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Computing polynomial form of the colored HOMFLY-PT for nonarborescent knots obtained from three
or more strand braids is still an open problem. One of the efficient methods suggested for the three-strand
braids relies on the eigenvalue hypothesis which uses the Yang-Baxter equation to express the answer
through the eigenvalues of the R matrix. In this paper, we generalize the hypothesis to higher number of
strands in the braid where commuting relations of non-neighboring R matrices are also incorporated. By
solving these equations, we determine the explicit form for R matrices and the inclusive Racah matrices in
terms of braiding eigenvalues (for matrices of size up to 6 by 6). For comparison, we briefly discuss the
highest weight method for four-strand braids carrying fundamental and symmetric rank two SU,(N)

representation. Specifically, we present all the inclusive Racah matrices for representation [2] and compare
with the matrices obtained from eigenvalue hypothesis.
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I. INTRODUCTION

Classification of knots is one of the most challenging
research problems. The well-known Jones, HOMFLY-PT,
and Kauffman polynomials [1,2] can distinguish many
inequivalent knots but not all knots. Witten’s pioneering
work [3] involving Chern-Simons field theory [4] and
Jones’ polynomials suggested that the generalized knot
invariants can be computed for any knot K carrying
arbitrary representation R of any gauge group G. They
are referred to as colored knot invariants H% which are
supposed to give a pool of data to attempt the famous
challenging problem of the “classification of knots.”

The methodology of writing the knot invariants is straight-
forward and involves braiding eigenvalues and Racah matri-
ces. However, the polynomial form of such invariants can be
determined only if we know the Racah matrices. In fact, the
Racah matrices are fully known [5] only for SU ,(2), enabling
the evaluation of the colored Jones polynomial for any knot.
Recently, from the colored HOMFLY-PT for twist knots [6]
and pretzel knots [7] (using the evolution method [8—10] in
the latter case), the closed form expression for Racah matrices
involving any SU,(N) symmetric representation was
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conjectured [7,11,12] Subsequently, colored HOMFLY-PT
for arborescent knots [2,13] carrying symmetric representa-
tions was computable [6,7,14,15] In addition, colored
HOMFLY-PT for some rectangular [16] and nonrectangular
representations [17,18] of SU,(N) have been obtained for
arborescent knots. It is still an open problem to compute
colored HOMFLY-PT for any nonarborescent knot carrying
symmetric and other representations.

Based on the Reshetikhin-Turaev (RT) approach [19] and
its variants, new methods have been devised to obtain
colored invariants for nonarborescent knots from closure
of three or more strand braids. In Ref. [20], a universal
construction for knots in the fundamental representation was
suggested but has not been generalized to higher represen-
tations. Another approach, used in Refs. [21-25] involves
calculations of the highest weight vector for various repre-
sentations which becomes computationally tedious as we
increase the number of braids. We refer the reader to see the
papers [26,27] where some nonarborescent knot invariants
are presented from generalization of the method [18] Even
though these approaches are straightforward, the evaluation
process becomes cumbersome. Another powerful method
called eigenvalue hypothesis was suggested in Ref. [28] In
fact, we will focus on the essential details of the eigenvalue
hypothesis which will provide some inclusive Racah matri-
ces to simplify the tedious highest weight approach.

The eigenvalues hypothesis claims that the inclusive
Racah matrix is fully determined by the eigenvalues of the
R matrix. Using the suggested hypothesis for the three-
strand case [28], the inclusive Racah matrices up to size
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5x5 in terms of the R-matrix eigenvalues have been
guessed for SU q(2)1 and later were shown to work for
arbitrary SU,,(N). Subsequently, the 6 x 6 inclusive Racah
matrix was calculated in terms of the eigenvalues [29] using
the Vogel universality hypothesis of Chern-Simons theory
[30,31]. These conjectured matrices have been independ-
ently checked. [32] Let us briefly discuss the construction
of the inclusive Racah matrix [21] for the three-strand
braid. This will set the stage to go to four or more strand
braids. For the three-strand braid carrying SU,(N) repre-
sentations V', V,, V3, it is well known that the Racah
matrix U,;; (originally introduced by G. Racah and E.P.
Wigner) is the matrix that intertwines the maps:

(V] ® Vz) ® V3 —_— Q and Vl ® (V2 ® V3) —> Q
The matrix indices of U;; are enumerated by the repre-
sentations from V| ® V, =@®; T; (the first index) and from
V,® V; =@ j T j (the second index). Since we are inter-
ested in the construction of knots from braids, we need to
consider V| =V, = V3 = V. In fact, U;; are the matrices
that relate the braiding matrix (R) acting on the first two
strands and the braiding matrix (R,) on the second and
third strands in the three-strand braid. Note that U;; are
referred to as the inclusive Racah matrix when V # Q and
the exclusive Racah matrix when V = Q.

Whatever the representations V and Q are, if the Racah
matrix has size k X k, itis expressed through k eigenvalues of
the R matrix R: VQ V — V ® V. These eigenvalues are
very simple: £¢©X), where C,(X) is the eigenvalue of the
second Casimir operator in representation X € V ® V. The
evaluation of U;; is governed by the Yang-Baxter equation:

‘R]Rle - R2R1R2.| (1)

In particular, one can diagonalize R; and take R, =
UR,U'. Then (1) relates the Racah matrix U to the
eigenvalues of R;. In principle, for various diagonal k x k
R, the elements of the k X k Racah matrix U;; must be
determined using the above equation. So far, U up to the size
5 x 5[28,33] and for the size 6 x 6 [29] has been obtained.

