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INTRODUCTION

This Review summarizes what is known at present about

classical solutions to Yang-Hills theory both in Euclidean

and Hinkowski space. The quantal meaning of these solutions

is also discussed. Solutions in Euclidean space expose multiple

vacua and tunnelling of the quantum theory. Those in Minkowski

space-time provide a semi-classical spectrum for a confornal

generator.

The material was presented at various conferences in the

summer and early fall of 1977, and formed the content of lectures

given at Bar1in, Kiev and at the Brookhaven National Laboratory.

We are grateful to I. Biyalinicki-Birula, E. Caianiello,

J. Iliopoulos, A. Kamal, H. Kleinert and O. Parasiuk for giving

•is the opportunity to discuss this work, and to K. Xoshida, who

provided an early version of the manuscript. Also we acknowledge

with thanks the assistance of M. Ansourian, F. Ore and B. Schechter

in the preparation of our Review.

The strategy recently evolved for extracting new informa-

tion from a quantum field theory consists first of ignoring the

quantal character of the operator fields, and solving field equa-

tions as non-linear partial differential equations for classical

functions. These solutions are then studied by various semi-

classical approximations methods to yield information about the

quantized theory.

Classical solutions can be conveniently characterized by

their space-time dependence. Host familiar are time- and space-

independent solutions; these are constants which satisfy the

field equations. The quantum significance of such fields has

been known for some time: when they describe stable configura-

tions of finite [zero] energy.these constants are approximations

to the vacuum expectation value of the quantum field and fre-

quently signal spontaneous symmetry breaking.

Attention has been drawn also to time-independent but

space-dependent solutions, such as the kink in one spatial di-

mension and the ponopol" in three, These — thf soli tons —

are stable finite-energy field configurations and their quantal

significance is known: classical soliton solutions signal the

existence,in the quantum theory,of coherent bound states which

describe hwavy particles, the mjantujn solitons. ^t* classical

soliton energy is a weak coupling approximation to the quantum

soliton's maes, while the Fourier transform of the classical

soliton field approximates the matrix element of the quantum

field between one-soliton momentum eigenstates.
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Time- and space-dependent solutions are much harder to

come by, simply because the non-linear partial differential

equations are sufficiently complicated to prevent a complete

analysis. A prominent exception is the sine-Gordon theory where

time dependent periodic and scattering multi-soliton solutions

have been obtained. A semi-classical quantization provides

information about the bound states and the S matrix for

quantum solitons. Moreover, the model turna out to be sufficiently

transparent so that a complete quantum-mechanical solution is pos-

sible. The exact results provide an important check on the ap-

proximate ones: the two agree where expected — for weak

coupling. (In fact the WKB bound state spectrum turns out to

be exact!] No such success has been achieved for realistic

models in three dimensions. However most recently some very

interesting space and time-dependent solutions of the Yang-Mills

equations have been found. Their quantum meaning is now being

explored, and some of our [tentative] ideas regarding them will

be presented in Section IV.

The study of the physics of solitons has exposed several

fascinating effects.which should be briefly recalled. For weak

coupling strength g, there are three scales of interaction

strength. The interactions of the ordinary particles of the

theory are weak, O(g); the solitons however interact strongly

0(g~ ); the interaction between solitons and ordinary particles

is of intermediate strength, 0(g°). New types of conserved

quantum numbers have been discovered. These insure the stability

of the quantum soliton, but do not arise from local conserva-

tion laws of the Noether variety; rather they reflect topological

properties of the field configurations. Furthermore, a startling

phenomenon has been found: conversion of bosons to

fermions, and correspondingly conversion of internal symmetry

degrees of freedom into spin degrees of freedom. Finally,the

coupling of Oirac fermions to the solitons has produced peculiar

zero-energy bnund states with profound effects on the theory.

while we have clearly learned that a quantum field theory

gives rise to a much richer variety of phenomena than

previously seen in perturbative Feynman-Dyson expansions, the

fact remains that in theories which are presently intensely

studied as possible candidates for a fundamental theory of natural

processes — the Yang-Mills gauce models of strong interactions

or of unified weak and electromagnetic interactions — no soliton

solutions have been found. Indeed there are non-existence

theorems which indicate that something different must be done,

if one wants to apply semi-classical ideas to these models.

There is yet a further type of classical solution that can

be considered; a solution not of the original equations, but

rather of modified equations which are obtained by

replacing time by imaginary time t=x°-*-ix [and similarly changing

the time components of all tensors] • What then is the quantal

significance of these Euclidean fields? For an immediate answer
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recall that practical calculations in quantum field theory are

most frequently performed in Euclidean space which is reached

by a Hick rotation. Thus one nay expect classical Euclidean

fields to contain some information about the quantum theory.

More precisely, one may formulate the quantum theory in Euclidean

space by a functional integral or by an operator method, compute

various semi-classical amplitudes> and continue back to

Hinkowski space. Moreover, there is a more physical reason

for finding Euclidean (imaginary-time] solutions. It

is well-known that such classical solutions signal, in the

corresponding quantum theory, the occurrence of tunnelling

— i.e. there is motion which, though classically forbidden, is

allowed quantum mechanically.

Imaginary-time solutions to pure Yang-Mills theory have indeed

been found; in these Lectures we review both the

original example of Belavin, Polyakov, Schwartz and Tuypkin,

and the later generalizations.The physical import of the original

solution has been now established; it gives evidence of a rich

n-.n-perturbative structure to the quantum theory. The following

description emerges.

For the classical SO (2) Xang-Mills theory in the gauge

A°-0, a=l,2,3, the classical vacua — that is, the classical zero-

energy configurations — are gauge potentials, which themselves

are pure gauges. The gauge functions g(r) are time-independent

2*2 unitary matrices; they need be characterized further to obtain

a complste description of the classical vacuum. An important

gauge function is the constant one, leading to a vanishing gauge

potential. One need not consider those g(r) which are singular

functions of r, nor those that do not tend to a constant for

large r, since the corresponding gauge potentials are separated

by an infinite energy barrier from the vanishing one and are pre-

sumably irrelevant to the physical sector which includes the

vanishing potential. The remaining gauge functions — those

that do tend to a constant at spatial infinity — are mappings

from 3-dimensional space (augmented by the point at infinity] to

the SUC2) group, and as such can be arranged into homotopically

inequivalent classes characterized by the integers n=O,*l,...

Gauge functions belonging to distinct horaotopy classes cannot

be continuously deformed into each other.

Pure gauge potentials constructed from the gauge functions can

thus be classified by the integers, n. Gauge potentials within a

class are gauge-deformable one into another by gauge transforma-

tion built from gauge functions of the trivial, class, n=0; these

gauge transformations are called "small" gauge transformations. On the

other hand two gauge potentials which belong to different classes can be

gauge-deformed into each other only by gauge transformations

built from gauge functions of some non-trivial class, n/O; these

are called the "large" gauge transformations.

In the quantum theory, there are distinct states | n>

describing the gauge potential in each characteristic

class n. Mo physical significance is given to the degrees of

freedom associated with small gauge transformations. Indeed

conventional gauge fixing procedures in the AG=0 gauge are tanta-
a
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mount to imposing Gauss's law on the physical states and as a

consequence the states |n> are invariant under small gauge

transformations. Under the large gauge transformation A^ , |n>

transforms to |n+I>, and a linear superposition must be taJcen

to obtain a gauge invariant description for physical processes.

