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EDITORIAL

The Conference on "PROBLEMS OF FUNDAMENTAL PHYSICS" (the
7th Lomonosov Conference on Elementary Particle Physics) was held from 24 to 30
August, 1995 atMoscow State University, Moscow, Russia.

e conference was organized by the Interregional Centre for Advanced
Studies in cooperation with the Shooeltsyn lnstlrute of Nuclear Physics and the
results of a'sics of the Moscow State University and supponed by the Joint
l ‘ ror Nuclear Research iDubnai, the Ins‘drutc for High Energy Physics
:Protvi'o‘,‘ 7nd the institute for Nuclear Research (Moscow). and was also

It was more than fourteen years ago when the first of the series of
contorences. now called the "Lomonosov Conferences on Eiementary Particle
l'I’hysios”. was held at the Department of Theoredcal Physics of the Moscow State
university s'June 2983. b-‘loscowt Th second conference was held in Kishinev.
Pie L'olic of Moi 'ovla, USSR (May i9i'5'1‘

After the four years bred-1 Luis senes was resumed on a new conceptual basis
for the conference program 3e focus. During the preparation or" the Eliju.‘ conferenoe
{held in September 3989‘ Maykop, Russel a destre to broaden the programme to
include more general issues in particle physics became apparent. At subsequent
meetings in this series [August L990, Minsk, Repubiic of Belorussia. USSR: April
1992. 'i’aroslavi‘ Russia: August l993. Moscow. Russia} a wide variety of
interesting things both in theory and experiment of omicle physics. field theory.
gravitation and astrophysics were included into the program-nos During the
conference of l992 in Yaroslavl i: was proposed by myself and approved by
numerous panicipents that these imguiary held meetings should be transformed
into regular events under the title Lomonosov Conferences on Elements; Particle
Physics". It was also daided to enlarge the number or" organizations that would
retire ear. in preparation of future confer noes.

Mild-rail Lomonosov (27l H76 .l. a brilliant Russmn encyclopeudisr of the
era of the Russian Empress Catherine "is 2nd. was world renowned for his
distinguished contributions in the fields of science and am. He also helped estabiish
the high school educational system in Russia. Moscow State University was.

:1
U
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founded in 1755 based on his plan and initiative, and the University now bears the
name of Lomonosov.

The Sixth Lomonosov Conference on Elementary Particle Physics
"Cosmomicrophysics and Gauge Fields" was held at Moscow State University
(August, 1993) and was sponsored by the Interregional Centre for Advanced
Studies. The publication of the volume containing articles written on the basis of
presentations at the 5th and 6th Lomonosov Conferences was supported by the
Aecademia Nazionale dei Linoei (Italy).

The idea to devote the 7th Lomonosov Conference to "Problems of
Fundamental Physics" appeared because the year 1995 marked the ninetieth
anniversary of the special theory of relativity (1905), the eightieth anniversary of
the general theory of relativity (1915) and also seventy years after the foundations
of quantum mechanics had been formulated (1925 - 1926). That was the reason to
included the following set of items into the programme of the 7th Lomonosov
Conference:

1) Quantum mechanics and paradoxes,
2) Formdations and developments of theory of Space-time,
3) Frontiers of particle physics (the Standard Model and beyond, strings,

particle astrophysics, neutrino mass and oscillations).
The aim of the Conference was to review the present situation and results so far
obtained to the end of the twentieth century and discus perspectives for the future.

On behalf of the Organizing Committee I should like to warmly thank the
speakers and all of the participants of the Tth Lomonosov Conference. We are
grateful ii: the Directors ur' the SkabeE-tsyn institute of Nuclear Fri-15.133. Mikhail
Panasyui; and the Joint institute for Nuclear Research, Vladimir Kadys'nev '2 . and
the Dean, V'ladzrnir Trukjiin. and Vice Dean. Yury Pirogov. sf 1'1:- Fasuiqr of
Physics of the Moscow State University for the support in the organization of the
Conference. I should like to thank the Secretaries of the Conference, Vladimir
Galkin, Gennady Likhachev and Artem Mishurov.

These Proceedings were published by the Publishing Division of the
Interigional Centre for Advanced Studies. Special thanks are due to Vladimir
Galkin for his contribution in preparation of this volume.

Alexander Studenikin



ORGANIZERS AND SPONSORS

International Advisory Committee

C.AlIey (Univ. of Maryland), A.Banst (Trakya Univ. & Univ. of Colorado), V.Braginsky
(Moscow State Univ.), G.Diambrini-Pa.lazzi (Univ. of Rome), PEberhard (Lawrence
Berkeley Lab.), G.Ghirardi (Univ. of Trieste), A.Logunov (Il-IEP. Protvino),
V.Kadyshevsky (JINR, Dubna), V.Matveev ([NR, Moscow), V.Mi.khailin (Moscow State
Univ. & Russian Phys. Soc., Moscow), V.Mostepanenko (P'I‘I, St.-Petersburg),
MPanasyuk (INF, Moscow State Univ.), V.Ponomarev (AKATEX, Moscow), H.Ranch
(Atominstitute, Wien), C.Rebbi (Boston Univ.), L.Rcsvanis (Univ. of Athens &
"NESTOR" Coll), V.Ritus (Lebedev Physical Inst, Moscow), E.Sarris (Demokritos Univ.
of Thrace & National Observatory, Athens), F.Selleri (Univ. of Bari), D.Shirkov (JINR,
Dubna), A.Slavnov (Moscow State Univ. & Steklov Math. Inst, Moscow), A.Smirnov
(INR, Moscow & ICI‘P. Trieste), P.Spillantini (INFN, Florence), E.Squires (Univ. of
Durham), I.Ternov (Moscow State Univ), V.Trukhin (Moscow State Univ).

Programme Committee

Athens .3: "NE—STOP." COIN. PEbez'hard .M‘ncnc: Berkeley Lois}
R '0'. {Rum-.1“. Academy of Sciences .8: ICAS. Moscow). DGaltsm' (Moscow Szaze
Univ). Alarfiussis (Univ. of Pan-as). DKhr-Jszeiew fliescov." Snare Eniw. Vl'v’ieiniI-cov
(Russian. Cara-V. Soc. Moscow). A.I\'ik;shov (lebedev Physicai i—IESL Moscow}.
3.?fiéidiE-335mi (ICW. Tdesw}. FRau-ch {Aton‘inszimze Wien). C.Re—bbi (Boston
Uni\'.}, \".Ru'nai:c-v (LNR, Moscow). V'.Sarn'r; (EV'P, Moscow State Unit}. ESeHeri (Univ
of Bari). D.Siiiri:ov (J—DTR. Dubnaj. A.Siss:z.1;ian (DNR. Dubm}, ABlavnov (Moscow Scam
Univ. &: Srekiov I‘r’iath. lnsL Moscow), ESqL‘ires «Univ. of Durham). A.Studenikin
(Moscow Stale Univ. {3; XCAS. Moscow). AIyapkjn (.I'INR. Dubai-1), Yn.\"]adimircv
['tvioscow SL222 Univ). M.VysoLsky (ITEP. h‘ioscow).



Local Organizing Committee

V.Belolcurov (Moscow State Univ. & ICAS, Moscow), R.Faustov (Russian Academy of
Sciences & ICAS, Moscow), V.Galkin (Russian Academy of Sciences & ICAS, Moscow),
Aflyusnin (Moscow Stair: Lilian G.Liki:achc:‘-' (Moscow State Univ. & ICAS, Moscow),
A.Mi3hurov (Russian Academy v3: cicnces 8:. ICAS, Moscow). ASmdenikin (Moscow
State Univ. & ICAS, Moscow) - Chain-nun, Ytdimirov (Moscow State Univ.).

Sponsors

Intenegional Cenue for Advanced Studies
Skobeltsyn Institute of Nuclear Physics ofMoscow State University
Department of Physics of Moscow State University
Joint Institute for Nuclear Research (Dubna)
Ministry of Science and Technical Policy of Russia



List of Participants of the 7th Lomonosov Conference
Andrey AKI-IMETELY (Moscow, Rusia)
Victor ANIKUSHIN(Pushkino, Rusia)
EARTOBOLEVSKAYA (Moscow, Russia)
Vladislav BAGROV ('1‘omsk, Russia)
Vladimir BELOKUROV (Moscow, R-a)
Vladimir BELOV (Moscow, Rusia)
Vladimir BRAGINSKY (Moscow, Rusia)
V.BYKOV (Moscow, Russia)
Carlo COSMELLI (Roma, Italy)
Margarita CHICI-IIKINAaVbscow, Russia)
Giordano DIAMBRINI—PALAZZKRoma, Italy)
Pascal DEBU (France)
Mikhail DMITRIEVSKY (Moscow, Russia)
Antonio DI DOMENICO(Roma, Italy)
Oleg DOROFEEV(Moscow, Rusda)
Branco DRAGOVICI-I(Belgrade, Yugoslavia)
Andrew EGOROV (Moscow, R-Ia)
Rudolf FAUSTOV(Moscow, Russia)
Mikhail FILCHENKOV (Moscow, Rusda)
Colin FROGGA’IT (Glasgow, United Kingdom)
Vladimir GALKIN (Moscow, Russia)
Dmitry GAL'TSOV (Moscow, Rmm‘a)
Andrew GRIGORUK (Moscow, Russia)
Vera GRISHINA (Moscow, Russia)
V.GUSCHINA(Moscow, Russia)
George IROSHNIKOV(Dolgoprudny, Russia)
Vladimir I VASHCHUK(lVIoscow, RI-a)
Vladimir KADYSHEVSKY (Dubna, Rufiia)
Andrew KATAEV (Moscow, Russia)
Oleg KECHKIN (Moscow, Rusia)
Burkhan KERIMOV (Moscow, Russia)
Vladislav KHALILOV (Moscow, Russia)
Oleg KHRUSTALEV (Moscow, Russia)
Nikolai KLEPIKOV (Moscow, R—a)
David KLYSHKO (Momw, Rusfla)
Margarita KONDRATIEVA (Moscow, Russia)
Sergey KOPYLOV(Moscow, Russia)
Sergey KRUGLOV(Minsk, Belorussia)
PKUKI-IARENKO (Moscow, Russia)
Yuri KUKHARENKO (Moscow, Ill-a)
Larissa LAPERASHVILI (Moscow, Rusm'a)
Gennady Ll'KI-IACHEV (Moscow, Run-a)
Vladimir LIPUNOV(Moscow, Russia)



Andrey LOBANOV (Moscow, Russia)
Anatoly LOGUNOV(Protvino, Russia)
Valery LYUBOVITSKY(Dubna, Russia)
Boris LYSOV (Moscow, Russia)
Victoria MALYSHENKO (Russia)
Victor MATVEEV (Moscow, Russia)
Sergey MAYBUROV(Moscow, Russia)
Vitaly MELNIKOV (Moscow, Russia)
Artem MISHUROV(Moscow, Russia)
Vladimir MOSTEPANENKO(St. Peterburg, Russia)
Anatoly NIKISHOV (Moscow, Russia)
B.PAL (India)
Mikhail PANASYUK (Moscow, Russia)
Yuri PIROGOV (Moscow, Russia)
Rostislav POLISTCHUK (Moscow, Russia)
Yuri POPOV(Moscow, Russia)
Petr PRONIN(Moscow, Russia)
Vladimir RADCI-IENKO (Moscow, Russia)
Domingo Marin RICOY (Spain)
Vladimir RITUS (Moscow, Russia)
Valery RUBAKOV (Moscow, Russia)
Georgy RYAZANOV Moscow, Russia)
Victor SAVRIN (Moscow, Russia)
Evgeny SHABALIN(Moscow, Rusia)
Dmitry SHIRKOV (Dubna, Russia)
Kornelij SHOKIKIU (Moscow, Russia)
Vladimir SKOBELEV (Moscow, Russia)
Andrew S LAVNOV (Moscow, Russia)
Piero SPILLANTINKFlorence, Italy)
Alexander STUDENIKIN(Moscow, Russia)
Edward TAGIROV (Dubna, Russia)
Alexey TYAPKIN (Dubna, Rm)
Yuri VLADIMIROV(Moscow, Russia)
Mikhail VYSOTSKY (Moscow, Russia)
Vladimir YARUNIN(Dubna, Russia)
Boris ZAKHARIEV (Russia)
Vladimir ZHUKOVSKY(Moscow, Russia)



Programme of the 7th Lomonosov Conference

24 August, THU

PLENARY SESSION
V.A.Matveev, Fundamental Laws ofPhysics and the Dimensionality ofSpace-—
Time.
E.P.Shabalin, What’s the News on CP and CPT.
V.G.Kadyshevsky, Fennion Generations and Mass Scale Limit.
M.Vysotsky, Radiative Corrections in the Electroweak Theory.
E.P.Shaba1in, What's the News on CP and CPT.

AFTERNOON SESSION
D.V.Shirkov, Renommlization Group Simmetry and Lie Group Analysis.
G.V.Bagrov, V.A.Bordovitsyn & I.M.Temov, Synchrotron Radiation and Spin-
Light.
P.I.Pronin & K.V.Stepanyandz, New Algorithm for Calculation of One-Loop
Corrections in the Theories with Higher Derivations.
K.V.Shokikiu, Canonical Quantization ofDegenerate Anomalous Yang-Mills
Model.
I.V.Anikin, M.A.Ivanov, V.E.Lyubovitsky, The Extended Nambu-Jona-Lasinio
Model with Separable Interaction: Low Energy Plan and Nucleon Physics.
V.S.Yatunin & L.A.Siurakshina, Quantum Excitations of the Classical Bose-
Condensate.

25 August, FRI

: PLENARY SESSION
V.B.Braginsky, I)How to Isolate the Mirrors ofGravitational Wave Antenna;
2)How to Measure the Fase ofQuantum oscillator.
R.N.Faustov, V.0.Galkjn & A.Yu.Mishurov, Relativistic Description ofHeavy
Mesons.
O.A.Khrustalev & M.V.Chjchikina, Quantum Field in the Neighbour of the
Nonstationary Classical Field.
M.Polikarpov, Monopoles, Strings, and Confinement in Gluodynamics.
P.Debu, Measurments of CP and CPT Violation Parameters in the Neutral
Kaon System. .



A. Di Domenico, Testing Bell 's Inequality in the Neutral Kaan System at Phi-
Factory.

AFI'ERNOON SESSION
S.N.Mayburov, Quantum Measurments and Nonperturbative Quantum Field
Theory.
G.Chizov, V.Khalilov and V.Rodionov, A Colored -Fermion Triplet in the
Field of a Polarized Yang-Mills Wave.
V.V.Belokutov, Yu.P.Soloviev & E.T.Shavbulidze, Perturbation Theory in
Qaantwt: F[ell-'1 Theory Does Exist!
ViALysov & O.F.Dorofcev. 0n Manifold ofExact Solutions of the Problem of
Bomnizctiors of: Pair of ZED-Electrons in a Quantinizing Magnetic Field.
V.G.Bagrov & V.V.Obukhov, Exact Solutions ofEinstein—Dirac Equations.
O.F.Dorofeev, Effects ofAnisotropy in Supemovae.
S.'\".Kopy1cw, Or: We}! Equations.
S.nIOV. A pear production 5 ' as by a constant electromagneticfield.
S.Y.Sad0v_ Va riatfons of Tubes oieunes and the Einstain Equations.

26 August, SAT

PLENARY SESSION
G.Diambrini-Palazzi, A Method for Testing the Macroscopic Quantum
Coherence.
C.Cosmelli, Experimental Problems for Testing Macroscopic Quantum

Coherence with SQUIDs.
C.Froggatt, The Problem ofQuark and Lepton Masses.
P.Spillantini, SearchforAntimatter Component in Universe.
D.N.Klyshko & A.V.Masalov, Photon Noise in Optical Systems with Feedback.

AFTERNOON SESSION
I.V.Anikin, M.A.Ivanov & V.E.Lyubovitsky, Test of the Bjorken-Xu Inequality
for Baryonic Isgur—Wise Functions.
R.N.Faustov. V.O.Galkin & A.Yu.Mishurov, Semileptonic Decays of Beauty

and Charmed Mesons.
G.S.Iroshm'kov, Efi‘ective String Dynamics in Large N QCD Taking into

Account Quark’s Spin Degrees ofFreedom.
V.P.Bykov, Localization in Quantum Mechanics.
LDmitrievskiy, 0n Parity Conservation in Weak Interactions and Reason for

Originating Spontaneous fl - Decay.



28 August, MON

PLENARY SESSION
AM.Egorov, G.G.Likhachev & A.I.Studenikin, Neutrino Oscillations in Matter
and Magnetic Fields.
V.Ivashchuk & V.N.Melnikov, Multidimensional Classical and Quantum
Gravity.
B.C.Pal, Conceptual Development ofQuantum Mechanics.
N.P.Klepikov, Principles ofSpecial Theory ofRelativity ofParticle Systems.
V.M.Lipunov, High Energy Sources in Astrophysics.

AFTERNOON SESSION
P.A.Eminov, A.E.Grigoruk & V.P.Zlukovsky, Radiative Decay of Massive
Neutrino in the Weinberg-Salon: Model with Mixing.
V.V.Skobelev, Massive Neutrino Decay in a Magnetic Field.
V.G.Bagrov & B.F.Samsonov, Supersymmetry of Nonstationary Schroedinger
Equation.
A.Akhmcteli, Deterministic Subset aaxwell—Dirac Electrodynamics.
B.N.Za.khariev, New Rules ofQuantum Intuitions.
E.A.Tagirov, Quantum-Mechanical Operators of Operators of Observables in
Curved Space-Times.
M.L.Filchenkov, Hydrogen-Like Energy Spectrum ofthe Early Universe.
R.Polyschuk, Maxwell Farm ofEinstein Equations and Conservation Laws.
G.V.Ryazanov, Title to be announced.

29 August, TUE

PLENARY SESSION
A.Kataev, Status of the QCD Predictionsfor Z-decay Width and Deep-Inelastic
Neutrino-Nucleon Scattereing.
V.Rubakov, Relativistic Strings and Gravitation.
V.I.Ritus & A.I.Nikishov, Moving Mirrors Radiation.
B.K.Kerimov, M.YaSTafin, Properties of Neutrino and Structure of Hadronic
Neutral Current beyond the Standard Model.
A.A.Tyapkin, 0n the Story of the Spacial Relativity Concept.

AFTERNOON SESSION
Yu.S.Vlad.infirov, Binary Geometrophysics and Kaluza-Klein Theory.



V.M.Lipunov, K.A.Postnov, M.E.Prokhorov, S.N.Nazin & I.E.Panchenko,

Astrophysical Sources ofGravitational Waves.
Yu.A.Kukharenko & P.Yu.Kukharenko, Quantum Mechanics as a Classical

Random Proccess.
V.G.Bagrov, V.V.Belov & A.Yu.Trifonov, Semiclassically Concentrated States

ofCharged Particle in Curved Space-Time.
Yu. Kukharenko, P.Polishchuk, Non-Equlibrium States of Scalar Field in
Quantum Gravity.
V.T.Anikushin, Discreteness and a solution of Fundamental ems of Modern
Physics.
ADeriglazov & A.V.Galajinsky, Algebraic Motivations in Formulating the
Superparticle in a Curved Superspace and Supergravity.

V.V.Belov, M.F.Kondratieva, Dirac Brakcets and Equation for a Quantum
Average.
B.Dragovich, Adelic Wave Function of the Universe.

30 August, WED

PLENARY SESSION
D.V.Ga.l'tsov & O.V.Kechkin, Exact Solutions to Dilaton-Axion Gravity.

M.Yu.Khlopov, Cosmopam'cle Physics: A Way to True Theory of the Universe

and Microworld .7.
Yu.V.Pop0v, Many Body Problem in Atomic Physics.
A.A.Lobashov & V.M.Mostepanenko, Heisenberg Representationfor Creation-

Annihilation Operators in Non-Stationary Background.

A.A.Slavnov. Fermions in the Lattice Models of Quantum Field Theory.

XV





Quantum field perturbation theory with convergent
series does exist.

V.V.Belokurov 1,

Nuclear Physics Institute, Lomonosov Moscow State University, 119899
Moscow, Russia

E.T.Shavgulidze 2 and Yu.P.Solovyov 3

Department for Mathematics and Mechanics, Lomonosov Moscow State
University, 119899 Moscow, Russia

Abstract

Asymptotic expansions, employed in quantum physics as series of
perturbation theory, appear as a result of the representation of fun-a

tionei imegrais by power series with respect to coupling magi-9.3.1.
To derive these series oee has to change the order of iuocziorae. io-
tegration ani infinite summation. In general Case‘ 1.35 protedure
is incorrect and is responsible for the divergence of the asymomtic

expansions.
in the present work! we suggest a. method of construction of a new

perturbation theory. in the framework of iliis perturbation theory.

a. convergent series corresponds to any physical quantity represented

by a. modified integr'i. The relations between the reef-isms of
these series an-i those of the asymptotic expansions are estabijshedr

1E—mail: belokur©theory.npi.msu.su
2E—mail: shav©nwmath.msu.su
’E—mail: solo©difgeo.math.msu.su



1. Nowadays, perturbative quantum field theory is a very well developedtheory that can be considered as the most realistic theory of fundamentalinteractions [1]. in the framework of this theory, the coupling constant g-issupposed to be a small parameter and any physical quantity is representedby the expansion over powers of this parameter [2].
However, it is well known {3} that power series in quantum field theory

diverge and are nothing but asymptotic expansions of functions under studyin the region of sufficiently small values ofg. A sum offinite number oftermsgives an approximation to the function. But, for 9 fixed, irrespective of the
number of terms in the sum, the accuracy of approximation can not be
made arbitrary.

The power series divergence is due to nonanaliticity in coupling constantof the studied functions. In particular, they are known to have the essentialsingularity at g = 0 (see eg. [4]).
In this paper, we propose a new perturbation theory with convergent

series for any quantity represented by a functional integral. Here, we for-mulate the basic ideas of the method and apply it to obtain convergent seriesfor ordinary integral that can be considered as a toy model for functional
integrals in quantum field theory. In the following papers, convergent serieswill be obtained for functional integrals appearing in quantum mechanicsand quantum field theory. 7

2. Consider the ”zero-dimensional” analog of functional integral inquantum field theory with the interaction V = 943‘ (g > 0) , that is, the
ordinary integral

+oo

1(9) = / e—=’-fl‘dz. (1)
-00

If we expand the integrand into power series with respect to g and rearrangethe operations of integration and infinite summation
+°° co ( )n 00 n +00/ c":2 z :frz‘W: —v 2 (—_g')" / e'éz‘flix , (2)do “:0 . “:0 7:. _co

then we obtain the asymptotic expansion for g -+ 0)
m

E Fu 9" 1
"=0

_(-1)" 4n+1 _('—1)"fi(4n)!F“‘T!P(T)‘T! 27m (3)
2



The series is obviously divergent.
At the same time, for g > 0, the integral (1) is finite. And the result is

_ i L _1___"_ i L1(9)-exp(89)x. (89) fi-(29)%6XP(39)D-g( we) (4)
Here, K% is the Mcdonald function and D_§ is the function of the parabolic
cylinder.

To understand why the divergent series (3) appears for the convergent
integral (1), notice that the procedure (2) is incorrect. Actually, the condi-
tions for it to be correct are given by the following theorem ([5]):

Let (a, b) be a finite or infinite segment and u,.(z) be a sequence of real
or complex flmctions satisfying the following conditions:

(1) all u,.(z) are continuous in (a,d);
(2) the series 2:20 u..(z) converges uniformly on every finite segment in

(a, b),
(3) at least one of the expressions

5 0° 0° 5
[ (gouge. {Zn/Imm-

is finite. Then 6 0° 0° 5

j (E; 1141)) d: = Zia/"43M" .

It is easy to see that for the transformation (2) these conditions are not
fulfilled.

3. Now we are ready to formulate a method that gives us the possibil-
ity to construct a new perturbation theory with convergent series. Let us
consider the integral (1). Denote by .Slp) the Fourier transformation of the
function exp(-r‘) :

+00

¢(p) = bl? / Ewe-” dr . (5)
-W

For large values of [pl the following inequality takes place [6]

l" < __ 1+}l‘P(P)l .. Cexp( 5M ) - (6)

3



Rewrite the integral (1) as follows:

+00 +00 . l-

1(9) = f e": (] 93(9):?” ”dp) dz- (7)

In View of the equation (6) we obtain

{e-='¢(p)e"*~| sow-3w —z'). (8)
Therefore,the following Lebesgue integral

+60 +oo

/ / e-*’¢(p)e"*”dpdz (9)
-W —W

converges absolutely. Hence, the conditions for the Fubini theorem are
fulfilled and we may change the orders of the integrations with respect to p
and a: :

+00 +00 - *

I(g)= / MU e-w'e eds) dp- (m)
The integral I(_q) can be represented as a limit of proper integrals with

respect to p :

+11 +00

1(9) = '31;n / ¢(p)( Kayak) 4.0- (11)
—R co

If R is sufficiently large (R ~ — 1n 6) then the integral
+R +oo ‘

Jen) = / W) (/ e'*’e"*" dz) dp (12)
—R on

approximates the integral (1) with an accuracy 5 :

”(9, R) - I(9)| S a.
We will show that for any finite R, J(g, R), that is the regularization of

the integral (1), can be expanded into absolutely convergent series.



Expanding the function exp(igip:c) into power series and substituting it
into the integrand of (12) We obtain

+R +00 00 in % n n

J(g,R)= /¢(p)( e" (Z 173—) dz) dp. (13)
-R 00 n=0 '

Let us prove that here we can change the order of operations 2:0 and
+oo ,. ,
f . Consider the function exp (-%32) f7. . It has the maximum at the point

—00 '

a: = fl. 30, taking into account the Stirling formula. we get the inequality

< e'g'ni" Elfin; 1 ell"< = ,
— n! ”V2111???” \,’2'A'n£il (14)1 2:"(am—52*)?

From here, it follows that

CD+3 'n % n +00

J(g,R)= / «600(2'1.” (/ e-éz"dz))dp. (15)
—-R n=0 ' 00

Using the inequality (6) we also prove that

0° +R +00

«9.12) = 2 wrap / e-ézwz. (16)
ad) -R _°°

E{"91
11!

Now let us estimate the terms of this series and prove that the series

obtained converges absolutely. The series (16) looks as follows

CD

J(g, R) = 2 un(g, R) ' (17)
n=0

Since +00

W): s 51,; j dr = 741:1" (i) , (18)
we have

13"“
n + 1 ' (19)

+12

5 c / Ipl"dp = 20
.11

+11
.1 $30!)d

R



Taking into account the equation
+09

-:2 n __ 111:1), 11:2]:/e =dz_{ 0, n=2k+1 , (20)

and using the Stirling formula we get

1 JP“ n+1 3"“<_ T I.(__ < sh. 21|u,.(g,R)I — "1209 n+1 2 )'019 (ml-1)”. (242) ( )
Therefore, the series (17) converges absolutely.

Let us examine in more detail the structure of the terms of this series.
Rewrite the series (16) as

J(y, R) = g Q—Lfig’fr (3%) A3,,(R), (22)

where

+1! 1:“ +1! +00
_ 1: - n _ _ u —r‘ -I'pr __Anon—z 4w(n)pdp—2t£p (£8 e dr)dp-

1 +R+°°d"
-r‘ -|'2—1] /d1'—"e e ”drdp. (23)

-11-“,

We see that the Fubini theorem is applicable here and

slnrRr dr . (24)
+001 d- _,.

144R) — ;_Z ‘dr—ue

In view of the equation (20), the series (22) contains the even-numbered
terms only ( it follows directly also from the formula (24) which gives
Azk+1(R) = 0).

Consider the coefficients A“(R) at R large. First, notice that if we
substitute the limiting values

A..(oo) = gig;MR)



into the series (22) we get the divergent series (3). Actually,

+00 d4]; ‘ d0: co _r4 m _ E

(25)
501 F, 1 (4n + 1

= (4—n)'!‘r —) Aime”):2

Ila-+20») = gill—+2 (”2:30 (-r‘)"|)r=o ___ 0 . (26)
m!

For large R, we also have

lMiRl'Au(°°llS'C;(;jk—)e IAa+a(R)|s%R%fl, (27)
and 1 4 1n +_ ___ — <IF“ (4n)!r( 2 )“(Rll -

The method is also applicable for the integrals that lead to the so—called
nonperturbative contributions. The typical example is the integral

D(4n)
T'

+oo , 2

1(7) = / e"’(“"'5‘) dz (28)
~00

(see, e.g. [4]). The terms of the corresponding divergent series in the com-
mon perturbation theory have the same sign.

If we rewrite the integral (28) as

1(7) = exp (-fl) 706$t (29)

whe're P.,(:r) = ifz‘ — «7.23 + £ , all the above proof is valid and we get

J=JI+J25

co +°° VJ: = exp (-g) :2: fwmmi Pane-942, (30)
7



'47 H, (41: + 2)!
The convergent series that approximate integrals

27 °° 1 +°° i 1J2 = exp ('—) z —-A4k+z(R) / P~,+’(x)e""’"2dz. (31)

+00

10mg) = / e-"-'=’"dz (32)
-W

can be obtained in the similar way. The result is

Itm.g) = 1413130 J(m,g,R). (33)
J(m.g,R) = :0@fir (”T“) Au<m,R), (34)

+001 d“
Adm, R) = '1; d7. exP(-r

m sin Br
2 ) dr , (35)

1 +00

¢(m,p) .—. — / awe-r“ dr. (36)Zr
-ao

In this case, the parameter of power expansion is giif, and the absolutely
convergent series for Jim,g. R) can be divided into m convergent series with
the followmg powers of g :g#+”,gfi+", . . . .gzg—‘HJH‘ (r. 2 0‘1,...].

4. Now we generalize the suggested method for the multiple integral

1(9) = / e-W-9P<=)dz. (37)
RN

Here, P(::) is a nonnegative homogeneous polynomial of the fourth power
(P(z) Z 0, V: E R"). Let 0(2) = Pi'(z) . 0(3) is a homogeneous function
of the first order.

Then
+00

WP“) = / ¢(p)e"*'°‘=’dpdz. (38)
-W

where @(p) is defined by the formula (5).
The integral (37) satisfies the requirements of the .Fubini theorem.



Hence,

+11 *
' ~ - a: 2 I" :Whig/9"“) /8 n n 6.9 m )ds dp. (39)

-R N

Consider the integral

+12 .

mm = / «3m (hf e"""’e"*"’“’d=) dp (40)
.R N

Expanding the function exp (igi'pQ(z)) into the series and changing the
order of the summation and the integration we obtain

03Jon) = 2 figwm / Q"(2)e-"=*"dx, (41)
RNn=0

where A..(R) is given by equation (24).
Similarly to one-dimensional case, the series (41) can be divided into the

sum of two convergent series

J=J1+J2)

oo 1
_ 2

J1 = gmgkA4k(R) R/N P"(;;)¢ "Ill dz, (42)

oo_ __1_ I: k+% -||'=l|’ 43
J2 _ E0 (4]: + 2)!g fiA‘k“(R) 11/1; P (1)6 d: ( )

The generalization to polynomials of the 2m power is obvious. In that
case, we have

J(m,g,R)= gage/1mm /Q"(z)e-"="’dz, (44)_ m,
where Q(a:) = Pie-1(2) and An(m,R) is given by equation (35).

All these results are valid for the functional integrals in Euclidean quain-
tum field theory if the exponent in Gaussian measure is defined by means of
a. nuclear operator. In that case, the above proof can be generalized directly
[7].



5. Now let us discuss in more detail the main points where the suggested
approach differs from the standard one.

In the standard or common perturbation theory any quantum field func-
tion (written as a functional integral) is represented by a power series in
coupling constant 9; The series is divergent and can be considered as an
asymptotic expansion valid in the region of sufficiently small values of 9
only. A sum of finite number of terms gives an approximation to the func-
tion. But, for 9 fixed, irrespective of the number of terms in the sum, the
accuracy of approximation can not be made arbitrary.

The essence of the method suggested in this paper is in the following.
First, the initid functional integral 1(9) is approximated by some other
functional integral J(g, R) that depends on an auxiliary parameter R . An
arbitrary accuracy of the apprmfimation can be achieved "by the appropriate
choice of the auxiliarj~' parameter. Then, in some special way, the integral
Jail?) is expanded into absolutely convergent series. Wow, to calculate
the initial integral 1(g) with an arbitrary accuracy for every value of y it is
possible to take proper but finite number of terms in this series.

In the common approach, there are nonperturbative terms that can not
be calculated in the framework of standard perturbation theory in any way.
In the suggested approach, due to an arbitrary accuracy of calculation there
are no incalculable terms.

The convergent series of new perturbation theory have an unusual prop-
erty. Besides the terms with integer powers of the coupling constant g,
there are terms with firactional powers of 5,7. Although. for some first or—
ders of perturbation theory. the coefficients at these ”shadowy" terms are
relatively small, their contribution becomes significant for large orders.

We are grateful to D.I.Kazakc~v, V.A.Rubal<ov, D.V.Shirkov and 0G.
Smolianov for useful discussions and to S.O.Krivonos for the help in numer-
ical calculations.
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Abstract
Different approaches to the fermion mass problem are reviewed. We il-

lustrate those approacha by summarizing recent developments in models of
quark and True: mes: marrira. Dymemica} calculations of the top quark
mass are discussed. based on >3} infrared qua: ‘ecl palms oitvhe renormal-
Esatron group equations. and :"b‘; aha: mulzipie point Unreality principle in
the pure Standard IVloiiel. We 315: consider Yuhswa ‘Juificatlcn and mass
matrix texture. Models with approximately conserved gauged chiral flavour
charges beyond the Standard Model are shown to naturally give a fermion
mass hierarchy.

1 Introduction

The explanation of the fermion mass and mixing hierarchies and the three gen-
eration structure of the Standard Model (SM) constitutes the most important
unresolved problem in particle physics. We shall discuss recent developments in
three of the approaches to this problem:

1. The dynamical determination of the top quark mass.

2. Mass matrix ansitze and texture zeroes.

3. Chiral flavour symmetries and the fermion mass hierarchy"
Neutrino masses, if non-zero, have a difl'erent origin to those of the quarks and
charged leptons; we do not have time here to discuss recent applications of the so-
called see-saw mechanism, which seems the most natural way to generate neutrino
masses.
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2 Dynamical Top Quark Mass

There is presently a lively interest [1, 2, 3, 4] in determining the top quark mass m,
(or more generally third generation masses) dynamically. Most of the discussed
models lead to the top quark running Yukawa coupling constant g,(;t) being
attracted to its infra-red quasi-fixed point value. We have very recently pointed
out [4] that the top quark (and Higgs) mass can be calculated within the pure
SM, assuming the multiple point criticality principle. We now discuss these two
possibilities.

2.1 Top Mass as a Renormalisation Group Fixed Point
The idea. that some of the properties of the quark—lepton mass spectrum might
be determined dynamically as infrared fixed point values of the renormalisation
group equations (RGE) is quite old [5, 6, 7]. In practice one finds an effective
infrared stable quasifixed point behaviour for the SM quark running Yukawa
coupling constant RGE at the scale p a: m., where the QCD gauge coupling
constant 9301) is slowly varying. The quasifixed point prediction of the top
quark mass is based on two assumptions: (a) the perturbative SM is valid up to
some high (e.g. GUT or Planck) energ scale Mx : 1015 — 1019 GeV, and (b)
the top Yukawa coupling constant is large at the high scale 91(Mx) Z 1. The
nonlinearity of the RGE then strongly focuses gg(p) at the electroweak scale to
its quasifixed point value. We note that while there is a rapid convergence to the
top Yukawa coupling fixed point value from above, the approach from below is
much more gradual. The RGE for the Higgs self-coupling My) similarly focuses
My.) towards a. quasifixed point value, leading to the SM fixed point predictions
[7] for the running top quark and Higgs masses:

m. z 225 GeV my 2 250 GeV (1)

Unfortunately these predictions are inconsistent with the CDF and D0 results
[8], which require a running top mass m, 2 170 i 12 GeV.

However the fixed point top Yukawa coupling is reduced by 15% in the Mini-
mal Supersymmetric Standard model (MSSM), with supersymmetry breaking at
the electroweak scale or TeV scale, due to the contribution of the supersymmetric
partners to the RGE. Also the top quark couples to just one of the two Higgs
doublets in the MSSM, which has a VEV of v, = (174 Gev) sin [3, leading to the
MSSM fixed point prediction for the running top quark mass [9]:

m,(m.) : (190 Gev) sinfl (2)

which is remarkably close to the CDF and D0 results for tanfi > 1.
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For iarge tan :3 it is possible to have a bottom qua}: Yuisawa coupling satis-fying §b(.’»f;;j 2; i which then approaches an infrared (insulted point and is nolonger negligible it. the KGB for 9:01). indeed with tans? 2 mn’mgnmiimfl 2: 60we (23.11 trade the mystery of the top to bottom quark mass ratio for that of a
hierarchy of vacuum expectation vain-es. 13/122 2 m,(m._1/mi.’m;}, and have alithe :hird generation ‘r'uicawa coupling constants large:

9c(Mx) Z 1 9b(Mx) Z 1 97(Mx) Z 1 (3)
Then m” m. and R. = mp/m, all approach infrared quasifixed point values com-
patible with experiment [10]. This large tanfl scenario is consistent with the ideaof Yukawa. unification [11]:

9:(Mx) = 99(Mx) = 91(Mx) = 96 (4)
as occurs in the SOHO] S TSY-GUT model with the two MSSM Higgs donbiets in
a singie 10 irreducible representation and. ya 2 i ensures fixed point behaviour.
However 3‘1 should be noted that the equality in Eq. {'4} is oot necessary. sincethe weaker assumption of large third generation Yukawa couplings, Eq. {3}. issnfiicierxt for the Fixed point dynamics to predict [raj the rvmniag masses m; 2
18C GeV. #25 2 4.1 Ge‘." and m. z .8 GeV in she Large taut? scenario. Also the
iightest Higgs particle mass is predicted to be Why 2 3.20 Gel." (for a top squarkmass of order 1 T'e'v'}.