Going beyond three-strand braids has not been discussed
within the context of eigenvalue hypothesis. In this paper,
we demonstrate that the eigenvalue hypothesis is still true
for the case of multistrand braids. We illustrate it in the
example of four-strand braids (i.e., for the maps V®* — Q).
In this case, there are three R;_;,3; matrices and two
unitary matrices U, W,. Hereafter, we call all these unitary
matrices as inclusive Racah matrices even though they are

"It works in the following way: let us fix V and Q to be the spin
Jj and 3j — k + 1 representations of SU,(2), respectively. Then,
the inclusive Racah matrix U, (j) for V®3 — Q has size k x k,
and the k eigenvalues of the R matrix, A;(j), i =1,...,k are
parametrized by ;.

more general matrices that relate the braiding matrices
(R;’s) in the multistrand braids. Note that the matrix U that
makes the rotation of Ry to R, is still the same and is
determined by the Yang-Baxter equation (1). The rotation
to Ry = UW,UR,U'W]U" involves also the W, matrix
besides U, which is determined from the requirement that
R, and R3; commute:

[R1.Rs] = 0. (2)

This property comes, in fact, from the braid-group relations
which R matrices should satisfy. We solved this equation for
W up to matrices of size 6 x 6 and checked that the result
for the Racah matrices obtained this way coincides with the
Racah matrices evaluated by the highest weight method.

With the above discussions for three- and four-strand
braids, we can now formulate the eigenvalue hypothesis for
the generic n-strand braid:

Extended eigenvalue hypothesis. The Racah matrices
defining ‘R, are determined by the Yang-Baxter equa-
tion (1), while the remaining Racah matrices defining
R, i >3 are determined by commuting with all non-
neighbor R matrices [parametrized like Ry in (11)]:

In other words, according to this hypothesis, if one
makes the R; matrix diagonal with all the eigenvalues
different from each other, then all other matrices are
uniquely defined. Therefore, they provide some particular
representation of the braid group.

The paper is organized as follows. In Sec. II, we discuss
general properties of R matrices involved in the Reshetikhin-
Turaev approach. In Sec. III, we outline the basics of
eigenvalue hypothesis with Sec. III B presenting old results
from [28] for the three-strand case, and Sec. III C presenting
new results for the four-strand eigenvalue hypothesis. In
Sec. IV, we explain the highest weight method, which allows
us to evaluate the Racah matrices. In particular, we indicate
the calculation of U in the three-strand braid for a specific
representation. These matrix elements agree with those of the
eigenvalue hypothesis in Sec. III up to the =+ sign. We have
presented U and W for R = [1] in Sec. V A few of the unitary
matrices for R = [2] are given in Sec. V B. Summary and
open questions are posed in the concluding Sec. VI. In
Appendix A, we have placed the remaining U and W, for
k x k where k > 3 for representation R = [2]. Appendix B
contains [2]-colored HOMFLY-PT for a few arborescent
knots and all nonarborescent knots up to 10-crossings
obtained from four-strand braids. We will update these
polynomials in our web site [34].

II. R MATRICES

One of the most useful approaches to calculate knot
polynomials and the one relevant to the subject of the paper
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is the so-called Reshetikhin-Turaev (RT) approach [19,
21-25,35,36]. This approach deals with the braid repre-
sentation of the knot. Each crossing in the braid corre-
sponds to a particular R matrix. Then the knot polynomial
is presented as a character expansion

HE = )" 55C,. (3)
Q|_y®m

where the sum is over all irreducible representations in the
product or representations corresponding to individual
components, m is the number of strands, Y is the repre-
sentation on each strand (in this paper, we consider only
knots, but most of the formulas in this section can be
extended also to links), Cy, is the trace of the product of all
R matrices along the braid in the linear space of all
intertwining operators Y®" — Q, and Sy is the quantum
dimension of the representation Q.

Let us denote through R; the R matrix corresponding to
the crossing between the ith and (i + 1)th braid. This
matrix is defined by the following three properties:

(i) The property of any R;, its characteristic equationz:

[I(R:=4)=o0. 4)
J
(ii) The Yang-Baxter equation, which, in the case of a
braid, has the following form:

RiRi1Ri = RitiRiRiy - (5)
(iii) The commutativity of non-neighbor R matrices:

A. Racah matrices

Since all ‘R matrices in the braid have the same sets of
eigenvalues they are related by rotation matrices which are,
in fact, the inclusive Racah matrices. These inclusive Racah
matrices possess a very special structure.

Let us choose R to be diagonal. R, can be associated
with the following way of putting parentheses in the
product of representations: (...(Y®Y)®Y)® ..Y).
Then, R, would correspond to the other way: (...(Y ®
(Y ®Y)) ® ..Y). The rotation from one way to another can
be described by the following trees of representations:

Y Y Y Y Y Y Y Y
Q/'-. Ql-.'
Q Q
(7)
ul, are elements of the matrix U corresponding to the
Racah coefficient [} [, f]. R, is then defined as
R, = UR,U". (8)

If one studies three-strand braids then Q' = Q. However,
for larger number of strands, they are not equal. Thus, from
the form of this inclusive Racah matrix it is obvious that
only the elements of the matrix corresponding to the same
Q' are nonzero. Hence, such U has a block diagonal form
with different blocks corresponding to different Q’.

The third matrix, R3 corresponds to the following product of representations: (...(Y®(Y®(Y®Y)))®..Y).
Thus, the transition from R; to R5 should be made through the chain of trees

Yy vy v v vy Yy Y Y Y Y Y Y Y Y Y Y Y Y Y Y
‘. — T, — T — 4 ©)
Q"/ Y 2@"/ v Q"/ Y Q"/
Q Q Q Q

*Since the braid R matrix acting on Y ® Y commutes with the coproduct [37], it is diagonal in the basis of irreps Q € Y ® Y. Its

eigenvalues are all expressed through the basic quantity

%o =1/2> 0i(Q; +1-2i)

associated with the Young diagram Q with lines Q; > Q,... > 0. Hereafter, we don’t differ between the representation Q and the Young
diagram that describes Q. The eigenvalues then are given by the formula

AQ = ngKQ
where the sign factors ¢y = +1 depend on whether Q lies in the symmetric (+1) or antisymmetric (—1) square of Y; see [23,27].
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The first and the last matrices are actually the same
matrices as appeared above. But for relating Ry with R a
new matrix W, is needed. This matrix corresponds to the

Racah coefficient [} 3, 17]. R4 is then defined as
2

Ry = UW ,URU'WIU". (10)

Again, similarly to the case of U, the only nonzero
elements of matrix W, correspond to the coinciding 7'; and
coinciding Q'. This leads to a very interesting property of
the matrix W,. Since the eigenvalues of the diagonal R
matrix are defined by the representation 7';, W; commutes
with the diagonal R matrix.

