Ti/Tr R
our [15] 3.0+0.6 54+1.2 0.5+£0.3 1.8+0.6
[16] 7.4 26 1.34 35

[17] 2.1 8.3 0.75 40

(18] 5.1+ 11 12+ 4 0.06+£0.02 24+09
[19] 3.6+0.6 51410 0131008 1402
[20] 844

we find in our model

Vs (54+0.9£0.5) x 107 (B = 7lv)
Vsl = (5:3735+£06)x 107> (B — plv)

where the first error is experimental and the second one is theoretical.

5 CONCLUSIONS

We have presented the method of calculating weak decay matrix elements in the
framework of relativistic quark model using heavy quark expansion. It has been
shown that in the case of heavy-to-heavy meson decays the obtained expansion
is in accordance with the model independent predictions of HQET. This allowed
to determine the Isgur-Wise function and the first and second order form factors.

In the case of heavy-to-light transitions the expansion in inverse powers of
the heavy quark mass from initial heavy meson has been carried out at the point
of maximum recoil of the final light mesen. The results of application of such
expansion for the calculations of the exclusive rare radiative decavs as well as
semileptonic decays B — w(p)ev have been discussed. A good agreement with
available experimental data has been found.
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The extended Nambu-Jona-Lasinio model with
separable interaction: low energy pion physics *
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Joint Institute for Nuclear Research, 141 980 Dubna, Moscow region, Russia

Abstract
A Lagrangian formulation of the Nambu-Jona-Lasinio model with
separable interaction is given. The electromagnetic interaction is in-
troduced in a non-minimal way to the nonlocal quark current. Var-
jous choices of the vertex form factors characterizing the composite
structure of mesons and baryon are investigated. We find that the
physical observables depend very weakly on form factor shapes.

1 INTRODUCTION

The main goal of this paper is to give a Lagrangian formulation of the
NJL-model with separable interaction for mesons. We check the Goldstone
theorem in this approach which means that a zero-mass pion appears in
the chiral limit. Here, we introduce the electromagnetic interactions by
means the time-ordering P-exponent in the nonlocal quark currents. This
reproduces automatically the Ward-Takahashi identities and electromagnet-
ic gauge invariance in each step of calculation. One of the principal goals of
this paper is to investigate the dependence of the physical properties on the
choice of the various form factors of the separable interaction. There are
two adjustable parameters, a range parameter A appearing in the separable
interaction and a constituent quark mass m,. As in the papers [1, 2], the
weak decay constant fr, the two-photon decay width Tpo_\y, as well as the
charge form factor Fy.(¢?) and the v*n® — 7 transition form factor Fz(g*)
are calculated. Here we consider both monopole and dipole, Gaussian, and
screened Coulomb: form factors.

*Supported in part by the RFFR, Russia under contract 94-02-03463-a
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2 THE NJL-MODEL WITH SEPARABLE
INTERACTION

The Lagrangian of the NJL-model with separable interaction are given in
[3]. The standard way of the bosonization of the NJL-model may be found
in many papers (see for instance {4, 5}). We give here the Lagrangians of
interaction describing octets of vector (axial), pseudoscalar (scalar) mesons.

(z) = gM/dyl /dy2f((y1 —y2)")8 (1 ) Gy )T M(z)q(y2)
(1)

The form factor f(y?) characterizes a region of a quark-antiquark interac-
tion. Here we would like to suggest to introduce the electromagnetic fields
to the interaction Lagrangian using the time-ordering P-exponent. In this
case the gauge invariant meson-quark vertex has the form

LS\?{‘(-”«') = yM/dyI/dy25( - y;—;;_y_z) f ((yl - yz)z) q(n) (2)

_m+w
2

z ¥2
Pexp {ieQ [ dz“A“(z)} TarM(z)Pexp {ieQ / dz“A“(z)} ()
n . T
where @ = diag(2/3, —1/3,—1/3). For neutral mesons one obtains

Lih(z) = g [dyr [duns (:c - 21;:—“) fltn-w)) )

“q(y1) P exp {ieQ / dZ“A"(Z)} TarMO(2)q(ys).

The T-product and the S-matrix is defined in a standard manner. The
hadron-quark coupling constants gp in Eq. (2) and (3) are defined from
the compositeness condition [3, 6]

3 MODEL PARAMETERS AND PION
DECAY CONSTANTS

We consider four kinds of widely used form factors: monopole, dipole, Gaus-
sian and screened Coulomb. All Feynman diagrams are calculated in the
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Euclidean region where the form factors decrease rapidly so that no ultravio-
let divergences arise. There are two adjustable parameters, A characterizing
the region of quark-antiquark interaction, and the constituent quark mass
m,. We shall define these parameters by fitting the experimental pion decay
constant f (f&P'= 132 MeV) and grvy (gexpt=0.276 GeV~1).

1. Pion-quark coupling constants. The pion-quark coupling constants
are defined from the compositeness condition [3].Neglecting the pion mass

one has . - ,
32\ 1 5 (3m?Z + 2u)
(41r2) B 40/duyf (—v) (m2+u)3 ()

9. Pion weak decay. The weak decay of the pion is defined by the
diagram of Fig.1. After simple we have

39x 7 1
o= 41r2mq-0/ duuf(=u) (m2 +u)?

3. Pion two-photon decay. The two-photon decay of the pion is defined
by the diagram of Fig.2. After similar transformations we have

7z 2 2 — __gf_ﬁ ﬁ f(kz)
Gl 41, ) = 2212 A? f % [m? — (k + p/2))im? — (k — p/2)7]

1 (5)

=k + (@ —w)/27

The two-photon decay coupling constant is obtained from Eq. (5) where
both photons are on the mass shell gry = Gryy(m?2,0,0) The numerical
results for the physical observables for the best fit are shown in Table 1. for
different choices of form factors.

4 Pion electromagnetic form factors.

1. The y°7° — v form factor. [n our model this form factor is expressed
as Fop(Q?) = €Grn(mi, —Q?,0). Results for monopole vertex are shown
in Fig.3 (for various form factors see in [3]). The numerical results for the
radius 1y are given in Table 2. Our results practically do not depend on
the choice of vertex form factors f(k*).

2. The pion charge form factor. The pion charge form factor is defined
by the diagrams of Fig.4. These diagrams are not gauge invariant separately
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Table 1. The best fit of the physical observables.

Form fx(MeV) Grovy(GeVY)
Factors | A(MeV) | my(MeV) | NJL SI EXP NJL SI | EXP [14]
monopole 400 267 132 0.251
dipole 1000 245 132 132 | 0.263 0.276
Gaussian 1000 237 132 0.261
Coulomb 450 250 132 0.262

Table 2. The radius of the 4*7® — v form factor.

Vertex Tay(fm)
Function | NJL SI | EXP [14]
monopole | 0.655

dipole 0.658
Gaussian | 0.654 | 0.65 4 0.03
Coulomb | 0.659
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Table 3. The electromagnetic radius of pion.

0

| Form NJL SI EXP [14]

2

Factor | <12 >&{<r2>°| total fm

monopole | 0.543 -0.012 {0.533

dipole 0.461 -0.005 | 0.456 | 0.430

Gaussian 0.409 -0.002

Coulomb 0.488 -0.006 | 0.482

Lut the sum of the diagrams are gauge invariant. The analytical expres-
Sion for the vertex function znd the form factor also the Ward-Takahashi
identity for our case are given in [3]. The numerical results for the radius
are presented in Table 3. One can see that our results are in good agree-
ment with the available experimental data and depend very weakly on the
choice of vertex form factors f (k?). The behavior of charge form factor for
monopole vertex is shown in Fig.5

5 SUMMARY

We have formulated the Nambu-Jona-Lasinio model with separable inter-
action using the Lagrangian with the compositeness condition and non-
minimal inclusion of the electromagnetic interaction. On one hand the
form factors in the hadron-quark vertices take into account the composite
structure of hadrons thereby being related to a quark-antiquark potential,
on the other hand, they make the Feynman integrals convergent. We have
calculated the pion weak decay constant, the two-photon decay width, as
well as the form factor of the y*7~ — +-transition, and the pion charge form
factor. The two adjustable parameters, the range parameter A appearing
in the separable interaction and the constituent quark mass my, have been
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fixed by fitting the experimental data for the pion decay constants. We
have considered the following form factors: monopole, dipole, Gaussian and
screened Coulomb, and found that the numerical results depend very little
on these shapes.
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Measurements of CP and T symmetry violation
parameters and tests of CPT invariance in the neutral
kaon system
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i Direct CP violation

1.1 Introduction

The observation in 1964 of the long lived neutral kaon decay to two charged pions [1] has
demonstrated the violation of CP symmetry in natural laws.

It is well known that CP violation can be incorporated in the standard model of
electroweak interactions with three families. A non trivial complex phase in the quark
mixing matrix can induce this tiny asymmetry between matter and anti-matter [Z].

However, this phase is a free parameter just like the masses of fermions, the origin
of which is not addressed by the Standard Model and remains one of the fundamental
questions of particle physics.

Tn addition, since its discovery, CP violation has only been observed in the neutral
laon system. Morsover, all observations are consistent with the superweak model of L.
Wolfenstein [3]. Indeed, no measurement is significantly inconsistent with the existence
of a single mixing parameter ¢xin the physical neutral kaon states Ky and Kg: Kps =
(Kzy+exKia)/vit [ex I, where K and K3 are CP even and odd eigenstates. The non
sero value of ex is induced by an asymmetry in the K° — KO and K® — K° transitions.
In such a model, the relative amplitudes gt = A(Kp = 7t ) /A(Ks = ata~) and
n% = A(Kp — 7°7°)/A(Ks — #°n?) are identical.

In contrast, direct CP violation in the K — 9 decays is naturally present in the
Standard Model and is described by the parameter € with [e'i = Im(aa/as), Where ag(2)
is the K© decay amplitude to the 2 state with isospin 0 (2). The relative ampiitudes
become [4] n*~ = e+ ¢ and P =e—2¢.

A majer experimental effort has been ade over the past 30 years and is being carried
on to search for direct CP violation.

1.2 Calculations and measurements of € /¢

In the Standard Model, direct CP violation s believed to originate from the contribution
of so-called ” penguin diagrams” in the K to 2 decay amplitude. Significant progress has
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recently been made in the calculation of € /e. This is reviewed in [5]. The precision on
the theoretical estimate of ¢ /e is limited by the uncertainty on the measurement of the
quark mixing matrix elements, the big cancellation between the strong and electroweak
penguin diagrams, the difficulty to compute hadronic matrix elements and, related to
these, the uncertainty in the QCD scale and the strange quark mass.

The two most recent predictions [5, 6] are consistent and give ¢ /¢ in the range of
a few 1074, negative values not being excluded. The two most precise measurements
are Re(e /c) = (23 £6.5) 10-4[7] and Re(e'/¢) = (7.4 £ 5.8) 10~%[8]. These results can
be seen as a success of the Standard Model. However, they are not in good agreement.
Above all, they do not establish the existence of direct CP violation. Several experiments
are in preparation, aiming at a precision of order 10~* on Re(e /¢) : E832 (KTEV) at
Fermilab [9], NA48 at CERN {10], and KLOE at Frascati [11].

1.3 Prospects
Nowadays, the favorite technique to measure Re(e' /) is to measure the double ratio R :

2

7 ,
=1-—6Re(e /e¢)

= D(Kp = 7%7%) x T(Ks + ntn~) "
AN

= T(Ks - mm°) x (K > nfn) =

Such a measurement is extremely delicate, and systematic uncertainties are minimised
by detecting concurrently the four decay modes Ky s —+ #%7°, 7+ n~. We will mention
here only one out of many difficult requirements common to all experiments.

The decay rates have to be compared in the rest frame of the kac... Consequently,
the absolute time, and hence energy scale has to be the same for charged and neutral
decays within better than a per mil accuracy. This precision is more difficult to achieve
in the neutral decay mode, and the electromagnetic energy has to be measured with
excellent resolution and linearity. E832 is building a pure Csl crystal array with more
than 3000 blocks. The expected resolution is ox/E =~ .006/E ® .7%/E"* & 1%/E? (E
in GeV). NA48 has chosen a quasi-homogeneous liquid krypton calorimeter with 13500
cells. The last prototype tested showed 0g/E = .04/E & 4% & 3.5%/E-S [12]. The
KLOE collaboration has tested a full size module of its fine sampling lead-scintillating
fibers calorimeter. A 5%/ES resolution has been achieved {13], and improvements are
expected for the final setup. All those results meet the design goals.

All other elements of the detectors must also have very good performances so that
backgrounds to Ky—n+n~ ,x%°® decays remain at the per mil level, and especially K.s
and K, — 32 decays.

E832 is expected to start taking data in 1996 while NA48 and KLOE should start in
1997.

We should not end this section without stressing that an experimental program at
Fermilab (KAMI) [14], scheduled after the KTEV run, aims at detecting the K, — #%
decays for which direct CP violation is expected to be important : the Standard Model
expectation of these decays is in the range 10-2-10~! [15]. The experimental expected
sensitivity is at the level of 10~!2 or below.
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2 T and CPT symmetries

2.1 The phase of ¢

it has been shown since 2 long time that, under CPT invariance, the phase of ¢ @, shounld
be very close to @sw,the so-called superweak phase defined by ®sw = arctan(2Am/AT),
where Am is the Kz-Kg mass difference and AT is the Ks-Ki width difference in the
appropriate units [4]. How close ?

A simple calculation shows that one can write : &, = ®sw + Imy1a/ V2|ell's, where
N2 = Y pson A*(K® = f)A(KT = f) and T's the Ks decay rate. To a sufficiently good
approximation, the summation can be restricted to the wlv and 3 final states [16]. For
the miv final state to contribute, the AS = AQ rule must be violated, and for the 37
final state, direct CP violation must be dominant in the Ks — 3w decays. The recent
results of the CPLEAR experiment at CERN (see section 2.3) lead to the expectation
&, = Gsw £ 4°.

.

2.2 @t~ and ©%

If CPT symmetry holds, the phase of ¢ is ¢ = x/2 + 8, — 8o, Where Ja(g) is the strong
mx phase shift in the isospin 2 (0) final state. Extrapolation of experimental results [17]
and theoretical calculations [18] lead to ¥ = 44° % 6°. It follows that the phases &+~
and ®% of 7"~ and n° should be very close : A® = &% _ ¢+~ ~ 3Im ¢ e < .05°, and
&t =&, - A®/3 = Bsw 4.

The experimental situation follows :

Experiment A®(°) | Reference

NA3L(CERN) | 229 T19]
E731(FNAL) | —-1.6+12| (20]

E773{ENAL) 6+1.0 [21]
Average -.3+038

The measurement of &+ is always strongly correlated with the value of the Ki-Ks
mass difference, and to a smaller extent with the value of the K lifetime. The same
is true for the superweak phase. A cousistent analysis of experimental data has been
published recently [22]. The result is :

o+ (43.75 + .60)°
Am (530.6 £ 1.3) 107 B/s
dsw = (43.44%.09)°

Both results on A® and &+~ support CPT symmetry. Since CPT phenomenoclogy
i addressed in another contribution to these proceedings, we only siress here thal these
two tests only concern two combinations of CPT perameters of the neutral K system,
namely direct CPT violation in the 27 decays for A® and a combination of direct CPT
violation and CPT violation in the mixing for .. The latter test reads 1 &, — Bsw =
8° + 4° + 2°(Am) =+ .3°(y12). If one neglects CPT violation in the decays, this can be
int.esz;ted as the equality between K and K° masses to a precision of about 4 10~
GeV/c*.
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2.3 Other tests

The CPLEAR, experiment at CERN measures time dependant. asymmetries of decay
rates of initially pure K° or K states. Depending on the observed final state, various
quantities are extracted. We list here the most significant results {23, 24] not previously
mentioned :

N(K® = KP) — N(K® -+ K9)
N(K? = KP) + N(K? = K°)
If CPT symmetry and AS = AQ rule bold, Ay = 4Rec. The result is compatible with
other measurements of ¢.

Ar = =(63+21+1.8) 1073

Re z
Im =z

(12.44+13.7) 1073
(4.8+4.4) 1073
(= A(K® - I-nt5)/A(K® - Itm~ v) measures the violation of the AS = AQ rule)

£ ]

Reqt® = (-4+18)1073

Impt? = (-16%21) 1073
(nt7° = [A(Ks = nta—2%)A" (Ky — o7~ n°) dQ/ [ |A(KL = xta~7°)|? dQ is the
CP violation parameter in the #t 7~ 7% decays)
N(K® — K% — N(K® -+ K?)
N{K° — K°) + N(K° — K°)
This measurement uses K.z decays to tag the strangeness of the decaying K.

The 5*-° parameter is also measured by the E621 experiment at FNAL [25] :

Re nt% = 0194+ .027 ; Tm g+~ = 019+ .061.
No evidence for CP violation in Kg decays is yet found.

Acpr = =(.28+2.124+1.80) 1073

3 Conclusion

In the past recent years, significant progress has been made in the K physics sector.
Although direct CP violation has not been established, the experimental accuracy is
outstanding. CPT symmetry is tested to a precision such that one might expect detecting
quantum gravity effects [26].

Very promising experimental programs are under way. At Fermilab and at CERN,
the already quoted projects KTEV, KAMI and NA48 will address direct CP violation
and rare K decays. At Frascati, the KLOE experiment will measure most CP and CPT
parameters at about the 10~* level and will search for CP violation in Ks decays [27]. We
also wish to mention the experiment E246 at KEK designed to measure the T violating
transverse polarization Py of the muon in the decay K+ — x%u*v [28]. This experiment
should start in 1996 and aims at improving by more than one order of magnitude the
present experimental accuracy.

The K mesons have been discovered more than 50 years ago. They have brought
crucial information on weak interactions which helped building the Standard Model.
They now offer a tool to search for physics beyond the Standard Model.
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Abstract

It is shown that a Bell’s inequality can be formulated for the neutral
kaon system at a ¢-factory using 2 formalism based on a kaon guasispin
picture and taking into account CP violation. Experimental methods to
reveal tiny violations of this inequality by quantum mechanics are discussed.
The precision detector of an experiment at 2 high luminosity ¢-factory could
be successfully exploited to perform such a test,

In 1935, Einstein, Podolsky and Rosen (EPR) advanced a famous argument
(1] to raise the question of whether or not quantum mechanics offers a complete
description of physical reality. Their conclusion could be summarized as fol-
lows: either quantum mechanics is incomplete in the sense that there exist some
variables (e.g. hidden variables) not taken into account by the wave-function
description, or the locality principle is violated by quantum mechanics (i.e. there
exist faster-than-light signals). Assuming the validity of the locality principle (at
first physicists were reluctant to abandon this fundamental principle) the EPR
conclusion was sometimes interpreted as an argument in favour of local hidden-
variables theories, which explain the stochastic nature of quantum mechanics as
due to the lack of knowledge of the values that some hidden parameters (the exact
nature of which remains unspecified) are assuming during the measurement pro-
cess. In this way hidden variables could restore completeness in the theory, and
presumably reconcile quantum mechanics with a deterministic and/or realistic
viewpoint'. However, as long as quantum mechanics and Jocal hidden-variables
theory predictions were believed indistinguishable, the discussion on 2 scientific
greund remained quite sterile.

!Realism is a philosophical view, according to which external reality is assumed to exist and
have definite properties, whether or not they are observed by someone
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Starting in 1965, however, the situation changed dramatically. J.Bell proved
an important theorem, concerning the whole class of local hidden-variables the-
ories, stating that such theories cannot reproduce all statistical predictions of
quaatum mechanics [2].

Let us consider, as usual, a pair of spin 1/2 particles in the singlet state
moving in opposite directions:

Iy = %{IA F@ENAL (P~ 1AL @A P} W

where the state |4 T (p)) represents a particle moving in the p direction with the
spin up along the & direction. Let us consider three different axes &, b, ¢ and the
corresponding spin projection operators A=¢-@,B=¢7- band C =&-& Let
us assume that we perform a measurement of A, B or C on the particle moving
in the j diraction, and a measurement of A, B or C on the other particle moving
in the opposite direction. Bell showed that, according to local hidden-variables
theories, the following inequality can be derived for the system considered [2, 3):

PlAt(7):;Bt(-P)] < PlAT(@KCT (-P)+ PIC 1 (B) Bt (-P)]+
"+P[C 1 (3 C 4 (-P)) (2)

where P[A 1 (p); B 1 (-P)] is the probability of finding A=+1 {spin up) for the
particle moving in the 7 direction, and B=+1 (spin up) for the particle moving
in the opposite direction. Inequality (2) is generally referred as Sell’s inequality.
Por some axes choices, quantum mechanical predictions violate inequality
(2), showing the incompatibility of the quantum theory with the local hidden-
variables viewpoint [2]. Hence the surprising conclusion seems that quantum
mechanics implics an unavoidable viclation of the locality principle, regardless of
a possible hidden-variables completion. This statement has a dramatic impact on
our concepts of reality and space-time, and the importance of Bell’s theorem just
lies in having made possible experiments aimed at testing quantum mechanics
against local hidden-variables theories.
Up till now the experimental tests of inequality (2) that have been performed
can be divided in three main categories:
2) tests using optical photons from atomic-cascades [4];
b) tests using v-rays from positronium annihilation {5];
¢) tests using protons from p-p scattering [6]-
Experiments of category (2) were the most precise and significant ones, and most
of them yielded results in excellent agreement with quantum mechanics. However
the validity of any experimental test of inequality (2) relies on some ad hoc ad-
ditional assumptions that restrict the ensemble of local hidden-variables theories
for which inequality (2) holds. Hence, in practice, only a class of these theories
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may be tested against quantum mechanics. How wide and general this class is, it
depends on the reasonability of additional assu mptions. Here a possible test at 2
¢-factory using neutral kaons and requiring somewhat different and slightly more
restrictive additional hypotheses than ones made in atomic-cascade experiments

is discussed [7].
At a ¢-factory a coherent neutral kaon state is produced in ¢ decays:
. 1 — —
DES E{Im(ﬂ)llf“(—ﬁ)) — [K°(B)K°(-5))} )

A quasispin picture can be introduced such that the strangeness eigenstates
|K°) and |K®) are regarded as a quasispin doublet and called quasispin up and
doun along the z direction. Then CP eigenstates |K;) o« {|K°) +]]{_")} and

| K2) {!K") - fﬁ}} are quasispin eigenstates up and doun along the z axis.
Let us also consider the quasispin eigenstates along a third generic direction z’
and call them |K,) o {|K1) — 7'|K,)} and |Kp) o« {|K2) + nK;)} where 5 is
2 complex parameter that determines the 2’ direction. If is worth reminding
that the physical states, i.e. Hamiltonian eigenstates, |Ks) « {|K;)+ €|K,)}
and [K;) x {|K3)+€lK,)} where ¢ is the usual CP violation parameter, are
non-orthogonal because of CP violation®. In the following |g| is chosen of about
the same order of |¢|, so that terms of the order O(|n|?) ~ O(|€e]*) ~ 107° can
always be neglected, while terms O{|n]) ~ O(J¢[) ~ 16~3 are retained.

In complete analogy to the spin case, 2 Bell's inequality can be written for
the state (3), where spin projections along the &, b, & axes are substituted by
quasispin projections along, for instance, the z', z, = axes (disregard, for the
moment, any technical complication about quasispin measurement):

PIK(p,t); K°(=5,t)] < PIKa(B,2); Kr(—5, 1)) + P[K\ (5, ); K°(~F, £)] +
+P[K2 () t); Ka(~5,1)] ' 4

Compared to inequality (2), inequality (4) shows an explicit dependence on time,
This does not constitute a difficulty. However here, for simplicity, only the case
in which both quasispins are measured at equal times is considered. The more
general case of measurements at different times is treated elsewhere [7. )
Inequality (4) holds for local hidden-variables theories. For some n values it
is violated by quantum mechanical predictions. However in order to perform an
experimental test of inequality (4) the following additional assumptions have to
be made:
(i) the decay process is a local random process, namely decay rates are time-
independent quantities, e.g. I'(K® — 7~ ¢+v) = const;

2Here CPT invariance is assumed for simplicity, even if it is not a necessary assumption
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(iia) quantum mechanical predictions for single kaon state propagation in mat-
ter and in vacuum are valid, in particular those related to the four probabilities
P{K.z(0) = K,.(At)] of finding a K, state at time At from an initial K, 5
state at time t = 0;

(iib) the four probabilities P[K, 5(0) => K1 2(At); A} do not depend on A, for any
hidden variable A 3 ; k

(iii) the AS = AQ rule holds * .

The above assumptions are quite reasonable and allow us to identify quasispin
states and to perform measurements of probability distributions in inequality (4).
In fact, as a consequence of assumptions (i) and (iii), detection and reconstruction
of one of the following neutral kaon decay channels, i.e. K — 7~ £y, K — nté°v,
K — nta—,7%° and K — % %" 5, unambiguously identifies at the decay
vertex position a [K?), [K°), |K,) or |K,) state, respectively. Identification of
the |K,) state is slightly more complicated, and can be performed by means of a
regenerator (method (a)) or, more conveniently, by time evolution in vacuum of
the state itself (method (b)). Additional assumptipns (iia) and (iib) are necessary
for the validity of these methods [7]. Here only method (b) will be considered®.
This method is based on the fact that, as quasispin is not conserved, it oscillates
in time. A suitable parameter 7 = 77(At) can be chosen such that, after a certain
time At, time evolution in vacuum rotates a | K} state into a pure |K,) state, i.e.

3This assumption is quite reasopable because, as shown in the following, the n parameter
can be chosen such that:

PlKa(0) = Ki(a8)] = /A P[Ka(0) = Ki(A8); Np*(A)dA = e 772
P[IC.{0) = K5(D8)] = .[A P[K4(0) = K2(A8);]p"(\)dr =0
PIKA(0) = Ka(A8)] = / PIK(0) = Kn(A8) o (A =0
P[Ks(0) = K2(Al)] = /A P[K5(0) = Ka(Af); Mp (A)dr = e7TL4°

where p™#(}) are the A distribution functions for the case of one-kaon state, and such that
fA p™P(A)d\ = 1. This means that P[Ko(0) = iC2(At); A] and P[Ks(0) = K;(At); A] should
vanish for p>P(A} > 0. Then, P[K, 5(0) = K,2(At);A] do not depend on ), at least in the
X domain in which p®? (A) > 0. Even if this domain could be different, in general, from that
corresponding to the two-kaons state produced in ¢ decay, it is reasonable to assume that the
above probabilities do not depend on A even in the case of two-kaons state.

‘Experimentally r = %%%:4_.::—% < 2-1072. Here it is necessary that r < 10™*, whereas
the Standard Madsl prediction is r = 107° +107".
SApart from a negligible direct CP violation eflect, neutral kaon decays into ¥ 7~ or n°#'
)]

)
are allowed for | K} and forhidden for |K), while the opposite happens for decays into #%x°x°.
Ssee Ref.[7] for method (a) using a thin regenerator
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P[K5(0) = K,(At)] = 0. Then a K, — 1 decay at time ¢+ At unambiguously
identifies the presence of a |K,) state at time £, and the following proportionality
relation (and similar ones), holds:

PlKo(5,t); K°(=5, )] = 5PK.(5,t + At); K°(~p,8)] )

where ™! = P[K,(0) = K;(At)] = e~ Ts8¢ and P[K\(5,t + At); K°(—5,t)] is a
measurable probability.

