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This Review summarizes what is Known at present about
clasaical solutions to Yang-Mills theory both in Euclidean
and Minkowski space. The gquantal meaning of these solutions
is also discussed. Solutions in Euclidean space expose multiple
vacaa and tunnalling of the guantum theory. Those in Minkowski
space-time provide a gemi-clasgical spectrum for a conformal
generator.

The material was presented at various conferences in the
summer and carly fall of 1977, and formed the content of lectures
given at Berlin, Kiev and at the Brookhaven National Laboratory.
We are grateful to I. Biyalinicki-Birula, E. Caianiello,

Jd. Iliopoulos, A. Kamal, H. Kleinert and O. Parasiuk for giving

us the opportunity to discuss this work, and to K. Yoshida, who
provided an early version of the manuscript. Also we acknowledge
with thanks the assistance of M. Ansourian, P. Ore and B. Schechter

in the preparation of our Review.

I INTRODUCTION

The strategy recently evolved for extracting new informa-
tion from a guantum field theory consists first of ignoring the
guantal character of the operator fields, and solving field egua-
tions as non-linear partial differential equations for classical
functions. These solutions are then studied by various semi-
classical approximations methods to yield information about the
quantized theoxy.l -

Classical solutions can be conveniently characterized by
their space-time dependence. Most familiar are time- and space-
independent solutions; these are constants which satisfy the
field equations. The quantum significance of such fields has
been known for some time: when they describe stable configura=-
tions of finite [zero) energy,these constants are approximations
to the vacuum expectation value of the Quantum field and fre-
quently signal spontaneous symmetry breaking.

Attention has been drawn also to time-independent but
space-dependent golutions, such as the kink in one spatial di-
mension ard the monopela in three, These == the solitons —
are stable finite-energy field configurations and their gquantal
significance is known: clasesical goliton solutions signal the
existence,in the quantum theory,0f coherent bound states which
describe heavy particles, the ouantum =olitons. Thre classical
soliton energy is a weak coupling approximation to the quantum
goliton's maes, while the Fourier transform of the classical
soliton field approximates the matrix element of the guantum

field between one-soliton momentum eigenstates.
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Time- and space-dependent solutions are much harder to
come by, simply because the non-linear partial differential
equations are sufficiently complicated to prevent a complete
analysis. A prominent exception is the sine-Gordon theory where
time dependent periodic and scattering multi-soliton solutions
have been obtained. A semi-classical guantization provides
information about the bound states and the S matrix for
quantum solitons. Moreover, the model turng out to be sufficiently
transparent so that a complete quantum-mechanical solution is pos-
sible. The exact results provide a; important check on the ap-
proximate ones: the two agree where expected — for weak
coupling. {In fact the WKB bound state spectrum turns out to
be exact!]} WNo such success has been achieved for realistic
models in three dimensions. However most recently some very
interesting space and time-dependent solutions of the Yang-Mills
equations have been found. Their quantum meaning is now being
explored, and some of our [tentative] ideas regarding them will
be presented in Section IV.

The study of the physics of solitons has exposed several
fascinating effects,which should be briefly recalled. For weak
coupling strength g, there are three scales of interaction
strength. The interactions of the ordinary parxticles of the
theory are weak, O(g); the solitons however interact strongly
c‘n(g-l : the interaction between golitons and ordinary particles

is of intermediate strength, 0(g°). New types of conserved
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quantum numbers have been discovered. These insure the stability
of the guantum soliton, but do not arise from local conserva-
tion laws of the Noether variety; rather they reflect topological
properties of the field configurations. FPurthermore, a startling
phenonenon has been found: conversion of bosons to
fermions, and correspondingly conversion of internal symmetry
degrees of freedom into spin degrees of freedom. Finally,the
coupling of Dirac fermions to the solitons has produced peculiar
zero-energy bound states with profound effects on the theory.
While we have clearly learned that a quantum field theory
gives rise to a much richer variety of phenomena than
previously seen in perturbative Feynman-Dyson expansions, the
fact remains that in theories which are presently intensely
studied as posaible candidates for a fundamental theory of natural
processes —- the Yang-Mills gauce models of strong interactions
or of unified weak and elactromagnetic interactions ~— no soliton
solutions have been found. Indeed there are non-existence
theorems which indicate that something different must be done,
if one wants to apply semi-classical ideas to these models.2
There is yet a further type of classical solution that can
be congidered; a solution not of the originai equations, but
rather of modified equations which are obtained by
raplacing time by imaginary time t=x°*-ix~ [and similarly changing
the time components of all tensors]. What then is the guantal

significance of these Euclidean fields? For an immediate answer
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recall that practical calculations in quantum field theory are
most freguently performed in Buclidean space which is reached
by a Wick rotatjon. Thus one may expect classical Euclidean
fields to contain some information about the guantum theory.
More precisely, one may formulate the guantum theory in Euclidean
space hy a functional integral or by an operator method, compute
various semi-classical amplitudes, and continue back to
Minkowski space. Moreover, there is a more physical reason
for finding Euclidean limaginary~time] solutions. It
is well-known that such classical solutions signal, in the
corresponding guantum theory, the occurrence of tunnelling
— i.e. there is motion which, though classically forbidden, is
allowed guantum mechanically.

Imaginary-time solutions to pure Yang-Mills theory have indeed
been found; in these Lectures we review both the
original example of Belavin, Polyakov, Schwartz and Tuypkin,3
and the later generalizations.The physical import of the original
golution has been now estahlished:; it gives evidence of a rich
n-n-perturbative structure to the guantum theory. The following
description emerges.

For the classical SU(2) Yang-Mills theory in the gauge
Ag=n, a=1,2,3, the classical vacua — that is, the classical zero-
energy configurations — are gauge potentials, which themselves
are pure gauges. The gauge functions g(?) are ctime-independent
2x2 unitary matrices; they need be characterized further to obtain

a complate description of the classical vacuum. An jmportant

5=

gauge function is the constant one, leading to a vanishing gauge
potential. One pneed not congider those g(?) which are singular
functions of I, nor those that do not tend to a constant for
large ¥, since the corresponding gauge potentials are separated
by an infinite energy barrier from the vanishing one and are pre-
sumably irrelevant to the physical sector which includes the
vanishing potential. The remaining gauge functions —- those
that do tend to a constant at spatial infinity — are mappings
from 3-dimensional space [augmented by the point at infinity)] to
the SU(2) group, and as such can be arranged intc homotopically
ineguivalent classes characterized by the integers n=0,%l,... .
Gauge functions belonging to distinct homotopy classes cannot
be continuously deformed into each other.
Pure gauge potentials constructed from the gauge functions can
thus be classified by the integere, n. Gauge potentials within a
class are gauge-deformable one into another by gauge transforma-
tion built from gauge functions of the trivial, claé-é,” =0; these
gauge transformations are called "small” gauge transformations. On the
other hand two gauge potentials which belong to different classes can be
gauge-deformed into each other only by gauge transformations
built from gauge functions of some non-trivial class, n#0; these
are called the "large" gauge transformations.

In the guantum theory, there are distinct states | n>
describing the gauge potential in each characteristic
class n. No physical significance is given to the degrees of
freedom associated with small gauge transformationg. Indeed

conventional gauge fixing procedures in the A:=0 gauge are tanta-
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mount to imposing Gauss's law on the physical states and as a
consequence the states |[n> are invariant under small gauge
transformations. Under the large gauge transformation# , {n>
transforms to |n+1>, and a linear superposition must be taken

to obtain a gauge invariant description for physical processes.
However there is no requirement that the physical states be
invariant under a large gauge transformation; gauge invariance is
still achieved if the action ofq& on a physical state produces
a phase. Therefore the linear superposition must be of the form

Jos=zei"®in> ana ﬂ lo>=e"1%)q5,
n

To complete the description of the quantal low-lying states,
we must ascertain whether the states |0>are degenerate in energy,
or whether tunnelling splits them. It is here that the pseudo-
particle solution becomes relevant. One notes that this solution
interpolates, as its imaginary time parameter passes from - to
=, between a vanishing gauge potential —- one that evidently be-
longs to the n=0 class —— and a gauge potential bhelonging to the
n=1 class. We conclude that in the quantum theory there is tun-
nelling; the energy levels acquire a & dependence and exhibit a
band spectrum.

This Bloch wave picture is dramatically altered when mass-
less fermions are included in the theory. The anomaly of the
axial vector current renders the conserved chiral charge 65
gauge hon-invariant under large gauge transformations. Specifically
one finds 6!4"=6s+2. It is impossible to diagonalize simul-

taneous H,a and 6,. Physical considerations require that energy
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eigenstates diageonalize ‘6; hence they are chirally non-invariant.
Indeed chiral transformations shift 0: since they also commute
with H, the ¢ dependence of energy eigenvalue disappears and
tunnelling is suppressed.

Detailed calculations based on the above physical picture
have been performed and were described by 't Hooft." The origi-~
nal pseudoparticle solution is used in an approximate evaluation
of the Euclidean functional integral, The physical significance
of more general Euclidean solutions has not as yet been es~
tablished; they appear to give insignificant corrections to the
amplitudes described by 't Hooft. Nevertheless, we feel that it
is important to undertake a detailed study of all solutions to
Yang-Mills theory, for geveral reasons. Firstly, it is self-
evident that any information about the theory will be helpful
in establishing its physical content. Let us recall, easpecially,
that computations of the dominant effects are not completely
satisfactory since they suffer from uncontrollable infra-red
divergences which reflect the infra-red instability of the theory.
Secondly, aur analysis of this system has put us in contact with
parallel developments in pure mathematics. That there should be
a conjunction of interests hetween modern mathematics and physics
is truly a gratifying caircumstance, and we are happy to be parti-
cipating in it. The collaborative physical-mathematical efforts

yield a new understanding of the axial-vector-current anomaly



through the Atiyah-Singer index theorem. Also thoy give some
hints that the Yang~Mills equations are considerably simpler than
appear at first, and may even in some sense be linear. Further
understanding of these possibilities shall certainly be sub-

stantial progress towards a solution of the theory.

-G
11 PSEUDOPARTICLE CONFIGURATIONS
We begin these Lectures by a study of solutions to the Yang-
Mills field equations in Euclidean four~space. We shall consider
an SU{2) gauge group and represent the potentials and field
strengths as anti-hermitian matrices in the space of infinitesimal
generators, with the gauge coupling constant e scaled out.

AL M — : -
é A = A,, EL (2.1a)

LA

l )‘U_ uv e uv_ CY. A.G:Au‘
eF 'Fﬁ-{{“b'q sA'rL ] 2.1

o® la=1,2,3) are the Pauli matrices, and summation over repeated
indices is implied.

The Yang-Mills field equations
A v uv -
D= 3 P A, FUl-C s

follow from the reguirement that the action S be stationary.

S= ~z' )rdv)( FPV Fuv (2.3)

A. Topological Considerations

As in Ref. 3, we shall proceed by establishing a lower
bound on S. The bound is saturated if the fields satisfy a
set of first order non-linear differential equations, which of
course imply the second order Egs. (2.2). Throughout this
section we shall consider only solutions to the Yang-Mills
eguations which minimize the action by saturating its lower

bound. No other solutions with finite action have been found in
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the Euclidean domain, and one may conjecture that the class we
consider is exhaustive of all finite action solutions.
We define the dual *F'Y of the field strength by the totally

antisymmetric tensor e =1},

uvpu(EIZIu

X bv § . A
F = Z— ((AJV. r‘gq- (2.4)

The inequality

3 ‘ci"; ir(F‘“I % F"'N)(F;_y . .E«v ))/ i)

Y (2.5)

togother with the algebraic identity F““Fuv=*F““*Fu“, establishes a

lower bound on S. T,

< > ( 'i \ ax tv*?'av F;W ( (2.6)
We shall soon show that if S is finite the right hand side of
this inequality does not depend on the detailed features of the
field configuration, but only on general topological properties
of the boundary values of the potentials AP, Mora precisely, it
will emerge éhat the requirement of finite action separates all
possible field configurations into equivalence classes of po-
tentials which can be continuously distorted into each other.