However there is no requirement that the physical states be

invariant under a large gauge transformation; gauge invariance is

still achieved if the action of <& on a physical state produces

a phase. Therefore the linear superposition must be of the form

|0>=i;ein0!n> andyjf |8>=e"i8|e>.
n

To complete the description of the quantal low-lying states,

we must ascertain whether the states |e>are degenerate in energy,

or whether tunnelling splits them. It is here that the pseudo-

particle solution becomes relevant. One notes lhat this solution

interpolates, as its imaginary time parameter passes from -•» to

»>, between a vanishing gauge potential — one that evidently be-

longs to the n=0 class — and a gauge potential belonging to the

n=l class. We conclude that in the quantum theory there is tun-

nelling; the energy levels acquire a 0 dependence and exhibit a

band spectrum.

This Bloch wave picture is dramatically altered when mass-

less fermions are included in the theory. The anomaly of the

axial vector current renders the conserved chiral charge 0 5

gauge non-invariant under large gauge transformations. Specifically

one finds t&) Q5*v'"
 = 0 5

+ 2 > It is impossible to diagonalize simul-

taneous H,*/ and Q5. Physical considerations require that energy

eigenstates diagonalize ty j hence they are chirally non-invariant.

Indeed chiral transformations shift 0; since they also commute

with H, the 9 dependence of energy eigenvalue disappears and

tunnelling is suppressed.

Detailed calculations based on the above physical pictuj/e

have been performed and were described by 't Hooft. The origi-

nal pseudoparticle solution is used in an approximate evaluation

of the Euclidean functional integral. The physical significance

of more general Euclidean solutions has not as yet been es-

tablished; they appear to give insignificant corrections to the

amplitudes described by "t Hooft. Nevertheless, we feel that it

is important to undertake a detailed study of all solutions to

Yang-Hills theory, for several reasons. Firstly, it is self-

evident that any information about the theory will be helpful

in establishing its physical content. Let us recall, especially,

that computations of the dominant effects are not completely

satisfactory since they suffer from uncontrollable infra-red

divergences which reflect the infra-red instability of the theory.

Secondly, our analysis of this system has put us in contact with

parallel developments in pure mathematics. That there should be

a conjunction of interests between modern mathematics and physics

is truly a gratifying circumstance, and we are happy to be parti-

cipating in it. The collaborative physical-mathematical efforts

yield a new understanding of the axial-vector-current anomaly
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through the Atiyah-Singer index theorem. Also they give some

hints that the Yang-Hills equations are considerably simpler than

appear at first, and may even in some sense be linear. Further

understanding of these possibilities shall certainly be sub-

stantial progress towards a solution of the theory.

-9-

II PSEUDOPARTICtE CONFIGURATIONS

We begin these Lectures by a study of solutions to the Yang-

Hills field equations in Euclidean four-space. We shall consider

an SU(2) gauge group and represent the potentials and field

strengths as anti-hermitian matrices in the space of infinitesimal

generators, with the gauge coupling constant e scaled out.

1 A'lc= 4 " trtt

e °- 5T" l2-lb)

oa (a=l,2,3) are the Pauli matrices, and summation over repeated

indices i s implied.

The Yang-Hills field equations

\) p^" •= c* F*"" * L^f, F~* J ~ & (2.2)

follow from the requirement that the action S be stationary.

X T rUil (2.3)

A. Topological Considerations

As in Ref. 3, we shall proceed by establishing a lower

bound on S. The bound is saturated if the fields satisfy a

set of first order non-linear differential equations, which of

course imply the second order Eqs. (2.2). Throughout this

section we shall consider only solutions to the Yang-Mills

equations which minimize the action by saturating its lower

bound. Mo other solutions with finite action have been found in
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the Euclidean domain, and one may conjecture that the c lass we

consider i s exhaustive of a l l f in i t e action solutions.

We define the dual *FWV of the field strength by the totally

antisymmetric tensor e 0 ( e i 2 n , - l ) -

r JUV
(2.4)

The inequality

together with the algebraic identity FUVF =*FU U*F , establishes a

lower bound on S.on S. . ,' .^
(2.6)

We shall soon show that if S is finite the right hand side of

this inequality does not depend on the detailed features of the

field configuration, but only on general topological properties

of the boundary values of the potentials h?. Mora precisely, it

will emerge that the requirement of finite action separates all

possible field configurations into equivalence classes of po-

tentials which can be continuously distorted into each other.

Within each class the quantity

q
T

r - 1 *f V ' •< F IT. (2.7)

takes a definite integer value, called the "Pontryagin index" of

the field configuration. Postponing the proof of these state-

ments for a momenti we see that the bound on the action

S >y SIT*

is saturated if

,—nv _ t Ir r l

(2.8)

(2.9)

i.e., if the field is self-dual or anti-self-dual. Eq. (2.9)

implies the Yang-Hills equations (2.2). This follows also from

*Fuv=JieMvpoFpo and the Bianchi identity satisfied by *F
wy.

(2.10)

What we learn here is that the self-duality or anti-self-duality

condition is the equation for the absolute minimum of the action

within a definite Pontryagin class. In the literature the self-

dual field configurations with Pontryagin index q=l are often

referred to as pseudoparticles (or instantons]; those with

|q|>l are called multi-pseudoparticle configurations.

The proof that q is a topological invariant, to which we

now return, proceeds as follows. Notice fir3t that tr*F

is a divergence

F F

r. - i<
with

Afl A*

(2.11)

(2.12)
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Assuming for the moment that Au has no singularities, the integral

in Eg. (2.7) can be replaced by a boundary surface integral.

JU V

|<?-0<* ^ L (2.13)

where a is a surface enclosing a sphere of radius R and nv is

ita outward normal. The requirement that the action be finite

demands that FMV approach zero faster than |x|" as |x|-«°. The

field configuration then becomes integrable and one can find

a unitary matrix g(x) such that, for |x|*".

g(x) defines a mapping from the points of any boundary

surface a into the manifold G of the SU(2) group. This mapping

determines q; substituting Eq. (2.14) into Eqs. (2.12) and (2.13),

we find

'( (2. IS)

where d'g is the invariant volume element of the SU(2) group. Thus

we see that q counts how many times the volume of the group

manifold G is covered by g(x) as we let the argument x.v ?pan

the whole surface at infinity. The fact that A " must approach a

pure gauge at infinity follows from the requirement of finite

action, and then it is obvious that no continuous deformation of

hv preserving the finiteness of the action can modify the value

of g.

The equivalence classes of potentials A that can be con-

tinuously distorted into each other are in one-to-one correspon-

dence with the equivalence classes of mappings o**G which can be

continuously related. Because a is topologically equivalent to

a three-dimensional sphere S1, these classes are also in one-to-

one correspondence with the elements of the third homotopy group

of a.

A realization of the boundary conditions leading to q=l

that will be very convenient for our analysis is obtained by

demanding that as |x|»» AM-»g"'aMg, with

Let us define

/• o J »J

Inserting Av into Eq. (2.12) we find

(2.18)

2.19)
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llf-

(2. 20)

(2.21)R->oc
which shows that a regular field A u approaching A £ at infinity

has q=l.

