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THE MAPPING CLASS GROUP: HOMOLOGY AND LINEARITY 

A.Montorsi and M.Rasetti 

Dipartimento di Fisica del Politecnico, Torino, Italy 

The mapping class group, namely the group of components of 

the group Mg=~oDiff+(Eg) of isotopy classes of orientation 

preserving differentiable self-homeomorphisms of a Riemann 

surface E of genus g, has played a more and more important g 
role in the statistical mechanics of the 3-dimensional Ising 

model [l] and in string theory [2]. ~ 

In the former case Mg=HomeO(Eg)/Isot(Eg) enters the picture 

when the model is defined on a lattice L homogeneous under 

some finitely presented finite group G. 

Indeed, when the solution is formulated in terms of the so 

called Pfaffian (or dimer) method, the three relevant steps 

to be performed are the following: 

i) the positional degrees of freedom of the decorated lattice 

L d, obtained from L by the Fisher procedure [3] , are to be 

relabelled in terms of a set of anticommuting Grassmann 

variables, in one-to-one correspondence with the elements of 

G. 

ii) The group G is then to be extended to a group G in such 

a way that all the orientations of the bonds of L d compatible 

with the combinatorial requirements expressed by the global 

generalization of the Kasteleyn's theorem to a non-planar 

Situation, and only those, might be obtained as the invariant 

set of configurations of the oriented graph matching L d- 

iii) The partition function of the Ising model on L is then 
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reduced to the evaluation of the Pfaffian associated with the 

incidence matrix A of L d, extended with respect to G: 

Z(L) = Pf A (I) 

iv) Since the regular representation R of a finite group is 

the direct sum of its irreducible representations (labelled 

by the index J), each contained as many times as its dimension 

j, (I) can be naturally reduced -when G is finite- to the 

evaluation of a finite number of finite determinants: 

Z(L) =HjF(det R[A<JF>]) ~jF , (2) 

where the sub-index F refers to the fermionic representations, 

and A CJ> is a matrix of rank j. 

There are several constraints in the choice of L and G, imposed 

by both topological and combinatorial limitations. The former 

essentially consists in the requirement that L should be 

embeddable in a two-dimensional orientable compact surface 

E of genus g (such that the coordination of the 3-dimensional 
g 

lattice sites is locally preserved on Eg). It was shown in 

[I] that the most general extension G of G satisfying all the 

requisites is of the form 

= C OS2g (3) 

where ~ denotes the wreath product [4], S n is the permutation 

group of n objects and C=Mg/H, Mg being the mapping class group 

of E and H the stabilizer subgroup of M , namely the group g g 
of diffeomorphisms of E which preserves the isotopy class g 
of a maximal unordered non separating system of g disjoint 

smoothly embedded cycles c i, i=l, .... g (non contractible and 

non isotopic). 
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It should be noted that maps and spaces are to be thought of 

in the piecewise-linear cathegory. 

The homeomorphism ext: G-->G acts locally by attaching a Kasteleyn 

phase to the circuits on E homotopic to zero, and globally g 
by an extension by the fundamental group -i.e. mapping ~I(Eg) 

to Z2-. 

Since H has a finite presentation [5J, also G is finitely 

presented. Minimal presentations for M and for C have been g 
discussed by Thurston [6], Wajnryb [7] and in [i] respectively. 

The interesting property emerging from these is that both groups 

are generated by H and the elements representing the homology 

exchange between any pair of cycles c i, cj; i#j; i,j=l .... ,g; 

and all the relations derive from a set of subrelations supported 

in subsurfaces of E of genus at most 2. g 
In string theory, closed string amplitudes at critical dimensions 

are obtained by computing the correlation functions between 

vertex operators on a Riemann surface and then summing first 

over inequivalent Riemann surfaces of fixed topology, (i.e. 

of a given genus g), then over all topologies [8]. 

The property mentioned above that the generators of Mg(Eg) 

for higher genus surfaces involve Dehn-Lickorish twists around 

either a single handle or two handles, but never around more 

than two handles implies a fact of tremendous physical 

importance: in the analysis of modular invariant amplitudes 

in string theory it is enough to take into account one- and 

two-loop diagrams [9] . Moreover string amplitudes can be analyzed 

in terms of the complex analytic structure of moduli space 

Mod(g) of ineguivalent Riemann surfaces of genus g; in 

particular, to obtain the partition function for the bosonic 

String theory, one has to integrate over Mod(g) with respect 

to a measure constructed in terms of the determinants of the 

Various fields living on the string world sheet. 
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Thus in the two applications described of the mapping class 

group the main questions are: 

i) to derive from some finite presentation a faithful 

representation of M -which is residually finite- as a group g 
of matrices with entries in a suitable field; 

ii) to produce a complete description of the moduli space Mod(g) 

of smooth curves of genus g. The latter is the quotient of 

the action of M on the Teichmuller space T csg-3>. Such an 
g 

action is proper, discontinuous, with finite isotropy groups [I0]. 