In order to test inequality (4) at a ¢-factory a two step measurement can be
performed:
Step(1): first, one should verify that the following relations hold, as predicted by
quantum mechanics:

P{K. (5, 1); Ky(~5,t)] <~ [R(n)le™/2 (6)
PiKa(,t); Kx(—P, )] <~ |R(n)[e /2 @

with I' = T's + I';. Relation {6) can be easily experimentally verified, as shown
elsewhere [7]. Verification of relation (7) is much more difficalt because it corre-
sponds to a suppressed decay rate measurement. However this verification should
be still possible at a high-luminosity ¢-factory like DASNE, Alternatively, one
could avoid the experimental verification of relation (7) making the following ad-
ditional assumption:

(iv) the singlet state perfect anti-correlation holds,

that makes P[K,(5,t); K5(—7,%)] = 0, even if it reduces the validity of the test
to a less general class of hidden-varizbles theories.

Step(I1): let us consider the quantity:

T 'P[Kﬂr(f’ t); KD(_ZE": t)]/PIKa(ﬁ! t);E(_ﬁ t]]
PK, (5, t); K°(~p, 1))/ PK+ (5, £); K°(— ), )]

If step (I) measurements (and similar ones’) do not exhibit any deviation from

(®)

"Other relations of the kind (6,7) should be verified, in particular one involving the probability
P{Kp(B, t); Ks(~, t)] not directly measurable. However it can be rewritten as:

P[Kp(5,t): Kp(~p,t)] = P[Ka(f,t); Ka(~F, £)] + Pror
—PlKa(p, t); Ki(~5,8)] — PIKa(p, 8); Kz(—5,1)]
~PK1(5,t); Ka(=F,t)] = PIK:(, t); Ka(=5, t)]
with
Pror = PIK:\(f,t); Ki(—F, )] + PIK0(f, t); Ka(-p,t)]
+P[K(5, £); K1 (=5, £)] + PIK:(5, £); Ka(~F, 8)]

where terms at r.h.s. are all measurable probabilities.
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quantum mechanical predictions, it can be easily shown [7] that a family of in-
equality of the form (4} can be reduced to the equality:

Y=1 9)
while the corresponding quantum mechanical prediction is Lguy = 1+ 4%(p),
independent on time £, and violating (9) by the quantity 4R(n).

From an experimental point of view, it is convenient to measure < through
the relation:

$(Af) = Nirn(, i+ At);n—€ru(—3, )] /Nnr (5t + Ab); 7T E7(~7,1)]
Nizz (gt =& (-5, )]/ Ninw(, t); m*+E-7(-p, 1)]
where N[f1(7,t'); f2(—p,t")] is the measured decay rate into f; and f, channels
at times t' and t”, respectively.

At DA®NE, assuming an integrated luminosity L ~ 10* pb~!, a statistical
error AX /Y smaller than 0.1 % could be obtained, whereas the quantity |[4%(n)|
is of the order of 1% in the case of At = 1 rg, with 75 the K5 lifetime. Hence
the statistical precision achievable at DA®NE seems adequate to reveal Bell’s
inequality violations. However the systematics should be carefully investigated.
A general purpose detector like KLOE might successfully perform such a mea-
surement.

I would like to express my gratitude to Profs. M.Cini, P.H. Eberhard and
G.C.Ghirardi for fruitful suggestions and very stimulating and clarifying discus-
sions on the subject. 1 am very grateful to Prof. G.Diambrini-Palazzi for his
interest and help. I am taking this opportunity to thank the conference commit-
tee for inviting me, in particular Prof. A.Studenikin, and all the organizers for
their kind support.
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Abstract

The study of phenomena related to the quantum behavior of macroscopic systems
is subjected to new efforts both from theoretical and experimental point of view. The
validity, in fact, of the description of macroscopic systems given by Quantum Mechanics
(QM) is still under test, especially for what concerns the macrorealistic interpretation of
the real world.

In 1880 A J.Leggett{l] proposed 2 test of QM at macroscopic level made by a system
of SQUIDs. Some experimentalists have tried, in the last ten years, to perform such
experiment[2,3], but they failed in realizing the proper set-up for the experiment.

We think however that the technology for fabricating SQUIDs and the knowledge
of their behavior are now so advanced that is worthwhile try to perform the experiment.
The MQC group of Rome started then in 1994 a program to perform a test of the validity
of Q.M. description on a macroscopic scale following a modified version of the original
one proposed by Leggett.[4].



In this paper we will present all the experimental requirements necessary to
realize the real experiment. The system analized is a set of (rf-SQUID/Switch
SQUID/Amplifier) described in [4]. An introduction to the theoretical bases on the
experimental method is presented by G.Diambrini Palazzi in this Conference. See also
ref. 4b.

A. On the applied external flux.

To theoretical obtain a double well potential we must apply an external flux equal
to ®9/2. This from a point of view; but how much the real flux that will be applied can
be different from the above value? It happens in fact that if the external flux is greater
or smaller than ®,/2 the potential U(®) will have one of the two relative minima lower
that the other, resulting in a state where the flux will remain indefinitely in the lower
pit. The mipimum imbalance is the one that result less than the height of the first level
of oscillation in the pit, namely:

[U(®%) - U(® ™) < huwp /2 (1)

If we compute the maximum difference of the external flux from ®g/2 satisfying the
above condition we obtain for a typical frequency in the bottom of the well of about
1GH,:

If ®em= % + 69 then §®<1x1073® @

This stability is indeed a not easy task. To fulfill this requirement the system must
be well isolated from the external fluctuations of the static (earth) magnetic field as well
as from the rf interference. This can be accomplished by using a set of mu-metal shields
together with rf filters on all the cables entering into the experimental area. A good
mechanical isolation must be obtained also from the external vibration. The experimental
dewar must then be put on an isolating platform with a sufficient attenuation in the audio
frequency region.

B. On the temperature, L
‘To have just the tunnel eflect driving the motion of the flux between the two equi-
librium points, we must avoid thermal transition over the well. So the energy asseciated

to the mean thermal excitation must be lower than the well height, i.e.:

ksT<AU = T<I0K (3)

C. On the temperature, II.
We must have the Josephson junction working in the quantum regime, this means

that the energy associated to the thermal excitation must be lower than the first oscilla-
tion level:
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BT <hy, = T<1K (@)

D. On the temperature, IIT.

The must severe requirement on the temperature is that imposed by the effect of
the dissipations on the system. Any dissipation in fact will cause a damping that will
bring to the loss of the coherence that is supposed to be observed by our experiment.
In the limit of T = DK and no dissipation the system will have no dumping at all, and
the coherent oscillation will be just an indefinite oscillation. As long as the temperature
and dissipations will be different from zero , a damping of the oscillation oceurs that will
damp or wash out completely the effect to be chserved. Garg[5) calculated the limit on
the temperature necessary to have a coherent oscillation of the system.

For very low damping we can use an approximate expression for this temperature
limit:

T<r=3  p ©)
kB¢n v

where wy is the tunnelling frequency and R* the equivalent resistance associated to
the overall damping.

For typical values of the experimental parameters we have then:

T'(2x-1MH, ; 1MQ) =10 mK )

This requirement is of course the most difficuit to realize. The experiment is in
fact planned to operate with an 3He — *He refrigerator that is supposed to cool the
system down to a thermodynamic temperature of 5 mK.If this low temperature will
not be enought, an adiabatic demagnetization stage will be connected to the diluition
refrigerator to reach 2 temperature of 0.1 — 0.5 mK.,

E. On the back action from the analyzer.

The signal coming from the rf SQUID must be read by an instrument the takes the
same role of the analyzer in aa experiment made by photons where the experimental chain
is composed by the system (source/analyzer/ detector). Now for a photon experiment no
problem arise due to the analyzer, since in a coincidence experiment there can be no
effect on the scurce due the measurement apparatns. In our experiment however, any
back action from the analyzer on the rf SQUID can destroy the coherence by making
an “observation” of the status of the SQUID, and making an “invasive” (in the classical
sense) measurement. To avoid this problem the solution can be to use (as analyzer) an
hysteretic dc SQUID working as a switch(6].

Briefly, an hysteretic dec SQUID is a device that can have only two states, supercon-
ducting or normal, depending on the direction of the flux concatenated with the SQUID.
With a proper set up of the device we can set the de SQUID such to switch from the
superconducting to the normal state only if the flux in the rf SQUID is (for instance) in
the right well; the de SQUID will remain in the superconducting state if the flux in the
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rf SQUID is in the left well. If we “turn on™ the dc SQUID for 2 very small time (of
the order of 10ns) and if we see no transition of the SQUID from the superconducting
to the normal state, we can infer the direction of the fiux in the de SQUID and hence
the position of the flux (left or ight) in the rf SQUID . This measurement will be a non-
invasive measurement since the dc SQUID will undergo no transition and hence no back
action will flow from the dc to the rf SQUID. The measurement where the dc SQUID will
have a transition will be an invasive measurement, and cannot be used for a “gseries” of
measurements, but only to detect the state of the SQUID at the time of the transition.

F. Limit on the analyzer efficiency.

The de SQUID switch will have of course an efficiency lower than one, We can ask
then what is the lower limit on this efficiency. The limit will depend on the type of
measure that must be done. Suppose that we are analysing the probability P = (f) of
measuring the versus (&) of the circulating current in the SQUID. If the experimental
procedure is to measure P(T/4) after 2 measure dope at i = T/8 (T being the tunnelling
period), 2 measure i.e. aiming to detect if the macroscopic system is described by a
superposition of states or by 2 statistical mixture, the requirement is such to detect a
difference between P(T/4) = 0 and P(T/4) = 1/4. The efficiency must be in this case
of the order or better than 80%.

If we want to make a test on the Bell inequalities, the limit on the analyzer efficiency
is much more stiff: it can be demonstrated in fact that must be lazger than 95% {7].

G. Time resolution on the start time.

Every measurement of the SQUID system is supposed to start with the SQUID
prepared in one of the two possible states (cireulating current in the SQUID clockwise
or counterclokwise). Of course we cannot realize this by “measuring” the state, since
we cannot know the possible influence of the measure on the subsequent time evolution.
What can be done is to “prepare” the SQUID by tilting the double well potential in
such a way to force the “flux” in one of the two wells ( the left well for instance). If we
restore then the symmetric double potential, the flux will continue the time evolufion
by starting from the left well. Of course the problem is to realize this “preparation” in
a time fast enough respected to the time period of the tunnelling frequency (1M Hz).
This task can be accomplished by using a laser driven superconducting switch. This
object consist essentially in a closed superconducting circuit inductively coupled to the
+f SQUID. In normal conditions, i.e. when no current is stored in the circuit, the SQUID
potential is the standard symmetric double well. When we store a persistent current
in to the circuit we apply an external flux to the SQUID, so we cause an imbalance on
the SQUID potential. If then a very short laser pulse is applied to a short region of the
superconducting circuit, this becomes normal, and the persistent current will die out in
a time of the arder of L eireuis/ Rasemar- With this apparatus it has been demonstrated[8]
that one can have a transition as short as few nanoseconds, a time short enough for the
MQC experiment.
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H. Quality of Josephson Junctions.

As we showed in the previous paragraphs great attention must be paid on realizing
a very low dissipation system. Once every sourcs of external dissipation has been re-
moved, it remains just the intrinsic dissipation of the Josephson junction. So it is very
important to realize a junction with the lowest possible dissipation. One of the must
important parameters that characterize the junction construction is the current density;
this parameter must therefore be optimized if the optimum junction is desired for the
experiment. Ii has been shown[9] that the best junction with respect to the current
density are those realized with a current density as small as possible; 2 current density
lower than few hundred of Ampere/cm? is in practice sufficient to maintain the BCS
behavior of the junction at temperatures as low as 0.35 K. At lower temperatures it may
be possible that lower current densities must be used. However current densities of the
order of 1-10 A/em? are currently realized, 5o this should not be a major problem.

L Shielding.

A very good shielding from mechanical and e.m. interference must be obtainded.
The isolation from mechanical noiss should guarantes that no vibration can modulate
the magnetic flux trapped into the system ( that must be stale at one part in 10%). The
experimental apparatus will be placed on a vibration isalation platform having horizontal
and vertical resonances arcund 1Hz. This should guarantes many hundred of dB of
attenuation in the kHz region of frequency where the external noises are expected to be
relevant. A proper design of the SQUID holder should then be realized to avoid relative
movement of the holder with respect to the squid inductance.

For what concerns the e.m. interference, 2 part from the standard superconducting
shields at low temperatures, that should guarantee the stability of the trapped field, the
shielding from the external noise will be realized with standard rmultiple shield system
made be Aluminum and mu-metal shields, for respectively high and low frequencies
shielding.

An additional system of Helmoltz coil arranged in a cube of Im of side has been
realized to create o region of low dc magnetic field to reduce the trapped field when the
system pass from the normal to the superconducting state. With such a system a field as
low as few milligauss has been realized in a volume of few liters around the experimental
region, lowering the earth mean field of a two orders of magnitude.

Conclusions.

In this paper we have shown the most important experimental problems that should
be solved to realize a Macroscopie Quantum experiment with a system of SQUIDs. We
have shown moreover how the MQC group of Rome University wants to approach these
problems. We are confident that all the experimental requirements can be solved by using
the present technologies and the solutions presented in this paper. We hope therefore
that in a few years the experiment will be in operation, and that we will be able to give
an answer io the ability of Q.M. to explain the behavior of quantum macroscopic objects.
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1. The supersymmetric quantum mechanics is in a permanent intensive de-
velopment since the Witten papers [1]. One can cite the N-extended supersym-
metric quantum mechanics {2}, parasupersymmetric quantum mechauics [3], and
high order derivative supersymmetric quantum mechanics {4]. The field of super-
symmetric quantum mechanics is recently reviewed in [5). We want to point out
that all above mentioned constructions are valid for the time independent Hamil-
tonians and if one restrict oneself by the stationary solutions of the Schrédinger
equation. Hence, these constructions can be referred to the stationary super-
symmetric quantum mechanics and the nonslationary one needs to be developed.
We hope that this report gives a stimulus for the further developments in this
domain.

2. The nonstationary supersymmetric quantum mechanics is based on the
nonstationary Darboux transformation {6] in just the same way as the stationary
one (1, 7] is based on the conventional Darboux transformation 18].

Let us consider two time-dependent Schrédinger equations

(I.ag bt Ho)d’(l,t) = 0, ax = 0/81, Ho = —af. - %(:L', t), 3;" = 3,3,, (1)

(iag - Hl)w(-'ﬁ, t) = 0, Hl = —83 - ‘/1(.'5, t), zTE R, te RL. (2)

- Here —V(z,1) is a potential energy and R = [a, bj is the interval for z variable

which can be both finite and infinite. If the Schrodinger operators for Egs. (1)
and (2) are connected by intertwining relation

L(i0, — H,) = (i0, — H)L, 3)

where L is a linear operator, named transformation operator, the functions 1 and

i are related as follows: ¢ = L¢ if Ly # 0.

54



If (18, Hy) and (i9,— H,) are self-adjoint {(in the sense of some scalar product)
the equation (3) implies

L*(id, — H,) = (i, — Ho)L*, (4)

where the superscript plus sign (*) is used to denote the operator adjoint to L,
and Egs. (1) and (2) become “peer”. It follows from Egs. {3) and (4) that
so = L*L commutes with (i0, — Ho) and s, = LL* commutes with (9, — H,)
and consequently s, is a symmetry operator for the initial equation (1) and s; is
a symmetry operator for the final one (2).

The constructions such as in Eq. (3) are well-known in mathematics and are’
intensively investigated since the Delsart’s paper [9]. The most significant results
obtained with the help of the transformation operators concern the backscattering
problem in quantum mechanics [10] and its application for the solving of the
nonlinear equations [11].

3. We now assume that L is a differential of the first degree in 8. operator
with smooth coefficients depending on both variables = and t. We should not
include in L the derivative 9, since it, being found from equation (1), transforms
L into the second-order differential operator. In this case the operator L and the
real potential difference A(z,t) = Vi(z,t) — Vo(z,1) are completely defined by a
function u(z,t) named transformation function {6]:

L= Ly(~ufu+3d:), (5)
L, = Ly(t) = exp (2 [ dt Im(log ©).<), (6)
A = (log [u{?)zs- (7

The transformation function u must be subjected to the new potential reality
condition {6]
(lOg u/u-)zzz b 0| (8)

where the asterisk implies the complex conjugation.

In the majority of cases of physical interest we can introduce the Hilbert space
structure L2(R) in the space of the solutions of the equation (1) with the scalar
product appropriately defined. Symmetry operator s5 = L* L, being self-adjoint,
can have either discrete spectrum in L3(R) or continuous one and since Lu =0
(see Eq. (5)), the function u is its proper function corresponding to zero proper
value. It follows that u is the one of the proper functions of operator L*L = h—a.
In general case k is a self-adjoint integral -of motion for the initial Schrodinger
equation (1) which in particular case (if V; does not depend on t) can be the
Hamiltonian Hg and the function u is its proper function corresponding to the
proper value a.
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With the help of the transformation operator L, in just the same way that
in the conventjonal supersymmetric quantum mechanics [1, 7], we can construct
the supercharge operators

Q=(2 3)=(Q+)‘ )

¥(z,1)
Lip(z,1)

ble two Schrodinger equations (1) and (2) into one two-component equation

acting on the two-component wavefunctions ¥(z,t) = ( ), and assem-

(i18, - H)¥(z,t) = 0, (10)

Ho
0 H,
Since 3o = L*L and s, = LL* are the symmetry operators for equations (1)
L*L 0
0 LL*
operator for the equation (10). The operators (}, @+, and § form a well-known
superalgebra [1, 7] with the single difference that instead of the Hamiltonian we
can use any other integral of motion of the equation (1). When & coincides with
the initial Hamiltonian, the correspondence becomes exact. This is the reason
to name the transformation L (5), (6), time-independent Darbouz transformation
[6}-

4. With the help of the other proper functions of operator 2 we can perform
the chain of Darboux transformations and construct the parasuperalgebra in full
analogy with papers [3]. If in this chain we eliminate the intermediate operators
h and express the final N-degree in 3. operator L in terms of the particular
solutions u; of the initial equation (1), we obtain higher-derivative nonstationary
quantum mechanics analogous to the stationary one [4]. In this case

where I is 2 x 2 identity matrix and H = ) is a superhamiltonian.

and (2) respectively, the superoperator § = is the symmetry

%, % ... 1
u, Upy ... O

L=L™ = Ly(tyw Muy,...oun)| . : (11)
wl oY ..oy

where w denotes the conventional symbol for Wronskian of the functions u,,. .., uy,
and for the real function Ly(t) we have

Ly(t) = exp {2 / dt Imflog w(us, ..., ux ) }. (12)
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The new potential reality condition (8) transforms into the following relation

[og rmes] =0 (13)

For the potential difference function we have

AN 3 (log]w(ul,...,uN)P)u. (14)

We can recognize in formula (11) the generalization of the known Crum-Krein
formula {12, 13] obtained for stationary case. Note that the condition (13) is
more feeble than the reality condition (8) imposed on every function u;. Thus,
we can construct the higher-derivative supersymmetry with the self-adjoint final
Hamiltonian even if the intermediate Hamiltonians are not self-adjoint (so-named
irreducible case described for stationary case in Ref. 4). The basic relation for the
time-dependent polynomial supersymmetric quantum mechanics is the following
factorization property

N N
L=[the-Cs),  LL*=]](-C) (15)

i=1 i=1

first obtained for the stationary case in Ref. 4. The C; entering in Eqgs. (15) are
the proper values corresponding to the functions u; for the integral of motion kg
of the initial Schrddinger equation (1).

5. To obtain the regular potential difference by the single Darboux transfor-
mation (5)~(7) the transformation function u should be nodeless. In the space
L3(R) a single nodeless proper function of the operator h exists (if operator h has
the discrete spectrum). This function is the ground state function of operator h.
Beyond the space L3(R) there are many nodeless proper functions of the operator
h suitable for the construction of the transformation operator Zi* They should
have the proper value o < & (o being the lowest eigenvalue of h corresponding to
the bounded states). In this case the discrete spectra of the symmetry operators
h=L*L+aand A = LL* + o differ by~one level and we have a broken super-
symmetry [1]. Every bounded state of the superoperator §, except for its ground
state, is double degenerate. We now will describe the unexpected peculiarities
in the breakdown of the supersymmetry in the higher-derivative supersymmetric
quantum mechanics. These peculiarities (as far as we know) are not discussed in
the available literature.

The single Darboux transformation being performed with the discrete spec-
trum function u.(z,t) of the integral of motion h having n zeros in interval (a, b)
gives a potential difference with n poles and the solutions obtained with the help
of transformation operator (5) does not belong to the space L(R) of functions
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square integrable in {a, b]. Nevertheless, the second transformation with the trans.
formation function #,.(z,t), having n +1 zeros in (@,b) removes all singularities
and the transformation operator of the second degree L(®) = [,L,, where L, , are
the single Darboux transformation operators, is well defined. This fact reflects
the known property of the Wronskian constructed from the functions ug, belong-
ing to L*(R) space with k; zeros [13]: the Wronskian w(ug,,..., %, ) conserves
its sign if for all £ = 0,1,2,... the unequality (k — ky)(k - ky)---(k—kn) 20
holds. In particular, the functions u;, may be two by two juxtapesed functions.
The discrete eigenvalues ay, of the operator h corresponding to the transforma-
tion functions ;, are absent in the spectrum of its superpartner k. This signifies
that the ground state level of the superoperator S is double degenerate and the
excited states constructed with the help of the functions u,, are nondegenerate.
Furthermore, these states are annihilated by the operators @Q and @ in contrast
to the ground states annihilated only by the one of these operators. It should
be noted that this property remains valid for the stationary states, i.e., in the
ordinary supersymmetric quantum mechanics.

6. The differential symmetry operators for the stationary Schrodinger equa-
tion are Hamiltonian and its polynomial functions, The algebra of symmetry
operators for the nonstationary Schrodinger equation is more rich then the sta-
tionary one. We can use the whole Lie algebra of the differential symmetry
operators of the initial Schrdinger equation to construct the supersymmetric
algebra. For this purpose we should define the operator inverse to L.

The equation (5) implies that Lu = 0. Choose the transformation function
such that the absolute value of u~!(z, ) be square-integrable in the interval R and
the condition (8) be valid. Then for every ¥ € L}(R) we have p = Ly € LU R),
but the set L},(R) = {¢ : ¢ = Ly, ¥ € L2(R)} does not span the whole space
Li(R). The function q(z,t) = [Ly(t)u*(z,t)]"} € L3}(R) [6] can not be obtain
by the action of the operator L on any ¢ € L3(R). If we designate by L?,(R) the
linear hull of the function p, then L2(R) = L3(R) & L3 (R).

Choose as the transformation function the function v = g for defining the
following integral operator acting from L2,(R) to L3(R)

Mop(,t) = Ly @, 01 [ (a, )y, . (16)

The straightforward calculations persuade that LMy = o for all ¢ € L%, (R) and
the condition v € L},(R) implies ML) = ¢ forall ¢ € Lj(R) operator M, hence,
is inverse to L : M = L~*, and we have one-to-one correspondence between the
spaces L(R) and L?/(R).

If in the space L3(R) the symmetry operators g forming n-dimensional Lie
algebra G' with the structural constants fi; + l9i.95) = fh is defined and this
space is invariant under the action of these operators then in the space L, (R)
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we can define the operators §; = Lg; M and this space will be invariant under the
action of all §. Furthermore these operators form a basis for the n-dimensional
Lie algebra G with the same structural constants ,-'J- isomorphic to G. Designate
by To the space of two-component wave functions ¥(z,1) with the basis ¥, (z,t) =
$(zt)es and B_(z,8) = L(a,t)e, ¥ € L3(R), and e = (), e. = (). It
follows that in the space Tp we can define the operators

_[9 0
Gi-(O §i) (17

forming Lie algebra isomorphic to G and these operators are the symmetry op-
erators for the supersymmetric equation (10). Besides the operators G; in the
space Tp the following operators can be defined: Po = Lo, Q: = gL te*
00 - 01
10)'" “\00O
P2 =0,G?=0,and {Q;,Q;} = Q:Q; + Q;Q: = 0. Furthermore, we can find by
the direct calculations that {Py,Q;} = G; and the generalized Jacobi identities
are fulfiled. The operators G;,Qi, Po, ¢ = 1,2,...,n, hence, form a basis for
9n + 1-dimensional Lie superalgebra sG.

We note that since h = L*L + a € G we have for operator S introduced in
sec. 3, § € sG and Q, Q% € sG.

7. Examples. Consider first the simplest case of a free particle: vo(z,t)=0.
Choose the following solutions of the initial Schrédinger equation (1) {14):

iz, t)=(01+ 12y~ expiz?t /(4 + 41%) + iA arctanj@x(z), (18)
z=z(1 +3)7V3

where 0~ = . These operators are evidently nilpotent:

where Q,(2) is the parabolic cylinder functions satisfying the equation @4(z) —
(22/4 + \)Qx(z) = 0 with A being an arbitrary parameter (the separation con-
stant). For A = n + 1/2, n € N', the functions 4(z) are expressed via the
Hermite polynomials Qn41/2(2) = exp(z?/4)Hu(iz/V2). The reality condition
(8) is satisfied for all real A. Functions (18) being nodeless for A = n + 1/2 and
for even n are suitable for use as transformation functions. Formula (7) gives the
new Schrodinger equation (2) potential
@0 _ (1 4 2) _ %28 gpartni(2)y?
o) = (14 )7 (1+4k(2k - 1) ~ 8k?( ~©e ))

where g(z) = (=)t Her(iz), Hee(z) = 2-42H,(2/\/2).

The same functions for odd n are nodeless in half-interval (0,c0) and with
their help we obtain the following time-dependent exactly solvable potential

S i gz-1(2) _ .f q(z) \?
! =1+ (1 e I)szﬂ(z) 2@+ (92k+1(z)) ),
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z=2v1+1? € (0,00).

The functions (18) for A = —n — 1/2 form a discrete basis set in LR!). The
double Darboux transformation with juxtaposed functions u, = Yon-12 and
Unyy gives a regular potential of the form

0" = 21+ )T/ Iu(2) - i) u(2)) - 1],
W(2)=T(k+ 1) T (s + 1)HeX(2) = kdp_,(2) + Heéi(z),
Jo(2)=1,  S(2)=22+1, J(z2)=24+3,....

Just these potentials correspond to the supersymmetric models with double de-
generate eigenvalue of the superoperator § except two ones constructed with the
help of the functions u, and u,,,. For n > 0 the ground state of S is double
degenerate.

We can establish that the Wronskian constructed from two functions (18)
with Ay =m+1/2and A, =1+ 1/2form = 0,2,4,...and l=m+1,m+3,...
is nodeless and consequently these functions are sujtable for double Darboux
transformation. This gives the following exactly solvable potential

o™ =201+ Y1+ dlog fru(2)/d2?),
frui(2) = @ (2)q(z) - @(2)gms(2).
We will cite as well one example for harmonic oscillator potential: Ho = -02+
w?z?, Hotha = (2n+1)¥,, ¢ = H,(vfioz) exp{~iw(2n+ 1)t -wz?/2), n € N.. i

we choose the following nonstaticnary solution of the initial Schrédinger equation
(1) as a transformation function: '

u(z,t) = sin~"?(2wt) cos A(Az/ sin 2wt) expli(wz? — A2/w) cot(2wt) /2] ¢ LI(RY),
AeR},

we obtain the nonstationary anharmonic potential of the form: vz, t) = wiz? —
2% sin™/*(2wt)sech?(Az/ sin Uot)).