Within each class the quantity
*

\ Av
- - Si‘y.l‘-.F '-:v 2.7
13 A
takes a definite integer value, called the "Pontryagin index” of
the field configuration., Postponing the proof of these state-

ments for a moment, we see that the bound on the action
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Sy srtgl

(2.8)

is saturated if

—uV % uv
l‘ = = F (2.9)

i.e., if the field is self-dual or anti-self-dual. Eg. (2.9)
implies the Yang-Mills equations (2.2). This follows also from

'Fu“=He"“°an° and the Bianchi identjty satisfied by *F%'.

A g —pv % —nv * an _
D,“ F*Y = 3)* F* r [A.F7) =0
(2.10)
What we learn here is that the self-duality or anti-self-duality
condition is the equation for the abgsolute minimum of the action
within a definite Pontryagin class. iIn the literature the self-
dual field configurations with Pontryagin index g=1 are often
referred to as pseudoparticles [or instantons); those with
[q]{>1 are called multi-pseudoparticle configurations.
The proof that g is a topological invariant, to which we
now return, procceds as follows. Notice first that tr'Fquuv
is a divergence

. ™~ M
€ TP F/'m, = 5{‘ X (2.11)

with
x}L: ,_/-2;,‘.5.,{'.6 ff{z‘iﬂd;,’iﬂl’ ¢ ';" A,Aﬂ Al’)

(2.12)
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Assuming for the moment that aM has no singularities, the integral

in Eg. (2.7) can be replaced by a boundary surface integral,

-4 S“"‘v f\“*F‘IVF =
'L.ﬁ‘

ny
5 3 "~
Kwt =L (A on X
b .
- o (2.13)

where o is a surface enclosing a sphere of radius R and n? is
its outward normal. The reguirement that the action be finite
demands that P’ approach zero faster than |x|™° as |x|+=. The
field configuration then becomes integrable and one can find

a unitary matrix g(x) such that, for |x|+w,

Aﬂ' = “Mg + O(lll ) (2.14)

g{x) defines a mapping from the points of any boundary
surface o into the manifold G of the SU(2) group. This mapping

determines q: substituting Eq. (2.14) into Egs. (2.12) and (2.13),

we find 5
(m (l"{j" é\,HQ'Ff”M -tr.
47 g 29
(G 2aa)5 3 7 )] |
iy S0a) o A
/cle—r)wm Q'r’lf i,—-t ks (E(lljr') ) Iﬁitﬂ -?';" J'f e

vhere d’g ia the invariant volume element of the SU(2) group. Thus

.13~

we see that g counts how many times the volume of the group
manifold 6 is covered by g{x) as we let the argument ¥ span
the whole surface at infinity. Tha fact that A must approach a
pure gauge at infinity follows from the requirement of finite
action, and then it is obvious that no continuous deformation of

preserving the finiteness of the action can modify the value
of g.

The equivalence classes of potentials A" that can be con-
tinuously distorted into each other are in one~to-one correspon-
dence with the equivalence classes of mappings ¢*G which can be
continuously related. Because ¢ is topologically equivalent to
a three-dimensional sphere S?, these classes are also in one-to-
one correspondence with the elements of the third homotopy group
of 6.

A realization of the boundary conditions leading to g=1
that will be very convenient for our analysis is obtained by

demanding that as {x|-= Au-’g-’aug, with

= AKX Sy = a-X (2,16)
g“) Ve 1 K-
- ==
X% = (<7, 1) “a )t (07, ) (2.17
Let us define
oo 3-.‘}“? = -20 GV K K%
° o {2.18)
] ' _ v ,__t‘-'l_ (;‘:- ~i_,'___ (LYY
‘.l_ 1= *a*, 3 =Y 5'; (2.19)

Inserting A" into Eq. {2.12) we find
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=15~
M /o [ oy THYx
x =T ?A‘/)\" A = -2 ,{{“‘) ’_u
(2.20 X (2.22)
and Synmetry considerations, which will be expanded later, suggest
/&-,“ U ‘( R3J N xux - 1 that the functional form of this Ansatz is compatible with the
- M n =
R—)Oo /éiL ) e (2.21) self-duality eguation, leading to an eguation for f({x?). From
Eq. (2.22) we evaluate
which shows that a regular field a¥ appreaching Ag at infinity
h =1.
as q F-,,ul- ‘-{('(-l-—‘{l G-'I‘
This computation also shows that we must recognize ap im-~ ¥ X+

portant point. The field strength associated with the purs gauge

. [ f ? ] v ,_,u "
potential Ag of course vanishes, so that q, for this case, must x* S

be zero. Written as a surface integral, gq

(2.23)

receives a contribu- The matrix valued tensor ¢"’ is self-dual and the condition
tion +1 from the boundary term at infinity. This must be can- FEV_epbY jg gatisfied if and only if

celled by some other surface contribution at finite A Indeed,

] z
#4( - 7{ F ,{ = 0O (2. 24a)
I\g is singular also at the origin, as is apparent from Eq. (2.18),

and the contribution to g coming from a swall surfacc encloging This equation is solved by
the orjigin is -1. We retain from this example the fact that the 2

,l -
= ISR
Funtryagin index, expressed as a surface integral over the ygroup {( l

N (2. 24b}
e X
volume [Eq. (2.15)),may receive contributions from all the singu- "

with A2 being an arbitrary scale. The resulting field strength
larities of the yauge potential aY. This will be very relevant

is
in the following. Fev - g, AT v
= L T
{f— + “z)?- {2.29)
B. One~Pseudoparticle Solution
If the function £(x?) is subject instead to the boundary
From the discussion presented above we also see that a field .
u conditions f(0)=1, £{=)=0, the ensuing field confiquration
configuration with g=1 is obtained if I\u is multiplied by a func-

will have q=-1. The anti-self-duality condition F'V=-ep¥Y can
tion £(x?) such that £(0)=0, f£{~)=1. Let ua consider then
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then be imposed and it is solved if

T
){IK‘) = )‘—)\ xz (2. 26)
1

leading to

AL
P (‘t:__hljl_z = RE- 2T KK, 'ZT”FK“XF_].
) ree)X (2.27)

Notice that the right hand sides of (2.24b) and (2.26) add
to 1 and that the sum of the corresponding gauge potentials
is the pure gauge A:.
Field configurations with g=~1, but without a singularity
at the origin, or with g=+1, and with a singularity at the origin,

uv

can he obtained by replacing the matrices ¢ in Eqs. (2.18) to

(2.27) by matrices oV defined as

4

';'.

6—,.»" P L) 3 d‘; &u_’l
Y.

&l'" = —y

= -4

<

(2.28)

nv

The matrices o'’ are obtained from o"’ by a parity inversion of

the 4th axis and are anti-self-dual.
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C. Symmetries of the One-Psendoparticle Solution

The action density of the pseudoparticle

_i_ t~ F* va = 48 /\q

Iﬁz" ‘;)1 (2.29)
is spherically symmetric. This suggests that the field configu-
ration itself may be symmetric under 0(4) rotations. The ex-
pressions for AY and F*Y are not explicitly symmetric; for in~
stance, the right hand side of Eq. (2.25) remains invariant under
an 0(4) rotation, whereas Y must traneform as a second rank
tensor. Howevar, the apparent non-symmetry may be compensated
by an appropriate gauge transformation. Let us consider a

combined rctation in the Euclidean and SU(2) spaces, generated by

@ = '?.I (M +a2) O, (2.30a)

where M"Y denotes the operators that effect space rotations; i.e., T
contains both an orbital component, which acts upon the position
dependence of a field, and a spin component, which acts upon

its tensor indices. o"’

are the matrices of Eq. (2.19); one shows
that they [as well as the Flakd | obey commutation relations identical

to those of WY, 1t is eacy to verifv that

[@‘ A"J = [ ®, FWJ = 0O (2.30b)
for the fields of the pseudoparticle, which proves the rotational
symmetry of the configuration. [The commutator notation is symbolic: it
does not represent quantum mechanical commutation, but rather the

infinitesimal action of the transformation.]
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Notice that the group of combined 0(4} and SU(2} transfor- -19-
mations is a group of covariance of the self-duality equations;
Eq. (2.22) gives the most gemeral Ansatz inv;riant under these formations are not symmretries of the solution, it is apparent
rotations. This explains why the Ansatz is compatible with the that ’d is invariant .nder the transformatjons generated by
self~-duality constraint.

A ' !
. R = 2 (s exp)
Because the theory we are considering is covariant under A (2,32)

the full 0(5,1) group of conformal transformations, any conformal

The commutators of R" and M"Y close into the algebra of an C(5)
transformation of the pseudoparticle will still solve the self-

subgroup of the conformal group.
duality eguations. Of course, as we have just verified for the

The proof that the field configuration itself is also 0(5)
0(4) suogroup of rotations, some conformal transformations may

pymmetric is slightly less trivial than for the 0(4) subgroup;
not give a different solution, but just a gauge transform of the

one must perform a space-dependent gauge transformation together
original one. We investigate now whether the group of symmetries .
with an 0(5) conformal transformation to achieve form invariance
of the pseundoparticle is actually larger than 0(4).
of A* and F'Y. one verifiess that A and F"Y are symmetric under
The conformal growp in Eucli-dean four-space has, as infinites- . .

the combined conformal and gauge transformation generated by
imal geperators, the operators H““, P", K= 41 e i and D,

/‘) A - R A4 f- v—/.nlx"
which generate, respectively, rotations, translations, special ‘/7 - (2.33)
conformal transformationa and dilatations, with 4 the inversion

operator. Of these, a dilatation changes the scale A of the

: s . . D. 0O(5) Formalism
pseudoparticle and is thus not a candidate for an invariance., If —

. The symmetry of the pseudoparticle under the 0(5) subgroup
we denote by ,d =-A8°  he action density of Eq. (2.29), we

(x2427)2
readily determine the effect on of the remaining generators

to be [T}A‘Al - 8RR 4

of conformal transformations can be made manifest by an ex-

tension of the form:-x.lism,5 which is very convenient for compu-

7 tational purposes and which we shall now illustrate.
N n (2.31a)
The 0(5) subgroup of conformal transformations can be realized
and as an ordinary group of rotations, if we introduce coordinates
oM - LPL :
[_h J J - _Ei__L J reasl, .. ,5, rara=1, related to the Euclidean coordinates x"
! )‘1 [ -
t A (2.31b)

by a projective transformation.

While it is clear that translations and special conformal trans-
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T < 228"
s AE
Tr= XL‘)\"

L ASAT,
N 12.39)
Eqs. (2.34) effect a projection of Euclidean four-space onto the
surface of an hypersphere, 5", imbedded in a five-dimensional
Buclidean space. The rotations of this hypersphere induce, via
Egs. {2.34), conformal transformations helonging to the 0(5)
group on the coordinates xM. Gauge fields a¥ [which can be
considered as the components of a matrix valued form A-Audx"l
transform in a mapping of mani‘olds like the derivatives of a
function [which are the components of the differential df=g—;ﬁdx").
Differentials over the surface of 5" are conveniently expressed

by tangential derivatives
2
d { = Ca { fp ¥ &
A
>ﬂ, = ;L - Ve (’rb ;l— )

e
(2.35)
Correspondingly, we introduce a five component gauge f:‘.em6
A at which is related to the usual four component gauge field
Au by

LY

“~ a
A . A oT
- [~ .

A A (2.36a)
Eq. (2.36a) gives four relations; to specify the five-component

object ';a completely, we need one more. This is clearly
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A .

e Ac. =0 (2,36b)
which insures that the gauge Lotentials are, like the deriva-
tives, transverse. [The metric on the hypersphere is Euclidean;
hence,there is no distinction between upper and lower indices.)

With ﬂa we construct covariant derivatives over the hyper-
sphere

AD; = %a_ + Ka.

a (2.37)
and the field strength is related as usual to the non-commuta-
tivity of these. We must, however, take into account the non-
commutativity of the tangential derivatives themselves,

P 2 N
[3,“9,9]- "’1")"’*1."")‘“:0 (2.38)
We therefore define £, as the value the left hand side of
Eq. (2.38) takes when Sa is replaced by the covariant derivative
A

a

[-}]

A A A ~ A -~

Fab = gu Ab’ 20.5 Aa.' Yo Ab t Ty Ac.. t [7\‘&,/’\;]
(2.39)

Notice that i‘ab is anti-symmetric and tangential: it has six
independent components.