This computation also shows that we must recognize an im-

portant point. The field strength associated with the purr gauge

potential AJJ of course vanishes, so that q, for this case, must

be zero. Written as a surface integral, q receives a contribu-

tion +1 from the boundary terra at infinity. This must be can-

celled by some other surface contribution at finite xv. Indeed,

A^ is singular a'so at the origin, as is apparent from Eq. (2.18),

and the contribution to q coming from a 5j,<all surface enclosing

the origin is -1. We retain from this example the fact that the

Fontryagin index, expressed as & surface integral over the group

volume [Eg. (2.IS)J,way receive contributions from all the singu-

larities of the gauge potential A u. This will be very relevant

in the following.

B. One-Pseudoparticle Solution

From the discussion presented above we also see that a field

configuration with q=l is obtained if A " is multiplied by a func-

tion f(x2) such that f(0)=0, f (<-) = !. Let us consider then

A" - -'.
(2.22)

Symmetry considerations, which will be expanded later, suggest

that the functional form of this Ansatz is compatible with the

self-duality equation, leading to an eguation for fix2). From

Eq. (2.22) we evaluate

2.23)

The matrix valued tensor o"u is self-dual and the condition

Fnv =, Fuv i g s a t i s £ i e d i f a na only if

This equation is solved by

(2.24a)

(2.24b)

with A 2 being an arbitrary scale. The resulting field strength

is

• uv — _ " '• <r~~
(2. 25)

r v -
If the function f (x2) i s subject instead to the boundary

conditions f(0)=l , f(»)=0, the ensuing f ield configuration

will have q=-l. The anti-self-duality condition Fwv=-*PliV can
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then be imposed and i t i e solved! i f

leading to

(2.26)

r 2

„.„
Notice that the right hand sides of (2.24b) and (2.26) add

to 1 and that the sun of the corresponding gauge potentials

is the pure gauge A^.

field configurations with cp-1, but without a singularity

at the origin, or with q=+l, and with a singularity at the origin,

can be obtained by replacing the matrices o"u in Eqs. (2.18) to

(2.27) by matrices 5 p u defined &B

(2.28)

The matrices avv are obtained from awv by a parity inversion of

the 4th axis and are anti-self-dual.

C. Symmetries of the One-Pseudoparticle Solution

The action density of the pseudoparticle

-i +T Fuv F.... - fS X1
(2-29)

is spherically symmetric. This suggests that the field configu-

ration itself may be synroetric under 0(4) rotations. The ex-

pressions for A" and Fuv are not explicitly symmetric; for in-

stance, the right hand side of Eq. (2.25) remains invariant under

an 0(4) rotation, whereas Fvv must transform as a second rank

ten&or. However, the apparent non-symmetry may be compensated

by an appropriate gauge transformation. Let us consider a

combined rotation in the Euclidean and SU(2) spaces, generated by

&*». (2.30.)

where M w v denotes the operators that effect space rotations; i.e., H"4'

contains both an orbital component, which acts upon the position

dependence of a field, and a spin component, which acts upon

its tensor indices. o>lv are the matrices of Eg. (2.19); one shows

that they [as well as the ovv] obey commutation relations identical

to those of It ie p»ev to verifw that

[©, AUJ = [©. = O (2.30b)

for the fields of the pseudoparticle, which proves the rotational

symmetry of the configuration. IThe commutator notation is symbolic; it

does not represent quantum mechanical commutation, but rather the

infinitesimal action of the transformation.]
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Notice that the group of combined 0(4) and SU(2) transfor-

mations is a group of covariance of the self-duality equations;

Eq. (2.2 2) gives the most general Ansatz invariant under these

rotations. This explains why the Ansatz is compatible with the

self-duality constraint.

Because the theory we are considering is covariant under

the full 0(5,1) group of conformal transformations, any confornial

transformation of the pseudoparticle will still solve the self-

duality equations, of course, as we have just verified for the

0(4) suogroup of rotations, some conformal transformations may

not give a different solution, but just a gauge transform of the

original one. we investigate now whether the group of symmetries

of the pseudoparticle is actually larger hhan O(4).

The conformal group in Euclidean four-space has, as infinites-

imal generators, the operators M u u, Pu, Kw= JL Pv A. and D,

which generate, respectively, rotations, translations, special

conformal transformations and dilatations, with <*L the inversion

operator. Of these, a dilatation changes the scale A of the

pseudoparticle and is thus not a candidate for an invariance. If

J 48A *
we denote by ;gj =-2Si— the action density of Eq. (2.29) , we

effect on^J of the remaining generatorsreadily determine the

to be i- -rsh i 1

(2.31a)

and

(2.31b)

While it is clear that translations and special conformal trans-

-19-

formations are not symmetries of the solution, i t i s apparent

that ^4 i s invariant jnder the transformations generated by

(2.32)

The commutators of Ru and MlJV close into the algebra of an 0(5)

subgroup of the conformal group.

The proof that the field configuration i t se l f i s also 0(5)

symmetric i s s l ight ly less t r i v i a l than for the 0(4) subgroup;

one must perform a space-dependent gauge transformation together

with an O(5) conformal transformation to achieve form invariance

of Aw and Fl'v. One verifies that l\" and Fuv are symmetric under

the combined conformal and gauge transformation generated by

•= t\ T ' _ • • • • (2.33)

D. 0(5) Formalism

The symmetry of the pseudoparticle under the 0(5) subgroup

of conformal transformations can be made manifest by an ex-

tension of the formalism, which is very convenient for compu-

tational purposes and which we shall now illustrate.

The 0(5) subgroup of conformal transformations can be realized

as an ordinary group of rotations, if we introduce coordinates

i ,a=l,...,5, r ra=l, related to the Euclidean coordinates st"

by a projective transformation.
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(2.34)

Eqs. (2.34) effect a projection of Euclidean four-space onto the

surface of an hypersphere, S*, imbedded in a five-dimensional

Euclidean space. The rotations of this hypersphere induce, via

Eqs. (2.34), conforms! transformations belonging to the 0(5)

group on the coordinates scM. Gauge fields AW [which can be

considered as the components of a matrix valued form A-A dx'1)

transform in a mapping of manifolds like the derivatives of a

function [which are the components of the differential df=*j—jjdx11].

Differentials over the surface of S* are conveniently expressed

by tangential derivatives

c f | -

(2.35)

Correspondingly, we introduce a five component gauge f ield

Aa> which i s related to the usual four component gauge field

(2.36a)

£q. (2.36a) gives four relations; to specify the five-component

abject A completely* we need one more. This is clearly

sf-AcL = o (2-36b)

which insures that the gauge pjtentials are, like the deriva-

tives, transverse. (The metric on the hypersphere is Euclidean;

hence,there is no distinction between upper and lower indices.]

With A we construct covariant derivatives over the hyper-

sphere

D (2.37)

and the field strength is related as usual to the non-coramuta-

tivity of these. We must, however, take into account the non-

commutativity of the tangential derivatives themselves.

%tj 5 fo J - O (2.38)

We therefore define rab as the value the left hand side of

Eq. (2.3B) takes when §a is replaced by the covariant derivative

- X h
(2.39)

Notice that Fafa is anti-symmetric and tangential; it has six

independent components.