The origin of the large mice of Lanfi is of course a pczzie, which must besolved before the iarge taco scenario care be said to explain the large m,/m.gratio. it is oossibée to introduce approximate symwtries (1'2, 13} of the Higgsoctagonal Wi’fiL‘i‘i ensure a hierarchy of act-urn expeceation value-.4 - a. Pecaei—Qriinnmote-cm aad a continuous 7?. symmetry have been used. However these srma
n the popular scenario of universal soft 51'3“.“— breakingmass parameters at the unification scale and radiative electroweal: symmetrybreaking Il4-. Also. is; the large tanfi scenario. SUSY radiative corrections tom; are genaicaiiy large: the honor}; quark mass gets a contribution propor-tional to 1‘3 from some one-300p diagrams with internal superpartners, such astop Squash-charged Higgsirio exchange . whereas its tree level mass is pyopor‘tionaiso 1:; = ‘ tan 3. Consequently these loop diagrams give a. fractional correction

Jmelfmb tc the bottom quark mass proportional to tan ,3 and generically of orderunity [13. 14]. The presence of the above-mentioned Peccei-Quinsi and 7?. sym-metries and the associated hierarchical SUSY spectrum (with the squeal-:5: muchheavier than the gauginos and Higgsinos) would protect m; from large radiativecorrections. by providing a suppression factor in the loop diagrams and givingaimbf'mi Q 1. However. in the absence of experimental information on the super—partoer spectrum. the predictions of the third generatioc- quark—lepton masses iathe large tar-.3 scenario must. unfortunately. he considered unrefia'oie.
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2.2 Criticality and the Standard Model

Here we consider the idea [15] that Nature should choose coupling constant val-
ues such that several “phases” can coexist, in a very similar way to the stable
coexistence of ice, water and vapour (in a thermos flask for example) in a mix-
ture with fixed energy and number of molecules. The application of this so-
called multiple point criticality principle to the determination of the top quark
Yukawa coupling constant requires the SM (renormalisation group improved) ef-
fective Higgs potential to have coexisting vacua, which means degenerate minima:
Veuwman 1) = V¢JJ(¢m-‘n 2). The important point for us, in the analogy of the
ice, water and vapour system, is that the choice of the fixed extensive variables,
such as energy, the number of moles and the volume, can very easily be such
that a mixture must occur. In that case then the temperature and pressure (i. e.
the intensive quantities) take very specific values, namely the values at the triple
point, without any finetuning. We stress that this phenomenon of thus getting
specific intensive quantitities is only likely to happen for stongly first order phase
transitions, for which the interval of values for the extensive variables that can
only be realised as an inhomogeneous mixture of phases is rather large.

In the SM, the top quark Yukawa coupling and the Higgs self coupling cor-
respond to intensive quantities. like temperature acid pressure. Ifthese couplings
are to be determined by zhe criticaiit} condition. the two phases corresponding
to the two effective Riggs field potential minima. should have some “extensive
quantity”, such as f d‘zlflzfl’, deviating “strongly” from phase to phase. If, as
we shall assume, Planck units reflect the fundamental physics it would be natu—
ral to interpret this strongly first order may “ ' requirement. to mean that, in

E’lanci; units. the extensive 'x'?.L'ir.'L‘-l£‘ Ol‘ii?i»:9n —.-—' , 1:2“: : :1 lo,"- > for the two
4

Teena should differ by a quaniity of order 112:}: Phenomenologicafly we know
that for the vacuum 1 in which we live, < ¢ >uawum 1: 246 GeV and thus we

should really expect < 45 >.,.ew,,, 2 in the other phase just to be of Planck order
of magnitude. In vacuum 2 the (#4 term will a priori strongly dominate the ¢2
term. So we basically get the degeneracy to mean that, at the vacuum 2 mini-
mum, the effective coefiicient Mona”... ;) must be zero with high accuracy. At
the same (Ii-value the derivative of the renormalisation group improved effective
potential Ve”(¢) should be zero because it has a minimum there. Thus at the
second minimum the beta-function fl), vanishes as well as A(¢).

We use the renormalisation group to relate the couplings at the scale of vac-
uum 2, Le. at p = mum”. 2, to their values at the scale of the masses themselves,
or roughly at the electroweak scale p N 4).,“q 1. Figure 1 shows the running
«\(qb) as a function of log(¢) computed for two values of ouwm 2 (where we im-
pose the conditions fl, = A = 0) near the Planck scale M“and. z 2 x 1019 GeV.
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Figure 1: Plot of A as a function of the scale of the Higgs field d) for degenerate
vacua with the second Riggs VEV at the scale (a) 4).,“q 2 = 1020 GeV and (b)
:15“q 2 = 1019 GeV. We formally apply the second order SM renormaiisation
group equations up to a scale of 1025 GeV.

Combining the uncertainty from the Planck scaie only being known in order ofmagnitude and the aqcfifilzj = 0.117i0.005 uncertainty with 1hr- caicuiational
uncertainty . we get our predicted combination of top and Riggs poi-e masses:

Mg = 173 :i: 4 GeV M3 = 135:1: 9 GeV. (5)

3 Anséitze and Mass Matrix Texture
The best known ansatz for the quark mass matrices is due to Fritzsch [16]:

0 C 0 0 C" 0My: 0 o B MD=(C’ o B’ (6)
0 B A 0 B’ A'

where it is necessary to assume: [AI >> i8] > ICI, IA'i > IB’I > [0’] in orderto obtain 2. good fermion mass hierarchy. HOWever, in addition to predicting
a generaiised version of the relation El: 2 a: for the Cabibbo angle, which
originally motivated the ansatz, it predicts the relationship:

Ilgl /fl_e-i¢2 [E
m], m;
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which cannot be satisfied with a. top quark mass m, > 100 GeV [17]. Consistency
with experiment can be restored by, for example, introducing a non-zero 22 mass
matrix element [18]. In fact a. systematic analysis [19] of symmetric quark mass
matrices with 5 or 6 “texture” zeros at the SUSY—GUT scale has been made,
yielding 5 ansa'tze consistent with experiment. Recently ansatze incorporating
the Georgi-Jarlskog [20] SUSY—GUT mass relations between leptons and quarks,
mb(Mx) = m,(Mx), m,(Mx) = m,(Mx)/3 and md(Mx) = 3m,(Mx), have
been studied. In particular a. systematic analysis of fermion mass matrices in
30(10) SUSY-GUT models [12, 21] has been made in terms of 4 effective oper-
ators. A scan of millions of operators leads to just 9 solutions consistent with
experiment of the form:

0 3710 0 0 C 0 0 C 0
Y. = (go 0 $1,113) Y, = (0 Be“ 11,3) Y. = (C we“ :43)

0 suB A 0 1:43 A 0 1:.B A (8)

For each of the 9 models the Clebschs 1:; and :5 have fixed values and the Yukawa
coupling matrices Y.- depend on 6 free parameters: A, B, C, E, d) and tan fl. Each
solution has Yukawa unification and gives 8 predictions consistent with the data.

4 Chiral Flavour Symmetry and the Mass Hierarchy

It is natural [5] to interpret the fermion mass hierarchy in terms of partially
conserved chiral quantum numbers beyond those of the SM gauge group. Mass
matrix elements are then suppressed by powers of a. symmetry breaking param-
eter, which may be thought of as the ratio of the new chiral symmetry breaking
scale to the fundamental scale of the theory. The degree of forbiddenness of a
mass matrix element is then determined by the quantum number difference be-
tween the left- and right-handed SM Weyl states under consideration and the
assumed superheavy fermion spectrum. For example the four efl'ective operators
in the ansatz of Eq. (8) can each be associated with a unique tree diagram, by
assigning an approximately conserved global U(1)I flavour charge appropriately
to the quarks, leptons and the superheavy states, which are presumed to belong
to vector-fike 80(10) 16 + E representations. The required parameter hierarchy
A > B, E I» C is naturally obtained in this way and, in particular, the tex-
ture zeros reflect the assumed absence of superheavy fermion states which could
mediate the transition between the corresponding Weyl states.

We now turn to models in which the chiral flavour charges are part of the
extended gauge group. The values of the chiral charges are then strongly con-
strained. by the anomaly conditions for the gauge theory. It will also be assumed
that any superheavy state needed to mediate a symmetry breaking transition ex-
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ists, so that the results are insensitive to the details of the superheavy spectrum.The aim in these models is to reproduce all quark—lepton masses and mixingangles within a factor of 2 or 3.
Ibanu and Ross [22] have constructed an anomaly free M5'SM x U(1),model. The [1(1), charges assigned to the quarks and leptons generate Yukawa

matrices of the following form:

:5 e3 6‘ 6‘ E" E4 25 €3 0
Y z 63 62 6 Yd: E‘" E2 E Y1: E3 E 0 (9)

6‘1 E 1 5‘ E 1 0 0 1
which are symmetric up to factors of order unity. The correct order of mag—
uit do for all the masses and mixing angles are obtained by fitting 5, E and

I“ This is a large tan} 2 112,,“772; :nodei. bur not necessarily having exact
‘i’ulcawa Jl" rcetiori. The L7 ”U symmetry is spontaneously broken by two Riggs
singlets. E? and ti. h'ving H l; char +1 and —1 respectively and equal rec.—
uor: expectation values. The L'IjllfiUvj'l'J- gee e anomaly vanishes The [551)?
anomaly and the minced (1(1); it? ' .‘ - againsi un-

-' cancellation

.r

._.
r«

0'a
specified 3; eciator particles merit
of the :mxecl o‘c'iljlgb'gfllf. EDT? E
sihle in Lbe context of superstriog theories via the GreenASchwai-z mechanism {23]Fill; sin2 63p, : 3/8. Consequently the l'
Liege-ti ‘ below the string scale.

'3 a: 1:! £1
. .4 1»
: E 0 El 1- 1:: :h [1'

] .... m 0 E “I r

(1)., symmetry is spontaneously broken

A rumber of generalisetions of rhis model has been considered during the am;
year. By using non—symmezric mass matrices an anomaly free model has is o
constructed e] without the nee-cl for the Green‘Sct-“z mechanism. Modes
have eisc been considered [24. 2.5;. in which the Will symmetry is broker: by
just one chiral singlet field 6 having a fill}; emerge. say, —1. IL their follows. from
the hoiomorphjcity of the superpotemi" . Ell‘t only oositive ("(1 )1 charge differ-ences between iei'a and righr handed Weyi scares can be balaicec‘a by :9 tadpoles.
Consequentiy mass matrix elements corresponding to negative UH}, charge dif-ferences lzaye texture zeros [26L Furthermore ifthe two Higgs double: fields carry7(1); charges that do not acid up to zero. the cflzflg term is forbidden in the
superootenfial :27]. Finefly we remark that in efl'eccive superstring theories the

L

1'3
.-

r
...

.

1-"(l , symmetry can be played by modules symmetry {‘21, with the.Ulji}; charges replaced by the modular weights of the fermion fields.
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Relativistic description of exclusive weak
decays of heavy mesons using heavy quark

expansion *

R.N. Faustov, V.O. Galkin and A.Yu. Mishurov
Russian Academy of Sciences, Scientific Council for Cybernetics,

Vam'lov Street 40, Moscow 117333, Russia

Abstract

The decay matrix elements of exclusive weak decays of heavy mesons
are studied in the framework of the relativistic quark model based on the
"H-ci- '- " i an; ash .7! qnanzum fr: ' them} it is shown that the heavy

_, mp; “ the analysis both for heavy-
a'v'j' andi _a-._ ___t __-_P.}‘.S. The .‘Gmg‘rarisenismadewith the model—

independent predictions of heavy quark effective theory and available exper-
imental data.

w

1 INTRODUCTION
The investigation of weak decays of mesons is important for the determination
of the Cabibbo—Kobayashi—Maskawa (CKM) matrix elements and testing quarkdynamics in a mason. Recently a significant progress has been achieved in the the—
oretical understanding of weak decays of mesons and baryons with heavy quarks.
It has been found that in the limit of infinitely heavy quarks new spin—flavoursymmetries in the heavy-tdheavy weak transitions arise [l], which considerablysimplify their description. All weak decay form factors become related to a singleuniversal form factor — Isgur-Wise function [I]. This aIIOWS to get some model—independent predictions and establish relations between different decay processes.
However, the corrections in inverse powers of the heavy quark mass mg can besubstantial. The heavy quark effective theory (HQET) [2] provides a frameworkfor systematic l/mq expansion of weak decay amplitudes The number of in-dependent form factors at each order of heavy quark expansion is considerably——-—_______

'Supported in part by the Russian Foundation for Fundamental Research under Grant N0.94-02—03300-a
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reduced due to heavy quark symmetry and QCD. These form factors originate
from the infrared region and thus cannot be calculated without model assump—
tions.

The methods of HQET are less powerful in the case of heavy-to—light decays,
because there is no heavy quark in the final state. Only the relations between
different decays can be established in the heavy quark limit [2]. However, the
ideas of heavy quark expansion can be applied here too. It is easy to see that the
final light meson has a large recoil momentum compared to its mass almost in
the whole kinematical range. At the point of maximum recoil of the final meson
it bears the large relativistic recoil momentum IAmaxl of order mq/2 and the
energy of the same order.‘ Thus at this kinematical point it is possible to expand
the matrix element of the weak current both in inverse powers of heavy quark
mass of the initial meson and in inverse powers of the recoil momentum Amax of
the final light meson. As a result the expansion in powers l/mQ arises.

In this talk we present the heavy quark expansion for heavy-to—heavy and
heavy-to—light decays in the framework of relativistic quark model and compare
the results with model—independent predictions of HQET. Our relativistic quark
model is based on the quasipotential approach in quantum field theory with the
specific choice of the 9:? potential. It provides a scheme for calculation of meson
properties with the consistent account of relativistic effects.

2 RELATIVISTIC QUARK MODEL

In the quasipotential approach a meson is described by the wave function of the
bound quark-antiquark state, which satisfies the quasipotential equation [3] of
the Schrodinger type [4]

2 2 3(%f) - ignite} = / §§vmm Mme). (1)
where the relativistic reduced mass is

, M4-(mg—m2)2_HR — Tb- (2)
[M2 - (me + mb)2]M_—_(r_r_zg— ms)?62(M) = 4m . (3)

ma,b are the quark masses; M is the meson mass; p is the relative momentum
of quarks. While constructing the kernel of this equation V(p,q; M) — the
quasipotential of quark-antiquark interaction — we have assumed that effective
interaction is the sum of the one-gluon exchange term with the mixture of long—
range vector and scalar linear confining potentials. We have also assumed that
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at large distances the vector long—range potential contains the Pauli interaction.The quasipotential is defined by [5]: ,

V(p.q,M) = war—p){gasvnkw
+ VcZnAsnm + Kinf(k)}ua(q)ua<—q), (4)

where as is the QCD coupling constant, D,” is the gluon propagator; 7“ and
u(p) are the Dirac matrices and spinors; k = p — q; the effective long—range vector
vertex is m '

Fu 0‘) = 7n + $7;
5 is the Pauli interaction constant. Vector and scalar confining potentials in the
nonrelativistic limit reduce to

VcZnAr) = (1—s)(Ar+B).
minim = e(Ar+B), (6)

owls", (5)

—. 4", g- ‘..r. . _, _._‘» :_: v. .l-ffifg'gggr. = 1c:1r,f‘7“ lion; = AM- 5‘. “new .-_ is me maung condiment.
pression for the aneusipotezzial win. the amount of the relativistic

reprodur

. '3 '3 v '- I '—rorrertions or order who can we lOUl'HJ In reign]. A]! the parameters of our
model: quark masses, parameters of linear confining potential _-1 and B. mixing
coefid .9 and anomalous Enron'zosrzagnetic quark: moment r: n r fixed from the

' :5] and radiative decays r5] Qua.“ masses: 1w, = 483
.g, 2 Got: GeV' m,‘ = 0.33 GeV and paranzeiers of

Uffi,‘ C291 ‘3: H z.‘ 43.31; GeY hasr: saarnziard values for
g coefficient of tor and scalar confining

:5 Fa

analyse of :

arisen irmn LiiE «‘nnsideretim :r-i' meson ”3.53..
LI 2 neavy quark. expansion [*5 {see below}. which are very

Johann—structure of the confining potential: the resuming flaming
‘ corrections- coming from vector and scalar potential: r. 'e onposite

~3i€rs for {he radiative Ali—decays. [6]. The universal Pauli finer—action conszant' = —1 hat her—r; fixed from the anelysie 3f the fine splitting of heavy quarkonia
:— states IS].
The matrix element of the local current J between bound states in thequasipotential method has the form [7]

t

, d3 (P —(M worm = / #wwornpawmo, (7)
where M(M’) is the initial (final) meson, 1"“(p, q) is the two-particle vertex
function and 'IIMyM: are the meson wave functions projected onto the positive
energy states of quarks.
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Figure 1: (3.) Lowest order vertex function FL”. (b) Vertex function FE") with ac-
count of the quark interaction. Dashed line corresponds to the effective potential
{4). The bold line denotes the negative-energy part of the quark propagator.

This relation is valid for the general structure of the current J = Q’GflQ,
where G“ can be an arbitrary combination of Dirac matrices. The contribu-
tions to F come from Figs. 1(a) and 1(b). Note that the contribution I‘m is
the consequence of the projection onto the positiveenergy states. The form of
the relativistic corrections resulting from the vertex function 1" (2) is explicitly
dependent on the Lorentz-structure of (Iii-interaction.

The general structure of the current matrix element (7) is rather complicat-
ed, because it is necessary to integrate both with respect to dap and d3q. The
6—function in the expression for the vertex function 1‘“) permits to perform one
of these integrations. As a result the contribution of I‘m to the current matrix
element has usual structure and can be calculated without any expansion, if the
wave functions of initial and final meson are known. The situation with the
contribution Fm is different. Here instead of 5-function we have a complicated
structure, containing the potential of qtj—interaction in meson. Thus in general
case we cannot perform one of the integrations in the contribution of I‘m to the
matrix element (7). Therefore, it is necessary to use some additional consider-
ations. The main idea is to expand the vertex function 1‘”) in such a way that
it will be possible to use the quasipotential equation (1) in order to perform one
of the integrations in the current matrix element (7). The realization of such
expansion differs for the cases of heavy-to—heavy and heavy—to—light transitions.
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3 HEAVY~TO-HEAVY DECAYS
3.1 Decay matrix elements
In the case of the heavy-to—heavy meson decays We have two natural expansion
parameters, which are the heavy quark masses in the initial and final meson.
The most convenient point for the expansion of vertex function 1‘”) in inverse
mowers c.3' iii»: nee. quark roar-595 For semiiertnnic\"i'

recoil of :im rénal meson. where A = D {A : p37 — p
." 'y ‘ ‘_ . _1"“ cont-“11:11 Lee to the Lurrezh matrix r:.

We limit our analysis Lo the. consideration oz" L3H :e
After the expansion We perform The integrations in 1h? cuntr outvion of 1—”) 1c: the
decay matrix element. As a result we get the expression for the current matrix
element, which contains the ordinary mean values between meson wave functions
and can be easily calculated numerically.

3.2 Comparison with heavy quark effective theory

.-‘-. s:
$7.0 —:- 3; :he snarl»:
fiavc—ur 2.-v:’ sale. relates. AS! the hadmnic Emailfactors [C a 5' ' model 1hr.- .‘zeavgx symmetry

' r the Isgur-Wise function Lire
'"r nttions by Caussians

<<>—>
, MXl+M§41-q2WEv-v =

reintions‘ _1

with the slope parameter p2 2 1.02, which is in accordance with recent CLEO IImeasurement [9] p2 = 1.01 :i: 0.15 :l: 0.09.

'i Frsf order of 1/32; expansion onig' four additional indepenaént form factorsarise [2} Cine of these subleading form factors 5311:“; emerge from the correctionsv‘ne cur ”rm and three {unriion 23, 3‘,‘ — irccn the correctmns to
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if E II >I

E
l 92 5

X300) : —/_\——§{w). (9)

where the HQET parameter A = M — mo in our model is equal to the mean
value of light quark energy in heavy meson /_\ =< eq )2 0.54 GeV.

The structure of the second order power corrections predicted by HQET at
the point of zero recoil of the final meson [2] can be reproduced in our model
if the mixing parameter of vector and scalar confining potentials E = —1 [8].
Therefore we get QCD and heavy quark symmetry motivation for the choice
of the main parameters of our potential model. The found values of e and K
imply that confining quark—antiquark potential has predominantly Lorentz—vector
structure, while the scalar potential is anticonfining and helps to reproduce the
initial nonrelativistic potentialv

Our model predicts that the second order 1/mQ corrections to the decay rate
B —) D‘eu, which is protected from the first order l/mQ corrections by Luke’s
theorem [2], are small [8]

til/mg = —(2.0 :i: 0.5)%.

Then for the hadronic form factor of this decay at zero recoil, We obtain

.’F(1)= 7],;(1 + (SI/mg) = 0.94:]: 0.03,

where 17,; = 0.965 i: 0.020 accounts for the short distance corrections [2]. Com—
paring this prediction With the experimental determination [9] of the product
9-"(1)c1,|, we get for the CKM matrix element

cbl = (332$ 1.9: 1.5) x 10—3, (10)
where the first error is experimental and the second is theoretical one. This result
agrees with the |V55| value obtained from the comparison of our model predictions
for exclusive B —& D(D‘)ei/ decay rates with experimental data [10].

4 HEAVY-TO—LIGHT DECAYS

4.1 Decay matrix elements

In the case of heavy-to—light decays the final meson contains only light quarks
(u, d, 3), thus, in contrast to the heavy-to—heavy transitions, We cannot expand
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matrix elements in inverse powers of the final quark mass. The expansion of
I‘m only in inverse powers of the initial heavy quark mass at A = 0 (low not
solve the problem. However, as it was already mentioned in the introduction. the
final light meson has the large recoil momentum almost in the whole kinematical
range. At the point of maximum recoil of final light meson the large value of recoil
momentum Amax ~ mq/2 allows for the expansion of decay matrix element in
l/mQ. The contributions to this expansion come both from the inverse powers
of heavy mQ from initial meson and from inverse powers of the recoil momentum
[Amul of the final light meson. We carry out this expansion up to the second
order and perform one of the integrations in the current matrix element (7) using
the quasipotential equation as in the case of heavy final meson. As a result we
again get. the expression for the current matrix element, which contains only the
ordinary mean values between meson wave functions, but in this case at the point
of maximum recoil of final light meson.

4.2 Rare radiative decays of B mesons
Rare radiative decays of B mesons are induced by flavour changing neutral cur-
rents. These decays are described by one-loop (penguin) diagrams with the main
contribution from virtual top quark and W boson. The momentum transfer is
fixed at. the maximum value for Elit- processes with the emission of real phm‘m;.

‘ Er: this case
. .' - ’7" ‘ ‘ ' . ‘,. _as 5 -—- n 7'. inc neurotic me” : (Fififlliifl'u <see e;:._-._7 13] I

armed the 1,3!“
we present 0 \

:q ...,.,.._-,. "n;‘____." ,p;2_o ‘Vel‘=_ pa.u.i.ere..z.ec 3} our. .:'>.rr. .acto. .Hq _ m. , ._ l3. _ .
. Li

. m farts-rs are print- “ad in

expemior. {or this fern. factor -
the unmet-:2] reinits. Du.- ‘. es of rare radiaii
Table l in C yaTlSOIE With recent cal-Culalions minim flp} light-com- QQ‘E) gum
ruie 322‘ and m’brid sun. rule 3137 approaches. There is an overall wreakiem. . .. J . . .-_.
heiween the Drerlicrions within errors.

Table 1: Rare radiative decay form factors F1(0)

Decay our results [12] :13}
B —) Ii"? 0.317. 1- 0.03 {1.32 i- 0.05 0.300 i 0.039
B -+ p7 0.26 :l: 0.03 0.24 :l: 0.04 0.27 :I: 0.034
35 -) 967 0.27 i 0.03 0.29 i 0.05
B.s —> K‘7 0.23 :l: 0.02 0.20 :l: 0.0-”.-

Our value of form factor I“1153_m.'y yields for the ratio of exclusive to inclusive
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decay rates
MB —> K'*7) _
NB —1 X57) _

Combining this result with the QCD—improved inclusive radiative branching ratio

5(B —> X57) = (3.0 :l: 1.2) x 10‘4 [12], we find

R(B —» Kw) a (15i3)%- (11)

B‘h(B —> K'~,) = (4.5 i1.5) x 10-5. (12)

This branching ratio agrees well with experimental measurement by CLEO [14]

Bex"(B —> K‘y) = (4.5 a: 1.5 i 0.9) x 10—5.

4.3 Semileptonic heavy-to-light decays of B mesons

The heavy quark l/mb expansion for the fem: fedora. 1:2? cit—anteptonic decays

B —> 7r(p)eu has been carried out up to : He 5:»: rend order at the scant of maximum
recoil of the final light meson in [15]. The ' ' ' .3' form factors,
While-d in Th" Lii‘Ja-l tray _111'l are f‘IEFS'E‘HL-l T -"r'1;';;f'32_3'-3 our

.5 for " '
models [’15. .7}. QC?) F112.

tern? tartan 1.

5.1143 3.11 agreemerir bemeen our Value of _"‘-‘“"fCl‘ and (QC?! 51111.: rule and 15.19.30“

predictax..tis. 01:.- R —'- new farm 17 fl". 1 ':e and QC'D rule
:11 QCD R 231' 11:19 rewritt-runes 1'2_:.wh1ie they are appren...

of refs. [18, 19].

Table 2: Semileptonic B —> 11’ and B —> p decay form factors at q2 = 0.

Ref. J’P—”'1_.."1 A?” :_ ‘1 41"”1 0. V3471 1‘. _,
our fizz-.1 0.20 :t 0.02 0.26 21:11.03 0.31 :1: 0.0;: 0.29 1-11—13—
[16] 0.33 0.28 0.28 0.33
[17} 0.09 0.05 0.02 0.27
[18] 0.26:1:002 0.5: 0.1 0.4.20.2 0.6i0.2
[19] 0.23 :t 0.02 0.38 :1: 0.04 0.45 :l: 0.05 0.45 :1: 0.05
[12] 024-: 0.04 0.28 :l: 0.00

0] 0.35i0.08 0.24i0.12 0.27;t0.80 0.53;L 0131
[21] 0.30 :1: 0.14 i 0.05 0.22 i 0.05 0.49 :l: 0.21 :l: 0.05 0.37 :1: 0.11

To calculate the B —> 7r(p) semileptonic decay rates it is necessary to deter-

mine the qz-dependence of the form factors. Analysing the A3,,” dependence of

the form factors, .we find [15] that the qZ-dependence of these form factors near

q2 = 0 could be given by

27



M,-mm — fifiawmmzmx). <13)
2,/M M 1 -Am = figawurwmmfm).
MB + Mp -A2012) = 2—WBM,
MB+M -2 _ pV(9) — 2—W3 ,,

We have introduced the function [15]

(w)A2(A:s)a (14)

(WWAI‘Lni (15)

- 2 [\2 w — 1£0”) = w+1exP (—flEw—fi) ~ (15)

which reduces to the Isgur—Wise function (8) in the limit of infinitely heavy quarks
in the initial and final mesons.

h In; tsp-gnarl: to note that the form factor A! in (14) has a different qz-
depeadence Thar; the other form factors (13), (14), (15). In the quark models it isusuaiiy assumed the pole 116] or exponential [17] qz-behaviour for all form factors.
However, the recent QCD sum rule analysis indicates that the form factor A1 has
q2—dependence difl'erent from other form factors [18, 19, 12].

We have calculated the decay rates of B —> 7r(p)eu using our form factorvalues at q2 = 0 and the qz-dependence (13)—( 15) in the whole kinematical re—
gion. The results are presented in Table 3 in comparison with the quark model
[16, 17], QCD sum rule [18, 19] and lattice [20] predictions. The predictions for
the rates with longitudinally and transversely polarized p mmon differ consid-
erably in these approaches This is mainly due to different q2=behaviour of A1.Thus the measurement of the ratios F(B —) peu)/I‘(B ——) mail) and I‘L/I‘T may
discriminate between these approacha.

Recently CLEO reported [22] about the experimental measurement of B
semileptonic decays to 7r and p:

B(B° —; 7r'l+u) = (1.34 :l: 0.35 :t 0.28) x 10“,
B(B° —+ p-1+u) = (2.28 :l: 0.36 i 0.591333) x 10-4,
I‘(B° —) p'I+I/)
I"(B° -) rr‘l+u)

ll 1.70:3;23 :I: 058332.

We see that the experimental ratio of the p and 1r rates supports the models
with a specific qz—behaviour of A1 form factor. For the CKM matrix element Vub
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Table 3: Semileptonic decay rates NE ——> new), F(B —> pep) (Xqbl2 X 10125—1)I

the ratio of the rates for longitudinally (L) and transversely (T) polarized p meson
and the ratio of p and 71' rates.

Ref. TI'B —> flea-"1 1‘1; B —> ,m rm: :‘Swr'."'r---"—'
our [151 2.1.0 :tO.6 5.4: 1.2 1.151: 0.3 1.1 :t 0.1:
[16] 7.4 26 1.34 3.5
[17] 2.1 8.3 0.75 4.0
[18] 5.1:tl.1 1214 00610.02 2.4i0.9
[19] 3.63:0.6 5.1a 1.0 O.13:l:0.08 1.4i02
pm 8i4

we find in our model

mg (5.4 :l: 0.9 :1: 0.5) x 10-3 (B —+ my)
{Vubl = (5.3:3j3i 0.6) x 10—3 (B —> plll)

Where the first error is experimental and the second one is theoretical.

5 CONCLUSIONS

We have presented the method of calculating weak decay matrix elements in the

framework of relativistic quark model using heavy quark expansion. It has been

shown that in the case of heavy-to-heavy meson decays the obtained expansion

is in accordance with the model independent predictions of HQET. This allowed
{minim and 3.111;.- .‘T:.~::. and se‘oinl order f‘zwr: Facet-:5.:o deterniu} Lil-i: Lizard

1. . _'.' .._-.l ,u..—‘ :— 1 '... . a -

‘1 tram-v1.“ Jr? 6.15341“: '1". Jll ;.e« _ Urmf‘ra ULIn the 1:15:- of heav; -
the .;::-.av;-,' quark mass fro! at the pointal heavy mason nae ‘

m— maxrrrium recoil o.“ the final light meson. The res. an of such

:aLlHElL} the exclusive -. weil 1a.:expansion for the cal
eemi'ieptonir. decays ’_ ——“ sigh-5:" nave been o... . Lag-32' agreemtm ~.-.-':1_.1-_

available experimental data has been found.
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separable interaction: low energy pion physics *
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Abstract
A Lagrangian formulation of the Nambu-Jona—Lasinio model with

separable interaction is given. The electromagnetic interaction is in-
troduced in a non-minimal way to the nonlocal quark current. Var-
ious choices of the vertex form factors characterizing the composite
structure of mesons and baryon are investigated. We find that the
physical observables depend very weakly on form factor shapes.

1 INTRODUCTION

The main goal of this paper is to give a Lagrangian formulation of the
NJ L—model with separable interaction for mesons. We check the Goldstone
theorem in this approach which means that a zero—mass pion appears in
the chiral limit. Here, we introduce the electromagnetic interactions by
means the time-ordering P-exponent in the nonlocal quark currents. This
reproduces automatically the Ward—Takahashi identities and electromagnet-
ic gauge invariance in each step of calculation. One of the principal goals of
this paper is to investigate the dependence of the physical properties on the
choice of the various form factors of the separable interaction. There are
two adjustable parameters, a range parameter A appearing in the separable
interaction and a. constituent quark mass mq. As in the papers [1, 2], the
weak decay constant f", the two-photon decay width FH-wm as well as the

charge form factor F,(q2) and the 'y‘no —) '1 transition form factor F,,,(q2)
are calculated. Here we consider both monopole and dipole, Gaussian, and
screened Coulomb‘ form factors.

'Supported in part by the RFFR, Russia under contract 94—02-03463—3
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2 THE NJL-MODEL WITH SEPARABLE
INTERACTION

The Lagrangian of the NJL—model with separable interaction are given in
[3]. The standard way of the bosonization of the NJ L—model may be found
in many papers (see for instance [4, 5]). We give here the Lagrangians of
interaction describing octets of vector (axial), pseudoscalar (scalar) mesons.

iiiib") = SIM/dill /dy2f((y1 — y2)2)5(1= ) t?(111)11M1l'{($)q(y2)
(1)

The form factor f(if) characterizes a region of a quark—antiquark interac-
tion. Here we would like to suggest to introduce the electromagnetic fields
to the interaction Lagrangian using the time—ordering P—exponent. In this
case the gauge invariant meson-quark vertex has the form

“7(1) = QM/dyI/dy25( — £312) f ((111 — yzlz) (1(91) (2)

_w+w
2

z 92

-Pexp {ieQ f dz”A“(z)} I‘MM(z)P exp {ieQ / dz“A“(z)} q(y2)
y] . z

where Q = diag(2/3, —1/3, —1/3). For neutral mesons one obtains

13%;) = 9M / dyl / dy26 (z — £1Zf—y")f ((y: — y2)2) {3)

-<i(yr)P exp {ieQ /d2”A"(Z)} FMM‘°’(x)q(y2)-

The T~product and the S—matrix is defined in a standard manner. The
hadron—quark coupling constants gM in Eq. (2) and (3) are defined from
the compositeness condition [3, 6].

3 MODEL PARAMETERS AND PION
DECAY CONSTANTS

We consider four kinds of widely used form factors: monopole, dipole, Gaus-
sian and screened Coulomb. All Feynman diagrams are calculated in the
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Euclidean region where the form factors decrease rapidly so that no ultravio-

let divergences arise. There are two adjustable parameters, A characterizing

the region of quark-.mtiquark interaction, and the constituent quark mass

m... We shall define these parameters by fitting the experimental pion decay

constant I. {ffi’m‘z 132 MeV) and g,“ (gi’fi‘: 0.276 GeV‘l).

1. Pianoquark coupling constants. The pion-quark coupling constants

are defined from the compositeness condition [3].Neglecting the pion mass

one has 1 co 2
3912: - __ 1 2 (3mg + 2n)

(4W2) — 40/duuf (—11) (mg +u)3 ' (4)

2. Pion weak decay. The weak decay of the pion is defined by the

diagram of Fig.1. After simple we have

35],r of 1

f" _ 41r2mqb/ duuf(——u)(m§ + ”)2'

3. Pion two-photon decay. The two~photon decay of the pion is defined

by the diagram of Fig.2. After similar transformations we have

2 2 2 _. ALE. fl f0?)
Gmlpq‘hl — 2.51.2») / «2i[mg—(k+p/2)2][m§—(k~p/2)2]

1 (5)
Wm: — (k +(q1 — q2)/2)21‘

The two-photon decay coupling constant is obtained from Eq. (5) where

both photons are on the mass shell 9”, = G,W(m§r,0,0) The numerical

results for the physical observables for the best fit are shown in Table 1. for

different choices of form factors.

4 Pion electromagnetic form factors.

1. The 7'7.” ——.- 7 form factor. ll: our model this form factor is expressed

as l, Q1} 2 53Gfifl'mi. —Q‘3. {1). Results for monopole vertex are shown

in Fig.3 (for Various form factors see in [3]). The numerical results for the

radius r... are given in Table- 13. On: results practically do not depend on

the: choice of vortex form factors flit").
2. The pion charge form factor. The pion charge form factor is defined

by the diagrams of Fig.4. These diagrams are not gauge invariant separately
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Table 1. The best fit of the physical observables.

Form I f1r (MeV) I gflvwlcevgl)
1' I

Factors A(MeV) mq(MeV) ‘ NJL SI I EXP I NJL SI 2 EXP [14]

monopole 400 267 132 . 0.251

dipole 1000 245 132 I 132 0.263 0.276

Gaussian 1000 I 237 ; 132 0.261
I V I
I Coulomb I 450 250 132 1 0.262

Table 2. The radius of the 7*1r“ —> 7 form factor.

I Vertex I rm(frn) I

I
I I

Function I NJL SI I EXP [14] I
II

monopole I 0.655
I

dipole I 0.658
Gaussian i 0.654 0.65i0.03 I

I Coulomb I 0.659 I
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Table 3. The electromagnetic radius of pion.

1
Form ; NJL SI EXP [14] ‘

=.____ ‘ _ l
. ‘ .
I Factor ‘1 < 1'f,>A 1 < r3, >° 1 total l frn2
_ l

l‘ l

lmonopolel 0.545 l —0.012 ‘0.533

l dipole I 0.461 1 -0005 l0.456l 0.430 ‘
E I . l .