The configuration of Eq. (2.22) is invariant under combined
space and $U(2) rotations because the algebra of the 0"V matrices
is isomorphic to the algebra of the rotation generators V. The
uv

addition of oV to M"Y in Eq. (2.30) produces, upon commutation
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. 5U(2) gauge field of the pseudoparticle, and in the lower diagonal

with o" Xy terms which compensate the variation of the expres-

block the field of the anti-pseudoparticle [c.f. Egs. (2.22),
sion due to space rotations. This suggests that the 0(5) sym-

(2.24) and the remarks preceding Eq. (2.28}). The right-hand-
metry might be made manifest if the gauge and tensorial degrees

side of Eq. (2.42) is neither self-dual nor anti-self-dual [al-
of freedom of the fields could be combined inte an

b though the indiviJual blocks are ] and has g=0. It does, however,
expression of the form Iabr , where now the Eab matrices obey

satisfy the Yang-Mills equations of motion. The advantage of having
the algebra of the generators of 0(5) rotations. This algebra

combined the pseudoparticle and anti-pseudoparticle into a single
cannot be realized by 2x2 matrices, but we can still achieve a

expression is that, within the space of 4x4 matrices, we can find
manifestly O0(5) invariant expression for the pseudoparticle by

a representation of the algebra of 0(5) generators and, as we
the device of putting together a pseudoparticle and an anti-

now proceed to show, the field configuration of Eq. (2.42) can
pseudoparticle in an extended gauge system.

be cast in a manifestly 0(5) symmetric form.
Let us define 4x4 matrices

We obtain a matrix representation of the 0(5) algebra by

v
Z_uv _ ( (vale C ) enlarging the set of matrices 'V to a set 5P, with the four
= =
c v (2.40) new matrices f*’ given by
-ps o -ud*
and extend the SU(2) gauge theory to a theory with SU(2)xsU(2)%0(4) 2 = 5. com o} 43)
(2.

gauge group. The potentials and field strengths are represented

< The ten independeni matrices l'.ab have the commutation relations
by 4x4 matrices.

of the 0(5) infinitesimal generators. In the hyperspherical

A“— - .’. A‘; Zq."\ (2. 41a) formalism it is now possible to write down a field configuration,
t
p with 0(5) gauge group, which is invariant under combined space
uv MAV Y] e = Ak 1)
F =0 A% - "A" + LA ) A ] (2.41b) and global gauge rotations; it is given by the Ansatz
’~
Y b
The expression AQ, = X “—ab ¥ (2.44)

; . A
| A" - =2 j A where the only freedom is in the constant a. The corresponding
’ )2 r AT (2.42) field strength is
is block d 1 and contai h a 1 block, th = b 2. ‘ >
i is ock diagonal and contains, in the upper diagona ock, the F - : ((x 1+ )( T - Z 4y
. = -t < T
i alb ab a’'cC (%) ac ¢ 'b

(2.45)
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and the Yang-Mills equations of motion Bgﬁab=o are satisfied

if ta+l) (a®+2a)=0. The two solutions =0 and a=-2 correspond

to pure gauge fields; a=~l gives a non trivial field configuration.

Py . . N

Aq R WP | (2.46a)
- 5

Fow =i [Z“b t7 2o TC - Zac ,-c.) {2.46b)

This expression has manifest 0(5) symmetry. It remains for us to
verify whether it describes the field configuration of Eq. (2.42).
We notice first that the potentials A of Eq. (2.42) belong to
the subalgebra spanned by the O(4) generators E““, whereas Ra in
Eq. {2.46a) involves all the Eab matrices. If they describe the
same gystem, it must be possible to gauge transform ﬂa to the 0(4)
gauge space, that is to gauge i:s to zero. This can be done by

the gauge transformation

Ao Bo= U AuU+r U 30U

(2.47)
where
U- AR [i WTs e T
\.‘l-r," 12.48)

If we now evaluate the explicit form of K; and insert it into
Eq. (2.36a), we obtain precisely the A" field of Eq. (2.42).
This proves that ﬂg—i%brb does, indeed, describe the fields of a

pseudoparticle and an anti-pseudoparticle.
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As we have mentioned before, the hyperspherical formal:.sm
is very convenient for computations involving the field of the
pseudoparticle. We illustrate how to evaluate the eigenvalues
and eigenfunctions of the operator that describes the propa-
gation of a massless scalar, iso-vector field coupled to the
pseudopatticle.7 For further appliéations of the formalism to
various systems of spinor and vector fields see Refs. 5, 7, 8
and 9.

We represent a scalar iso-vector field by anti-hermitian

matrices in the space of group generators.
Q
¢ = 4T (2.49)
H

and define a corresponding field ¢ over the surface of the

hypersphere by

(2.50)

\ 2 2
@(~)= Xt2 Qi)
2N

The weight factor on the right-~hand-side of this equation guaran-
tees that the conformal transformations of the O0{5) subgroup
(in which ¢ transforms as a field of dimension 1] are repre-
gented by scalar rotations of 4.

We have seen that to exploit the 0(5) formalism it is neces-
sary to imbed the SU(2) gauge group in a larger gauge group
0(5). We thercfore define a more general field

)
F b
@ = -L'fah 2 (2.51)

(9
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13 peing the matrices of Eqs. (2.40) and (2.43). We shall
study the propagation of § over the hypersphere, in the back-
ground provided by the pseudoparticle field Ra=—i£ab . Notice
that the gauge transformation U of Eq. (2.48) reduces Ra to a
block diagonal form, indicating that the system consists of inde-
pendent pseudoparticle and anti-psevdoparticle, We shall require
that the field & also reduce to block diagonal form after the

gauge transformation

é U' é U (2.52)
iﬂus =C
This condition ingsures that the upper and lower diagonal blocks cf
$' describe scalar siso~-vector Fields coupled to the pseudo-
varticle and anti-nreudoparticle,resnactively.
The reguirement that #* pe block diagonal can be expressed

by the equation

[&, ¥

(29,

5
The matrices r“=2it"°v* apa 1° transform as the five components

of a vector I'? in rotations generated by the matrices Eab. This

Q. (2.53)

where

{2.54)

implies that

-~ -1 . a ~-
ursy ™ = ., (2.551
and Eq. (2.53) is therefore equivalent to the condition

[é, '—\a‘_“] =Q. (2.56)
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With these premises in mind, we now determine eigenfunctions

and eigenvalues of the operator

(-2)3- 538, aran d
-2

w_s
S
At

+ [ A,

{2.57)

with £a=-i£abrb. After gauge transforming by U and pro-
jecting back to Euclidean space, the equation
Aa 2 fa
(D ) oy q) =0 {2.58a)
takes the form
g\
(Dh)l v e )A;a. 5 =0 (2.58b)
(A + x2)
As Qiscusged in Refs. 8 and 10, Eg. (2.58b),although it contains
gpace dependent coefficients, is wore advantageous than the
standard eigenvalue eguation ((D“)*+u)o=o for the computations
relevant to the pseudoparticle system. The equation (2.58a)
has the useful property that, if $ is a solution with a definite

eigenvalue u, 80 are

~
. (2.59a)
v $

(2.59b)
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This can be verified directly or, more simply, by noticing that
after the gauge transformation ¥ all matrix valued fields

appearing in (Bﬂ) 2take block diagonal form, and Eqs. (2.59) reduce

?é;" rs é' (cf ?)él (2.60a)
& - &% (19)

to

i
"

1
"

O

{2.60b)

This shows in particular that it is consistent to constrain ¢
by (2.56). 1If & satisfies this eqguation, the two projections

A
A
R B Yl o
+ = —— (2.61)
- 2

describe the fields coupled to the pseudoparticle and anti-~
pseudoparticle, respectively.
Eg. (2.57) has a very simple group theoretical meaning, as

we now proceed to show. Substituting into it the explicit form

of 3 +» we obtain

wiedor [0, w308 ) [rm [2°, §]]
e)é - o

(2.62)

I1f we define
A A

Lab > —h-u:)b U D,_-L, (2.63)
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then A S ab
T t — —
échb ‘: 7{ lfl"; L (2.64)

Moreover Lab' L ab and the operator Jab where

NS (3‘7: = Lap @ ¢+ [-2.5, @_] (2.65)

all satisfy the algebra of the infinitesimal generators of the
0(5S) group. Using the fact that & is a linear combination of

Lap matrices it is straightforward to show

[._2\5, [-Sa!; %]] = ]2 i (2.66)

so that,from Pgs. (2.64), {2.65) and (2.66), we obtain

A A 2 A
-,J‘ nh(-s '\augqé_z;- [Zab)"f'b(\aé_‘ "6§

{(2,67a)
If § satisfies Eq. (2.56), it must be of the form §=3s abz"‘b with
sab_2 b_ : N s
:a° _@ab; =0 ,which implies

A A
[vab’ [ch ve, QJ] =2 é' {2.67b)

Putting all these results together, we see that Eg. (2.58) is

equivalent to

TW") —‘“b@ /LHl)fP (2.68)

-
i.e., ® must be an eigenfunction of the operator

it v T
C ::zkabJ_ab

(2.69)

|
|
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which is the first Casimir operator of the 0O(5) group generated

by Jab' If A is the eigenvalue of C“)

1)

, then n=i-2.
The eigenfunctions of C are easily found as follows. Let
us consider any tensor harmonic Y;:‘:T‘:;:' {w) of the 0{5) ro-
tation group [A and A' are the eigenvailues of the two Casimir
operators of 0(5}, m stands for the“magnetic“quantum numbers, w
denotes the hyperspherical angles and a ...ay are tensor indices]
and let us saturate all the indices a ...ay with I'? matrices to

form the covariant

. m N,
#“,), ): >/( " . rﬂn
Qa e (2.70})

T

Then it is straightforward to show that

- (M3, m) . (2N,m)
‘JCtb (j' = (Labfs“b) E;,L , 2.1

s 98 AX*
where the spin operators Sab act on the tensor indices of Y( wi

EU

» 1 1]
It fullows that all the covariants ‘31A'A +m) will be eigenfunctions
ab

of the operator !’JabJ with eigenvalue A. A complete set of

eigenfunctions for the expansion of an arbitrary field $ is given by

< . . . AN
the covariantstjg’m, which are linear combinations of theyr( AT m) 7

nm . b n,m
, 5-a ‘>/
L(j =\ £ L
1 6b
am 7“"’ g m
LJ-Z R P j o

L G qb '1 \, PR
JS : Z € gr 3]
P 1] n

- -Eubcc{e > gt
y =t ol ~ca N < (2.72)

-3]1-~

where Y™ is a scalar hyperspherical harmonic, with A=n(n+3},
and’z :,m , n*1, are vector hyperspherical harmonics, as given
by }\dler.G with A=(n+l)(n+2). It is easy to check that the co-
variants (j'l"m do not satisfy Eq. (2.56), that the covariants
%’?,m do satisfy the constraint, and that only a definite linear
lcombi.nation of the covariants ‘j ?'m and L{,’;’m does. This linear
combination is mogt easily fou;xd by mult‘i.'plying \}:\,m by I‘ara.

From
cd
r{ Zab = z'|1 ((Yaf '1, 'be ra)'%&m(:d 2

we obtain l‘ara';}:"m=2(g,:'m- yl:,m)_

We conclude that the matrix valued fields 5=y;“m—g?'m

(2.73)

and 3-—3?’"‘ are the sought eigenfunctions of the operator

{ (™) 2-2} with eigenvalues u=nZ+3n.