The configuration of Eq. (2.22) is invariant under combined

space and SU(2) rotations because the algebra of the avv matrices

is isomorphic to the algebra of the rotation generators Kvv. The

addition of avv to Mus) in Eq. (2.30) produces, upon commutation
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with auvx , terms which compensate the variation of the expres-

sion due to space rotations. This suggests that the 0(5) sym-

metry might be made manifest if the gauge and tensorial degrees

of freedom of the fields could be combined into an

expression of the form £ . r , where now the Z . matrices obey

the algebra of the generators of 0(5) rotations. This algebra

cannot be realized by 2*2 matrices( but we can still achieve a

manifestly 0(5) invariant expression for the pseudoparticle by

the device of putting together a pseudoparticle and an anti-

pseudoparticle in an extended gauge system.

Let us define 4*4 matrices

(2.40)

and extend the SU{2) gauge theory to a theory with SU(2)«SU(2)%O(4)

gauge group. The potentials and field strengths ace represented

by 4*4 matrices.

A* - - (2.41a)

r, AU.\
The expression

is block diagonal and contains,in the upper diagonal block,the

SU(2) gauge field of the pseudoparticle, and in the lower diagonal

block the field of the anti-pseudoparticle (c.f. Eqs. (2.22),

(2.24) and the remarks preceding Eq. (2.28)1. The right-hand-

side of Eq. (2.42) is neither self-dual nor anti-self-dual (al-

though the individual blocks are ] and has q=0. It does, however,

satisfy the Yang-Hills equations of motion. The advantage of having

combined the pseudoparticle and anti-pseudoparticle into a single

expression is that, within the space of 4x4 matrices, we can find

a represontation of the algebra of O(5) generators and, as we

now proceed to show, the field configuration of Eq. (2.42) can

be cast in a manifestly 0(5) symmetric form.

We obtain a matrix representation of the O(5) algebra by

enlarging the set of matrices Lvv to a set T.ab, with the four

new matrices tv given by

-1 Of \

o) (2.43)

The ten independent matrices E have the commutation relations

of the 0(5) infinitesimal generators. In the hyperspherical

formalism it is now possible to write down a field configuration,

with 0(5) gauge group, which is invariant under combined space

and global gauge rotations; it is given by the flnsatz

Act = l * --ato ̂  (2.44)

where the only freedom i s in the constant a. The corresponding

field strength is

U t o r - '
(2.45)
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ana the Vang-Hills equations of motion DfiF =0 are satisfied

if (a+1) (aJ+2a)=0. The two solutions a=0 and a=-2 correspond

to pure gauge fields; a=-l gives a non trivial field configuration.

(2.46a)

Xoc r'j

This expression has manifest 0(5) symmetry. It remains for us to

verify whether i t describes the field configuration of Eq. (2.42).

He notice first that the potentials A11 of Eq. (2.42) belong to

Eq. (2,46a) involves all the E matrices. If they describe the

same system, it must be possible to gauge transform A a to the 0(4)

gauge space, that is to gauge A* to zero. This can be done by

the gauge transformation

0 A/ . .-.
V \J (2.47)

where

\>,- fj> J (2.48)

If we now evaluate the explicit form of A* and insert it into

Eq. (2.36a), we obtain precisely the A u field of Eq. (2.42).

This proves that * if-i5 a b
r b does, indeed, describe the fields of a

pseudoparticle and an anti-pseudoparticle.

As we have mentioned before, the hyperspherical forraa.'-.sm

is very convenient for computations involving the field of the

pseudoparticle. We illustrate how to evaluate the eigenvalues

and eigenfuictions of the operator that describes the propa-

gation of a massless scalar, iso-vector field coupled to the

pseudoparticle.7 For further applications of the formalism to

various systems of spinor and vector fields see Refs. 5, 7, 8

and 9.

We represent a scalar iso-vector field by anti-hermitian

matrices in the space of group generators.

Jc
(2.49)

and define a corresponding field i over the surface of the

hypersphere by

(2.50)
* I*

The weight factor on the right-hand-side of this equation guaran-

tees that the conformal transformations of the O(S) subgroup

(in which <t> transforms as a field of dimension 1] are repre-

sented by scalar rotations of $.

We have seen that to exploit the 0(5) formalism it is neces-

sary to imbed the SU(2) gauge group in a larger gauge group

0(5). We therefore define a more general field

(D = rir,i. Z- (2.51)
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E a b being the matrices of Eqs. (2.40) and (2.43). We shall

study the propagation of $ over the hypersphere, in the back-

ground provided by the pseudoparticle field ^ a
=~i E

ah
r • Notice

that the gauge transformation U of Eq. (2.48) reduces A to a
a

block diagonal form, indicating that the system consists of inde-

pendent pseudoparticle and anti-pseudoparticle. We shall require

that the field $ also reduce to block diagonal form after the
gauge transformation

u (2.52)

This condition insures that the upper and lower diagonal blocks cf

*' describe scalarriso-vector fields coupled to the pseudo-

narticle and anti-nB«audoparticle,res*)RCt5"ply.

The requirement that •' be block diagonal can be expressed

by the equation

r §'. rs\ -- o >
where

r'- CIS).

(2.53)

(2.54)

The matrices rw=2iE11 r* and rs transform as the five components

of a vector ra in rotations generated by the matrices t . This

implies that

u r j ' u "• = ra-rn , (2.55,

and Eq. (2.53) is therefore equivalent to the condition

f $ P ° fa, 1 = O • l2-56»

-27-

With these premises in mind, we now determine eigenfunctions

and eigenvalues of the operator

(2.57)

with A =-iE . r . After gauge transforming by U and pro-

jecting back to Euclidean space, the equation

(D*)1 - Z t/i|̂ > •= O (2.58a)

takes the form

I ffNA)1 J_ i-2Z~ it & - O (2.58b)

As discussed in Refs. 8 and 10, Eg. (2.58b),although it contains

space dependent coefficients, is more advantageous than the

standard eigenvalue equation {(DA)l+u}»=0 for the computations

relevant to the pseudoparticle system. The equation (2.58a)

has the useful property that, if $ is a solution with a definite

eigenvalue u, so are
-A

(2.59a)

(2.59b)
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This can be verified directly or, more simply, by noticing that

after the gauge transformation U all matrix valued fields

appearing in (D)'take block diagonal form, and Eqs. (2.S9) reduce

to

i; - *'(•'• I'(1?)
(2.60a)

(2.60b)

This shows in particular that it is consistent to constrain »

by (2.S6). If • satisfies this equation, the two projections

= J cp (2.6D

describe the fields coupled to the pseudoparticle and ant i -

pseudoparticle, respectively.

Eq. (2.57) has a very simple group theoretical meaning, as

we now proceed to show. Substituting into i t the expl ic i t form

of A # we obtaina

O •

If we define

L

(2.62)

(2.63)

then s\ . a b
'i "V1 - - -I I I
<?k <- ' 1 L f t t 3 «- (2.64)

Moreover L . , £,. and the operator J.K where
ab ab ^ ab ^

vJcb € ~ Ub C ^ rXlb, $ ] (2"65)

all satisfy the algebra of the infinitesimal generators of the

0(5) group. Using the fact that $ is a linear combination of

Eab matrices it is straightforward to show
*\

- l> 3> (2-66)

so that,from Fqs. (2.64), (2.65) and (2.66), we obtain

(2.67a)

If t sat i s f ies Eq. (2.56), i t must be of the form • = j * a b ^ a b with

ra$ab=$abrb=0.which implies

JL SI
(2.67b)

Putting all these results together, we see that Eq. (2.58) is

equivalent to ^ s\

(2.68)

i.e., i must be an eigenfunction of the operator

(2.69)
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which is the first Casimir operator of the O(5) group generated

by J b. If A is the eigenvalue of C , then u=A-2.