First author was supported by the Russian Foundation for Fundamental Re-
search.
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Abstract

Effects of neutrino conversion and oscillations induced by strong magnet-
ic fields that can exist in supernova explosion and neutron star are discussed.
We examine possibilities to get constraints on magnetic moment of neutrino
and on strenght of magnetic field from the demand that the loss of active
neutrinos vel due to the magnetic field induced oscillations of the type
Ver ¢ Vep is negligible. The constraint on neutrino magnetic moment on
the level of 1 < 10~ g can be obtained from analysis of energy balance of
a supernova explosion. More stringent constraint g, < 10~1%4p is received
from consideration of neutrino conversion in a neutron star and the limit on
the neutron star magnetic field, B < 5 x 1012 G, on the scale R =1 km is
also obtained.

In our previous studies [1, 2, 3, 4, 5, 6, 7] we discussed neutrino conversion

and oscillations among the two neutrino species induced by strong magnetic field.
Implications of these phenomena to the case of neutrinos in the Sun, interstellar

galactic media, neutron stars and supernova were examined.
Initially these investigations have been stimulated, above all, by the desire for

a solution to the solar neutrino puzzle on the base of matter and magnetic field
enhancement of spin and flavour neutrine conversion (see, for example, [8, 9, 10,

11, 12, 13)).
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Another important motivation of these studies have been provided by the
common belief that neutrino conversion and oscillations may play a significant
role in supernova bursts and cooling of neutron stars (see, for example,[14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24]).

In[1,2,3,4,5,6, 7] we determined the value of the the critical strength of mag-
netic field B., as 2 function of characteristics of neutrinos in vacuum (Am?2, 6),
neutrino magnetic (transition) moment j and energy E, effective particle density
of matter n.s; that determins the range of fields (B > B.,) for which the mag-
netic field induced neutrino conversion and oscillations become significant. These
peutrino conversion and oscillations could result in loss of a significant amount of
active v,, neutrinos during a supernova explosion and inside or near a neutron
star.

As it was pointed out in our previous studies {see, for example, {2, 3, 4, 6]},
effects of the magnetic field induced neutrino conversion become important if the
following two conditions are satisfied:

1) the magnetic field exeeds the critical value B.. {see eq.(3) bellow)

B > B.., 1.1)

and
2) the length x of the neutrinos path in the medium must be greater than the

effective oscillation length L. (see eq.(3) bellow)

> Less, (1.2)
2

The effect of suppression of amount of active ., electron neutrinos (due to
the magnetic field induced oscillations of the type u., ++ ¥.,) was used (2,3, 4, 6]
to constrain the value of pB in the frame of the proposed model [16] of about
60 % increase in the supernova explosion energy. Supposing that the magnetic
field induced neutrino oscillations do not destroy the proposed increase of the
explosion energy we got an upper limit on the value of the magnetic moment of
neutrino from the following arguments. If the magnetic field B ~ By = 10" G
exists at the radius of r, = 45 km from the centre of the hot proto neutron star
(the matter density in this region is p ~ 10'* g/cm®) and decreases with distance

from the centre according to the law

B(r) = Bo(2) (2)

then on the distances r ~ 160 km from the centre the magnetic field is ~ 0.6 x
10*3 G. This field is of the order of the B, determined by

1 ;/AmZA
Bc', = 'ﬂ(—EE_— = \/iG’Fn,_ff)l (3)
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{ where A = %(cos 20 —-1),Am? = 107%eV? and E = 10 MeV) for the density
p ~ 6 x10° g/em® and the magnetic moment B~ 1075 For this case the
probability of finding sterile Vep's among the initially emitted v.r’s

_ 1. 2uB)?
Bopvp = 5sin* 20,5, = (am? ( S (4)
25 A= V2Gen.y ) + (2uB)
is equal to P.,e z—ven = 0-25. The effective length
Am? 2 _ ~1/2
Ly = 27"[( 55 A~ ﬁGF"cff) + (2#3)'] (%)

for this effect is L.;; ~ 10 cm. Consequently, to avoid the loss of a substantial (25
%) amount of energy that could escape from the region behind the shock together
with the sterile neutrinos v,g, one has to constrain the magnetic moment on the
level of p < 1072 up.

There is another possibility to get constraints on the value of neutrino mag-
netic moment and also on the strenght of magnetic field of a neutron star hased
on the assumption that the effects of the convertion of the left neutrinos v, into
right neutrinos v, induced by magnetic field are negligible.

Let us assume that the magnitude of the magnetic moment of electron neu-
trino is on the level of g = 107845, This value is in the range of the one-loop
contribution

_ 3eGpm, —19 m,
m= e =0 k() ®

to the neutrino magnetic moment induced in easy models [25] for neutrino mag-
netic moment based on the standard gauge group SU(2), x U(1)y with a singlet
right-handed neutrino and the neutrino mass about m, ~ 10 eV. Suppose that
very strong magnetic field B exist in a region of a neutron star with characteristic
scale of about R ~ 1 km and condition B 2> B, is satisfied inside this region.
Then in order to avoid the loss of significant amount of v, due to the magnetic
field induced conversion »,;, — ver we have to demand that the second condition
( eq.(1.2)) is unsatisfied, i.e., the effective oscillation lenght L.s; = «n/u,B has
to exeed at least two times R, L.;; > 2R. It follows that the magnetic field is
constraint to the value B < 5 x 10'% G.

So we can conclude that if there is no important effects of magnetic field
induced conversion v.; — v,z for the values of the neutrino magnetic moment
sy ~ 1075 the magnetic field of the neutron star on the scale of about R ~
1 km have to be smaller than B = 5 x 10 G. It must be pointed out that
this constraint is derived with out direct use of information about the densty
of matter of neutron star in the region of the scale R = 1 km. However, this
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information is used inderectly in the condition B > B,, because the value of B,,
is determined by the density of matter.

To get constrairt on the neutrino magnetic moment we include into consid-
eration observational date on the value of magnetic field of neutron stars. If
we use estimation of the neutron star magnetic field on the scale R = 1 km,
B < 5 x 10" G, and also demand that the effects of the convertion of the left
neutrinos v.; into right neutrines v,z induced by magnetic field are negligible
then we have to limit the neutrino magnetic moment on the level g, < 10~up.
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Abstract

Influence of an external magnetic field on the decay process with emission of
a linearly polarised phaton is considered. It is shown that there is a region of the
dynamic parameter of the process where the contribution of the non-zero neutrino
mass is essential, and the probability of the process is still higher than in the
zera field case. In the opposite limit of negligible neutrino mass contribution the
emitted photons are totally linearly polarised, which may help in identification of
these photons.

In the WSG model with mixing a massive neutrino that takes part in the weak
interactions is a superposition of the states v; with fixed masses m;:

Vo = UVM'V,‘, (1)

where U,; is the mixing matrix. This leads to such interesting phenomena
as neutrino oscillations [1], that are closely related to the solution of the
problem of the solar neutrino deficit [2]; to rare decays with the lepton number
nonconservation such as f; = f; +yor fi = f; +v+~ (fi and f; are fermions
with different flavours, v is a radiated photon) which are investigated because of
their possible astrophysical applications do to the by sensitivity of these processes
to masses and mixing angles.

The radiative decay of a massive neutrino f; — f; + both in a constant
magnetic field and in crossed fields without cousideration for polarisation effects
has been studied in [3,4]. In the present paper we once again turn our attention
to the process of radiative decay of a massive neutrino in a constant magnetic
field. We calculate the probability of the process with consideration for the
contributions of the & and w-linear components of the emitted photon polarisation
and find the asymptotics of the rate of the process with consideration for the
polarisation properties of radiation in the limiting case of a relativistic neutrino
and comparatively weak magnetic field.

Similar to paper [3] only the contribution of the diagram with a virtual W-
boson in the Feynman gauge to the process will be considered. Going over to
the contact approximation and employing the Fierz identity [1,5], we present the
probability of the process in the form, which is convenient for future calculations:

4eG
Sij =~ \/iF

e*(k)7%(K3p)0(q — g5 — k), 2)
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where

s - a(l+7°
38 = VjJﬁL;—)Viv (Kop) = Y ULUuKZ.
;ﬁ S fd“pSp [’)’ﬁ (1 + '/5) Ga(p)7aGa(P+ k)] ’ (3)

Here G.(p) is the propagator of a charged lepton in the magnetic field specified
by the potential 4*(z) = (0.0,2H,0) in the momentum representation; £%(k)
is the polarisation vector of the emitted photon with the momentum &; vi(g) is
the Dirac bispinor of the emitted photon with the momentum g¢(g? = m?), and
;(g") is the Dirac conjugate bispinor of the final neutrino with the momentum
¢(¢? = m3).

We will perform integration over p* in (3) in an invariant form. To this end
we will use a covariant representation for G,(p) in the form of an integral over
the proper time {6] and the orthonormalized basis is introduced

(FE* . (Fk)~

1
e’f‘o) =— [nzk“ + (FFk)“] , eé‘l) =

e VRRCREN
(FFE)
e’é) = v e{a)eu(m = gop, 0 = kFFE. {4)

Next we turn from integrating over Cartesian components of the momentum p#
to integrating over coefficients of its decomposition in the basis (4), where the
quadratic form p®p is diagonal. Therefore we obtain for the quantity K3 in (2)
the following expression, which is exact with respect to the fizld:

'
K“’fﬁ = —1,(27[')2 f %m exp [—zmg(s - S’) + ’Lka] X

X {mi {!]05 cosb(s + &'} — ig*F sin b(s + ') — 2sin bssin bs’A"ﬁ] =

_ 0B Bls — o' i ass ) b a sinbssinbs’ |
g [COS (s - &) (s+ s s+ )2 * b(s+ s + 7% sin? b(s + 5')
—2;@ |po B s . t oo B 8 o 1
21772 [e(Z)e(D) (s+s')2 sin bscos bs +e(2}e(3)s+s, sin bssin (s + 37)] -

—ipeB

b Aafg__1 _ o
sinb(s+s’)-HA s+s’COSb(s 9+

!
+2%e‘("2)e€2) (s—j_sﬁ sin bssin bs’ }
where
(FF)=8

AP :gaﬂ_}_AaB’ AP — 172 , b= en,
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ss' sin bssin bs’ F‘“’
GH = A — v
s+ s bsinb(s+s)’¢ n

(6)

We note that the result (5) after summation over polarisation agrees with the
result of [3 ] where no polarisation properties have been studied, and as for the
vector %, 1) k) and e(2 (k), they after the corresponding gauge transformation turn
into the well known three dimensional transverse vectors of o- and w-polarisation.

Let us consider the case of relativistic neutrino energies and a comparatively
weak magnetic field, when

»

m
g, >>m,, H<< Hy = —gi, 4]

where h¢ is the critical field for the intermediate lepton of the type a = e, u, T
If the invariant dynamical parameter x, = {v/¢FFq)/(m (H/HO)(qL/mu)
introduced we obtain the following asymptotics for the probability of the radiative
decay f; = f; + with emission of a photon with the polarisation A = ¢

o G% m?

wle) = 27 (157)3 g0 MU ULP, xe << 1. ®)

We note that w{o) is proportional to the square of the neutrino mass. However,
when the photon with the polarisation A= x is emitted, the probability of this
process, besides the term proportional to the powers of the neutrino mass, has the
part independent of the neutrino mass. Indeed, for small values of the dynamic
parameter, when x. << m,/m, or, which is the same condition put into another
form,

— = << 1, 9)

the probability of the process with emission of a photon with the polarisation
A = 7 has the following asymptotics

_aGFm,,r*[94422

i. e. it has the same behaviour as that of the o-component for x, << 1, while in
the intermediate region
m
— << xe << 1 (11)
Me

the main contribution to the probability of the process is described by the formula

B a GF mxe
w(m) = o (5

XU U (12)
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which does not contain any dependence on the neutrino mass. The last result
corresponds to that of the Ref. [3] where no polarisation has been predicted.
The latter can be easily compared to that of Galtsov and Nikitina [7], obtained
for the massless neutrino and without any mixing, by putting the mixing matrix
equal to unity. At x. << m,/m, we can neglect it. In the oppesite case of large
values of the parameter y, >> m, /m. (though y, << 1) only the T-component
of polarisation contributes to the probability and the radiated photon is linearly
polarised. The detailed consideration performed in the present paper shows that
in the fairly large region of the dynamic parameter X, the contribution of terms,
depending on the neutrino mass, to the probability of the process, that has not
been taken into account in [3], is the leading one (see formulas (8)-(10)). No
less important is the conclusion, that with growth of the dynamic parameter the
radiated photons become to a large degree linearly polarised, and in the limiting
case of large values of this parameter the radiation is practically completely
polaiised. At the same time the conclusion of the previous publications about of
the GIM factor suppression in the external field is confirmed by our results.
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Abstract

The Heisenberg formalism for the creation and annihilation operators
of quantized spinor field in nonstationary external electromagnetic or grav-
itational fields is developed. Heisenberg equations of motion are obtained
for the creation-annihilation operators. The additional terms which arise
in these equations take into account the effects of scattering and particle
creation from vacuum by the external field.

1 Introduction

Heisenberg representation is the well-known and commonly used formalism of
a standard quantum field theory (see, e.g., (1, 2]). For the case of quantized
field interacting with some nonstaticnary external field, however, the time de-
pendence of the Schrodinger wave functions cannot be completely transferred to
the creation and anmihilation operators. This circumstance was established for
the special case of a spatially homogeneous nonstationary electric fields {3, 4].
As it was shown in [4], the same situation takes place for the quantized fields
interacting with nonstationary space homogeneous gravitational fields.

The theory of quantized fields interacting with nonstationary external fields
has a great number of interesting applications in different brunches of physics [4,
5]. Here it is reasonable to mention the effect of particle production from vacuum
by the electromagnetic field of high-powered lasers and by the gravitational field
near the cosmological singularity. Additional application is the effect of vacuum
polarization by strong external field both electromagnetic or gravitational.

The main concern of this paper is to construct the Heisenberg representa-
tion for the quantized fields interacting with a nonstationary electromagnetic or
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gravitational field of a general form. To make this we perform a canonical quan-
tization of a spinor field in nonstationary external fields. In particular we give
sorue reasonable generalization of the Hamiltonian operator which plays the same
role in canonical quantization as the usual Hamiltonian in stationary situations
which accomplishes translations in physical time.

In Sec.2 the Heisenberg formalism for spinor field in nonstationary background
is constructed. The Sec.3 is devoted to the obtaining of the Heisenberg equations
for the creation and annihilation operators in nonstationary electromagnetic or
gravitational background of general form.

Throughout the paper we use units in which £ = ¢ = 1. The Greek indices
have the values 0, 1, 2, 3, and the Latin ones — 1, 2, 3.

2 Heisenberg formalism for the spinor field in nonsta-
tionary background

In this section we develop Heisenberg quantization procedure for the spinor field
in an external electromagnetic or gravitational field.

From the Lagrangian of the spinor field #)(z) in the external electromagnetic
field A,(z) :

£(@) = S0 Duv(z) - DIy d(@)] - miap(e) (1)

we obtain in the standard manner the canonically conjugate momenta and the
Hamiltonian

x(z) = Syt(a), 7@ = —iula), @)

H(t)= / Pz - w(z)e* Du(z)(z) - Di(e)p*(z)atr* () 3)
+ imqb“'(x)ﬂr*’(z) — imn(z)B¢(z)),

where § = 4% o* = 9°y*, ~* are the Dirac matrices.

Now we shall consider Hamiltonian of the spinor field interacting with external
gravitational field. The space-time manifolds are supposed to allow decomposi-
tion into a set of space-like hypersurfaces X(t). So it is possible to intorduce the
global time t. Such decomposition and the existence of the global time coordinate
are necessary for developing the canonical quantization formalism. We shall use
also the system of reference for which

ds? = goo(t, X)dt? + gui(t, x)dz dz’, (4)
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i.e., in which all the components g are equal to zero. This metric is provided
by the tetrade h{?) with such orientation that vector R(® is directed along the
time-like coord.mate t and the other vectors A(*) lie in the tangent space of the
space-like hypersurface X(t)

hQ)(z) = R(z)bos, (5)
h(z) #£ 0, k(@) =0
Covariant differentiation of the spinor field in Riemannian space is defined as
follows [4]
1
Vub = [0 + 3CenhP1 710 = [V, + Cul2)l¥, ®)
where C,p, are the Ricci rotation coefficients which are connected with tetrad
h(p)u by the relation
aﬂp (V h(a))h(ﬂ)v (p)" (7)
In the Riemannian space instead of the constant Dirac matrices y* it is nec-

essary to use the matrices y#(z) which are 4-vectors relatively to the general
coordinate transformations

&) = Bglar. (8)
Lagrangian of a spinor field in external gravitational field has the form [4]
£(z) = VoI5 (@) V,bla) — (Vb @) (@) - mia)u(=)], ()

where the Dirac conjugate spinor is ¥(z) = ¥+(z)7°. From the Lagrangian (38)
the canonically conjugate momenta are defined as follows

7(z) = RN (E), 7E) = 3VEREE). ()

For canonical quantization the canonical energy-momentum tensor is neces-
sary. It may be obtained from the Lagrangian (9) with the variation by the
variables ¥ and 4.

The Hamiltonian is defined by the integration of T, over the space-like by-
persurface (1) [4]

H(t) = / OToo(2)g% (2 )W/ —gdz, (11)

where (° is the zero component of vector field orthogonal to X(¢) which provides
translations along the time coordinate. We scale ¢ in such a manner that (° = 1.
Hamiltonian of a spinor field is defined by eq. (11} with

Too = goo(m1°(2)B0% + Doty °(2)T) — gooL(z), (12)
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where ¢ in (11) is normalized on unity. With the expressions (10) for the mo-
menta and (5) for the tetrad the Hamiltonian has the form

aw= [ mdaz[ - w(z)‘}‘z((j))vw(z)+vk«ﬁ(z>i’,:((7”))fr(z)
— T(@)Co@)(a) - Co(2) () (2) (13)

- imw(z)%rp(mimz/?(z)%fr(z)],

where a*(z) = y%y*(z). The measure in (13) is invariant because the quantity
/=9 is included into the canonical momenta (10). It is necessary to mention here
that the Hamiltonian (13) has some conventional meaning. For the particular
cases when (“ is the Killing vector field (or at least conformal Killing vector field
[4]) this Hamiltonian generates the translations in physical time and has the usual
meaning. In the other cases the situation with time transitions is not so simple
but, as it will be shown later, the operator (13) also possess all properties which
are demanded from the Hamiltonian in the usual canonical formalism.

The canonically conjugated operators ¢(z) and x(z) satisfy the usual anti-
commutation relations

{¢(t’ x)v 7r(ta y)} = i6(x - Y)~ (14)

The Heisenberg equations for the spinor fields in the external electromagnetic
field are

iz) = [$(=), HE), (=) = [r(z), (). (15)
Equations (15) may be written in the matrix form
#W(z) = H(z)w(z), (16)

where linear (differential in coordinates x and parametrically depending on t)
operator H{z) acting to a spinor field has the form

BECSORNE © —ie* Dy(z) + mB
H(z) = { HO(z) } a { —igget(2)Ve — iCo(z) + ok } i

In Schrédinger representation the secondary quantization procedure consists

in expansion of the field ¢(z) with respect to a complete set of solutions u(*)(z)
to the Dirac equation (16):

¥(z) = Yo [u(2)a. +ufH(z)bt]. (18)
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Here, the index a labels the solutions, i.e., it corresponds to the spin state and
to the momentum generalized in the presence of external field; the indices {£)
correspond to the positive- and negative-frequency solutions, i.e., they have the
asymptotic behavior ezp(+iw,t) as t — —oco when the external field is switched
off or at some initial moment t;. The standard anticommutation relations hold:

{au,a;’} = {ba, b5 } = dup.

_ The zeroth component of the charge current J,(z) = 9(z)7,%(z) (or J{z) =
P(z)7,(z)¥(z) for the case of external gravitational field) determines the scalar
product of the spinors u and v:

Y P G CL) ‘
<wo>= [ 4 {\/—‘gau)vo(z)v(z) } (19)

which does not depend on time when u and v are the solutions of Dirac equation.

The operators H(A9)(z) are self-adjoint with respect to the scalar product
(19). This means that it posseses a ccmplete orthonormal (in the sense of (19))
system of eigenfunctions ${)(z) with eigenvalues we(t):

HAN (2)pF)(z) = Fw ()Fz), {(20)

which depend on time as on a parameter. Since the system of functions $i¥) is
complete at any time (for all space-tike hypersurfaces 2(t)), the operator of the
spinor field #(z) may be expanded with respect to it:

Wz) = 31 (@)ealt) + PP (2)de (1)) (21)
The operators c,(t) and d;(t) introduced in (21) are the Heisenberg annjhi-
lation and creation operators for a spinor field in an arbitrary electromagnetic or
gravitational background.
Using the expressions (2) or (10) for the canonical momenta and (17) for the
operator H(z), we may, taking into account (20}, to write Hamiltonian in the
form

L eI |
L {«——gw(zw"(z)wﬂ(z)wz)} #)

<P HADY >= 3 wa(t)[ck (t)ea(t) — da(D)dZ (B)]-

H(t)

Decomplementation of a spinor field with respect to the system of the eigen-
functions of the operator H(z) diagonalises the Hamiltonian and the operator
coefficients of this decomplementation are the Heisenberg particles operators on
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space-time hypersurface %(t) at 2 moment ¢. From (22) it is clearly seen that the
eigenvalue w,(t) of the operator H(z) introduced in (17) is just the instantaneous
energy in the state a (the energy of the state a on the space-like hypersurface
2(t)).

To obtain time evolution of the creation-annihilation operators c.(t) and d(¢)
it is necessary to make use of Heisenberg equations for fields (16).

3 Heisenberg equations for the creation-annihilation
operators of particles in nonstationary external fields

To determine time dependence of creation-annihilation operators we insert Heisen-
berg decomposition of field ¥(z) (21) with respect to eigenfunctions of operator
H(z} (17) into eq. (16):

= [ )eatt) + WPEED] = ~it(z) 1 [8 ) @)ealt) + 92D (1)

(23)
Since the operator H(z) contains derivatives only with respect to coordinates
X, it commutes with ¢,(t) and d¥(¢). Multiplying (23) scalary by 1/),1(,*)(:) and
taking into account that the functions %{*)(z) form the orthonormal system of
eigenfunctions of the operator H(z) we obtain the Heisenberg equations for the
operators c,(t) and d}(t):

G(t) = —iwp(ea(t) = < 4790 > caltht < 4,99 > at (1),
d() = i (Odf) - T[< PO > caltht < 959,99 > ax(0)] (24)

If the external field does not depend on time, then % = const (on time), the
additional terms under the sums vanish, and (24) becomes the ordinary Heisen-
berg equations for the creation and annihilation operators.

It is worth-while to establish the connection between the Heisenberg oper-
ators cq(t) and d}(t) and the quasiparticle creation and annihilation operators
Za(t) and &} (t) which were constructed in [4, 6] directly from the requirement of
diagonality of the instantaneous Hamiltonian. The quasiparticle operators may
be expressed in terms of the Schrédinger creation and amnihilation operators by
the Bogoliubov transformation [7]

2 [Ben(E(t) + var(0d3 (2),

4
2o [¥ () + &2, ). (25)
-]

Qo

by
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The matrices ® and ¥ (which, in general, are infinite dimensional) satisfy the
conditions which provide the cononicity and invertibility of the transformations
(25). They may be expressed in termsof the Schradinger wave functions v&F)(1, x)
using the condition of diagonality of the Hamiltonian [4, 7]. In terms of Z.(1)
and dt(t) one again has the form (22) with the same eigenvalues w,(!) (since
the spectrum of a self-adjoint operator is invariant with respect to the choice of
diagonal representation).

Substituting decomposition for the spinor field, we obtain the field operator
as an expansion with respect to the quasiparticle operators:

B(z) = LI @) + B0, (26)

a

where the Bogoliubov basis functions P&*)(z) are related to the Schrodinger func-
tions ulF)(z) eq. (18) by

3O = Tle%ns - vhmuP],
-

FH = Z[wfﬁ(t)ug—)+q>;ﬂ(t)ug+>]. (27)
B

It is obvious that a scalar product of the form of (19) is invariant with respect
to the canonijcal transformations of the from of (27).

Since the Hamiltonian is diagonal both in terms of operators ¢,(t), d}{t) and
Z(t), d%(t), these operators [and also the basis functions PE)z) (eq. (21)) and
$E)(z) (eq. (26))] may differ from each other only by phase factors:

ealt) = Ea(t)e™ ¥{)(z) = e =P (a),
di (1) = di{t)e * ¥ (z) = e P (a). (28)

The function 8,(t) here is to be determined.

The scalar products that occur in the Heisenberg equation (24) may be ex-
pressed in terms of the matrices @ and ¥ of the Bogoliubov transformations
diagonalizing the Hamiltonian. To do this we use the equation

. . = =) . i
< BP0 >= e O < BT, P, T > e M Hiba(t)beg,  (29)

which follows from (28) and the analogous equations for remaining scalar products
in (24).

_ =(=)
The scalar preduct < 1/1,‘3"),1/)0 >, included in (29), may be expressed in
terms of the matrices ® and ¥ with using transformations (27), the Dirac equation
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for the functions u(*)(z), relations (28) and also eq. (20):
(=)

<Hd > = _(¢+q> + ‘i’TT.)ﬁu ~ wp(t)dap,
. (+) . .
<P, > = - (#*w - \IIT<I>")ﬂa. (30)

The similar expressions take place for < \5},” : J’iﬂ >, < 1}3},“,1;’":; ] >.

As a result substituting (30) in (29) and the scalar products (29) in the Heisen-
berg equations (24) we obtain equations for the Heisenberg operators €a(t) and
d}(t) represented through the matrices 2, ¥ of the Bogoliubov transformations:

—iwg(t)es(t) — i(8a(2) — wp(t))es(t)
Xa: e (§+ 1 VTY) e, (1) (31)

It

és(2)

-+

+

S 0609 - #787) gz ),

and the analogous equation for d(t).

The first term in the right-hand side of (31) is equal to the commutater of
¢s(2) with the Hamiltonian H (1) (22). To obtain the correct result in the limit of
stationary field we must raquire the vanishing of the second term in the right-hand
side of (31) fixing by this means the choice of the phase function

k]

85(2) = / ws(r)dr. (32)

—oo

The additional terms in {31) are due to the nonstationarity of the external
field. In particular, they vanish in the limit ¢ — +oo when the external field is
switched off and

o) ==, I (t) =, &, = const,
¥(t) ,——=._ 0, ¥(t) =, ¥4 = const. (33)

As aresult, the Heisenberg equations for the particle creation and annihilation
operators in an arbitrary nonstationary background take the form

&lt) = —ifeq(t), H(2)]
N Z e—i0() ('if"@ I \i’T'I")ﬂaeia“(')ca(t) (34)
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+ P O(et Y - ¥Te)  T0dl(),
@

o

di(t) = [df(t), H(t)]
+ ROt #Te) 04 (35)
+ Ze"”(‘)(\il‘*@ - <i>T\Il‘)ti e4Me ().

The presence of the additional terms with the operator d}(f) in (34) and
with ¢g{t) in (35) is due to the mixing of solutions with the opposite frequencies
and corresponds to particle-antipaticle pair production by the external field. The
terms with the operators c,(t) in eq. (34) and d}(z) in eq. (35) describe the
effects of scattering of particles by the external field. The sum over the different
modes « arises because the variables x and ¢ can not be separated in an arbitrary
external field.