E. Multi-Pseudoparticle Solutions

A system of n pseudoparticles is, by definition, a field
configuration which has Pontryagin index n and satisfies the
self-duality constraint., Whereas it is straightforward to write
down field configurations with arbitrary values of the Pontryagin
index gq {A"=£(x*)g"Ma¥g", with g and f as given in Egs.
(2.16) and (2.24), for instance, has g=n}, it is not obvious
that there exist self-dual configurations with g>l. 1In this sub~
Section we exhibit explicit self-dual field configurations with
arbitrary [integer} values of the Pontryagin index, and study

their properties.
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The search for multi-pseudoparticle solutions starts with

an analysis of the single pseudoparticle potential
I . av
A = -2¢ _?__l".
AP+ nl (2.74)

or
AN = -a T X
(e xv) 2t (2.75)

These expressions are of the form
Af = (o*a (2.76)

and

u
-

A* F*vay, (2.77)
with an appropriate four-vector field a'. Notice that AY is
a matrix-valued vector field, with twelve independent components.
Eq. (2.76) couples the space index of the gauge potential with
its isospin indices [implicit in the matrix structure) so as
to re-express the twelve components of AP in terms of the four
components of the vector a¥. We are dealing with representations
of the 0{4)7SU{2)xSUB{2) group of rotations together with the SU{2)
gauge group; thus Egs. (2.76) and (2.77) represent definite
couplings of tensorial components. This point will be elaborated
in Section III.

We try to generalize the paeudoparticle solutions by assuming
an Ansatz 1 as in Egqs., (2.76,2.77), and checking whether the self-

duality constraint is solved with an approp:iate choice of av.
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From Egs. {2.76) and (2.77) we find
av v -a* AP -4iv
F . t[{y‘ﬂf "Q“af:)g f- (avaf a ar)tr I a,afﬂ' _’(2.78)

with o*¥ replaced by o"Vif we start from A"=15"“av. The expres-
sion for *F*V can be simplified using the self-duality lanti-self-

duality) property of o'’ (@"V). Using the identities

s Avap a.vr = L?. ghvep Evfré' 0-n\‘
- _3? T - 3«(’ "l o jer (TFaL
(2.79a)
ERP B = g s §
- jMP & 3.‘1’ T, jl‘ G A (2.790)

we obtain from (2.76)
Kerv_ T a*-a. a*)oP - Yo, ) Tk
F= (L(;)fa at,a)(r'f’ {3fa o.fa)v s
e v
¥ ?fa e -] {2.80)
or from (2.77)

nwoooe =v v v
Ll A ‘l{ﬁ)‘,a“— afa“)u- ¢ -{?;,a -aya Ll
i
- (2.81)
y
+ 3r Qf o vJ
The self-duality constraint F"V=+r"Y can now be converted into
equations for the vector field at. 1In deriving these we must
pay attention to the fact that the matrices o*¥ (5"”) are not

independent. The proper procedure is to multiply the equation

FPV-+rHV20 by 0®® (5°F) and use the identities
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‘Ef [ el ikl L il(gﬂ.l‘ rj._‘h’__ 31v 3,qu ¢ Eaﬁnv)

(2.82a) or
o~ uv . L fgargf” Ly gpH a8 aY 3,, Ja -0 (2.25b)
- - Ay
tT(T(T.Zl‘jj—jJ_g.) .
(2.87D) Eq. (2.85b) requires [} a to be constant, and (2,85a) shows
that a is at most a quadratic polynomial in x, a=a[A?+(x-y}?],
Thus starting from the Ansatz A"=io""av we obtain so that
n
Wy AavY wr v v l) o o ak_ -2(x-y)
- a’ = 1 a4 -a.a -

DaYiVa -20 19 J . (2.83) e fr-9)? (2.86)
as the self-duality condition. If A"=ig"Va , the self-duality Thus for AY=ig"Va  we recover only the single pseudoparticte
condition leads to two equations. solution.

~"n g Vo nvp T We turn now to the set of coupled differential equations
o Q - a = ghVP bfav- (2. 24a) u
(2.84). First we decompose a into transverse and longitudinal
and parts,
I e u
P (. a =9“/&u{o+b R 4 b"=0 (uan
Q" t a.a” = O {2.84b)

Eq. (2.84a) states that the Abelian "field strength” M=

From now on, we shall consider the two cases separately. 3¥bY-3Vb" derived from the potential ¥ is self-dual,

Eq. (2.83) constitutes a set of nine non-linear first order dif- pv x ny
= 2.88
ferential equations for the four components of a¥. The integra- { { { a)

bility conditions give rise to a set of constraints involving while Eg. {2.84b) becomes

(_:(Qufb”){?"tb")f) =0

the six independeant components of 'Vza¥av-3Va", the

algebraic complexity of which makes it difficult to analyze (2.88b)

them completely; however, since the number of independent equa- A general solution of (2.88a) is obtained as follows.

tions is large, it is plausible that the only snlution is £"Y=0. wWe owing to its transversality, b" may always be written as a di-

N s v sy s
assume this to be true. If £*V=0, then a" may be written in vergence of an anti-symmetric tensor w*V. But h'Y has six in-

the form ab=-3%a. Inserting this into Eg. (2.83), we get dependent components, while b" has only three, so three conditions

may be imposed: it is convenient to demand that h"Y be anti-self-
aﬂ v Q = 9.2' dce {2.85a) o P
I’
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dual. Congequently b" is represented as follows.

‘Dﬂ = v ‘Q\w (2.89)

e = - A (2.89b)

It. is then trivial to verify that Eq. (2.88a) reduces to the
requirement that h*’ be a harmonic function. Thus the non-
linear self-duality equation has been linearized with the help
of the Ansatz A"=i5"“a“: we are to choose any harmonic, anti-
self-duzl tensorx hw. form bY and solve the linear equation
(2.88b). However a non-trivial global problem still remains.
The functions h"Vand p necessarily have singularities which may
induce singularities in the potential AY. fThese singularities
must be arranged so that the gauge invariant quantity tr F““FW
is non-singular. Later, in considering umall deformations of
a given potential, we shall encounter singularities of exactly
the same type, which appear as pure gauge artifacts. However,
we do not know how to arrange for this to happen in the gereral
case; indeed it is not clear that this is posaible for non-
vanishing v,

S0 we proceed with the assumption that a! is a gradient.
Setting b" to zero Eg. (2.88a) is of course satisfiéd, and Eq.
(2.88p) reduces to

ﬂe = O (2. 90)
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It is still true that the harmopic function p will possess
singularities, but now it is easy to find a form for them so

that gauge invariant quantities are non-singular. We take

- e (2.1

Note that with this super-position of poles Eq. (2.90) is satis-
1

fied everywhere, even at the poles, due to the prefactor p

summarizing, we have found that the formula
»n . =
A" = camd, Inp . (2.92)

with p as in Eq. (2.91) gives origin to a self-~dual field con-

figuration. 12,13,14

We must still verify that the singularities introduced in
at by the poles of p are pure gauges and evaluate the Pontryagin
index of the field configuration. Near a singularity, which we
take for convenience at the origin, aY behaves as

AP' AT gvﬂh i"' = ~20 TR AT
(2.93)
Comparing with Eq. (2.18) [with o”Y replaced by o"’} we see that
the singularity at the origin is indeed of a pure gauge form.
Also, if we evaluate thc Peatryagin index o as a surface inte-
gral, this singularity will contribute one unit to it (cf. also
the discussion after Egs. (2.21), (2.27)). The behavior of the

m . R
field at infinity, where p',“;xl, I A;, is still of the form given

by Eq. (2.93). We conclude that the Pontryagin index is m-1,

because the m singularities at x=y; o i=l,...m, contribute +m
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to q, whereas a contribution -1 comes from the surface at
infinity.
The value of @ may also be found using the elegant formu-

la

MV
te PP Fu = 30 P
(2.949)
which can be derived when A! is given by Eq. (2.92). Eq. (2.94)
shows in particular that tr'F"VFuv is not changed when p is multi-

plied by a factor (x~y)2. Thus q may be evaluated as

A G L

where d is a polynomial of degree 2m-2, and this immediately gives

"1: - Bim 2 Sd,}'z R? RA)'I]&:\( zm;zm)= -1 (2.95b)

Roo Bt

The number of parameters appearing in the expression of
the self-dual field A" with Pontryagin index n is 5n+4. This
is appareat from Eqgs. (2.91) and (2.92): the parameters are the
5m=5n+5 scales Ai and positions yg. minus one overall scale, which
can be modified by an additive change of 2np. The nurber 5n+d
is surprising if one thirks that the field configuration is ob-
tained putting together n pseudoparticles, each characterized
by a position and a scale. One may indeed consider a limit where
the (n+l)th scale An+1 and coordinate y:+l go to infinity
simultaneously with lim A2 ./y’ ,=1, in which case ¢ takes the

form13

(2.96)
i=v (r-y)"°

-39-

For small Ai, i=l,...,n, one can then identify %he yg's as
approximate positions of peaiis in the action density, with
width li. A conformal transformation of the field config-
uration {which of course preserves the self-duality of F"v]
w.uld re~introduce the more general form of Eg. (2.91).

It may be verified indeed that the class of field configu-
rations represented by Eqs. (2.91) and (2.92) is closeC under
conformal transformations in the following sense.12 In a finite
special conformal transformation where

K RE s KoY
f-2¢-x po?yxt (2.97a)

we let p(x)} transform as a scalar density cf dimension +1, i.e.

px) = '§m : ! Q[Z)

I=2¢-x +c7x*

(2.97b)

For infinitesimal c"=¢",

5(0 < [(28xr" —Alz"):),(s t2enp

(2.97c)

and, with simple algebra, one verifies that the induced trans-

n

formation of a* takes the form

Sa* = Ja‘ﬂm(; = d.atraen

(2.974)
where ﬁca" is the conformal variation of a vector field of di-
mension +l. If we replace a¥ with av+6cav+2cv in the Ansatz
Al=i5PVa
v

=in and perform then an infinitesimal gauge transformation

(2.98a)



-4~

with parameter
@)= 2isxpo™t

again it is a matter of straightforward algebra to check that

(2.98b)

the total variation of A" is precisely the conformal change
Gcl\u of a vector field of dimension 1.

Summarizing, a conformal transformation of the gauge po-
tential a¥ of Eg. (2.92) can be obtained changing p first
according to Eq. (2.97) and then performing a suitable gauge
transformation.

But, starting from Ega. {2.91) and (2.97)

with an explicit computation we find

» X
Biy= 2 o
. gas (x- 5.-" (2.99a)
T
~r ™M
AT o
tr2cy rety; (2.99b)
~ » u gyt
ij’f = yr e 1Y,
L
{r Zc"j" '_cls:' {2.99¢)

We see therefore that a conformal transformation changes any
field configuration of the class defined by Egs. (2.91) and
(2.92) into another field configuration of the same class, modulo
a gauge transformation. The superpotential B(x) of the new field
conflguration is obtained from the cld one by a conformal trans-
formation of the scales k’i and the positions y';. in particular,
the function p of Egq. {(2.96) can be considered as the limiting form

of the more general p of Eq. (2.91)obtained when one of the singularities

has moved to infinity; it 1is transformed into a p of the

more general class by a conformal transformation.

F. Small Deformations of Self~Duality Condition

The realization that all the 5n+4 parameters present in
the expression A" are necessary to have an explicit representa-
tion of the conformal group still leaves open the posaibility
that some of thz parameters are unphysical, i.e., that the values
of the A; and y‘; may be modified by a gauge transformation. We
know after all that the single pseudoparticle configuration depends
an five physical paramesters, whaereas the present analysis gives
a number of parameters equal to nine for n=l, We shall see later
that there are indeed situations where some of the constants
y’;. and Ai may be modified by performing a gauge transformation an
the fields, but it is convenient to postpone the study of this
residual gauge freedom. Instead, we consider now the problem
of finding the most general infinitesimal deformation of the
fields which preserves the self-duality of Puv_ls This analysis
will also provide an answer to the question of the residual
gauge freedom; as will become apparent, in general all the S5n+d
parameters are physical.