The eigenfunctions of C are easily found as follows. Let

us consider any tensor harmonic Y a*
l X' a

m | (<•>) of the 0(5) ro-

tation group (A and A' are the eigenvalues of the two Casimir

operators of 0(5), m stands for the"magnetic"quantum numbers, m

denotes the hyperspherical angles and a ...aN are tensor indices)

and let us saturate

form the covariant

70)

Then it is straightforward to show that

, (2.71)

where the spin operators Sab act on the tensor indices of Yg _ _™a .

I t follows that al l the covariants WX' X> 'm) w i l l be eigenfunctions

of the operator "5J
abjaI> w i t h e i 9 e n v a l u e *• A complete set of

eigenfunctions for the expansion of an arbitrary field » i s given by

= i Z u> Y
ii.M

<J

where vn'm is a scalar hyperspherical harmonic, with A=n(n+3),

a n d ^ a ' , n'l, are vector hyperspherical harmonics, as given

by Adler, with A=(n+1)(n+2). It is easy to check that the co-

variants yL n'm do not satisfy Eq. (2.56), that the covariants

U,n# do satisfy the constraint, and that only a definite linear

combination of the covariants M J ' * and 4,n'm does. This linear

combination is most easily found by multiplying M ' by r ra.

From

2- T (2.73)

we obtain rar
aLJn'm=2(l( n ' r a - U n ' m ) .

We conclude that the matrix valued fields *-T 2 * "Ms*

and $- \| ̂ ' are the sought eigenfunctions of the operator

l(DA)J-2) with eigenvalues u=n*+3n.

E. Multi-Pseudoparticle Solutions

A system of n pseudoparticles is, by definition, a field

configuration which has Pontryagin index n and satisfies the

self-duality constraint. Whereas it is straightforward to write

down field configurations with arbitrary values of the Pontryagin

index q [All=f (xJ)g"na"gn, with g and f as given in Eqs.

(2.16) and (2.24), for instance, has q=n), it is not obvious

that there exist self-dual configurations with q>l. In this sub-

Section we exhibit explicit self-dual field configurations with

arbitrary [integer] values of the Pontryagin index, and study

their properties.

& e (2.72)
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The search for multi-pseudoparticle solutions starts with

an analysis of the single pseudoparticle potential

r\ ~ "* 2 L

= -il

These expressions are of the form

and

(2.74)

(2.75)

<2.76)

(2.77)

with an appropriate four-vector field aw. Notice that A*1 is

a matrix-valued vector field, with twelve independent components.

Eq. (2.76) couples the space index of the gauge potential with

its isospin indices (implicit in the matrix structure] so as

to re-express the twelve components of AM in terms of the four

components of the vector a". He are dealing with representations

of the O(4)^SU(2)xSU(2) group of rotations together with the SU(2)

gauge group; thus Eqs. (2.76) and (2.77) represent definite

couplings of tensorial components. This point will be elaborated

in Section III.

We try to generalize the pseudoparticle solutions by assuming

an Ansatz 1J as in Eqs. (2.76,2.77), and checking whether the self-

duality constraint is salved with an appropriate choice of av.

Prom Eqs. (2.76) and (2.77) we find

with a"" replaced by 3uvif we start from Ap=ioMVav. The expres-

sion for *F" U can be simplified usir.g the self-duality (anti-self-

duality) property of avv (5VV). Using the identities

(2.79a)

(2.79b)

we obtain from (2.7 6)

or from (2.7 7)

(2.80)

(2.81)

The self-duality constraint p"u=«Fllu can now be converted into

equations for the vector field a'1. In deriving these we must

pay attention to the fact that the matrices ovv (3'1J) are not

independent. The proper procedure is to multiply the equation

Pl'V_llFPV=0 fay oa6 ,-oB, a n d u s e thg i d e n t i t i e s
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tr-

(2.82a)

(2.82b)

f
o-- a. a') (2.. 8 3 )

as the self-duality condition. If A^io^a » the self-duality

condition leads to two equations.

= o (2.84b)

From now on, vie shall consider the two cases separately.

Eq. (2.83) constitutes a set of nine non-linear first order dif-

ferential equations for the four components of au. The integra-

bility conditions give rise to a set of constraints involving

the six independent components of f =3 a -3 a t the

algebraic complexity of which wakes it difficult to analyze

them completely; however, since the number of independent equa-

tions is large, it is plausible that the only Filution is fMV=0. We

assume this to be true. If f"v=0, then a" may be written in

the form a|J=-3|1a. Inserting this into Eq. (2.83), we get

Q = ?£'

0 a = O (2.85b)

Eq. (2.85b) requires Q a to be constant, and (2.85a) shows

that a is at most a quadratic polynomial in x, a=a[X2 + (x-y)2) ,

so that

y ^ (*• a j z (2.86)

Thus for A"=io"va we recover only the single pseudoparticle

solution.

We turn now to the set of coupled differential equations

(2.84). First we decompose a" into transverse and longitudinal

parts,

a" = 2HJ!M/) +b } <£, b" - O (2.87)

Eq. (2.84a) states that the Abelian "field strength" fwv=

3 b -3 b derived from the potential b is self-dual.

- 1
while Eq. (2.84b) becomes

-o

(2.8Ra)

A general solution of (2.88a) is obtained as follows.

Owing to Its transversality, bu may always be written as a di-

vergence <jf an anti-symmptric tensor h * * v w vBut hwv has six in-

(2.85a)

dependent components, while b" has only three, so three conditions

may be imposed; it is convenient to demand that hMV> be anti-self-
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dual. Consequently bM i s represented as follows.

t ) = B v •*> (2.89a)

*^|MV = - Sh"* (2.89b)

It. is then trivial to verify that Eq. (2.88a) reduces to the

requirement that h|lv be a harnonic function. Thus the non-

linear self-duality equation has been linearized with the help

of the Ansatz A^io^a : we are to choose any harmonic, anti-

self-dual tensor h|iV, form b*1 and solve the linear equation

(2.88b). However a non-trivial global problem still remains.

The functions h^and p necessarily have singularities which may

induce singularities in the potential Av. These singularities

must be arranged so that the gauge invariant quantity tr F^F

is non-singular. Later, in considering umall deformations of

a given potential, we shall encounter singularities of exactly

the same type, which appear as pure gauge artifacts. However,

we do not know how to arrange for this to happen in the general

case; indeed it is not clear that this is possible for non~

vanishing huv.

So we proceed with the assumption that a" is a gradient.

Setting b" to zero Eq. (2.88a) is of course satisfied, and Eq.

(2. 88|>) reduces to

- flP - O (2.90)

It is still true that the harmonic function p will possess

singularities, but now it is easy to find a form for them so

that gauge invariant quantities are non-singular. We take

to % i

(2.91)r- 1 = 1 f*-VJ.)V

Note that with this super-position of poles Eq. (2.90) is satis-

fied everywhere, even at the poles, due to the prefactor p~'.

Summarizing, we have found that the formula

(2.92)

with p as in Eq. (2.91) gives origin to a self-dual field con-

figuration.12'13'"

He must still verify that the singularities introduced in

hv by the poles of p are pure gauges and evaluate the Pontryagin

index of the field configuration. Near a singularity, which we

take for convenience at the origin, A11 behaves as

** (2.93)

Comparing with Eq. (2.18) (with avv replaced by ouv) we see that

the singularity at the origin is indeed of a pure gauge form.