Let us consider the special case of a spatially homogeneous nonstationary
electric external field E(t) = As(t). For the spinor quantized field eqs. {34), (35)
were obtained in {3, 4] and have the form

2

bor(t) = —ilew (), A+ LD g2 ) (36)
where w? = m? +p% +(ps — e43)?, p1 = (p? +p3)/? is the momentum transverse
with respect to the external field and r = 1,2 corresponds to two possible spin
projections onto z axis. The contributions which correspond to the same fre-
quency are absent here, since ¥+ ¥ + &Td* = 0 . Note also that in [3] equations
for the coefficients matrices of the Bogoliubov transformations equivalent to (34),
(35) and (36) were found for the case of a homogeneous electric field. For the
case of nonstationary space homogeneous gravitational field the analog of egs.
(34), (35), (36) were obtained in [4].

It should be noted that the developed formalism of Heisenberg quantization
may be applied to quantization procedure in external fields of an arbitrary nature.
For example, in [8] this procedure was carried out for a neutral scalar field in an
external field described by the scalar potential U(z) and for the electromagnetic
field in 2 nonstationary dispersive media as a background field. But for the
dispersive media this approach is not so straightforward because of nonlocality
on time due to the dispersion.

In conclusion we would like to emphasize that the procedure of Heisenberg
quantization may be carried out in universal manner for the spinor field influ-
enced by nonstationary electromagnetic or gravitational background. The only
difference arises due to the manifest form of the operator H(z) which contains all
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information about an external field. Evidently all the resuits of this paper may
be reformulated for the case of scalar field both in electromagnetic and gravita-
tional background. This approach makes clearsr the foundations of the ordinary
Bogoliubov diagonalization procedure. Moresver, for the external gravitational
background the decomposition of the field into the set of H(z) eigenfunctions
gives rise to one of the concepts of particles in Riemannian space-time.
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A Deterministic Subset of Maxwell-Dirac
Electrodynamics

A. M. Axhmeteli

Chair of Quantum Statistics and Field Theory, Physics Department,
M.V .Lomonosov Moscow State University, 119899 Moscow, Russia; e-mail
akhm@sol.msk.ru

Abstract

A subset of Majorana solutions of Maxwell-Dirac electrodynamics is de-
fined by the Majorana condition imposed on the spinor field. This subset
is not trivial and suggests a natural deterministic interpretation both for
spinors with commuting and anticommuting components. A given solution
can be obtained from a Majorana solution by a gauge transform i it satisfies
a condition that sesms to be rather weak for spinors with anticommuting
components.

Numerous recent publications reflect growing interest for the interpretation
of quantum mechanics. For the development of the discussion there is a constant
need of arguments of purely physical character. In this context an example of a
non-trivial subset of quantum mechanics that naturally supposes a deterministic
interpretation may be instructive.

‘We start with the equations of Maxwell-Dirac electrodynamics:

(i6+eA-m)¥ = 0 (1)
DA‘,—'A;’“ = jll (2)
Ju = —e¥y ¥ (3)

The chiral representation for y-matrices (1} and a symbol A= Ayy* are used.
This theory is classical in the sense that it is not second-quantized, but it de-
scribes, certainly, a wide class of quantum phenomena. We discuss a theory with:

1. c-type spinors (components of the spinor ¥ are c-numbers)
2. a-type spinors (components of the spinor ¥ are anticommuting elements of

a Grassman algebra
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The former case is simpler and more graphic. Along the lines of the present
work it is discussed in [2, 3, cf also references therein|. However, it is generally
accepted nowadays that in a classical theory fermions should be described by
anticommuting variables [4]. That is why the present paper deals mainly with
the latter case. Nevertheless, main resuits of works (2, 3] will be presented in
parallel as they are basic for a-type spinors too.

Let us define a subset of such solutions of Maxwell-Dirac electrodynamics that
the spinor ¥ satisfies the Majorana condition ¥ = C¥7, where C is the matrix
of charge-conjugation [1]. The Majorana condition is an analogue of the reality
condition and coincides with it in the Majorana representation {1}, and it may
be said that we regard the Dirac equation as an equation for real, rather than
complex, spinors. See [5] on the possibility of description of charged particles
by real fields (not complex ones and not pairs of real fields). Applying charge
conjugation to the Dirac equation and using the Majorana condition, we obtain
(i0 —m)¥ =0 and AT = 0. If ¥ £ 0, the latter equation implies A, A* = 0 [6].
If, in addition, the vector A* is not zero, then for c-type spinors the equation also
implies that there is such A that A4# = j* [6]. We obtain also that

0=(8A+ Ad)¥ = 24%3,T + (9,4, /"y ¥ (4)

This equation may be regarded as a system of ordinary (not partial!) differential
equations on a curve that in all its points z is tangential to the vector Ab(z)
(cf. [3])- We may conclude that equations of Maxwell-Dirac electrodynamics for
Majorana c-type spinors are equivalent (if ¥#0and 4 Z0) to a system

(-m)¥ = ¢ (5)
A4 = 0 (6)
A4F = e )

DA, - 4%, = ), (8)

For a-type Majorana spinors j* = 0, and the last two equations should be replaced
by the following ones :

AV = 9 9)
04, - 4%, = 0 (10)

Egs. 8.6 coincide with the equations of Dirac’s “new electrodynamics” [7] up to =
constant in the right-hand side of Eq. 6. A solution of Eq. 8 realizes a conditional
minimum of the action of the free electromagnetic field with the constraint 6
(cf. [7]). Hence, Eqs. 8,6 describe independent evolution of the electromagnetic
field () is a Lagrange multiplier). The same statement for Egs. 10,6 is quite
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evident. Eq. 6 may be regarded as a nonlinear gauge condition. For an arbitrary
4-potential B* there is a gauge-equivalent 4-potential A* = B* 4 §¢ satisfying
Eq. 6, and the function ¢ may be chosen arbitrarily on the hyperplane z° = 0.

One can see that both for c-spinors and a-spinors a deterministic interpreta-
tion seems natural that is similar to Bohm’s one 8, 9]. The difference is that the
role of quantum potential(s) is played by the ordinary potential of electromagnet-
ic field. An electron may be regarded as a point-like particle with properties that
are determined solely by the value of the spinor ¥ in the point of space-time.
Possible trajectories are the curves that are tangential to the vector A*(z) in
every their point z. In view of Eq. 6 the instantaneous velocity is always equal
to the velocity of light. This is consistent with the notion of zitterbewegung and
allows smaller mean velocities. It should be stressed that the possibility of this
patural deterministic interpretation for the Majorana subset of Maxwell-Dirac
electrodynamics depends on two circumstances: the first one is that Egs. 8,6 or
Egs. 10,6 fix independent evolution of the electromagnetic field, and the second
one is that due to Eq. 4 evolution of the spinor on the trajectory is determined
by a system of ordinary differential equations.

Systems of Egs. 5,7,8,6 for c-spinors and of Eqs. 5,9,10,6 for a-spinors are,
generally speaking, overdetermined [10], and it is not evident that they have
non-trivial solutions (we obtain trivial solutions by setting ¥ = 0; the resulting
systems of equations for the electromagnetic field are not overdetermined. The
system of Egs. 5,9,10,6 has also trivial solutions that describe free Majorana
spinors in zero electromagnetic field). Existence of non-trivial Majorana solutions
of the system of Eqgs. 5,7,8,6 follows from the results of the work [6]. It may be
shown that the system for a-spinors has non-trivial solutions as well. Thus, the
subset under consideration can serve at least as a toy model for the discussion of
the interpretation of quantum mechanics.

Majorana condition is not invariant with respect to gauge transforms. Gauge
invariant conditions may be found that select such solutions of Maxwell-Dirac
electrodynamics that may be converted into Majorana solutions by a gauge trans-
form. For c-type spinors the necessary and sufficient condition is that the axial
current U~4®y#¥ is zero. For a-type spinors the situation is more complex. If we
take seriously Eq. 2 for a-type spinors, we have to admit that both sides of this
equation must be zero as they have different degrees (0 and 2 correspondingly)
with respect to the generators of the Grassman algebra. Let the components of
a-type spinor ¥ be presented in the form

T, (z) =Y ()0, (11)

where £ are Majorana c-type spinors with components £{™, and 6, are inde-
pendent anticommuting generators of the Grassman algebra that are invariant
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under complex conjugation (involution) [11]. Then for every n a pair {4, &)
should be 2 solution of the system of Eqs. 5,9,10,6 where the a-spinor ¥ is re-
placed by the c-spinor £(™). Conversely, if for every n (4, £(™)) satisfies the system
of Eqgs. 5,9.10,6, then (A, ¥) also satisfies Eas. 5,9,10,6. Then in a complex space
with coordinates y, and the dimensjon (possibly infinite) equal to the number of
the generators of the Grassman algebra one may compose 1-forms Q, = £(* dy,,.
Then the vector current j, = —-e‘il'y,,‘Il is zero if and only if Q) AQ; = Q, AQ,
WAL =0 A0, GAQ =05 A, and QF AQy = Q5 AQ,. If, for example,
DQAMAQL F0and QPAQRLAQ £0, then £, AR, =0, AL =0, and the
spinor ¥ may be converted into a Majorana spinor by a gauge transform. Thus,
for a-spinors solutions of Maxwell-Dirac electrodynamics are Majorana solutions
up to a gauge transform if, for example, sufficient transversality conditions are
satisfied. These conditions seem to be rather weak.
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Photon polarization operator and the photon elastic scattering
amplitude in (241) QED in a constant magnetic field
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In recent years investigation of (241) quantum field theories has been of great
interest. In particular, they are applied widely to model various physical effects
in thin layers [1].

In the present paper the photon elastic scattering amplitude in (2+1) QED
in an external magnetic field is calculated.

The photon polarization operator in (24+1) QED in the one-loop approxima-
tion [2] is writtten as

P (g z) = —ie2Sp[7“S(z, )y S(2’, z)], (1)

where y# matrices satisfy the foliowing relations
yha —g‘“’ iy, ¢* = diag(1,-1,-1), (2)

7—0 ‘)’_’LO',’)’_"!O'Z

and ¢*(i = 1,2, 3) are Pauli matrices.
We consider the case of 2 constant magnetic field, determined by the potential

A* = (0,0, H). (3)
In this case the electron propagator has the following form {3]
5%z, ') = —e~ 427 +
" —ism? 2 ~2 h k
h /d 2 p[—iZt 4 EEicta(hs) iuYﬂ s

*(47r)20 SV’Esin(hs) . L 4s 4

17, hs i ] } v
— YT — ——— (v X) "™ . 4
*{23 [’y sin{hs) (rX)se +m (4)
Qur notations are

XH =g+ — xlu’ X}. — {J:l _ III)Z + (x2 . $/2)2,
h=eH, u=z!4 21,

(5)

m is the electron mass.
Calculations of (1) are analogous to those of the photon polarization operator

in (3+1) QED in a constant magnetic field (4,5]. The photon polarlzatlon operator
in (2+1) dimensional QED depends on the operators P*, F#**p, Fuw [ LA P
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commuting with P# operator in the case of a constant magnetic field. Therefore
the photon polarization operator is diagonal in the momentum representation
and it assumes the form

le (k, kl) — /e—i(kz-k’zl)nﬂy(z, a:l)dsdeZ’ —
= (2n)%(k - &')P,, (k). (6)

In contrast to (3+1) QED, where the photon polarization operator is sym-
metrical, it is represented in (2+1) dimensional QED as a sum of symmetrical
and antisymmetrical terms

P (k, H) = P (k, H) + P (k, H), P* = P, P& = _p**_ (1)

The polarization operator calculated on the mass surface (m? = 0) determines
the photon elastic scattering amplitude

1
T = %C“P,f:jqe,,, (8)

where w = k+0 =| k | is the photon energy, e, is a polarization 3-vector of
the photon. In this work we renormalized the photon polarization operator in a

standard way
P;Zy(k’ H)=Pl-w(k7H)—'P#U(kaH:0)+Puu(k)7 (9)

where P,, (k) is the renormalized photon polarization operator in the case of
zero field intensity [6].
According to the optical theorem from the amplitude (8) we find the rate of
an electron-positron pair production by a photon

w = —2ImT, (10)

and the squared photon mass in a constant magnetic field
§(m?) = 2wReT. (11)

Photon polarization operator is determined in (2+1) QED by the one and only
linear polarization vector. Presenting it in the form

_ lu . 1 = _F,,.,_k"
e, = W = m(ﬂ,kz, ~k1),l, = (ng)lﬂ’ 12)

and taking into account formulas (8) - (9}, we finally obtain the amplitude of a
photon elastic scattering as follows
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. e e?m | Hy / 7 . Hy
T = m Zﬁ-[dvoflﬁdpexp(—sz—E) X
xie) - L(y - 1))
x(sin(2p) Alp,v) % 1 )] (13)

Here Hy = "‘Tz stands for the analogue of the Schwinger critical value of the
external field intensity and the functions ¢ and A{p, v) are given by the followings

expressions

o = L[eU=) _ snlelt=einp )

B 2 sin 2p
w wz _ 'UZ
Ap,v) = cos(2pv) - 1:;7: sin(2pv) + Hop cos{2pv) [_-i + _p(elH ) B
{w\?sin(p(1 + v)) sin(p(1 - v))
(;) sin?(2p) ’ (14)

Let ns now consider the case of relatively weak magnetic fields and high
energies of photons, which is expressed by the following inequalities

H < Hy, m& w. (i5)

In this approximation the region p <« 1 gives the main countribution to the
amplitude (13), hence expanding the trigonometric functions in (13), (14) we can

write (13) as

poflidem Fdu [1 il 5] (1>1/'3G’(z) (16)
= (4m)3/%w | wd/2u—1 L 3 4y !
1

where z = (%)%/% and G(z) has the following form

G(z) = ]Oﬁdy exp (—iyz - 1.‘%3) (17)
0

Thus the photon scattering amplitude (16) depends on the external field intensity
and the photon energy via the parameter

_Ho [ EFuk)

XTHom VT m® (18)

The consideration of the amplitude {16) in x >> 1 and x < 1 limiting cases leads
to the asymptotic expressions
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e?m24

) ) X 1/3
T o= —zmexp(—zﬂ/ﬁ)F(l/Z)(m> r(1/3), x> 1,

(19)
2 2 2
e“my .e‘m [3xm ox (

8
- — - ih.
47 90w 187rw 8 P )’ X<

T = 3x

Comparing our results (19) with the corresponding results in (3+1) QED [7],
one can see, that the growth of the photon elastic scattering amplitude in x > 1
limit in (24+1) QED is determined by the factor x'/3, whereas in (3+1) QED
it increases as x*/3. Thus, considering the case when x > 1 we come to the
conclusion that the reduction of the number of dimensions in QED diminishes
the dependence of the one-loop contribution to the amplitude of photon elastic
scattering by the factor x1/3.

However we did not find any general regularity, connecting the changes in
the number of dimensions in QED with the dependence of the physical values,
examined in this work, on the dynamic parameter x. Indeed, the imaginary
part of the scattering amplitude, which in accordance with the optical theorem
determines the rate of the electron- positren pair photoproduction contains in
(24+1) QED in the limiting case, when x < 1 the preexponentional factor VX
whereas the preexponentional factor in the similar expression in {3+1) QED is .
As to the real part of the amplitude in the limiting case, when x < 1 the results
in (2+1) QED and (3+1) QED coincide and include the factor x2.
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ON MANIFOLD OF EXACT SOLUTIONS
OF THE PROBLEM OF BOSONIZATION
OF A PAIR OF 2D-ELECTRONS IN
A QUANTINIZING MAGNETIC FIELD

B.A. Lysov and O.F. Dorofeyev

Faculty of Physics, Moscow State University,
Moscow, 119899, Russin
E-mail:dorof@srl.phys.msu.su

Abstract, It is shouwn that for a certain relation between the magnetic
field strength and the electron charge the non relativistic quantum problem
of the correlated motion of a pair of 2D-electrons in o constant and uniform
magnetic field admits ezact solutions in the form of elementary functions.

In recent times the problem of a pair of 2D-electrons in a magnetic
field has atiracted attention in connection with experimental and theoretical
investigations of the fractional quantem Hall effect {1-3]. It was pointed out
in ref[2] that the hali-integer quantum Hall effect can be understood as »
result of the coupling of electrons with opposite spins, producing a boson
with a charge 2¢,which is in the symmetric Launghlin's state {4].

Tn is known that for the mon relativistic problem of the motion of two
92D-electrons in a constant and uniform magnetic field, in the Pauli equation
the spin is separated from the spatial motion, which in tarn allows the
center-of-mass motion to be separated from the relative motion.

The coordinate part of the relative motion wave function (symmetrical
gauging of the vector potential is employed) has the form

¢ = exp(—imp) R (r),
the even values of the quantum number m corresponding to the singlet state
the odd values to the triplet state. The fanction R (r) obeys the Schroedinger
radial equation

(03+18.—-'£—;—%+B.)E(f)=0. @
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Herea= M (ch"‘/ (h’E)) M2 aad the magnetic length [ = (2kc/ (eH))/?
is used as & length unit; ¢, M and H are charge and mass of the electron
and the magnetic field strength, respectively. The constant B, in eq. )
and the quantized energy of relative motion of electrons E, are connmected
by the relation B, = 2E,/(Aw)+ n, where w is the cyclotron frequency.

I the Coulomb repulsion of elecirons is neglected than ¢ = 0 and ihe
solutions of eq. (1) belonging to the metric I?(0, oo; rdr) are expressed in
terms of elementary functions, and the corresponding eigenvalues are the
Landau levels E, = hw(n, — (m —|m|) /2 +1/2), n, =0,1,... The radial
quantum number r, is the number of nodes of the radial wave fanction
R(r).

The presence of Coulomb repulsion results in the splitting of the Landax
level; for arbitrary values of the parameter a the eigenfunctions of eq. (1)
cannot be expressed even through functions of the hypergeometrical type
(s}

In this connection it seems worth nothing that for a certain special map-
ping of values of the parameter a there are exact solutions of the problem
under investigation in terms of elementary functions and there is a simple
formula for the emergy levels. The above-mentioned mapping of values of
the parameter a can easily be established using the Witten techmique of
super-symmetrical quantum mechanics [6].

Let U : I? (0, co; exp (—r2/2) r""‘l'"ldr) be the unitary represemtation
of the type U : f(r) — ri™exp(—r?/2) f(r) (see eg. wel [7]). For
22 (0,005 exp (—r2/2) ral"‘l‘“cir) the initial problem of solving eq. (1) is
equivalent to that of eigenvalues of the operator

B= 82— (2Im| + 1) /r = )8, +a/r. O
This operator is easily seen to be lmited from below and can be represented
e
A
B=a*i +k, (3)
the eigenvalues of k are connected with the eigenvalues of eq. (1) by the
relation k = 2E, / (hw)+m—|m|—1, and the eigenfunctions will satisfy the
first order equation
i¢=o0. )
Suppose that solutions of the polynomial type exist for eq. (4). Then
L]
operator 2 should have the form 2: 8.— T 1/(r+r,), where r, are the
=1
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roots of the polynomial sought for, and n is its power. Here for the operator
A
A+ in the metnc I? (0, co;exp (-2 /2) r2|m|+1dr) we obtain

A n
Ar= =8, - @lm|+ 1) fr 4 1= 30 ()
=1
now, companing eqs. (3) and (2), it is easy to obtain the systems of equations
to determine the constant r, :

2lm|+2) /ry —r,-22 (ri=r) (n=1). (5)
it
Besides, the following relation must be satisfied:

a=@ml+ DAt k=n ©

=1

L
73

:
z J 4 -4
4

& &

Q
aNE
~
-
X
W

Fig. 1. These curves qualitatively show the behavior of the
dependence of E/fw on the parameter . The circles indicate the
values of a at which eq. (1) has exact solutions expressable in
terms of elementary fanctions. In the symbol o} the upper index
refers to the valne of the radial number n, aad the lower npper
index refers to n, the power of the polynomial. ¢ =1; ¢f = V6;
/2

ag=(1o+\/ﬁ)m; a2=(50+\/2_97)1/2; = (10-v7) " ;
a} = (50— vae7) .
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But if n =0, then ¢ = 0 and k = 0. Note that by summing all equations
of the system (5), one can obtain a somewhat different representation for

the parameter a =3 r,.

For the case of'r-nl= 0 correspording to the upper limit of the multiplet
structure of each particular Landan level, the values of the parameter a
obtained with the help of eqs. (5) and (6) are shown in fig. 1.

For the application of the obtained results to the calculations in quasi-2D
heterostructures, the values of M and e in determination of the value of the
parameter g should be understood as effective values of the mase and the
charge of a 2D-electron, which can differ from the values for a bulk sample
and may also vary from sample to sample.

Recent experimental investigations of quasi-two-dimensional strnctures
{8 reveal anomalies of the cyclotron resonance that manifest themselves at
low values of the eleciron density. The cyclotron resonance is fandamental
the study of the dynamical properties of eleciron systems, and anthors of
ref. [8] point to the poesible role of many-particle effects as an explanation
of the snomalies.

It is important to note that the values of the experimental parameters
are close to those which are necessary for the test of our theory.
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A PAIR PRODUCTION OF PIONS BY A CONSTANT
ELECTROMAGNETIC FIELD

S.I.LKruglov
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Abstract

The differential probability for pairs of pions production by an
external constant electromagnetic field is found on the base of exact
solutjons of the equation for piors. Obtained expressions generalise
the Schwinger formulas for electron-positron production taking into
account the complex structure of pions. At the critical value of the
electric field the number of produced pions is increased by about
20% comparing to the pointlike pions. We found also the imaginary
part of the effective lagrangian for the electromagnetic field in the
presence of pions.

It is known that a constant electric field produces pairs of particles
[1].So the probability for the electron-positron production and pairs of scalar
pointlike particles production were calculated. But the intensity of the pro-
duction for real pions will be changed due to its electromagnetic polariz-
abilities. One of the known ways to obtain it is to use the exact solutions
of the equation of motion for particles in the external eleciromagnetic fields
[2]. All physical values can be obtained through the asymptotics of the
solutions of the wave equations [3]. For the constant electric field there
exist four different simple solutions possess clear physical meaning. These
solutions correspond io positive and negative frequencies at t — too . Us-
ing the Bogolubov transformations the Hamiltonian can be diagonalized.
As a result, matrix elements are given by the coefficients of the Bogolubov
transformations.

We have recently found some solutions of the equation for real pions [4]
in the electromagnetic fields of different configurations {5,6]. In this work
we apply the Bogolubov method and obtained solutions [6] for finding the
differential probability of pions production in the uniform static magnetic
field parallel to the constant electric field. The problem we treat is a gen-
eralization of one discussed by Nikishov [2,8,9]. The equation of motion for
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pions established from the chiral theory {4] and from the phenomenological
approach [7] is given by

Di¢ - Du[(Du¢)KuVJ . mgffd’ =0, (1)

where m2;, = m*(1 — BF2 [2m), D, = 0, — ieA,, 0, = 8[0z,, A, is
the vector potential of the electromagnetic field, K, = (a + 8)F. . F.o/m,
F., = 0,A,—0, A, is the strength tensor, «, § are the electric and magnetic
polarizabilities of a particle respectively, m is the rest mass of a pion. Units
are chosen such that A = ¢ = 1. Without loss of generality we use the
potential as follows

A, =(0,z,H,—tE,0). (2)
In this case H|E or E = nE, H = nH, where n = (0,0,1) is a unit vector.
The solutions to Eq.{1) for the potential (2) exist in the form [6]

i 2
i:(lsp,n(x) — Ne:(m:z-#?szs)e—"‘g"Hn(n)iW(T)’ (3)

where H,(n) being Hermit polynomials, 7 = (eHz; + p2)/veH and £¥(7)

give four functions having different asymptotics:
+¥(7) = D,[-(1 = 4)7}, "¥(r) = D,[(1 -1)7],

TU(r) = Do[(1 +1)7], ~¥(r) = Din[—(1 +1)7],

with v = tk?/2eEB — 1/2, 7 = VeE{zy + ps/eE), B = 1 + WE?,
W = (a + B8)/m; D,(z) being the Weber-Hermit functions. Here the pa-
rameter k* which is connected with the energy of the pion in the constant
electromagnetic field has the quantized value [5,6]:

K? =msz+eHA(2n+1), (5)

where A = 1 — WH? and n being the principal quantum number: n =
1,2,.... Wher electromagnetic polarizabilities tend to zero the formula (5)
gives us Landau levels of the energy for the particle moving in the constant
magnetic field. Our discussion follows very closely the work of Nikishov (2,8].
Functions $W(7) correspond to the solutions to Eq.(1) with the positive
frequency at t — too and Z¥U(r) - with the negative frequency at ¢ — +oo.
Solutions (3), (4) are labeled by three conserved numbers p, ps, k2, where
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p2, ps being the momentum projections. The constant N is determined
from the condition of the normalization

<

/i ;,n(x)i%i¢p’,ﬂ'(‘r)dsx = ﬂ:(S(p - pl)‘sn,n'a (6)

where p = (p2,p3) is two-dimensional vector, Vao = ¢§;¢ - d)%d). The
sets of solutions *ép.(z) and +dpa(z) are equivalent and therefore they
can be connected by the relations [8]

+¢p,n($) = C1n+¢p.n(z)+82n_¢p.n(z): +d’p.n(z) = C;n+¢p,n(z)_c2n—¢l>.n(z)v

\ ™)
—¢p.n($) = a;n+¢p,ﬂ(z)+c;n_¢9‘"(z)9 _¢P,ﬂ(z) = —dlkn+¢P.ﬂ(‘r)+clﬂ—¢P.ﬂ($)a
where | c1n |2 — | c2a [*= 1. Coefficients ¢1n, 2 found from (3), (4), (7) are
given by (see {3,8])
1 1 -z
c1n = (2m)2T7! ( 21 ) exp[—%(/\ —1)),
(8)

2
|20 9], 3 TEESHAGR D
and T being the I -function.Values ¢y, czn contain the information about
producing pairs of pions in the state n.

The quantized solution to Eq.(1) can be written as

¢(e) = Y _lapa(in)+dpa(z) + b5 a(in)-dpa(z)] =

- (9)
= S lapa(out)t dpa(z) + b (out)” dpa(2)];
p,n

where ap,.(in), bf .(in), (aps(out), b} .(out)) are the operators of the anni-
hilation for the particle and the operator of the creation for the antiparticle
respectively at ¢ — —oco (t =+ +00).

From (7),(9) we arrive at the Bogolubov transformations

apn(0ut) = Craapa(in) + .05 L(in), b .(out) = camapa(in) + b (in),

(10)
apa(in) = ¢inapn(out)—S,bE A(out), b (in) = —canap a(out)+cinby ,(out).
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The canonical Bogolubov transformations like (10) are widely used in the
superfluid and the superconductors theories. These transformations con-
serve the commutation relations.

The unitarity operator of the transformation S is defined by [10]

S apa(in)S = apafout), ST'bS (in)S = b A (out),
S=]I%, <0=]I<0.], <0u(out)|=<04(in)|S., (11)

ap,n(out) | 0,(out) >= bp .(out) | 0,(out) >=0,

so that S, found from (10) is given by

_ap,ﬂ{in)bp.r.&n)czn) _ (12)

S, =c;texp (
Cin
The amplitude of the probability in the state n is equal

< Ou(out) | 0n(in) >= ¢! (13)

and the probability for a vacuum remains a vacuum to be
Cv =|1I¢n" P=exp(— Y In | e1 [*) = exp|— Yon(l+ | e %)) (14)
It is easy to check using the commutation relations that the expression holds
< 0.(out) | af (out)ap(out) | 0.(in) >=|cpp |2 . (13)
Then the average number of created pairs of particles from a vacuum is 8]

L2

N =[5 enl dradpory (16)

where L is cutoff along the coordinates.