A small variation of the potential A"
Mm M Lt
A = A"+ 8A (2.100a)
generates a variation of e

FPV"’> FMV+ 8 FD!V

(2.100b)
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S Fuy = DML SAL - D%, ‘;A/‘*
I):A SA, = éi“ JA, t L A»-. JA. ]

We take AM to be given by Eqs. (2.91) and (2.92) and require that

(2.100c)

SF"Y be self dual. The most general saY can be represented by

5/‘\“: (oo xka'b

~

(2.101)

where sz is anti-synmetric and anti-self-dual in the indices
aB. But it is not convenient to consider an expression as

general as (2.101), because all infinitesimal gauge transforma-

tions of A"

Oqouge Ay = DY Ty

(2.102)
would appear as uninteresting solutions of
SFH = g (2,109
We fix the gauge by requiring that 5a" be of the form
_ — ny &
SA“ = LT ')V (({P ¥ ET‘PF BV y ¢ (2.104a)

where Y'Y as is a tensor field, anti-symmetric and anti-self-

dual in both pairs of indices uv, aB and constrained by

Xu» <o

This apparently arbitrary choice of a gauge is motivated

(2.104b)

by the fact that it simplifies the algebra. The first term in

the right-hand-side of Eq. (2.104a) is included because we want
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to find among the infinitesimal deformations those induced by
a variatiun of the parameters of p. %The condition Yu Weo
removes one of the nine independent components of i a8 50 as
to leave the correct number of variable functions — nine —
in the Ansatz of Eq. (2.104).

The tensor Y"Y af can be decomposed into a symmetric,

traceless and an anti-symmetric part.

yﬂv ap - SMV ap + AFV xp

{2.105%a)
S}(V‘-“F = S‘YP hv
(2.105b)
v :
Auv ap_ A«e - r:{(s.uvvp - 3.,« V/«f
{2.105c}

QP YR gRE YY)

vod is anti-symmetric and anti-self-dual. After non-trivial

algebraic manipulations that make use of many identities satis-
fied by anti-self-dual quantities, one finds that Egs. (2.100),
(2.103) and (2.104) imply

D Suv @ = O (2.106)

All non-trivial solutions of this equation introduce in sa¥

singularities which cannot be removed by a gauge transformation,

stV “B=n. When s"Y ab vanishes, one Einds

and therefore we get
that the anti-self-duality of FMY implies for 6p and V"V the

equations

(2.107a)

DQ\/’W = O
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Wdpr2p %V"0,p = O

(2.107b)
These are solved by
Nty hv
VA = > /@L
P v=1 fe-y:)® (2.108a)
2
3 nesd bt . /sz 2 [x-y;)“{g-y,-),
P= 5o5n ey (x= Y407 (x-49.)*
N
A‘f\a
¥ P {2.108b)

where the k‘;" are constant anti-self-dual tensors and §p is
the variation induced by a change of the parameters of p.
Inserting vV and & as given by Egg,(2.108) into Egs.
(2.104) and (2.105) ,one finds an expression for éa¥ which is
singular near the poles y; of p. It is possible to show,
however, that the singularity can be removed by a suitable gauge
transformation,ls so that &l represents an acceptable infini-
tesimal deformation of the self-dual field configuration.
It is very interesting to observe that upon performing
an ianfinitesimal gauge transformation [according to Eq. (2.102))
with parameter

WP = #(s TAl;

(2.109a)

the infinitesimal variation of the potential becomes
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S A" 4 gy A”

iwe [ (%) o (p Vo)

SA*"

[}

(2.109b)

which is of the form

.JA”‘: iﬂ_""(yav

(2.109¢)

In this gauge, the infinitesimal deformation appears as a first
order variation of the original Ansatz,where 6a’ consists of
both a gradient term and a divergenceless term. The gauge
transformation leading to this form of the potential is

singular and 8A'Y behaves as Ix—yil" near the poles of p.
Because of these singularities, the representation of the infini-
tesimal deformations provided by sa'M is not very useful to
study the finite physical deformationg, but it is extremely
convenient for an analysis of the residual gaug: freedom.

To expose possible gauge artifacts among the infinitesimal
deformations 8A'Y, we perform an additional gauge transformation
with parameter w8 and inguire whether

p ) ‘ W
SA = JA + szsg ﬁ {2.110)
can still be of the form
L
[ C = av ( )
SA = (T* Jau t 53““31 Qv (2.111)
With some algebra, one finds that the form of the Ansatz is pre-

served only if

e s g e s




(2.112a)

with

S = 2 A% xy -2x" Ak + 2 A*f
FBIKP - BEx%+ g9V Byyg + C°F

(2.112b)

AuB

where 8% is a constant veactor, and cn8 are constant self-

dual and anti-self-dual tensors, respectively. The variation of

5! a¥ is then given by

®gauge
{ v_ _ r\,ya __! '\.wx
5guuge @ = () f P)d (2.113a)
which in terms of VuB and p, reads
q 7‘ NqF(‘l;
63uu3¢ ()v b=y LZi 1y, ) {2.113b)

R Zm (-yt)

Since 6“9 contains ten independent constants, we conclude that ten

OF Wy (4

(2.113c)

of the independent components of the tensors kga in Eq. (2.108a)
can be inodified by & gauge transformation. Therefore
the dimensionality of the space of physical small

deformations of a given seolution is 8(n+1)-10-1 ( -1 because of
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the arbitrariness of an overall rescaling of the Ai'sl, =8n-3,
which, by continuity, must also be the dimensionality of [a
connected component Of] the full manifold of solutions. The
number 8n-3 has a nice interpretation: the n-pseudoparticle
solution appears parametrized by the positions, scales and
relatjve group orientations of the pseudoparticles.

Notice that if we start from any of the Sn+4 solutions
described by the Ansatz Au=iE"“3v1no and perform an infinitesimal
gauge transformation, Eg. (2.113b) tells us that we shall not
preserve the functional form of the Angatz unless the positions

of the poles yg satisfy

e (y,)

o (2.114)

But this is the equation of a definite circle for of a st h

..-.
]
r

line as a limiting case) in 4-space, and therefore if

the poles yg “are more than three in pumher, and in general posi-
tions,then all the 5n+4 parameters represent physical degrees

of freedom, On the other hand, when the poles yg lie on a circle,
one can perform a gauge transformation which moves the singularities
around the circle {see Eq. (2.113c}]. Through

three peints one can alvays draw a circle, so that if n=2,one

of the %5n+4=14 parameters is always a gauge artifact, and the
2-pseudeoparticle solution depends on 13 gauge invariant para-
meters. Through two points onhe can draw a three-dimensional

varjety of circles, and therefore four of the 5+4=9 parameters
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deacribing the single pseudoparticle within this Ansatz are

gauge artifacts, in agreement with the fact that a single
pseudoparticle is characterized by only five parameters, posi-
tion and scale. These considerations indicate that for n>3
there certainly exist solutions to the gelf-duality equations

beyond the ones given by Egs. (2.91) and (2.92); as yet they

have not been found.

-‘9-
I11 FURTHER MATHEMATICAL DEVELOPMENTS
A. Spinorial Pormalism

As mentioned earlier, the solutions to the various equa-
tions that have been discussed take the form they do as a
cansequence of the coupling of internal degrees of freedom,
{5U{2)],to kinematical degrees of freedom, {0(4)]). For Yang-
Mills theory, this coupling can be made explicit in the context
of a spinorial formaliasm, which we describe in this Section. The
formalism is also important since it exposes features of the
self-duality condition which are used as a point of departure for
an analysis by methods of algebraic geometry.
Furthermore, with the help of this formalism, we shall be able
to simpiify considerably the Dirac equation for zerv-eigenvalue
modes of a fermion, with arbitrary iso-spin, and to solve it
completely for iso-spin & and 1.]'6

The spinorial formulation begins with the cbservation that
the 0{4) invariants of interest in Euclidean four-space may
be designated by SU(2)xSU{2) representation labels. Also, the
internal SU{2) gauge group gives rise to such labels. Hence
all objects with which we are concerned are SU{2) multi-spinors,
and equations are simplified when the various SU{2) groups are
cunningly coupled to each other.

In this formalism all objects carry spinor labels
A, B, C ... , which take on two values and describe the spin
and iso-spin degrees of freedom, An anti~symmetric metric tensor

with two upper indices is defined by

o 1 .
SAB (_1 o) = (Gt (3.1a)
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The negative inverse of this matrix is a metric tensor with

lower indices.

- (O L) - g4t
Eag = (-1 0) = & (3.1b)

A spinor .iay have lower or upper indices, which can be raised

or lowered with the metric tensors according to the following

rules [repeated indices are summed].

gA = g4® SB (3.2a)

- A
g'B - ? éaB {3.2b)

Covariant summations always involve one upper and one lower
index. Note that G;AA=—EAA. For every pair of indices we may

define a symmetric and anti-symmetric part

gAB - 7'. &ap gc_ “t 3 g@ (3.3)

where the symbol 133 denotes the symmetric sum EAB"E More

BA®

generally for a multi-indexed object, CA A A’ symmetric in
PUPERTE N

Az .e .I\“,

t
gA,A,... An gA, As...AnT ...

4]

1 g (n terms). (3.4)
A“ Alﬁl- Al

An 0(4) two~-component spinor is described by a spinor with

S he A
N

one index. To every O{4) tensor with indices u,v, ... , there

corr~sponds a spinor with index pairs AA',BB', ... . The rule
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of association is given through the a matrices defined in (2.17).

" 4
g/u (d )'AA' h gnA’ (3.5a)
& (3" ) gy = €1 (3.0

(That the two definitions are consistent with (3.2) is easily
established from the properties of the Paull matrices)}. The 0(4)
covariants may be regained frcm the spinors by projecting with
the appropriate © matrix. The above holds also for derivatives
auﬂam ’e

Iso-spinor indices are represented as follows. Iso-spin
% objects are described by one~index spinors. For iso-spin 1.
a two-index spinor, symmetric in the indices, is used. In
general an iso-spin T object is described by a totally symmetric
spinor with 2T indices, so that there are 2T+l independent com-
ponents. The correspondence between the conventional des-
cription and the spinorial one is immediate for iso-spin % —

the two coincide. For unit iso-spin the correspondence {ia

v
g)a (_“'})uv E f v (3.6)

2¢
A consequence is that EVU and EVU are symmetric in U+«»*V and
bze = .
that Eabc€ £~ corresponds EUHE v The relations for

higher iso-spin are more complicated, and will not be given here.

B. Gauge Field Equations in Spinorial Formalism

The gauge potential AP is described by A,,, : the gauge
a AL’ ; UV
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uv . . PN s -
field Fa . by FAA' BB ;UV which is antj-symmetric in the inter

. ‘e i = A A w
change A++B, A'++B'., Both expressions are symmetric in Ue+V, FA BIUV ;)ﬂ A. A B )-UV T AAH’;UM’ AB ; v
and the formula relating the two is SN S _2(3.10D)
- - Th 1f-dualit dition dcmands that F_ ishes. H
FAH',BB'J-UV = DAA' ABB';UV DBB' A', A';UV e se uality condition dcaands tha vanishes ence a

self-dual gauge potential satisfies

A AW
3.7 - DAA' AB ;uv t A“".uw As i v =0 aay
e > \____/

Due to its anti~-symmetry properties, F may be split into two

+ AAA'.uw ABB‘; wv
7 v/

The conformal solution to this equation is
parts

Apw = 38 dva' bn

- AN UV 2 cAaU VvAp

Fag '-UV=%£AB FT. + 4 g (3.8) ! N ‘O

AN, BY; AB W 2 EAB Tan.uv _éup ) (3.12)
+

< R R - . <
where FA'B';UV is symmetric in A'++B', and PAB;UV is symmetric

Thus far we have merely transcribed into new formalism
in A+«+B; these are just the self-dual and anti-self-dual parts
A . ) results which already exist in the conventional approach. We
of the gauge field, as is seen by noting that the definition
PV . 1V af . . . wish now to make some further observations about self-dual gauge
YT Teke Fae becomes in the spinorial formalism

fields. These form the starting point for an analysis of self-

X (3.9a) ; ;
= . dual gange fields by methods of algebraic geometry.
= ’ ' €
F—AA',ss'juv FAB,BAJ-UV
or Consider a special set of complex bi-spinors [4-vectors] o
+ .
X + = F e which can be written as Zsz. where RA is fixed and 2p4 varies.
A'B. LV A'p; UV {3.9b)
4 It is clear that all points described by such coordinates are light-
o L]
¥ F' - =" (3.9¢) like with respect to each other: xM.iM =zaza. 2“2“:0. This set
AB; UV AB,; LV

of points for fixed £ defines a light-1like plane. Next let us
it follows from (3.7) and (3.8) that project the gauge field onto such a light-like plane.