Similarly, this structure can be continued to further R
matrices, e.g., for Ry:

Ry = UW, UW,UW, UR UIWIUWIUTWIUT.  (11)

W, then again possesses a block structure. This block
structure can be described by paths from the initial
representation Y to the final representation Q [21]. This
is a generalization of the statements made about the block
structure of matrices U and W;. If one defines the
representation Q as coming from the following sequence
of representations

YT, ->T,>T;—>...—Q, (12)

then the matrix W; has nonzero elements only for
the final representations Q corresponding to the same
T,,Ty,.T;,T;,5,... This allows one to define the block
structure of any Racah matrix W,.

Let us discuss some particular example of this path and
block structure, e.g., [2]®* = [5,3]. This is a four-strand
case; thus, only the Racah matrices U and W, appear. The
multiplicity of representation [5,3] is equal to 6 which
means 6 possible paths:

L [2] > [4] = [5.1] > [5.3]

2.[2] >[4 - [42] =53]

3.12) = [3.1] = [5.1] = [5.3]

4.2 - [3.1] - [4.2] - [5.3]

5.12] = [3.1] = [3.3] = [5.3]

6. [2] = [2.2] - [4.2] - [5.3] (13)

The matrix U then has three blocks. The first one mixes
paths 1 and 3, the second one mixes paths 2, 4 and 6 and the
third one corresponds only to path 5. Then the matrix W,
also has three blocks. The first one mixes paths 1 and 2, the
second one mixes paths 3, 4 and 5 and the third one
corresponds to path 6.

II1. EIGENVALUE HYPOTHESIS

In this section, we discuss how the properties of R
matrices define their form and how the eigenvalue hypoth-
esis appear from these properties.

A. Two-strand case

In the two-strand case, there exists only one R matrix
and only one property of the three discussed is important,
namely, the characteristic equation (4). This property
defines eigenvalues of the 'R matrix. In fact, this property
is essentially two-strand. This means that even if we study
larger number of strands it does not give any further
information and includes only one R matrix acting on
two adjacent strands.

B. Three-strand case

In the three-strand case, there are two R matrices, R
and R,, related by one Racah matrix U:

RZZ UR]UT (14)

As already explained in the previous subsection, (4) does
not give any new information about these R matrices and
only describes that they have the same eigenvalues.
However, the Yang-Baxter equation (5) is of great impor-
tance here. In terms of the Racah matrix U this equation
looks like

RWURUR, = URJU R UR,U". (15)

Incorporating unitarity of U (UU' = 1) into the above
equation one comes to the eigenvalue hypothesis. For the
matrices of the size up to 6 x 6, there is a unique solution
for matrix U if the R matrix is chosen to be diagonal.
Strictly speaking, there are several solutions differing by
inessential sign changes, and, at some special values of the
eigenvalues, more solutions can also emerge. For 2 x 2
matrices the unique solution to (15) in the case of two
generic eigenvalues looks like:

N N )
=i =1 1
U= T T , forR, = < )
N e A
A=A A=A

(16)

Similar answers can be found for matrices of larger sizes.

As characteristic equation was essentially a two-strand
property, the Yang-Baxter equation is a three-strand prop-
erty and does not give anything new for larger number of
strands. This is explained in detail for the four-strand braid
in the next subsection.
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C. Four-strand case

For the four-strand situation, there are three R matrices
and two inclusive Racah matrices, U and W,. Here, the
most important is the third property (6).

Suppose all the eigenvalues of R matrices are different,
then the only solution to (6) is to have R; = R5 and R, is
defined from the first three strands as discussed in
Sec. III B.

If some eigenvalues coincide the situation is more
interesting. According to Sec. II A, both U and W, have
the block-diagonal form. Also W; commutes with R ;. If
R, is diagonal, then

R, = UR,U", Ry = UW, URU'WIUT, (17)
on the other hand, if one diagonalizes R, =R, then
Ry = W UR,U'W!, and W, commutes with R. Then,
the Yang-Baxter equation on R, and R; looks like

R(W\URU'WR = (W,URU'W))R(W,URUWT).
(18)

Since W, commutes with R, this equation transforms into

RURU'R = URU"RURU", (19)
which is automatically satisfied because of the con-
struction in Sec. III B and does not include W,. Thus,
W, cannot be found from the Yang-Baxter equation,
and one needs another equation for the Racah coeffi-
cients to find W;. This equation comes from the third

property (6):

ey

@)

3

If the matrix is of size 2 x 2, or if the matrix U mixes
all the eigenvalues, then the only solution for the
matrix W is identity matrix.

If the matrix is of size 3 x 3, and the diagonal matrix
‘R looks like

A
(21)

then

\ A

=y

N
Ai—h

N A=A Ao +13

A=Ay

_ V=

=y

(22)

and

N/ 423 (A=)

B 12

Lk
B0, 12

N/ A3423 (A =2a)

PBA I A2

W, = Mo (23)

B+

1

If the diagonal R matrix has a different order of
eigenvalues or the paths go differently, mixing the
first and the last eigenvalues, this leads to permu-
tations of rows and columns in the U and W,
matrices, but the same formulas still work.

For the matrix of the size 6 x 6 appearing in the
product of four representations [2], the situation is
like this. The initial diagonal matrix is of the form
R = diag(4;, 41,49, 41,4,43) and the U matrix

UWIURU*W'[UTR = RUW, URUTW'I"UT (20) consists of three blocks of sizes 1 x 1, 2 x 2 and
3 x 3. Then the matrix elements from the eigenvalue
hypothesis are

1
AN N/
= =
\/A%—ilﬂﬁvl% \/—/1|/12
A=y T A
U = 2 (Aa+13) V(B +043)(B+143) (B 4-ad3)(B4212) (24)

(Ai=43)(A1—42) (11—12)\/(11—/13)(33—12> (/11—13)\/(/11—/12)(/12—/13)
(A +42k3) (23 +4143) b (25 7a) (Bt Ar )

(=2 =13) (23 —1a)

(1=12)(2~43) (/12—/13)\/—(/11—/12)(/11—/13)

V(B 3) (B+14s)

\/(45‘*'11/13)(1%‘*%112) J3(A+10)

Then from (20), one can find how the matrix W, looks:
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Ag  Dg
D¢ Bg
A3 (A +4)
W, — Ay I
Es Fg
(4-13)(1-4)
B+iidy

where

A — B (2 + 23) .
T Bt k)= Md + B)

~ As(A +Ap) (Ao + A3)

Eg
Fg
A=) (45-4)
FEEwIS (25)
Cs ’
_ Aith)
PR

(A3 = 232y = 1223 — lambda, 23 + 1,23 — 11 0d3)

B¢ =

(43 +hd) (4] = 4idy + 43) ,

T (B4 dky) B+ ddy) TR+ 23

M=y A+ A3) (= ) (4 — A3hs).
B+ Jois

E(,:

(B34 MA) (3 = Mdp + 23)

(4) For larger sizes of matrices, the blocks of size 4 x 4
appear, and it is rather tedious to find the answers in
this case.