Now we calculate the value N (16). The variables 7 = (eHz,+p,)/veld
and 7 = VeBE(zo + ps/eE) which enter into the solutions (3) define the
region of forming the process. The coordinates of the center of this region
are tg= —pa/eE, 1; = —py/eH. Therefore we may use the substitution [2]

/ dpy — eHL, [ dps — eET, (17)
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where T being the time of the observation. Inserting the value ¢, (8) into
the variable (16) with the help (17) we obtain the intensity of creating pions

dpgdp;;L w[m2;; + eHA(2n + 1)]

(8, H) = VT/ oy 2P ¢EB }1;

_eEH exp{——7rmejf/eEB) (18)

8m? shirHA/EB)

If electromagnetic polarizabilities o, 8 — 0 (4, B — L, m.py = m ) Eq.(18)
leads to the well-known expression for the probability of production of scalar
pointlike bosons [8]. Taking into account the definitions B = (1 + (e +
B)E?[m), m%;; = m*(14+B( E*—H*)/m) and the approximations a £* /m <
1, BE*/m <« 1 which is held for real pions [11] one proceeds by noting the
relations

A C\'+g o m:“' ar &Eﬁ‘i‘ﬁﬂg]

—_— - : - - ~ —_—_—
5 21— —— (B + ), —L=mll ——.  (19)
Then Eq.(18) turns into
a+j3' H

I(E,H) =IO+

{E:{ + H?) coth ———-j exp;-—(aE" +3H?%),
(20)
where %) = (e* E?/873) exp(—mm?[eE) corresponds to the pointlike scalar
boson. It is easily seen that polarizabilities of pions will increase the pairs
production. When the magnetic field is switched off then Eq.(18) transforms
mto 2p2p
£ 6)'!\
g ¥ pp)
By using the approximations (19) the value (21} is rewritten in the form

I(E) = lim I(E, H) == (21)

a+ 8 TaFEm

I(E) =191+ E*)exp(

)- (22)
In the presence of the magnetic field the average number of created pions
is decreased by the factor

I(E,H) _ nH
I(E) ~ EBsh(rHAJEB)

(23)

At H >> E we have I(E, H) — 0. But in this case the intensity of creating
electron-positron pairs will be increased [2].
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We can also obtain the expressions (21), (22) using the exact solutions
to Eq.(1) in the pure electric field. Then the solutions become

idp(z) = Nexpli(piz1 + paza + paza)|Ev(7), (24)

where the functions $1(r) are given by (4) with the index v for cylindrical
functions {4):
_ it Amiyl 1
- 2¢eEB B
From solutions (24) at @ = 8 = 0, we shall obtain the solutions to the
Klein-Gordon equations which were found by Narozhnyi and Nikishov [3].
The density of created pairs of pions is

(25)

[ c2p |=| exp(miv) |* . (26)

We can obtain the number of created pairs by integrating the expression
(3.26) over the momentum p. We may replace

/ dps — €ET, (27)

and after integrating we have the rate of creating pions (see [9])

&
1B)=7 [ el ow . (28)

It is easy to check that the expression (28) (after integrating over p, \P2)
coincides with (21).
The magnitude of
e?E? wm?

() _
! 873 exp( eE )

(29)

which enters into (22) is small at £ « m?/e. Since the mass of the pion is
more than that of the electron {m > m.) it is easier to produce electron-
positron pairs. But if E >~ m*/e for pions (m = 140MeV, a = 1110~ fm?
) 121,19 1), [ ~ 1,1.10%(s™" - sm™3). So the number of produced
charged pions, taking into account of polarizabilities is increased by about
20% comparing with the pointlike pions.The /{9 is non-analytic function of
E and it is impossible to obtain (21),(22) using the perturbative theory.
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For neutral pions we must set e = 0 in Eq.(1). The solutions to Eq.(1)
in this case are like solutions for free particles ¢ = Cexp(+ip,z,) but the
squared energy of pions is

_ aB® + BH”

m

+
Py = (p} +P§)[1 - ?m—ﬁ(E2 + Hz)] +p? +m2{1

at aE?/m « 1, fH?/m < 1. In this approximation there is no creation
of neutral pions. The same conclusion follows from (22) at e = 0. But if
aE?/m > 1 the situation is changed due to the complex value of py. It
occures for huge fields £ > /m/a. Even for the critical fields £, = m?/e ~
3.46 - 10'G we have the small value aE?/m ~ 0.05.

Now we find the imaginary part of the density of the Lagrangian. The
squared of the amplitude for a vacuum-vacuum Cy is connected with the
imaginary part of the Lagrangian [1]

Cv = exp(—2Im L). (30)
From comparing of (14) and (30) we can write

1 , dp2dpsL?
VTIIII C = 2 /;ln | Cin l (27:.)2 3 (31)

where £ being the density of the Lagrangian L. Substituting values (8) into
Eq.{31) and using (17) we have

e?EH
Im L = ST;In(I +exp(—7mA)) =

EH & 2 L eHA(2n +1
ﬂ21n{1+exp{_”[m“ff+e (2n + .)]}}:
872 = <EB (32)

_€EH i (=1)*! exp(—wm2; m/eEB)
~ 1672 n sh(rHAn/EB)

n=l1

The first term of the sum (32) gives us the value I{E, H)/2 (18) as it must
be. At a, 3 — 0 we arrive to the expression which was obtained by Nikishov
[8]. The limit of the expression (32) at H — 0 can be easily obtained.
This limit is agreed with Eq.(21),(22). The formula {32) generalizes the
Schwinger result [1] in the case the pions polarizabilities are takern into
account . The investigation of quantum effects in the strong field is actually
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important. It is stipulated by the progress in the techniques of the lasers
and accelerators of heavy-ions. If the charge of a nucleus exceeds the critical
value Z, =~ 170 then the normal ground state of QED becomes unstable.
The electric field will give the emission of positrons and charged vacuum
will be formed [12]. Then pairs of particles can be created.

In this paper we considered the pair production of pions by constant
electromagnetic fields which are some approximation to the actual field
configurations. This approximation can be applied when the size of hetero-
geneities of fields exceeds the size of the considered system [13]. Particles
are created on the typical distance { = m/eE from each other, because
the work of the electric field eEl must be equal to the rest energy m of a
particle. For the critical field E. = m?/e the typical value { is a Compton
length { = 1/m which is small. We see that the constant electromagnetic
field approximation is valid for the wide class of fields when the typical het-
erogeneity size, is more than . When the source of the electromagnetic field
is the laser beam with the length wave A this approximation corresponds to
the condition A > [ which is easily reached for real laser beams. This is the
case of crossed electric and magnetic fields. Here we investigated only the
influence of parallel electric and magpetic fields on the pions creation. The
method (2,8] allow us to apply obtained solutions {6] for considering other
cases of external electromagnetic fields.

In this work we estimated the influence of polarizabilities on creating
pions. Therefore it was considered only effective lagrangian for pions up to
quadratic terms in F,,. The higher terms in F),, describe other character-
istics of a particle which were not discovered eyt experimentally.

Although the effect due to the complex structure of pions is numerically
small it can have a significance at the large strength of the electric field.
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Radiation of relativistic dipoles
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Abstract

A systematic exposition will be given of the classical theory of radiation of
relativistic point dipoles. The properties are studied of electromagnetic fields
created by a point magnetic moment ~— magneton. The electromagnetic
field tensor of a magneton satisfying Maxwell’s equation is obtained. It is
shown that, depending on the distance to the magneton 7 the field tensor
splits in a covariant manner into three parts proportional to 71, #=2, 73,
In a absolute system of rest, where # = 8 = 8 = 0{(8 = u/c,u is the
velocity of magneton), known results are obtained as a particular case. The
relationship between the electric and magnetic fields E and H radiated by
a point magnetic dipole moment 4 and a point electric dipole moment v
is derived through the use of dual transformations of the electromagnetic
field tensor. It is assumed that each moment is in relativistic and otherwise
arbitrary motion. In the relativistic case, as in the nonrelativistic case,
the switch g — v is accompanied by the replacements H - E E - H. A
covariant formalism is developed for describing the electromagnetic fields in
the wave zone. The electromagnetic field tensor associated with the radiation
is analyzed.

The electrodynamic of relativistic point dipoles has been considered in
papers of Frenkel’ (see [1]), Bialas [2], Kolsrud and Leer [3], Cohn and Wiebe
[4], and others (see also [5]). Here and in what follows we use the theory
and formalism of [6].

1 The equations of electromagnetic field

Let’s introduce the polarized tensor potential of a relativistic magneton F#* =
(F, G), connected with the usual vector potential A* = (i, A) by the relation

A¥ = a, M, o8]
that is ’G
A¥ = (—divG, oG + rotF) .
c Ot

*E-mail: bord@urania.tomsk.su
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In agreement with this definition, the vector G is the Hertz vector or the electric
polarization potential. The vector F in such case can be called the magnetic
polarization potential.

The tensors of the magnetic polarization density M** = (N,M) and the
density of the "magnetic current” 7* satisfy the relation (see, for example, [7])

le = avM“y-

It is easy to see that tha Lorentz condition and the condition of contituity of
the current density are satisfied automatically

8,A” =0, 8,5”=0.

The tensor-potential F#¥ satisfies the tensor wave equation [8]
8°9. FH = _4_7"M/.w.
. c

Differentiating this equation with respect to the coordinates, one can obtain
the usual wave equation for a vector potential.

Let us represent the tensor-potential F*¥ in a form analogous to the four-
dimentional Lienard-Wiechert potential

P = - e, @)
To¥

where g is the magnitude of the magnetic moment of the magneton; v# = dr?/dr
is its four-dimentional velacity; 72 = R? — r* is a four-dimentional vector drawn
from the world point of the magneton to the world point of the observer. The
mutual orientation of the vectors £,R, T in three-dimentional space is shown in
Fig. 1. ’

The dimentionless spacelike tensor I1** = (®,1I) is connected with the mag-
netic polarization tensor by the relation

M (t) = pr?8[€ —r (t)],

where 77 = I1? [y, v =1/y/1 - 2 is the Lorentz-factor; £ is the vector of the
"smeared” magneton at the moment of time £, connected with the moment of
observation of the radiation £ by the relation { =1 — 7/c.

From the condition of spacelikeness of the tensor I1#¥

_ v 0% =0
it follows that
®= [ﬂn] ’
and, therefore, in the rest system of the magneton ITy” = (0,() , where { is a unit
vector, which, according to the hypothesis of Ulenbeck and Goudsmit, we will

call the spin vector. The tensor II#* then represents the laboratory spin tensor
(in dementionless form}.
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Fig. 1

2 Potantials and fields of a relativistic magneton

According to (1) and (2), the vector potential of the magneton A% at the
observation point has the form

A% = —pcd, vl (3)

where the derivative 0, is determined by the rules of differentiation of functions
with a retarded argument

3,=0,+-—+2 (4)
P

where 8, = 8/97.
Differentiating in (3) according to the rules {4), we obtain

2 = —o I:Hau 7, ]‘_10"1"-,, (C'), + fp'wp):' . (5)

where w? = dv*/dr is the four-dimentional acceleration of the magneton, the
derivative with respect to the proper time is written with the circle. The compo-
nents A° = (¢, A) are represented in the form

o=t { (0 8) + - e},



where n = T/7® = £/c(f — t) is a unit vector directed from the magneton to the
observation point,

1_ 1. :
J=1+ c—_zrpw" =1+ ;r’yz{(na) -7 (aB)[1 — (nB)]}-
Here we have introduced the nctation a = ,G = a/¢, where a is the acceleration
of the magneton.
Using the standard definition of the electromagnetic field tensor, on the
basis of the potantials (5) and differentiation rules (4}, we obiain

Haﬁ — Hf{ﬁ-i- H;ﬁ—{-Hgﬁ (7)

et _ e T leos, 7 37,00 [ 097,70 4 7, & oMl 7 74)
e Tpvf (Fp'”p)2 (Fove)3
| (Fowe)Paile s #0]
N {Fn”")é '
ged = _H [ oaf  F,wr1P
2 T Gaey 7P
11 290, 7 + 2 11 677, 0P 4 207, 0]
B T,v°
2 11007, 70 ~ 7,wllleos,ofl  c2F,weTiler s, 6]
- (Tpv?)? (Fov)?
Haﬁ _ pe 21-[&[3 B 3[](0:0.;:0’05] B 3(;2 ﬂ[aafafﬁi .
° (Fove)3 Tpv° (FpvP)?

One can show by a direct calculations, taking into account (4), that the tensor
HeP satisfies Maxwell’s equation 93 H*f = 0.

In the absolute rest system (3 = B=p= 0) from formulas (7) follow the
express‘ions known in the electrodynamics for the electric and magnatic fields of
an absolutely precessing magnetic moment [8].
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3 Fields radiated by a relativistic electric dipole mo-
ment

We describe the electric dipole moment by means of the tensor polarization
potential which is dual of the tensor magnetic potential

1
G = S Fyp.

The tensor electric and magnetic polarization densities are related in a corre-
sponding way
1
N* = 2% Map = (-M, N).
The duality relation for the electromagnetic field tensor is known to be
1

E™ = 5#”"&,,, = (-H,-E).

The electromagnetic fields of the electric dipole moment are discribed by {cf.

()]
90,G* = —4xN™,

The solution of this equation for a point electric dipole moment can be written
ikl

G = —cv— >
Fpv

where v is the electric dipole moment.
The dimentionless space-like tensor ®#* = (—II, ®) satisfies the condition

v,d*" =0,

from which we find

0= -[3%)].

These relations are formally similar to those in the theory of the electromagne-
tic field radiated by a relativistic magneton. However, since the vector potential
A" is again given by (1), the electromagnetic field tensor of the electric dipole
moment is more complicated. The reason is that the condition v,[1** = 0, which
was used previously to simplify this tensor, does not hold in the present case. As
a result, additional terms appear in all the structural elements H7" 5’3 (see (7),
where g — v; the complete tensor H<7 is given in {9])

a5 .0
37w “[ua',ua 1-,;3])

aff  _
Hl,a.dd =v

TovP
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o [ao
HY Yy = s {1‘[ vafﬁ]+l'1[""wafﬁ]}7

_(Fp””)z
ved 2 3
;A ik ; | L fac, #A)
3,add ERDE {CZH v 07! + fpvPH vy,

These terms remain even after dual transformation
1
I = _Eswa%aﬁ. (8)

Only through 2 duality transformation of the entire electromagnatic field ten-
sor, in the course of which we also use transformation (8) on the right side, can
we find the tensor E#¥. The latter is formally identical to H#“ for a relativistic
magneton, except that we have

H*P = BB ull®f — v@*f, (9)
Noting that we have
e = ([ﬂn]’n) -3 = (LBQ]’Q)’

we can make the transformation of the fields in the switch from the magnetic to
the electric dipole moment by means of replacements

p—v, -E-H, H-E.

The same transformation holds in the nonrelativistic case [8].

4 Wave zone and electromagnetic field tensor

The wave zone is dominated by the field which falls off as 1/7, where 7 is the
distance from the radiating particle (the charge or magneton) to the observation
point. )

Since the differentiation d, in the derivative (see (4))

Sz ™ d
9,=0,+ ——
b =0+ FovP dr’
which acts on the vector potantial, simply increases the rate at which the field
falls off, we can assume the following in the wave zone

o
" e AV
g = A7 (10)

ToUP
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The Lorentz condition d,4¥ = 0 in the wave zone then become

Py
TuA* =0,
where we have retained in /‘;“ only those terms which are proporticnal to 1/7.
From this result we find the familiar relation between the scalar and vector po-
tentials in the case of the Lorentz gauge for the potentials & = (ru'i)
Differentiation of A# with respect to the proper time in the wave zone yields

— 3 ° .
o uc 9 311 “’\r')j'pw" + H“"F,\v‘,, wf Il"“r'_\(fpw’P
-—-—)2 Ty — +3

[P
5 7,0P 7o0f 7,u7)2
(7o [ )

(11)
Substituting this expression into (10}, we find H* = H{", where H}"” is given
in (7) and corresponds to the field which falls off as 1/7.
1t is convenient to write the tensor H** in tlie more compact form

guv — _ HC [pzv]
i (Fﬂ”p)sq T

where, according to {10), @* is the expression in curly brackets in (11).

Using these results and expressions for the spin precession [10], the classical
radiation of the point magnetic moment moving at a constant velocity in a arbi-
trary direction with respect to the field lines of the uniform magnetic and electric
fields is analyzed. All characteristics of the radiation agree with the Ternov —
Bagrov - Khapaev relativistic quantum theory of the radiation by neutron [11]
(see also {16, 12, 13]). It is thus demonstrated that the classical model of radiation
with spin flip is valid.

More delail discusston of these questions can be found in the works [14, 15,
16, 17, 18].
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Abstract

Two types of (e,3¢) collision kinematics are considered from the
view point of obtaining direct information about electron-electron
correlations in atoms. The first one assumes a symmetric or near-
symmetric energy partition between ejected electrons and relatively
small momentum transfer from the incident electron. The second as-
sumes a symmetric or near-symmetric energy partition between the
scattered electron and ore ejected electron. In this case the momen-
tum transfer is large. It is shown that this kinematic regime is better
for the investigation of electron-electron correlations in the target.
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1. Introduction. The first theoretical papers to consider (e,3e) collisions
took an approach that was closely related to (v,2e) ionisation (Smirnovet al..,
1978; Yudir et al., 1985). With this approach the four-body (e,3e) problem
could be reduced to a three-body problem if the incident and the scattered
electrons have energies that are large compared to the binding energies of the
ejected electrons. In this case the one photon exchange diagram dominates,
and the appropriate matrix element Tj. takes the form given by the First
Born Approximation (FBA):

€g €a
Ve O W W o VW a UV ata ol s Wy UaaWalaUetaValabeWat 4

A AL €

A+ (1)
Here 4~ is a virtual photon, and the crossed lines mean that the electrons are
immersed in the field of A** ion. The conservation of energy and momentum

give: .
Eo+et =E.+Ey+ E.+e8"” (2)
Po=Patpo+pc+q (3)
To simplify futher we restrict ourselves to the He atom, then eHe = —79eV,

el e** — 0. A projectile with energy transfer AE = E; — E, and momen-
tum transfer Q can be considered to be a virtual photon 4*. In contrast
to the (7,2e) process, the values AE and @ are not connected by a definite
dispersion formula. Analytically eq.(1) can be written in the form:

-

4 .
TP = —@'M(pb,pc; Q) (4)
with
-~ = . A 1 I I R . B 373 oty - =
M(Phpc;Q):aj dry dry® (Pb,Pc;Tl,Tz)[eQ +€Q2—2]‘I’o(7‘1,r2) (5)

The functions ®~ and ®, discribe two continuum and two bound electrons
respectively in the ion field. Formally, the matrix element for (7,2e) scatter-
ing follows from eq.(5) in the limit @ — 0. Historically the magnitude of

111



@ in eq.(1) is assumed to be small. The first (e,3e) experiments (Lahmam-
Bennani et al, 1989;1992) used these kinematics.

2. Theory: Small Momentum Transfer. The kinematics (1) was
proposed for the study of electron-electron correlations in the initial state
and assumed some simple models for the final-state wave function ®~. This
took the form of the product of distorted waves (Dal Capello and Rouso,
1992) or orthogonalised plane waves (Smirnov et al., 1978). The calculations
presented by Joulakian et al. (1992) and Dal Cappello and Le Rouso (1992)
show a strong dependence on the form chosen for the final state correlations.
We can understand this effect qualitatively if we let the function ®~ take the
form:

—f = = = =

Each hydrogen-like function ¢~ (f,7) with Z = 2 in eq.(6) has the eikonal
representation ¢~ (p,7) = exp(+pT)((p, ), and F includes all post-collision in-
terections of ejected e; and e,. If the momenta py, p. 3> Q then the first term
in eq.(6) (this term is associated with the so-called shake-off (SO) mechansim
of (e,3e) - collisions (McGuire,1982)) gives a very small contribution around
the @ axis to the matrix element (4) and to the five-fold differential cross
section (5DCS) d°c/dEydE.dQ,d%dl.. The estimates give the result:

$o(SO) ~ (AE)® (7)

if po ~ p. ~ VAE and AE > £f¢ (Popov et al., 1994) On the other hand,
the second term in eq. (6) describes the so-called two-step mechanism (TS1)
{Carlson and Krause, 1965; Tweed, 1973). It can mix the ejected momenta p,
and p, during a second collision in a such way, that the value g =| @ —Ds—p. |
can be small in spite of large values for p, and p.. One obtains the estimate
(Popov et al., 1994)

&o(TS1) ~ (AE)™® (8)
in the vicinity of g = 0. For the case corresponding to Eg ~ E, > AE » fic,
ps = p. =~ VAE, Q is relativly small, one expects the 5DCS to have a sharp
maximum arcund the ¢ axis and little structure around the § axis. This
result can be understood in the following way: if ¢ = 0 (in (e,2e) theory
the domain g ~ 0 is called the Bethe-ridge) and we neglect el compared
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to AE, we have the classical picture of three billiard balls with the resid-
ual ion playing no role. In this case the angle between the momenta of the
ejected electrons is @4 ~ 7 — —Z= — n. This can only occur through a
two-step mechanism. The first term in the decomposition (6) provides di-
rect information about initial state structure. In this case eq.(5) is a double
Fourier-transform of @71, 72). Its contribution te the 5DCS is concentrated
near the @ axis, however its magnitude is rather small compared to the
other terms in the matrix element (see eqs.(7) and (8)). The second term
F in eq.(6) has its largest contribution around the ¢ axis and contains in-
formation about electron-electron correlations in both the initial and in the
final states of the reaction. For this reason, the matrix element TS24 has
”double model” dependence even for large values of energy transfer AE, pro-
vided the momenta of the ejected electrons are equal or approximately equal.
These kinematics are not suitable for the investigation of electron-electron
correlation in atomic wave functions ®.

3. Theory: Big Momentum Transfer. Let us consider now the case
of large (} values which can be realized for kinematics where the ejected
electron momenta p, and p; are nearly equal. These kinematics lead to the
Plane Wave Impulse Approximation (PWIA):

o~ €
€0 Tee
AU, ~
VY
i L\_‘ﬂ-— €p
- e,
A
Att

(9)
Here t.. is the so-called half-off-shell electron - electron amplitude with a well

known analytical expression. The (5DCS) corresponding to the amplitude
(9) has the form:

dE,dB 040,40, ~ (2n)py 2 | o+ (10)

d’c 2p. Py |
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with ’ . lz_ 4

27 @

e +0) = s | [ drae™ (e Mo, m) (1)

flz) =222 Cy) = [} + y* — y® cos(2z Iny)) }
c=|p—| 7 y= B2

A

f(z)C(y);

The form (10) is equivalent to (e,2e) binary triple differential cross section
(TDCS), but p(f.,p. + §) is the He' decay state density or the Fourier
transform of the fluctuation function x(7,7) (Popov et al., 1994).

x(7,7) = [ 4™ (5,700l 7) (12)

The smaller p,, the better the approximation (10). For ¢ small, we examine
the function p in the vicinity of ¢ = 0. The 5DCS can be estimated here as
(Popov et al., 1994)

o (binary) ~ (AE)™ (13)

The semiclassical ideas of Avaldi et al., (1986) provide a way of treating final
state correlations in (8). Because the speed of electron c is small compared to
the two other fast electrons, electrons a and b "see” the system (e+ Het)
as an ion fe™, so the distortion of the electrons’ paths takes place in the
He* ion field with Z = 1. The correlation formulas derived by Avaldi et al.,
(1986) can be used in this case and lead to small angular displacements of
the peaks. We expect to "catch” in this way the corrections of a vy’ order
of magnitude to formula (10).

4. Short Conclusion. In order to derive information on two-electron
target momentum densities from (e,3e) experiments, binary kinematics are
most useful. The proposed binary kinematics are analogous to those used
in (e,2e) experiments where one-electron momentum densities are measured.
Note that d°c(binary) is much larger than & (T'S1).

5. Experimental Considerations. An experiment has recently been
constructed to measure 5DCS for the electron impact double ionization of
magnesium. The experiment consists of an electron gun, a scattered electron
analyzer and two ejected electron analyzers. Because the magnitude of the
5DCS is small the ejected electron analyzers were designed to accommodate
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up to eight detectors each at their focal planes. In this way it is possible to
sample 64 pairs of angles simultaneously if one considers only events where
the ejected electrons pass through different analyzers. Magnesium was chosen
as a target because it is helium-like with two s-electrons outside a closed shell.
In fact, calculations and experiments have shown that the outer s-electrons
in magnesium have characteristics more like doubly excited helium, where
electron-electron correlation is large, than like ground state helium. Initial
experiments with the instrument have shown that it has sensitvity sufficient
to measure 5DCS with sufficient precision to obtain information on initial
state correlations.

Quantitative estimates of the reasibility of the corresponding experiments
are difficult to do. However, two remarks can be put forward which plead
for their feasibility. Firstly, the kinematics of diagram 2 with large £, (com-
parable to E,) and small £, have a larger cross section, and hence are more
favourable than the kinematics with the same energy transfer (£, + E.) but
an equipartitionning b-c (see, e.g. Duguet et al 1991). Second, the feasibil-
ity of a triple coincidence experiment is mostly determined by the true to
accidental coincidence rates ratio, which is proportional to d®c/d?0,d*c,d%o,
(Lahmam-Bennani et al 1991), where d%a; is the double differential cross sec-
tion that determines the single count rate in detector i. In the kinematics (1),
small £, and E. values together with a large F, value (i.e. small energy-loss)
correspond to a large 5DCS d°0 (hence, to a large "signal”), but also to large
DDCS’s d%0,4,.. Since the latter quantities enter as the product of three
terms in the denominator, the resulting signal-to-noise ratio might become
too small.
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Abstract

We considered photoneutrino interactions in a strong magnetic field
B > B, = m?/e, = 441 %+ 10'3G in model with mixing. The interactions of real
photons proved to be suppressed in such a field. This corresponds to existence of
a photon-like resonance with the mass m., and at the values m2 > (m;+m;)? the
decay mode v* — v;17; is possible ( m; and m; stands for neutrino masses). The
corresponding rate is calculated and some astrophisical applications are discussed.

1. INTRODUCTION

In a usual QED the renormalization procedure for photon external lines gives a
trivial result - the lines turr out to be unchanged:

ey — ey (1)

(e, is the photon polarization vector)

But the situation is net the same in the presence of an external electromag-
netic field, which takes into account in a Furry picture. If the four-momentum
conserves (for example, in a constant and homogeneous maguetic field), we obtain

PP (k)
2
ar €g, ( )
where D, and P°f are the photon propagator and polarization tenzor in a Furry

picture. At the value of magnetic field strength B 3> B, = m2/e, = 4.41 + 103G
this quantities are follows {1, 2]

e, — ey + Dual(k)

N kekh
PO (k) = P(K,K2) (5% — ),
4

K2 k2 — P2, K2)

(3a)

Dyua(k) = (3b)
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where P(k% k) is the photon polarization operator in such a field,
k? = k% — k%,k2 = k? + k2 and all indexes run over 0,3 only (third axis is di-
rected along the field). This is one of the consequences of the so called “Two-
Dimensional QED Approximation”, developed by the authors earlier (TDA) (3].
For the real photon k? — k% = 0 and using the relation P(k?, £2) # 0 we obtain
from (2), (3a,b) the following unexpected result instead of (1):

k, ]Sk) @)

(note, that (ek) # 0 in a general case since a scalar product is defined in a
two-dimensional subspase (0,3)).