F* =b A A W I !
A'B' .UV ' ‘ov P Aan uw At ¥, e - AN 3 BB _ ph A ,BNE

' M\LB'UV “i“\w'q B, v Fov TR F;M',BB‘,-UV' 727472 ’5‘.5:',.w
(3.13)
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But a self-dual field takes the form

F . = 4 F‘* (3.14)
AR ,BR ,LV 2 CAB TAB,UV

so for self-dual configurations the projection (3.13) vanishes. We

thus come to the important conclusion that on arbitrary light-

planes the gauge potential, for self-dual fields, is integrable.

fh AAA' N 39—1 PA ‘.)AA' 32 13.15)

The program of reconstructing A,,, from the above by methods of
algebraic topology is being pursued actively, but we shall not

discuss this topic further.17

C. birac Equations in Spinorial Formalism

An important feature of pseudoparticle configurations is
that they produce zero-eigenvalue modes in the Dirac equation
for a [Euclidean] fermion in the pseudoparticle field; that is

one can solve
Y3t ALYY=0 (3.16)

with several normalizable functions. Here, ¥ has 2T+l components
which transform according to some definite, irreducible represen-

tation of SU(2)
ES \*’ =T ait}, Eacu
L‘Tu, Tl : i fauc TC (3.17)

and AY is the Yang-Mills potential in an anti-hermitian matrix
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representation: iAu=A:Ta. In general AY need not solve the Yang-~
Mills equat.ions, but is always taken to be sufficiently well-
behaved that the Yang-Mills action is finite; consequently
the gauge configuration is characterized by an integer valued
Pontryagin index.

When the gauge potential is the conformal, self-dual configqu-
ration (3.i2), the spinorial formalism may be used to simplify
Eq. (3.16) considerably. We now present this analysis and solve
Eq. (3.17) completely for iso~spin % and 1.

The Dirac matrices in (3.16), satisfy Euclidean anti-commuta-
tion relations (y",y"}:Zﬁ"“ which can be realized in a fashion

such that Y is diagonal .
n. [0, %"
X a“ o

Y= 008y = {1(; -2]

V]

(3.18)

In this representation Eq. (3.16) decouples into two separate

equations for two-component spinors of definite chirality.
ql"
b= (.w»)
¢ “"(Dn tARJtY =0 (3.192)
a(dt ALJET =0

(3.19b)

wWhen we discuss the Atiyah-Singer index theorem in the next sub-
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Section, we shall show that {(3.19h) has no normalizable solutions,

and, thereforae, only (3.19a) need be considered.

In the spinorial formalism,({3.19a) transcribes into

A A v
Dﬂﬂ. "P j Y Uy ’ AAA'; U,V q) ;

; Useo- Uyt (3.20a)
Here the spinor carries the index A*, describing two spatial
components; it is entirely symmetric in the 2T indices U, which
vefer to the 2T+l components of iso-spin. Substitution of the

conformal solution into the above gives the equation we analyze.
¢

A [
ar aﬁﬁ' "P jUpaUpy t 5' 5Au1 (aBB‘ 141() ) q,B ; E)u iy

%(DUJA‘%P) t}/”’- AveeU + ?WM}OJ'I\DHS: O

{3.20b)

A straightforward but lengthy sequence of manipulations of
indices, which among other things involves separating the above
into symmetric and anti-symmetric .parts in (A,U,), yields the result

that a normalizable solution necessarily has the fomls

q’A',.u,... Upr = (’T Du, A" e'"’)iu,_. -
t+ PMOV"I'OHS

(3.21a)

where x satisfies

‘aUzB' Q-Zr"l -bc B' /XC Ui ".Uzr i wat%"‘o"s

=0

(3.21b)
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We now specialize to iso-spin & and 1.
\PA.;U - elh ()UA' Pﬂ /X/
au B' b(. B.,X' = O
gL =0

For the former

or

(3.22)

of course only singular functions solve the harmonic equation;

however we can tolerate singularities, provided they are absent
from the gauge-invariant norm density WA.:UWA.:U « so that the
spinor is normalizable. Therefore we can allow in x only
poles which are already present in p. In this way we get n+l

solutions for X .

A N

fx-y:)*
{ = i)...,h'l (3.23)
J i), : (i) d
Of these only n ¢ s are independent since };x =p, and
s 1
Wh)=0-18
i
For iso-spin 1
- = d ¢« p? ;Y,
A ’ U1 UL e U’_ A () \)‘
~_\
'a B’
-1 /X' =
U, B P 0 c @ (3.24)
L]
Solutions are conveniently exhibited by setting X4 cc'“c , where

1
ot is a constant spinor, with two arbitrary components which
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provide two solutjons x for each matrix M. Eq. (3.24) is solved

by the following n+l expressions for M.

M 2
Mu)(): 2\:— (N'3~)ct'

¢ (s 4.0°
C= 2,..., Net
(3.25a)
An additional n+l forms are
z) (&) 'AL
- — L . i
MCC' - P(‘_S‘)lécc
net
- 'l\?:z\j (r~Y))een + (A= YS)ce” o
) W - (gi"ji)c'
sor 0% L kg2 eyt
FE X
€7 Lo, et (3.25b)

However of these 2n+2 matrices, only 2n are linearly independent,

since the following relationships are readily established.

nei i
—_— () 2

) . - - 4

~ Mcc P Cee (3.26a)
(BN

hed nri ) "

M) @2t C 2 X

= (A = 1
.2_ . Mcc' + Z cc* (‘j\) ¢! P cc
Lol ¢ (3.26b)

one finds all the solutions to be normalizable; thus there are
4n zero-eigenvalue modes for iso-spin 1 Fermi fields.
Wle conclude this discussion of the solutions to the Dirac

equation by noting that,since the eigenfunctions have definite
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chirality, bilinears wTN» vanish for a vectorial Dirac ma-
trix ., In particular w*'l‘ayuw is zero; hence the functions A"
and ¢ are also solutions to the coupled Yang-Mills fermion
equations, when A has defin:te duality and ¢ is a chiral eigen-
state solution of the Dirac equation. [We show below that such
solutions exist not only for iso-spin & and 1, but also for

arbitrary iso-spin T.])

D. Atiyah-Singer Indax Theorem

In the two examples discussed earlier — iso-spin % and
1 Fermi fields moving in a self-dval Yang-Mills potential —-
we found a number of zero-eigenvalue modes of definite chirality.
The existence of these modes hag far-reaching physical conse-
guences; moreover it is relatod to the anomaly
of the axial vector currentlo and to topolegical preopertics
of the gauge fields. This unexpected connection between physics
and mathematics is best understood with the help of the "Atiyah-

Singer index theorem", which we now explain.

Consider a linear differential operator L and its adjoint
L*,- further suppose that the number of normalizable zero~eigen-
value modes of L is n_ and that of Lo n,. The "index" is the
quantity n_-n_. and the index theorem evaluates this object in
terms of the properties of L. In order to make these considera-

tions relevant to our Dirac equation (3.16), let us write

it in block form, using the y matrices in the representation
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(3.18), which diagonalizes chirality:

le <1(3)-0

(3.27a)
LY =0
(3.27b)
¢ =0
(3.27¢)
L= ar{d.r A.) 3.219)

E=ia't“3u" A,.) (3.27¢)

Thus we see that n, (n_) is the number of positive (negative)
chirality zero-~eigenvalue solutions of the Dirac eguation. The

index theorem, which we derive Lelow, when applied to (3.27)
states

h--n* = ‘“T"Iz‘ jd\'l t’f x va F',,.v

< lﬁ" te TaTo jd'x Fpuv Fou (3-200

For fermions with total iso-spin T and gauge fields with

Pontryagin index n, the above is evaluated with the help of

t*f‘ Tqu = g‘ T(T?i)(.'l-rfi) .S’uh

(3.28b)
and we find that the index is

N.-w, = % T{T+1)(2Tr1)n (3.28¢)
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Woe have assumed that the gauge potential leads to finite
action and that it carries Pontryagin index n; in all other re-
spects, it is arbitcary. However when a* is self-dual or anti-self-dual,
the index theorem may be strengthened by showing that only n_

or n, is non-zero: apply Lf to (3.27bh) and L to (3.27c) to

get
[(tlf At e 207, FlyT=0 (3.292)
ClatAN 2Ty F*|%~ =0 (3.290)

The duality properties of G"V(c"Y)lsea (2.19) and (2.28)] assure
that E‘NI-“"’ (uqu"v) vanishes for self-dual (anti-self-dual)

gauge fields. Since (3u+A“)z is a positive definite operator,

the differential equation without the gauge-field term does

not have normalizable solutions. All known Yang-Mills solutiona
with finite action are self-dual or anti-self-dual; hence for
these potentials there are precisely %T(Ti-l) {2T+1)n 2zero-eigen-
value modes with chirality determined by the gauge field's duality
properties. Of course this genéral result reproduces, for T=%

and 1, the numbers found before: n and 4n.

When n_ or n_ vanishes, a "vapishing thecrem™ is said to
hold. We have seen that such a theorem can be always established
when the gauge field is self-dual or anti-self-dual; however, it
is not yet known whether the vanishing theorem is valid for more
general field configurations.zo

We now derive the index theorem, by a method which makes

19

reference to the anomaly of the axial~vector current. First
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a local version of (3.28a) is obtained; upon integration over all
space, {3.28a) is regained. The derivation begins with a consid-

eration of the full eigenvalue problem for the Dirac operator.

il A,,)‘I’E = E 4 (3.30)

It is clear that Yy, which anti-commutes with the left-hand-side
of (3.30), takes eigenfunctions Vg into ¥_o . while the zero-

eigenvalue modes can be chosen to be eigenstates of Y-

Sd"x Cimy v, m=0 E=+0 . 91m
Y t posi tive .
S 4 k}o ) XY \’lo ) = ()4 (neguhve )th.:-;.l;:g)

To proceed, we construct the resolvent of the differential opera-

tor in (3.30).
Rlsgn)= 2 Yel f'0)
3 Ef‘l/'—
[-_Uf"(a;ﬁ A’)r‘}llR“llj;A)rév(x-“) (3.32b)

We shall want to take x

{3.32a)

and y coincidert, which may produce
infinities and ambiguities that must be regulated. A convenient,
gauge invariant regularization is the Pauli-Villars scheme; from
(3.32a) the same expression is subtracted with p replaced by M, and
and at the end of the calculation M is passed to infinity. [It
happens that one regulator mass is sufficient for the problem at
hand.]}

RRn (x,y4,n)= znn ‘_R!K‘j K-~ Rlxg M)_‘

(3.32¢)
Mo
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Next we form an axial-vector projection of the resolvent — yhich

we call the "axial vector current® — and also its divergence.

J;" (r) = tr s Ruﬁ (x,x; 1)

1.33)
A simple calcuelation, based on (3.30) gives
RRDEE N AL A L
Et (s
~dim (2412 $ ) & e u))
H>e EtcHM (3.34)

To complete the calculation we need to evaluate the limic.
f{Formally it is given by the ambiguous expression

2iéw;(x)yswg(x) = 2j tzvséwa(x)w;(x) = 2i(0)5% (0).) It is

here that we can use the results ahbout the anomaly of the axial-
vector current operator constructed from quantum Fermi fields
which interact with an external classical vector field. Of

course in the above we are not dealing with a guantum field

theory; rather, we are studying differential equations in Euclidean
space. Nev~rtheless, the objects we have constructed are
recognized to be precisely the [Wick rotated] quantal ampli-

tudes. Thus the resolvent R ig exactly the [Wick rotated] propa-
gator for a massive Fermi field in an external gauge potential,

and the axial-vector current Jg is the [Wick rotated] vacuum
expectation value of the axial-vector current operator for that

theory. Hence we arrive atl9
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)

A tY X F—uv va

Iy (r)= 2ip Jolx) -

b z
J;“)._-Z %*ln Yo Ye lv)
Etin

(3.35)

This anomalous divergence of the axial-vector current is also
the local form of the index theorem.
To derive the globhal relation, Eq. (3.35) is integrated

over all x.21

§a% 9,350 = 2w (4% Z ) b Y0

Etepm

v Sdl'x tv PP Py

(3.36)

¥hen it is assumed that the integral on the left-hand-gide pro-

duces no surface terms, and that the integral on the right-hand-gide

can be evaluated term-by~term with the helov of (3.31), Eq. (3.28a)
is regained.