Both these questions run into great difficulties which hinge 

on some of the most crucial questions of the modern mathematical 

theory of Riemann surfaces. 

As for question i) one has an affirmative answer for g=l, in 

which case M I ~ SL(2,Z), the modular group. That this is the 

case can be readily checked by recalling that a lattice P in 

C can be thought of as a free abelian group of rank 2, generated 

by two complex numbers z I, z2, linearly independent over R 

(i.e. such that zl/z~ is non real). Then P is a (discrete) 

subgroup of C thought of as a topological group, and the 

quotient C/F, together with the complex structure thus 

inherited, is a compact Riemann surface of genus i (a torus). 

Conversely, any torus T can always be represented in this way, 

by selecting a basis -say {a,b}- for the first homology group 

H,(T,Z) (which is itself a free abelian group of rank 2) and 
r 

holomorphic one-form w on T: then the pair of numbers j~a w, a 

Ib w generate a P' such that T~C/F'. lattice 

Denoting by I z>= ,z l| an element of the 
/ \ 

space of generators, \/z2 
two elements Iz>, Iz'> generate the same lattice F -up possibly 

to an irrelevant change of basis- if Iz'>=glz> with g some 

b) {z,>=clz>, c a nonzerO matrix d in GL(2, Z). Moreover if 
F 

complex constant, the corresponding Riemann surfaces are 

obviously conformally equivalent: if one decides to identify 

them, the equivalence class is obtained simply passing from 
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Iz> to 8=zl/z ~ 6 {C-R}. On the other hand points e and -e 

represent the same surface with opposite orientations, and 

as parameter space for the classes of generating sets one only 

needs to consider the upper half complex plane s={ejIme>O}. 

In this g=l case, the moduli space Mod(1) is then a space whose 

points correspond to conformal isomorphism classes of tori. 

In order to construct it, one has to consider the result of 

the action of GL(2,Z) on H: Iz'>=glz> with e and 8' both 

in H if and only if 8'=(aS+b)/(cS+d) with ad-bc=l; in other 

words the action is that of the (inhomogeneous) group of MSbius 

transformations PSL(2,Z)=SL(2, Z)/{I,-I). 

An answer to i) holding in general for any g is not equally 

easy to settle. The difficulty lies deep in the topology. Let 

S(Eg) be the set of isotopy classes of non-oriented, closed 

curves embedded (as one manifolds) in Eg, and let Lg be a 

foliation of E whose leaves are geodesics for a hyperbolic g 
metric on E (which has negative Euler characteristics), with 

g 
a transverse measure. The latter is a real positive function 

p assigning to each arc u in Eg, transverse to the leaves of 

Lg and with endpoints in {~g-Lg), an invariant weight such 

that: 

- p(G)=p(8) if ~ is homotopic to 8 through arcs transverse 

to Lg and with endpoints in {Eg-Lg}; 

- if ~=Ui~ ±, with ~iO ~j C @~0 @~ j, p(~)=EiP(~i); 

The collection of all these measured geodesic foliations 

Constitute a space Lg on which Mg acts in the natural way. 

If ~6 Mg, one says that ~ is periodic if it is of finite order 

in Mg, reducible if there is a point of S(Eg) which is invariant 

~nder ~, pseudo-Anosov if there exist mutually transverse 

(~),L (u)6 L (s stands for ~easured geodesic foliations Lg g g 
(Lg ( (~) and Stable, u for unstable) such that ~ ~>)=i/5 Lg 
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}(Lg~U> )=$ Lg~U> for some real 6>I. 

A general answer to question i) requires as a prerequisite 

proving that no normal subgroup NH of H can have all its g g 
non-identity elements which are pseudo-Anosov. Indeed in such 

a case -since the only possible overlap in the classification 

given above of the mapping class group elements is between 

periodic and reducible mapping classes- one might know when 

a given )6NMg fixes some a6S(Eg), and there would be no 

obstructions to constructing an induced faithful representation 

of M as a group of matrices. g 
Even though no exhaustive theorem was proven so far, providing 

a global answer to the question, we could at least show that 

indeed some normal subgroup of M can be constructed with the g 
desired "non-Anosov" property. We sketch hereafter the essential 

steps of the proof and state the interesting results. 