IGaussian. 0.409 ‘1 0002 0407‘ l
r —*'_‘F“\
{Coulombg 0.488 l —0.006 ‘0.482‘ [

sum of the diagrams are gauge invariant. The analytical expres-

r the vertex '1; random and the form factor also the VVard—Takahashi

r3. giver, in '0 The numerical results for the radius

uteri in Table .‘3. On: can see that our results are in good agree-

emal data and. depend very weakly on the

-

factors f; The behavior of charge form factor for

monopole vertex is shown in Fig.5

:“ 1L3? CELLE ' -‘

a 11 r: the madam-e expcrz.

: of vertex fort:

5 SUMMARY

We have fornzuialefi the E;amhu—Jazvrza—Lasinio model with separable inter—

action using the La; ngiar. .virh the compositeness condition and non—

minimal inclesiaz- of the elerircmagnetic interaction. On one hand the

form factors in the hadron—quark vertices take into account the composite

structure of hadrons thereby being related to a quark—antiquark potential7

on the other hand, they make the Feynman itrtegr

calculated the pion weak decay constant. the I‘M: _;r_‘_l31<3£‘: decay mail. ii. a:

well as the form factor of the 7*7r ——> -tra and The plan Charge form

factor. The two adjustable parameters. r

in the“ separable interaction and the coast-steer

-* convergent. ‘3.“3 have

nextmn.
he. re" ? tarammer .\ appearing

. have been
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fixed by fitting the experimental data for the pion decay constants. We
have considered the following form factors: monopole, dipole, Gaussian and
screened Coulomb, and found that the numerical results depend very little
on these shapes.
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Measurements of CP and T symmetry violation

parameters and tests of OPT invariance in the neutral
kaon system

P. DEBU
CEA/DSM/DAPNIA

CEA Saclay, 91191 Gif-Sur-Yvette Cedex, France

1 Direct CP violation

1.1 Introduction

The observation in 1964 of the long lived neutral kaon decay to two charged pions [1] has

demonstrated the violation of CP symmetry in natural laws.

It is well known that CP violation can be incorporated i

electroweak interactions with three families. A :1: final cm aims? in

mixing matrix can induce this tiny asymmetry :erweer e. _

However, this phase is a free parameter just like The masses of Yarn ». a

of which is not addressed by the Standard 5viodei 21.11 remains =12: of

questions of particle physics.
In addition, since its discovery, CP violation has only been observed in the neutral

kaon system. Moreover. :1 ohsewetions are consistent with the superweak model of L.

V'oifenstein [31 indeed. no meas- exnen: ; ‘ " Wily inconsistent with the existence

' parameter :5._ the shy-s _e.l neutral kaon states KL and K5 : KL“; =

where A} and H; are CP even and odd eigenstates The non

induce: by an esymr etry in the K0 —-) 78’- andR—0 ——) K0 transitions.

1—3 relative. arnp' fi‘ = A(KL —-) 1r+1r‘)/A(K5 -) 1r+1r") and

),r“:i(.-"\f5 -T 773175] are identical.
in cont-rest. dimer (3? vieiation in the l‘.’ —': ‘37: decays is naturally present is the

Standard Model and is described by the parameter c‘ w n is" : lmgflg/‘n w 3-.

is the K0 decay ampitude Lo the Err stare xvi; isosp—ir. ~.- {'23. The T’.‘lJ.i,';'vv': amplitudes
' UO _ . n .'— .1!

51351135?- I".

iv:- origin
- 0. ementai

of a single rL.
lF;-_._-_ “55" 1:1".

zero Value 3': r
in :‘Elaiil a model
I)“ : .‘lilir'i —.~

‘ .-litre Cg!

become .41 3*- : r + 5 anti 7]
A majer experimental efiort has been mac-e over The past 3‘3 years and is. being carried

on to search for direct CP violation.

1.2 Calculations and measurements of 6/5

In the Standard Model, direct CP violation is ‘ i'eved to originate from the contribution

of so-called ”penguin diagrams” in the K to 2:7 decay amplitude. Significant progress has
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recently been made in the calculation of 5/6. This is reviewed in [5] The precision onthe theoretical estimate of c /e is limited by the uncertainty on the measurement of the
quark mixing matrix elements, the big cancellation between the strong and electroweak
penguin diagrams, the difliculty to compute hadronic matrix elements and, related to
these, the uncertainty in the QCD scale and the strange quark mass.

The two most recent. predictions [5, c; are conSisLenz, and give clic- in the range of
a few 10“, negative Values not hemg excluded. The Live mos: pmcise measurements
are B£(€l/C) : {‘23 113.5) 10“:i and nan-7:) = {34: 5.9} I'll—“{8}. This-e results can
be seen as a success of the Standard Model. However, they are not in good agreement.
Above all, they do not establish the exisience of dire-ct CP violation. Several experiments
are in preparation, aiming at a precision of order 16'"; on Re(c'/6) : E832 (KTEV) at
Fermilab [9], NA48 at CERN [10], and KLOE at Frascaii [11].

1.3 Prospects
Nowadays, the favorite technique to measure Re(e'/c) is to measure the double ratio R 2

2"on I
= l — 6Re(c /c)

= I‘(KL —> 1r°1r°) x I‘(Ks —> fir") _ _
11+"R — I‘(K5 —+ 1r°1r°) x I‘(KL.—-> 1r+1r‘) ‘

Such a measurement is extremely delicate, and systematic uncertainties are minimised
by detecting concurrently the four decay modes KL,s —t non“, 1r+1r‘. We will mention
here only one out of many dificult requirements common to all experiments.

The decay rates have to be compared in the rest frame of the lac. Consequently,
the absolute time, and hence energy scale has to be the same for charged and neutral
decays within better than a per mil accuracy. This precision is more difficult to achieve
in the neutral decay mode, and the electromagnetic energy has to be measured with
excellent resolution and linearity. E832 is building a pure CsI crystal array with morethan 3000 blocks. The expected resolution is aE/E : 006/136) 196/15"5 63 l%/E'25 (E
in GeV). NA48 has chosen a quasi-homogeneous liquid krypton calorimeter with 13500cells. The last prototype tested showed 0'l = .04/E a) .4% 6 3.5“?(3/E'5 [12]. The
KLOE collaboration has tested a full size module of its fine sampling lead-scintillating
fibers calorimeter. A 5%/E"" resolution has been achieved [13], and improvements are
expected for the final setup. All thwe results meet the design goals.

All other elements of the detectors must also have very good performances so that
backgrounds to KL—Hr"'1r‘,7r°1r° decays remain at the per mil level, and especially Kegand KL -> 31r° decays.

E832 is expected to start taking data in 1996 while NA48 and KLOE should start in
1997.

We should not end this section without stressing that an experimental program atFermilab (KAMI) [14], scheduled after the KTEV run, aims at detecting the KL —) #011-
decays for which direct CP violation is expected to be important : the Standard Modelexpectation of these decays is in the range 10‘12-10‘11 [15]. The experimental expectedsensitivity is at the level of 10‘ 13 or below.
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2 T and CPT symmetries

2.1 The phase of c

it has been shown since a long time Lint. uncle: C'P'l' invariance the phase of a in Should

be very close to ¢5w ,the so—caiied superwea‘z phat: defined by i‘sw : arctaxi(2Am/Al‘),

where Am is the fig-X5 mass- vflil'i'erence and A? is the A's-KL wiritl'i different-e in the

appropriate units {-1}. How close '1’
A simple calculation shows that one: can write : 5?: 2- Qbsw 1“ mum/Q“

713 = 21:21: A‘i” —:- [viii—ft?)- —,L j") and E5 the K5 decay rate. To a r.

approximation. the summation can be ratrictccl to the win and 3.1 final 51::

the fly fins} state to contribuie‘ the AS : AQ rule must be violated, and {or the 37.-

final state, direct CP violation must be dominant in ‘he 3‘33 —:- 317 decays Th recent

results of the CPLEAR Eerim-ent at GEE-LN [see section 2.3"; lea-:1 to in": or __.c1ation

(In =s :l: .4°.

2.2 (1)4" and $0“
If CPT symmetry holds, the phase of e, is 1/1 = 1r/2 + 62 —— 60, where 62(0) is the strong

1r1r phase shift in the isospin 2 (0) final state. Extrapolation of experimental results [17]

and theoretical calculations [18] lead to 11) N 44° :l: 6". It follows that the phases 4“”

and 11"” of 11“" and "on should be very close : A<I> E <I>°°-— <I>+‘ 2 31m 5 /6 < .05°, and

§+_ = Q; - AQ/3 =s :l: .4“.
The experimental situation follows :

1 Experiment i AQC’) i Reference l
‘ NA31(CERN) ‘ .2:i:2.9 l [19] i

ramming —1.6 i 1.2 ’ [20]
{ Erriirxim .6:l: 1.0 i [21] l
L Average —.3:l:0.8 l ’

The measurement of <I>+— is always strongly correlated with the value of the KL—K5

mass difference, and to a smaller extent with the value of the K5 lifetime. The same

is true for the superweak phase. A consistent analysis of experimental data has been

published recently [22]. The result is :
(5+— : (43.75 :I: .60)°
Am = (530.6:i: 1.3) 107 Ms
sy = (43.44d: .09)°

Both results an ACE! and (13*‘ support CPT symmetry. Since CPT phenomenology
these proceedings, we only stress here that these

2213 of GP"! pfiamciiflfi of the .— ‘l K system‘
"r Ail) and a combination . direct CF'I
(I): The iazter {6'51 :eais - (Er — £35“: :
”PT violation ii: the. decays, this can be

.n. - masses to a pro-351011 of about -‘: ii} ‘3

is addressed in another contributim "

twr; tests only concern We cornhzna‘

narraiy direc: CP‘T Violaiion in i.‘
violation and CPT violation in
.3‘ :i: .4" i .E°{Am] d: ,Li°iv‘ry_.:l. li Cne na
interpreted u the equality between If:
GeV/cz.
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2.3 Other tests

The CPLEAR experiment aflERN measures time dependant, asymmetries of decay
rates of initially pure K0 or K0 states. Depending on the observed final state, various
quantities are extracted. We list here the most significant results [23. 24] not previously
mentioned :

MK“ _, 7'70) — \_ —+ K“:A a _.—_.‘ = 6.3:l:2.1:h 1.8 10-3T MED 4. H5) + MKS —> 5:03 ( )
If CPT symmetry and AS = A0 rule hold, AT = files. The result is compatible with
other measurements of 5.

Re:
1m:

(12.4 :1: 13.7) 10-3
(4.8 :t 4.4) 10'3

(z E A(K° —-> l'1r+r7)/A(K: 4 Fr“ 1/) measures the violation of the AS = AQ rule)
Re n+'° = (—4 a: 13) 10-3
Im n+’° = (—16 :t 21) 10-3

(q+"° E fA(K5 -> 7r+1r‘1r°)A"(KL —) 1r+7r’1r°) dQ/f |A(KL -) n+1" 1|'°)|2 d9 is the
CP violation parameter in the «HF 1r° decays)

NF—pfi" _.m 41'2“(‘ ’ “A ‘ ’=(.28i2.12i1.80)1o-3
Elli-1'3 —V Ari “I 4." :\r[.:':g —'.' 11,”)

Ac" E

This measurement uses Keg decays to tag the strangeness of the decaying K.
The 17""0 parameter is also measured by the E621 experiment at FNAL [25] :
Re n+‘° = .019 d: .027 ; Im 0+4 = .019i .061.
No evidence for CP violation in Ks decays is yet found.

3 Conclusion

In the past recent years, significant progress has been made in the K physics sector.
Although direct CP violation has not been established, the experimental accuracy is
outstanding. CPT symmetry is tested to a precision such that one might expect detecting
quantum gravity effects [26].

Very promising experimental programs are under way. At Fermilab and at CERN,
the already quoted projects KTEV, KAMI and NA48 will address direct CP violation
and rare K decays. At Frascati, the KLOE experiment will measure most CP and CPT
parameters at about the 10" level and will search for CP violation in K; decays [27]. We
also wish to mention the experiment E246 at KEK designed to measure the T violating
transverse polarization PT of the ration in the decay, K+ —) 1r°p+v [28]. This experiment
should start in 1996 and aims at improving by more than one order of magnitude the
present experimental accuracy.

The K means have been discovered more than 50 years ago. They'have brought
crucial information on weak interactions which helped building the Standard Model.
They now offer a. tool to search for physics beyond the Standard Model.
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Testing Bell’s inequality
in the Neutral Kaon System at a gb—faictory
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Abstract
it is shown that a Bell’s inequaiiiy can be formulaied for the mantra!kw: sysicm ai a ci-f'aciory using a formalism based on 3 Leon gumispinpics-are and i=king into sccouni CP vioisiioc. Experiznentai methods toreveal tiny violations 05' this inequaiiiy by quantum mechanics are dis:ussed.The precismn detmror of an experimeni at a. high iuininosity (ii—factory couldbe successfully expioiieai to perform and: a. tesL.

stein. Podols 'y and Roses {EPR} advanced a famous argument‘uestion of wheiher or not quaziium mechanics oxiers s compieLe
_hysics. realiiy. Their conclusion couic‘i be summarized as 50!-
a mechanics is incomplete in the se se ihat there exist somevariabies 19.3, iiidi‘ien 'v'ziriai'nlesi not taken into account by the Wave-functiondescription, 0.- the localiiy principle is viriiateo' by quanium mechanics (ie thereexist fates z'nan—iiehi signais}. Assuming the validity of the locality principle {atfirst physicists were reluctant 1.0 abandon this fundamental principle) the EPRconclusion was sometimes interprezeo' as an argument in favour of local hidden-variabies rheoria‘ winch explain the stochastic nature of quantum mechanic. asone to tile iack or" knowledge oftlie mines that some fisc'a'cn parameters [the exactnature of which remains unspecified] are assuming during the measurement iii-0+cess. in this way hidden variabies could restore completeness in the theory. andpresumabiy reconciie quantum mechanics with a determinisiic andg'or realisticviewpoint}. Howaver. as iong 9.3 quantum mechanics and local hidden-variablestheory predictions were believed indistinguishable. i-he discussion on 2. scientificground remained quite steriie.

‘Realism is a philosophical View, according to which ma] reality is assumed to exist andhave ddm'te pmpa'tim, whether or not they are observed by someone
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Starting in 1965, however, the situation changed dramatically. J.Bell proved

an important theorem, concerning the whole class of local hidden-variables the-

ories, stating that such theories cannot reproduce all statistical predictions of

quantum mechanics [2].
Let us consider, as usual, 3. pair of spin 1/2 particles in the singlet state

moving in opposite directions:

Ii) = gm T (am i (—5» — IA i (mm T (—m} (1)

where the state M T (33)) represents a particle moving in the if direction with the

spin up along the 6 direction. Let us consider three different axes E, 5, E and the

corresponding spin projection operators A = E - E, B = E - 1-; and C = 6" - E. Let

us assume that. we perform a measurement of A, B or C on the particle moving

in the fdirection, and a measurement of A, B or C on the other particle moving

in the opposite direction. Bell showed that. according to local hidden—variables

thecries. the. following inequality can ':'-c« derived for the system considered [2, 3]:

PlATlfil;BT(-Pll S PlANihCT (-fll+P[CT(13);BT(-fi)l+
"+PlC l (133:0 l (-1391 (2)

where P[A T (13');B T(—-1')')] is me probaeility of findint \=e-l. legin u; 'f for the

particle moving in the {I'dire ‘ion. and 82+; " -. the jnarzir' \ ‘ ‘

in the opposite direction. Inequality [“23 is. generally ‘

For sevw- axes choices. quantum riiecharical pr

' ' Cl‘..'—J.ll_i5!3‘l1 theory with the local hidden-

. _ . PpTlL. a: conclusion seems that quantum

mecnarai '5 a “.4135 an unai‘eidsbie ViGlallDI‘. -3'. the locality principle, regardless of

a possible hidden—variables completion. This statement has a dramatic impact on

our concepts of reality and space-time, and the importance of Bell’s theorem just

lies in having made possible experiments aimed at testing quantum mechanics

against local hidden-variables theories.
Up till now the experimental tests of inequality (2) that have been performed

can be divided in three main categories:
6.] tests using optical phozons from atomic-cascades [4];

bl tests using "aways from positronium annihilation [5];
c] tests using protons from p—p scattering [6].
Experiments of caregcry [a] were the most precise and significant ones, and most

of them yielded results in excellent agreei. enl with quantum mechanics. However

the validity of any experimental test of inequality (2) relies on some ad hoc ad-

ditional assumptions that restrict the ensemble of local hidden-variables theories

for which inequality (2) holds. Hence, in practice, only a class of these theories

_- as liell’s im‘quali..‘.
1303‘» "-n'li'LLC “3:1; unit:
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may be tested against quantum mechanics. How wide and general this ciass is. itdepends on the reasonability of additional assumptions. Here a poseible test at ator-factory using neutral linens and requiring somewhat difierent and slightly morerestrictive additional hypotheses Lian ones made in atomic—cascade experiments
is discussed ET].

At a. 4>-fa.ctory a, coherent neutral kaon state is produced in a5 decays:

Ii) = gummnfi—n) — IFm)lK°(—m)} (a)
A quasispin picture can be introduced such that the strangeness eigenstateslK°) and IF) are regarded as a. quasispin doublet and called quasispin up and

K3) 0: {MG} + {1—5)} and
1(5) 0: 91‘5”} — lKD)} are quasisoin eigenstates up and down along the x axis.

down along the :-: direction. Then CP eigenstates

L

Let us also consider the quasispin eigenstates along a third generic direction 3’
and call them Ufa) or {MRI} — 13‘ 3(2)} and {ICE} 0: {‘A'31‘+ whirl};- where n isIa corn ex parameter that determines the a" direction. It. is worth reminding
that the physical states. Le. Hamiltonian eigenstates, Mfg} 2:: {llx'fi—l—eiii’fi}
and {KL} cc {life} +e§ii';)} where e is the usual CF violation parameter, are
non—orthogonal because of CP "violation-'7. In the following [173 is chosen of about
the same order of lel. so that terms of the order 0(l73l9) ~ (Du-fl ~ 10—5 can
aiways be neglected. while terms Oflm‘) - Oflcl} m 10‘3 are retained.

in con-mime -nag—y to the spin case. a. Bell'
the s‘ ‘

inequality can be written for
, i7, Faxes are substituied by

quaeisgsin projections along. for instance. the :r' z, z axes tdisregard. for the
moment. any technical compiication about ouasispin measurement):

PlKaGiyt);K°(-it)l S PlKa(17Jl;K1(-Et)l+P[K1(I'Iit);K°(-Et)l+
+P[K2(17:t);Kz(—i,t)l ' (4)

Compared to inequality i~.l- inequaiii}; {4) shows an explicit dependence on time.
This does not constitute a. difficulty. However here. For simplicity, onlj.r the case
in which both quasispins are measured at equal times is considered. The note
general case of measurements at different times is treated elsewhere [Tl _

inequality [4} holds for local hidden—mriabies theories. For some r; values itis violated by quantum mechanical predictions. However in order to perform an
exrseritrier-lirel test of inequality (-1) the following additional aesumptions have to
be made:
(i) the decay process is a local random process, namely decay r'a'tes are time-independent quantities, e.g. I‘(K° ——> 7r‘£+u) = wrist;

a s
wnere spin projections along the E.

m
2Her: CPT invariance is assumed for simplicity, even if it is not a necssary assumption
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(iia) quantum mechanical predictions for single kaon state propagation in mat-
ter and in vacuum are valid, in particular those related to the four probabilities
P[Ka_p(0) 2) K1,2(At)] of finding a Km state at time At from an initial KW,
state at time t = 0;
(iib) the four probabilities P[Kal,g(0) : K1,2(At); A] do not depend on A, for any
hidden variable z\ 3 ; ‘
(iii) the AS = AQ rule holds 4 .

The above assumptions are quite reasonable and allow us to identify quasispin
states and to perform measurements of probability distributions in inequality (4).
In fact, as a consequence of assumptions (i) and (iii), detection and reconstruction
of one of the following neutral kaon decay channels, i.e. K —> 7r‘l+u, K —) 7r+£"F,
K —-) 1r+7r',1r°1r° and K -—r 1r°7r°ir° 5, unambiguously identifies at the decay
vertex position a 1K”), (IF), IKI) or [1(2) state, rspectively. Identification of
the IKC.) state is slightly more complicated, and can be performed by means of a
regenerator (method ((1)) or, more conveniently, by time evolution in vacuum of
the state itself (method (b)). Additional assumptions (iia) and (iib) are necessary
for the validity of these methods [7]. Here only method (b) will be considered°.
This method is based on the fact that, as quasispin is not conserved, it oscillates
in time. A suitable parameter 17 = n(At) can be chosen such that, after a certain
time At, time evolution in vacuum rotates a |K,5) state into a pure |K2) state, i.e.

aThis mption is quite remarkable because, as shown in the following, the n parameter
can be chosen such that:

PIKa(0) => K1(At)] = [A PEKAO) => K1(At);klp°(x)dA = 64""

P[I(¢.(0) => K2(At)] = .[A P[Ka(0) => K2(At);A]p°(,\)dA = o

Puma) => mm» = / Pusan = K1<At);x1p"(x>cu = o
P[K,g(0) => K2(At)] = A P[Kg(0) => K2(At);A]p”(A)d,\ = e—FW

where p°'B(A) are the .\ distribution functions for the case of onekaon state, and such that
IA p°'fi()\)da\ = 1. This means the: PElx'q-l => 133(33):” and P[Kp(0) =¢ K1(At);A] should
vanish for p°'fl(’\) > 0 Then. FEE; 5L0} :- 55: 2E .‘atx. A] do not depend on A, at least in the
A domain in which pa'p(/\) > 0. Even if this domain could be different, in general, from that
corresponding to the two-laous state produced in ¢ decay, it is reasonable to assume that the
above probabilitia do not depend on 1‘ even in the case of two-kaons state.

‘ExpefimenielL' ;:‘ < 2 - 10-2l Here it is necessary that r 5 10“, whereas

the Sander; _ _ a! prediction is .- = 10-5 + 10—7.
5At from a. negligible direct C'P violation effect, neutral kaon decays into 1r+ r— or tro‘lro

are allowed for J0.) and forbidden for |K2), while the opposite happens for decays into 1r°1r°ir°.
6see Ref.[7] for method (a) using a thin regenerator
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P[Kp(0) =:> K1(At)] = 0. Then a K; —) mr decay at time t+ At unambiguouslyidentifies the presence of a. lKa) state at time t, and the following proportionalityrelation (and similar ones), holds:

PlKaUZtl;K°(-IZ tll = fiPlK1(IZt+At);K°(-Iit)l (5)
where K" = P[K,,(0) => K1(At)] = e‘P-‘A‘, and P[K,(17, t + At); K°(—f)’, t)] is ameasurable probability.

In order to test inequality (4) at a gb-factory a two step measurement can beperformed:
Step(l): first, one should verify that the following relations hold, as predicted byquantum mechanics:

PlKalfii t); K1(-i, t)l <<~ liR('I)l€'n/2 (6)
P[K2(f1'a t); K2(-17, t)l <~ lili(77)|€'”/2 (7)

with i" = 1.3 + Q. Relation (G) can be easily experimentaliy verified. as shownelsewhere (Tl. Verification of relation (7) is much more difficult because it corre-sponds to a. suppressed decay rate measurement. However this verification shouldbe still possible at a nigh-luminosity o—factory like DAQNEZ. AZLernatively. onecould avoid the experimental verification of relation (7) making the following ad—ditional assumption:
(iv) the singiet mints perfect anti—rorreiafinn holds,
that makes Pi!i';{;3'. a}; [igi—fi. ii] = 0. even if it reduces the validity of the testto a less general class of hidden-variahies theories
Step(ll): let us consider the quantity:

__ PUifi t]: 55”.: up. £1]! PIKJE Hzlfif—fi. iii
PlKilf’it);K°(-I33t)]/PlK1(I7§WW'l—fifil

If step (I) measurements (and similar ones’) do not exhibit any deviation from

(8)

7Other relations of the kind (6,7) should be verified, in particular one involving the probabilityP[Kp(fi'. t); Kp(—fi, l)] not directly measurable. However it can be rewritt- as:
”1007.0; Kai-I7. 0] = Pc-(fi'. WAC-(‘5. 0] + PTOT

‘5’c07: t); K1(—17: til — PlKaG", 3); [GA—5: 0]
‘PlKllfi 03154-5. t)l - Plm t); Kai—51 t)l

with

P107 = PlW. t): K1013} 43)] + P[K1(fi‘. t); K2(-fiv ‘ll
+Plliv t): K1(-I7. til + Pl-(fi', t): [(20-11 0]

where tame at r.h.s. are all measurable probabilities.
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quantum mechanical predictions, it can be easily shown [7] that a family of in—
equality of the form (4) can be reduced to the equality:

E = l (9)

while the corresponding quantum mechanical prediction is EQM = 1 + 432(1)),
independent on time t, and violating (9) by the quantity 48(0).

From an experimental point of view, it is convenient to measure 2 through
the relation:

2(At) = .‘V[771'(‘Z-7:5 +Ei);7r"€fu[—-FE t))/:z\:i;fiu@:, l; Azn;:r+f:‘J(‘—§,I)j
sVerrlplt); rand—p, t)_1;l\ (TiT(p.t);1T+r_—U(—_v‘ 2})

where NU107, t’); f2(-ff, t”)] is the measured decay rate into f1 and f2 channels
at times t’ and t", respectively.

At DA*I>NE, assuming an integrated luminosity L ~ 104 pb‘l, a statistical
error AE/E smaller than 0.1 % could be obtained, whereas the quantity |4§2(n)|
is of the order of 1% in the case of At = 1 1'5, with T; the K5 lifetime. Hence
the statistical precision achievable at DA<I>NE seems adequate to reveal Bell’s
inequality violations. However the systematics should be carefully invatigated.
A general purpose detector like KLOE might successfully perform such a mea-
surement.

I would like to express my gratitude to Profs. M.Cini, RH. Eberhard and
G.C.Ghirardi for fruitful suggestions and very stimulating and clarifying discus-
sions on the subject. I am very grateful to Prof. G.Diambrini—Palazzi for his
interwt and help. I am taking this opportunity to thank the conference commit—
tee for inviting me, in particular Prof. A.Studenikin, and all the organizers for
their kind support.
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Abstract

The study of phenomena related to the quantum behavior of macroscopic sysLem-s
is subjected to new efi‘orts both from theoretical and experimental point of View. Thevafidity, i: faci, of the description of macroscopic systems given by Quantum Mechanics
(QM) is 5:31.} under test, especially for what concerns the macromafistic inLnrprer-atioa of
the roal world

in 2950 .éJL-aggeufl] proposed a rest. of QM a: mmscopic ievei made by asystem
of SQUIDS. Some experimentafisns have tried. in the East ten years, to perform suchexpertnenfl’lfi], but Lhey failed in real-ling the proper se:-up for the experimwt.

We think however that the technoiogy for fabricating SQUIDH and the knowledgeof their beha‘rior are now so advanced that is worthwhile try Lo perform the experiment.
The MQC group of Rome sun-Led than in 1.994 a program to perform a test. of the vair'dityof QM. description on a [macroscopic scale following a u'rodificd version of the originalone proposed by L-eggciLZ-ij.



In this paper we will present all the experimental requirements necessary to
realize the real experiment. The system analized is a set of (rf-SQUID/Switch
SQUID/Amplifier) described in [4]. An introduction to the theoretical bases on the
experimental method is presented by G.Diambrini Palazzi in this Conference. See also
ref. 4b.

A. On the applied external flux.

To theoretical obtain a double well potential we must apply an external flux equal
to (Po/2. This from a point of view; but how much the real flux that will be applied can
be different from the above value? It happens in fact that if the external flux is greater
or smaller than (Do/2 the potential U(<I>) will have one of the two relative minima lower
that the other, resulting in a state where the flux will remain indefinitely in the lower
pit. The minimum imbalance is the one that result [as than the height of the first level
of oscillation in the pit, namely:

IU(‘P+)- U(‘I"}| 5 Min/2 (1)
If we compute the maximum difference of the external flux from (Do/2 satisfying the

above condition we obtain for a typical frequency in the bottom of the well of about
1 GHZ:

If em = % + 6<I> then 6<I> g 1 x 104% (2)

This stability is indeed a not easy task. To fulfill this requirement the system must
be well isolated from the external fluctuations of the static (earth) magnetic field as well
as from the rf interference. This can be accomplished by using a set of inn-metal shields
together with rf filters on all the cables entering into the experimental area. A good
mechanical isolation must be obtained also from the external vibration. The experimental
dewar must then be put on an isolating platform with a sufficient attenuation in the audio
frequency region.

B. On the temperature, I.

To have just the tunnel efi'ect driving the motion of the flux between the two equi-
librium points, we must avoid thermal transition over the well. So the energy associated
to the mean thermal excitation must be lower than the well height, i.e.:

kBT<AU => T<<10K (3)

C. 0n the temperature, II.

We must have the Josephson junction working in the quantum regime, this means
that the energy associated to the thermal excitation must be lower than the first oscilla-
tion level:
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kBT<7IUp => T<1K (4)
D. On the temperature, III.

The must severe requirement on the temperature is that imposed by the efiect of
the. dissipations on the system. Any dissipation in fact will cause a. damping that Will
bring to the ices of the coherence that. is supposed to be observed by our experiment.
in the limii of T 2 GE and no dissipation the system will have no clumping at all. and
the coherent oscillation will bejust an indefinite oscillation. As long as the temperature
and dissipation will be different from zero , a damping of the oscillation Occurs that willdamp or wash out completely the effect to be observed. Gargfi} calculated the limit on
the temperature neccaaary to have a coherent oscillation of the system.

For very low damping we can use an approximate expression for this temperature
iimjt:

a at?T < T. — W71? (5)
where w, is the tunnelling frequency and R‘ the equivalent resistance associated to

the overall damping.
For typical values of the experimental parameters we have then:

T‘(21r-1MH, ; IMQ)=10 mK (6)
This moorrcilitut is of course the mos: difficult to realize. The experiment is infaczlrnlaoncd to operate with an 3H:- —- ‘Iz'e refrigerator that is supposed to cool the

system down to a thermodynamic temperature of 5 mKJf this low temperature will
ot be enough, en adiabatic demagnetization stage will be connected to the diluition

effigeraror to reach a temperature ofOl — 0.5 mir‘.

1:!
r

E. On the back action from the analyzer.

The signal coming from the r’ SCH—LU must he read by an instrument the takes Elle
same role of the analyzer in an experirrzerit made by photons where the experimental chainis composed by the 533mm (source/analyzer/detector). Now for a photon experiment no
prob-tern arise due to the analyzer. since in a coincidence experiment there can be no
effect on the source due the measurement apparatus. In our expel-irritant however. any
back action From the anaiyzer on the rf SQUID can destroy the coherence by making
an "observation“ of the status of thc SQUID. and making an ”lumen-e" (in the classical
sense) measurement. To avoid this problem the solution can be to use (as analyzer} anhysterecic dc SQUID Working as a. S'fiitchlfii.

Briefly. an hysteretic dc SQUID is a device that can have only two states. supercon-
ducting or normal. depending on the direction of the flux concatenated with the SQUID.With a. proper set up of the device we can set the dc SQUID such to switch from the
superconducting to the normal state only if the flux in the rf SQUID e:- (for instance) in
the right well: the dc SQUID will remain in tire superconducting state if the flux in the
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If SQUID is in the left well. If we “turn on" the dc SQUID for a very small time (of
the order of 10ns) and if we see no transition of the SQUID from the superconducting
to the normal state, we can infer the direction of the flux in the dc SQUID and hence
the position of the flux (left or right) in the rf SQUID . This measurement will be a non—
invasive measurement since the dc SQUID will undergo no transition and hence no back
action will flow from the dc to the rf SQUID. The measurement where the dc SQUID will
have a. transition will be an invasive measurement, and cannot be used for a “series” of

measurements, but only to detect the state of the SQUID at the time of the transition.

F. Limit on the analyzer efficiency.

The dc SQUID switch will have of couree an eficlency lower than one. We can ask

then what is the lower lirnit on this efliclency. The Limit will depend on the type cu"
measure that must be done Suppose that we are analysing the probability P j: (t) of
measuring the versus (i) of the circulating current in the SQUID. If the experimental
procedure is ta measure PlT/J.) after a measure done at t = T]? (T being the tunnelling
period-Ii. a measure i.e. aiming to detect if the macroscopic system is described by a

sneerpesition of star-es or by a statistical mixture. the requirement is such to claim: a
difference between P(T/'4) : O and H274) : 1/4. The eficicncy must be in this case

of the order or better :han 30%.
if we want to make a test on the Bell inequalities, the limit on the analyzer efficiency

is much more still”; it can be demonstrated in fact that must be larger than 95% [7].

G. Time resolution on the start time.

Every mermurermnt of the. SQUID system is supposed to start with the SQUID

prepared in one of the two passable states ( lrculating current in the SQUlD clockwise
or material-mice}. Of centre-e we cannot realize. this by “measuring“ E: state. since

we cannot know the possible influence of the measure on {he subsequent time evolution.

What car: he lien: is to i‘13.“elaeye‘" the SQUID by tilting the double Well potential in

such a way to force the “flux" in one of the two wells ( the left well for 3-: hence}. if we

restore then the Symmetric double potential: the flux will continue the time evolution

by starting from the left well, Of course the problem is to realize this» "preparation” in

a time fast enough respected to the time period of the t'mneiiiflg frequency (13-! Hz).

This twk can be accomplished by using a l -r driven superconducting switch. This

object consist essentially in a closed supermnducting circuit inductively coupled to the

ri SQUID. in normal :ouditrons, ie. when no current is stored in the circuit‘ the SQUID

potential is the standard S)‘l'!ll:fle‘l.‘i€ double well. When we store a persistent current

in to the circuit we apply an external flux to the SQUID. so Wt. cause an imbalance 0n

the SQUID potential. if then a very short laser pulse as applied to a short region of the

superconducting circuit. this becomes normal, and the persistent current will die out in

a. time of the order of Ld,¢u,-:/R.,m.m;. With this apparatus it has been demonstrateflfi]

that one can have a transition as short as few nanoseconds, a time short. enough for the

MQC experiment.
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H. Quality of Josephson Junctions.

As we showed in the previous paragraphs greet attention must be paid on realizinga very low dissipation system. Once every source of external dieeipesioo has been re—
moved. it remains Just the intrinsic dissipation of the J'oeephsou junction. So it is very
important is realize a. junction with the ioWest possible dissipation. One of Lhe must.
important parameters the; characterize the Junction construction is the. current density;
this parameter must therefore be optimized if the optimum junction is ties-bed for the
experimeuz. lE. has been showing-‘9] that. the bear junction With respect to the current
éem‘itjr' are tho-5e reamed with a curl-en: oeosi‘uy as small as possible: a current density
lower that few hundred of Ampere/r. .9 is m praccice sufficieru Lo maimain Lhe BCS
behaxrior or" the junction at temperatures as low as 0.3:", K. At lower temperatures it may
be possible that. lower curren: densities must he use-:1. However current. densities of the
order of 1-10 .ri/cmE are currenciy realized. so this should not be a major problem.

I. Shielding.

A very good shielding from mechanical and em. interference must be obtainded.
The isola ion iron“: mechanical ncis—r should guuaozee that. no Vibration can modulate
aha rragoe‘.éc flax mapped into the system 1 the: must be stale at one ,2- El 103). The
experimental eoparaLus will be glam-Hi on a vibration isolation platform havmg horizontal
and vertical 7 {ounces around l. This should guarantee many hundred of :18 o!"
attenuation m the ’55: region of frequency where the external noises are expected to be
reiexanr. A proper (1'. gm of the SQUID holder should Lhcr: he realized to avoid relative
movement of the holder with respect. to the squid inductance.

- «ha: concern: the em. inierferen-re. e part from the standard superconducting.'65. .32. low ti‘mpfifibufafi. that should guarantee :he stabiliby of zir- trapped field. ihcshieldinc from the enema] noise will be realized wiih standard rrniltiple shieid system
made he Aluminum and {rm—zeta! shields. for respectively high- 32:: low frequencies
shielding.

A21 addiziouai system of fielmclrz cc-Li arranged in a cube of km of side has been
realized Lo create 0 region of low d: magnetic field Lo reduce {be trapped field when the
system pass from the normal to the superconducting stare. With such a. system 3. field as
low as few milligauss has been realized in a volume of few liters around the experimental
region. lowering the earth mean field of a two orders of magnitude

Conclusions.

Lu rhis paper we have shown the most important experimental problems that should
be solved Lo realize a. Macroscopic Quantum experiment with a system of SQUIDs. We
have shown moreover how Lhe MQC group of Home Universi‘ry wants to approach these
problems. We are confident that all the experimental requiremems can be solved by usingthe present technologies and the solutions presented in this paper. We hope thereforethe: in a. few years the experiment will he in operazion. and that We will be able to givean answer [.0 the ability of QM. to explain the behavior of quantum macroecopic objects.
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1. The supersymmezric quantum mechanics is in a permanent intensive tie;
velopmen: since the Witter. papers :1]. One can cite the N—extended supra-sym—
:netric quantum mechanics I2”: parasupersymmetric quantum mechanics [3]. and
high order derivative supersymmetric quantum mechanics [4] The field of super—
symmetrx quantum mechanics is recently reviewed in {5]. We want to point out
that all above mentioned constructions are valid for the time independent Hamil‘
Ionians and if one restrict oneself by the stationary solutions of :he Schrodinger
equation. Hence, these constructions can be referred to Lhe stationary super-
eyrnmetric quantum mechanics and the nonstationary one needs to he developed.
We hope that this report gives a. stimulus for the further developments in this
ri:rr-ain.