The above derivation also exposes circumstances which may
modify the simple, integrated expression (3.28a). The surface
term for the integral of auJ'; need not vanish; the term-by-term
integration may be illegitimate. In that case an additional
contribution is present in (3.28a); it is called the "signature
defect". We expect that such pathologies occur when long-~range
potentials are present in the Dirac equation. In our example

the gauge potential can be long-range, but gauge-~invariant quanti-
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ties see only the short-range gauge field, and the simple result
(3.28a) is expected to hold, as is indeed the case in the explicit
computations for iso-spin Y4 and 1. A more mathematical formu-
lation states that the index theorem should be applied only to
compact manifolds without boundaries. In that case there obvi-
ously is no surface term on the left-hand-side of (3.36); the
summation over eigenvalues on the right-hand-side is

truly a sum over discrete eigenvalues, and the term-by-term inte-
gration may be justified. 1In our example, we are on the non-
compact manifold of Euclidean 4-space. However, as explained

in Section 11, the conformal invar’ -nce of the theory and the
assumption that the gauge fields de.rease rapidly at infinity
allow our problem to he mapped onto the surface of a 4-dimensional
hypersphere, and a signature defect is not expected.

(This consideration introduces the following subtlety: The
normalizability condition for the Dirac equation in an 0(5) co-~
variant formulation requires only that ]g—:;,cﬁ (x)¥({x) converge,
while Id‘xw+ (x)¥{x) may diverge. However, we have not encountered
a gituation in 4 dimensions where this distinction makes a dif-
ference. )

Even though the signature defect is absent in the present
application of index theory, it will play a role in other physical
sitvations. We have encountered Dirac equations in an odd
number of Euclidean dimensions, where no anomaly exists, yet
there are zero-eigenvalue l'nocles.22 These examples involve

soliton-monopole potentials which include a long-range Higgs

¢
i
i
i
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field and provide physically interesting applications of the
signature defect.z3
To illustrate the utility of the index theorem, we derive
once more the resulit that the self-duality cquation F"V=2¢"" has
8n-3 gauge invariant deformations. An infinitesimal variation

of this equation, caused by an arbitrary variation sa" about a

self-dual gauge potential AV, is [see (2.100) and (2.103)],

c\‘Fuv — 8*F‘“ =0
SF. - DYsa, - DA,

(3.37a)

Since the matrix o%’ is anti-symmetric and anti~self-dual, the

above is entirely equivalent to
— A
[Valad D,« SA, =0 (3.370)

next we write o"V as %T(uugv—ﬁuv) and impose the background gauge

condition on the small variations.

D: SAY =0 (3.37c)

Hence the equation one is left to solve is

ok Df(ﬁ!’ &Ay)=o 13.37d)

But we recognize (3.37d) to be two decoupled Dirac equations
for two Dirac two-component spinors in the adjoint (T=1) repre-
sentation — these two spinors make up the two columns of the

matrix GUGAV and move in the external potential AY. In other

-7~

wards, the above demonstrates that if wa, a=1,2,3, solves
cauf D —
¢a((yhr4,)‘f—0 (3.38)

with self-dual Ag, then Ag+u+u"wa is self-dual to first order,
with u being a constant arbitrary two-component spinor. The
index theorem states that there are 4n solutions to (3.38); and,
by the construction ,8n small deformations are found. One shows
that they can be arranged into exactly 8n linearly independent,
real combinations, and one further finds that 3 of them are
infinitesimal gauge transformations Dﬁe. Hence the number of
infinitesimal defurmations is 8n-3, in agreement with our pre-
vious computation.24 The explicit solution of the Dirac equation
for iso-vector fermions, presented earlier, provides there-

fore explicit formulas for the small defermations of a self-dual
gauge potential, now in the familiar background gauge, rather
than in the somewhat obscure gauge employed previously.

The startling relationship between solutions of the Dirac
equation for iso-vector fermions and small deformations of the
self-dual gauge potential gees even further. The following fact
is easily establihsed by reducing products of gamma matrices. If
F:v solves the Yang-Mills equation, then ¢a=y:“7uvvu and v,s
Fg“yuyvy- xu solve the iso-spin 1 Dirac equation where u is
an arbitrary constant 4-component spinor. [Notice that when
F:v is self-dual (anti-self-dual) only the negative (positive)
chiral components of these spinors are non-vanishing.] These

curious connections between gauge fields and Fermi fields are

related to the super-symmaotry properties of iso-vector ferminns.25
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Iv MINKOWSKI SPACE SOLUTIONS

In this last Section we shall discuss some solutions to the
Yang-Mills equations in Minkowski space which have recently ‘been
found. At the present time it is not clear what information
about the guantum theory is contained in these classical field
configurations; towards the end of the presentation we shall

describe some tentative ideas that we have about this guestion.

A. 0(4)x0(2) Formalism

Rather than recording the golutions straight-away, we
first develop a kinematical framework in which their elegance
and gignificance is .manifest. The Yang-Mills theory possesses
the 0(4,2) conformal group of invariances. U"nder conformal
transformations the coordinates x" transform non-linearly.
But as is well known, one may introduce 2 light-like six-vector
£®, A=l...6, @=E2+£2+4E3-£2+4E2-£220, which has the property
that (pseudo) rotations of EA correspond to conformal trans-
formations of EY/(£,+§.), w=1,2,3,4. The action of the conformal
group is thus linearized on this null-cone, and it becomes con-
venient to use the EA's as coordinates, rather than the conven-
tional x%. The relationship between the two coordinate systems
contains of course a large amount of ambiguity. For example, one
possible mapping is

giz %%%} L=1,2,3
g)‘l = 2&X _F

B %7_*!
eb = )}GA" {(

Al' ar

gat = °fL .1
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where x®=t?-x?, X is an arbitrary scale and £ is an arbitrary
function of x which parametrizes the ambiguity. Conventionally
the ambiguity is removed by sett.ng homogeneity conditions on all
interesting objects of the theory. An alternate way to remove
the ambiguity is to fix the value of E2+£2=£}+£2. This we do
here; we set that quantity to unity, which forces gA to lie on

a six-dimensional hypertorus. Thus the mapping introduces two
Euclidean vectors; a 4-~component R and a 2-component r? of unit

magnitude. Explicitly one has

C e 2R i=1,23

i

"
>

$|"

>

|

3
R

A
A
-

e
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»
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>

e\l

?_,2
2 ro®h
LY

>
\
h A

wz = (R- XD L th}?’ (4.2}

and all of Minkowski space is mapped, two-to-one, onto the hyper-
torus r?=R?=1. The action of the O(4)*0(2) subgroup of the con-
formal group is then represented by independent rotations of &¥
and ;a' while the remaining conformal transformations mix the
f¥'s with the £2's. [The metric of the A" coordinates, as well as
that of the r2 coordinates is Euclidean.]

The ordinary derivatives LIJ and gauge potentials a¥ are
mapped into Jerivatives and gagge potentials tangential to the

surface of the torus. Thus we have
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- . v
. 2 - R(P2 )
W Dpn 2P
~ - A A Y
LD - A fira )
Ao = (s%i“ * /.r T
~ a A -
i - (a v _a___ ‘CD‘.“ _"’_
DR Av QP A= BT (4.3)

A“dx, = A“d R taedr,
. ;{k - %‘m&a = O (4.9

{Compare with the similar mapping discussed in Section 1ID for
the 0(5) formalism in Euclidean space.]

From A® and 42 one constructs an “electric" field
A

-~ -~ -~ A ~
qu,z Ao, AM- Bp_ a, t Eaa_’ Aft]

and a "magnetic" field.

-~

'/_\,,uv s 1\9/"-/1” - Ii)"' A/K - /A.A‘V t ’Rv ,u_* EAM,AV

Both are tangential, i.e., R =0, & E_ =0. The
ncmenclature is derived from the fact that near the origin
E,; and ﬁij are proportional to the electric F ., and magnetic

Fij components of Fuv'

It is convenient to parametrize the two-dimensional vector
Ly an angle.

"~
T o AT T San (4.6)
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Then Aa=-eabfb g—; , and we may similarly set
“~ - -~
Cl,._ = ~€fue r°a
EA’a,; T~ tae v Ez“-
~ ’ M
£, = A\/u - Sﬂ a [a, 2#] RN

where the dot refers to differentiation with respect to 1. The

dauge potentials can be modified by a gauge transformation.
P -~

A/l——> g ALqg + 3"5,43
& = g ag +9'9g .

In particular, one may gauge transform A to zero.

The Minkowski-space Yang-iMills ackion

T 4 fd% & F“F,,

(4.9a)

becores in terms of new variables
A

""] (4.9b)

A ~

I = ‘i gctToeR tf[Eu n-}“_ ﬁ‘"’

The range of the t integration is from 0 to 2u; the re-
maining integration is over the surface of the sphere R2=1.
Since the mapping x¥+{1,Q) is two~to-one there appears an ad-
ditional factor of % in (4.9b). For the same reason,

there is no periodicity requirement in t. Note that the range
of integration is compact, hence finitleness of the action is
guaranteed when the fields are non-singular on the 1 circle

and on the @ sphere. The Yang-Mills field equations of motion,



-T2~

which follow Erom varying the fields in (4.9b), are
~ A ,.\ -~ ) - A
M S =
9 Hpv— Ev ¢ [An’ Hpv]‘ ‘_a, Eu]' (@]
”~
E)ﬁ

A~

EI‘" L [ A\“) E#J =0 t4.10)

B. Invariant Solutions
Having developed this hypertorodial formalism, which makes
explicit the 0({4)x0({2) group of syrmatries of the problem, we
may look for solutions which are themselves invariant under
interesting subgroups of 0{4)x0(2). Specifically 0(4) invari-

ant field configurations are obtained by setting
”~ ~
AM = (TAav Pv {l'r)

a = 0
(4.11)

The Yang-Mills equations then reduce to
(L]
{ fo{{"l)({'z)=o (4.12)

which is identical to the egquation of motion of a pcint particle
in a two~minimum potential, symmetric about f=-1.

The solutions are cbvious. A first integral is irmediate.
L)
v pl 1 2 _ L
'z'{ Fa(lrsy-1) = £

There are 1 independent solutions: £=0,-1,-2; these lead to

(4.13)

0(4) x0(2) invariant Yang-Mills potentials. =0 gives the trivial,
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vanishing potential; f=-2 is a pure gauge; f=-1 is the solution

27 In the mechanical analog

found by deAlfaro, Fubini and Furlan.
problem, £=0 and -2 correspond to the particle sitting at the
minima of the potential; f=-1 ig in unstable equilibrium at the
maximum. The 1 dependent solutions have been found by Luscher

and Schecht.er.26

These are periodic functions of T=1,0 where To
is another integration constant. Two different types of solution
are geens: for e<k there are separate oscillations about each of
the two minima, for e>) the oscillations range widely across

the central hump. The analytic expression, which we do not record
here, involves Jacobi elliptic functions. For &=k a simple

formula holds
1% Sraem
wnh iz (v-T.) (4.14)

It is clear that the action of these solutions is finite.