Also, if we evaluate the rc.-.tryagin index q as a surface inte-

gral, this singularity will contribute one unit to it [cf. also

the discussion after Eqs. (2.21), (2.27)). The behavior of the

field at infinity, where p ^ 2 E A*, is still of the form given

by Eq. (2.93). He conclude that the Pontryagin index is m-1,

because the in singularities at x=y., i-l,...m, contribute +ra
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to q, whereas a contribution -1 comes £rom the surface at

infinity.

The value of q may also be found using the elegant formu-

tr *
(2.94)

which can be derived when Au is given by Eq. (2.92). Eq. (2.94)

shows in particular that tr*FgvF1JV is not changed when p is multi-

plied by a factor (x-y)a. Thus q may be evaluated as

^ (2.95a)

where P is a polynomial of degree 2n-2, and this immediately gives

(f)-| (2.95b)

The number of parameters appearing in the expression of

the self-dual field A" with Pontryagin index n i s 5n+4. This

i s apparent from Eqs. (2.91) and (2.92): the parameters are the

5m=5n+5 scales A. and positions yV, minus one overall scale , which

can be modified by an additive change of Inp. The number 5n+4

is surprising if one thirties that the field configuration i s ob-

tained putting together n pseudoparticles, each characterized

by a position and a scale . One may indeed consider a U n i t where

the (n+l)th scale *n+^ and coordinate y^+i 9° to infinity

simultaneously with lim * n + i / y n + i = l ' i" which case p takes the

form

(2.96)

13

For small * i # i=l , ,n , one can then identify the y^'s as

approximate positions of peai:s in the action density, with

width A|. A conformal transformation of the field config-

uration (which of course preserves the self-duality of FVJ)

i».,uld re-introduce the more general form of Eq. (2.91).

It may be verified indeed that the class of field configu-

rations represented by Eqs. (2.91) and (2.92) i s closed under

conformal transformations in the following sense. In a finite

special conformal transformation where

I- II*. \ C'X1- (2.97a)

we l e t p(x) transform as a scalar density of dimension +1, i . e .

(2.97b)
>prM» — ! pel)

For infinitesimal

and, with simple algebra, one veri f ies that the induced trans-

formation of aw takes the form

-- 3 S- (2.97d)

where 5(,a
lJ i s the conformal variation of a vector field of di-

mension + 1. If we replace au with av+6 au+2evl in the Ansatz

A"=i<ju°au and perform then an infinitesimal gauge transformation

(2.98a)
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with parameter

(2.98b)

again it is a matter of straightforward algebra to check that

the total variation of Au is precisely the conformal change

6 A" of a vector field of dimension 1.

Summarizing, a conformal transformation of the gauge po-

tential Au of Eq. (2.92) can be obtained changing p first

according to Eg. (2.97) and then performing a suitable gauge

transformation. But, starting from Eqs. (2.91) and (2.97)

with an explicit computation we find

f* * i*. It - %. ) *" (2.99a)

(2.99b)

| t- 2 C W t C'H
1' (2.99c)

We see therefore that a conformal transformation changes any

field configuration of the class defined by Eqs. (2.91) and

(2.92) into another field configuration of the same class, modulo

a gauge transformation. The superpotential p(x) of the new field

configuration is obtained from the old one by a conformal trans-

formation of the scales X| and the positions y?. In particular,

the function p of Eq. (2.96) can be considered as the limiting form

of the more general p of Eq. (2.91)obtained when one of the singularitie

has moved to inf in i ty; i t i s transformed into a p of the

more general c lass by a conformal transformation.

F. Small Deformations of Self-Duality Condition

The realization that a l l the 5n+4 parameters present in

the expression kv are necessary to have an explicit representa-

tion of the conformal group s t i l l leaves open the possibi l i ty

that some of ths parameters are unphysical, i . e . , that the values

of the A| and y^ may be modified by a gauge transformation. He

know after a l l that the single pseudoparticle configuration depends

on f ive physical parameters, whereas the present analysis gives

a number of parameters equal to nine for n«l. He shall see later

that there are indeed situations where some of the constants

y? and A? may be modified by performing a gauge transformation on

the f ie lds , but i t i s convenient to postpone the study of this

residual gauge freedom. Instead, we consider now the problem

of finding the most general infinitesimal deformation of the

f ie lds which preserves the self-duality of p"v. This analysis

wi l l also provide an answer to the question of the residual

gauge freedom; as wil l become apparent, in general a l l the 5n+4

parameters are physical.

A small variation of the potential Au

generates a variation of F

( 2 . 1 0 0 a ,

{2.100b)
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<2-looc>

We take AM to be given by Eqs. (2-91) and (2.92) and require that

5F be self dual. The most general 5A can be represented by

* r (2.101)

where xjjg is anti-symmetric and anti-self-dual in the indices

aB. But i t i s not convenient to consider an expression as

general as (2.101), because all infinitesimal gauge transforma-

tions of A11

(2.102)

(2.103)

(2.104a)

would appear as uninteresting solutions of

We fix the gaugo by reauiring that 5A be of the form

ati iwhere is a tensor field, anti-symmetric and anti-self-

dual in both pairs of indices gv, aB and constrained by

X. — Q (2.104b)

This apparently arbitrary choice of a gauge is motivated

by the fact that it simplifies the algebra. The first term in

the right-hand-side of Eq. (2.104a) is included because we want

to find among the infinitesimal deformations those induced by

a variation of the parameters of p. The condition Y =0

removes one of the nine independent components of ¥ so as

to leave the correct number of variable functions — nine —

in the Ansatz of Eq. (2.104).

The tensor Yvv can be decomposed into a symmetric,

traceless and an anti-symmetric part.

y/iv «|J _ r ̂  nf A

(2.105a)

(2.105b)

2.105c)

V°" is anti-symmetric and anti-self-dual. After non-trivial

algebraic manipulations that make use of many identities satis-

fied by anti-self-dual quantities, one finds that Eqs. (2.100),

(2.103) and (2.104) imply

Q (2.106)

All non-trivial solutions of this equation introduce in 6A

singularities which cannot be removed by a gauge transformation,

and therefore we «et SMV afi=0. When Spv a 0 vanishes, one finds

thnt the anti-self-duality of Fuv implies for 5p and Vuv the

equations

/ ; i V r O (2.107a)
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O - s tr *
(2.107b)

These are solved by
tttl

ttn

(2.108a)

A?

(2.108b)

where the kVv are constant anti-self-dual tensors and 6p is

the variation induced by a change of the parameters of p.

Inserting V and 6p as given by Eqs. (2.108) into Eqs.

(2.104) and (2.105) ,one finds an expression for 6AM which is

singular near the poles yV of p. It is possible to show,

however, that the singularity can be removed by a suitable gauge

transformation, so that SKV represents an acceptable infini-

tesimal deformation of the self-dual field configuration.

It is very interesting to observe that upon performing

an infinitesimal gauge transformation [according to Gq. (2.102))

with parameter

(2.109a)

the infinitesimal variation of the potential becomes

which is of the form

(2.109b)

(2.109c)

In this gauge, the infinitesimal deformation appears as a first

order variation of the original Anaatz,where 6av consists of

both a gradient term and a divergenceless term. The gauge

transformation leading to this form of the potential is

singular and 6A"11 behaves as Ix-Vjl"3 near the poles of p.