2. The nonstationary super-symmetric quantum mechanics is based on the
zionstatiouery Barbour: tramsformatic—n [El in just the same way as the stationary
one [1. 7] is based on the conventional Darboux transformation {8].

Let us consider two time-dependent Schrodinger equations

(i3; - Ho)¢'(1,t) = 0. a: = 0/61, Ho = ‘83. " %(I, t), a: = 3,3,, (1)

(€61 — H1)¢($i t) = 0! HI = —63 _ “(3, t)! 1 6 R1 16 R1' (2)

Here —Vo(:l:,t) is a potential energy and R = [a,b] is the interval for 2: variable
which can be both finite and infinite. If the Schrodinger operators for Eqs. (1)
and (2) are connected by intertwining relation

L08, — Ho) = (i6. — H,)L, (3)
where L is a linear operator, named transformation operator, the functions 1/) and
so are related as follows: <p = Lg!) if q # 0.
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If (far-Ho) and (iii-H1) are self-adjoint (in the sense of some scalar product)
the equation (3) implies

L+(i81 — 111) = (if), — H0)L+, (4)

where the superscript plus sign (+) is used to denote the operator adjoint to L,
and Eqs. (1) and (2) become “peer”. It follows from Eqs. (3) and (4) that
so = L+L commutes with (i3. — Ho) and .51 = LL+ commutes with (if); - H1)
and consequently so is a symmetry operator for the initial equation (1) and 31 is
a symmetry operator for the final one (2).

The constructions such as in Eq. (3) are wellvlmown in mathematics and are
intensively investigated since the Delsart’s paper [9] The most significant results
obtained with the help of the transformation operators concern the backscattering
problem in quantum mechanics [10] and its application for the solving of the
nonlinear equations [11].

3. We now assume that L is a differential of the first degree in 3, operator
with smooth coefficients depending on both variables a: and t. We should not
include in L the derivative 0‘ since it, being found from equation (1), transforms
L into the second-order differential operator. In this case the operator L and the
real potential difference .A(z, t) = Vl(z,t) — Vo(z,t) are completely defined by a
function u(:c,t) named transformation function [6]:

L = L1(—u,/u+3,), (5)
L1 = L1(t) = exp (2fdt Im(log 11)”), (6)

A = (1°glul2)sr‘ (7)

The transformation function u must be subjected to the new potential reality

condition {6]
(log “In-)zzz = 0| (8)

where the asterisk implies the complex conjugation.
in the majority of cases of physical interest we can introduce the Hilbert space

structure L§(R) in the Space of the solutions of Lhe equation (1) With the scalar

product appropriateiy defined. Symmetry operator 5.; = L‘ i. being self—adjoinL

can have either discrete spectrum in Lji iii or continuous one and since L2 = 0
(see Eq. (5)), the function u is its proper function corresponding to zero proper
value. It follows that u is the one of the proper functions ofoperator L+L = h—a.
In general case h is a self—adjoint integral-of motion for the initial Schrodinger
equation (1) which in particular case (if V0 does not depend on t) can be the
Hamiltonian Ho and the function u is its proper function corresponding to the
proper value a.
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With the help of the transformation operator L, in just the same way that
in the conventional supersymmetric quantum mechanics [1, 7], we can construct
the supercharge operators

Q=(2 3)=(Q+)l ' (9)

L¢(:r,t)
ble two Schrodinger equations (1) and (2) into one two-component equation

acting on the two-component wavefunctious Mr. 1) = ( “1’0 ), and assem-

(ua. — mm“) = 0, (10)

Ho
0 H1~

Since so = L+L and 31 = LL+ are the symmetry operators for equations ( 1)
L+L 0

0 LL+
operator for the equation (10). The operators Q, Q‘, and S form a well-known
superalgebra [1, 7] with the single difference that instead of the Hamiltonian we
can use any other integral of motion of the equation (1). When h coincides with
the initial Hamiltonian, the correspondence becomes exact. This is the reason
to name the transformation L (5), (6), time-independent Darboux tmnsformation
[6].

4. With the help of the other proper functions of operator h we can perform
the chain of Darboux transformations and construct the parasuperalgebra in full
analogy with papers [3]. If in this chain we eliminate the intermediate operators
h and express the final N-degree in a, operator L in terms of the particular
solutions u; of the initial equation (1), we obtain higher-derivative nonstationary
quantum mechanics analogous to the stationary one [4]. In this case

where I is 2 X 2 identity matrix and 'H = ) is a. superhamiltonian.

and (2) respectively, the superoperator .S' = is the symmetry

ul u; 1
“I: “2: - - ' a:

l I
. i

L _=. L‘”) = LN(t)w"(u1,...,uN)i : l (11)
{14:0 ug) a" i

where w denotes the conventional symbol for Wrouskian of the functions u! , . . . , u",
and for the real function LN(t) we have

LN(t) = exp {2 / dt Imilog w(u,,...,uN)],,}. (12)
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The new potential reality condition (8) transforms into the following relation

w(u1,...,uN)1 ———— : .
{0g 10.011, ...,1lN llama: 0 (13)

For the potential difference function we have

AN = (10g|UJ(U1,...,’uN)I2)2£. (14)

We can recognize in formula (11) the generalization of the known Crum-Krein
formula [12, 13] obtained for stationary case. Note that the condition (13) is
more feeble than the reality condition (8) imposed on every function 11,-. Thus,

we can construct the higher-derivative supersymmetry with the self-adjoint final
Hamiltonian even if the intermediate Hamiltonians are not self-adjoint (so-named
irreducible case described for stationary casein Ref. 4). The basic relation for the
time-dependent polynomial supersymmetric quantum mechanics is the following

factorization property

N N

15*], = mhu — Ci), LL+ = HUI: — Ca) (15)
i=1 i=1

first obtained for the stationary case in Ref. 4. The C.- entering in Eqs. (15) are
the proper values corresponding to the functions u; for the integral of motion he
of the initial Schrédinger equation ii}.

5. To obtain the regular porentiafi :fifierence by the single Barb-aux :razzsfor-
mation Lat—{T} the transformation function '; should he noneiegs. 1;: the space

L§(Rj a single nodeiese proper function of the operator A exists if operator :3. has
the discrete spectrum}. This function is The ground sza‘te function of operator 4‘1.

f ,

.‘I suitable for he construction of the transformation operator .5 They Six-D‘cl

have the proper value a < in (a; being the lowest eigenmlne :13" .5: corresponding to

the bounded states}. in this case the discrete spectra of the symmetry operators
in : L+L + n and .7: : Li“ + u differ Elf-one level and we have a brouen supra“—

symmetry [11. livery bounded 5.21M: of the superoperamr 5'. except for its ground

state. is doubie degenerate. Vie new will describe: :l.e. unexpected QECLLual'lElES

in the breakdown of the supersynanietry in the higher-derivative snpersymmetric

quantum mechanical These pecn‘iarities (a: far as we know"! are not discussed in

the available literature.
The single Darboux transformation being performed with the discrete spec-

trum function un(z, t) of the integral of motion h having 11 zeros in interval (a, (I)
gives a potential difference with n poles and the solutions obtained with the help
of transformation operator (5) does not belong to the space L'flR) of functions
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square integrable in in, 5;. Nevertheless. the second trursformation with the Lran5~formation function ztn+1(r\i). having 72 + 1 zeros in (or £2) removes all singularitiesand the transformation operator ofthe second degree I.“ := L311}, where It“. arethe singie Darboux transformation operators, is weii defined, This fact reflects
the known property of the iV'rooskian constructed from the functions at. beiong—
ing to EUR) Space with Fri zeroe £13]: the Wronskian tit/uh. . . Huh.) conserves
its Sign if for all k = 0.1.2. the unequality ilk — k1)“- — 1:7) --(l: — at”) 2 9
holds. Ln particular. the functions or may be two ivy twc juxtaposed functions.
The discrete eigenvalues or of the operator )1 corresponding to the transforma-
tion functions 3k. are absent in the spectrum of its superpartraer l2. This signifies
that the ground state levei of tire super-operator 5 is double degenerate and the
excited states constructed with the heip of the functions uh are nondogenerate.
’E‘urt‘nerrnore1 these states are annihilated by the operators Q and Q+ in contrast
to the ground states annihilated only by the one of these operators. .t should
be noted that this property remains valid for the stationary states. 3.9., ir.- the
ordinary supersymmetric quantum :ziechanics.

6. The differential symmetry operators for is stationary Schrodinger equa-
tion are Hamiltonian and its polynomial; functions. The algebra. of symmetry
operators for the nonstationary ochrodinger equation is more rich then the sta—
tionary one. We can use the whole Lie algebra of the difierestial symmetry
operators of the initial Schrodinger equation to construct the supersymmetric
algebra. For this purpose we should define the operator inverse to 1.

The equation (5) implies that Lu = 0. Choose the transformation function it
such that the absolute value of u“(:. t) be square-integrable in the interval R and
the condition {3} be Valid. Then for every ti' 6 Lgifii We have ,; : Ln“: E LilR},

58'. f, ‘ {q : +5 : Lu}. #1 e Lgi'fl‘ju} does not span the whole space
i The function 5593,!) = [L1(i)::'iz,t);“i E 1231?) [6] car. not be obtain

b v the action of the operator L on any 2;? E Lglfij. if we designate ’oy Lfgi‘RJ the
iinear hull of the function go then 115(12): 55(23):? 1.321(3).

Choose as the transformation iuuczion the funnier: u : £30 for defiioug the
following integrai ope.e.tor acting from Lmh’) to LglR)

Mme) = [Lz(t)v‘(z,t)]“ j’vwwwm. (16)
The straightforward calculations persuade that Lilli: = 5: for all 5p 6 Lf1(R) and
the Condition E Lialfl') implies MLr-J’ : w for all u‘: E 1131!!) operator M, hence,
is inverse to I,- : M = L‘iV and we have oue—to-one correspondence between the
spmes Lni and LiUfi).

If in the space L3H?) the symmetry operators 9,- l'orming n-dimeusional Liealgebra G‘ with the structural constants ff} : ig;,_¢,J = fly, is defined and this
space is invariant under the action of these operators their in the space Lf:.(R)
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We can define the operators y,- = nM and this space will be invariant under the
action of all fig. Furthermore these operators form a basis for the n-dirnensional
Lie algebra G with the same structural constants i5 isomorphic to G. Designate
by To the space of two-component wave functions \II(2:, t) with the basis \II+(2:, t) =
¢(x,t)e+ and M. t) = Lama, «b e L302), and «2+ = (3), e- = (2). It
follows that in the space To we can define the operators

_ ya 0
Gi-(0 it) (17)

forming Lie algebra isomorphic to G and these operators are the symmetry op-
erators for the supersymmetric equation (10). Besides the operators G; in the

space To the following operators can be defined: P9 2 La‘, Q: : :JJ‘R'J'

where a- = O 0 in!“ = ( 9 1 ). These operators are evidently uiipoienz:
. l U "l _ U 0

P32 = 0. GE : O. and {Q5.QJ} E [2:42; + £2;n : 0- Furthermore. we car: find by
the direct calculations that {ELQQ : G" and the generaiized Jacobi idenLiries
are fulfilled. The operators G,-,Q.-,Po, i = 1,2,...,n, hence, form a basis for

2n + 1-dimensional Lie superalgebra sG.
We note that since )1 = L+L + a e G we have for operator 5' introduced in

sec, .3. 5' E 56' and Q. Q" E 5G.
T. Examples. Consider first the simplest case of a free particle: vo(z, t) = 0.

Choose the following solutions of the initial Schrodinger equation (1) [14]:

1/JA(I, t) = (1 +t’)'1/‘1 exp[izzt/(4 + 412) + iz\ arctantlQfiz), (18)
z = a:(1+t3)‘1/2,

where Que) is 15.9 parabolic {vilog‘lel' functions satisfying the equation Qfifiry —
{22/4 + A;Q;.lz, = G with A being an arbitrary paiameior ltlic separation con—

stant). For A = z: 4.—
Hermite polynomials Q,‘,,,7,3{_:_* : 9x91:H-llH..j_i:/V§l. The ream; car-

{8‘} is satisfied for all real A. Functions {ll-5) being modeless for A = n + L"). and

for even 71 are suitahie for use as transfer nation functions. Formula l7} gives the
new Schrodinger equation (2) potential

; -.152, 72 l N‘, the functions 42,;n are expressed- via. the
?

(ht—2(2) 2 (In—1(2) z—-—— — 8k —— ,
93(2) ( (1242) ) )

where 9142) = (-i)‘Hek(iz), H€k(2) = Q-k/Zflklz/fi)-
The same functions for odd n are nodeless in half-interval (0,00) and with

their help we obtain the following time-dependent exactly solvable potential

u?" = (1 + 22)-1(1 +4k(2k — 1)

”(n+0 _ 2 -1 (ht—1(2) _ 2 4124?) 2
l - (1 +t ) (1+ 4k(2k +1)Q2k+l(z) 2(2k +1) (92k+1(z)) )'
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:r = zx/l—WE (0,00).
The functions (£8) for A = —n - 1/2 form a discrete basis set in L3(R‘). Thedouble Darboux transformation with juxtaposed functions un = ¢-u_1,2 andan“ gives a regular potential of the form

1,n = 2(1 +12)[J,’.’(2)/J.-(2) — (14(41l1)” — 1},
J),(z) = l"(k + DEF—1L9 + 1)Hef(2) = k_1(z) + [162(2),

Ja(z) = 1, J1(z) = 22 +1, J2(z) = z‘ + 3,. .. .
Just these potentials correspond to the supersymmetric models with double de—
generate eigenvalue of the superoperator S except two ones constructed with thehelp of the functions 11,. and 11"“. For n > 0 the ground state of S is double
degenerate.

We can establish that the \\':onskia.n constructed from two functions (18)with A, = m + i/2 and A; =I+ 1/‘2 for m = Uiglwuandl=m+1,m+3,...is models-55 and consequently these functions are suitable for double Darbouxtransformation. This gives the following exactly solvable potential
09"") = 2(1 + t2)‘1(l + d2 log fm,(z)/d22),

fml(z) = qm(2)91+1(2) " 41(Z)Qm+1(z).

We will cite as well one example for harmonic oscillator potential: Ho = —63+LEI". Ham, : (271+llll‘mzpn = f1”;x/Eziexp(—iw(2n+1)t—w1:2/2),'n E N‘. IfWe choose 22'1" following nonstaricnary solution of the initial Schrodinger equation('1: as a transformation function:

u(::, t) = sin‘1/2(2wt) cosh(/\::/ sin 2m) exp[i(w:r’ — Az/w) cot(2wt)/2] ¢ L3(R1),
A e R1,

we obtain the nonstationary anharmonic potential of the form: v1(2:, t) = (.0222 —2A1 sin‘1/2(2wt)sech2()«:c/ sin 2m».
First author was supported by the Russian Foundation for Fundamental Re-search.

References

[1] E. Witten, Nucl. Phys., B 188 (1981) 513; ibid., B 202 (1982) 253.
[2] A.I. Pashnev, Sov.,J. Theor. Math. Phys., 60 (1986) 311; V.P. Berezovoyand A.I. Pashnev, Sov. J. Theor. Math. Phys.. 78 (1989) 289; V.P. Berezovoy

and A.I. Pashnev, Z. Phys. 51 (1991) 525.

60



[3] V.A. Rubakov and V.P. Spiridonov, Mod. Phys. Lett. A3 (1988) 1337; A.A.
Andrianov and M.V. Iofl’e, Phys. Lett. B 255 (1991) 543; J. Beckers, N.
Debergh, and A.G. Nikitin, Mod. Phys. Lett. 7 (1992) 1609.

[4] A.A. Andrianov, M.V. Iofi'e, and V.P. Spiridonov, Phys. Lett. A 174 (1993)
273; A.A. Andrianov, M.V. Iofl'e, and D.N. Nislmianidze, Polynomial SUSY
in Quantum Mechanics and Second Derivative Darbouz Transformation,
preprint SPbU-IP-94~O5 (1994); A.A. Andrianov, F. Canata, J .-P. Dedonder,
and M.V. Iofle, Second Order Derivative Supersymmetry and Scattering
Problem, preprint SPbU-IP-94-03 (1994).

[5] F. Cooper, A. Khare, and U. Sukhtame, Phys. Rep. 251 (1995) 267.

[6] V.G. Bagrov, B.F. Samsonov, and LA. Shekojan, Izv. Vyssh. Uchebn.
Zaved. Fizika. No 7 (1995) 59; V.G. Bagrov and B.F. Samsonov, Phys. Lett.
A (in press).

[7] A.A. Andrianov, N.V. Borisov, M.V. Iofle, and I.M. Eides, Sov. J. Theor.
Math. Phys. 61 (1984) 17; C.V. Sukumar, J. Phys. A 18 (1985) 2917; ibid.,
2937; V.G. Bagrov and 8.1". Samsonov, Sov. J. Theor. Math. Phys. 104
(1995) 356.

[8] G. Darboux, Compt. Rend. Acad. Sci. 94 (1882) 1456; G. Darboux, Lecons
sur la theorie generale des surfaces et les application geometrique du calcul
infinitesimal. Deuxieme partie, Paris, Gauthier-Villa's et fils (1889).

[9] J. Delsart, J. Math. Pures et Appl. 17 (1938) 213; J. Delsart and J.L. Lions,
Comment: Math. Helv. 32 (1957) 113.

[10] Z.S. Agranovich and V.A. Marchenko, Backseattering Problem, Kharkov
(1969); B.M. Levitan, Inverse Sturrn-Liouville Problems, Nauka, Moscow
(1984); L.D. Faddeev, Usp. Mat. Nauk 105 (1959) 57.

[11] F. Calogero and A. Degasperis, Spectral Transform and Solitons,
Amsterdam—New York—Oxford; ILK. Dodd, J .C. Eilbeck, J.D. Gibbon, and
BC. Morris, Solitons and Nonlinear Wave Equations, Academic Press; V.E.

Zakharov, Backseattering Method, Solitons. Ed. by R. Bulla and RM. Kodri,

Moscow (1983) 270.

[12] M. Crum, Quart. J. Math. 6 (1955) 263.

[13] M.G. Krein, Dokl. Akad. Nauk SSSR. 113 (1957) 970.

[14] W. Miller Jr., Symmetry and Separation of Variables. Massachusets (1977);

61



CONSTRAINTS ON NEUTRINO MAGNETIC
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Abstract

Effects of neutrino conversion and oscillations induced by strong magnet~
ic fields that can exist in supernova explosion and neutron star are discussed.
We examine possibilities to get constraints on magnetic moment of neutrino
and on strenght of magnetic field from the demand that the loss of active
neutrinos veL due to the magnetic field induced oscillations of the type
I!” H um is negligible. The constraint on neutrino magnetic moment on
the level of p 5 10-11143 can be obtained from analysis of energy balance of
a. supernova explosion. More stringent constraint M S 10-15;”; is received
from consideration of neutrino conversion in a neutron star and the limit on
the neutron star magnetic field, B S 5 x 1012 G, on the scale R = 1 km is
also obtained.

In our previous studies [1, 2, 3, 4, 5, 6, 7] we discussed neutrino conversion
and oscillations among the two neutrino species induced by strong magnetic field.
Implications of these phenomena to the case of neutrinos in the Sun, interstellar
galactic media, neutron stars and supernova. were examined.

Initially these investigations have been stimulated, above all, by the desire for
a solution to the solar neutrino puzzle on the base of matter and magnetic field
enhancement of spin and flavour neutrino conversion (see, for example, [8, 9, 10,11, 12,131).
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Another important motivation of these studies have been provided by the
common belief that neutrino conversion and oscillations may play a significant
role in supernova bursts and cooling of neutron stars (see, for example,]14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24]).

In [1, 2, 3, 4, 5, 6, 7] we determined the value of the the critical strength of mag-
netic field B" as a function of characteristics of neutrinos in vacuum (Ami, 0),
neutrino magnetic (transition) moment [i and energy E, effective particle density
of matter nm that determins the range of fields (B _>_ Ba.) for which the mag-
netic field induced neutrino conversion and oscillations become significant. These
neutrino conversion and oscillations could result in loss of a significant amount of
active liq neutrinos during a supernova explosion and inside or near a neutron
star.

As it was pointed out in our previous studies (see, for example, {2, 3, 4, 6]),
effects of the magnetic field induced neutrino conversion become important if the
following two conditions are satisfied:

1) the magnetic field exeeds the critical value Ba. (see eq.(3) bellow)

B Z BET, (1-1)

and
2) the length a: of the neutrinos path in the medium must be greater than the

efl'ective oscillation length Le” (see eq.(5) bellow)

a; 2 5i. (1.2)
2

The efl'ect of suppression of amount of active 3:5 file-CLEO: n9i 'inos {due to
[2 3 4.. 6]

to constrain the value of pH in the frame of the proposed model 115| of about

60 % increase in the supernova explosion energy. Supposing that the magnetic

field induced neutrino oscillations do not destroy the proposed increase of the

explosion energy we got an upper limit on the value of the magnetic moment of
neutrino from the following arguments. If the magnetic field B ~ Bo = 10“ G
exists at the radius of To = 45 km from the centre of the hot proto neutron star

(the matter density in this region is p ~ 1012 g/cma) and decreases with distance
from the centre according to the law

Mr) = BBC—“)7 (2)
then on the distances 1' ~ 160 km from the centre the magnetic field is ~ 0.6 X
1013 G. This field is of the order of the B“. determined by

1 AmiA
Be.- = ]fi(_—2E—- — fiGFTQ-ff)‘ (3)
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( where A = 5(cos 29 — 1),Am§ = 10"‘eV2 and E = 10 MeV) for the densityp ~ 6 X 10‘ g/cm3 and the magnetic moment p ~ lO‘w. For this case theprobability of finding sterile Van’s among the initially emitted 11,1, ’s

(2,13)?
m2 :%~"A — «50mm + cum” (4)

- 1
PIQL'WeR = 58in2 29,}! =

is equal to Run,“ = 0.25. The efi'ective length

Lax! = 2463:"— fiGrnen)2+ (MBVJ‘W (5)
for this effect is i=1: f w 10 cm. Consequently, to avoid the Loss of a substantial (25
'53:) amount ofenergy that could escape from the region behind the shoal: together
with the sterile neutrinos 11,3, one has to constrain the magnetic moment on the
[navel of v; E Malina.

Thar is another oossibiiitj: to get canszraints on the value of neutrino mag-netic moment and also on the enough: of magnetic field of a neuron star based
on the asstnjiion that the egocts of T. . connexion of the left neutrino-s 2,c into
right nee? .nos :15}? induced by magnetic

Let us assume 1-" at the magi-livid a
—IE .

t‘b‘

field are negligible.
f the magnetic moment of electron neu-trino i2 on :he ievei of g; = 2:1 '5

COD’CL’I DE? 2'3 X}

u" = EL" (12;) (6)— 98&e =3X10 1 [1.3

to the neutrino magnetic moment induced in easy models [25] for neutrino mag-netic moment based on the standard gauge group SU(2)L x U(1)y with a singletright-handed neutrino and the neutrino mass about m, ~ 10 eV. Suppose thatvery strong magnetic field B exist in a region of a neutron star with characteristic
scale of about R ~ 1 km and condition B 2 BC. is satisfied inside this region.Then in order to avoid the loss of significant amount of yd due to the magnetic
field induced conversion 11,], —> 11,}; we have to demand that the second condition( eq.(1.2)) is unsatisfied, i.e., the effective oscillation lenght L,” = 1r/,u..,B hasto exeed at least two times R, L,” > 2R. It follows that the magnetic field isconstraint to the value B < 5 X 1015 G.

So we can conclude that if there is no important efiects of magnetic fieldinduced conversion 11,1, —> veg for the values of the neutrino magnetic momentu, ~ 10‘1'p3 the magnetic field of the neutron star on the scale of about R ~1 km have to be smaller than B = 5 x 1015 G. It must be pointed out thatthis constraint is derived with out direct use of information about the denstyof matter of neutron star in the region of the scale R = 1 km. However, this
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information is used inderectly in the condition B 2 BC, because the value of BH
is determined by the density of matter.

To get constraint on the neutrino magnetic moment we include into consid-
eration observational date on the value of magnetic field of neutron stars. If
We use estimation of the neutron star magnetic field on the scale R = 1 km,
B S 5 x 1012 G, and also demand that the effects of the convertion of the left
neutrinos we; into right neutrinos VeR induced by magnetic field are negligible
then we have to limit the neutrino magnetic moment on the level p, 5 10—15;”.
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Radiative decay of a massive neutrino in the Weinberg-Salam
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Abstract
Influence of an external magnetic field on the decay process with emission of

a linearly polarised photon is considered. It is shown that there is a region of the
dynamic parameter of the process where the contribution of the non—zero neutrino
mass is essential. and the probability of the process is still higher than in the
zero field case. in the opposite limit of negligible neutrino mass contribution the
emitted photons are totally linearly polarised, which may help in identification of
these photons.

In the WSG model with mixing a massive neutrino that takes part in the weak
interactions is a superposition of the states 1/; with fixed masses m;

Va. = Drug-Via (1)

where U,“- is the mixing matrix. This leads to such interesting phenomena
as neutrino oscillations [1], that are closely related to the solution of the
problem of the solar neutrino deficit [2]; to rare decays with the lepton number
nonconservation such as f; —> fj + 7 or f.- —> fj + 7 + 7 (f,- and fj are fermions
with different flavours, 7 is a. radiated photon) which are investigated because of
their possible astrophysical applications do to the by sensitivity of these processes
to masses and mixing angles.

The radiative decay of a massive neutrino f; —> fj + 7 both in a constant
magnetic field and in crossed fields without consideration for polarisation effects
has been studied in [3,4]. In the present paper we once again turn our attention
to the process of radiative decay of a massive neutrino in a constant magnetic
field. We calculate the probability of the process with consideration for the
contributions of the a and r-linear components of the emitted photon polarisation
and find the asymptotics of the rate of the process with consideration for the

polarisation properties of radiation in the limiting case of a relativistic neutrino
and comparatively weak magnetic field.

Similar to paper [3] only the contribution of the diagram with a virtual W-
boson in the Feynman gauge to the process will be considered. Going over to
the contact approximation and employing the Fierz identity [1,5], we present the
probability of the process in the form, which is convenient for future calculations:

‘4eG
5,5 : ~z fl}:5a(k)jB<K:fi)6(Qi — qj — k): (2)
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where

.p _‘.[3 (14-75)3 =24] 2 w, (K:g>=ZUJ-*;UR:K:B,

in = /d4pSP [76 (1+ 75) G“(p)7“G“(P+ 16)] 7 (3)
i: The propagator 01' :1 charged lepton in The mam-'43: FIE-dined

"Pnziai .Ja"i_I'| = ifl.:l.r3H.iis 3?- ‘xhe VTMTI’I'iBritm repre‘asentaiionz 5317:)
.ed Quota: With the momentum k: Lug-j! is

- n upoi ASHE-MDT: vertnr OI [HE :37
- - .- - .~ '. .:4. . _ . :2 2‘. _:ne L :rar' rxzspmm of me {Julia .mmn m-th fin“: nxnmenttm qty 2 '71: l. and

F:--.(g 'j ‘2 :he Dirac conjugate bispizzor r31” 1hr: fine: neutrino Will. the momentum
if" I‘ 1;"; : Tr»; ‘.

We will perform integration over 13“ in (3) in an invariant form. To this end
we will use a covariant representation for Gu(p) in the form of an integral over
the proper time [6] and the orthonormalized basis is introduced

1 (my mg)“n _ 2 u _ I1 _eW‘Tfi [1, kM+(FFIc)“], e(l)—- «E ,em— J6 ,
H (FFky‘

8(3) = —_r,r\/_T’ 62;)6‘45) = gag, a = kFFk. (4)

Ken \.= .23: erom integriring over Cartesian components; of the momentum p“
' n in the basis (4), where the

Therefore we obtain fer the rwantity K35 in (2)
'-.:".C- lama-1m: expression. vxhlci. is exam wire: 3353916.; to the field:

as over coerhcirents of its dacompcs
i'nrn‘. 36:: Jane 2.

I
K23 : —1,(27r)2 f%mexp [—imfls Jr 3,) + ’Lk] X

X {mi {1106 COS 6(S + 5') — i¢afisin 6(5 + s’) — 23in bssin bs’Aafi] —
_ at? b _ I _z_ _ ass' ) A a sin bssin bs’ _9 [COS (5 3) (5+s' ‘2'” (5+5): + sin b(s‘+ s') + 52-sini b($+s’)

_ .1 a 3 ss' - I a L7 s, - 2 121,772 [6(2)e(°)(s+s')2 sm bscosbs +e(2)e(3)s+s, sm 1mm] _

_' at? b '-afi 1 _ I
I sinb(s+.<>")-i—lA 3+3'C05b(s SH-

I

+2%e?2)e€2) (3—:l sin bs sin bs’} (5)

where

(FF) “‘3Rafi :gafi-l—AQB, AGE = T, b : e7]_
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ss’ - sin bs sin bs’ F‘”G‘“’=—A‘“’-—— ““z .s+s’ bsinb(s+s’)’ LP” 7] (6)

We note that the result (5) after summation over polarisation agrees with the
result of [3], where no polarisation properties have been studied, and as for the
vector 62’” (k) and (323151;), they after the corresponding gauge transformation turn
into the well known t ree dimensional transverse vectors of a- and w—polarisation.

Let us consider the case of relativistic neutrino energies and a comparatively
weak magnetic field, when

I0m
5,, >> m.,, H << Hg : :5, (7)

where ha is the critical field for the intermediate lepton of the type a = e, u, T.
If the invariant dynamical parameter xa : (MqFFql/(mi) = (H/Hg)(qL/mu) is
introduced we obtain the following asymptotics for the probability of the radiative
decay f,- —> f,- + 7 with emission of a photon with the polarisation /\ = a

a G} in2 4= _ —“ 4|U» »* 2 1.
10(0) 271, (151T)3 qO meXel iflUjel 1 X6 << (8)

We note that 10(0) is proportional to the square of the neutrino mass. However1

when the photon with the polarisation A: 7r is emitted, the probability of this
prOCess, besides the term proportional to the powers The neutrino mass, has the

part independent of the neutrino mass. lzzc e . 2." " “s of the dynamic

parameter, when Xe << mu/me or, which 9 rm? Edith: i put into another

form.
—— <<- 1, (9)

the probability of the process with emission of a photon with the polarisation
A = 7r has the following asymptotics

oz GE— 2
m at 2q; [briecl I:

_ 49 4 2
M") _ 271' (151:)3

12
lec: + EmumEXE 7 (10)

i. e. it has the same behaviour as that of the a-component for Xa << 1, while in

the intermediate region m—" << Xe << 1 (11)
me

the main contribution to the probability of the process is described by the formula

-

_ a G?“ mn t 2

w( |) — 47r (15K)3 ‘10 IU‘eEI (12)
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Abstract
The Heisenberg formalism for the creation and annihilation operators

of quantized spinor field in uonstationary external electromagnetic or grav—
itational fields is developed. Heisenberg equations of motion are obtained
for the creation—annihilation operators. The additional terms which arise
in these equations take into account the effects of scattering and particle
creation from vacuum by the external field.

1 Introduction

Heisenberg representation is the well-known and commonly used formalism of
a standard quantum field theory (see, e.g., [1, 2]). For the case of quantized
field interacting with some nonstationary external field, however, the time de
pendence of the Schrodinger wave functions cannot be completely transferred to
the creation and annihilation operators. This circumstance was established for
the special case of a spatially homogeneous nonstationary electric fields [3, 4].
As it was shown in [4], the same situation takes place for the quantized fields
interacting with nonstationary space homogeneous gravitational fields.

The theory of quantized fields interacting with nonstationary external-fields
has a great number of interesting applications in different brunches of physics [4,
5]. Here it is reasonable to mention the effect of particle production from vacuum
by the electromagnetic field of high-powered lasers and by the gravitational field
near the cosmological singularity. Additional application is the effect of vacuum
polarization by strong external field both electromagnetic or gravitational.

The main concern of this paper is to construct the Heisenberg representa—
tion for the quantized fields interacting with a nonstationary electromagnetic or
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gravitational field of a general form. Ic- make zms we perform a can-onirai quarr—
tization of a spinor field in nonstationary excernai fields. In par-tinder we adv-'4
some reasonable generalization of the E'iamilronian operaror which plays the grim;
role in canonical quantization as the usual Hamiltonian in stationary situations
which accomplishes translations in physical time.

In Sec.2 the Heisenberg formalism for spinor field in nonstationary background
is constructed. The Sec.3 is devoted to the obtaining of the Heisenberg equations
for the creation and annihilation operators in nonstationary electromagnetic or
gravitational background of general form.

Throughout the paper we use units in which it = c = 1. The Greek indices
have the values 0, 1, 2, 3, and the Latin ones — 1, 2, 3.

2 Heisenberg formalism for the spinor field in nonsta-
tionary background

In this section we develop Heisenberg quantization procedure for the spinor field
in an external electromagnetic or gravitational field.

From the Lagrangian of the spinor field (1)05) in the external electromagnetic
field Au(z) :

ax) = grammar) — answer/”wen — meme) (1)
we obtain in the standard manner the canonically conjugate momenta and the
Hamiltonian

«(2) = gm), mm) = gum), (2)
H(t)= /d31[ — 1r(z)a"D1,(a:)¢v(:r)—D;(z)¢+(a:)ak1r+(z) (3)

+ im¢+(x)fl1r+(:c) — im1r(1:)fl'l/J(a:)],

where H = 7°, (1“ = 7°7", 7“ are the Dirac matrices.
Now we shall consider Hamiltonian of the spinor field interacting with external

gravitational field. The space-time manifolds are supposed to allow decomposi-
tion into a. set of space-like hypersurfaces 2(t). So it is possible to intorduce the
global time t. Such decomposition and the existence of the global time coordinate
are necessary for developing the canonical quantization formalism. We shall use
also the system of reference for which

ds2 = g¢,o(t,x)dt2 + gbl(t,x)d2kd:', (4)
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i.e., in which all the components go,t are equal to zero. This metric is provided
by the tetrade ha”) with such orientation that vector 17,03) is directed along the
time-like coordinate t and the other vectors hm lie in the tangent space of the
spaceAlike hypersurface 2(t)

hiWI) = h($)6op, (5)
We) 79 0, We) = o.

Covariant differentiation of the spinor field in Riemannian space is defined as
follows [4]

lw = [6» + rcaaphlplvavfiw 2 [vii + C»($)l¢, (6)
where Cap, are the Ricci rotation coefi'icients which are connected with tetrad
hm” by the relation

Capt? = (Vuhza))h(fi)”h€p)' (7)

In the Riemannian space instead of the constant Dirac matrices 7“ it is nec-
essary to use the matrices 7"(a:) which are 4-vectors relatively to the general
coordinate transformations

7“(I) = haw)?”- (3)
Lagrangian of a spinor field in external gravitational field has the form [4]

5(2) = mtg—(nzwamtz) — (Vmfizlh‘lflflfl) — meme], (9)
where the Dirac conjugate spinor is 113(z) : ¢+(m)7°. From the Lagrangian (38)
the canonically conjugate momenta are defined as follows

«(2) = gatewz), W) = fire—grew). (10)
For canonical quantization the canonical energy-momentum tensor is neces—

sary. It may be obtained from the Lagrangian (9) with the variation by the
variables 1/) and ill.

The Hamiltonian is defined by the integration of T00 over the space-like hyA

persurface EU) [4]

Ha) = /mt)c°Too(z)g°°(w——gd3z, (11)
where C0 is the zero component of vector field orthogonal to 2(t) which provides
translations along the time coordinate. We scale t in such a manner that (0 = l.
Hamiltonian of a spinor field is defined by eq. (11) with

Too = 900("70($)60¢ + Boll—Whip”) — 9005(1), (12)
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where (‘0 in (11) is normalized on unity. With the expressions (10) for the mo-
menta and (5) for the tetrad the Hamiltonian has the form

H(t) : f2“) daa:[ — 1r(z):(S:3)Vu/1(z) + Vkfi(z)9h((Tz-))1T(:r)

- «(z)Co(z)1l’(z)-Co(z)«5(z)f(x) (13)

— mews”misfit—rel,
where a"(z) = 7°7"(z). The measure in (13) is invariant because the quantity
H is included into the canonical momenta (10). It is necessary to mention here
that the Hamiltonian (13) has some conventional meaning. For the particular
cases when C“ is the Killing vector field (or at least conformal Killing vector field
[4]) this Hamiltonian generates the translations in physical time and has the usual
meaning. In the other cases the situation with time transitions is not so simple
but, as it will be shown later, the operator (13) also possess all properties which
are demanded from the Hamiltonian in the usual canonical formalism.

The canonically conjugated operators qb(z) and w(a:) satisfy the usual anti-
commutation relations

“(7“, x): ”(is Ell} = ”(x _ Y). (14)

The Heisenberg equations for the spinor fields in the external electromagnetic
field are .