Thus, we see that a renormalization procedure in TDA leads to a suppression
of the mass shell photon interaction because of gauge invariance of vertex func-
tions. In other words, the interacting photon in TDA must be massive (photon-
like resonance v*). In electroweak theories this leads to a possibility of decay
channel v* — v;7; at the values mZ > (m; + m;)?. This channel may be of im-
portance in the forming of massive neutrinos balance at the early stage Universe
evolution or as energy loss mechanism of magnetic neutron stars.

At the low energies the photon mass is imaginary m?’, < 0 and the channel
v; — vjv* opens [4].

€y —

2. THE EFFECTIVE PHOTON MASS

The effective photon mass is given by a relation

mf, = —e, P*e,. (5a)

where a two-dimensional tensor P,, was defined in Introduction. Taking into
account the equation (3a), we obtain

ek
ml = P, R - o + By (5b)
where a scalar function P(k?, k%) may be written as follows [1}:
4 K. 1 €lg

2 12y __ = _ZLye2 )
P, K = Zarerp (g2 + £25), )
7= leoBl > m?, [k?);
-9*_ _# :
_—f__——m_z’ 0<&é<1. (6a)

The analitical continuation to the energy range k? > 0 has a form:
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a) 0 < k% < 4m?

§lng
1-¢

G+ite) =3 (72)

2

k
am? ~

b) k2 > 4m2. In this case £ in equation (6) must be replaced by |l
At the meanings k2/m2 < 1,k% < v
ak?y

i _3n'm3 <0 (82)

and in according with (5b) the decay v* — v;; is forbidden in any case. But at
the values k2/m2 > 1; k%, k2 <« v we have

2
P= o > 0 (8b)

and this channel is open. In a frame of reference in which k3 = 0, one can obtain
for different polarization states:

ELBk: mi=0 (9a)

ek: mi=0; (9b)

gIB: m2=lar. (9¢)
: h==

Thus, the only mode contributing in TDA is (9c), giving a photon-like res-
onance with the mass depending on the field strength. The resonance lifetime
controlled by a QED channel v* — eTe~ and is given by a relation

5l = 401‘{"12
Q (mz + K2 )

m? + k2 > ml.

(10)

The QED lifetime “at rest” after subsitution of (9c) is given by an expression
15" = 7.16+ 10°*(B,/B)"/*s™! (10a)

2
m., > m;.
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3. A WEAK DECAY 7* - v,7; IN A MODEL WITH MIXING

The matrix element can be easily obtained by crossing from the corresponding
results of reference [4]:

eDG‘YUg{U:‘ . ,

ST 210, () V(L + 77, (~ ki) Lo (), (11)

Ia# = A(kz)(eaakak# + ga“kz — kak#)’ (118.)
8w

Aik’)}mg = F (llb)

Here U is a mixing matrix, ;; - neutrino four-momentum, e, - absolutly anti-
symmetric tensor in (0,3), e stands for polarization vector of “massive photon”
with &2 = m2+k2 > m?;, a,p, o run over 0,3. The expression (11) corresponds
to a leading contribution of the effective “electron loop” in Feynman diagrams
4].

. After some calculations one can obtair the following result for the total decay
rate (k3 = 0):

4k,0G?*y?R
W= W[ﬂl: - 2m,2y(m,2 + m?)'i’
+m? = i
*[m: + mf,(m? + mJZ) - 2(m,2 - mf)z], (12)
R =|U.UZ%.

Taking into account an evident relation m2 > m? ; and equation (9c) we

i'

arrive at the simple result for photon-like resonance weak decay rate “at rest”
W =3+10"°(B/B,)*/?R 5! (13)
m: > mf.

At the field values B > 1017 G the QED perturbation theory is failed and
one must sum over all loops in QED sector using TDA (3. In our case this
operation reduces to a substitution

aln/a)/2
B)(n/)/7r (14)

Me = M~ = m, (~
e e e Bo

in equations (10-11). But this substitution do not change the order of the rate
in the range of field strength 102G > B > B, [4].
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4.CONCLUSIONS

A relative contribution of the decay channels ¥* — »;%; and 7* — ete™ may be
written as a ratio of 7' = W (13) and 73" (10a):

-1
w_o_ -~z B3
T4 10732 Bo) R. (15)

This quantily is of the order 1072 when B ~ 10'®G (magnetic neutron stars)
and of the order 10~ when B ~ 10%2G (Big Bang stage). Thus in the second case
the decay mode v* — v;7%; could be by one of the main mechanism of massjve
peutrino production. Note that in any case the weak decay channel gives no
information about the neutrino mass because of the relation m, > m;; and for
this aims there are more suitable laboratory experiments on §-decay or neutrino
synchrotron radiation [5}.
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Semiclassically concentrated states of charged particles
in a curved space-time
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Abstract

We define the semiclassical concentration of states of quantum systems.de-
scribed by the Klein—-Gordon equations and the Proce equations in external elec-
tromagnetic and gravitational fields. We show that the semiclassical concentra-
tion can be attained on a classical phase trajectory only.

The present paper develops the method of semiclassically concentrated states
[1]-{5] for relativistic wave equations in curved space-time. Approximate solu-
tions satisfying the Klein—-Gordon {6] and the Proce [7] equations were previously
obtained in a neighborhood of the world line of a charged particle in external
gravitational and electromagnetic fields. These solutions were called semiclassi-
cal trajectory-coherent states (T'CS) [8]. The technique for reducing the Klein-
Gordon equations to a Schrédinger-type equation for TCS and the Proce equation
to a Pauli-type equation was worked out and the corresponding Hamiltonians
were calculated. This construction was carried out in geometrical terms. It was
established that, with precision up to 0(&3/ %}, i — 0, the scalar ¥(z) and the vec-
tor V¥(z) fields, satisfying the Klein—~Gordon and the Proce equations in the class
of positive-frequency semiclassically concentrated states, could be interpreted in
the standard quantum mechanical way.!

We point out two interesting properties of TCS. First, the complete set of
these states forms the basis in the space of semiclassically concentrated solutions
of the Klein-Gordon and the Proce equations. Second, the semiclassical TCS
can be classified as positive- and negative-frequency states. The latter fact de-
serves detailed consideration. Namely, in an arbitrary Riemann space there is

!Numerous papers deal with the problem of the formulation of quantum mechanics on a
Riemann manifold (see, e.g., [9]-[11] and references thezein).
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no natural way for separating the solutions of wave equations into positive- and
negative-frequency ones (see, e.g., {12}, [13]). On the other hand, this separa-
tion is absolutely necessary if we want to interpret the quantum field in terms
of particles and antiparticles, and hence, to have well-posed problems and com-
putation of quantum processes. Since TCS can be classified as positive- and
negative-frequency ones, they may be widely used in problems of quantum the-
ory in curved space-time.

However, when we construct the semiclassical TCS by using the method of
Maslov’s complex germ [14], we assume that the corresponding classical equa-
tions and their solutions are known. In other words, the space of semiclassically
concentrated states is constructed for a given classical trajectory. In the present
paper we show that the classical equations of motion appear while the semiclassi-
cal concentrated states are constructed in curved {as well as in plane) space-time
and that the semiclassical concentration can be attained on a classical trajectory
only.

Let us consider the Klein—-Gordon equation in curved space-time:

N 1 - N
HY {——’P V—99"P,) - U(z) ~ mzcz}‘ll =0. 1
7= u( ) - U(=) (1)
Here g,.(z) is the metric of the Riemann space with signature (=== g=
det(gy,); m is the mass of a particle; ¢ is the velocity of light; P, = —ihd, —

£A,(z) and A,(z) are the potentials of the external electromagnetic field. The
function U(z) plays the role of an external scalar field.

As is well known, in the linear space of solutions of (1} one can define an
invariant scalar product. Let ¥; and ¥, be two (generally speaking) complex
solutions of (1), then the scalar product of these solutions can be written as
follows

(Wali) = 0 [ a(P0) 00 + BP0 )
%

Here N is an arbitrary constant, introduced for convenience, ¥ is a space-like
hypersurface in the Riemann space. Then one can show that if ¥, and ¥ satisfy
equation (1), then the scalar product (¥3|¥;) is independent of the choice of the
hypersurface Z.

As another examaplie of the wave equation in a curved space, we consider the
Proce equation

~ 2.2 _i
(Hpv')a — _Dﬁwaﬁ + mﬁ: Va + ’Le(gch )F#GV“_
—25,,,8*2V? + §#W,,, + 2Da(§*7Vy) = 0, (3)

where W, = D,V,-D,V,, D, =V~ i—i.A,‘ is the extended covariant derivative,
A, is the potential of the external electromagnetic field, F,, = 0,4, — O,A,,
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Suva is the torsion tensor. The scalar product of two arbitrary solution U/# and
V¥ satisfying (3) can be defined as follows

(UIVIp = = [ dBa{ (e, v*) + (0% v), @)
z
where K
s 1
Jgu = QmC(D“6E - Dﬁglﬂ’ + 25@11/)7

and ¥ is a space-like hypersurface.
By analogy to the plane case, we give the following definition of the semiclas-
sical concentration of a scalar particle in curved space-time:

Definition 1. The states ¥ of the quantum system (1) will be called semiclassi-
cally concentrated on the phase trajectory 2(s) = (pu(s), ¢*(s)) belonging to the

class CSka(2(s), (z)), if
(i) the curve g#(s) is time-like, and there ezists a family of hypersurfaces
7(z) = s (where s is a family parameter), defined by the equation

9uT)e(T)¢H ()" - ¢*(7)) = 0; (%)

(ii) for any operator A with symbol A(p,z, 1), regularly depending on A, we
have ;
b (VAN G = fim, o (¥IAIY), = A(p(s), (). 0). (6)

Here we use the notation

(W)= [ dmew, P = (). (")

r(z)=s

Theorem 1. If¥ is a semiclassically concentrated state of class CSka(2(s), 7(z)),
then z(s) satisfies the classical Hamilton system with Hamiltonian H((p, z)=
2P, P* — mict - Ulz).

Lemma 1. If ¥ € CS(z(s), 7(z)), then
A = I, A1) 8
ds KC= 7 yrETiE e ()
Proof. The mean value of the operator A can be written as follows

(9| A|¥)kg = / d5,G*,

7(z)=s
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where

N? - - ..
o S ey * »
G = s —g"I(P Uy AV + ¥ P, AV
hen [ d5.G¢— [ dT.G
®_ I
d(A) = lim T{z)=3+As g T(z)=s .
ds - As—0 As !

because, by condition (6), G* — 0 as we move away from the classical trajectory
along the hypersurface 7(z) = s. Therefore, in the numerator we can add any
integral along the tubular surface o(R), lying between the hypersurfaces 7(z) = s
and 7(z) = s+ As. Suppose the surface o(R) is infinitely far from z(s), then we
have

‘ [ =+ f)dmer
d(A) = Lm (r(x)=s+As r(g)=¢ 0’(00)) g = lim _1_ d“z@ (‘/—g G"‘)
ds As—0 As As—0 As g ‘
v

Here we have used the Gauss theorem; V is the volume bounded by the surfaces
7(z) = s, 7(z) = s + As, and 0. Therefore,

- s+4s
d(4) . 1 diz L s e
ds _-A]iEUKs— / . / is_'_gG v ,/ 4T, G
s (z)=s s T{z)=s
Recall that
o = X Lgfiv - Ry v
T 9me th ’

since H¥ = 0. Hence, our lemma is proved.

Now let us prove Theorem 1.
Proof. As is well known, the Weyl symbol of the commutator of Weyl-ordered
operators with symbols a{p, z) and b(p, z) has the form

Oy =2 50 {3 (o~ o ge) M ez )

In (8) we pass to the limit as & — 0 and, taking into account (9) and (6}, obtain

dA
ES_ . {H(d)a AO}p:n (10)

where the braces denote the Poisson bracket and Ap = A(p,7,0). Since the
operator A is arbitrary, our theorem is proved.
Similarly, for a vector particle in the Riemann—Cartan space we have
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Definition 2. The states V of the quantum system (3) will be called semiclassi-
cally concentrated on the phase trajectory z(s) = (p,(s), 7"(s)) € CSp(=(s), 7(z)),
if

(i) the curve g#(s) is time-like, and there ezists a family of hypersurfaces
7(z) = s, given by the equation

9w {e(T)H(7)(=" — ¢(7)) = 0; (11)

(ii) for an arbitrary scalar operator A with symbol A(p, z, k), regularly depen-
dent on k on the hypersurface 7(z) = s, we have

lim(VIA[V)p = m(VIAIV), = A(p(s), (5),0); (12)
(iii) for an arbitrary 4 x 4 matriz T, for all values of & € [0, 1], there ezist

quantum-mechanical means

(VIFAIV)p  and (VITAIV),.
Here we use the notation
Uy, = / dE, UV, (13)
T(z)=s

Theorem 2. If the state {*(Z,t,k) of ihe quantum system (3) is semiclassi-

cally concentrated and belongs to the class CSp(2(s), 7(z)), then z(s) satisfies the

classical Hamilton system with Hamiltonian H\%)(p,z) = P, P¥ — m3ct.

To prove this theorem, we shall need:

Lemma 2. If V € CSp(2(s), 7(z)), then
%(Vlfi]V)p - %(Vl[;lp, A-v).. (14)

Proof of this lemma literally repeats the proof of Lemma 2.

Proof of Theorem 2. Let us expand the solution of the Proce equation in
eigenvectors of the leading symbol of the Hamiltonian calculated at points of the
phase trajectory z(s) [7]:

VH(Z, t7h) = eﬁ‘j(s)t}j(i', t, k), (15)
Ho(8)€75(s) = As(s)ers(s), (16)
where

L =_1__ Y a _ 2.2\ou “l.
HH 2mc[('PaP m*c”)6*, — P, PH];
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1
[ )‘a. — - o 2.2 — N
Ag — —2mc(’P P m°c’), a=1,2,3; 7
et = NP, Pets = 0.

Then, precisely as in the case of Dirac particles [2], we see that the scalar parts
of the functions ®7(Z,t, k) coincide and

lim 8%(z,t,5) = 0. (18)
Then for mean values of the scalar operator A we obtain
tim 2 (VIAV)p = B (V {[Fica, A8 = PP, A} - [P, A B)IV)..
Taking into account (17) and (18), we obtain

A = {H'9(p,z), A(p,2,0)}pz-

Since the operator A is arbitrary, our theorem is proved.
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SYNCHROTRON AND COMPTON MECHANISMS
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Abstract

T'he general expressions for the azion luminosity of a magnetized degener-
ate relativistic electron gas due to synchrotron and Compton mechanisms
are derived. Quantitative estimates for the neutron star crust conditions
are given. New upper bounds on the azion- electron coupling constant are
vbtained.

Introduction

Axion is the psendo-Goldstone boson associated with spontaneously bro-
ken the Peccei-Quinn (PQ) symmetry {1]. PQ symmetry gives a natural
solution of the strong CP-violation problem. Axion mass and its couplings
to stable particles are inversely proportional to the scale of the PQ symme-
try breaking v. The origial axion model [2] by S. Weinberg and F. Wilczek

assumes v = vgw = (\/fG,-) =y o 250 GeV where vgw 18 the scale of the
electroweak symmetry breaking. The standard axion is ruled out by exist-
ing experimental and astrophysical data (3]. Various invisible axion models
(with v » vpw) were constructed [4]. Axions couple to fermions (quarks
and leptons) with the axion-fermion couplings goy = cymy/v. Here c; are
the model-dependent numbers of order one, m; are the fermion masses.

The interaction axions o with fermions f is equivalent to the psendo-
scalar one in the linear approximation of the original PQ - Lagrangian ex-
pansion in powers of (a/v):

Loy = —igas (¥47°%y) a, ®)

where v* = —i9% y'429° . Dirac matrixes, the system of units: A = c = 1.

The effective Lagrangian (1) is used in our calculations.
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1. Invisible axions, if they exist, could carry away large amount of energy
from stellar interiors due to enormous mean free path lengths in matter of
typical astrophysical densities. The loss energy process in a neutron star,
particulary in its crust, may be described as relativistic degenerate electron
gas radiations by different mechanisms [5]. The external magnetic field
existanse in a stellar matter makes possible the synchrotron axion emission
by the electrons ¢ — e + a, forbidden in a free case.

The axion synchrotron luminosity, i.e. the epergy loss rate of the unit
stellar volume due to this process, is given by [6]:

Qasn =y [ L2 [arashnp () 1= np (€)), @)
(27)

where dIASR is the spectral distribution of the individual electron syn-

chrotron radiation intenmsity. The summation over the initial electron spin

states provides the statistical factor two. The integration is over the radi-

ated axion energy spectrum w and the initial electron momentum 7. The

factor expresses the Pauli’s exclusion principle nr (¢) [l —-np (e')], where

np(€) and np (e') are the Fermi-Dirac distributions for the electrons in the
initial and the final states with energies ¢ and ¢’ = € + w respectively

nr(e)= [exp (f—},—ﬁ) + ]] "1.

4
The Boltzmann constant is employed k = 1. The electron chemical potential
LB pxep = (3!211‘)1,3 ~ prp D> m (Ep: ‘/p}.+m2}, ne i8 the
electron concentration, T is the electron temperature.

The formula (2) is valid if the transversal initial and the final electron
momentums are relativistic: p; >> m, p) >> m. The magnetic field
strength is H << Hp = 4,41-1013G and the electrons motion is semiclassical:
pr >> T >> wp = eH/ep (in nonquantizing external magnetic field). The
main contribution to the radiation is produced by electrons with momentum
values I_p'l = pr located near Fermi’s sphere. There are two regions of the
temperature and densities permiting to estimate the axion loss energy rate
by analytical way:

HT >> T, 3)
)T << T,

where frequency w = T, = eHp%/m® corresponds to the spectral distribu-
tion maximum (see dJ45”/dw from (2)).
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The results for the both cases (i = 1,2) may be represented in the unified

form:

QAR = ™l T (HprVP,

where ¢ is the numerical coefficient: ¢ 8.6 .107%, wy =T, wy=T.

We also applicate the integral (2) to the case of the hot electror- positron
plasma (T >> pr >> m). The electrons and positrons are at phase equi-
librium to the photon radiation, so that the chemical potential is y = 0.
If the external magnetic field is nonquantizing T >> ¢HT?/m> the energy
loss rate is

10/3
ASR _ x4.2 eH\** (eBT?
ot =nit(7) (%)

This formula estimates the space-time interstellar matter axion emission.
2. In analogous manner we investigated the axion photoproduction by
the magnetized degenerate electron gas due to Compton mechanism e+y —
e+a. We use the same kinematics as in {7} for the Compton scattering process
e + 7 —» €+ v in external magnetic field.
In the most interesting case of low temperature values and high densities:
T << T, (see inequality 2) in (3)) the luminosity is:

13 a3 22/3
Ac _56.10%42 (PF H_ _T_)
QA% =56.10° gu(m) (1013) (109 .

3. The main astrophysical method to constrain novel particles properties
is the stellar energy loss argument:

Q (novel particle) < Q (standard),

where Q is the luminosity due to a certain paiticle emission. It is possible
to find upper bounds on the axion-electron coupling constant g,. by this
method exploring the magnetized neutron star model (exactly its crust).
We compatre axion laminosity due to Compton and aynchrotron~macllnisms,
QA€ and QASR respectively, with neutrino energy loss rate Q" (see (8]) due
to synchrotron mechanism playing a sufficient role in following parameter
range: at demsities: p = (107 + 10%¥) g/cm®, st temperatare: T = (10® =
101°)K and external magnetic field strength H = (10** + 10**)G. This
conditions are typical for the stellar shell. The best results for the axion-
electron coupling are obtained when the parameters p, T, H satisfy with Jow
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temperature band: T << T, (inequality 2) from (3)). For the case of the
axion synchrotron emission we set n, = 10¥cm =3, T =108K, H =
10'2G and demand: QASE << Q“*. The upper limit is: go < 5.4 -107*
{for the energy scale of the PQ-symmetry breaking: v & 10*%GeV). For the
axion Compton photoproduction the calculations sre performed for n, =
10%em=%, T = 10°K, H = 10'2G. The inequality: Q4AC << Q™
leads to goe < 3.1-10713 (v R 1.9 - 10°GeV). But we hope to improve the
latter result by taking into account the temperature contribution to electron

propagator.
I thank my advisor A.V.Borisov and O.F. Dorofeyev for their aid and

freitiul discussion.
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Abestract

[t is shown that o magnetic field produces the neutrino fluxr asymmerty ot
collapsing massive stars. This cnisoiropy is o possible cause of the non-
central supernova ezplosion. Observable characteristics of this phenomenon
are the non-uniform neutrino fluz, the Righ velocity of the pulsar cnd non-
sphesicity of the supernova shell

Supernovae are the most impressive explosions of stars [1, 2], in which a
potential energy of ~ 104°J is released. Type Il supernovae, which occar at
the 1ate of about 10 per second in the observable Universe sad which each
prodace abont 10% neutrinos of abont 50 MeV per explosion,

In 1934, Baade and Zwicky [3] showed ihat only one percent of this
emergy is sufficient to eject 2 shell and produce & supernova explosion. At the
beginning of the forties, Gamow and Schoenberg [4] proposed a mechanism
of enexgy release in ihe collapse of & star due to emission of nemtrinos,

A huge amount of energy is carried away by neuntirincs during a iime
~ 10~ gec, which is determined by the rate of the elementary weak process.

High deasities, values of temperature sad strong magnetic fields are char-
scteristic of the collapse of stars. Modern model scenarios of supernovae {see
e.g. [5-8]) make possible to take into account an ever wider set of factors,
but discussion of the role of the magnetic field is still only just beginning. In
particularly, the magaetic field influence on the neutrinos flux in SN1987A
was discussed in [9].

After P - violation discovery in f—decsy in external magnetic field by
Wa et al. [10] investigations of electromagnetic field influence on above-
mentioned reaction was performed [11-14]. Later it was demonstrated that
ander collapee conditions meutrino fluxes should be anisotropic omes [15,
16) (see also [17-20 ]). Dominant v aud 7 ejection opposite magnetic field
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direction leads to acceleration the amsing pulsar along magnetic field [15,
16, 21-24).

Among model explanations of high space velocities of pulsare there were
suggestions that these velocities are due either to the breakage of correlation
in double systems, or to the electromagnetic radiation of magnetic-dipole
nature, or to some accidental non-centralness of the explosion in a supernova.
For a certain sample of pulsars it is assumed now that the first two points
of view definitely cannot describe the observed values of the space velocities
of pulsars. In the third one the mon-centralness of the explosion is likely
to be explained with the anisotropy of newtrino fluxes. Neutrinos will leave
the star in an anisotropic way due to the influence of the magnetic field of
the collspsing star upon the electroweak neutriro-producing processes. The
anisotropy of neutrino fluxes may result in the acceleration of the pulsar in
the direction coinciding with the rotation axis of the pulsar.

On the basis of observational data on pulsar radiation in the radio range,
using a model of pulsar acceleration due to neutrino ejection, it proved to be
possible to establish an observational test [25-27} to determine the modulus
of the pulsar spatial velocity and thereby augmenting data on the observed
tangential velocities of pulsars. '

We should also mention the elongation of supernova shells, which is a
significant observed characteristic of supernova remnants [28]. Elongation
of & supernova shell along the direction of the pulsar rotation axis car be
explained by asymmetry of the fluxes of radiation and particles due to the
magnetic field of the pulsar through the region of its magnetic poles. Here,
one must also bear in mind that the rotation axis and the magnetic axis of
the pulsar do not coincide, that leads to a wider range of angles of escape
of the particles and radiation.

The development of the non-sphericity of the thrown away shell after the
blast of the supernova may carry traces of the same anisotropy, enhanced
by particle fluxes and the radiation from the magnetic poles of the pulsar.
The large axis of the shell observed upon the celestial sphere and hiding the
pulsar during the initial period of ite development will be an alternative to
the observation of the pulsar itsel the radiation of which does not reach
the observer at the Earth. Of course, one may hope that the observation
techrique will develop to an extent making it possible to detect the gignal
of the pulsar reflected from other bodies.

H. Bethe [29] argues that convective tustabilitios are occut in the wake
of the shock. These instabilities are caunsed by neuntrinoe, which interact
in such a way as to heat the maiter that lies by far below. The resulting
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convective overturn trapsports energy, a portion of which is available to do
work on the shock. Herant et al. [30] have extended this ideas. They tested
this phenomenon with two-dimensional simulations and found conditions
that yield vigorous explosions. The new calculations of Burrows et al. {31]
confirmed the overall success of the convective mechanism. They used the
best combined trestment of two-dimensional hydrodynamics, convection,
the equation of state and neutrino transport.

Some approaches to the interpretation of obeerved data, obtained with
the mse of the most recent technology, have not lead unfortunately to the
detection of a pulsar in SNI1987A at the predicted time moment. It has
not been detected up to now. This points to the overestimation of the role
of predictions of the steps of the scenarios of the supernova on the basis
of the hydrodynamical model calculations. According to our opinion, the
models whithout taking into account the role of the magnetic field overlook
important factors useful for the interpretation of the observed data of the
supemovae evolution.
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ADELIC WAVE FUNCTION OF THE DE SITTER UNIVERSE

BRANKO DRAGOVICH
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Adelic generulization of the wave function of the Universe, which takes into ac-
count usual and p-adic geometries, is considered. It is shown that there ezists
adelic wave function for the de Sitter minisuperspace model.

Since 1987, p-adic numbers [1] and adeles {2] have been used in theoretical
and mathematical physics ( for a review, see [3,4] ).

Any p-adic number z € @, can be presented by 2 canonical expansion = =
p’(ag + a1ip + w), vEZ, 0Lag <p- 1, where a; are digits and pis a
prime number. p-adic norm is non-archimedean ( ultrametric ) and for the above
representation one has | z ;= p~*. It is of special interest the ring of p-adic
integers Z, = {z € Qp :{ 2 [,< 1}.

Real and p-adic numbers can be unified by means of adeles. An adele is

_an infinite sequence & = (Boss @3-y Bpy oe-)y WheTe 8o € R, and ap € Qp with
restriction that a, € Z, for all but a finite number of p. Introducing A(S) =
B % [T,esQp X ;g5 Zp, where § is a finite set of primes, the space of all adeles
is a topological ring A = |Jg A(S)-

Ordinary quantum mechanics, which contains complex-valued functions of
real variables, can be generalized to p-adic quantum mechanics [5]) with complex-
valued functions of p-adic variables. In an analogous way one can formulate adelic
quantum mechanics [6], which unifies ordinary and p-adic quantum mechanics.

The physical meaning of p-adic and adelic quantum theory seems to be re-
alized in the context of the Planck scale spacetime. According fo quantum grav-
ity there is an uncertainty measuring distances, Az > Ip = vhGe=3 | where
lo ~ 10~2%cm is the Planck length. This can be regarded as a consequence of
spacetime quantization with elementary length ly. If we take lp = 1 then any
p-adic distance [, =| n [;< 1. -

Adelic quantum cosmology is the application of adelic quantum theory to
description of the Universe as a whole. In other words, it is adelic generalization
of ordinary quantum cosmology. If we wish to take into account all possible
geometries to study our Universe, then 2 natural mathematical instrument to do
that is just adelic theory.
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According to adelic quantum mechanics [6] the ground state of a quantum-
mechanical system is of the form

¥(z) = Yoo (Too) H ¥p(zp) H | zp I7), (1

p€ES pé¢s

L J
where (| z, |,) = 1if | 2, [,< 1 and Q(| 2, |,) = 0if | 2, [,> 1. Fora
particular cosmological model to be adelic, existence of the p-adic ground-state
wave function §2(| . |;) is a necessary condition.
According to (1) we formulate the adelic ground-state wave function of the
Universe as follows:

Yhij] = Yoo [(hij)eo] H Up[(Rij)p] H Q) (his)p I5]s (2)

PES p¢sS

where h;;, (hij)oo and (hij), are adelic, real and p-adic three-metrics on a com-
pact three-surface, respectively. For a reason of simplicity we consider here only
gravitational field with the cosmological term A.