The results of this section have been confirmed from the
highest weight method (reviewed in Sec. IV) for some
representations which are presented in Sec. V and
Appendix A.

IV. HIGHEST WEIGHT METHOD

In this section, we formally present the highest weight
method for any m-strand braid carrying an arbitrary
representation Y of the quantum group SU,(N).

This method is a systematic procedure which allows one
to construct a highest weight vector state. It is based on the
manifest action of lowering 7’ and raising operators T; on
representations of SU,(N) [21]:

Tl_Vl - V[—l; T?Vi—l - Vi'

1
HViy==5Vii.

1
HiV[:+_V[; 2

27

5 1)
where V; is an ith vector of the fundamental representation,
and T, T; and ¢ are generators of SU,,(N). To generalize
this action to higher rank tensors, one has to define a
comultiplication A on SU,(N):

s 6 —

1 (A = 20) (Ao + 23) (43 + AA43) (4] — A343).
(47 + Aod3) (43 + 4idy) ’
_ /11 - /13 2‘1/12</11 + /13)(&2 + 13)(/1% + lambda1/13)
B+ 4, (A3 + A243) (22 — 2,lambda, + A3)
(26)
AT =TQ T/ +Tf ® ¢
AT =g QT +T; QL (28)

This extends the action of 77 to tensors of any rank.

We indicate the highest weight vector for a representa-

tion R labeled by Young diagram [4,4,,43...4)] as a

sum of V(O,O,O 1,1, 1 1dots) and their permutations.
~——"

i I
For example, the highest weight state for R = [1, 1] will
involve V(; and V. One can construct all the highest
weight vectors of the representation by using the
lowering and raising operators 757 and the comultipli-
cation rule.

We would like to validate the results of inclusive Racah
matrices obtained from the eigenvalue hypothesis using the
highest weight approach. For definiteness, we take repre-
sentation R = [2] and construct the highest weight states for
m=3 and m =4 strand braids in the following
subsections.

A. Evaluation of vector states for m=3

Our goal is to evaluate the U matrix corresponding to
all irreducible representations in the fusion channel of
[2]®3 for the m = 3 strand braid shown in Eq. (29). One
can easily see the two possible fusion trees which give
two sets of irreducible representations Q in the final

126015-6
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channel which are related by a unitary matrix, its size
being determined by the multiplicity indicated by the
red color:

(2] 2] [2] (2] 2] [2]
: ¥
Q Ug Q

{2 e 2)r @ 2} {2le (22D}

(29)

Here, Qe{[2,2,2],6,0],[3,3],[4,1,1],2[5,1],2[3,2,1],
3[4,2]} and T, T" € {[4],[2,2],[3,1]}.

For example, the order of matrix U5y is 2 X2 and
Ui is 3 x 3. The highest weight vector Hy for T €

[2]®% can be determined by applying the raising operator
AT} on product Vo ® V. Clearly, Hyy = V0. We
will now elaborate the steps involved for Hps,; for
clarity:

Hpz=a{Voo® (A(T])Voo)} +B{(A(TT)Vo0) ® Voo}

=a{Vo001+9V0010} +BVo100+taV1000}
(30)

To find @ and f, one should impose the highest weight
vector condition A(T7)H[z; = 0, which implies

af (g7 +a7")WVoooot +B{(a+a")Vooo0} =0, (31)

giving @ = —g*2,# = 1. Hence, the explicit highest
vector state is

Hp = =4*Vo001 =4 Vo010 + Vor00 + V1000
(32)

By a similar procedure, one can obtain the highest
weight vector for Hpp

Hpp = —=qV001.1 — @*Vooi1+ Voior+aVor10
+qVi001+a*Vi010— 9 Vii00—49V1100-
(33)

Using the result of the highest weight vectors of the
m = 2 strand, we can move to the m = 3 strand braid
and do the explicit calculation of the elements of U,

matrices and construct the inclusive Racah matrices for
those representations by following the same steps as
above. For the sake of definiteness, we focus on one of
the representations, i.e., [5,1], for the m = 3 strands
which has multiplicity of 2 [see (29)]. The representation
[5,11 comes from two sectors, the left sector (L),
corresponding to [2] ® [4] and [2] ® [3, 1], and the right
sector (R), corresponding to [4] ® [2] and [3,1] ® [2]. On
representation Q, we place a subscript to keep track of
the multiplicity and a superscript to denote the left or
right sector. Corresponding to the highest weight vectors
of the representation [5,1] in each sector is a subscript
label 1 and 2 and the unitary matrix for [5,1]. Therefore,
to find the U matrix for the representation [5,1], one has
to solve the following equations:

Hisyr € ([4)) ® 2] = a((2] ® [4)) +4(12] ® 3. 1])
Right sector
Hisyp e (3.1) ® 2] = y(2] ® B1]) +6(12) ® 3. 1]),

Right sector

Left sector

Left sector

(34)

Now, it remains to present the explicit calculations to
determine the unknown parameters a, f, y, 6: Right
sector:

5.1]f € 4] ® [2]
His jx = Br{Vo000 ® (AT Vip)}
+ ar{(AT{ Vo000) ® Voo}
= ag{V00.0.1.00 T ¢Y00.1.000 + q2V0.1,0.0,0,0

+ @*V100000} + PriVo00001 + 4000010}

To find the value of ap and pg, we apply the highest
weight condition:

A(TT)Hsr =0
= ax{(¢ +q7"+q+7)Vooo0000}
+ Br{(d™> +47)V000000} =0

P =t 09
A,

= ag=—q*

Hence, the final form for the highest weight vector is
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1 2]
Hisr = Nx {—q“‘ ﬁ {V0.00.1.00 + 4001000 + @ V0.10000 + @ V1.00000} + {V0.00001 + 7V000010} -

q

where the normalization constant is equal to

Left sector:

5.1]f € 2] ® [4]

LS}

=g [6], 147 (36)

=
_

His e = ar{Voo ® (AT{ Vo00)} + AL{(AT{ Vo) ® Voooo}
= a,{V00000.1 + 2V000010 + 4*V000.1.00 + @ V001.000} +Br{Vo.10000+ 2100000}

A(TI_)H[S,I]]L =0

= a{(g°+q7+ a7 +9)Vooo000} +Ar{la™ +a)Voo0000} =0

2
$0L2—42%7 pr =1

Hence, the final form for the highest weight vector is

Hisap = 4],

where the normalization constant is equal to

-q7*[6], ﬁ- (38)

Similarly, one can construct the highest weight vectors
Hisyx and Hjs ;. which come from representation [3,1].

Hence a, f, v, and 6 for the matrix Us ) are equal to:

Ups. His e His e
H _ 1+ +4°
s =t p= LK
H i, 3 o 2
it 7=~ s= it

Similarly, one can obtain the U matrices for all the
representations in m = 3 case. Interestingly, the magnitude
of all the elements coincide with the result obtained from
the eigenvalue hypothesis in Eqgs. (16) and (22). In the
following section, we aim to compare the inclusive Racah
matrices with the matrices given in Sec. III for the m =4
strands.

B. Evaluation of the U and W matrix for m=4

The detailed procedure which we discussed for deter-
mining the U matrices for three-strand braids can be

1 2]
N, {—q2 —2{V00001 + dV0000.1.0 + 4* V000100 + ¢ Voo.1000} + {Vo10000+ aV100000} ¢»  (37)

[

extended to four-strand braids. Here, we need to consider
QF[2]®*. The possible representations Q with their mul-
tiplicities are tabulated below:

m = 4 strand braid

Matrix  # of
Q size matrices
[2,2,2,2], [5,1,1,1], [8,0] 1 3
[3,3,1,1] 2 1
[3,2,2,1], [3,3.,2], [4,2,1,1], [4,4], [6,1,1], [7,1] 3 6
[4,2,2], [5,3], [6,2] 6 3
[4,3,1] 7 1
[5,2,1] 8 1

From (9), we observe that the matrix UW,U relates
the right sector highest weight vector with the correspond-
ing left sector highest weight vector. We present the
calculations for representation [6,2] (see Fig. 1). Let us
emphasize that the subsector states involving three-strands
belong to different sectors. In order to obtain U and Wy,
we need to determine the matrix UW; as well. In fact, the
matrix UW, relates the two highest weight vectors of
different sectors, but both their subsectors are either left or
right sector. We have highlighted them for representation
[6,2] in Fig. 1.

It is clear from Fig. 1 that there are six independent paths
to obtain representation [6,2]. Therefore, both UW U and
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[2]®[2]
/ v\ o strand 2o
[4,0] 3,21 [2,2]
l m=3 strand [2]®3
Ug : {2l (21® [2])'1*}(% = {(2]®2)r ® [2]}g

A 4.2]

m=4 strand [2]®4

UW)q : {21 ® (2 @ (21 ® 2)1)§)}6 — {([@ © 2D ® 2§ @ [21)}§

6 [6,2]

FIG. 1.

UW, matrices will be of the size 6 x 6. Following the
highest weight method procedure, one can work out the six
right sector highest weight vectors [6, 2]® and similarly the
six left sector highest weight vectors [6, 2]5 whose sub-
sectors are different. Hence, one can determine the 36
matrix elements of UW U by taking inner product of the
left and right sector states.

One could again work out six highest weight states for
left and right sectors but with both subsectors being the
same. The inner product of such states will give the
elements of the UW; matrix. We present the U and W,
whose matrix sizes are less than 6 x 6 in the following
section. Other matrices of the sizes n x n for n > 6 are
presented in Appendix A.

q
RBIA — q ,
_q_l
Then, the U matrices are equal to

1

Bl

U[3'1] - [71] \[/T? )
RVAC/ R
B 2l

and the W matrices are equal to

UW)q {2 e (2@ 2)r ® [2)§ 16 — {([21® 2)r ® [2)G ® 2D}

Steps for UW, U unitary matrices computation for m = 4 strands.

V. EXAMPLES

For clarity, we will first review and give the matrices for
the simplest case when the strands carry fundamental
representation R = [1]. Then, the case R = [2] will be
presented.

A. Representation [1]

In this case, [1]®* = [4] + 3[3,1] +2[2,2] + 3[2, 1, 1]+
[1,1,1,1]. Thus, there are two matrices of size 1 x 1, one
matrix of size 2 x 2, and two matrices of size 3 x 3. The
eigenvalues of R matrices are in this case 1; =g,
J, = —q~'. The only nontrivial case here is matrices of
size 3 x 3. The 'R matrices are equal to

q
REMT = —q~! : (39)
_q_l
1 3]
2 2
U[2,1.1] _ @ 1 , (40)
2 2]
1
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ERRVAEL 1
B 0
| 210
witl =1 vem R Bl I (41)
R R PE
1 g g

which is in full accordance with formulas (22) and (23) from Sec. III B.