1W3) = {111(3), H(15)], W3) = Wm). H(01- (15)
Equations (15) may be written in the matrix form

115(3) = Nth/1(1), (16)
where linear (differential in coordinates x and parametrically depending on t)
operator H(:c) acting to a spinor field has the form

_ HWGc) _ ' _iak($)+ mfi71(3) _ { H<g)(z) } — { -ifia‘(t)vk — i00(z)+ $17170 } (17)
In Schrodinger representation the secondary quantization procedure consists

in expansion of the field @142) with respect to a complete set of solutions 1151*)(1)
to the Dirac equation (16):

«0(2) = flag-ma. + amen]. (18)
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Here, the index a labels the solutions, i.e., it corresponds to the spin state and
to the momentum generalized in the presence of external field; the indices (i)
correspond to the positive— and negative—frequency solutions, i.e., they have the
asymptotic behavior e$p(iiwat) as t ——> -—oo when the external field is switched
off or at some initial moment to. The standard anticommutation relations hold:

{amag'} = {bmbg‘} = 60,5.

_ The zeroth component of the charge current Ju(a:) = 1,5(2)7,,¢(z) (or J,‘(a:) =
1,!)(z)'y,,(z)1b(z) for the case of external gravitational field) determines the scalar
product of the spinors u and v:

11.1) = 33: U+(Z)U(I) ‘

< ’ > (mid {Eastman } (19)
which does not depend on time when u and v are the solutions of Dirac equation.

The operators H("'9)(z) are self-adjoint with respect to the scalar product

(19). This means that it posseses a complete orthonormal (in the sense of (19))
system of eigenfunctions 1/)fxi)(x) with eigenvalues wa(t):

H(A,g)(z)¢g¥)(1) : iwa(t)T/’£¥)(9’)i (20)

which depend on time as on a parameter. Since the system of functions diff) is

complete at any time (for all space—like hypersurfaces 2(t)), the operator of the

spinor field '4)(I) may be expanded with respect to it:

use) = Elna—Keen) + ¢£+)(w)di(t)i- (21)

The operators ca(t) and d:(t) introduced in (21) are the Heisenberg annihi-
lation and creation operators for a spinor field in an arbitrary electromagnetic or

gravitational background.
Using the expressions (2) or (10) for the canonical momenta and (17) for the

operator 71(1), we may, taking into account (20), to write Hamiltonian in the
form

32 _ wememzwe) z(and {H¢(z)7°(r)fl‘“(w)¢(z)} (22)
< 1/),H("‘”)1/’ >= Zwa(i)[61(t)ca(t)- da(t)di(t)l-

H(t)

Decomplementation of a spinor field with respect to the system of the eigen—
functions of the operator H(a:) diagonalises the Hamiltonian and the operator

coefficients of this decomplementation are the Heisenberg particles operators on
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space-time hypersurface 2(t) at a moment t. From (22) it is clearly seen that theeigenvalue wa(t) of the operator H05) introduced in (17) is just the instantaneousenergy in the state a (the energy of the state a on the space—like hypersurfaceE(t)).
To obtain time evolution of the creation-annihilation operators ca( t) and dg‘(t)it is necessary to make use of Heisenberg equations for fields (16).

3 Heisenberg equations for the creation-annihilation
operators of particles in nonstationary external fields

To determine time dependence of creation—annihilation operators we insert Heisen-
berg decomposition of field ¢(z) (21) with respect to eigenfunctions of operator
H(:z) (17) into eq. (16):

figs-meta) + d1£+’(z)d:(t)] = We) Herman) + ¢;+)<=)d:(n].
(23)Since the operator ’H(a:) contains derivatives only with respect to coordinatesx, it commutes with ca(t) and dflt). Multiplying (23) scalary by ¢§i)(z) andtaking into account that the functions gbg*)(:t) form the orthonormal system ofeigenfunctions of the operator 11(3) we obtain the Heisenberg equations for theoperators ca(t) and da+(t):

em) = mama) — Z[< wt", is.” > c.(t)+ < We“ > em].
3:0) = mama) — 2k was) > c.<t)+ < 11);“, tr) > d:(t)]<24)

the external field does not depend on time, then diff) = coast (on time), theadditional terms. under the sums vanish, and (24) becomes the ordinary Heisen-erg equations for the creation and annihilation operators.
It is worth-while to establish the connection between the Heisenberg oper-ators 63(1)) and d:(t) and the quasiparticle creation and annihilation operatorsEa(t) and til-(t) which were constructed in [4, 6] directly from the requirement of

diagonality of the instantaneous Hamiltonian. The quasiparticle operators may
be expressed in terms of the Schrodinger creation and annihilation operators by
the Bogoliubov transformation {7]

massage) + was) rm].
(3

Menuhin)+4>;p(t)«i;(t)]. (25)p

an

52:
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The matrices (D and ‘II (which, in general, are infinite dimensional) satisfy the

conditions which provide the ".('.‘::L:l‘.l(_'l‘._\' and inkerzibiiity of the transformations

{2.3). They may be my

Ilr‘ 53.5w eigenvalues ‘ l";w-.J_and 9333} one 3
1hr: spectrum of ? self ache-n: H; want with reaper: to the "heir? 114'

diagonal representation).
Substituting decomposition for the spinor field, we obtain the field operator

as an expansion with respect to the quasiparticle operators:

has) = mtg-wan) + 1Z£+)(1)J:(t)l, (26)
a

where the Bogoliubov basis functions 1551*)(3) are related to the Schrodinger func—
tions ug*)(z) eq. (18) by

Element) — waniufl,
3

Jig) : :[rffimug—l+q>:p(t)ug+>]. (27)
l7

152,-)

It is obvious that a scalar product of the form of(19) is invariant with respect

to the canonical transformations of the from of (27).
Since the Hamiltonian is diagonal both in terms of operators ca(t), dfit) and

Ea(t), 3:“), these operators [and also the basis functions ¢g*)(z) (eq. (21)) and
1133*)(3) (eq. (26))] may differ from each other only by phase factors:

Cuff) = Mile—”m a flit-VI) = e ‘”°(')1135;)(z),
11:6) = Jflm ”“m » 1193+)(I) = 6‘”“(‘)113£+)(Z)- (28)

The function 0a(t) here is to be determined.
The scalar products that occur in the Heisenberg equation (24) may be ex-

pressed in terms of the matrices (I) and \II of the Bogoliubov transformations

diagonalizing the Hamiltonian. To do this we use the equation

- . - \ -_(—) . .
<dil’)7¢£'l>=e”'9"°<¢§IG¢Q >e"°")+i0a(t-)6a (29)

which follows from (28) and the analogous equations for remaining scalar products

in (24).
-, ;(‘)

The scalar product < ¢,§’),¢a >, included in (29), may be expressed in

terms of the matrices <I> and 'II with using transformations (27), the Dirac equation
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for the functions uEKI), relations (28) and also eq. (20):

- _ ;(-)< 1p; ), 11%, >
- :.(+)<¢§;),¢o > = —(<i>+w—\ifi’<1>*)pa. (30)

_ (@IFQ + QTW')fiu _ wfl(t)6afiy

The similar expressions take place for < 61:35; >. < 13}? 1', Lia >.As aresult substituting (30) in (29'; and the sralar products {29" in the H.539“.berg equations (24) we obtain equate-“nus for the Heisenberg operators cal}; anddflt) represented through the matrices Q \U of the Bogoliuhov transformations:

‘Wfimcnm — MW) — wa(t))ca(t)
Ea: (“More + iTw‘Laeiedficau) (31)

HMt)

+
+ ¥e-tlafiw _ m‘)fiae-“«Md:(t),

and {he anriogons equation for (1.:f
‘ ' term in the right land sidt— 01' (31} is equal to the commutator m"

-1:- H' Enlmnian HM" 522}. To obtain the correct result in the Limit oft x .

g.

finishing Oftbe second term in the right-Errand:» , fixing, by this means the sheica of the phase function
1

age) = / wp(r)d1'. (32)
—00

The additional terms in (31) are due to the nonstationarity of the externalfield. In particular, they vanish in the limit 1‘ —» :too when the external field isswitched off and

<I>(t) ‘2” I, {)(t) ‘3'; (3+ = const,
1—0—00

‘Il(t) ——> 0, \Il(t)1_-:;° W+=const (33)

As a result, the Heisenberg equations for the particle creation and annihilationoperators in an arbitrary nonstationary background take the form

cw) = —i[ca(t), Hm}+ Z 649,“) ($.31p + ‘l’T'II')pae“"(’)¢a(t) (34)
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—i9()' _ 'T — —.'o.,();e “(aw aw)” ‘dgm,

WU), H0)]
Ze‘9»<‘>(\r+\r + We» e-“o<0d:(t) (35)

dim

+
+ ; e“‘[‘)(\ll+d> — <l>T‘Il’)pae‘6°(‘)ca(t).

The presence of the additional terms with the operator dj;(t) in (34) and
with ca(t) in (35) is due to the mixing of solutions with the opposite frequencies
and corresponds to particle—antipaticle pair production by the external field. The
terms with the operators ca(t) in eq. (34) and dflt) in eq. (35) describe the
eflects of scattering of particles by the external field. The sum over the different
modes (1 arises because the variables x and t can not be separated in an arbitrary
external field.

Let us consider the special case of a spatially homogeneous nonstationary
electric external field E(t) = 14-13(12). For the spinor quantized field eqs. (34), (35)
were obtained in [3, 4] and have the form

2arm = new), Hm] + L—Wewm, (36)
where w’ = 1n2 + pi + (1):, — eA3)2, pi = (p? +1191” is the momentum transverse
with rapect to the external field and r = 1,2 corresponds to two possible spin
projections onto 2 axis. The contributions which correspond to the same fre—
quency are absent here, since \il'hI! + if“? = 0 . Note also that in [3] equations
for the coefficients matrices of the Bogoliubov transformations equivalent to (34),
(35) and (36) were found for the case of a homogeneous electric field. For the
case of nonstationary space homogeneous gravitational field the analog of eqs.
(34), (35), (36) were obtained in [4}.

It should be noted that the developed formalism of Heisenberg quantization
may be applied to quantization procedure in external fields of an arbitrary nature.

For example, in [8] this procedure was carried out for a neutral scalar field in an

external field described by the scalar potential U(9:) and for the electromagnetic
field in a nonstationary dispersive media. as a background field. But for the
dispersive media this approach is not so straightforward because of nonlocality
on time due to the dispersion.

In conclusion we would like to emphasize that the procedure of Heisenberg
quantization may be carried out in universal manner for the spinor field influ-
enced by nonstationary electromagnetic or gravitational background. The only
difference arises due to the manifest form of the operator H(z) which contains all
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information about an external field. Eviriemiy all the results cf This paper maybe reformulated for the case of scalar field both E: eiectmmag‘netir and gravita-tional background. This approach make.q dearer the fcv‘mdariem of tire ordiearyBogoliubov diagonalization procedure. .‘vlornover. for the externai gravitationalbackground the decomposition of the field iazm ur- ge: ca“ 711:; eigenfunctionsgives rise to one of the concepts of particles in Bjemannian space—time.
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Abstract
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fined by the majorana. condition imposed on the spmor fieio
is not nix-4.31 mi suggests a natural ri - ' . : ‘lfiZEFPIE-T
minors with commuting .353 amticommu
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interpretation may be instructive.
We start with the equations of Maxwell-Dirac electrodynamics:

(i5 + eA — m)\II = o (1)

DAM _ Arm; LI (2)

3'» = —e\I’7,.‘II (3)

The chiral representafion for w—matricw [1] and a symbol {3 = Au'y“ are used.

This theory is classical in the sense that it is not second-quantized, but it de-

scribes‘ certainly. a wide class. of quantum phenomena. We discuss a. theory with:

1. c—type spinors (components of the spinor \II are c-numbers)

2. a—type spinors (components of the spinor \I! are anticommuting elements of
a Grassman algebra
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The former case is simpler and more graphic. Along the lines of the presentwork it is discussed in [2, 3, cf. also references therein]. However, it is generallyaccepted unwadays that in a classical theory fermions should be described byanticommu'zizg variable: [4] That :s why The present paper deals mainly with
the Esme: case. Nevertheless, main results of works [2, 3] will be presented in
parallel as they are basic for a-type spinors too.

Let us define a subset of such solutions of Maxwell—Dirac electrodynamics that
the spinor ‘1' satisfies the Majorana condition ‘II = Gil/T, where C is the matrix
of charge-conjugation [1]. The Majorana condition is an analogue of the reality
condition and coincides with it in the Majorana representation [1], and it may
be said that we regard the Dirac equation as an equation for real, rather than
complex, spinors. See [5] on the possibility of description of charged particles
by real fields (not complex ones and not pairs of real fields). Applying charge
conjugation to the Dirac equation and using the Majorana condition, we obtain(i5 — m)\II = 0 and AI! = 0. If \I! 96 0, the latter equation implies AflA“ = 0 [6].
If, in addition, the vector A“ is not zero, then for c-type spinors the equation also
implies that there is such A that AA“ = j" [6] We obtain also that

o = (M + Aéw = mean + («2,1437»v (4)
‘ {moi partial!) differential

:ies to the vector A“(a:)
'. .—D-3_:a-: electrodynamics for

— . a- _L “—1 E (I) to a system

(id—"LN! = o (5)
AA” = o (6)

AA" _ (7)
DAfl-Az,” = AA, (8)

l 15

For a—type Majorana spinors j“ = 0, and the last two equations should be replacedby the following ones :

M: = o (9)
ISIAH—ALF = 0 (10)

viii; thc equations of Dirac's "new eiectrodynamlcs" 7] up to a
- Lem-hand side of Eq. 6. A solution of Eq‘ 8 :eaLizes a conditional

f the action of the E. electromagnetic field With the constraint 6
once. Eqs. 8.6 describe independent evolution of the electromagnetic
-“ Lagrange. multiplier, The same statement for Eqs. 10.6 is quite

c)
"

[-
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evident. Eq. 6 may be regarded as a nonlinear gauge condition. For an arbitrary
4-potential B“ there is a gauge-equivalent 4—potential A” = B" + 8%) satisfying
Eq. 6, and the function (it may be chosen arbitrarily on the hyperplane x” = 0.

One can see that both for c—spinors and a—spinors a deterministic interpreta-
tion seems natural that is similar to Bohm’s one [8, 9]. The difference is that the
role of quantum potential(s) is played by the ordinary potential of electromagnet-
ic field. An electron may be regarded as a point—like particle with properties that
are determined solely by the value of the spinor \II in the point of space-time.
Possible trajectories are the curves that are tangential to the vector A“(a:) in
every their point 3. In View of Eq. 6 the instantaneous velocity is always equal
to the velocity of light. This is consistent with the notion of zitterbewegung and
allows smaller mean velocities. It should be stressed that the possibility of this
natural deterministic interpretation for the Majorana subset of Maxwell—Dirac
electrodynamics depends on two circumstances: the first one is that Eqs. 8,6 or
Eqs. 10,6 fix independent evolution of the electromagnetic field, and the second
one is that due to Eq. 4 evolution of the spinor on the trajectory is determined
by a system of ordinary differential equations.

Systems of Eqs. 5,7,8,6 for c-spinors and of Eqs. 5,9,10,6 for a—spinors are,
generally speaking, overdetermined [10], and it is not evident that they have
non-trivial solutions (we obtain trivial solutions by setting ‘11 = 0; the resulting
systems of equations for the electromagnetic field are not overdetermined. The
system of Eqs. 5,9,10,6 has also trivial solutions that describe free Majorana.
spinors in zero electromagnetic field). Existence of non—trivial Majorana solutions
of the system of Eqs. 5,7,8,6 follows from the results of the work [6] It may be
shown that the system for a-spinors has non—trivial solutions as well. Thus, the
subset under consideration can serve at least as a toy model for the discussion of
the interpretation of quantum mechanics.

Majorana condition is not invariant with respect to gauge transforms. Gauge

invariant conditions may be found that select such solutions of Maxwell-Dirac
electrodynamics that may be converted into Majorana. solutions by a gauge trans-

form. For c-type spinors the necessary and suflicient condition is that the axial

current \ll'ys'y“? is zero. For a-type spinors the situation is more complex. If we

take seriously Eq. 2 for a-type spinors, we have to admit that both sides of this
equation must be zero as they have diflerent degrees (0 and 2 correspondingly)
with respect to the generators of the Grassman algebra. Let the components of
a-type spinor ‘1! be presented in the form

Ms) = 2arm. (11)

where E“) are Majorana c-type spinors with components {90, and 0,. are inde-
pendent anticommuting generators of the Grassman algebra that are invariant
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under {Duplex conjugation (involution) [12]. Then for every .7. pair {Ail-"g.
should be a solution of the system of Eqs. 59,105 where the a-spinor 1P is re-
placed of; the c-spinor .f "‘ Conversely, 1! for every r: (.4, fm] satisfies the system
of Eqs. 5.9.10.6. The: (:1. VIII} also satisfies Eqs. 5.9.10,G. Then :n a complex space
with coordinates y,I and the dimension (possibly infinite) equal to the number of
the generators of the Grassman algebra one may compose l—forms S1,, = EL") dyn.
Then the vector current j“ = ~61!v is zero if and only if Q; A 01 = 94 A 9;,
Q; A $22 = (23 A 9;, Q; A 91 = fl; A 93, and Q; A 92 = 9; A $24. If, for example,
QJAQIAQ; $0andfliAflzAQ; $0, thenfllAQ; =02AQ; =0, andthe
spinor \Il may be converted into a Majorana spinor by a. gauge transform. Thus,
for a-spinors solutions of Maxwell—Dirac electrodynamics are Majorana solutions
up to a gauge transform if, for example, sufficient transversality conditions are
satisfied. These conditions seem to be rather weak.
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Photon polarization operator and the photon elastic scattering
amplitude in (2+1) QED in a constant magnetic field

K.V.Zhukovskii, P.A.Eminov
Department of Theoretical Physics, Physics Faculty,
Moscow State University, Moscow 11989.9, RUSSIA

In recent years investigation of (2+1) quantum field theories has been of great
interest. In particular, they are applied widely to model various physical effects
in thin layers [1].

In the present paper the photon elastic scattering amplitude in (2+1) QED
in an external magnetic field is calculated.

The photon polarization operator in (2+1) QED in the one—loop approxima-
tion [2] is writtten as

P“"(z',z) = —ie23p[7“5(z, z')7"S(z’,z) , (1)

where 7“ matrices satisfy the following relations

7“?" = 9“” ~ ic‘mn, y“ = diagfly —1, ~1), (2)70 = (:3, 71 =1-017 72 = 1-0.2

and U‘(i = 1,2, 3) are Pauli matrices
We consider the case of a constant magnetic field, determined by the potential

A“ = (o, 0,2:1H). (3)
In this case the electron propagator has the following form [3]

Sc(z,z') = ~e‘i7r/42fi *
2co - 2 . _h _ e—m" ,Xo — Ctg(h ) . h]

— .;:~_— — — —=-— -— — Y—
* (47r)2 ./ x ssin(hs) exp[ 1 4s + I 4 m 20

l. 0 ’13 , 'h 0] } 'h D— T— — X ‘ 5'7 ’ ‘7 . 4*{2s[7 sin(hs)W )J'e +m e ( )

Our notations are
X“ 2 I“ _ xlu, Xi = (3:1 _ II1)2 + ($2 _ $12)2,

h=eH, u=z1+x’l, (5)

m is the electron mass.
Calculations of (1) are analogous to those of the photon polarization operator

in (3+1) QED in a constant magnetic field [4,5]. The photon polarization operator
in (2+1) dimensional QED depends on the operators P“, FW’PV7 F“"F,,,\15’\,
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commuting with 15" operator in the case of a constant magnetic field. Therefore
the photon polarization operator is diagonal in the momentum representation
and it assumes the form

HIM! (k, kl) = /e_i(kr-kIII)H#V(-Ta 2:1)(1311’131, :

= (2n)36(k — k’)P,w(k). (6)

In contrast to (3+1) QED, where the photon polarization operator is sym—
metrical, it is represented in (2+1) dimensional QED as a sum of symmetrical
and antisymmetrical terms

P‘WUCuH) = Pf”(k,H) + Pf”(k.H), P5” = P5511” = -Pa""- (7)
The polarization operator calculated on the mass surface (m2 = 0) determines

the photon elastic scattering amplitude
1

T = fiegPfiéey, (8)

where w = k + 0 2| I; l is the photon energy, e“ is a polarization 3-vector of
the photon. In this work we renormalized the photon polarization operator in a
standard way

13:13.00“! H)=PI-W(k7H)—‘ P#U(kaH: 0)+P4w(k)7 (9)

where PWUC) is the renormalized photon polarization operator in the case ofzero field intensity [6].
According to the optical theorem from the amplitude (8) we find the rate of

an electron-positron pair production by a photon

w = —2ImT, (10)
and the squared photon mass in a constant magnetic field

6(m2) = 2wReT. (11)
Photon polarization operator is determined in (2+1) QED by the one and onlylinear polarization vector. Presenting it in the form

k”_ 1p _ 1 _e“ _ W_ mam, —k1), In — W (12)
and taking into account formulas (8) — (9), we finally obtain the amplitude of aphoton elastic scattering as follows
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. e‘"/4e2m l Ho 1 0° _ H0
T — W20.) 27[dvoffidpexp(—21p—E) X

exp(i99) _L( _;g)}x<sin(2p) A(p,v) 2P 1 4PH0 . (13)

Here Ho = "‘72 stands for the analogue of the Schwinger critical value of the
external field intensity and the functions (,0 and A(p, v) are given by the followings
expressions

“’2 100—02) .15:1{pl_;--..“m.- ‘ ,.

(P _ fl 2 ‘
A(p, v) = cos(2pv) — is; sin(2pv) + cos(2pv) [—4 +

‘1n

(g) S——‘““’“::3%:;:§P“"'”- <14)
Let us now consider the case of relatively weak magnetic fields and high

energies of photons, which is expressed by the following inequalities

H<<Ho, m<<w. (i5)

In this approximation the region p < 1 gives the main contribution to the
amplitude (13). hence expanding the trigonometric functions in (13), (14) we can
write (13) as

T _ .e£"/4622m 9° d1]. [1 8% — 5] (1)1/3G’(Z) (16)

_ 1 (47r)3/2w u3/2w/u — 1 + 3 4n ’
l

where z = Vic—“)2” and 0(2) has the following form

G(z) = ffidyexp (—iyz —- 1:31;). (17)
0

Thus the photon scattering amplitude (16) depends on the external field intensity
and the photon energy via the parameter

_ H w _ . gammy—_.—— 1X Hum V m6 (8)

The consideration of the amplitude (16) in X > 1 and x < 1 limiting cases leads
to the asymptotic expressions
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_ e2m24T = — ——74703425
1/3exp(_in/s)r(1/2)(4%) r(1/3), X>>1,

(19)
T:

(zzmx2 _e2m 3x7r 8
‘4" 90w _ Z87m? TeXp<_§)’ X <1'

Comparing our results (19) with the corresponding results in (3+1) QED [7],
one can see, that the growth of the photon elastic scattering amplitude in x > 1
limit in (2+1) QED is determined by the factor X1/3, whereas in (3+1) QED
it increases as Xz/al Thus, considering the case when X > 1 we come to the
conclusion that the reduction of the number of dimensions in QED diminishes
the dependence of the one-loop contribution to the amplitude of photon elastic
scattering by the factor Xl/3-

However we did not find any general regularity, connecting the changes in
the number of dimensions in QED with the dependence of the physical values,
examined in this work, on the dynamic parameter x. Indeed, the imaginary
part of the scattering amplitude, which in accordance with the optical theorem
determines the rate of the electron— positron pair photoproduction contains in
(2+1) QED in the limiting case, when X << 1 the preexponentional factor «X,
Whereas the preexponentional factor in the similar expression in (3+1) QED is x.
As to the real part of the amplitude in the limiting case, when X << 1 the results
in (2+1) QED and (3+1) QED coincide and include the factor X2-
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ON MANIFOLD OF EXACT SOLUTIONS
OF THE PROBLEM OF BOSONIZATION

OF A PAIR. OF 2D—BLECTRONS IN
A QUANTINIZING MAGNETIC FIELD

B.A. Lysov and OJ. Dorofeyev

Faculty of Physics, Moscow State University,
Moscow, 119899,Russin

E—mail:dorof@srl.phys.msu.su

Abstract. It is shown that for a certain relation between the magnetic
field strength and the electron charge the non relativistic quantum problem
of the correlated motion of a pair of ZD-electron: in a constant and uniform
magnetic field admits exact solution: in the form of elementary functions.

In recent times the problem of a pair of 2D—electrons in a. magnetic
field has attracted attention in connection with experimental and theoretical
investigations 01' {he Erwinnal quantum Hall efect [1-3]. It was pointed out
in re£[2] that the hfii—iz'ieger quantum Hall efect can be understood as a
malt of the sampling of electrons with opposite spins, producing a boson
with a charge 2e,which is in the symmetric Langhlin's state [4].

In is known that {or the non relativistic problem of the motion of two

2D-electrons in a constant and uniform magnetic idd, in the Pauli equation

the spin is separated from the spatial motion, which in turn allows the
center-of-mase motion to be separated from the relative motion.

The coordinate part of the relative motion wave function (symmetrical
gauging of the vector potential is employed) has the form

it = erp(-imso)R(r).
the even values of the quantum number m corresponding to the singlet state
the odd values to the triplet state. The function R(r) obeys the Schroedinger
radial equation

2
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Here a = M (Zces/ (FED 1’2 and the magnetic length l = (215.6] (eH))1/2
isnsedasslength unit;e, Maud Harechargeandmassoftheelectron
and the magnetic field strength, respectively. The constant B, in eq. (1)
and the quantized energy of relative motion of electrons E, are connected
by the relation B, = 2B,] (kw) + n, where u is the cyclotron frequency.

If the Coulomb repulsion of electrons is neglected than a = O and the
solutions of eq. (1) belonging to the metric L2 (0,oo;rdr) are exprmed in
terms of elementary functions, and the corresponding eigenvalues are the
Landau levels E, = huh... — (m — Im|)/2 + 1/2) , n, = 0,1... The radial
quantum number n, is the number of nodes of the radial wave function
80‘) .

The presence of Coulomb repulsion results in the splitting of the Landau
level; for arbitrary values of the parameter a the eigenfunctions of eq. (1)
cannot be exprmed even through functions of the hypergeometrical type
[5].

In this connection it seems worth nothing that for a certain special map-
ping of values of the parameter a there are exact solutions of the problem
under investigation in terms of elementary functions and there is a simple
formula {or the energy levels. The above-mentioned mapping of values of
the parameter a can easily be established using the Witten technique of
super-symmetrical quantum mechanics [6].

Let U : I.“ (0,003exp (—rg/Z) ralml'l'ldr) be the unitary representation
of me type if : f['r:> —~ Pl”3 exp (—rz/Z) fflr) {see eg‘ ref. [7]). For
L:{‘O,w;EI_D{_—P2/21lr:l'”l*3dr] the initial problem of solving eq. (1) is
equivalent to that of eigenvalues of the operator

3: —83-((2Iml+1>/r-r)a.+a/r- (2)
This operator is easily seen to be limited from below and can be repraented
as

A A A
B=A+A +k, (a)

the eigenvalues of I: are connected with‘the eigenvalues of eq. (1) by the
relation 1: = 23,](hw)+m-lm|—1. and the eigenfunctions willsatisfy the
first order equation

.2 ¢ = o. (4)
Suppose that solutions of the polynomial type exist for eq. (4). Then

I
operator 2 should have the form ,2: 3,— E 1/ (r+ 1-,). where r. are the

1:1
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roots of the polynomial sought for, and n. is its power. Here for the operator
A

21+ in the metric I,2 (0, oo;exp (—1'2 I2) rzlml'ndr) we obtain

2*: —8, — (2|ml + 1) Ir + r- i (r + 13)"1
1:1

now, comparing eqs. (3) and (2), it is easy to obtain the systems ofequations
to determine the constant r, :

(21m|+1)/r, —r.—22 (r,- —1-,)—1 (n: 1). (5)
135‘

Beiidel, the foIiowing rehtion must be satisfied:

a=(21m1+1)ir:1. Ic=n- (6)
1:1

5', -' w
.172 '— 1‘ C

f‘r ‘« g2 J t a
; v - I

Fig. 1. These curves qualitatively show the behavior of the
dependence of E/hw on the parameter a. The circles indicate the
values of c: a; which eq. (1) has exact solutions expressehle in
terms of elementary functions. in the symbol c.‘- the upper index

refers to the nine of the radial number n. and the lower upper
index refers to n. the power of the polynomiel. a? = 1; 43 = «5;,

1 2
ag=(10+\/fi)1’2; a2=(50+\/2—97)1’2; a§=(lD-~/fi) ,

a;=(so-m—7)1".
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But if n. = 0, then a = 0 and k = 0. Note that by summing all equations
of the system (5), one can obtain a somewhat different representation for
the parameter a :2 1-,.

For the case oil-711: 0 corresponding to the upper limit of the multiplet
structure of each particular Landau level, the value of the parameter a
obtained with the help of eqs. (5) and (6) are shown in fig. 1.

For the application of the obtained results to the calculations in quasi-2D
heterostructura, the values of M and e in determination of the value of the
parameter a should be understood as efl'ective values of the mass and the
charge of a 2D—electron. which can dilfer from the values for a bulk sample
and may also vary from sample to sample.

Recent experimental investigations of quasi-two-dimeusional structures
'[8] reveal anomalies of the cyclotron resonance that manifest themselves at
low values of the electron density. The cyclotron resonance is fundamental
the study of the dynamical properties of electron system, and authors of
ref. [8] point to the possible role of many-particle efects as an explanation
of the anomalies.

It is important to note that the values of the experimental parameters
are close to those which are necessary for the test of our theory.
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A PAIR PRODUCTION OF PIONS BY A CONSTANT
ELECTROMAGNETIC FIELD

S.I.Kruglov

National Scientific Centre of Particles and High Energy Physics
M.Bogdanovich Str.153, Minsk 220040, Belarus

Abstract

The differential probability for pairs of pions production by an
external constant electromagnetic field is found on the base of exact
solutions of the equation for pions. Obtained expressions generalise
the Schwinger formulas for electron-positron production taking into
account the complex structure of pions. At the critical value of the
electric field the number of produced pions is increased by about
20% comparing to the pointlike pions. We found also the imaginary
part of the efl'ective lagrangian for the electromagnetic field in the
presence of pions.

It is known that a constant electric field produces pairs of particles
[1].So the probability for the electron—positron production and pairs of scalar
pointljke particles production were calculated. But the intensity of the pro-
duction for real pions will be changed due to its electromagnetic polariz-
abilities. One of the known ways to obtain it is to use the exact solutions
of the equation of motion for particles in the external electromagnetic fields
[2]. All physical values can be obtained through the asymptotics of the
solutions of the wave equations [3]. For the constant electric field there
exist four different simple solutions possess clear physical meaning. These
solutions correspond to positive and negative frequencies at t —> ioo . Us—
ing the Bogolubov transformations the Hamiltonian can be diagonalized.
As a result, matrix elements are given by the coefficients of the Bogolubov
transformations.

We have recently found some solutions of the equation for real pions [4]
in the electromagnetic fields of different configurations [5,6]. In this work
we apply the Bogolubov method and obtained solutions [6] for finding the
differential probability of pions production in the uniform static magnetic
field parallel to the constant electric field. The problem we treat is a. gen-
eralization of one discussed by Nikishov [2,8,9]. The equation of motion for
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pious established from the chiral theory [4] and from the phenomenological
approach [7] is given by

DiQS _ Du[(Du¢)Kw/l _ mind) = 0: (1)

where min = m2(l — flFEV/Zm), D“ = 6,, — ieA,“ 6,, = 63/32:,” A“ is
the vector potential of the electromagnetic field, K”, = (a + MFWFM/m,
Fm, = Bully—(1A,, is the strength tensor, (1, 6 are the electric and magnetic
polarizabilities of a particle respectively, m is the rest mass of a pion. Units
are chosen such that h = c = 1. Without loss of generality we use the
potential as follows

A” =(0,:1:1H,——tE,0). (2)
In this case H||E or E = nE, H _= nH, where n = (0,0,1) is a unit vector.
The solutions to Eq.(1) for the potential (2) exist in the form [6]

. 2:¢Pan(x) : Ne:(P2£2+Psz3)e—ufHn(n):\y(7—), (3)

where Hn(n) being Hermit polynomials, 7] = {eHzl + p2)/VeH and 311(7)
give four functions having different asymptotics:

+‘1’(T) = D.,[—(1 - ilTl, “I’M = Dul(1 - ilTl,

+‘1’(T) = l(1+i)7ly —‘I'(T) = Du*[—(1+i)Tl,
with u = ik2/2eEB — 1/2, T = «Em, + pa/eE), B = 1 + W132,
W = (a + ,B)/m; Du(.7:) being the Weber—Hermit functions. Here the pa—
rameter k2 which is connected with the energy of the pion in the constant
electromagnetic field has the quantized value [5,6]:

[:2 =mifi+eHA(2n+1), (5)

where A = 1 — WH2 and n being the principal quantum number: n =
1, 2, When electromagnetic polarizabilities tend to zero the formula (5)
gives us Landau levels of the energy for the particle moving in the constant
magnetic field. Our discussion follows very closely the work of Nikishov [2,8].
Functions I‘II(T) correspond to the solutions to Eq.(1) with the positive
frequency at t ——) :lzoo and 311(7) - with the negative frequency at t —) :lzoo.
Solutions (3), (4) are labeled by three conserved numbers pg, p3, k2, where
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pg, {)3 being the momentum projections. The constant N is determined
from the condition of the normalization

H

[i B,n($)i%i¢l3’afl'(1)dsx : i6“) — pl)6n.n’a (6)

where p = (p2,p3) is two-dimensional vector, nqs = ¢§;¢ — 43%11). The
sets of solutions i¢p,n($) and 1.431),.(3) are equivalent and therefore they
can be connected by the relations [8]

+¢p,n($) = C1n+¢p.n($)+82n_¢p.n($): +d’pm(1) = Cin+¢p,n(z)_c2n—¢Pm(z)v

(7)
—¢P.fl($) = 03n+¢Pyfl(I)+cln—¢P‘n(z)9 _¢Pufl($) = —d;n+¢P.fl($)+clfi—¢Pm($)a

where I cm I2 - | 02,. I2: 1. Coefficients c1,” c2" found from (3), (4), (7) are
given by (see {3,8])

= (2«)%r-1(1‘2“)exp[—§<A — a],
(8)

2
6211 : EXP [_§(A + i)] a A : ——————m:ff + 882/;(271 +1)

and F being the F —function.Values c1“, C2,. contain the information about
producing pairs of pions in the state n.

The quantized solution to Eq.(1) can be written as

¢($) = Z[ap,,.(in)+d>p,n(r) + b;.n(in)_¢Pvfl(I)] =
p,” (9)

= Z[apin(out)+dapm(z) + 5;,n(°“t)_¢p.n($)l=
p.11

where ap_n(in), bg'nfin), (apyn(zmt), bgln(out)) are the operators of the anni—
hilation for the particle and the operator of the creation for the antiparticle
respectively at t —) —00 (t —) +00).

From (7),(9) we arrive at the Bogolubov transformations

ap_,.(out) = clnapmfin) + c;nb;,n(in), b;,n(out) = cznap,n(in) + cinbgmfin),

(10)
ap.n(in) = CInap.n(0ut)-02nb$,n(wi), b3...(in) = -02nap.n(0ut)+Clnb$,n(out)-
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The canonical Bogolubov transformations like (10) are widely used in the
superfluid and the superconductors theories. These transformations con~
serve the commutation relations.