As a starting point to obtain the wave function of the Universe in the real
case one takes a functional integral of the form

Toolhif] = / Xoo{=Soo[us )P (G )oo » 3

where x, is the additive character (exponential function). Integration is taken
over some class of four-metrics g, which induce the three-metric k;;. S is the
usual Einstein-Hilbert action with the cosmological term. In practice one usually
transforms (3) into the corresponding Euclidean version.

To perform p-adic generalization we first make a p-adic counterpart of classi-
cal action using its form-invariance under the change of real to the p-adic number
field. Then we generalize (3) and introduce p-adic complex-valued wave function

¥, lhis] = / X (= Sl9])D(Gu)s @

where x, is the p-adic additive character, i.e. Xp(z) = ezp(27i{z},).
Now, one can write down adelic wave function of the Universe,

Ui = [ Xl D)o [ [36-5P000p, )

which is the infinite product of (3) and (4). If one can obtain (2) from (5) we
will say that such cosmological model is adelic one, More precisely, in the case of
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a simple minisuperspace model, where the metric is described by a single scale
factor, after calculation of the integrals in (5) one has to obtain

¥(a) = Yoo(ae) [ ¥slep) JT M a5 15), (6)

peES p¢S

where a, @, ap are adelic, real and p-adic scale factors, respectively.
Using the Robertson-Walker metric of the form

ds® = —g7!(t)dt* + ¢(t)dD, (7

which is mathematically convenient in quantum treatment [8] the corresponding
adelic action is § = (Sooy 52,y Spy .-}, Where

sdil=3 [ a-£-2qrD), w=o2.) ®

is appropriately normalized and ) is a parameter proportional to the cosmological
constant A.

The minisuperspace propagator is Gy(g2,q1) = [dTK.(e2,T;¢,0), where
K.(g2,T;q1,0) is the usual quantum-mechanical propagator. After integration
the classical action (8) becomes

ATT? T (g-a)
= —— - 2 raliaes ] 9
Set =7 (Mg + @) ]4 7 9)
where ¢(0) = ¢ and ¢(T’) = ¢2. Since (9) is quadratic on ¢; and ¢q1, we have
-1
Ko(@2,T;61,0) = Ay(=8T) | 4T |o 2 xu(—Set) , where Ay(@) is a definite complex-
valued function [6).

According to the Hartle-Hawking proposal [8] the wave function is V.(q) =
G,(g,0). The p-adic wave function of the de Sitter minisuperspace model is

,\2Ta
ozt

. 2
vgn= [ ar S M-2E+ L5, a0

ITh<t  |4T |3

where we specified the range of integration taking T € Z,.
Now we shall show that the above adelic wave function has the form

¥(g,A) = Yoo(goos Aco) H V5 (gp: Ap) H Ul g lp)> (11)
PES PES

where S = {2,3,p1,---,Pn | Ap; |p.> 1,(i = 1,2,...,0)}.
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To prove (11) let us consider (10) for [ A [,< 1 and p # 2,3. Under these
conditions ¥,(g,)) = fITlpsl dTA,(-2T)| T I;%xp(—)‘—%z'- + -g;) , Where we used
the property A (a?b) = A,(b). Replacing the variable of integration T' by (8y)~1
we get Up(q,2) = [, 5, dvA(-1) | v 15 X 2L + o20).

For | g |[,< 1 we obtain ¥p(g,A) = Y2 p~ ¥ flylp=p" dudo (=) xp(0%Y) -
Taking into account that A (~y) = 1if | y |p,= p**, E;‘_:ll Ap(—y) = 0 if
|y lp=p**** , and

-1 .
Pz:(.'l_o)ez,r.'!::_" _ /P, ifp=1(modd)
T iyP, if p=3(modd),
where (%) is the Legendre symbol, one obtains ¥,(g,)) = 1.
To calculate the wave function for | ¢ |,> 1 it is convenient to introduce a
new variable of integration z by y = z+¢~'. Then one can show that ¥,(g,A) =

xp(—q)¥5(g,A), and since xp(—q) # 1 for | ¢ |,> p it follows ¥,(g,A) = 0.
According to the above results we can write

Up(g:2) = | g1p) (12)

yo=1 P

if[ A< 1andp#2,3.

Since adele A = (Ax, Az, ..., Ap, ...) contains | A, |,> 1 only for a finite number
of p, from (12) it follows (11). Note that obtained adelic wave function has also
a place if A and g are principal adeles, i.e. if Ao = A, € Q and ¢, = g, € Q for
all p.

Summarizing, it is obtained a remarkable result that in the de Sitter min-
isuperspace model exists ground state §(| ¢ |,) for all but a finite number of p.
By this way it is shown that there exists adelic wave function for the de Sitter
model of the Universe.

References

{1] W.H.Schikhof, Ultrametric Calculus (Cambridge Univ. Press, 1984).

(2] LM.Gel'fend, M.I.Graev and 1.LPiatetskii-Shapiro, Representation Theory
and Automorphic Functions (Nauka, Moscow, 1966).

(3] L.Brekke and P.G.O.Freund, Phys. Rep. 233 (1993) 1.

(4] V.8.Viadimirov, L.V.Volovich and E.ILZelenov, P-adic Analysis and Mathe-
matical Physics (World Scientific, Singapore, 1994).

[5] V.8.Vladimirov and 1.V.Volovich, Commun. Math. Phys. 123 (1989) 659.

(6] B.Dragovich, Theor. Math. Phys. 101 (1994) 349; Int. J. Mod. Phys. A10
(1995) 2349. ' ~

[7] J.J.Halliwell and J.Louko, Phys. Rev. D39 (1989) 2206.

[8] J.B.Hartle and S.W.Hawking, Phys. Rev. D28 (1983) 2960.

140



ON THE HISTORY OF THE SPECIAL

RELATIVITY CONCEPT

Alexei A.Tyapkin
Joint Institute for Nuclear Research
141980, Dubna, Moscow region, Russia
tyapkin@Ilshel9.jinr.dubna.su

ABSTRACT

This report contains to short excurse in the origin of relativity concept not
only for the purpose of supplement a widely spread one- sided image of this
important stage of the history of natural science, but also to mind those
forgotten approaches to the relativity theory construction that cast light on
its close relation to the concepts of classical physics. We emphasize some
statements of A. Poincare and H.A. Lorentz which help us tc penetrate
deeper into the essence of relativity theory.

1. INTRODUCTION

” .. Relativity burst upon the world,
with a tremendous impact. ...The
impact that relativity produced I
think has never been equalled either
before or since by any scientific idea
catching the public mind.”

Paul A. M. Dirac (1977)

The special relativity concept created in the the first years of our century,
initiated radical transformation of the earlier physical images and became
one of the grounds in modern physics. But in spite of its significant place
which this theory occupies in the system of modern scientific knowledge, in
the historical description of its origin a one-sided approach with substantial
gaps became, unfortunately, traditional. In this historiography the period
preceding the creation of the relativity theory turned out to be especially
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underestimated, i.e., it happened when the principle grounds of the new
physical theory were put forward to solve contradictions existing in those
times.

Such unattentive attitude to the appearance of the principle grounds of
the new theory is impossible to explain by to loss of scientific interest to the
historical details of the origin of the new scientific concepts. At the same
time the principle grounds of a more radical physical theory - quantum
mechanics, were developed in physics. But historiographers of quantum
mechanics have always regarded this period as a most important element
of the deviation from the old ideas of classical physics. The actual era of
quantumn mechanics is considered to have originated in 1900, the year when
M.Planck put forward the hypothesis of discrete energy states of a oscillator
and using it derived his formula for the equilibrium black-body radiation
spectrum. The subsequent A.Einstein’s idea (1905) of photons and L.de
Broglie’s idea (1923) of a hypothetical wave with a phase velocity related
to the velocity of a microparticle were also judged accordingly. In any case,
precisely these ideas were always stressed to underlie the wave mechanics
created by E. Schrodinger (1926). For a revelatory illustration of the flaws of
the historiography of special relativity it is useful to compare the respective
presentations of equivalent periods in the development of the two theories,
both of which form the foundation of modern physics.

No other physical doctrine excited such widespread interest, as the the-
ory of relativity. The unusual conclusions of the theory on issues seeming
most simple always aroused great interest outside the scientific community.
Most likely, it was actually because of this widespread popularity of the the-
ory of relativity, organized in the main by men of letters far from science,
that its historiographers deviated from an exact and objective description
of the history of this most outstanding discovery.

This story, how the historical gaps in the origin of the relativity con-
cept were eliminated in the second half of our century, is the subject of the
present report. We also consider those important statements A. Poincare
and H. A. Lorentz, which promoted the development of the deeper under-
standing of the essence of this theory.
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2. THE ORIGIN THE INITIAL IDEAS
OF SPECIAL RELATIVITY

"Experiment has provided numerous
facts admitting the following gener-
alization: it is impossible to observe
absolute motion of matter, or, to be
precise, the relative motion of pon-
derable matter and ether”.

Henri Poincare (1985)

The descriptions of the history of special relativity, at least those pub-
lished before 1954, contained no mention whatever of now the initial ideas
were formuiated during the period preceding its creation. Only the formal
utilization was noted, in the works by W. Voigt (1887) and H.A. Lorentz
(1892 and 1895), of "local” time in a moving system with the origin of time
depending linearly upon the space coordinate.

A truly novel contribution to the historiography of special relativity ap-
peared in 1954 in second volume of the histcrical work (1] by well-known
British mathematician E. Whittaker (the first volume was published in
1910). Whittaker was the first to point out that in 1899 the outstanding
French mathematician and theoretical physicist Henri Poincare expressed
firm belief in it being essentially impossible to observe absolute motion in
optical experiments owing to the relativity principle being obeyed strictly
in optical phenomena, also. The scientist confirmed his idea in a talk at
the Paris International Physical Congress held in 1900. E.Whittaker also
presented next excerpt about prediction new relativistic mechanics from
the talk delivered in St Louis Congress of Arts Science by Poincare in 1904
stating: "From all these results there must arise an entirely new kind of dy-
namics, which will be characterised about all by the rule, that no velocity
can exceed the velocity of light.” [1, p. 31].

The chapter of the book by Whittaker on special relativity gave rise
to lively discussions and, doubtlessly, aroused the big interest of many sci-
entists in independent historical investigations of the period preceding the
creation of this theory. As a result, not only was a more detailed inves-
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tigation of the works by Poincare indicated by Whittaker carried out, but
several of his publications [4, 5] were also saved from oblivion. It turned out
that the principle of relativity for electromagnetic phenomena was proposed
by Poincare even earlier. Thus, the words of Poincare, used as a epigraph to
this chapter, were taken by us from his article of 1895 [4]. Further, quoting
the Michelson experiment, Poincare stressed that theory must satisfy the
above law without any restrictions related to precision.

In paper [6] I personally drew attention to the fact that in the article
»Measurement of time” [5] published in 1898 Poincare, in discussing the is-
sue of determining the quantitative characteristics of physical time, arrives
at important conclusions, on the conventional essence of the concept of si-
multaneity, not only representing historical interest, but also permitting to
clarify the limited nature of the existing interpretation of the space-time as-
pect of special relativity. Poincare notes that the postulate of the constant
velocity of light "provided us with a new rule for searching for simultaneity”,
but concerning the assumption made use of here on the independence of the
speed of light for the direction of its propagation the author makes the fol-
lowing categorical assertion: "This is postulate without which it would be
impossible undertake any measurement of this velocity. The said postulate
can never be verified experimentally.”[5]. These profound arguments justi-
fied Poincare his article the following no less categorical statement: "The
simultaneity of two events, or the sequence in which they follow each other,
the equality of two time intervals should be determined so as to render the
formulation of natural laws as simple as possible. In other words, all these
rules, all these definitions are only the fruit of implicit convention.” [5].

These precious ideas of great thinker were not applied in any explicit
form in the creation of the special theory of relativity, unlike his assertion
concerning the principle of relativity being rigorously obeyed by electromag-
netic phenomena. Later, also, they were not realized; thus, for instance,
the conclusion was not comprehended that the concept of simultaneity, for
events occupying different sites, was based on measurement of the speed of
light in one direction being essentially impossible without the adoption of
a convention on the equality of velocities of light for processes propagating
in opposite directions. Convincing evidence that the essence of the above
issue was not fully realized by specialists is presented, as it is shown in my
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article {7}, by the publication in several central physical journals of propos-
als, based on false grounds, to measure the speed of light in a sole direction.
Such propesals always implicitly contradict the fundamental principle of
causality, and their publication in journals is just as inglorious for the pub-
lishers of respectable scientific journals, as discussion in the scientific press
of proposals aimed at constructing devices experiencing perpetual motjon.

A further development of the idea of determining time on the basis of
the postulated constancy of the velocity of light was presented by Poincare
in 1900 in an article on the Lorentz theory [8]. In this work the first phys-
ical interpretation was given of "local” time introduced by Loreniz as the
time corresponding to readings of two clocks synchronized by a light signal
under the assumption of a constancy of the velocity of light. This work was
ignored by traditional historiography, even though the explanation given by
Poincare of the essence of the proper time was repeated literally in 1505 in
a work by A.Einstein.

The works, in which the new transformations of space-time coordinates
that subsequently occupied the central place in the theory of relativity,
should also be attributed to the period preceding the creation of this theory.
In the literature the opinion is widespread that these transformations were
obtained in their final form by Lorentz in 1904. The fact is less known that
they appeared in the book "Ether and matter” by the British theoretical
physicist J. Larmor in 1900 [9}. And what is totally unknown to historians
is that Lorentz first derived the transformations, that subsequently became
known, upon the proposal of Poincare, as Lorentz group, in a work of 1899
[10]. In this article were supplemented by factor v = (1 — v*/&)™/* to
the transformations of coordinate ' = z — vt and time ¢ = ¢ — vz/c?
introduced earlier in the work of 1895 [13]. Only after this supplement new
transformations were brought in strict accordance with the invariance of the
Maxwell equations and made to satisfy the requirements of a group.

Thus, by the end of the past century the problem of explaining absence

1To the presented historical information one must add that the relativistic relation
for adding velocities was first obtained by Larmor (see Chapter XI, item 113 of the book
[11]) and that the author discussed also the relativistic effect of deceleration of time for
elet[:m;magnetic processes in a material system travelling through ether (see item 114
in [11]).
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of "ether wind” was quite ready for its ultimate solution by the above works
by Poincare, Lorentz and Larmor.

3. THE CREATION OF SPECIAL RELATIVITY

”... Relativity burst upon the world,
"The special theory of relativity is
not the creation of a single indi-
vidual, it is due to the joint ef-
forts of a group of great investiga-
tors — Lorentz, Poincare, Einstein,
Minkowsky.”

Maz Bore (1959)

The history of the concluding stage in the creation of the special the-
ory of relativity was only complicated by discrepancies in the estimation of
the significance of well-known parallel works and, hence, by the insufficient
attention subsequently paid to alternative approaches. These discrepancies
reflected, first of all, the objective difficulties in comprehending the theoreti-
cal constructions, in same cases, and of apprehending the logic of reasoning,
in others. But, regretfully, the tendentious attitude in singling out the rec-
ognized as the first one hindered objectiveness in estimating the significance
of various publications.

In 1921 an extensive article (about 230 pages volume) [11], written by the
future eminent theoretical physicist, at the time a twenty-years-old student
of the Munich university, Wolfgang Pauli, was published in the German
edition of the Encyclopedia of Mathematical Sciences. This article, later
published as book in various languages, still remains one the best expositions
of the fundamentals of the special and the general relativity. The article
began with a short historical stady, before the publication in 1953 of the
book by Whittaker was the most complete and objectuve review of history
of special relativity. .

In concluding a incomplete list of works were published during the period
preceding the creation of the theory Pauli singled out for further discussion
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"three contributions, by Lorentz [12], Poincare [13] and Einstein {14], which
contain the reasoning and the developments that form the basis of the spe-
cial theory of relativity”. Indeed, the grounds do exist for considering the
three authors of these fundamental works the creators of the special theory
of relativity, even though the contribution of each scientist differs from that
of the others. But, in spite of the great success of the article and book
by Pauli, many scientists subsequently ignored his historic estimation and
adhered in their scientific publications to the widespread version, presented
in popular literature, that the sole creator of the theory was Einstein.

The publication in 1935, in the Russian language, of a collection of the
classics of relativity, edited by V.K. Frederiks and D.D. Ivanenko (15] turned
out to be a digression from the obvious hushing up of the work of H. Poincare
{13]. Unlike the collection of the first works on relativity theory, published in
Germany in 1913, the Russian edition contained the principal work written
by H. Poincare in 1905 [13,b]. The editors pointed out, in the comments
to the articles included in the collections, that the main article by Poincare
"not only contains Einstein’s paralle] work, but in certain parts also the
more recent - by nearly three years - article by Minkowskii, and partly even
exceeds the latter” {15, p. 367], while the fact that this fundamental work
had been forgotten was classified as not having analogs in modern phisics.
But this high estimate of the work by Poincare only had some influence
among theoretical physicists, and did not become known to the historians
of science even in Russia. It is no chance that the high estimate of the
work by Poincare, given by the editors of the collection in the concluding
remarks, was supported and acquired further development in Russia in the
work of the next generation of physicists. Thus, in 1973 I compiled and
submitted for publication by ”Atomizdat” the most complete collection of
pioneer works in special relativity theory, which included translations into
Russian of articles written by Poincare in 1895-1906 [16]. Subsequently,
in 1984, A.A. Logunov published a book under the title "On the works of
Henri Poincare ON THE DYNAMICS OF THE ELECTRON” (17].

My proposal to publish a more complete coilection of works of the classics
of relativity is based on the example of the 1935 collection "The principle of
relativity”, which reveals that the publication of translations of the original
texts of forgotten early works by A. Poincare and G. Larmor would serve as
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the most objective and effective way to convince the readers of the decisive
role of these scientists in creating the concept of relativity and in prepearing
a scientific atmosphere for final solution of the problem.

In his book, dedicated to two 1905(06) publications by H. Poincare [13],
A.A. Logunov chooses a non-traditional form of exposition for analyzing
these works. Instead of usual quotations of fragments from the originals
under descussion, the book includes the complete texts of these two arti-
cles, published by H. Poincare under the common title of On the dynamics
of the electron”, which are time to time interrupted by detailed comments
written by A.A. Logunov. These comments, in the main, serve a sole pur-
pose: to show the profound physical meaning and the essential novenlty of
particular points and relations established by H. Poincare. Here, A.A. Lo-
gunov often inserts into the text of his explanations quotations from earlier
articles by Poincare. From these additions it becomes quite clear that the
main points of the new theory were put forward by the French scientist long
before 1905, while certain new concepts such as "local” time were given a
clear explanation of their physical meaning in his earlier articles. At the
same time, it becomes clear, how much better, from the point of view of
physicists, could the main article of Poincare, intended for mathematical
journal "Rendiconti del Circolo Matematico di Palermo” have become, had
the earlier explanations or, at least, references to his articles on such expla-
nations of the physical meaning, been utilized.

It is important to note that all the formulae in the articles by Poincare,
that are presented in A.A. Logunov’s book, are given in accordance with
modern notation, which essentially simplifies understanding the theoretical
relations.

To conclude this section we note that the history of the creation and
development of novel scientific concept is best studied making use of the
originals of scientific articles, access to which is significantly simplified ow-
ing to the publication of topical collection of old original articles. I have
no doubt that, upon acquaintance with the original works of the classics
of relativism, any benevolent reader will arrive at the conclusion that spe-
cial relativity was created by a whole of eminent scientists, — Poincare,
Lorentz, Einstein and Minkowski. I discussed detail principal significanceof
a contribution of every founder of this theory in concluding article in the
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Collection [16].

We now terminate the above fragmentary historical sketch the aim of
which was to draw attention to the ideas of Einstein’s predecessors, the
falling of which into oblivion doubtlessly impoverished the understanding
of special relativity for many years. The same idea concerning the limitation
of the understanding of this theory was expressed by A.A. Logunov in the
preface to his book [18]. by following words: "However, dogmatism and
faith, alien to science, but always accompanying it, have done their business.
Nearly up to our time have they limited the level of understanding and,
consequently, reduced the range of applications of the theory of relativity.”

Now we consider question about of the more profound conception of the
special relativity, following my book [19] which was published in Italy into
the encyclopedic series.

4. THE ESSENCE OF SPECIAL RELATIVITY

"The true relation between real ob-
jects are the only reality we are ca-
pable of apprehending.”

Henri Poincare (1902)

Further we must to realize that the relations are preserved plays a deci-
sive role here, totally in accordance with the simple, but extremely profound
assertion made by Poincare [20], adopted as an epigraph for this section of
the present article. The term "relativity” occuurring in the title of the the-
ory has a second unexpected justification. Besides the conventional meaning
used for establishing in the theory new quantities depending on the relative
velocity of motion of reference frames, the term "relativity” may be justified,
also, in that the new absolute quantities and invariant relations established
by this theory signify conservation of the relations between quantities de-
pending on the respective velocities.

Indeed, the main content of special relativity resides in the general prop-
erties of physical phenomena corresponding to the pseudoEuclidean geome-
try of the four-dimensional world, in which space and time join in a certain
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entity, independent of the relative motion of inertial reference frames. How-
ever, this extremely concise formulation, naturally, requires some decoding,
separation of the physical essence from the adopted form of its mathemati-
cal expression. It is even useful to digress some time from a form adequate
to the content and deal with another plausible expression, so as to reveal in
a clear manner the physical essence of the new theory.

The idea of the main content of special relativity was expressed by
Minkowski iz his famous talk "Space and time” by the following statement
termed by the author the postulate of the absolute world: ”... the postu-
late comes to mean that only the four-dimensional world in space and time
is given by phenomena, but that the projection in space and in time may
still be undertaken with a certain degree of freedom...” [21]. Minkowski’s
talk began with even sharper words concerning the arbitrariness that arose
in the new theory, when space and time quantities were considered sepa-
rately: "Henceforth space by itself and time by itself are doomed to fade
away into mere shadows, and only a kind of union of the two will preserve
an independent reality”. I do not think Minkowski termed these quantities
shadows, because in the new theory they became relative, dependent upon
the velocity of relative motion. Most likely, Minkowski implied arbitrari-
ness to signify the apparent contradiction of the obtained results: lengths
in each considered reference frame exhibit contraction with respect to any
other frame, clocks in each frame slow down relative to other frames. But,
anyhow, enrolling quantities in the category of fictions does not free one
from the necessity of clarifying the essence of the corresponding effects.

These the "miraculous” reversal of quantities, resulting from comparing
lenghts and time intervals, are due to transition from the simultaneity of
one frame to the simultaneity of anower frame. We see that the point is
that proper simultaneities adopted in different inertial frames differ from
each other. It remains for us to clarify the meaning of the central provision
of all the theory, the relativity of simultanety, in any words, to understand
which common properties of physical processes are reflected in the artifi-
cially chosen shift of origins of time at differing points of a moving inertial
reference frames. For ultimate clarification of this issue without renouncing
arguments based on common sense it is best to turn to the description of
velocities of physical processes in a moving frame within the Galilean ap-
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proach utilizing a unique simultaneity for the two frames being considered.

But before presenting the results of such an analysis we shall recall the
main advantage achieved by introducing a shift in the simultaneity along
the direction of relative motion of the frames. The shift in simultaneity
was introduced under the condition of constancy of the speed of light, and
as a result the independence upon direction is obtained of the velocities of
all physical processes in each inertial frame from sources at rest in these
frames. The calculus of space-time coordinates in each inertial frame was
also chosen under the condition that the principle of relativity be satisfied,
and therefore the laws of physics turn out to be invariant with respect
to relativistic transformations of coordinates. Precisely this represents the
content of the correspondence, noted above, of the chosen relativistic metric
to the poperties common to physical processes.

Now let us ponder over the main question: what significance has Na-
ture being consistent precisely with the special principle of relativity, and
not with the Galileo-Newton-Hertz principle of relativity? Clearly, it means
conservation of the form of mathematical equations expressing physicfl laws
only under the conditior that a relative shift in simultaneity be introduced,
when time coordinates of events are calculated in two inertial reference
frames moving relative to each other. This means that relative to the si-
multaneity in the initial frame K(z, t) the reading of a clock in the frame
K'(z', t') is ahead by a quantity, that increases linearly along the z’-axis.
This shift oa simultaneities does not violate the equivalence of the reference
frames, since the reading of the clock in frame K/(z, t) will be ahead rela-
tive to the simultaneity in frame K'(z', t') by a quantity increasing linearly
along the direction opposite to the z-axis.

Hence it should be clear how unjustified it would be to interpret the
spetial principle of relativity as the assertion of identity of hew physical
processes proceed in different inertial reference frames moving relative to
each other, if the identity of mathematical expressions for the respective
physical processes is achieved by taking advantage in these reference frames
of noncoinciding times, ¢ and ¢'. The point is that their main difference
consisting in the relative shift of simultaneities means taking into account
the general delay of processes along the direction of relative motion of the
frames. The principle of relativity being satisfied signifies conservation of
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kinematical similarity while all processes experience a common delay along
the z'-axis. This can be ultimately verified by considering the velocities of
processes in amoving inertial reference frame K'(#, t), the coordinates of
which are related to coordinates in the initial frame K(z, t) by the Galileo
transformations (1).

Indeed, for the absolute velocity of an arbitrary physical process repro-
duced at an angle 8 in a moving reference frame, utilizing the coordinates
Y=z—vuvt,§=y2 =2 # = t we obtain, in accordance with refs.
[6,19], the following relation:

uo(l ol 02/62)

172 R (1)
(1 — (v?/c?) sin® é’) ! + (ugv/c?) cost’

() =

where ug = const(§’) stands for the absolute velocity of the same process,
if the coordinates =/, y', z', and ¢' are used.

For the direction along the z'-axis (¢' = 0) and the opposite direction
¢ = r we obtain from (1) the respective velocities

iy 1-—v¥S 1 — 0¥/
H0) = w0 o 1) = oy

Hence for light (up = c) we obtain the velocities
#0 =c—v and @(x)=c+v

which correspond to the expressions of classical physics and to the problem
of "ether wind” that arose in this connection.

Consequently, relativistic theory introduced no changes directly into the
motion of a light front in a moving reference frame, while substitution of the
constant "¢” for the velocities (1) for all direction is due to transition in the
moving reference frame from space-time coordinates, K'(#', t), to the new
calculus of coordinates in the same inertial frame, K’(z’, ¢'). This coore-
sponded to the primary provision of the Lorentz theoretical construction
concerning the conservation, in an intact form, of classical electrodynamics
and optics. The same result transition from the velocities of light ¢ — v
and ¢ + v for opposite direction fo the constant speed of light "c” was
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interpreted by Einstein as the result of clarification of the true course of
time in a moving frame. We introduce into this assertion only a small, but
exstremely significant correction: chanding the notion of the true course of
time in some frame signifies a corresponding change of the general course
of physical processes in this frame, which can be clearly ilustrated within
the preceding approach involving a unique time & = ¢, or { = #, for two
inertial reference frame.