B. Representation [2]
The representations Q for the four-strand braid carrying representation R = [2] are

[2]®* = [8] +3[7,1] + 6[6,2] + 3[6,1,1] + 6[5,3] + 8[5,2, 1] + [5,1,1,1] + 3[4,4] + 74,3, 1]

+6[4,2,2] +34,2,1,1] + 3[3,3,2] + 2[3,3,1,1] + 3[3,2,2, 1] + [2,2,2,2]. (42)
Thus, there are five 3 x 3 matrices, three 6 x 6 matrices, one 7 X 7, and one 8 x 8 matrices. The eigenvalues in this case are
A = q° A, = —g?%, and A; = 1. For the size 3 x 3, the matrices are:
4° ° q°
R[7’1] — q6 , R[G.l,l] _ _q2 , R[4.4] _ _q2 ,
-7 -q’ .,
R4 — RB32 — _g ’ RIB221] 1 , RE3LY = ( 1 ) (43)
1
1 1
Then, the U matrices are equal to
_p PVE _VE
1 % [[2]] [6] BIE [414/73] B3l
7 7
2] [2](6] 2)v/15]
il — T 1 .oyl — .Uk [ _ o
[4] 4] [[j]][ﬁ] _% 4/ Bl /B
[2][6] 2]
CRG 1 VB
] NS
_1 VB 1 &
2 2 3 1 vl
B2 @ CpBRL B3 = ﬁ % . UBLI— LI ’ (44)
IR B3]
oo 1 \/T[]?] i [_\g -4
while the corresponding W, matrices are equal to
2] [4][8] 1 |
(6] (6]
[ vt
W[17,1] _ @ p ’ W[]6,1,1] _ i 0 ’ W[l4.4] _ 1 ’
g g WE p 1
1 T [6]
1 1 [2][4]
Bl B3]
1 2][4] 1 0
whaail _ -5 e | we_wssa | e B < ) (45)
o R 0
B Bl 1

which is in a full accordance with formulas (22) and (23) from Sec. III B.
Matrices having larger sizes are provided in Appendix A.
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VI. CONCLUSION

In the present paper, we managed to present the gener-
alization of the eigenvalue hypothesis suggested in [28] for
three-strands to a multistrand case. We claim that, while the
three-strand eigenvalue hypothesis comes from the Yang-
Baxter equation, its generalization is based on solving the
commutativity relations of non-neighboring R matrices. In
particular, in the case of the four-strand braid, there is one
commutativity relation. Solving it provided us with the
eigenvalue answers for the four-strand Racah matrices of
sizes up to 6 x 6. Calculating matrices of the larger sizes
encountered some computation difficulties, and, thus, they
have not been found yet. However, all the eigenvalue
formulas for the Racah matrices up to size 6 x 6 have been
checked by calculating the matrices for representations [1]
and [2] using the highest weight method. The problem of
finding the answers for matrices of larger sizes still remains.

Thus, the eigenvalue hypothesis for the particular exam-
ple of the four-strand braids as well as the highest weight
method allowed us to provide all the Racah matrices for the
four-strand braids carrying representation [2]. This enabled
us to obtain the HOMFLY-PT polynomials for knots from
four-strand braids. Moreover, one can check the obtained
results for the Racah matrices comparing known HOMFLY-
PT polynomials in representation [2] for various knots with
those evaluated using the results of the present paper. We
confirmed these results by comparing with correct answers
for the HOMFLY-PT polynomials for: torus knots [38], twist
knots 6; and 7, [9,39], and many arborescent knots that have
four-strand braid representation [7,15].

In Appendix B, we list a few nontrivial examples of
HOMEFLY-PT polynomials in the first symmetric represen-
tation that are so far unknown: knots in accordance with the
Rolfsen table [40] which are nonarborescent and are
described by four-strand braids: 934, 949, 947, 949 10102,
10403, 10105, 10111, 10113, 10114, 10417, 10419, 10121, 1012;,
1056, 10158, 10160, 10162—1016s.

The eigenvalue hypothesis in the multistrand case was
already related in [32] to the well-established property [14]
Alg(q) = Al (q'R1) of the Alexander polynomials colored
by the single-hook diagrams, which provided an indirect
support for it. In this text, we found direct evidence in favor
of this hypothesis and concrete formulas for its realization
in the case of R matrices of small sizes. Extension to
matrices of arbitrary size for any number of strands
including three remains a challenging problem.
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APPENDIX A: REPRESENTATION [2] MATRICES

In this appendix, all the Racah matrices of sizes larger than 3 x 3 for the four-strand braid in the first symmetric representation
are provided. The matrices of the size 6 x 6 are in full accordance with formulas (24) and (25) from Sec. III B.

The diagonal R matrices look like

R[4,3,1] _ _qz , R[S,Z,l] _

(A1)
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The U matrices are equal to

yh22 —

U3l =

U3l =

10
_Q
0 a
Ble
0 -"g
0 0
0 0
0 0
10
1
0 -g
g
0 —mr
0 0
0 0
0 0
10
_a
0 -7
2
0 g
0 0
0
0 0
ieR
Sl
21
ENEE
NE
g
0
0
0
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0 0
26
al 0
2)
— m 0
el
O o
2 /B
0 &
VB
O
0 0
VB
0
_ [;_] 0
1
0 g
0 _1
NG
VBl
0 =
0 0
216
@ 0
2]
—_ m 0
(g
0 A
_n
0 A
0 1
2)[s) RSl
pls) B
[ _ 1
3](4] B3]
. 1
B3] B3]
0 0
0 0
0 0
0 0