One should recall first [II] that every piecewise-linear 

orientation preserving homeomorphism of a closed oriented surface 

of genus g is isotopic to a product of maps Dol (Dehn's twists) 

of the following form. Let N~ be a neighbourhood of the simple 

closed curve c~ defined previously, Co an oriented closed 

cylindrical surface parametrized by coordinates (r,8), -l~r~1, 

0~8<2~, e±: Co->~g the orientation preserving embedding such 

that e±(Co)=N~, ei({O,8)))=cl and ~: Co-~Co the map defined 

by H(r,8)=(r,e+~(r+l)); then Do±=ei~ e~ -I (notice that D~i 

is the identity on the two boundary curves of Ni).If ~ is a 

path which crosses the curve c~ at a finite number of points 

{a el, ±7 on ~ is to break it at ,...,a~ ( }, the effect of D x 
i) 

each point ak ( and insert there a copy of c± in such a way 

that it coalesces -including orientation- with ~. 

One further recalls that on any surface E one may find a pair g 
of essential simple closed curves c, c' which fill the surface, 

with the further property that there is an essential closed 
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curve ~' disjoint from c' such that cU~' does not fill E f a 

g 
If G is an essential simple curve with no intersections with 

cUG', it is known [12] that DoDo. -I is isotopic to a pseudo-Anosov 

map. Then DoDo.-Io~ ' is a curve, say c", disjoint from ~. Thus, 

there exists a map D~.-IDoDo -i -I -I . D~.Do.Do = Do. Do.. fixing 

and hence not pseudo-Anosov. 

Then the proof proceeds by the following steps: 

- Looking at the action of Mg on the projective space Lg of 

measured geodesic foliations, Dehn's twists can be recognized 

and treated as maps with parabolic action: indeed they are 

locally conjugate to the element (~ ~)6 PSL(2,Z). 
% -- 

- Resorting to the presentation of M as given in refs.[l],[6] g 
and [7], and recalling that the elements of the fundamental 

group which act parabolically on the hyperbolic projective 

space are those which may be freely homotoped into the cusps 

and that just these elements are non-Anosov, one can find a 

class of Riemann surfaces such that: a) M has a geometrically g 
finite subgroup SM of finite index on which M acts by g g 
conjugation, and b) in the action of M on the projective space g 
of measured geodesic foliations, Dehn's twists can be recognized 

and treated as maps with parabolic action [13]. 

Then, if the normal closure in ~1(Eg) of the elements of the 

action of M on SM does not exclude all the cusp generators 
g g 

(because of the J~rgensen's inequality the elements of a discrete 

group can never get too close to the identity [14]) not all 

of its (non-identity) elements are pseudo-Anosov. This conclusion 

does not hold for M I, whose linearity was proven above, but 

it does for g>12 when M has a non empty set of elementary g 
homeomorphisms equivalent to global braids. The corresponding 

matrix representation is that induced from the monodromy 

representation associated with the Lefschetz fibration [15] 

of E 
g 
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It is interesting to mention the connection of the approach 

above with the theory of representations of braid groups. 

We turn now briefly to the question ii) which is much more 

complicated, and for which the results presently avaliable 

amount to a sound working scheme, essentially geometric in 

its conceptual structure, and a few conjectures. 

It has been shown by Mumford [16], that working in the framework 

of the piece-wise-linear category one can define universal 

cohomology classes as the (n+1)-fold (simplicial) cup product 

of the first Chern classes of the tangent bundle to the universal 

Eg bundle with fiber Eg, integrated along the fibres. Such 

classes map the elements of the (2n+l)-th cohomology group 

of Eg into those of H2n(Mg, Z), and allow therefore to study 

the symplectic homomorphisms with integer coefficients induced 

by diffeomorphisms of E . 
g [17] 

It is then quite natural to try to detect nonzero classes 

in the universal bundle of Diff+(Eg) by pulling back classes 

from that of the group Sp(2g, Z). Now, the real symplectic 

group Sp(2g,l~) has the unitary group U(g) as maximal compact 

subgroup, thus the inclusion U(g)->Sp(2g,l~) induces the homotopy 

equivalence of the corresponding universal bundles. There follows 

that a map of such bundles is induced by the following diagram, 

summarizing the inclusion and group homomorphisms described: 

Diff+ (?g) --> Sp ( 2g, Z ) 

$ 
U(g) -9 Sp(2g, R) 

On the other hand the homology of the universal bundle of U(g) 

is a polynomial algebra under the Whitney sum, thus ~ can be 

used to detect the possible polynomial generators of the homology 

groups. It has been conjectured that the number of 
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even-dimensional generators might indeed increase exponentially 

with g. Much less can be said, so far, on the odd-dimensional 

homology of M . g 
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