Because of these singularities, the representation of the infini-

tesimal deformations provided by 6AlU is not very useful to

study the finite physical deformations, but it is extremely

convenient for an analysis of the residual gaug: freedom.

To expose possible gauge artifacts among the infinitesimal

deformations 6A'W, we perform an additional gauge transformation

with parameter u'° and inquire whether

(2.110)

(2.111)

With some algebra, one finds that the form of the Ansatz is pre-

served only it

can still be of the form



-46-
-47-

(2.H2a)

A*'tire

• B V -
(2.112b)

where Ba is a constant vector, A and C01" are constant self-

dual and anti-self-dual tensors* respectively. The variation of

e3" i s t n e n g i v e n b*"gauge3

which in terms of V and p, reads

l
.^

(2.U3a)

(2.113b)

* v ...- J W (2.113c)

Since 5 contains ten independent constants, we conclude that ten

of the independent components of the tensors k. in Eq. (2.108a)

can be modified by o gauge transformation. Therefore

the dimensionality of the space of physical small

deformations of a given solution is 8(n+l)-10-l ( -1 because of

the arbitrariness of an overall rescaling of the X.'sl, =8n-3,

which, by continuity, roust also be the dimensionality of [a

connected component of] the full manifold of solutions. The

number 8n-3 has a nice interpretation: the n-pseudoparticle

solution appears parametrized by the positions, scales and

relative group orientations of the pseudoparticles.

Notice that if we start from any of the 5n+4 solutions

described by the Ansatz A"=iouu3 inp and perform an infinitesimal

gauge transformation, Eq. (2.113b) tells us that we shall not

preserve the functional form of the Ansatz unless the positions

of the poles y" satisfy

W) *$ ( lii ) ~ O (2.114)

But this i s the equation of a definite c irc le [or of a straight

line as a limiting case] in 4-space, and therefore i f

the poles y. are more than three in number, and in general posi-

tions,then a l l the 5n+4 parameters represent physical degrees

of freedom. °n the other hand, when the poles yV l i e on a c irc le ,

one can perform a gauge transformation which moves the singularities

around the circle (see Eq. (2.113c)] . Through

three points one can alv.'ays draw a c irc le , so that if n-2,one

of the 5n+4~14 parameters i s always a gauge artifact , and the

2-pseudoparticle solution depends on 13 gauge invariant para-

meters. Through two points one can draw a three-dimensional

variety of c irc les , and therefore four of the 5+4=9 parameters
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daacribing the single pseudoparticle within this Ansatz are

gauge artifacts, in agreement with the fact that a single

pseudoparticle is characterized by only five parameters, posi-

tion and scale, these considerations indicate that for n>3

there certainly exist solutions to the self-duality equations

beyond the ones given by Eqs. (2.91) and (2.92) ; as yet they

have not been found.

Ill FURTHER MATHEMATICAL DEVELOPMENTS

A. Spinorial Formaliem

As mentioned earlier, the solutions to the various equa-

tions that have been discussed take the form they do as a

consequence of the coupling of internal degrees of freedom,

[SU{2)],to kinematical degrees of freedom, (0(4)]. For Yang-

Mills theory, this coupling can be made explicit in the context

of a spinorial formalism, which we describe in this Section. The

formalism is also important since it exposes features of the

self-duality condition which are used as a point of departure for

an analysis by methods of algebraic geometry.

Furthermore, with the help of this formalism, we shall be able

to simplify considerably the Oirac equation for zero-eigenvalue

modes of a fermion, with arbitrary iso-spin, and to solve it

completely for iso-spin % and 1.

The spinorial formulation begins with the observation that

the 0(4) invariants of interest in Euclidean four-space may

be designated by SU(2)xSU(2) representation labels. Also, the

internal SU(2) gauge group gives rise to such labels. Hence

all objects with which we are concerned are SI)(2) multi-spinors,

and equations are simplified when the various SU(2) groups are

cunningly coupled to each other.

In this formalism all objects carry spinor labels

A, B, C ... , which take on two values and describe the spin

and iso-spin degrees of freedom. An anti-symmetric metric tensor

with two upper indices is defined by

(3.1a)
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The negative inverse of this matrix is a metric tensor with

lower indices.

(3.1b)

A spinor jay have lower or upper indices/ which can be raised

or lowered with the metric tensors according to the following

rules [repeated indices are summed].

•B (3.2a)

(3.2b)

Covariant summations always involve one upper and one lover
A A

index. Note that € » * " £ » • F o r every pair of indices we may

define a symmetric and anti-symmetric part

= 2. *• 2
(3.3)

where the symbol RB denotes the symmetric sum £.D+£.,_. More
l^ Afc> O A

generally for a multi-indexed object,

V--V
, symmetric in

H i nz •• • Hrt I ... A*

f- <" • 'n terras).
-* "n "i • • • "1

(3.4)

An 0(4) two-component spinor is described by a spinor with

one index. To every 0(4) tensor with indices u,v, ... , there

corresponds a spinor with index pairs AA',BD', ... . The rule

-51-

of association is given through the a matrices defined in (2. 17) .

V (3.5a)

!>« (^")l\'l\ ' 5 (3.5b)

(That the two definitions are consistent with (3.2) is easily

established from the properties of the Pauli matrices]. The 0(4)

covariants may be regained frcm the spinors by projecting with

the appropriate a matrix. The above holds also for derivatives

Xso-spinor indices are represented as follows. Iso-spin

'i objects are described by one-index spinors. For iso-spin 1.

a two-index spinor, symmetric in the indices, is used. In

general an iso-spin T object is described by a totally symmetric

spinor with 2T indices, so that there are 2T+1 independent com-

ponents. The correspondence between the conventional des-

cription and the spinorial one is immediate for iso-spin H —

the two coincide. For unit iso-spin the correspondence ia

f fe (3.6)
2i

A consequence is that €„.. and £vu
„„

are symmetric in U«-*V and

The relations forthat Eabc£
bC° corresponds

higher iso-spin are more complicated, and will not be given here.omplic

B. Gauge Field Equations in Spinorial Formalism

Th< gauge potential A11 is described by A- •' the gauge
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field
V . by f ,8B'jUV which iB anti-symmetric in the inter

change A*-»B, A'*-»B". Both expressions are symmetric in 0<-»V,

and the formula relating the two i s

<3.7)

Due to its anti-symmetry properties, F may be split into two

parts

where F^igi-im is symmetric in A*-"-»B', and F^g.yy is symmetric

in At-»B; these are just the self-dual and anti-self-dual parts

of the gauge field, as is seen by noting that the definition

*Fyv=!seuv a6F ft becomes in the spinorial formalismPag

*p+ = F l .

It follows from (3.7) and (3.8) that

(3.9a)

(3.9b)

(3.9c)

(3.10a

^Byuv = ^ A - A B
 A ' ; LM , T AM.OVJ AH A'. WV

The self-duality condition demands that F~ vanishes. Hence a

self-dual gauge potential satisfies

O/m1 AT.

The conforraal solution to this equation is

-k ap o
Thus far we have merely transcribed into new formalism

results which already exist in the conventional approach. We

wish now to make some further observations about self-dual gauge

fields. These form the starting point for an analysis of self-

dual gauge fields by methods of algebraic geometry.

Consider a special set of complex bi-spinors (4-vectorsl x^,

which can be written as *AzAi where lft is fixed and zft, varies.