0 0
0 0
0 0
o E Ve,
[4] 'V 3] 3]
| () O
(314l 3]
1 1
B3] B3
0 0
0 0
0 0
_ Ve
3] B3]
_ 6 [ /Bl
3][4] 41\ 3]
_ /s 2L
[4V 3 (3][4]
0
0 0
0 0
| i) R B N
AVE TR
Bl 2 VBl
(3] 3][4] 3]
VI 1
(3] 3]
0 0 0 0
0 0O 0 O
0 0 0 0
| 3 ’
g o 00
(3] 1
o "m0
0 0 1
0 0 0
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1 0 0 0 0 0 0 0
RYA]
0 & Y 0 0 0 0 0
] I
0 E F o0 0 0 0 0
B 2]l
o 0o o § i 0 0 0
yb21l = 2]6] 2]
0o o o Yz3© -H# 0 0 0
R VB
00 0 0 0 Fgw B TG/
\/ﬁ 1 1
0 0 0 0 0 V2 4 el
R 6
0 00 0 NN T 3] 13]14]
The W, matrices are equal to
2/
2l B 3107
56 T 0 g 0 0
24/ )
jei _2 /B
o a0 —@myE 00
[6.2] _ 2 2lie]
Wi 0 0 -4 0 -Y3~ol
BTl 21 /B3] 2]
5 ave Y @ 00
2]l 2]
0 0 i 0 £ oo
0 0 0 0 0 1
2 [ 0 PGP
W e ]
2] —14[51+[7) _ /6
~—s 0 “EvEm 0 0
B/
[4.2.2]
w2 _ el . |,
I 0 0 - 0 Y20
26 /6 2]
@ EvE 0 @y O O
i |
0 Y 0 Lo
0 0 0 0 1
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1 1
VBl pL 2 /B8l
B E O @ym 0 0
2] 2][6]
whi—| 0 I U
__1 [2 /Bl 6]
Jm mave % @m0 0
2][6] 2]
0 -V 0 E
0 0 0 -l
8 _ VA _v
Al oo 0 0 g 0 0
2 _p 277
[3][6] BIB) 0 0 B 0 0
2 _ /B
0 0 2 0 0 0 g
| VEE
w2l _ 0 0 0 @] 0 [4] 0
s2.1] _
Vi 2 L
1ch 6 0 0 a0 0
BI5] |
0 0 o VB 0 -4 0
/B T
0 : 0 0 0 2
d U g Ve 0 0
2l /] NG
10 0 0 0 0 0
[6] [4\/[4][6] [4] [
O mem O e © TuEE aven
e
0 0 -4 0 : 0 0
ONGEIE 25 o ff
wean_ | O eEs 0w 0 TTEr Tow
43.1] _
A6
0 0 b 0 b 0 0
4 o | 4
0 21v/BI) 0 -7 0 e 213
4 it 4
4 _ 3][5 i _ 1
O avom  ° O - ) g

APPENDIX B: POLYNOMIAL EXAMPLES

In this appendix, four-strand HOMFLY polynomials in representation [2] are listed. We calculated these polynomials
using the matrices from Appendix A and present them in the matrix form suggested in [4]. The matrix describes the
coefficients of a polynomial in A% and ¢ as
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q10A16<? ;) =q10A16+2q12A16+3q10A18 —|—4q12A18.

HOMFLY polynomials for knots 6; and 7, are already known since those are arborescent knots, and the answers
calculated using four-strand representations coincide with those. All other polynomials presented here were unknown
before since those are nonarborescent knots. Their limit for A = ¢, colored Jones polynomials, are known and are correct.
Other limits (Alexander A = 1 and special ¢ = 1 polynomials) are known because their dependence on the representation is
quite simple [8,41]:

Ay(g)=Hy(A=1.9). Ay(q)=P;(¢!"), V-—hookdiagram oy (A)=Hy(A.q=1), oy(A)=(op(A)". (BI)

These limits of the polynomials below are also correct.

1
6
[21]:W01—1—232—201
1 =1 -1 2 1 -1 0 0 0
-1 -1 1 0 -1 0 0 0 O
0
0
0O 0 0 0 -1 0 2 0 -1
0 0 1 =2 =2 4 0 =3 0
72:L01—1—232—201
[Z]qIOAS
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o o0 O 0 o0 1 -3 0O 10 -10 -9 21 -3 -14 8 2-3 1 0
0 0 -1 2 3-12 3 28 =31 -24 55 -6 -41 21 11 -12 1 2 -1
1 =3 2 9 =21 0 50 —44 —44 84 -3 —-65 34 18 =22 5 4 -3 1

1
Ii%f:>7§4§ -2 3 7 =20 1 47 =38 =46 74 5 -62 26 19 -20 2 4-2 0 O
q°A

1 2-11 2 28 -25-29 48 3-37 16 10 -9 1 1 0 0 0 O

0-2 2 8-10 -9 18 0-13 5 3 -2 0 O O O O O O

o o0o0 o o o o0 -2 2 8-10-10 19 1-15 5 4-2 0

0 0 0 O 1 2-12 3 33 =31 =33 59 1 -45 21 12 -11 0O 1

H?;f:% 0 0-2 4 7-25 2 57-46-56 86 4 -72 33 22-25 3 6 -2

1 -4 3 13-28 -4 66-39 —62 87 10 -72 36 21 -28 7 4 -4 1

—1 3 4-17 -1 37-25-41 50 7-46 19 14-15 2 3 -1 0 0

0 1-4 0 14-10-13 22 0-15 10 2 -4 1 0 0 0 0 0
0000000 O 0 0O 0O0OO0T1O0O0O00O
0000000 0O 0-1 1 0-311-2-1 00
00000 1-1-1 3 1-4 23-1120020
H‘[’;fzim 0 0-1 1 2-4-2 8 0-10 6 6-7 1 1-3 1 0-I

_Q

l1-2 0 5-6-612 0-15 7 7-10 3 2-5 4 1-2 1

-1 1 4-4-4 9 1-10 4 6-6 2 2-4 2 1-1 0 0

0o 1-2-2 404 3 3 -3 2 0-21 00 0 0 O
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A
9
Hpy ==

oo0o0o0 o0 o0 o0 1-2 0 5-6 -2 10 -5 -5 6 0-2 10

o o000 -1 2 1 -8 7 8-21 6 22-20 -9 18 -2 -8 3 1-1

o0 0-2 4 2-14 15 12 -39 16 39 -41 -13 37 -9 -1510 1 -3 1

H[IZ?‘“Z:W 1-1-3 8 -1 -19 25 12 -54 24 50 -53 —-14 44 -11 -16 11 1 -3 1 O
0-2 4 0-15 18 15 -48 13 51 43 -19 38 -7-15 9 1-3 1 0 O
-1 2 1-8 8 10-24 3 27 -18-12 17 -1 -7 3 1 -1 0 0 0 O
o1-20 5 -5-3 9 -3 -5 5 0-2 1T 0 0 0UO0O0O0O0
oo0oo0o0 o0 0O o0 1-2 1 4-6 0 8-6 -3 6-1-21120
oo0o00-1 1 2 -8 3 12-20 -2 27-17-17 20 2-11 2 2 -1
0o 0 1-3 2 8-17 5 31-4 -6 61 -31-37 43 7-23 5 6-2 0
HEZ?““:ﬁ 0 1-3 2 9-19 5 37-46-17 73 -28 =52 46 14-29 4 9-4-1 1