The unitarity operator of the transformation 5 is defined by [10]

S'lap‘n(in)S = ap,,.(out), S'lbg‘nfinfi = bg‘n(out),

S = US”, < 0 |= H < On I, < 0,.(out) |=< 0,.(in) l s”, (11)

ap,n(out) I 0,.(out) >= bp_,.(out) I 0n(¢7ut) >= 0,
so that Sn found from (10) is given by

Sn = cf: exp (— a—-——-—p:‘l :71: Mufti" m 3on) . (12)C2:

The amplitude of the probability in the state n is equal

< 0n(out) I 0n(in) >= 0;;1 (13)

and the probability for a vacuum remains a vacuum to be

CV =|1—Ic;‘;1 I2: exp(— Zln I c1fl I2) = ep— Zln(l+ I 422,. I2)I. (14)

It is easy to check using the commutation relations that the expression holds

< 0,1(out) I a;,n(out)ap,n(out) I 0n(in) >=I 6% I2 . (15)

Then the average number of created pairs of particles from a vacuum is [8]
L2N = fg l 12 sdPBQflzi (16)

where L is cutoff along the coordinates.
Nov we calculate the value N I152. The variables T} = 2519:; 1—3-3 )5 V}: 1'?

and :- : _:-:F_‘;.,, — 7-.- ‘w-‘F‘I th'i‘lrfi er ta.— ir'r, tin-a c '~ ‘: -- ‘9‘ ' ‘7 —- *3 -._ \ L—v-u I r _‘ HI .. . ._l a. .l- .l.-. -ldL.OIlD 1.». Glenn; “It.
region of forming the process The coordinates of The cunt-er of this newer.1an. '4] = *‘ZEQJEE. .r; = _,..17 :12. lhereforfi we may 159 the substi‘utior‘. IEI

/ d)»2 —> eHL, / dpg —> eET, (17)

96



where T being the time of the observation. Inserting the value c2" (8) into
the variable (16) with the help (17) we obtain the intensity of creating pions

_ 1 —_ 1 dpzdp3L2 7r[m:ff+eHA(2n+l)]
1(E’H)_VTN”VT/ (2702 2,136)“ eEB

_ ezEH exp(~7rm§ff/5EB)
_ 87r2 sh(7rHA/EB)

l.:.' -lcc:romag:e: ic polarizabilitieg a. .3 —-.- U 4.4., r' —~ '1‘

}
(18 V

Leads to the wellwlmmu‘. expression i0? 1
pointlikc bosons [S].Tai<im_1 ii:

.. -..\, ,_.\ .
.1 . f. '1 I 1 ._.mi. mp,- : m‘fl—dl E —H
-. :1; fm 47; i wizzth is held for rea. " _ A; m E16 5a
V'ela‘tiunfi

11:5): Nah: +

1:1. the Lures-911.26 of the zit-£35325; E‘ii‘ld the. ant-irag': number of maniac: pies:

m creased by The factor

[(E, H) «H
[(E) =my (23)

At H > E we have [(E, H) ——> 0. But in this case the intensity of creating
electron—positron pairs will be increased [2].
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We can also obtain the expressions (21), (22) using the exact solutions
to Eq.( 1) in the pure electric field. Then the solutions become

I¢pixl 3 Nexp[i(p1z1 + P2$2 +P3$3)l:¢(7’), (24)

where the functions :IMT) are given by (4) with the index 1/ for cylindrical
functions (4):

_ ilPi‘tPi + min] 1
_ 2eEB — 2

From solutions (24) at a = fl = 0, we shall obtain the solutions to the
Klein-Gordon equations which were found by Narozhnyi and Nikishov [3]

The density of created pairs of pions is

(25)

[C2, |=] exp(7riz/) I2. (26)

We can obtain the number of created pairs by integrating the expression
(3.26) over the momentum p. We may replace

/ dp3 —> eET, (27)
and after integrating we have the rate of creating pions (see [9])

d3[(E) = % /fi l I2. (28)
It is easy to check that the expression (28) (after integrating over p1 ,pg)
coincides with (21).

The magnitude of

€2E2 7rm21(0) : 8W3 exp(— eE ) (29)

which enters into (22) is small at E < mz/e. Since the mass of the pion is
more than that of the electron (m > me) it is easier to produce electron-
positron pairs. But ifE : mice for pions '77] = HUME-i i <1 = ii - Iii'éfm‘n‘
) I 2 1,19 - 1(0), [(0) 2 1,1 -2053f_o'1~.~‘m_3l. So the number of producer!
charged pions, taking into account of poiarizabiliricrs is increased by about
20% comparing with the poimlike pions.The [‘0' is non—anabxfic function of
E and it is impossible to obtain (21),(22) using the perturbative theory.
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For neutral pions we must set e = 0 in Eq.(1). The solutions to Eq.(1)
in this case are like solutions for free particles (1) = C exp(:tzpuz,‘) but the
squared energy of pious is

_ 9&5”.
m

+

P3 = (Pi +P§)[1 — Sin—[3W2 + H2)] +p§ + m2{1

at aEz/m << 1, flHz/m << 1. In this approximation there is no creation
of neutral pious. The same conclusion follows from (22) at e = 0. But if
aEz/m > 1 the situation is changed due to the complex value of po. It
occures for huge fields E > (/m/a. Even for the critical fields EC = mz/e 2
3.46 - 1018C we have the small value aEz/m : 0.05.

Now we find the imaginary part of the density of the Lagrangian. The
squared of the amplitude for a vacuum—vacuum CV is connected with the
imaginary part of the Lagrangian [1]

CV = exp(—21m L). (30)

From comparing of (14) and (30) we can write

_ 1 2 dpgdp3L2
VTIIII C — 2/2111 I 6117. l (277')2 a (31)

where L: being the density of the Lagrangian L. Substituting values (8) into
Eq.(31) and using (17) we have

ezEH
1m 1: = nnfl + exp(—1r/\)) =

"’ °° 2 HA2 1£5 Zing +“1)a=
87?? ”=0 eEB (32)

€2EH °° (—1)”‘1exp(—1rmZHn/6EB) ‘
=167r2 Z n sh(7rHAn/EB)n=l

The first term of the sum (32) gives us the value [(E, H)/‘2 (18) as it must
be. At 01,,6 —$ 0 we arrive to the expression which was obtained by Nikishov
[8]. The limit of the expression (32) at H —> 0 can be easily obtained.
This limit is agreed with Eq.(21),(22). The formula (32) generalizes the
Schwinger result [I] in the case the pious polarizabilities are taken into
account . The investigation of quantum effects in the strong field is actually
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important. It is stipulated by the progress in the techniques of the lasers
and accelerators of heavy—ions. If the charge of a nucleus exceeds the critical
value Zc 2 170 then the normal ground state of QED becomes unstable.
The electric field will give the emission of positrons and charged vacuum
will be formed [12]. Then pairs of particles can be created.

In this paper we considered the pair production of pions by constant
electromagnetic fields which are some approximation to the actual field
configurations. This approximation can be applied when the size of hetero-
geneities of fields exceeds the size of the considered system [13]. Particles
are created on the typical distance I = m/eE from each other, because
the work of the electric field eEl must be equal to the rest energy m of a
particle. For the critical field Ec = 7112/6 the typical value I is a Compton
length l = l/m which is small. We see that the constant electromagnetic
field approximation is valid for the wide class of fields when the typical het—
erogeneity size, is more than I. When the source of the electromagnetic field
is the laser beam with the length wave /\ this approximation corresponds to
the condition /\ > I which is easily reached for real laser beams. This is the
case of crossed electric and magnetic fields. Here we investigated only the
influence of parallel electric and magnetic fields on the pions creation. The
method [2,8] allow us to apply obtained solutions [6] for considering other
cases of external electromagnetic fields.

In this work we estimated the influence of polarizabilities on creating
pions. Therefore it was considered only efiective lagrangian for pions up to
quadratic terms in FM. The higher terms in FW describe other character—
istics of a particle which were not discovered eyt experimentally.

Although the effect due to the complex structure of pions is numerically
small it can have a significance at the large strength of the electric field.
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Radiation of relativistic dipoles

V.A. Bordovitsyn? V.S. Gushchina
Toms/c State University, 634050, Toms]: G'SP-Irf, Russia.

Abstract

A systematic exposition will be given of the classical theory of radiation of
relativistic point dipoles. The properties are studied of electromagnetic fields
created by a point magnetic moment —— magneton. The electromagnetic
field tensor of a magneton satisfying Maxwell’s equation is obtained. It is
shown that, depending on the distance to the magneton F the field tensor
splits in a covariant manner into three parts proportional to F‘l, 5-3} 1"‘3.
In a absolute system of rest, where [3 = fi = fl : 0([3 = u/c,u is the
velocity of magneton), known results are obtained as a particular case. The
relationship between the electric and magnetic fields E and H radiated by
a point magnetic dipole moment ,u and a point electric dipole moment it
is derived through the use of dual transformations of the electromagnetic
field tensor. It is assumed that each moment is in relativistic and otherwise
arbitrary motion. In the relativistic case, as in the nonrelativistic case,
the switch p —) v is accompanied by the replacements H —> E, E —) H. A
covariant formalism is developed for describing the electromagnetic fields in
the wave zone. The electromagnetic field tensor associated with the radiation
is analyzed.

The electrodynamic of relativistic point dipoles has been considered in
papers of Frenkel’ (see [1]), Bialas [2], Kolsrud and Leer [3], Cohn and Wiebe
[4], and others (see also [5]). Here and in what follows we use the theory
and formalism of [6].

1 The equations of electromagnetic field

Let’s introduce the polarized tensor potential of a relativistic rnagneton F‘” =
(F, G), connected with the usual vector potential A“ = (99, A) by the relation

A“ = app”, (1)

that is
8G114“: —d' —

( WG’ c at + rotF) .

’E-maii: bord@u.ra.ni a.tomsk.su
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In agreement with this definition, the vector G is the Hertz vector or the electric
polarization potential. The vector F in such case can be called the magnetic
polarization potential.

The tensors of the magnetic polarization density M“V : (N,M) and the
density of the ”magnetic current” 3'“ satisfy the relation (see, for example, [7])

j‘u = 8.,M‘”.

It is easy to see that tha Lorentz condition and the condition of contituity of
the current density are satisfied automatically

6,,A" = 0, 3,,j" = 0.

The tensor—potential FW satisfies the tensor wave equation [8]

ya Full = _4_7e/.
‘3 c

Differentiating this equation with respect to the coordinates, one can obtain
the usual wave equation for a vector potential.

Let us represent the tensor—potential F‘“’ in a form analogous to the four-
dimentional Lienard-Wiechert potential

FP" = _%HPV, (2)no
where p is the magnitude of the magnetic moment of the magneton; v” = drp/d‘r
is its four—dimentional velocity; f" : R" — r" is a four—dimentional vector drawn
from the world point of the magneton to the world point of the observer. The
mutual orientation of the vectors f,R,r in three-dimentional space is shown in
Fig. 1. ‘

The dimentionless spacelike tensor 11“” = (€511) is connected with the mag—
netic polarization tensor by the relation

M’” (t) = WW6 [é — r (m.
where 1r?” = Him/7, 'y = 1/\/1 — B2 is the Lorentz-factor; E is the vector of the
”smeared” magneton at the moment of time t, connected with the moment of
observation of the radiation 1? by the relation 5 = t — f/c.

From the condition of spacelikeness of the tensor 11“”

mil“ = 0

it follows that
Q = [fin] :

and, therefore, in the rest system of the magneton 115” = (0, Q , where 4’ is a unit
vector, which, according to the hypothesis of Ulenbeck and Goudsmit, we will
call the spin vector. The tensor 11“” then represents the laboratory spin tensor
(in dementionless form).
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Fig. 1

2 Potantials and fields of a relativistic magneton

According to (1) and (2), the vector potential of the magneton A” at the
observation point has the form

A = —uca i_’ (3)

where the derivative 8,, is determined by the rules of differentiation of functions
with a retarded argument

0, = 5u+_'——, (4)
p

where 6., = 6/81“.
Differentiating in (3) according to the rules (4), we obtain

“37'” -" not! :11 '

A0 : —[1,C l:—‘—T _—7— (C2 + ’Fp'lflp)] . (5)

where u)" = v/dT is the four-dimentional acceleration of the magneton, the
derivative with respect to the proper time is written with the circle. The compo-
nents A” = (99, A) are represented in the form

=_fl1_‘—W{%[(n—fi) fi]+%[(n—fi)nw}, (e)
99: fig)? {% (n 3)) + %{n<1>)l}
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where n = i/io = f/c(f— t) is a unit vector directed from the magneton to the
observation point,

1 _ 1 _ .J 2 1+ c—Qrpw" 2 1+ Zr72{(na) — 72(afi)[1 — (nfl)]}.

Here we have introduced the notation a = ,8 = a/c, where a is the acceleration
of the magneton.

Using the standard definition of the electromagnetic field tensor, on the
basis of the potantials (5) and differentiation rules (4), we obtain

H” = Hf" + 11;” + H53" (7)

‘f' if [Miflfil 313w f1 [Wm-fl] + 59 {jiggling/3}
xv "T l (FP'UP)2 (flaw)3

Hafi— pc _ 00:9 fpwpl'lc'fi
2 _ (55002 vF’

1% [MW] + 2 fi Emma] + Hl‘wfiifil _
vfi

c2 {i l°°1",,i[’]~ rywpnlwmfll céipwmgmiaifi]
‘3W— 6 7%;v— }

_ _[l.c {211133 _ 3fllor-afavfil _ 382 filiafaffll}

(mos (TWP
One can show by a direct calculations, taking into account (4-), that the tensor

H06 satisfies Maxwell’s equation 63H“? = 0.
In the absolute rest system (5 = ,6 = [3 = 0) from formulas (7) follow the

expressions known in the electrodynamics for the electric and magmatic fields of
an absolutely precessing magnetic moment [8].

11;” =
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3 Fields radiated by a relativistic electric dipole mo-
ment

We describe the electric dipole moment by means of the tensor polarization
potential which is dual of the tensor magnetic potential

1G‘” = gamer”.
The tensor electric and magnetic polarization densities are related in a corre-

sponding way
1Ne“ = 55mm”, = (-M, N).

The duality relation for the electromagnetic field tensor is known to be

1Eu” = EEMBH“ = (—H, —E).

The electromagnetic fields of the electric dipole moment are discribed by (cf.
[9])

apapaw = —41rNI“’,
The solution of this equation for a point electric dipole moment can be written

(Pa/jGM: —c1/_ p,rpv

where V is the electric dipole moment.
The dimentionless space-like tensor (I’M = (—II', Q) satisfies the condition

up?” = 0,

from which we find
II = {no}.

These relations are formally similar to those in the theory of the electromagne-
tic field radiated by a relativistic magneton. However, since the vector potential
A“ is again given by (1), the electromagnetic field tensor of the electric dipole
moment is more complicated. The reason is that the condition vfll'l‘w = 0, which
was used previously to simplify this tensor, does not hold in the present case. As
a. result, additional terms appear in all the structural elements Eff; .(see (7),
where p —) V; the complete tensor H‘“3 is. given in [9])

.. .. p.51 p‘w “[5:01]" 1113])ofl _
H1,add _ ll rpvp
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a uc oim' _ m,

-

Haida = ———(p)2 {1'1 varp] + I'll warm} ,

o: 3 2 ‘H B L. {guleavapfil + 3 HIUUvaffll} ,
3”“ = — (v9)3 13,11”

These terms remain even after dual transformation

1II“ = _§gml’¢afi. (8)

Only through a duality transformation of the entire electromagnatic field ten-
sor, in the course of which we also use transformation (8) on the right side, can
we find the tensor E”. The latter is formally identical to H“ for a relativistic
magneton, except that we have

116'" —» Eafi,pn°" —> be“. (9)

Noting that we have

nafl = (ml—11311)") (Dali =(m§]1§)’

we can make the transformation of the fields in the switch from the magnetic to
the electric dipole moment by means of replacements

p—)I/, —E——)H, H—iE.

The same transformation holds in the nonrelativistic case [8].

4 Wave zone and electromagnetic field tensor
The wave zone is dominated by the field which falls oil as 1/1‘, where f is the

distance from the radiating particle (the charge or magneton) to the observation
point. _

Since the differentiation 3,, in the derivative (see (4))

. - i” d
(9 = 6 ——V V + 17,119 (11"

which acts on the vector potantial, simply increases the rate at which the field
falls off, we can assume the following in the wave zone

.. ‘lfl ‘1’]H“: r A . (10)
rpvP
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The Lorentz condition BVA" = 0 in the wave zone then become

7
71A“ 2 0,

"6'
where we have retained in A‘1 only those terms which are proportional to 1/6.
From this result we find the familiar relation between the scalar and vector po-
tentials in the case of the Lorentz gauge for the potentials G = (nA).

Diflerentiation of A” with respect to the proper time in the wave zone yields
~ 0 0
° C 0° _ 3 H “A7: 1" w” + l'l“"1: “I: w” l-l"""r_ {- ,- --" i-'

An=-l'pp)?{ “ATA— M A F +3
_Tp1} Fflvp [9..r‘"

(11)
Substituting this expression into (10), we find H” = Hf”, where Hf” is given

in (7) and corresponds to the field which falls off as 1/1".
It is convenient to write the tensor H‘” in the more compact form

‘ I” [ ~u]HIW : u
(favplaq T ’

where, according to (10), Q“ is the expression in curly brackets in (11).
Using these results and expressions for the spin precession [10], the classical

radiation of the point magnetic moment moving at a constant velocity in a arbi—
trary direction with respect to the field lines of the uniform magnetic and electric
fields is analyzed. All characteristics of the radiation agree with the Ternov —
Bagrov ~ Khapaev relativistic quantum theory of the radiation by neutron [11]
(see also [16, 12, 13]). It is thus demonstrated that the classical model of radiation
with spin flip is valid.

More delail discussion of these questions can be found in the works [14, 15,
16, 17, 18].
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Abstract
Two types of (e,3e) collision kinematics are considered from the

View point of obtaining direct information about electron-electron
correlations in atoms. The first one assumes a symmetric or near-
symmetric energy partition between ejected electrons and relatively
small momentum transfer from the incident electron. The second as—
sumes a symmetric or near-symmetric energy partition between the
scattered electron and one ejected electron. In this case the momen—
tum transfer is large. It is shown that this kinematic regime is better
for the investigation of electron—electron correlations in the target.
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1. Introduction. The first theoretical papers to consider (e,3e) collisions
took an approach that was closely related to (7,2e) ionisation (Smirnov et al..,
1978; Yudin et al., 1985). With this approach the four-body (e,3e) problem
could be reduced to a three-body problem if the incident and the scattered
electrons have energies that are large compared to the binding energies of the
ejected electrons. In this case the one photon exchange diagram dominates,
and the appropriate matrix element Tbc takes the form given by the First
Born Approximation (FHA):

80 ea
"c ".f‘c "_"\.I‘\_"\-".f\.’“Lv1_‘-'Lr°f"._;fl t.‘ “t: "u”~.f‘_.‘“../ “an-“‘dng'Ln-

‘ "x A++ (1)

Here '7’ is a virtual photon, and the crossed lines mean that the electrons are
immersed in the field of 14‘” ion. The conservation of energy and momentum
give:

EH53:EC.+EI,+EC+531++ (2)
fio=fia+fib+fic+§ (3)

To simplify futher we restrict ourselves to the He atom, then 6515 = —-79eV,
531”“ = O. A projectile with energy transfer AB = E; — E, and momen-
tum transfer Q can be considered to be a virtual photon 7‘. In contrast
to the (7,2e) process, the values AE and Q are not connected by a definite
dispersion formula. Analytically eq.(1) can be written in the form:

441r ., _.
T15“ = ‘Q’M(Pbapc§ Q) (4)

with

4-." 1 —t-‘—:—'~~-' 2-71 I-F -'~ —
M(Pb7PciQ)=6j drldrz‘P (pb.pc;mr2)[€Q +6Q2—2l‘1’o(rhr2) (D)

The functions (I)- and (P0 discribe two continuum and two bound electrons
respectively in the ion field. Formally, the matrix element for (7,2e) scatter-
ing follows from eq.(5) in the limit Q —> 0. Historically the magnitude of
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Q in eq.(1) is assumed to be small. The first (e,3e) experiments (Lahmam—
Bennani et al, 1989;1992) used these kinematics.

2. Theory: Small Momentum Transfer. The kinematics (1) was
proposed for the study of electron-electron correlations in the initial state
and assumed some simple models for the final-state wave function <1". This
took the form of the product of distorted waves (Dal Capello and Rouso,
1992) or orthogonalised plane waves (Smirnov et al., 1978). The calculations
presented by Joulakian et al. (1992) and Dal Cappello and Le Rouso (1992)
show a strong dependence on the form chosen for the final state correlations.
We can understand this effect qualitatively if we let the function (1)“ take the
form:

.. a 1 _ a .. _ .. a

- .. - _.

- ..<1>‘(fib,17c;r1,r2)=—[sa (paw (PCvTZ)+F(PbaPc§7'17T2)+(PbHPCH (6)\/§

Each hydrogen-like function gnu—(17,17) with Z = 2 in eq.(6) has the eikonal
representation 99' (13', 7") = exp(zp'f')((fi, 1"), and F includes all post—collision in-
teractions of ejected 65 and cc. If the momenta p3,, 11c > Q then the first term
in eq.(6) (this term is associated with the so—called shakeoff (SO) mechansim
of (e,3e) — collisions (McGuire,1982)) gives a very small contribution around
the Q axis to the matrix element (4) and to the five-fold differential cross
section (5DCS) .dSU/dEdcaddflc. The estimates give the result:

(150(50) ~ (am-8 (7)
if p,z ~ pc ~ AE and AE >> 50 E (Popov et a1, 1994) On the other hand,
the second term in eq. (6) describes the so-called two-step mechanism (TSl)
(Carlson and Krause, 1965; Tweed, 1973). It can mix the ejected momenta 5,,
and 13; during a second collision in a such way, that the value q =| Q — 17,, —;7C I
can be small in spite of large values for pg, and p5. One obtains the estimate
(Popov et al., 1994)

d50(TSl) ~ (AE)_3 (8)
1cin the Vicinity aft; 2 O. For the case ca‘mespozuii. g to 'U w E; >;:- A;; :32,»

the SECS tr,- hax-‘e a afld7.15 :- p1. ':' V3113. Q is rslariviy smal-. one EXPECKL 1;;
maximum around the (3 axis and Lizzie structure around the Q was This
result car: he understood in the following way: if q = G (in (5:22:31 theorv

-l‘i‘: .-‘the domain Q ~ 0 is called the Bethe—ridge) and we neglect .s__, .cfnnareci
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to AE, we have the classical picture of three billiard balls with the resid—
ual ion playing no role. In this case the angle between the momenta of the
ejected electrons is 61m ~ 7r — AE —> 7r. This can only occur through a.
two-step mechanism. The first term in the decomposition (6) provides di—
rect information about initial state structure. In this case eq.(5) is a double
Fourier-transform of <I>0(F1, F2). Its contribution to the 5DCS is concentrated
near the Q axis7 however its magnitude is rather small compared to the
other terms in the matrix element (see eqs.(7) and (8)) The second term
F in eq.(6) has its largest contribution around the 6 axis and contains in-
formation about electron—electron correlations in both the initial and in the
final states of the reaction. For this reason, the matrix element Tb?“ has
” double model” dependence even for large values of energy transfer AE, pro-
vided the momenta of the ejected electrons are equal or approximately equal.
These kinematics are not suitable for the investigation of electron—electron
correlation in atomic wave functions (1)0.

3. Theory: Big Momentum Transfer. Let us consider now the case
of large Q values which can be realized for kinematics where the ejected
electron momenta pa and pl, are nearly equal. These kinematics lead to the
Plane Wave Impulse Approximation (PWIA):

(9)
Here tee is the so—called half—off—shell electron - electron amplitude with a well
known analytical expression. The (5DCS) corresponding to the amplitude
(9) has the form:

dsa 21)a tee 2 —- _.

dEdcaddQc ” (2n)3pol g I ”(p°’p°+ ‘37 (10)
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With tee 2— 4

l 2—” l ’— a;

p(ic7§c + (D : PC 3 l // dFl dF2(p_.(ficr7v1)€:(ig+aF2¢0(Fh F2) l2 (11)(270
ft”) = 22:72.1; - C(y)? [1+ 3’4 _ 3/2 (305(2‘7: In 11)] }1: 2'1}; _z—)ob l—l; y ._ PO‘Pbl

_ |io~ia|

f($)C(y);

The form (10) is equivalent to (e,2e) binary triple differential cross section
(TDCS), but [0075,12 + (j) is the He+ decay state density or the Fourier
transform of the fluctuation function x(1i', 1") (Popov et al., 1994).

mm = / «mo- (1?, meme (12)
The smaller pc, the better the approximation (10). For q Small, we examine
the function p in the vicinity of q = 0. The 5DCS can be estimated here as
(Popov et al., 1994)

d50(binary) ~ (AEfi (13)
The semiclassical ideas of Avaldi et al., (1986) provide a way of treating final
state correlations in (8). Because the speed of electron c is small compared to

: ”A "w 359 "'P <“5ié‘1m " c —. 5:21”.11... cl' :1"? 37‘3".- x-‘ “-5" 15.57. 515.12.." “ " 5159121301"

as a: 1-:_>.r ' . 9:: the distortion of the in the
He— " id “"11“; Z = l. '3 he ~.or:e"tso.3 {or as deriwc: ii}: fataldi Er. 3.1.
@956} l angular displacemenrs of
the pea‘ We expect to "catch" in this way the. correctons a gig: order
of magzziiu-rle IL.- formula ,“ ill).

4. Short Conclusion. In order to derive information on two-electron
target momentum densities from (e,3e) experiments, binary kinematics are
most useful. The proposed binary kinematics are analogous to those used
in (e,2e) experiments where one-electron momentum densities are measured.
Note that dsa'(binary) is much larger than (150(TS1).

5. Experimental Considerations. An experiment has recently been
constructed to measure 5DCS for the electron impact double ionization of
magnesium. The experiment consists of an electron gun, a scattered electron
analyzer and two ejected electron analyzers. Because the magnitude of the
5DCS is small Elie ejected electron analyzers were designed to accommodate
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up to eight detectors each at their focal planes. In this way it is possible to
sample 64 pairs of angles simultaneously if one considers only events where
the ejected electrons pass through different analyzers. Magnesium was chosen
as a target because it is helium-like with two s—electrons outside a closed shell.
In fact, calculations and experiments have shown that the outer s-electrons
in magnesium have characteristics more like doubly excited helium, where
electron—electron correlation is large, than like ground state helium. Initial
experiments with the instrument have shown that it has sensitvity sufficient
to measure 5DCS with sufficient precision to obtain information on initial
state correlations.

Quantitative estimates of the reasibility of the corresponding experiments
are difficult to do. However, two remarks can be put forward which plead
for their feasibility. Firstly, the kinematics of diagram 2 with large Eb (com-
parable to Ea) and small EC have a larger cross section, and hence are more
favourable than the kinematics with the same energy transfer (E, + EC) but
an equipartitionning b—c (see, e.g. Duguet et al 1991). Second, the feasibil—
ity of a triple coincidence experiment is mostly determined by the true to
accidental coincidence rates ratio, which is proportional to dsa/di’aadzaba'gac
(Lahmam-Bennani et a! 1991), where d203- is the double differential cross sec-
tion that determines the single count rate in detector i. In the kinematics (1),
small E5 and Ec values together with a large E,1 value (i.e. small energy-loss)
correspond to a large 5DCS dsa (hence, to a large ”signal”), but also to large
DDCS’s d201,”. Since the latter quantities enter as the product of three
terms in the denominator, the resulting signal—to—noise ratio might become
too small.
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Abstract

We considered photoneutrino interactions in a strong magnetic field
B > Bo = mg/eo = 4.41 a: 1013C in model with mixing. The interactions of real
photons proved to be suppressed in such a field. This corresponds to existence of
a photon-like resonance with the mass m., and at the values m: > (m.;+mj)2 the
decay mode 7* —) v.17,- is possible ( m.- and m,- stands for neutrino masses). The
corraponding rate is calculated and some astrophisical applications are discussed.

1. INTRODUCTION

In a usual QED the renormalization procedure for photon external lines gives a
trivial result — the lines turn out to be unchanged:

e,, -—> e,‘ (1)
(6,, is the photon polarization vector)

But the situation is not the same in the presence of an external electromag-
netic field, which takes into account in a Furry picture. If the four-momentum
conserves (for example, in a constant and homogeneous magnetic field), we obtain

P°B(k) 247f 657 ( l

where DW and P“3 are the photon propagator and polarization tenzor in a Furry
picture. At the value of magnetic field strength B >> 3,, = mZ/eo = 4.41 1: 1013G
this quantities are follows [1, 2]

e“ —> e“ + DMUC)

a [cakePM) = making fl - ,7),
47r

(3a)

DuaUC) = (3b)
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where P(k2,ki) is the photon polarization operator in such a field,192 = kg — k§,ki = hf +16; and all indexes run over 0,3 only (third axis is di-rected along the field). This is one of the consequences of the so called “Two-
Dimens.anal (QED A pproxirnazior‘". CieVeloped by the authors earlier (TDA) [3].
For the real photo: k2 — ii : O and using the relation P(k2, k2) gé 0 we obtain
from (2!. (Bab) the following unexpected result instead of (1):

kyéik) (4)

(note, that (ck) ¢ 0 in a general case since a scalar product is defined in a
two-dimensional subspase (0,3)).

Thus, we see that a renormalization procedure in TDA leads to a suppression
of the mass shell photon interaction because of gauge invariance of vertex func-
tions. In other words, the interacting photon in TDA must be massive (photon~
like resonance 7‘). In electroweak theories this leads to a possibility of decay
channel 7‘ —> 11.17J- at the values m3, > (m.- + m,-)2. This channel may be of im-
portance in the forming of massive neutrinos balance at the early stage Universe
evolution or as energy loss mechanism of magnetic neutron stars.

At the low energies the photon mass is imaginary m3, < 0 and the channel
11.- —} 157‘ opens [4]

eu—>

2. THE EFFECTIVE PHOTON MASS

The effective photon mass is given by a. relation

mg, = —e,‘P‘“’e,,. (5a)
where a two-dimensional tensor PM, was defined in Introduction. Taking into
account the equation (3a), we obtain

(ek)J_
k2

where a scalar function P(k2, 191) may be written as follows [1]:
4 k2 1PM, hi) = ;oaexp (fix; + fi—f) (6)

m: = mum — at + 1, (5b)

7: leaBl >>mfalk2|;
0—5)? = k2

E —'fi, 0 < f S l. ‘ (6a)

The analitical continuation to the energy range 1:2 > 0 has a form:
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a)0<k2<4m§

1 §1n§
(5+ 1—g2

¢
sin ¢)—> éu— ), (7a)

2k .4m2 = sm2 45/2,

b) k2 > 4mg. In this case E in equation (6) must be replaced by lfle‘".
At the meanings [cg/mg < 1, k: < 7

01:27P = — 3““: < 0 (3a)

and in according with (5b) the decay 1“ —) 11,171- is forbidden in any case. But at
the values kz/mz >> 1; [€2,161 < 7 we have

2P = ;a7 > 0 (8b)

and this channel is open. In a. frame of reference in which k3 = 0, one can obtain
for difierent polarization statm:

a133,]? : m3 = 0 (93.)

an E: m2 = 0; (9b)

an E: m: = —ory, (9c)

Thus, the only mode contributing in TDA is (9c), giving a. photon—like res-
onance with the mass depending on the field strength. The rmnance lifetime
controlled by a QED channel 7* —) e+e‘ and is given by a relation

-1 40171113
TQ :WS?

m3+ki > mg.

(10)

The QED lifetime “at rest” after su bsitution of (9c) is given by an expression

T61 = 7.16 It 1022(Ba/B)1/2.§"l (10a)
2 2m7 >me.
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3. A WEAK DECAY 7‘ —> 14-17]- IN A MODEL WITH MIXING
The matrix element can be easily obtained by crossing from the correspondingresults of reference [4]:

60G Ungj _ 5 a
z~2éflm [uy(lcj)7#(1+7 )"u(~k;)]e ”(19), (11)

1614 = A(k2)(emk°k,1 'l' 9‘,“c — leaks), (113)
87rAlk=>mg = p- (11b)

Here U is a mixing matrix, km. — neutrino four~momentum, e,“ - absolutly anti—symmetric tensor in (0,3), 6” stands for polarization vector of “massive photon”with k2 = m3+ki >> mg; a, p, a run over 0,3. The expression (11) correspondsto a leading contribution of the effective “electron loop” in Feynman diagrams[4].
After some calculations one can obtain the following result- for the total decayrate (k3 = 0):

W = 4koaG272R
3(27r)4m§

HM—fiflm*
*[mfi + 1713(m‘g + m?) — 2(m‘Z — mgr], (12)

[mi — 2m3,(m? + m?)+

R = [cUg-lz.J

Taking into account an evident relation m9, >> mzj and equation (9c) we‘1arrive at the simple result for photon-like resonance weak decay rate “at rest”
W = 3 * 10‘9(B/Bo)5/2R 5-1 (13)
m: > m3.

At the field values B > 1017 G the QED perturbation theory is failed andone must sum over all loops in QED sector using TDA [3]. In our case thisoperation reduces to a substitution
I. B (alnn/a)/21rme —> me _ "14370)

in equations (10—11). But this substitution do not change the order of the ratein the range of field strength 1022G' 2 B > BO [4].

(14)
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4.CONCLUSIONS

A relative contribution of the decay channels 7“ —> 12.17,- and 7* -—) e+e’ may be
written as a ratio of Ta} = W (13) and 1'51 (103.):

—1it _ —32 E 3T61 -4: 10 (Ba) R. (15)

This quantily is of the order 10""4 when B N 1016C (magnetic neutron stars)
and of the order 10’6 when B ~ 1022G (Big Bang stage). Thus in the second case
the decay mode 7* —) V,‘V_j could be by one of the main mechanism of massive
neutrino production. Note that in any case the weak decay channel gives no
information about the neutrino mms because of the relation 171., > mg»,- and for
this aims there are more suitable laboratory experiments on fi-decay or neutrino
synchrotron radiation [5}.
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Abstract

We define the semiclassical concentration of states of quantum systems,de~
scribed by the Klein—Gordon equations and the Proce equations in external Elec-
tromagnetic and gravitational fields. We show that the semiclassical concentra-
tion can be attained on a classical phase trajectory only.

The present paper develops the method of semiclassically concentrated states
[1]—[5] for relativistic wave equations in curved space-time. Approximate solu-
tions satisfying the Klein—Gordon [6] and the Proce [7] equations were previously
obtained in a neighborhood of the world line of a charged particle in external
gravitational and electromagnetic fields. These solutions were called semiclassi-
cal trajectory-coherent states (TCS) [8]. The technique for reducing the Klein—
Gordon equations to a Schrodinger-type equation for TCS and the Proce equation
to a Pauli-type equation was worked out and the corresponding Hamiltonians
were calculated. This construction was carried out in geometrical terms. It was
established that, with precision up to 0013/2), h —» 0, the scalar ‘I'(2) and the vec-
tor V"(a:) fields, satisfying the Klein—Gordon and the Proce equations in the class
of positive-frequency semiclassically concentrated states, could be interpreted in
the standard quantum mechanical way.1

We point out two interesting properties of TCS. First, the complete set of
these states forms the basis in the space of semiclassically concentrated solutions
of the Klein—Gordon and the Proce equations. Second, the semiclassical TCS
can be classified as positive- and negative-frequency states. The latter fact de—
serves detailed consideration. Namely, in an arbitrary Riemann space there is

1Numerous papers deal with the problem of the formulation of quantum mechanics on a
Riemann manifold (see, e.g., [9]—[11] and references therein).
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no natural way for separating the solutions of wave equations into positive— and
negative-frequency ones (see, e.g., [12], [13]). On the other hand, this separa-
tion is absolutely necessary if we want to interpret the quantum field in terms
of particles and antiparticles, and hence, to have well-posed problems and com—
putation of quantum processes. Since TCS can be classified as positive— and
negative—frequency ones, they may be widely used in problems of quantum the-
ory in curved space-time.

However, when we construct the semiclassical TCS by using the method of
Maslov’s complex germ [14], we assume that the corresponding classical equa-
tions and their solutions are known. In other words, the space of semjclassically
concentrated states is constructed for a given classical trajectory. In the present
paper we show that the classical equations of motion appear while the semiclassi—
cal concentrated states are constructed in curved (as well as in plane) space-time
and that the semiclassical concentration can be attained on a classical trajectory
only.

Let us consider the Klein—Gordon equation in curved space-time:

7:011 {71__—g’i’u(fig‘w13y) — U(a:) — mzcz} ‘II = 0. (1)

iuncflon {Fm plays the '02
' HRH-Li'- ‘.::.'i r-r3.515 Well known. ;. 5'.il_l..i’f.lll.z _ ..

invariant scalar product. Let ‘111 and \112 be two (generally speaking) complex

solutions of (1), then the scalar product of these solutions can be Written as
follows

.jze sneer space

mm!) = 21"”; /mmwwl + mam (2)
2

Here N is an arbitrary constant, introduced for convenience, E is a space—like

hypersurface in the Riemann space. Then one can show that if ‘11] and W2 satisfy

equation (1), then the scalar product ($21111) is independent of the choice of the
hypersurface 2.

As another example of the wave equation in a curved space, we consider the
Proce equation

2 2 '
(fipvy’ = 433W“ + n—va +z'e(—gc%1—)F‘“’Vu—

—2s,w,,5“"°vn + SWWW + 2Dg{safi”v,) = o, (3)

where W“, = DgVu—DuVu, Du = V#— 2—;A,‘ is the extended covariant derivative,
A“ is the potential of the external electromagnetic field, Fm, = Bull,l — 8,.Ap,
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Sam is the torsion tensor. The scalar product of two arbitrary solution U" and
V" satisfying (3) can be defined as follows

(UMP = —/ «mm? Wm") + («imam (4)
E

where 'h. 1
J51! : 2mC(D#6E — Dfiglfl’ + 2331/)7

and E is a spacelike hypersurface.
By analogy to the plane case, we give the following definition of the semiclas-

sical concentration of a. scalar particle in curved space-time:

Definition 1. The states ‘I! of the quantum system (1) will be called semiclassi—
cally concentrated on the phase trajectory 2(5) : (p,‘(s),q"(s)) belonging to the
class CSKG(Z(5)1 113)); if

(i) the curve q"(s) is time-like, and there exists a family of hypersurfaces
7(a) = s (where s is a family parameter), defined by the equation

gnu(T)9(T)é“(T)(I” - '1"(T)) = 0; (5)
(ii) for any operator A with symbol A(p,a:,fi), regularly depending on ft, we

have 1

gal/11mm = gig, WWI/1W); = A(p(s),qrs),0). (6)
Here we use the notation

(‘1’;“I‘2)s= J/ dEMWI‘I’z, ll‘I’l|§=(‘I’l‘I’)s- (7)
-1:\=s

Theorem 1. If ‘11 is a semiclassically concentrated state of class CSKc;(z(s), T(z)),
then 2(3) satisfies the classical Hamilton system with Hamiltonian H(°1)(p, z) :
cz’Pp’P“ — mac“ — U(z)

Lemma 1. If \II 6 CS(z(s),r(:c)), then

3mm — 1mm A] m 8ds KG — iii ’ ' 5' ( )

Proof. The mean value of the operator ll can be written as follows

014/1111)“: / dzflew,
r(::)=s
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where N2
y __ __ p.11 ‘ a: ‘ . " "G — 2my [(PV'II) Aw +1: ‘P.,A\II].