By using the formulas (4.2) and (4.4) the Yang-Mills fields
may be given in conventional variables. We do not carry out the
projection, since the resulting configurations do not exhibit any
noteworthy features; the fields have finite energy, but dissipate
in time in accordance to general theorems which tell us that
no soliton solutions exist in the pure Yang-Mills theory.z
Rather we prefer to remain with the hypertorodial caordinates
where the solutions are constant or periodic, not in time, to be

sure, but in the new variable 1.
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C. Nlternate Quantization of Yang-Mills Theory

Let us recall that the evolution of a dynamical system need
not necessarily be described by time evolution. Other combina-
tiors of t and X are possible evolution variables, provided
all space-time is covered. 1n a LorentZz invariant theory one
may use an’ time-like vector for describing evolution of imitial
data specified on a space-like surface. In a conformally invari-
ant theory there are further possibilities, and in particular
one can use 7T to describe evolution of data specified on the
Q surface. The generator of 1 translations is easily determined;
it is R = 53 K% + A29).

When these considerations are brought to bear on a quantum
theory they lead to the well-known conclusion that in a Lorentz
invariant quantum theory there are alternate methods of quanti-
2ation which do not rely on a Hamiltonian evolving the quantal
system in time. Indeed some years ago, light-cone quantization
was profitably employed to analyze deep-inelastic scattering
processes.28 Similarly, alternate guantization methods have
been suggested for conformally invariant quentum theories in
Euclidean space.29 In the present context it apbears very
interesting to take T az the quantization variable. Correspond-
ingly the Hamiltonian is R, which we now shall call HT, and the
states which diagonalize HT Lecome the "static” basis for the
Hilbert space [rather than the enerqgy cigenstates of conventional
quantum theory). Precisely this alternative for conformally

30

invariant theories has been advocated by Fubini. It is empha-
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sized that a new quantum theory is not being developed, rather
the conventional theory is discussed in terms of a new set of
basis states. Indeed it was explicitly demonstrated by deAlfaro,
Fubini and Furlan,31 in the simple example of the conformally
invariant quantum mechanics of a point particle in a 1/r? po-
tential, that the new approach is entirely equivalent to the con-
ventional one.

Here we consider quantizing Yang-Mills theory with t as the
evolution variable and "r as the Hamiltonian.

DA A -
He * -3 g'ﬁ"z er| EYE.*2 K | (4.15)

The cancnical quantization procedufe is entirely straightforward.
The gauge a=0 ig very convenient: the canonical coorxdinates arxe
then A" with conjugate momenta gHgr, Then Eq. (4.10),63§"=0.
becomes Gauss® law which has to be imposed as a condition on the
physical states. Equal-t commutators involve delta functions
on the @ surface and in the non-interacting case Ht can be ex-
plicitly diagonalized. One important result emerges: the spec-
trum is discrete, the eigenvalues are dimensionless integers.
This of course is a consequence of the fact that the space is

compact; infra-red divergence has been tamed.

D. Semi-class.cal Quantization of Solutjons

We shall not go into the obvious details of the canonical
approach. Rather we want to inquire to what extent the solu-

tions which we have previously discussed can be used to perform a
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semi-classical analysis of the quantum theory. Clearly the
constant solutions £=0 and -2, which are pure gauges, correspond
to the vacuum; the latter being a non-vanishing, pure gauge po-
tential. - ~

A* = 200 B,

-
- "
= 3 ' 5 3
3 = R

(4.16a)

This gauge has unit winding number, and obviously deacribes one
of the many classically degenerate vacua of Yang-Mills theory.

The other vacua are 0{3)} invariant configurations.
-
N -“ “ "
A, = 3" 9“8 (4.16b)

" of courme there is tunnelling between the vacua; the pseudo-
particle solution which exists for imaginary T insures this.
[The pseudoparticle is just the kink solution of (4.12) with
£ replaced by —E.]

The f=-1 solution is seen to correspond to an unstable
vacuum, hence no guantum state is associated with it. Never-
theless we can use this solution to compute the height of the
barrier which separates the two minima; it is é%i. [Another
curious feature of this solution can be noted. If the pseudo-
particle is continued from imaginary T to real 1, we obtain a
complex self-dual gauge potential. Since the equations are nonh-~

linear one does not expect, a priori, that the real and imaginary
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parts of this complex configuration satisfy the Yang-Mills equa-

tion. Nevertheless, the real part 2f the self-dual complex
. 32]

Of course it is the periodic solutions that offer the most

potential is just the f=-1 solution,

interesting probe into the guantum theory since it is possible

to quantize them by the Bohr-Sommerfeld method, thus obtaining

the semi-classical spectrum of Ht' Before proceeding, let us

review the Bohr-Sommerfeld method asa applied to field theory.
For quantum mechanics of a point particle in one-dimensional

motion, the WKB gquantization condition reads
{2
(nef)v- f 0!1 Py (4.17a)
9 :

vhere plg) is the local momentum /ZE~2V(q) and the q; are the
turning points of the bound motion, The quantity nm on the left-~
hand-side arises from the correspondepce principle; the quantity
kn is derived from the detaile of one-dimensional motion, and

is specific to that problem. The approximation is presumed
accurate for large n. When one drops % compared with n,

one is laft with the Bohr-Sommerfeld quantization, which after

a change of variable from g to t may also be written as

¥

nNr = jdt ee) pee) (4.17b)

where the integration is now over a semi-period.
Although the full WKB condition may also be derived for

many degrees of freedom,33 as well as for a field theory with
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infinite degrees of freedom,34 we remain with the simpler Bohr-
Sommerfeld condition. For several degrees of freedom (4.17b)

generalizes to
.
7= {e) {t}
hi f‘“ % Pt G (4.18a)
while for field theory we take

wr= (ot (dV JT(t,V) $(ev)

(4.18b)
E£q. (4.18b) instructs us to find a periodic solution ¢, multiply
its time derivative by the canonical momentum W and integrate
over all variables V, save the evolution parameter t. The
resulting quantity,!dvns. depending on t as well as various
constants of integration, is then integrated over a semi-period
of t and set equal to nw, thus achieving one guantization con-
dition on the constanta of motion.

For the Yang-Mills theory governed by tne action (4.9b),

the Bohr~-Sommerfeld condition reads

l11r=—zg7'fcf\lztf{§_§ A v 9 &
A" Ja (4.19a)
b4

Since

§__=o,c_y;f= E/&

~ ~
@ JA* {4.19b)

(4.19a) becomes

Ni-

(o]

=
=

- Sch' ji”l tv E“Aﬂ
- Jci?‘ScU) tr{ En EFG “( (:{“&~ a, A"j)_}

(4.19¢c)
An integration by parts and use of the equation for B" shows

1]
re>

that the second term in the curly brackets can be set to zero,

and we are left with the gauge-invariant guantization condition.
-~ [a}
ol (=
nw =~ gd'-" Soo-/l t~ E C/a- {4.19a)

We insert into this formula the known perijodic solutions,

for which - )
A = o R QLT
» ~ .
E* = CT* RV {(’l",
(4.20a)

with f satisfying

‘{l-_- 28 - {2[{-4-2)" (4.20b)

and get
nr = 617,(‘!“' {71“) ) and.‘ y2e- e (4.21)

where the € integration ranges between the two turning points
of the classical motion. The meaning of € is clear. If

we evaluate the t~itamiltonian, Eq. (4.15),




-BO~-

for the solution (4.20), we find 3n%e. Evidently our semi-
classical procedura provides the semi-classical eigenvalues of
#,, which we call ET=3t’c.

To determine the dependence of E.on n, the £ inte-
gration in (4.21) must be performed. The formulas involve the
complete elliptic integrale of the first and second kind. Two
distinct expressions emerge depending whether € ie less than
or greater than k. We record hare only the asrymptotic forms.

For small n, doubly degenerate levels are found with

Er =0 (4.22)
For large n, there is no degeneracy and
E. & h'is (4.23)

{tthen small oscillations about any of the vacuum configurations
are canonically quantized one also obtains a linear spectrum.)
The quantal significance of the periodic solution may be
given: when it is expanded in a Fourier series, the Fourier co-
efficients provide a semi~classical approximation to the matrix
elementg of the guantum field A" between successive bound states.35
What corrections to these semi~classical results are
envigioned? It is clear that tunnelling removes the degeneracy;
this is clear and causes no conceptual problems. Much more

problematical are the gquestions which arise if one confronts

this entire program with the realities of Yang-Mills perturba-
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tion theory. The problem is of course that the well-known
anomalies prevent the theory from being conformally invariant
— the renormalization procedure introduces conformal symmetry
breaking.36 In other words it is not obvicus how to relate
results of the alternate quantization method to the physically
relevant, Poincaré covariant theory.

Ona of two approaches is possible. The theory is regulated
in a conventional way: l!t acquires a t dependence; bound states
disappear but perhaps some kind of adiabatic perturbation theory
can be used to study further properties of the spect:um.37 al-
ternatively, a non-conventional regularization scheme may be
adopted such that Ho remains a constant of moticn., The theory
loses translation covariance, since translation generators acquire
a T dependence. Let us suppose however that even in the renorma-

lized theory it is true that B%= lim 1

A+
about the translationally covariant theory could be regained

RY. Then information

in the limit.

E. Rediced Yang-Mills Theories

To conclude these considerations, we put aside the serious
obstacles which still exist in assessing the physical relevance
of our alternate proposals, and proceed to another suggestion
for obtaining results about Yang-Mills theory. It is apparent
that at the present time the model appears too complicated for a
complete solution, either ciassically or quantum mechanically.

Nevertheless it has been possible to obtain complete classical
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solutions which respect a symmetry. A suggestion for the analysis

of the guantum theory is to reduce the full degrees of freedom
to those that are invariant under a subgroup of the conformal
group. In this way we obtain gquantum systems which are consid-
erably simpler than the full Yang-Mills theory, yet may retain
some of the physical properties of the complete theory.

M very simple model is obtained if we freeze out all but
the 0(4) invariant degrees of freedom. The Angsatz (4.11) leads

to the action
I 6xtfaw [4 {?z 73 {;”,3)1 4.24)

The quantum mechanics, though trivial, already exhibits some
of the features of the complets theory: clazsical degeneracy,
vacuum tunnelling, an anharmonic oscillator bound state spectrum.

Richer is the model where only 0(3) symmetry is impoéed.
The most general O(3) Ansatz is

Fal A A

/1‘A = (G l?u ({1 Ty I)““ CC;P (: é 1!;

-~

pi P C, Cy T l?(, =f3

~
A

= ( iéi o-9p (:P ‘{q
'P“V - 3."\!_ » é"

—3

{4.25)

Here € is a unit 4-vector which picks out the direction of

0(4) breakdown to 0(3). We get R-C=cos6, 0¢8¢v, and the fi's
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depend on 1 and €. With the redefinitions
Fe= 1+ swof,
®. = smp (wae .f,, ¢ fr.)
A® = «‘)L"O’ﬁ9<fz.f9"'79(3
AT - emo

(4.26)

the action becomes
I- gﬁqufje-{ (9 +¢ Aﬂ)é\z -,1‘9#9 F F.
- 2
e m‘)j-
4.27)

where F4V=34aVY-3Vak, &=¢,+i¢,, and the metric is (; _g) with the
first coordinate being t, the second 8. The above is an Abelian
Higgs model in a 2-dimensional space of constant curvature,

with a 3-parameter 0(2,1) conformal invariance group of coordi-

nate transformations.
Se“. ST = o + LEWT WO Fec T b
5 .
Jo - VWP WD - C s &

SE- (S¢)o @
SA = (F€)% A" ¢ (V' 59%) A

4.28)



~84-

The gauge theory possesses an infinite set of topologically

inequivalent classical vacua, just as does the complete theory.

é - ez.‘nB

(4.29)

The imaginary time {1+it] version of the theory has n-pseudo-
particle solutions. [The Euclidean model is a conformal trans-
formatjon of Witten's Lagrangian.“l Thus the simplified theory
gives rise to the .ultiple vacua and tumnelling of the complete
theory.

At present nothing more is known about the reduced clagsical
or quantum mechanical theory (4.27), beyond of course its 0(4)
invariant “sub-theory®™. There is a fine tradition in theoretical
physica of studying 2-dimengional models for clues to realistic
4-dimensional ones. We hope that an understanding of our 2-

dimensional model (4.27) will Lelp unravel the complexities of

the full Yang-Mills theory from which, after all, it was obtained.
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