1-3 2 7-17 4 30-38-16 59 -21-41 33 8-19 3 4 -2 0 0 O

-1 1 2-7 3 13-19 -6 29-11-19 17 4 -9 2 2 -1 0 0 0 O

o1-21 4 -7 1 9-7-3 6-1-2 1 0 0 0 0O0O0O0
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o o000 0 o0 1 -2-1 5-2-5 5 1-430-21120
0 0 0 0-1 1 4 -6 -6 14 3-19 5 14-11-1 6-5 1 2-1
o 0 1-3 0 11 -9-17 25 12 -3 5 27-17 =511 -7 0 3-2 0
H[lz(}loszqzolﬁt o 1-3-112 -7-21 23 17-36 1 29-17 -7 15-8-3 7-2-1 1

1-3-111-7-17 21 10-28 6 19-15 O 10 -8 0 4-2 0 0 O

-1 1 5-5-7 13 3-16 6 10 -11 1 6 -6 0 2-1 0 0 0 O

o 1-2-25 -1 -6 5 2 -5 3 1 -2 1 0UO0UO0O0O00O0

o o0o0o0 0O o0 o0 1 -2-1 6 -1 -7 5 3 -5 2 1-21120
o o0 o0 0 -1 2 3-11 -3 22 -8-26 20 10-21 6 6-7 2 1-1
0 0 0-3 5 10-22 -9 49 —-12 =51 45 22 -43 16 16 -16 4 4 -3 1

A4
Hy"==5 1 0-6 7 17 -29 -17 59 —11 —65 47 25 -55 15 20 -24 4 6-5 1 0

q

0-5 3 15-22-18 46 -5-52 36 22 -42 14 18-19 5 5-4 1 0 O

-1 2 5-9 -5 21 -4-22 19 9-20 7 8 -8 1 2 -1 0 O O O

o 1-2-1 6 3 6 8 0 -6 4 1 -2 1 0 0 0 O0O0O0O0

o000 O o o o0 1 -4 1 13-15 -10 27 -6-17 12 2-4 1 0

oo0o0 O0-1 4 2-21 15 38-61-19 83-29-51 40 8-19 3 3 -1

00 0 -4 9 7-4 30 77-108 =32 152 -52 -89 82 11 -41 15 6-5 1

H[IZ?‘”:% 1-1-7 16 7 -62 36 94 -132 —-48 172 -59 -107 92 10-48 17 6-6 1 O

0-310 6-44 23 81 -94 —-49 139-33 -8 71 12-36 12 5 -4 1 0 O

-1 3 2-18 9 36 -41-25 62 —-12-40 28 7-14 3 2 -1 0 0 0 O

o1-3 0 9 8 -8 15 -2 -10 7 1 -3 1 0 O O 0 O0 OO
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oo0o0o o0 o0 o0 o0 1-3 0 9-9-717 -4-11 8 1-3 10
o 00 0 -1 2 4-12 -1 30-22-33 49 6-44 17 16-13 0 3 -1
0 01 -4 2 14-25-10 65-34-71 8 20-83 27 32-26 -1 7-2 0
HE§I]4:q22114§§ 0 1-4 2 16-27-16 72 -29 -86 88 35-92 24 43 -32 -3 13-4-2 1

1-4 2 14 -24-11 60-24-65 70 23 -67 21 26-23 1 6 -2 0 0 O

-1 2 4-12 -2 28-16-32 36 8-35 13 12-12 1 3 -1 0 O O O

601-3 0 9 -8 -715 -3 -9 8 0-3 1 0 0 0 0O0O0O0

000 0 0O 0 O 1 -3 1 7-10 -2 15 -8 -8 9 0-3 1 0
000 0 -1 2 3-13 7 25-38 -9 57-25-37 34 8-17 2 3 -1
0 0 1 —4 4 11-32 12 60—-81 —24 122 —-50 -81 73 18 —40 6 9 -3 0
H[‘gmzﬁ 0 1-5 5 14-40 12 76 —94 —41 150 —46 —108 85 30 =52 7 14 -6 -1 1

1-4 5 11-33 12 64 -79 =37 125 -35-89 64 21 -36 5 7 -3 0 0 O

-1 2 2-14 8 29-43-18 67-19-46 32 11-16 2 3 -1 0 O O O

o 1-3 2 8§-14 -2 21-10-10 10 O -3 1 O O O O O O O

000 O O 0 O 1 -3 010 -9 -11 20 0-14 7 2-3 1 0
oo0oo0 O0-1 3 2 -17 10 36-48 -28 74 —-13-51 29 11-14 2 2 -1
000 -3 8 6-40 22 80-99-52 151 -31-101 70 21-38 9 6-4 1
HY = 1-1-7 15 10-63 29 109 —128 =72 187 —-38 —128 90 24 -52 15 8-6 1 O
0-4 11 10-52 20 99 -101 -73 161 =22 -113 76 22-44 13 6 -5 1 0 O

-1 4 2-23 11 48-52 -39 83-10-59 3 13 -19 3 3 -1 0 0 O O

014 1 13-14-11 25 -4-16 11 2 -4 1 0 0 O 0 0 00
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0oo0oo0 0 o o O 1 -3 o 9 8 -8 15 -2-10 7 1-3 1 0
o 00 0 -1 2 4-13 -2 34-19-42 49 16-48 13 18-13 0 3 -1
O 01 -4 3 15-29-14 78 -32-95 97 40-99 22 42 -27 -3 8-2 O
H[lz(?n:qzzlAs 0 1-5 3 20-34-24 93 -28 —-120 103 59 -118 19 58 -39 -6 16 =5 -2 1

1-5 3 19-32-17 84 -24-95 90 46-90 22 41-30 1 9 -3 0 0 O

-1 3 5-18 -4 42 -21-54 49 19-54 13 19-17 0 4 -1 0 0 O O

0o 1-4 0 14-10-14 22 1 -15 10 2 -4 1 O O O O O O O

1 -2 1 4 -7 4 7 —16 8§ 16 =20 -4 19 -5 -8 6 1 =2 1

10156 __ 1
2" = A
-1 1 1 =5 4 4 -14 6 14 -16 -5 13 -2 -6 2 1 -1 0O O
0 1 -1 1 2 -6 3 7 -8 =2 6 -1 -2 1 O 0 O 0 o
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