The“ f d2 G f as GF‘ _ M

(“14) _ lim ‘r(ar)=s+As IJ 7(2):: #-

d5 — As—vo A3

because, by condition (6), G“ —> 0 as we move away from the classical trajectory
along the hypersm-face 1-1:) = .5. Therefore, in the numerator we can add any
integral along the tubular surface 0(R), lying betWeen the hypersurfaces 7(2) = s
and TlJ'.) = s — As. Suppose thr.= surface 0(R) is infinitely far from 3(5), then we
have

. f — f + f :12 G“
d(A) _ lim T(x)=s+As 1‘(z)‘=_s a(oo)) IJ = lim —1— d423#(\/—9G“)

d5 - As-vO AS As~>0 AS
V

Here we have used the Gauss theorem; V is the volume bounded by the surfaces

T(::) = s, 'r(:c) = s + As, and 0. Therefore,

A 5+As 4

dw— lim i / ds / d—z—FgGHF / dzqGey.
(15 ds ’ '— As—vU As

5 T(t) :5 1(2) :3

Recall that N2 1

#. =——-w*” — ‘ willG #1 2mc ih( ’HA‘II (HE!) ),

since fill = 0. Hence, our lemma is proved.
Now let us prove Theorem 1.

Proof. As is well known, the Weyl symbol of the commutator of Weyl—ordered

operators with symbols (1(1), 2) and b(p,z) has the form

C(mrz) = 21' sin{§(§,:—y£—u — £527» (mammalgg. (9)
In (8) we pass to the limit as h —> 0 and, taking into account (9) and (6), obtain

dA
Es— : {H(d)a A0}pra (10)

where the braces denote the Poisson bracket and A0 = A(p,a:,0). Since the
operator A is arbitrary, our theorem is proved.

Similarly, for a vector particle in the Riemann—Cartan space we have
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Definition 2. The states V of the quantum system (3) will be called semiclassi-
cally concentrated on the phase trajectory z(s) = (17,,(5), q"(s)) E CSp(z(s), T(2:)),
if

(i) the curve q“(s) is time-like, and there exists a family of hypersurfaces
7-(2) = s, given by the equation

gtu(4(T))é“(T).(z” - q"(T)) = 0: (11)
(ii) for an arbitrary scalar operator ll with symbol A(p, m, Ii), regularly depen-

dent on h on the hypersurface r(z) = s, we have

Emmi/>1» = mM/flvx = A(p(s),q(s),0); (12)
(iii) for an arbitmry 4 x 4 matrix I‘, for all values of h E [0,1[, there exist

quantum—mechanical means

(V|I‘A|V)p and (VlI‘AlV),.

Here we use the notation

(Um, = / d2yq“U+V. (13)
r(z)=s

Theorem 2. F" “e stats Y”(:E,t,hf of it.» manium system (3) is semiclassi-
and {Songs to the class Cflplrls'y. 7(3)), then z(s) satisfies the

. 72': with Hamiltonénr‘ 'Hmlljp. z) = cz’Pu’P“ —— mgc4.
calf; e0 -‘::.
,-_.. , ' 7.Llueslrfi. In.

To prove this theorem, we shall need:

Lemma 2. UV 6 CSp(z(s),r(z)), then

£(VIAIV)P = gvuhp, 111-110,. (14)
Proof of this lemma literally repeats the proof of Lemma 2.
Proof of Theorem 2. Let us expand the solution of the Proce equation in
eigenvectors of the leading symbol of the Hamiltonian calculated at points of the
phase trajectory z(s) [7]:

V“(5,t,fi) = e“j(s)¢I>-i(i’, t, n), (15)

humus) = Aj(s)e“j(s), (16)
where

an =_1__' a_ 22 u _ u.’H, 2mcKPap mc)6a Pap],
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1
= —— Au. : — or a _ 2 2 = .Ac 2711c“) ’P m c ), a 1,2,3, (17)

60“ = N'P“, 'Pue‘fi = 0.

Then, precisely as in the case of Dirac particles [2], we see that the scalar parts
of the functions @103, t, h) coincide and

[13% {>°(z‘, t, h) = 0. (18)

Then for mean values of the scalar operator A we obtain

gnu gun/11v» = ygvumm, AME — WW..A1— [15”,A1-73.}IV),.
Taking into account (17) and (18), we obtain

.4 = {H<c1)(p,m),A(p,x,0)},,..

Since the operator A is arbitrary, our theorem is proved.
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.4 batruct

Me general expression: for his nation luminosity of a magnetized degenern
dtc relativistic clean-or: gas due to synchrotron and Compton mechanism:
we derived, Quantitative estimate: for the neutron star crust condition:
are yxltfln. New upper bound: on. the axiom electron coupling constant are
obtained.

In trodaction

Axion is fire pseudo-Goldsione boson associated with spontaneously bro-
km: the Fermi—Quinn {PQ} sy-rrietry {1] PQ symmetry gives a nafinral
solution of Hie strong CP-violation problem. Anon mass and its couplings
to stable particles are inversely proportional ’to the scale of the PQ symmcn
try breaking v. The origial axion model [2] by S. Weinberg and F. Wilcmk
assumes u : ugw = (Jain/l4” S! 250 GeV where vgw is the scale of the
electrowenk symmetry breaking. The standard axion is ruled out by exislr
ing experimental and astrophysical data (3]. Various invisible anion models
(will: u :3» 113w) were constructed [4]. Axiom! couple to fermions (quarks
and leptons) with the axion-fermion couplings 9,! = aim/[12. Here c] are
the modebdepeudent numbers of order one, in, are the fermion masses.

The inzeraction axiom; a. with fermions f is equivalent to the psendo
scalar one in the linear approximation of the original PQ - Lagrangian ex—
pansion in powers of (a/u):

L5] = 4941 (ill—{752M} a. (1)
where 7" = 47° 717275 - Dirac matrixes, the system of units: fi. = c = l.
The effective Lagrangian (1) is used in our calculations.
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1‘ Invisible anions, if they exist, could carry away large amount of energy
lrom stellar interiors due to enormous mean free path lengths in matter of
typical astrophysical densities. The loss energy process in a neutron star,
particulary in its crust, may be described as relativistic degenerate electron
gas radiations by difl'erent mechanisms [5]. The external magnetic field
existanse in a stellar matter makes possible the synchrotron axion emission
by the electrons c ——+ e + a, forbidden in a free case.

The axion synchrotron luminosity, i.e. the energy loss rate of the unit
stellar volume due to this process, is given by [6]:

3

Q3457! : 2 {:7}?! /d1"‘5finp (E) [l -— 71;? (5’)]. [2)

where. (11‘5“ is the spectral distribution of the individual electron syn-
chrotron radiation intensity The summation over the initial electron spin
states provides the statistical {actor two. The integration is over the radi-
ated axion energy spectrum w and the initial electron momentum "p". The
factor expresses the Pauli’s exclusion principle RF (5) [i — n}: (6')], where

17.5. (c) and up (5:) are the Fermi~Dirac distributions for the electrons in the

initial and the final states with energies e and 6’ : e + (4» respectively

1
mph) : [exp (6—;—&) +1‘l—1r

The Boltzmann constant is employed 2 l. The electron chemical potential
. ill

grep: 5F = (31271.5), 2 pp >> m (€p=\/p%r+m2 , ft: is the
electron concentration, T is the electron temperature

The formula (2) is valid if the transverssl initial and the final electron
momentums are relativistic: pi >> m, p1 >> m. The magnetic field
strength is H << Ho : 4, 4130136 and the electrons motion is semiclassical:
pi» >> T >> up = eH/sp (in nonquantizing external magnetic field). The
main contribution to the radiation is produced by electrons with momentum
values ’?I 2‘ pp- located near Fermi’s sphere. There are two regions of the
temperature and densities permiting to estimate the axion loss energy rate
by analytical way:

I)? >> Tc, (3)
2)T << Tc,

where frequency w 2 T6 = rzhlpfs/m3 corresponds to the spectral distribu-
tion maximum (see dIASR/dw from (2))
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The results for the both cases (i = 1, 2) my be represented in the unified
form:

0.45" = ago/59y (swam,
where c is the numerical coefficient: c E! 8.6 ~ 10"“, ml = Tc, «)2 = T.

We also upplicete the integral (2) to the case oi the hot electron- positron
plasma (T >> pp >> m). The electrons sud positrons are at phase equi—
librium to the photon radiation, so thst the chemical potential is p = 0.
If the externil magnetic field is nonquultizing T >> all!" /m3 the energy
loss rate is

10/3
A5H_ 2 eH 2’5 eHT“

0,, "'lguTirl 7.:— '
This formuls estimates the spmtimo interstellu mutter uxion emission.

2. In analogous menner we investigated the uion photoproduction by

the msgnetised degenente electron gas due to Compton mechsnism 5+1 ——*
e+a. We use the same kinematics u in [7] for the Compton scattering process
6 + 1 ——~ e + 'y in external magnetic field.

in the most interesting case of low tempereture values end high densities:

T << Tc (see ineqnslity 2) in (3)) the luminosity is:

1/3 a]: 2213
AC _ ' s 2 12 H _T_)Q _5.6 103 “(771) (1013) (109 .

3. The main sstrophysicsl method to constrnin novel puticlee properties

is the stellar energy loss argument:

Q(nouel particle) < Q (standard),

where Q is the luminosity due to a. certain puticle emimion. It is possible

to find upper bounds on the Arlen—electron coupling constmt g“ by this

method exploring the magnetized neutron star model (exactly its crust).
We compare uion luminosity due to Compton end synchrotron~mechenisms.

0‘0 and 0.4511 respectively. with neutrino energy loss rste Q" (see [8]) due
to synchrotron mechanism playing a sufficient role in following parameter
rsnge: st densities: p : {107 + 10“) g/cm3, st tempeuture: T = (105 +
1010 )K and external magnetic field strength H = (10“ + 101*)6. Thlfi
conditions ue typical for the stellar shell. The best results for the union-
electron coupling are obtained when the parameters p, T, I! sutisfy with low
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temperature bud: T << Tc (inequality 2) from (3)). For the case of the
uion synchrotron emission we set~n¢ = Imam—3, T = IO‘K, H =
10120 and demand: 0453 << Q”. The upper limit is: 9G: < 5.4 - 10-14
(for the energy scale of the PQ—symmetry breaking: u Z 10:56:11) For the
axion Compton photoproduction the calculations are performed for n.e _—___

loam-3, T = 1010K. H = lOlzG. The inequality: 0"” << Q"

leads to g“ < 1.1 - 10"13 (v 2. 1.9 - 109GcV). But we hope to improve the
latter result by tnking into account the temperature contribution to electron

propagator.
I thank my advisor A.V.Borisov md O.F. Dorofeyev {or their aid and

fruitinl discussion.
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Abstract

I: is shown that a magnetic field produce: the neutrino fie: ugmmcrty er

collapsing mcuiue stars. Th5: anisotropy is : pouible cause of the nor.—

centrc! supernova. earglosion. Observe“: character-{Him of chi.- phenomenon

are the con-uniform neutrino flue, the high velocity of :h: pain-.- cri car.-

sphen'city of the supernova. shell.

Snpernovne ere the most impressive ergloeions of stars [1, 2]. in which a

potential energy of ~ 109.7 is released. Type I] supernovae, which occur at
the rate of about 10 per second in the observable Universe and which each

produce about 1053 neutrinos of shout 50 MeV per explosion.
In 193-1. Bud-e and Zwlclcy [31 showed that only one percent of this

energy is sufiicient to eject a. shell and produce a supernova. explosion. A: the

beginning of the forties, Garner and Schoenberg [4} proposed a mechnnLfin:

of energy release Lu the collapse of A star due to emission of neutrinos.

A huge amount of energy is curried away by neutrinos during A fine

~ 10—: sec, which is determined by the rate of the elernen‘nrjyY weak process.

High densities. nine: of temperature and strong mhgnetic fields are char-

acteristic of the collupoe of stars. Modern model scenarios of super-novel: {see

e.g. [3-81) make possible to take into account an ever wider set of inmate,
but discussion of the role of the magnetic field is still only just beginning. in

particululy. the magnetic field influence on the neutrinos flux in SN 1387A

was discussed in ‘9].
After P - violation discovery in fi~decey in external magnetic field by

Wu et al. {10] investigations of electromagnetic field influence on above—
mentioned reaction was performed {ll-14]. Luer it was demonstrated that
under coflnpee conditions neutrino fluxes should he anisotropic ones [15,

15:? (see also {17-20 D. Dominant u and E" ejection opposite magnetic field
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direction leads to acceleration the an'sing pulsar along magnetic field [15,
16, 21-24].

Among model explanations of high space velocities of pukars there were
suggestions that these velocities are due either to the breakage of correlation
in double system, or to the electromagnetic radiation of magnetic-dipole
nature, or to some accidental non-centralness of the explosion in a supernova.
For a certain sample of pulsars it is assumed now that the first two points
of view definitely cannot describe the observed values of the space velocities
of pulsars. In the third one the non-centralnees of the explosion is likely
to be explained with the anisotropy of neutrino fluxes. Neutrinos will leave
the star in an anisotropic way due to the influence of the magnetic field 01'
the collapsing star upon the electroweak neutrino—producing processes. The
anisotropy of neutrino fluxes may result in the acceleration of the pulsar in
the direction coinciding with the rotation axis of the pulsar.

On the basis of observational data on pulsar radiation in the radio range,
using a model of pulsar acceleration due to neutrino ejection, it proved to be
posn'ble to establish an observational test [25-27] to determine the modulus
of the pulsar spatial velocity and thereby augmenting data on the observed
tangential velocities of pulsars.

We should also mention the elongation of supernova shells, which is a
significant observed characteristic of supernova remnants [28]. Elongation
of a supernova shell along the direction of the pulsar rotation axis can be
explained by asymmetry of the fluxes of radiation and particles due to the
magnetic field of the pulsar through the region of its magnetic poles. Here,
one must also bear in mind that the rotation axis and the magnetic axis of
the pulsar do not coincide, that leads to a wider range of angles of escape
of the particles and radiation.

The development of the non-sphericity oi the thrown away shell after the
blast of the supernova may carry traces of the same Wotmpy, enhanced
by particle fluxes and the radiation from the magnetic poles of the pulsar.
The large axis of the shell observed upon the celestial sphere and hiding the
pulsar during the initial period of its development will be an alternative to
the observation of the pulsar itself the radiation of which does not reach
the observer at the Earth. Of course, one may hope that the ohervation
technique will develop to an extent making it possible to detect the signal
of the pulsar reflected from other bodies. .

H. Bethe [29] argues that convective instabilifies are occur in the wake
of the shock. These instabilities are caused by neutrinos, which interact
in such a way as to heat the matter that lies by far below. The resulting
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convective overturn trnusports energy, a portion of which is svnilsble to do

work on the shock. Eersnt et sl. [30] have extended this ideas. They tested
this phenomenon with two-dimensional simulations and found conditions

thst yield vigorous explosions. The new calculstions of Burrows et ul. [3]]

confirmed the overall success of the convective mechunism. They used the

best combined trestment of two—dimensional hydrodynamics, convection,

the equation of state sud neutrino trsnsport.
Some sppromhcs to the interpretation of observed dots, obtained with

the use of the most recent technology, have not lead unfortunately 1c.- the

detection of a pulse: in SNISSTA u the predicted time moment. It has

not been detected up to now. This Points to the overestimation of the role

of predictions of the steps of the scenarios of the supernovs on the basis

of the hydrodynamical model calculations. According to our opinion, the

models whithout taking into swount the role of the magnetic field overlook

importnut fnctors useful for the interpretation of the observed dnts of the

supernovae evolution.
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ADELIC WAVE FUNCTION OF THE DE SITTER UNIVERSE
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Adelic generalization of the wave function of the Universe, which takes into ac-

count usual and p-adt'c geometries, is considered. It is shown that there exists
adelic wave function for the de Sitter minisuperspace model.

Since 1987, p-adjc numbers [1] and adeles [2] have been used in theoretical
and mathematical physics ( for a. review, see [3,4] ).

Any pad-it :1 can be presented by ‘-

P'Wflo —: 32.3

reereeemarion one _
integers Z? = {I E ‘55 :3 .3‘ 51}.

Real axed p—ari: members
an infinite sequence a =
restriczion that. a; E
”i . '_T r' "_'

-'L )‘- LLPEE J; X “@555
is a. topological rmg .4 = 1 '_- :1

lte number

Ordinary quantum mechanics, Which tannins compiex-va’rued {21: -:'_

real variables, can be generalized to padic quantum mechanics 531 Tim comp
mined functions of padic variables. In an analogous -.=';ar one ca: for-e: ' ' '
qua-return mecham'cs [6] which unifies ordinary and p—atflc qeae:

The physical meaning of pedic and acetic queezum theory
afized in the coneexi of the Flame}; scale specesime. '

ity there E‘ an uncertainty measuring distances, A: )1 .
30 ~ 10"33 cm is the Pianck length. This can be regarded as a comeqe ;

spacetime quantization with elementary length lg. If we take ig : 1 L1-

:1» 'I I L) . Q rm

p—edic distance 5,, :f n jp< E.
Adeh'c quantum cosmoiogy is the applicatio: ai adrflc quantum Liz-:1: "

description or“ the Universe as a whole. In other words it is adeh’c gcv zraflrafi'
of Ctr-(linen quantum cosmo'iogy. If we wish to take into accouzar ezl possi

geometries to study our Um'verse, then a natural. mathematical instrument to co

that is just. adelic theory.

137



According to adelic quantum mechanics [6] the ground state of a quantum-
mechanical system is of the form

‘1'“) = flocked H ‘1’p(1p)H (2“ 3p in): (1)
963 9935

C

where 0(l z, I?) = 1 if] I? Ips 1 and Q(| 3, IF) = 0 HI 3,, lp> 1. For a
particular cosmological model to be adelic, existence of the p—adic ground-state
wave function 90 . I?) is a. necessary condition.

According to (1) we formulate the adelic ground—state wave function of the
Universe as follows:

‘I’lhijl = 'I'Ml(hij)OOl H ‘I'pl(hij)Pl H all (mi)? lPl : (2)
p65 #3

where hgj, (hij)°° and (In-5),, are adelic, real and p—adic three-metrics on a com-
pact three-surface, respectively. For a reason of simplicity we consider here only
gravitational field with the cosmological term A.

As a starting point to obtain the wave function of the Universe in the real
case one takes a functional integral of the form

wooing-1: / xm(—s°o[gw1)v(gw)m (a)
the additiVe character {exponential Function), lntegraézion is taken

so": £6.53 (5" four-2e: i: in}. Soc is the
usual Hawaii-Hilbert action with}; the cosmological term. in practice one usually
transforms {53' into the correspo;:ei:rg Eu :iidean version.

To perform p-adic gener "fixation we first make a p—adic counterpart of classi-
cal action using its form-Emeriance under the change of real to the p—adic number1.field. Then we generalize {3) and introduce p-acilr: complex-valued wave function

rice 5‘”, \Iihjch induce the three—z

We} = /xp(—s,[gw1)v(guu)p, (4)
where X? is the p-adic additive character, i.e. xp(z) = ezp(21ri{z},).

Now, one can write down adelic wave function of the Universe,

We] = / xm(—.sm)v(gw)wfl [xx—snout», (5)
which is the infinite product of (3) and (4). If one can obtain (2) from (5) wewill say that such cosmological model is adelic one. More precisely, in the case of
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a simple minisuperspace model, where the metric is described by a single scale
factor, after calculation of the integrals in (5) one has to obtain

W01) = ‘I’oo(aoo) H ‘I’p(ap) H 9(I up lp), (6)
P65 pfiS

where 0,600,113, are adelic, real and p—adic scale factors, respectively.
Using the Robertson-Walker metric of the form

dsz = H.140)!!!12 + q(t)d0§, (7)

which is mathematically convenient in quantum treatment [8] the corresponding
adelic action is S = (Sm,32,...,5p, ...), where

sulq1=§ / awn—g — Aq+ 1), (v 5 oo.2,...) (8)
is appropriately normalized and A is a parameter proportional to the cosmological
constant A.

The minisuperspace propagator is Gv(q2,q1) = f dTl(q2,T;q1,0) , where
ICU(q2,T;q1,0) is the usual quantum-mechanical propagator. After integration
the classical action (8) becomes

m3 T (42 — q1)2
= — — 2 _ " s 9Sci 24 W92 + '11) 14 ”ST ( i

where q(O) = q1 and q(T) = q2. Since (9) is quadratic on qz and q1, we have
-1

KIU(q2,T;q1,0) = Av(——8T) I 4T |u 2)(...(——Sc1) , where [\v(a) is a definite complex-
valued function [6].

According to the Hattie-Hawking proposal [8] the wave function is \II.,(q) =
Gv(q,0) . The p—adic wave function of the de Sitter minisuperspace model is

/\ (—-8T) AzTa T q2w w =/ dT-"—x t-—— + (Aq — 2)— + —1, (10)
P ) ms: 141* |§ P 24 4 8T

where we specified the range of integration taking T E Zp.
Now we shall show that the above adelic wave function has the form

WW: A) = ‘I’oo(‘Iooy’\oo) H 'I’p(9pi)‘p) H ”(l ‘Ip lp) v (11)
P65 pés

where S = {2,3,p1,...,p,. :| AP]. In.) 1,(i = 1,2,...,n)}.
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To prove (11) let us consider (10) for | A [,3 1 and p 96 2,3. Under these
conditions ‘11,,(41, A) : fiTipSl dTA,(—2T) I T l;%xp(—)‘-%I + 5;) , where we used
the property Ap(a2b) = Ap(b). Replacing the variable of integration T by (831)—1
we get m,» = It...» «w-y) I y mpg—2% + am.

For | q [,3 1 we obtain '11,,(q, A) = 2:10p“? flylp=p" dydp(-3/)Xp(q2y).
Taking into account that Ap(—y) = 1 if] y in: p“ , 25;;1Ap(—y) = 0 if
ly lp= 1’2"“ ,and

-1 _
1::(y_okzfiflg:_° _ f, 1fp a 1(mod4)

— ifi, ifp E 3(mad4) ,

where (if) is the Legendre symbol, one obtains \I!p(q, A) = 1.
To calculate the wave function for | (1 IF) 1 it is convenient to introduce a

new variable of integration 1: by y = z +q'1. Then one can show that '11,,(q, A) =
x»(-q)‘1’p(q.z\), and since xp(-q) 96 1 for I q Ipz p it follows ‘I’p(q.)~) = 0-
According to the above results we can write

159M) = 9(I q ip) (12)

yo=l P

ifIA|,5 1 andp¢2,3.
Since adele A = (Aw, A2, ...,A,,, ...) contains I Ap |,> 1 only for afinite number

of p , from (12) it follows (11). Note that obtained adelic wave function has also
a place if A and q are principal adeles, i.e. if Am = AF 6 Q and qm = q, E Q for
all p.

Summarizing, it is obtained a. remarkable result that in the de Sitter min-
isuperspace model exists ground state (2(I q I?) for all but a finite number of p.
By this way it is shown that there exists adelic wave function for the de Sitter
model of the Universe.
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ABSTRACT

This report contains to short excurse in the origin of relativity concept not
only for the purpose of supplement a widely spread one- sided image of this
important stage of the history of natural science, but also to mind those
forgotten approaches to the relativity theory construction that cast light on
its close relation to the concepts of classical physics. We emphasize some
statements of A. Poincare and H.A. Lorentz which help us to penetrate
deeper into the essence of relativity theory.

1. INTRODUCTION
”... Relativity burst upon the world,
with a tremendous impact. ...The
impact that relativity produced I
think has never been equalled either
before or since by any scientific idea
catching the public mind.”

Paul A. M. Dirac (1.977)

The special relativity concept created in the the first years of our century,
initiated radical transformation of the earlier physical images and became
one of the grounds in modern physics. But in spite of its significant place
which this theory occupies in the system of modern scientific knowledge, in
the historical description of its origin a. one-sided approach with substantial
gaps became, unfortunately, traditional. In this historiography the period
preceding the creation of the relativity theory turned out to be especially
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underestimated, i.e., it happened when the principle grounds of the new
physical theory were put forward to solve contradictions existing in those
times.

Such unattentive attitude to the appearance of the principle grounds of
the new theory is impossible to explain by to loss of scientific interest to the
historical details of the origin of the new scientific concepts. At the same
time the principle grounds of a more radical physical theory - quantum
medianics, were developed in physics. But historiographers of quantum
mechanics have always regarded this period as a most important element
of the deviation from the old ideas of classical physics. The actual era of
quantum mechanics is considered to have originated in 1900, the year when
M.Planck put forward the hypothesis of discrete energy states of a oscillator
and using it derived his formula for the equilibrium black-body radiation
spectrum. The subsequent A.Einstein’s idea (1905) of photons and L.de
Broglie’s idea (1923) of a hypothetical wave with a phase velocity related
to the velocity of a microparticle were also judged accordingly. In any case,
precisely these ideas were always stressed to underlie the wave mechanics
created by E. Schrodinger (1926). For a revelatory illustration of the flaws of
the historiography of special relativity it is useful to compare the respective
presentations of equivalent periods in the development of the two theories,
both of which form the foundation of modern physics.

No other physical doctrine excited such widespread interest, as the the—
ory of relativity. The unusual conclusions of the theory on issues seeming
most simple always aroused great inta'est outside the scientific community.
Most likely, it was actually because of this widespread popularity of the the
ory of relativity, organized in the main by men of letters far from science,
that its historiographers deviated from an exact and objective description
of the history of this most outstanding discovery.

This story, how the historical gaps in the origin of the relativity con-
cept were eliminated in the second half of our century, is the subject of the
present report. We also consider those important statements A. Poincare
and H. A. Lorentz, which promoted the development of the deeper under-
standing of the essence of this theory.
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2. THE ORIGIN THE INITIAL IDEAS
OF SPECIAL RELATIVITY

”Experiment has provided numerous
facts admitting the following gener-
alization: it is impossible to observe
absolute motion of matter, or, to be
precise, the relative motion of pon-
derable matter and ether”.

Henri Poincare (1985)

The descriptions of the history of special relativity, at least those pub-
lished before 1954, contained no mention whatever of now the initial ideas
were formulated during the period preceding its creation. Only the formal
utilization was noted, in the works by W. Voigt (1887) and H.A. Lorentz
(1892 and 1895), of ”local” time in a. moving system with the origin of time
depending linearly upon the space coordinate.

A truly novel contribution to the historiography of special relativity ap-
peared in 1954 in second volume of the historical work [1] by well-known
British mathematician E. Whittaker (the first volume was published in
1910). Whittaker was the first to point out that in 1899 the outstanding
French mathematician and theoretical physicist Henri Poincare expressed
firm belief in it being essential)! impossible to observe absolute motion in

optical experiments owing to the relativity principle being obeyed strictly
in optical phenomena, aiso. The scientist confirmed his idea in a talk at
the Paris; international Physical Congress held in 1900. EWhittaker also
presented next excerpt about prediction new relativistic mechanics from
the talk delivered in St Louis Congress of Arts Science by Poincare in 1904
stating: ”From all these results there must arise an entirely new kind of dy-
namics, which will be characterised about all by the rule, that no velocity
can exceed the velocity of light.” [1, p. 31].

The chapter of the book by Whittaker on special relativity gave rise
to lively discussions and, doubtlessly, aroused the big interest of many sci-
entists in independent historical investigations of the period preceding the
creation of this theory. As a result, not only was a more detailed inves-
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tigation of the works by Poincare indicated by Whittaker carried out, but
several of his publications [4, 5] were also saved from oblivion. It turned out
that the principle of relativity for electromagnetic phenomena was proposed
by Poincare even earlier. Thus, the words of Poincare, used as a epigraph to
this chapter, were taken by us from his article of 1895 [4]. Further, quoting
the Michelson experiment, Poincare stressed that theory must satisfy the
above law without any restrictions related to precision.

In paper [6] I personally drew attention to the fact that in the article
”Measurement of time” [5] published in 1898 Poincare, in discussing the is-
sue of determining the quantitative characteristics of physical time, arrives
at important conclusions, on the conventional essence of the concept of si-
multaneity, not only representing historical interest, but also permitting to
clarify the limited nature of the existing interpretation of the space-time as-
pect of special relativity. Poincare notes that the postulate of the constant
velocity of light "provided us with a new rule for searching for simultaneity”,
but concerning the assumption made use of here on the independence of the
speed of light for the direction of its propagation the author makes the fol-
lowing categorical assertion: ”This is postulate without which it would be
impossible undertake any measurement of this velocity. The said postulate
can never be verified experimentally.”[5]. These profound arguments justi-
fied Poincare his article the following no less categorical statement: "The
simultaneity of two events, or the sequence in which they follow each other,
the equality of two time intervals should be determined so as to render the
formulation of natural laws as simple as possible. In other words, all these
rules, all these definitions are only the fruit of implicit convention.” [5].

These precious ideas of great thinker were not applied in any explicit
form in the creation of the special theory of relativity, unlike his assertion
concerning the principle of relativity being rigorously obeyed by electromag-
netic phenomena. Later, also, they were not realized; thus, for instance,
the conclusion was not comprehended that the concept of simultaneity, for
events occupying difiemnt sites, was based on measurement of the speed of
light in one direction being essentially impossible without the adoption of
a convention on the equality of velocities of light for proweses propagating
in opposite directions. Convincing evidence that the essence of the above
issue was not fully realized by specialists is presented, as it is shown in my
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article [7], by the publication in several central physical journals of propos-
als, based on false grounds, to measure the speed of light in a sole direction.
Such proposals always implicitly contradict the fundamental principle of
causality, and their publication in journals is just as inglorious for the pub—
lishers of respectable scientific journals, as discussion in the scientific press
of proposals aimed at constructing devices experiencing perpetual motion.

A further development of the idea of determining time on the basis of
the postulated constancy of the velocity of light was presented by Poincare
in 1900 in an article on the Lorentz theory [8]. In this work the first phys-
ical interpretation was given of ”local” time introduced by Lorentz as the
time corresponding to readings of two clocks synchronized by a light signal
under the assumption of a constancy of the velocity of light. This work was
ignored by traditional historiography, even though the explanation given by
Poincare of the essence of the proper time was repeated literally in 1905 in
a work by A.Einstein.

The works, in which the new transformations of spacetime coordinates
that subsequently occupied the central place in the theory of relativity,
should also be attributed to the period preceding the creation of this theory.
In the literature the opinion is widespread that thae transformations were
obtained in their final form by Lorentz in 1904. The fact is less known that
they appeared in the book ”Ether and matter” by the British theoretical
physicist J. Larmor in 1900 [9].l And what is totally unknown to historians
is that Lorentz first derived the transformations, that subsequently became
known, upon the proposal of Poincare, as Lorentz group, in a work of 1899
[10]. in this article were supplemented by factor 1 = (1 — 1.!7/c2)"1/2 to
the transformations of coordinate :’ = z u vi and time t’ = t— m:/c2
introduced earlier in the work of 1895 [13]. Only after this supplement new
transformations were brought in strict accordance with the invariance of the
Maxwell equations and made to satisfy the requirements of a group.

Thus, by the end of the past century the problem of explaining absence

1To the presented historical information one must add that the relativistic relation
for adding velocitia wu first obtained by Larmor (see Chapter XI, item 113 of the book
[11]) and that the author discuwed also the relativistic effect of deceleration of time for
cleftrritmagnetic process in a material system travelling through ether (see item 114
in 11).
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of ”ether wind” was quite ready for its ultimate solution by the above works
by Poincare, Lorentz and Larmor.

3. THE CREATION OF SPECIAL RELATIVITY
”... Relativity burst upon the world,
”The special theory of relativity is
not the creation of a single indi-
vidual, it is due to the joint ef-
forts of a group of great investiga-
tors — Lorentz, Poincare, Einstein,
Minkowsky."

Mas: Born (1959)

The history of the concluding stage in the creation of the special the-
ory of relativity was only complicated by discrepancies in the estimation of
the significance of well-known parallel works and, hence, by the insuflicient
attention subsequently paid to alternative approaches. These discrepancis
reflected, first of all, the objective difliculties in comprehending the theoreti—
cal constructions, in same cases, and of apprehending the logic of reasoning,
in others. But, regretfully, the tendentious attitude in singling out the rec-
ognized as the first one hindered objectiveness in estimating the significance
of various publications.

In 1921 an extensive article (about 230 pages volume) [11], written by the
future eminent theoretical physicist, at the time a twenty-years—old student
of the Munich university, Wolfgang Pauli, was published in the German
edition of the Encyclopedia of Mathematical Sciences. This article, later
published as book in various languages, still remains one the best expositions
of the fundamentals of the special and the general relativity. The article
began with a short historical stady, before the publication in 1953 of the
book by Whittaker was the most complete and objectuve review of history
of special relativity. .

In concluding a incomplete list of works were published during the period
preceding the creation of the theory Pauli singled out for further discussion
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”three contributions, by Lorentz [l2], Poincare [13] and Einstein [14], which
contain the reasoning and the developments that form the basis of the spe-
cial theory of relativity”. Indeed, the grounds do exist for considering the
three authors of these fundamental works the creators of the special theory
of relativity, even though the contribution of each scientist differs from that
of the others. But, in spite of the great success of the article and book
by Pauli, many scientists subsequently ignored his historic estimation and
adhered in their scientific publications to the widespread version, presented
in popular literature, that the sole creator of the theory was Einstein.

The publication in 1935, in the Russian language, of a collection of the
classics of relativity, edited by V.K. Frederiks and DD. Ivanenko [15] turned
out to he a digression from the obvious hushing up of the work of H. Poincare
[13]. Unlike the collection of the first works on relativity theory, published in
Germany in 1913, the Russian edition contained the principal work written
by H. Poincare in 1905 [13,b]. The editors pointed out, in the comments
to the articles included in the collections, that the main article by Poincare
”not only contains Einstein’s parallel work, but in certain parts also the

more recent - by nearly three years — article by Minkowskii, and partly even
exceeds the latter” [15, p. 367], while the fact that this fundamental work
had been forgotten was classified as not having analogs in modern phisics.
But this high estimate of the work by Poincare only had some influence
among theoretical physicists, and did not become known to the historians
of science even in Russia. It is no chance that the high estimate of the
work by Poincare, given by the editors of the collection in the concluding

remarks, was supported and acquired further development in Russia in the

work of the next generation of physicists. Thus, in 1973 I compiled and

submitted for publication by ”Atomizdat” the most complete collection of
pioneer works in special relativity theory, which included translations into

Russian of articles written by Poincare in 1895-1906 [16]. Subsequently,

in 1984, A.A. Logunov published a book under the title ”On the works of
Henri Poincare ON THE DYNAMICS OF THE ELECTRON” [17].

My proposal to publish a more complete coilection of works of the classics
of relativity is based on the example of the 1935 collection ”The principle of
relativity”, which reveals that the publication of translations of the original
texts of forgotten early works by A. Poincare and G. Larmor would serve as
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the most objective and effective way to convince the readers of the decisive
role of these scientists in creating the concept of relativity and in prepearing
a scientific atmosphere for final solution of the problem.

In his book, dedicated to two 1905(06) publications by H. Poincare [l3],
A.A. Logunov chooses a. non-traditional form of exposition for analyzing
these works. Instead of usual quotations of fragments from the originals
under descussion, the book includes the complete texts of these two arti-
cles, published by H. Poincare under the common title of ”On the dynamics
of the electron”, which are time to time interrupted by detailed cements
written by A.A. Logunov. These comments, in the main, serve a sole pur-
pose: to show the profound physical meaning and the essential novenlty of
particular points and relations established by H. Poincare. Here, A.A. Lo-
gunov often inserts into the text of his explanations quotations from earlier
articles by Poincare. From these additions it becomes quite clear that the
main points of the new theory were put forward By the French scientist long
before 1905, while certain new concepts such as "local" time were given a
clear explanation of their physical meaning ir. his earlier articles. At the
same time, it becoms clear, how much better, from the point of view of
physicists, could the main article of Poincare, intended for mathematical
journal ”Rendiconti del Circolo Matematico di Palermo” have become, had
the earlier explanations or, at least, references to his articles on such expla-
nations of the physical meaning, been utilized.

It is important to note that all the formulae in the articlw by Poincare,
that are presented in A.A. Logunov’s book, are given in accordance with
modern notation, which essentially simplifies understanding the theoretical
relations.

To conclude this section we note that the history of the creation and
development of novel scientific concept is best studied making use of the
originals of scientific articles, access to which is significantly simplified ow-
ing to the publication of topical collection of old original articles. 1 have
no doubt that, upon acquaintance with the original works of the classics
of relativism, any benevolent reader will arrive at the conclusion that spe-
cial relativity was created by a whole of eminent scientists. — Poincare,
Lorentz, Einstein and Minkowski. I discussed detail principal significanceof
a contribution of every founder of this theory in concluding article in the
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Collection [16].
We now terminate the above fragmentary historical sketch the aim of

which was to draw attention to the ideas of Einstein’s predecessors, the
falling of which into oblivion doubtlessly impoverished the understanding
of special relativity for many years. The same idea concerning the limitation
of the understanding of this theory was expressed by A.A. Logunov in the
preface to his book [18]. by following words: ”However, dogmatism and
faith, alien to science, but always accompanying it, have done their business.
Nearly up to our time have they limited the level of understanding and,
consequently, reduced the range of applications of the theory of relativity.”