In the first case (f = t) we have isotopic velocities of physical pro-
cesses in the frame K(z,t) and we fix anisotropic velocities of similar phys-
ical processes reproduced in indentical conditions in another inertial frarme
K'(#', t). This dependence of the velocity upon the angle, represented by
relation (1), exhibits a remarkable peculiarity: in no real experiment can
it be distiguished from the case u = const(#), if in Nature there exist no
processes with velocities exceeding, within this version of the description,
the speed of light in vacuum, i.e. up < c. Relation (1) is, naturally, implied
to apply to all processes, without exception. The noted remarkable feature
of relation (1) follows formaily from the fact that the simple transfermation
of the coordinates of events from the fact that the simple transformation of
the coordinates of events from K'(z, t) to K'(z', t')? realizes transition to
the isotropic velocities u' = const(8). Doubtless, it is of interest, however,
to consider in detail the physical reasons underlying the indistinguishability
of the obtained angular dedependence (1) and the isotropy of velocities.

It lies in the general property of conservation of kinematical similarity
for all physical processes. The velocity angular dependence (1) exhibits the
same peculiarity consisting in that the relation between different processes
are essentially indistinguishable from the relations between the processes,
when the velocities of the processes are independent of the angle. Thus, in-
cluded in the general, and therefore nonobservable, effects is the difference
between the velocities of processes in opposite directions along the &’-axis.
The time required for a certain length to be translated in one direction dif-

3These coordinates of event are related according [18, p. 28} as follows:
" — 2. =W PR ! _ fla—2 _ =
T =7T; yl"'yn zl-z) f—‘)’[t'Y :cz]'

Here v = (1 — v?/c?)-V/2.
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fers from the time required for going in the opposite direction by the same
quantity for all physical processes. In other words, the difference between
the velocities of light in the positive and in the opposite directions for a mov-
ing frame, (1), encountered by classical physics is essentially nonobservable
in experiments performed in this frame, only because any other physical
process exhibits the same propagation delay in the positive direction with
respect to propagation in the opposite direction. Now, does such a nonob-
servable delay exist for all processes? It exists objectively with respect to
processes reproduced in similar conditions in another frame, convention-
ally regarded as the primary frame. The physical meaning of this delay is
totally equivalent to introduction in the moving frame of a proper simul-
taneity differing from the simultaneity of the primary frame. The limitation
of the orthodox interpretation of special relativity consists precisely in that
it actually does not reveal the true meaning of the relativity of simultaneity.

The orthodox interpretation of special relativity concentrated on sub-
stantiation of a proper basis for calculating space-time coordinates in each
individua! inertia! reference frame. Set aside was the approach initiated
by Lorentz, that was based on parallel consideration of two basises for the
calculus of coordinates in each of the two inertial reference frames being con-
sidered: K(z,t) and K(z, t') for one, and K'(z', ') and K'(#, t) for the
other. As a result of this economic approach the problem of substantiation
acquired a formal solution involving an essential rupture of the common-
sense logic. Preliminary consideration of the velocities of physical processes
expressed in unified Galilean scales in two inertial frames permits to ver-
ify in the simplest manner the relative difference between the courses of
processes in the direction of relative of the reference frames. All processes
proceed slower in frame K’, that in frame K, along the z-axis, but this
does not violate equivalence of the frames, since the opposite direction: all
the processes in frame K are delayed with respect to the processes in frame
K'. The assertion concerning the relative delay of velocities of processes
only reveals the physical meaning of the relativity of simultaneity. The role
played by the utilized Galilean scales on rulers and faces of clocks is the
same as that of reduction to common measurment units of the quantities
being compared.

The constancy of the velocity of light exhibite two different aspects.
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Thus, the initial provision on the independence of the velocity of light of the
motion of the source is something that can be checked experimentally. The
assertion of independence of the velocity of the motion of the reference frame
has another foundation. Here, instead of the velocities of other physical
processes in the given inertial frame is preserved. Precisely because of the
relation between the velocities of processes remaining unchanged the proper
time introduced in the given frame acquires the status of real time singled
out among all possible calculated times by a sole indisputable advantage - it
provides for the absolute values of velocities of physical processes originating
from sources at rest in the given refence frame being independent of the
direction of propagation.> But this advantage of choosing for each inertial
reference frame its proper basis for calcilating space-time coordinates must
not, however, over- shadow the objective relative difference between the
velocities along the direction of relative motion of two reference frames. It
is merely this fact that is expressed by the difference between the proper
simultaneities in these frames leading to the delay of all processes by one
and the same quantity depending only on the distance along the z-axis.

In the spirit of the ideas of Lorentz with respect to ether the "ether wind”
being nonobservable in the case of light could be explained by the corre-
sponding motion through ether influencing all physical processes. However,
imposition by such an explanation of the motion of ether secretly at rest in
the initial frame K(z, t) has no sufficient foundation, since, in considering
the propagation velocities of the corresponding processes, we obtain, utiliz-
ing a unique time { = #, asymetric velocities for the nonobservable "ether
wind” in the opposite direction in the initial frame K(z, t'). Therefore we
are justified in relating the discussed kinematical effects only to the fact
itself of relative motion, while their appearance should be explained by the
universal dependence of the dynamics of any whatever interaction upon the
velocity of relative motion.

3Precisely for this reason, to determine the proper time in some inertial refence frame
any physical process from a source at rest in the given frame can be utilized, under the
assumption that the velocity of the process be independent of the direction in which it
propagates. Besides this, clocks previously synchronized at the same point of the frame
and then slowly taken apart to difféfent points exhibit readings corresponding to the
proper simultaneity of the given inertial frame.
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6. CONCLUSION

"A problem arises only when we ...
assume or postulate that the same
physical situation admite of several
ways of description ...”

Albert Einstein (1949)

Revolutionary transformations of basic physical conceptions never pro-
ceed smoothly. Giving up conventional views is always painful. Smoothing
out the uneven development of knowledge proceeds gradually as the essence
of novel concepts is penetrated. Bridges across abysses and crevices separat-
ing levels of knowledge are most often built by new generations of scientists,
much later than when the new physical theory originates. The process of
extending the understanding of a fundamental theory lasts many decades
and develops along several main directions. One of these involves revelation
of the relation to preceding physical opinions and clarification of the actual
degree of novelty inherent in the primary provisions of the discussed theory.
Another approach is to clarify the limits justifying application of the theory,
based on further development of the understanding of the physical theory.

The latter type of development of the interpretation of a fundamental
theory lasts the longest, since it is completed only by the creation of a more
general theory ultimately establishing the limits of the given physical theory.
Thus, comprehension of classical mechanics, in this respect, was completed
only upon creation of the special and general theory of relativity and of
quantum mechanics, that imposed limits on its application and explained
the reasons of this limitation. The example of classical mechanics also clari-
fied the significance of the criticism, initiated by E.Mach, of the formulation
of its laws, originated with Newton, for the subsequent devitation from the
conceptions of classical mechanics.

It is no chance that these general issues, related to the knowledge of the
essence of physical laws, have been touched upon in the concluding part of
my paper on special relativity. I hope to convince the readers that further
development of the interpretation of the existing theoretical foundation of
the physical-science represents a most interesting sphere of scientific ac-
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tivity. The scope of such activities enhancing the profundity of scientific
truths, actually already established in physics, can be termed *Foundation
of physics”, after the title of the international journal that organizes suc-
cessful discussions of the investigations in this fascinating, and important
for the further development of physics, field of scientific activity.

The author sincerely hopes the analisis perfomed in this article and the
critical discussion of the simplest of modern physical theories will convince
the readers of the existence of more significant possibilities of fruitful ac-
tivity aimed at the developing the interpretation of other modern theories.
Thus, for example, in physics great efforts are still required for clarifying
such most important issues, as the reasons underling the appearance of en-
ergy nonconservation in the formalism of the geometrized relativistic theory
of gravity, and for explaing the astonishing interference phenomenon in ex-
periments involving individual quantum objects for which the theory till
now provides a formal description.

Truly, for fruitful activity in the indicated field it is important to free
oneself from the prejudice that a physical theory is completed, when a set of
mathematical relation is established that describes experimental facts in the
respective range of physical phenomena. It must become quite clear that
penetration of the essence of profound truths of truly scientific knowledge
of Nature merely originates with the establishment of rigorous quantitative
laws.
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MAXWELL FORM OF THE EINSTEIN EQUATIONS
AND QUASI-FRIEDMANNIAN COSMOLOGY

R.F.Polishchuk
Astro Space Center of the P.N.Lebedev Physical Institute,
Moscow 117810, Russia

The space-time V is a parallelizable differential manifold with tetrad field
€. = €4,(z)dz*. This tetrad and the constant metric g5 = diag(—1,1,1,1)
determine Riemannian metric g,, = g°*eq,es,, Riemannian connection V,,
d’Alembertian O = —V?2, Hodge operator #*, codifferential § = *d*, the
Laplacian A = d§ + dd, Ricci-tensor R, = (A — O)e;. We have (X is any

p-form)

¥1=|g |l/2 d*z, g=detg,,, *+)= (—1)”(4_”)(sgng)/\

*e, = *1 |Ker ea=| *€q | dazv

| *€g |2=I det(g#l/ - 6aea/.Leu.u) lKer e¢l

deq = —VPteu, =: K, = —€2d,1n | *e, [= Ko g™

a
Vi€ar = €aaplar — Kopw — Azpry € = € = guq
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v
Aoy = egvveau = Le.eu./.u 2Kauu = "'Lea (gpv - eaeuueuv)

Here | #¢, | is an elementary 3-volume orthogonal e,-lines, L., is a Lie
derivative along e£d,, @4, is an e,-lines curvature covector (for quasi-inertial
tetrad K, = 0 we have e*a,, = 0), K,,, is the external curvature 3-tensor
of the hyperplane field Ker e,(e,.dz* = 0),A,,, is an e,-lines rotation
3-tensor.

The orthogonal expansion for tetrad potentials are as follows:

€q = dau + Jﬂa + Ya = (ay.aa - V”ﬂavu + 74;;)‘11",

dy, =67, =0

de, = déf,, de, = éda, = 0a, = K,

Due to Einstein tetrad equation with a matter tensor T, we have R, =
8m(T, — Teaf2). A Maxwell equation (with the electromagnetic potential
A = A,dz* and with 4-current J) and the Einstein equation (with tetrad

current S, the Hamiltonian density S,,) are following

AA=4nJ, Ae, =8nS,

Sa =T, — Tea/2 4 Oe, /87

Soo = Too + T/[2 — appat + Kop K& + App A®
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For the Lorentzian gauge V*A, = V¥¢,, = 0 we have V*J, = V¥§,, =

0. In general case (with cosmological A-parameter)

dde, = 87S, — dK, + Ae,

The total 4-momentum for a gravitating physical system on any spacelike

hypersurface £ with 2-boundary 9% on V:

P, i=— / xde, = /E *(S, — dK, /87 + Ae,/8T) = const
b

For the trivial 4momentum we have de® = 0, e* = dz® (the Minkowski
vacuum). If e, = —dt then P, = 0, but P; # 0 in general case. In a quasi-
Newtonian gravitational field with a negative potential energy we obtain
S,, = —a?/8w, where a is a free fall acceleration. For weak flat gravitation

waves in Minkowski space hga(t — z) = —has, hos(t — =) we obtain

167|'S¢;o - (athZ)z + (a°h22)2

The energy-momentum pseudotensor is not required here.
The tangential deformation of elastic Minkowski vacuum giving the

Rindler vacuum

ds® = —dit® + dz* + dy? + d2° — ds® = e (—dt? + dz*) + dr? + dy?

changes his energy-momentum (now K3 = —ae™®* # 0).

That us take the gravitational Lagrangian L, in the following form:
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16wLy = —V,e,,V'e™ = R~ 2V*K, — K°K,, K, =€}K,

The gravitational field equations are as following:

Gu + Mz)gw = 81T, Az):= —%K“K‘l = _%[ﬁ

For the fixing the A - parameter we suppose in general case

Tan = —PeCap

This is the Ricci-canonic tetrad gauge condition. If T,, = 0 then
A = const. Here the matter tensor changes the vacuum energy-momentum

tensor

T =—Agu /87 = —Kzg,,,,/lﬁﬂ'

For the quasi-Friedmann model we have

ds? = —dt* + ®(t)(dx? + Z*(d#® + sin® 8dyp?))

X = (shx, x,sinx), k=(-1,0,1)

Tw=(p +P)copeav + PG, P=ap

. 1 P |
ai — Z(7 + 3a)a® + 5(1 +3a)k=0
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P 2k1 + 30‘( a J(s+3a)/2

74+3a a,

a=a,—+a=0, a=0—2a=0

Tl = (D), @ =04 = 24_133
A(t) = —( By - 9; i ‘;’a [k — k(aio)(7+3a)/2]a-z
(2 -T, jza)l/zt /[k k( )(7+3°)/2] 124,
3k/87r

pa3(1+a) M +

[6 + (1 4+ 3a)(— - —)T#32)/2q143e - M — const
ao

At the modern age @ = 10%cm, A(t) =~ 107 cm™2
The conservation of total (matter and vacuum) energy-momentum means
the creation of the matter (if k = 1). The change of the matter density at

the early age may be observed.
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On Weyl equations.

S.V.Kopylov
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Abstract

The conservation of the (y4 x £)-chiral charge is shown to result
in the states ¥1 and ¥2, being eigenfunctions of the (y4 x £)-chirality
operator: (ys x k). For these states significance the (v4 x k)-chirality
has certain values. These states break the invariance with re-
spect to rotations in three-dimensional configuration space, how-
ever they permit one to introduce mass members without breaking
the conservation of v4 x k-chiral symmetry and the corresponding
charge (as distinct from vs-chiral symmetry, which is broken by
introducting a mass).

Introduction.

The Pauli matrices algebra is known to be isomorphic to the quater-
nion algebra [4]. Thus all results obtained by useing the Pauli matrices
can be written in terms of the quaternion calculation. At the same
time it is known [2] that the quaternions can be derived from the
complex numbers by a so - called doubling procedure , as well as the
complex numbers are obtained from the real ones using the same pro-
cedure.

The next stage, of using the doubling procedure is a construction
of Cayley’s algebra , which requires giving up not only commmtativity,
but also associativity.

1 Operations in Cayley’s algebra.
Represent an element of the quaternion algebra in the form: ¢ = a+

bxi4+cxj+dxr, where a,b,c,d belong to a field, in particular,the
field of real numbers. The quaternions are added (substructed) and
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multiplied term by term, as polynomials, however it be always should
borne in mind that: F=ix jixj=—jx# IXI=jxj=Ffxf=—1.

An isomorphism of the quaternions and matrices o, follows directly
from the relation: 1 = I,i —ix0;,j =i x0y,f —ixos ( where i is the
usual commutative complex unity ). The element of Cayley’s algebra
is an octanion (Q): Q@ =g, +q x k ; where ¢, - are quaternions; as well
as in the case of quaternions k x k=-1kxi=—ixk, kxji=—jxk,
kxf=—fx k.

The octanions are added (substracted) termwise, as well as the
quaternions do. Multiplication in Cayley’s algebra is usually set by a
special table ( as is sometimes done for quaternions ). However,the
results of this table can be obtained by having used a number of simple
rules, which considerably simplifies a consideration from the technical
point of view. The objects (i x £),(j x k), (7 x k) should be considered
anticommutative with 1,57 k and between themselves ( similarly, in
the quaternions algebra , (i xj) anticommurtates with i and 7, but here
such a product is unique it is designated by 7) not to be confused. Thus
in Cayley’s algebra we shall have, e.g. (ixk) xi=—ix(ix E); ixk)xj=
—Jj%(ixk). Besides, as well as in the quaternion algebra, (ix k) = —(kxi).
It should noted, that the last operation (anticommutation) is feasible,
also for the objects being simmltaneously: one - inside, other - outside
of the brackets, therewith a preservation of brackets is necessary, e.g.
(ixk)xj=—(ixj) xk. Beingbased on these rules, it is possible to obtain
any result from the table of multiplication [3] of Cayley’s algebra.

Cayley’s algebra is not associative, the quantity being called an
associator [i x j x k] =i x (jx k) — (i x j) x k in this algebra, is not
equal to zero as easily calculable on the basis of the above-stated rules,
and 2 x i x (j x k), at the same time the antiassociator {ixjxk} =
i % (j x k)+(i x j) x k appears to be equal to zero.

2 Cayley’s algebra in the formalism of physical the-

ories.

As far as the the Pauli matrices formalism is a conventional one to con-
struct physical models, and the quaternion formalismis out of practical
use , we shall operate not with the quaternion algebra but with the
o-matrices algebra . An extension of the quaternion (o-matrices) alge-
bra up to Cayley’s algebra is realized due tu the object kt kxk=—1
unrepresentable in the form of a matrix. Applying the above rules of
products, but already not for 7, 7,7, and according to isomorphism, we
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shall have for i xo3, ¢ %01, i x03, e.g. (ixoyxk)x(ixoy) = —(i x01) x(ix0y xE).
Note that the written relation shows, among other things, the oppor-
tunity to omit comnmtative imaginary unity (3),1.e. the opportunity to
operate directly with the matrices I, 05, 03, 5, and the object & following
the same rules of multiplication.

3 Gamma — matrices.

As Dirac’s gamma-matrices are representable in the form of a direct
product of the Pauli matrices , e.g. 74 =038;7. =0,®0, (a=1,2,3);
¥s = 01®1, thus having extended the algebra {I, 0, } of two-row matrices
being in the right-hand side of the direct product up to the algebra
{,04, (00 X k), k}, we obtain, in addition, four 7*matries”: (7, x k)=
02 ®(0s X k) and (i x o2 ® I x k), where is the latter can be written in
the form o3 % 72®I X k=173 X5 X k. From the aforesaid it is clear that
751 743 Yai (Ya X £); (72 X 75 % k) will form nine anticommutating matrices,
each with the square equal to unity. It is clear as well that -, and ~;
commutate with k, and v, anticommutate with it.

The brackets here should be treated as well as in Cayley’s algebra
(it follows from the construction of y-matrices in the form of a direct
product, where Cayley’s algebra is realized in its right-hand side).

4 Operator part of Dirac’s equation.

It is of interest to consider possible modifications of the operator part
of Dirac’s equation based on the aforesaid. However simple modifica-
tions of the type v, x D, — T, x D, where I’y = v, x exp(ys x k x 8),
Po=79a % ex;(i:c X 6,), without summing over @, appear to be unitarily
reducible to the original form: v, x D,,where D, = (8, —i x g x A% x %),
Where t® — are gauge group generators.

§ Chiral symmetry.

Since the operator part of Dirac’s equation does not admit simple
modifications, it is of interest to consider invariant transformations of
wave functions arising as a consequence of the extension of the algebra
of y-matrices due to the element £.

It is possible to show that mass Lagrangian of the spinor field
is invariant with respect to the wave function transformations of :
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¥ = Qx ¥, where Q = py x (i X 74 X k) + pa X (i X 75 X 7 x k), and
pu X pp = 1,(p = 1,2,3,4). The operator Q is invariant with respect
to the parity transformations, charge conjugation and relativistic of
rotations (boosts), but is not invariant with respect to rotations in
three-dimensional configuration space. At the same time, due to rota-
tions of three-dimensional space the operator @ can be reduced to the
form Q = (i X 74 x k).

From the aforesaid it is clear that the Lagrangian can be represented
in the form of 2 sum of two parts with the wave functions U1 = (1—i xkx
~4)¥1 and ¥2 = (144 x kxy4) 2 respectively (similarly to decomposition
of the Lagrangian in a right — and left—hand side in the massless case).
Similarly it is possible to speak of conservation of the chiral charge
corresponding to the transformation ¥ — ezp(k x 74 x 6) x ¥, where 8
is an independent variable, but it already not a ys-chiral charge, and
(74 x k) is a chiral charge, without breaking the conservation of the
latter by an introduction of the mass member.
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HYDROGEN-LIKE ENERGY SPECTRUM OF THE EARLY UNIVERSE
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Abstract

The quantum birth of the Universe at Planckian densities is considered
allowing for some kinds of matter other than vacuum. The pre-de-Sitter
universe looks like a hydrogen atom with the energy equal to that of a
universe filled with relativistic gas.

From the viewpoint of the modern cosmologial concepts the de Sitter vacuum,
with the equation of state p = —¢, is believed to be an initial stage of evolution of
the Universe {1]. It decays into an expanding matter called the Friedmann world.
There arises a question: what was before the de Sitter stage? The birth of the
Universe is nowadays treated as a quantum tunnelling from ”nothing” to the de
Sitter vacuum.The idea of a quantum birth of the Universe was first proposed by
Tryon [2] and Fomin [3) and developed by many authors.

In the present paper the equaticns of state other than g = —¢ are taken
into account to obtain the wave function and energy spectrum of the gquantum
Universe as well as the penetrating factor giving the probability of its birth. The
problem is formuated as follows. From the Einstein equations for a hamogeneous
isotropic universe [4,5]

a2  4xGed? ke?
Tt 38 Ty W

4n1G(e + 3p)a
LA 2 (2)

where a is a scale factor; the parameter & = 0,+1,—1 for flat, closed and open
models respectively, for the equation of state

p= e (3)

we obtain the relation
éa+3(1+a)ae=0 (4)

at any k, which results in the formula

“ —3(I+a)
&€ =Epl (E) ' (5)
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where € = £, at @ = — 1 corresponds to the de Sitter vacuum.
The de Sitter vacuum has Planckian parameters. The quantization procedure
reduces to introducing a conformal time in (1) followed by replacing the generalized

momentum

oL da
p= da = d_ (6)
a(%) dn
by the corresponding quantum operator
-1 ,d
==l —. 7
P=3a @

As a result we obtain the Wheeler-DeWitt equation in minisuperspace depending
only on a scale factor

d¥p

S - V(e =0, (8)
DeWitt solved it for the case of a close universe filled with dust using the zero
boundary condition for the wave function at the origin [6). The energy spectrum
of the Universe proved to be oscillatory. Later Vilenkin considered a closed zero-
energy universe being born of a pure vacuum [7].

In the present paper the energy density is considered to be 2 superposition of
various kinds of matter satisfying the weak energy dominance condition for closed
models, namely: vacuum (a = —1), domain walls (@ = —2), strings (a = -1),
dust (@ = 0), relativistic ges (a = 1), bosons and fermions (a = %), ultrastiff
matter (o = 1).

Separating a term independent of the scale factor in the potential, we reduce
the Wheeler-DeWitt equation to the Schrodinger one with nonzero energy of the
Universe in an effective flat space behaving as a relativistic gas moving in the
field of other types of matter. The total emergy of the system is zero due to
a zero Hamiltonian in the Wheeler-DeWitt equation. This may be compared
with Rubakov’s results on the birth of relativistic particles, while tunnelling the
Universe [8]. The Schrodinger equation in the present paper was solved for three
cases. First, for nonzero contributions of curvature, strings and vacuum in the
potential. Near the minimum the solution is oscillatory as well as DeWitt’s. The
energy spectrum is described by the formula [9]

1
E~=rw(N+§), )
where B is a contribution of strings to the total energy density and
_ k= Eg

w= T. N=13,5,.. (10)
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The wave function satisfying the boundary condition %(0) =0 is

= %ew (—%fﬁ) Hn(v), (11)

where Hy is a Hermite polynomial, B is a contribution of strings to the total
energy density. The condition of level existence

EN < Uma:r (12)

takes the form .
3
(k- By)} >4(N+ 5). (13)

Second, in the pre-de-Sitter domain at small «y only terms with negative powers
of 4 may be retained in the potential. Then the Schrédinger equation reads

d2¢ Bs Bs 2F
dy? +<‘/+?+mp1c2 ¥=0 (14)

Its solution is the wave function [9]
¥ = Cp*He TP F(—p, 25 + 2,p), (15)

where F is a degenerate hypergeometric function satisfying the boundary condition
#(0) = 0,Bs and Bg are contributions of bosons and fermions and ultrastiff

matter respectively,

P=27\mn E n—~B5\/m2‘§, n—s—1=p=0,1,2,...; Bs>0,

s= —7 + ‘/ % — Bg. For Bs < there exist discrete levels (there occurs repulsion
for Bg < 0 and attraction for 0 < Bg < 1 at small v ). The energy spectrum of
the Universe is of the form

2
Ep=- L ’"P'c (16)

For |Bs| > p (Bs < 0) we have

E, = Bs’m i L _ _ﬂi (17)
? 3 8Bs 4Bgv/—Bs
Near the potential minimum at vy = —23'355 the spectrum is of the oscillator form.

For '8'%% < 1 the potential well is not too deep to create planckeons. For |Bg| < %
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(Bs >0, Bs<0), |Bs]<p(Bs< 0) the spectrum is hydrogen-like. Third,
for very small the solution reduces to

d%y
’72%+Bs¢=0 (18)

Its solution is given by the formula [10]

Crcos(blny) + Cy sin(blny), 8% = Bg — 41 > 0;
Y=73 C17t + Cav7?, br=1- Bs>0; (19)
C1 +Cslny, Bs =%

satisfying the boundary condition $(0) = 0.

For Bg > :— there occurs a fali to the field centre, which corresponds to
Eq = —co. Thus we see that the cosmological singularity does not prevent stable
existence of the quantum Universe for Bs < 41 as well as the Coulomb singularity
allows existence of stable atoms. The analogy between these cases was first
proposed by Wheeler in connection with the problem of relativistic collapse [11].
It is of interest to note that the Coulomb law for the Universe potential resembles
the asymptotic freedom in quark models of hadrons [4].

The WKB penetration factor reads

D=e3¢-B2% 4 _pats (20)

It should be mentioned that there exists an analogy between the tunnelling of the
Universe with strings and zero energy and the tunnelling of a particle through
a wedge potential {9], since the penetration factor of the Universe has the form
similar to those obtained for a wedge potential. The wedge maximum plays the
role of the model parameter of the Universe. The energy of a particle corresponds
to the contribution of the total energy density. The wedge slope corresponds to
the vacuum energy density.

The penetration factor has been first calculated by G.A. Gamow for the case
of radioactive nuclei alpha decay [12]. Gamow’s procedure was extended in [7]
to the case of the Universe birth from pure vacuum. In the absence of strings
(B2 = 0) only closed universes can be born from vacuum (for open ones a, as
well as V is imaginary), which is well-known . At the same time particles are
known to be born in an open universe with a spontaneously broken symmetry
when their energy density is negative [13]. In the presence of strings the birth of
the Universe becomes possible in open (fiat) models if B, < —1 (B; < 0), since
k— B, > 0 and hence V is real. The partial string energy density g5 = Biey~?
is negative in this case. Thus both processes (particle creation, giving rise to the
origin of matter in the Universe, and birth of the Universe itself ) go along similar

172



lines for open models. At the same time there exist examples of compact Hat and
hyperbolic spaces given by Zel’dovich, Starobinsky [14] and Fagundes [15] which
are allowed to be born of vacuum.

Iam indebted to A.L Studenikir for providing me the possibility of participating
in the work of the 7th Lomonosov Conference ” Problems of Fundamental Physics”.
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ON PARITY CONSERVATION IN WEAK INTERACTIONS
AND REASON FOR ORIGINATING SPONTANEOUS
B-DECAY
(the hypothesis and project of the test-experiment)
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Abstract

We suggest a new model of weak interactions which does not violate the
law of parity conservation. According to the model suggested interaction of non-
stable isotope or particle with a relic neutrino-antineutrino pair originates
spontaneous weak decay and its spontaneous parity violation. In this framework
we suggest a new interpretation of experimental results like those of Wu-type. To
verify the hypothesis we suggest a test experiment based on the predicted effect of
relic neutrino flow density - B-decay rate dependence.
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