Now we consider question about of the more profound conception of the
special relativity, following my book [19] which was published in Italy into
the encyclopedic series.

4. THE ESSENCE OF SPECIAL RELATIVITY
”The true relation between real ob—
jects are the only reality we are ca-
pable of apprehending.”

Henri Poincare (1902)

Further we must to realize that the relations are preserved plays a deci-
sive role here, totally in accordance with the simple, but extremely profound
assertion made by Poincare [20], adopted as an epigraph for this section of
the present article. The term ”relativity” occuurring in the title of the the—
ory has a second unexpected justification. Besides the conventional meaning
used for establishing in the theory new quantities depending on the relative
velocity of motion of reference frames, the term ”relativity” may be justified,
also, in that the new absolute quantities and invariant relations established
by this theory signify conservation of the relations between quantitia de—
pending on the respective velocities.

Indeed, the main content of special relativity resides in the general prop-
erties of physical phenomena corresponding to the pseudoEuclidean geome-
try of the four-dimensional world, in which space and time join in a certain
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entity, independent of the relative motion of inertial reference frames. How-
ever, this extremely concise formulation, naturally, requires some decoding,
separation of the physical essence from the adopted form of its mathemati-
cal expression. It is even useful to digress some time from a form adequate
to the content and deal with another plausible expression, so as to reveal in
a clear manner the physical essence of the new theory.

The idea of the main content of special relativity was expressed by
Minkowski in his famous talk ”Space and time” by the following statement
termed by the author the postulate of the absolute world: ”... the postu-
late comes to mean that only the four-dimensional world in space and time
is given by phenomena, but that the projection in space and in time may
still be undertaken with a certain degree of freedom...” [21]. Minkowski’s
talk began with even sharper words concerning the arbitrariness that arose
in the new theory, when space and time quantities were considered sepa-
rately: ”Henceforth space by itself and time by itself are doomed to fade
away into mere shadows, and only a kind of union of the two will preserve
an independent reality”. I do not think Minkowski termed these quantities
shadows, because in the new theory they became relative, dependent upon
the velocity of relative motion. Most likely, MinkOWSki implied arbitrari—
ness to signify the apparent contradiction of the obtained results: lengths
in each considered reference frame exhibit contraction with respect to any
other frame, clocks in each frame slow down relative to other frames. But,
anyhow, enrolling quantities in the category of fictions does not free one
from the necessity of clarifying the essence of the corresponding effects.

These the ”miraculous" reversal of quantities, resulting from comparing
lenghts and time intervals, are due to transition from the simultaneity of
one frame to the simultaneity of anower frame. We see that the point is
that proper simultaneities adopted in different inertial frames differ from
each other. It remains for us to clarify the meaning of the central provision
of all the theory, the relativity of simultanety, in any words, to understand
which common properties of physical processes are reflected in the artifi-
cially chosen shift of origins of time at differing points of a moving inertial
reference frames. For ultimate clarification of this issue without renouncing
arguments based on common sense it is best to turn to the description of
velocities of physical processes in a moving frame within the Galilean ap-
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proach utilizing a unique simultaneity for the two frames being considered.
But before presenting the results of such an analysis we shall recall the

main advantage achieved by introducing a shift in the simultaneity along
the direction of relative motion of the frames. The shift in simultaneity
was introduced under the condition of constancy of the speed of light, and
as a result the independence upon direction is obtained of the velocities of
all physical processes in each inertial frame from sources at rest in these
frames. The calculus of space—time coordinates in each inertial frame was
also chosen under the condition that the principle of relativity be satisfied,
and therefore the laws of physics turn out to be invariant with respect
to relativistic transformations of coordinates. Precisely this represents the
content of the correspondence, noted above, of the chosen relativistic metric
to the poperties common to physical processes.

Now let us ponder over the main question: what significance has Na—
ture being consistent precisely with the special principle of relativity, and
not with the Galileo-Newton-Hertz principle of relativity? Clearly, it means
conservation of the form of mathematical equations expressing physicfl laws
only under the condition that a relative shift in simultaneity be introduced,
when time coordinates of events are calculated in two inertial reference
frames moving relative to each other. This means that relative to the si-
multaneity in the initial frame K(:5, t) the reading of a clock in the frame
K’(:1:’, t’) is ahead by a quantity, that increases linearly along the :’-axis.
This shift oa simultaneities does not violate the equivalence of the reference
frames, since the reading of the clock in frame K(2:, t) will be ahead rela—
tive to the simultaneity in frame K‘(x’, t') by a quantity increasing linearly
along the direction opposite to the :r-axis.

Hence it should be clear how unjustified it would be to interpret the
spetial principle of relativity as the assertion of identity of how physical
processes proceed in different inertial reference frames moving relative to
each other, if the identity of mathematical expressions for the respective
physical processes is achieved by taking advantage in thwe reference frames
of noncoinciding times, t and t’. The point is that their main difference
consisting in the relative shift of simultaneities means taking into account
the general delay of processes along the direction of relative motion of the
frama. The principle of relativity being satisfied signifies conservation of

151



kinematical similarity while all processes experience a common delay along

the x’—axis. This can be ultimately verified by considering the velocities of

processes in moving inertial reference frame K’(5:’, t), the coordinates of
which are related to coordinates in the initial frame K(I, t) by the Galileo
transformations [1).

Indeed. for the absolute velocity of an arbitrary physical process rep-ro-
duced a:. an angle 6 in a moving reference frame, utilizing the coordinates
&’ = .r — vi, 9’ = y, 2' = z, t’ = twe obtain, in accordance with refs.

[6,19], the following relation:

no (1 — 02/62)

1 2 , v (1)
(1 - (oz/c2) sin2 9") I + (11.00/82) cos9’

.107) =

where no = const(0') stands for the absolute velocity of the same process,
if the coordinates z’, y’, z’, and t' are used.

For the direction along the :r’-axis (9' = 0) and the opposite direction
9’ = 1r we obtain from (1) the respective velocities

., _ l-vz_e‘c2 ., _ l-vz/c’
"(0)_u°iTuov/c7‘ “(fl—un—

Hence for light (uo = c) we obtain the velocities

fi'(0)=c—v and fi’(1r)=c+v

which correspond to the expressions of classical physics and to the problem
of ”ether wind” that arose in this connection.

Consequently, relativistic theory introduced no changes directly into the
motion of a. light front in a moving reference frame, while substitution of the
constant ”c" for the velocities (l) for all direction is due to transition in the
moving reference frame from space-time coordinates, K'(:i:’, t), to the new
calculus of coordinates in the same inertial frame, K’(z’, t’). This ooore-
sponded to the primary provision of the Lorentz theoretical construction
oonceming the conservation, in an intact form, of classical electrodynamics
and optics. The same result transition from the velocities of light c — v
and c + v for opposite direction to the constant speed of light ”c" was
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interpreted by Einstein as the result of clarification of the true course of
time in a moving frame. We introduce into this assertion only a small, but
exstrernely significant correction: chanding the notion of the true course of
time in some frame signifies a. corresponding change of the general course
of physical processes in this frame, which can be clearly ilustrated within
the preceding approach involving a unique time t’ = t, or t = t', for two
inertial reference frame.

In the first case (1" = t) we have isotopic velocities of physical pro-
cesses in the frame K(I, t) and we fix anisotropic velocities of similar phys-
ical processes reproduced in indentical conditions in another inertial frame
K'(i:', t). This dependence of the velocity upon the angle, represented by
relation (1), exhibits a remarkable peculiarity: in no real experiment can
it be distiguished from the case u = const(0), if in Nature there exist no
processes with velocities exceeding, within this version of the dmcription,
the spwd of light in vacuum, Le. 11:, < c. Relation (1) is, naturally, implied
to apply to all processes, without exception. The noted remarkable feature
of relation (1) follows formally from the fact that the simple transformation
of the coordinates of events from‘ the fact that the simple transformation of
the coordinates of events from K’(J'E, t) to K'(x', t')2 realizes transition to
the isotropic velocities u’ = const(0). Doubtless, it is of interest, however,
to consider in detail the physical reasons underlying the indistinguishability
of the obtained angular dedependence (1) and the isotropy of velocities.

It lies in the general property of conservation of kinematical similarity
for all physical processes. The velocity angular dependence (1) exhibits the
same peculiarity consisting in that the relation between different processes
are essentially indistinguishable from the relations between the processes,
when the velocities of the processes are independent of the angle. Thus, in-
cluded in the general, and therefore nonobservable, effects is the difference
between the velocities of processes in opposite directions along the é’-axis.
The time required for a certain length to be translated in one direction dif-

”These coordinates of event are related according [18I p. 28] as follows:

ll _ -I. _ -. _ -I_ I _ ‘7 -2 _ __
3‘71: yl—V. 21“) t°7[17 Ic’l

Here 1 = (1 — vz/c’)‘1/’.
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fers from the time required for going in the opposite direction by the same
quantity for $1 physical processes. In other words, the difference between
the velocities of light in the positive and in the opposite directions for a mov—
ing fran‘ie. {1) encountered by clasaical physics is essentially nonobservable
in eXperiment-s performed in this frame, only because any other physical
process exhibits the same propagation delay in the positive direction with
respect to propagation in the opposite direction. Now, does such a nonob-
sew-able delay exist for all processes? it exists objectively with respect to
processes reproduced in Similar conditions in another frame, convention-
ally regarded as the primary frame. The physical meaning of this delay is
totally equivaient to introduction in the moving frame of a proper simul-
taneity differing from the simultaneity of the primary frame. The limitation
of the orthodox interpretation of special relativity consists precisely in that
it actually does not reveal the true meaning of the relativity of simultaneity.

The orthodox interpretation of special relativity concentrated on sub-
stantiation of a proper basis for calculating space-time coordinates in each
individual inertial reference frame. Set aside was the approach initiated
by Lorentz, that was based on parallel consideration of two basises for the
calculus of coordinates in each of the two inertial reference frames being con-
sidered: K(:c, t) and [202, t’) for one, and K’(J:', t’) and K’(:i:’, t) for the
other. As a result of this economic approach the problem of substantiation
acquired a. formal solution involving an essential rupture of the common-
sense logic. Preliminary consideration of the velocities of physical processes
expressed in unified Galilean scales in two inertial frames permits to vet-
ify in the simplest manner the relative difference between the courses of
processes in the direction of relative of the reference frames. All processes
proceed slower in frame K’, that in frame K, along the z-axis, but this
does not violate equivalmce of the frames, since the opposite direction: all
the processes in frame K are delayed with respect to the processes in frame
K’. The assertion concerning the relative delay of velocities of processes
only reveals the physical meaning of the relativity of simultaneity. The role
played by the utilized Galilean scales on rulers and faces of clocks is the
same as that of reduction to common measurment units of the quantities
being compared.

The constancy of the velocity of light exhibite two different upects.
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Thus, the initial provision on the independence of the velocity of light of the
motion of the source is something that can be checked experimentally. The
assertion of independence of the velocity of the motion of the reference frame
has another foundation. Here, instead of the velocities of other physical
processes in the given inertial frame is preserved. Precisely because of the
relation between the velocities of processes remaining unchanged the proper
time introduced in the given frame acquires the status of real time singled
out among all possible calculated times by a sole indisputable advantage — it
provides for the absolute values of velocities of physical processes originating
from sources at rest in the given refence frame being independent of the
direction of propagation.3 But this advantage of choosing for each inertial
reference frame its proper basis for calcilating space-time coordinates must
not, however, over- shadow the objective relative difference between the
velocities along the direction of relative motion of two reference frames. It
is merely this fact that is expressed by the difference between the proper
simultaneities in these frames leading to the delay of all processes by one
and the same quantity depending only on the distance along the I-axis.

In the spirit of the ideas of Lorentz with respect to ether the ”ether wind”
being nonobservable in the case of light could be explained by the corre-
sponding motion through ether influencing all physical processes. However,
imposition by such an explanation of the motion of ether secretly at rest in
the initial frame K(1:, t) has no sufficient foundation, since, in considering
the propagation velocities of the corresponding processes, we obtain, utiliz—
ing a unique time t = t', asymetric velocities for the‘nonobservable ”ether
wind” in the opposite direction in the initial frame K(i, t’). Therefore we
are justified in relating the discussed kinematical effects only to the fact
itself of relative motion, while their appearance should be explained by the
universal dependence of the dynamies of any whatever interaction upon the
velocity of relative motion.

3Preach-rely for this reason, to determine the proper time in some inertial refence frame
any physical process from a source at rest in, the given frame can be utilized, under the
assumption that the velocity of the process be independent of the direction in which it
propagates. Besides this, clocks previously synchronized at the same point of the frame
and then slowly taken apart to different points exhibit readings corresponding to the
proper simultaneity of the given inertial frame.
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5. CONCLUSION
”A problem arises only when we
assume or postulate that the same
physical situation admite of several
ways of description ..."

Albert Einstein (1.94.9)

Revolutionary transformations of basic physical conceptions never pro-
ceed smoothly. Giving up conventional views is always painful. Smoothing
out the uneven development of knowledge proceeds gradually as the essence
of novel concepts is penetrated. Bridges across abysses and crevices separat-
ing levels of knowledge are most often built by new generations of scientists,
much later than when the new physical theory originates. The process of
extending the understanding of a fundamental theory lasts many decades
and develops along several main directions. One of these involves revelation
of the relation to preceding physical opinions and clarification of the actual
degree of novelty inherent in the primary provisions of the discussed theory.
Another approach is to clarify the limits justifying application of the theory,
based on further development of the understanding of the physical theory.

The latter type of development of the interpretation of a fundamental
theory lasts the longest, since it is completed only by the creation of a more
general theory ultimately establishing the limits of the given physical theory.
Thus, comprehension of classical mechanics, in this rapect, was completed
only upon creation of the special and general theory of relativity and of
quantum mechanics, that imposed limits on its application and explained
the reasons of this limitation. The example of classical mechanics also clari-
fied the significance of the criticism, initiated by E.Mach, of the formulation
of its laws, originated with Newton, for the subsequent devitation from the
conceptions of classical mechanics.

It is no chance that thwe general issues, related to the knowledge of the
essence of physical laws, have been touched upon in the concluding part of
my paper on special relativity. I hope to convince the readers that further
development of the interpretation of the existing theoretical foundation of
the physical-science represents a most interesting sphere of scientific ac-
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tivity. The scope of such activities enhancing the profundity of scientific
truths, actually already established in physics, can be termed ”Foundation
of physics”, after the title of the international journal that organizes suc-
cessful discussions of the investigations in this fascinating, and important
for the further development of physics, field of scientific activity.

The author sincerely hopes the analisis perfomed in this article and the
critical discussion of the simplest of modern physical theories will convince
the readers of the existence of more significant possibilities of fruitful ac-
tivity aimed at the developing the interpretation of other modern theories.
Thus, for example, in physics great efforts are still required for clarifying
such most important issues, as the reasons underling the appearance of en—
ergy nonconservation in the formalism of the geometrized relativistic theory
of gravity, and for explaing the astonishing interference phenomenon in ex-
periments involving individual quantum objects for which the theory till
now provides a formal description.

Truly, for fruitful activity in the indicated field it is important to free
oneself from the prejudice that a physical theory is completed, when a set of
mathematical relation is established that describes experimental facts in the
respective range of physical phenomena. It must become quite clear that
penetration of the essence of profound truths of truly scientific knowledge
of Nature merely originates with the establishment of rigorous quantitative
laws.
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MAXWELL FORM OF THE EINSTEIN EQUATIONS
AND QUASI—FRIEDMANNIAN COSMOLOGY

R.F.Polishchuk
Astra Space Center of the P.N.Lebedev Physical Institute,

Moscow 117810, Russia

The space—time V is a. parallelizable differential manifold with tetrad field

en = eau(x)d2:". This tetrad and the constant metric gab = diag(—l, l, l, 1)

determine Riemannian metric 9w = g“beafleb,, Riemannian connection V,H

d’Alembertian CI = —V2, Hodge operator *, codifierential 6 = *d*, the

Laplacian A = d6 + 6d, Ricci-tensor Rr1 = (A — D)ea. We have (A is any

p—form)

*1 =| 9 W2 (£43, 9 = detgw, t * /\ = (—1)p(4_P)(sgng)/\

*ea = *1 lKer e¢=| *8“ I (i337

I *6“ i2=i d€t(gfll/ _ cued/Jean) lKer e¢I

65.1 = —V#eau =3 Kn = _e:afl 111 i *6“ i: Kal‘l’g‘w

a.
Vueey = Caeuuatw — Kauu — Aauu, 6a. = 6 = gun
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1!
amp = eavveau = Legeflfl, 2Kauu = "Lea (guy — eaeuueau)

Here I *e., I is an elementary 3—volume orthogonal ea-lines, LC, is a Lie
derivative along 3:6“, a“. is an tau-lines curvature oovector (for quasi-inertial
tetrad Kn = 0 we have 6‘11,” = 0), KM“, is the external curvature 3-tensor

of the hyperplane field Ker e,.(e¢,,d1:" = 0),A,,,u, is an tau-lines rotation

3~tensor.

The orthogonal expansion for tetrad potentials are as follows:

an = data. + Jfia + ”in = (auaa _ Vuflzwu + 7au)d$ua

d7“ = 67,, = 0

den = (163." file, = Jdaa = Elan = K"

Due to Einstein tetrad equation with a matter tensor Ta we have R =

81r(Ta — Tea/2). A Maxwell equation (with the electromagnetic potential

A = Audz“ and with 4-current J\) and the Einstein equation (with tetrad

current 3..., the Hamiltonian density SW) are following

AA = 41rJ, A8,, = 81rSu

S“ = T:I — Tea/2 + Clea/8n

Sm, = Too + T//2 — aouaf,‘ + Kan‘” + AOWA’Z"
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For the Lorentzian gauge V“A,, = VH2” = 0 we have V7“J,u = VVSM =

0. In general case (with cosmological A—parameter)

(idea = 81rSa — dKa + Aea

The total 4-momentum for a gravitating physical system on any spacelike

hypersurface 2 with 2-boundary 62 on V:

Pa := — / =i=deEl = [2 *(Sa — dKu/81r + Asa/81) = cohst
a:

For the trivial 4-momentum we have de“ = 0, e‘l : dz“ (the Minkowski

vacuum). If co = —dt then P0 = 0, but P,- ¢ 0 in general case. In a quasi-

Newtonian gravitational field with a. negative potential energy we obtain

Sm, = ~a2/87r, where a is a. free fall acceleration. For weak flat gravitation

waves in Minkowski space h22(t — I) = ~h33, h23(t — 1:) we obtain

167F500 = (aoh22)2 + (8°h22)2

The energy-momentum pseudotensor is not required here.

The tangential defamation of elastic Minkowski vacuum giving the

Rindler vacuum

(132 = —dt2 + dz:2 + dy2 + dz2 —-) (is2 = el“'“(—dt2 + (122) + dzz + dy2

changes his energy-momentum (now K3 = ~ae‘” 96 0).

That us take the gravitational Lagrangian Lg in the following form:
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1(3n 2 -—V,‘ea,,V"e““ = R — 2V"K,‘ —— K“Ka, K# = eZKn

The gravitational field equations are as following:

G“, + A(x)gu,, = 811T”, A(:z:) := —%K“K‘1 = _%K2

For the fixing the A - parameter we suppose in general case

Ta}; = —Pa ea};

This is the Ricci-canonic tetrad gauge condition. If T”, = 0 then

A = const. Here the matter tensor changes the vacuum energy—momentum
tensor

T3," = —Ag,u,/87r = —K2g,u,/167r

For the quasi-Friedmann model we have

.132 = —dt2 + Maxim2 + 22(d02 + sin2 0M»

2 = (shx,x,sinx), k = (—1,0, 1)

TM = (P +P)copeau + P914!" P = “P

_ l . 1aa — 1(7 + 300a2 + 5(1+ 302)]: = 0
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1 + 301 a= k _ (5+3a)/2
“ 2 7 + 3a(ao)

a=ao—+d=0, a=0—>ii=0

[1 — (1)(7+3“)/’], a = 0 —> a2 = 2k1+ 3“.2—

“ ‘2’“ 311 cc 7+3a
l+3a
7+

9 i1 2 l+3a a _= _ _ ___ __ _ k _ (7+3a)/2 2AU?) 2(a) 97 +3a[k (a) la
1 .‘..(3%32 PW = /[k _ k(£)(7+3a)/2]-l/2da

‘ 30 a0a .—

316/ 87r3(1+a) = M

pa 0 + 7 + 3a
[6 + (1 + 3a)(i)(7+3a)/2]a1+3°, Mo = const

“0

At the modern age a z lone-m, A(t) z 10—56 cm”.

The conservation of total (matter and vacuum) energy—momentum means

the creation of the matter (if k = 1). The change of the matter density at

the early age may be observed.
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On Weyl equations.

S.V.Kopylov
STE ”Brainstorm”,26-9 Konstantinov St.,
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Abstract

The conservation of the (74 x t)-chirnl charge is shown to result
in the states ‘1'] and W2, being eigenfunctions of the ('14 x t)-chirality
operator: (74 X it). For these states significance the (74 x t)-chirality
has certain values. These states break the invariance with re-
spect to rotations in three-dimensional configuration space, how-
ever they permit one to introduce mass members without breaking
the conservation of 74 x Ic-chiral symmetry and the corresponding
charge (as distinct from 75-chiral symmetry, which is broken by
introducting a mass).

Introduction.

The Pauli matrices algebra is known to be isomorphic to the quater-
nion algebra [i]. Thus all results obtained by useing the Pauli matrices
can be written in terns of the quaternion calculation. At the same
time it is known [2] that the quaternions can be derived from the
complex numbers by a so - called doubling procedure , as well as the
complex numbers are obtained from the real ones using the same pro-
cedure.

The next stage, of using the doubling procedure is a construction
of Cayley’s algebra , which requires giving up not only commutativity,
but also associativity.

1 Operations in Cayley’s algebra.

Represent an eleimnt of the quaternion algebra in the form: q = a +
b x 2+ c x j + d x f, where a, b, c,d belong to a field, in particular,the
field of real numbers. The quaternions are added (substructed) and
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multiplied term by term, as polynomials. howaver it be always shouldborne in mindthat: 925x}; 2' xj:~jv<z"; i x i:_ia~<j=:'- xr’ 2—1.
An isomorphism of the quaternions and matrices o:- follows directly

from the relation: 1 —.\ Li —~: x 52,} —-z x 5:: :‘- —: :' x 5‘3 ( where: is the
usual commutative complex unity ). The element of Ceyley’s algebra
is an octanion {Q}: Q = q; :— q-g )5 l: , where 971.: - are quaternions; as well
as in the case ofquaternions E: x 11:: —1,.l' >1 1'. = ~i :-: 5:, ix}: —j;<: i,
r‘.. x P :. ——‘ x A.

The octanious are added (subs-treated) termwise, as well as the
quateruions do. Multiplication in Cay-ley’s algebra is usually set by a
special table E as is sometimes done for quaternions ). Howexv'erihe
results ofthis table can be obtained by having used a number ofsirnple
rules, which considerably simplifies a consideration from the technical
point ofview. The objects E} x k). {j x ls}, {1‘ x l:) should he considered
anticomrrmtative with 2", j, 7:. Z: and between themselves (' similarly, in
the quaternions algebra , (i xj) anticommtates with f and j, but here
such a product is unique it is designated b): 7‘) not to be confused1 Thus
in Cayley’s algebra We shall have, e.g. {i >: k] x a": —i K (5 x en {-3 'x. it) "x j =
-jx‘ {ix 57"!- Besides, as Well as in the quaternion algebra, Eixlr} : HQ“ .
1?. should noted! that the last. operation (anticomutation) is feasible,also for the objects being simultaneously: one ~ inside, other - outside
of the brackets, therewith a preservation of brackets is 11ecessa._ ', e.g.
Efx 1b,:«j = —E:' x}; ml. Being based on these rules, it is possible to obtain
any result. from the table of multiplication E3] of Cayley’s algebra.

Cayiey’s algebra is not associative, the quantity being called anassociator x j x it: : f x {j u' I}; — E5 x j) tr. .2: in this algebra, is no:
equal to zero as easily calculable on the basis ofthe above—stated rules.and 2 .\ E x {j x is). at the same time the antiassociator E: x j :>: 5:1:

\J- ‘1.“ _ I: .x j‘; x l‘ appears to be equal to zero.

, .

2 Cayley’s algebra in the formalism of physical the-
cries.

As far as the the Pauli matrices formalism is a conventional one to con-struct physical models, and the quaternion formalism is out ofpracticaluse , We shall operate not with the quaternion algebra but with thea-matrices algebra . An extension ofthe quaternion (o-matrices) alge-bra up to Cayley’s algebra is realized due tn the object fr: it x I: : —'=.unrepreseniable in the form of a matrix. Applying the above rules ofproducts, but already not for i. j‘ r, and according to isomorphism, we
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shall have for 2' x02, ixal, ixas, e.g. (11 x01 xii) ><(ixc71) = —(i x01) x(i x01 xii).
Note that the written relation shows, among other things, the oppor-
tunity to omit commutative imag'nary unity (i), i.e. the opportunity to
operate directly with the matrices I, 02, 03, 0'1 and the object is following
the same rules of multiplication.

3 Gamma — matrices.

As Dirac’s gamma-matrices are representable in the form of a direct
product ofthe Pauli matrices , e.g. 74 = 03 ®I;'ya = 02 ®aa (a = 1,2,3);
75 = 01 ®I, thus having extended the algebra {I, a} oftwo-row matrices
being in the right-hand side of the direct product up so the algebra
{1.02:1‘r00 >5 l“). k}. we obtain, in addition, four 1»”rnatries”: (7a X IE) =
:73 :3 (a: x k} and {i >-: [:12 3 I :4 72'), where is the latter can be written in
the form 53 x (3;, 3] x i- : 7-5 '2: 75 x is. E-om the aforesaid it is clear that
:5; 14; 7.4: n, x In}: {7-1: x 75 :4 .35} will form nine anticommutating matrices,
each with the square equal to unity. It is clear as well that 74 and 75
commutate with k, and 7‘, anticommrtate with it.

The brackets here should be treated as well as in Cayley’s algebra
(it follows from the construction of 7-matrices in the form of a direct
product, where Cayley’s algebra is realized in its right-hand side).

4 Operator part of Dirac’s equation.

It is of interest to consider possible modifications ofthe operator part
of Dirac’s equation based on the aforesaid. However simple modifica-
tions of the type 7-3,. x D, ..-, T.“ x D“ where Y4 = a, :4 ens-w, >- ;‘: =-: d
l": : 73 x emit x 5.4;], without summing over 0, appear to be unitarfiy. ‘ .,reducible to the original form: a“ x. mhem D, = 3: i1; —; 5:. g x. .1; .~ .
Where ri'“ -— are gauge group generators.

5 Chiral symmetry.

Since the operator part of Dirac’s equation does not admit simple
modifications, it is of interest to consider invariant transformations of
wave functions arising as a consequence ofthe extension of the algebra
of7-matrices due to the element In.

It is possible to show that mass Lagrangian of the spinor field
is invariant with respect to the wave function transformations of :
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\II -+ Q><\II, where Q = p4x(ixy4x13)4:pax(ix75x'yaxJE), and
p“ x p,‘ = 1,01 = 1,2, 3,4). The operator Q is invariant with respect
to the parity transformations, charge conjugation and relativistic of
rotations (boosts), but is not invariant with respect to rotations in
three-dimensional configuration space. At the same time, due to rota-
tions ofthree-dimensional space the operator Q can be reduced to the
foe=(i X74 x k).
fiomthe aforesaid it is clear that the Lagrangian can be represented

in the form ofa sumoitwo parts with the wave functions \E-e'l = { l—;' (f. a;
1:4)‘13'1 and 93‘? 2 {1+5 >< ic>< 1,314'2 respectively (similarly to decomposition
ofthe Lagrangian in a right —— and left—hand side in the rnassless case).
Similarly it is possible to speak of consen'ation of the chiral charge
corresponding to the transformation \I‘ —- szpflc x 7,, x 6‘) x \I’, where E?
is an independent variable, but it already not a 75-chiral charge, and
(74 x k) is a chiral charge, without breaking the conservation of the
latter by an introduction of the mass member.

References

[1] D. K. Faddeev, Lectures on Algebra (Nauka, Mosccm, 1984).

[2] Mathemtical Encyclopedia, v.3 (Soviet Encyclopedia, Moscow,
1982). _

[3] A. G. Kurosh, Lectures on General Algebra (Fizmatgiz, Moscow,
1962).

168



HYDROGEN-LIKE ENERGY SPECTRUM OF THE EARLY UNIVERSE
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Abstract

The quantum birth of the Universe at Planckian densities is considered
allowing for some kinds of matter other than vacuum. The pre—de—Sitter
universe looks like a hydrogen atom with the energy equal to that of a
universe filled with relativistic gas.

From the viewpoint of the modern cosmologial concepts the de Sitter vacuum,
with the equation of state p = —5, is believed to be an initial stage of evolution of

the Universe [1]. It decays into an expanding matter called the Friedmann world.
There arises a question: what was before the de Sitter stage? The birth of the
Universe is nowadays treated as a quantum tunnelling from ”nothing” to the de

Sitter vacuum.The idea of a quantum birth of the Universe was first proposed by

Tryon [2] and Fomin {3] and developed by many authors.
In the present paper the equations of state other than p = —e are taken

into account to obtain the wave function and energy spectrum of the quantum
Universe as well as the penetrating factor giving the probability of its birth. The

problem is formuated as follows. From the Einstein equations for a homogeneous

isotropic universe [4,5]

('12 4WG£a2 __ kc2
~2— 3c2 _ — ‘2 1

= _41rG(:-+2- 3p)a‘ (2)
c

where a is a scale factor; the parameter k = 0, +1, —1 for flat, closed and open

models respectively, for the equation of state

(1)

p: as (3)

we obtain the relation
éa+3(1+a){15=0 (4)

at any k, which results in the formula.

a -3(1+a)
5 = 5p! (E) ‘ (5)
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where 5 = 5,; at a = —1 corresponds to the de Sitter vacuum.
The de Sitter vacuum has Planckian parameters. The quantization procedure
reduces to introducing a conformal time in (1) followed by replacing the generalized
momentum dp _ ii. = _a. (5)

- da6 (3,7) dn
by the corresponding quantum operator

— _1 2 d
P—ilplda- (7)

As a result we obtain the Wheeler-DeWitt equation in minisuperspace depending

only on a scale factor
2% — vow = o, (8)

DeWitt solved it for the case of a close universe filled with dust using the zero
boundary condition for the wave function at the origin [6]. The energy spectrum

of the Universe proved to be oscillatory. Later Vilenkin considered a closed zero-

energy universe being born oia pure vacuum [7}.
L'; the.

various Kinds of mane: satisfying the weak energy dominance. condition for dosed
1:14. papa.- the energy density is consider-ea to be a superposition of

models, ni;m-3'._‘.': varuum (c: = —1_';. domain walls LC.- = — l. strings (u : ~—
.iust {a : LN. relativistic gas La 2 1:}. seasons and fermions (:3: = %l ultras
matter (a = 1).

Separating a term independent of the scale factor in the potential, we reduce
the Wheeler-DeWitt equation to the Schrodinger one with nonzero energy of the
Universe in an efl'ective flat space behaving as a relativistic gas moving in the
field of other types of matter. The total energy of the system is zero due to
a. zero Hamiltonian in the Wheeler-DeWitt equation. This may be compared
with Rubakov’s results on the birth of relativistic particles, while tunnelling the
Universe [8] The Schrodinger equation in the present paper was solved for three

cases. First, for nonzero contributions of curvature, strings and vacuum in the
potential. Near the minimum the solution is oscillatory as well as DeWitt’s. The

energy spectrum is described by the formula [9]

EN=M(N+%), (9)

where B; is a contribution of strings to the total energy density and

2 N =1,3,5,... (10)
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The wave function satisfying the boundary condition 1,1;(0) = 0 is

(k — Bz)E exp (-éfi/k — Ba) H~(7)a (11)q; = *—
(2n): J2”N! 1?,

where HN is a Hermite polynomial, 32 is a contribution of strings to the total
energy density. The condition of level existence

EN < Um” (12)

takes the form 1
3(k—Bgfi >4(N+ 5)‘ (13)

Second, in the pre—de—Sitter domain at small 7 only terms with negative powers
of 7 may be retained in the potential. Then the Schrodinger equation reads

(PI!) 35 36 2E
W+(—7—+?+—mplcz 10-0 (14)

Its solution is the wave function [9]

«1) = Cp‘+‘e“i”F(—p,2s + 2,12), (15)
where F is a degenerate hypergeometric function satisfying the boundary condition
2,!)(0) = 0,35 and 85 are contributions of bosons and fermions and ultrastifl
matter respectively,

-- c2p=27‘/m—;;§E, n=%B5‘/F—:;LE-, n—s—l=p=0,1,2,...; 35>0,

s = -% + ‘/ i —— Be. For BS _<_ :11- there exist discrete levels (there occurs repulsion

for Be < 0 and attraction for 0 3 Be S 1- at small 7 ). The energy spectrum of

the Universe is of the form
2 2

E, =_flL (16)

For lBel >> 12 (Be < 0) we have

1 10+ 1z 2 2 _ _ ___2_ 17
E” 35 mp“: (835 435M736) ( )

Near the potential minimum at 7 = —3§51 the spectrum is of the oscillator form.

For "55% << 1 the potential well is not too deep to create planckeons. For lBGI < i-
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(BS > 0, 35 < 0), Il < p (Be < 0) the spectrum is hydrogen-like. Third,
for very small the solution reduces to

2d21/2
7W+Bfi¢=0 (18)

Its solution is given by the formula [10]

C1 cos(bln7) + C2 sin(bln7), 62 : Be — 41 > 0;w=¢~7 mum-b, 9:33—36 >0; (19)
C1+Czln7, 36:}

satisfying the boundary condition 1140) = 0.
For B6 > :— there occurs a fall to the field centre, which corresponds to
E0 = —oo. Thus we see that. the cosmological singularity does not prevent stable
existence of the quantum". [’niverse for 8;; 3' 41 as well as the Coulomb singularity
allows existence :3‘ stable- atoms. lee analogy between these cases was firstproposed 5:}: \‘Thecinr 7: II'Irn‘IEe‘."LlJH with the problem of relativistic collapse [11].
It is of in..._ ._ to “are that the Ccn.’ ' law for the Universe potential resemblesthe asymgfoiic :r-zecien; Er. qua-i; n“ .is of hadrons [4].

The WKB penetration factor reads

up
»

D = (fit-32) , (k _ Bzfi >> 1. (20)
It should be mentioned that there exists an analogy between the tunnelling of the
Universe with strings and zero energy and the tunnelling of a particle througha wedge potential [9], since the penetration factor of the Universe has the form
similar to those obtained for a wedge potential. The wedge maximum plays the
role of the model parameter of the Universe. The energy of a particle correspondsto the contribution of the total energy density. The wedge slope corresponds to
the vacuum energy density.

The penetration factor has been first calculated by G.A. Gamow for the caseof radioactive nuclei alpha decay [12]. Gamow’s procedure was extended in [7]to the case of the Universe birth from pure vacuum. In the absence of strings
(B; = 0) only closed universes can be born from vacuum (for open ones a2 aswell as V is imaginary), which is well-known . At the same time particles are
known to be born in an Open universe with a Spontaneously broker -" ~ 'when their energy density is negative [132 in the presence of strings. the bir 2the Universe becomes possible in open (fiat; models if B: -:' —l (B: < OJ. saucek —— 32 > 0 and hence l" is real. The partial string energy density 5; = 3259-": ‘5is negative in this case. Thus both processes (particle creation. giving rise to theorigin of matter in the Universe, and birth of the Universe itself) go along similar
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lines for open models. At the same time there exist examples of compact flat and
hyperbolic spaces given by Zel’dovich, Starobinsky [14] and Fagundes [15] which
are allowed to be born of vacuum.

I am indebted to Al. Studenikin for providing me the possibility of participating
in the work of the 7th Lomonosov Conference ”Problems of Fundamental Physics”.
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ON PARITY CONSERVATION IN WEAK INTERACTIONS
AND REASON FOR ORIGINATING SPONTANEOUS

B-DECAY
(the hypothesis and project of the test-experiment)

I.M. DMITRIEVSKIY

Moscow State Engineering Institute 31, Kashirskoe shosse RUSSIA I 15409,
Fax: 7 095 324 2111, E-mail: Dmitriev @ radian.mephi.msk.su

Abstract
We suggest a new model of weak interactions which does not violate the

law of parity conservation. According to the model suggested interaction of non-
stable isotope or particle with a relic neutrino-anfineutrino pair originates
spontaneous weak decay and its spontaneous parity violation. In this framework
we suggest a new interpretation of experimental results like those of Wu-type. To
verify the hypothesis we suggest a test experiment based on the predicted effect of
relic neutrino flow density - B-decay rate dependence.
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