It is clear that all points described by such coordinates are light-

like with respect to each other: *££•*** =*AaA**A^* = 0 - T h i s s e t

of points for fixed 8. defines a light-like plane. Next let us

project the gauge field onto such a light-like plane.

( 3 . 1 3 )
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But a self-dual field takes the form

P* & J. c F + (3.14)

so for self-dual configurations the projection (3.13) vanishes. We

thus come to the important conclusion that on arbitrary light-

planes the gauge potential, for self-dual fields, is integrable.

* nAfl J£ K Aft J £ (3.15)

The program of reconstructing A ^ , from the above by methods of

algebraic topology is being pursued actively, but we shall not

discuss this topic further.

C. Dirac Equations in Spinorial Formalism

An important feature of pseudoparticle configurations is

that they produce zero-eigenvalue modes in the Dirac equation

for a (Euclidean] fermion in the pseudoparticle field; that is

one can solve

- o (3.16)

with several normalizable functions. Here, tfr has 2T+1 components

which transform according to some definite, irreducible represen-

tation of SU(2)

m T u (3.17)

representation: iAu=A^Ta. In general Ay need not solve the Yang-

Hills equations, but is always taken to be sufficiently well-

behaved that the Yang-Hills action is finite; consequently

the gauge configuration is characterized by an integer valued

Pontryagin index.

when the gauge potential is the conformal, self-dual configu-

ration (3.12), the spinorial formalism may be used to simplify

Eq. (3.16) considerably. We now present this analysis and solve

Eq. (3.17) completely for iso-spin % and 1.

The Dirac matrices in (3.16), satisfy Euclidean anti-commuta-

tion relations (v",iv)=26VV which can be realized in a fashion

such that Yj is diagonal .

J
= }C, Jfj. © -i J

In this representation Eq. (3.16) decouples into two separate

equations for two-component spinors of definite chirality.

•(£)
- o (3.19a)

and A1 is the Yang-Hills potential in an anti-hermitian matrix

1 r (3.19b)

when we discuss the Atiyah-Singer index theorem in the next sub-
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Section, we shall show that (3.19b) has no normalizable solutions,

and, therefore, only (3.19a) need be considered.

In the spinorial formalism ,{3.19 a) transcribes into

(3.20a)

Here the spinor carries the index A', describing two spatial

components; i t i s entirely symmetric in the 2T indices U, which

refer to the 2T+1 components of iso-spin. Substitution of the

confornal solution into the above gives the equation we analyze.

... U
iT

(3.20b)

A straightforward but lengthy sequence of manipulations of

indices, which among other things involves separating the above

into symmetric and anti-symmetric .parts in (A,U,), yields the result

that a normalizable solution necessarily has the form

'jr

ens
(3.21a)

where x sat i s f i es

l 0M5

(3.21b)

We now specialize to iso-spin H and 1. For the former

-- o (3.22)

Of course only singular functions solve the harmonic equation;

however we can tolerate singularities, provided they are absent

from the gauge-invariant norm density <(<A ;U*'». ,, , so that the

spinor is nornalizable. Therefore we can allow ii; x only

poles which are already present in p. In this way we get n+1

solutions for X .

Of these only n 0 s are independent since Z\ =p»

= 0 . " *

For iso-spin 1

(3.23)

i*(i)=o.18

Solutions are conveniently exhibited by setting X-̂ H
C*

(3.24)

, where

u is a constant spinor, with two arbitrary components which
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provide two solutions x for each matrix H.

by the following n+1 expressions for H.

M " 1 " - 2L (*-

(3.24) is solved

t r . . . , n*i
(3.25a)

An additional n+1 forms are

tni

o*l

t = 1,..., n r * ,3.25b)

However of those 2n+2 matrices, only 2n are linearly independent,

since the following relationships are readily established.

2
t S | l (3.26b)

One finds all the solutions to be normalizable; thus there are

4n zero-eigenvalue modes for iso-spin 1 Fermi fields.

We conclude this discussion of the solutions to the Dirac

equation by noting that,since the eigenfunctions have definite

chirality, bilinears I(I' nj> vanish for a vectorial Dirac ma-

trix r. In particular tfitTay'V is zero; hence the functions Au

and 'J> are also solutions to the coupled Yang-Mills fermion

equations, when A" has definite duality and * is a chiral eigen-

state solution of the Dirac equation. (We show below that such

solutions exist not only for iso-spin H and 1, but also for

arbitrary iso-spin T. J

D. Atiyah-Sinqer Indsx Theorem

In the two examples discussed earlier — iso-spin )j and

1 Fenoi fields moving in a self-dual Yang-Mills potential —

we found a number of zero-eigenvalue modes of definite chirality.

"•"he existence of these modes has far-reaching physical conse-

quences; moreover it is relatod to the anomaly

of the axial vector current1" and to topological properties

of the gauge fields. This unexpected connection between physics

and mathematics is best understood with the help of the "Atiyah-

Singer index theorem", which we now explain.

Consider a linear differential operator V and its adjoint

L ; further suppose that the number of normal izable zero-eigen-

value modes of L is n_ and that of L* is n+. The "index" is the

quantity n_-n+> and the index theorem evaluates this object in

terms of the properties of L. In order to make these considera-

tions relevant to our Dirac equation (3.16), let us write

it in block form, using the f matrices in the representation
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(3.18), which diagonalizes chirality:

°l
(3.27a)

(3.27b)

(3.27c)

L ' COfi^i- AA) (3.27d)

l^-iB^t A,) (3.27e)

Thus we see that n+ (n_) is the number of positive (negative)

chirality zero-eigenvalue solutions of the Dirac equation. The

index theorem, which we derive balow, when applied to (3.27)

states

^ m ^ | f | l t f ' r F f "

* -K t<Tftrb J«r* v r r Kuv ».»».i
IbT

For fermions with total iso-spin T and gauge fields with
Pontryagin index n, the above is evaluated with the help of

l ) O<lb (3.28b)

(3.28c)

and we find that the index is

We have assumed that the gauge potential leads to finite

action and that it carries Pontryagin index n; in all other re-

spects, it is arbitrary. However when A*1 is self-dual or anti-self-dual,

the index theorem may be strengthened by showing that only n_

or n+ is non-zero: apply L* to (3.27b) and L to (3.27c) to

get

-/.•» . A |1 . •>. 5=- F*"! IP1" s O
v (3.29a)

L L ^ t W * 2 ^ " r J T " ° <3-29b>
The duality properties of 5gv(owv)(sea (2.19) and (2.28)} assure

that °uvF
l'u < ° W V

F M U ' vanishes for self-dual (anti-self-dual)

gauge fields. Since O + A
U'

2 is a positive definite operator,

the differential eguation without the gauge-field term does

not have normalizable solutions. All known Yang-Hills solutions

with finite action are self-dual or anti-self-dual; hence for

these potentials there are precisely j T(T+1)(2T+l)n zero-eigen-

value modes with chirality determined by the gauge field's duality

properties. Of course this general result reproduces, for H-H

and 1, the numbers found before: n and 4n.

When n+ or n_ vanishes, a "vanishing theorem" is said to

hold. We have seen that such a theorem can be always established

when the gauge field is self-dual or anti-self-dual; however, it

is not yet known whether the vanishing theorem is valid for more

general field configurations.

He now derive the index theorem, by a method which makes

19reference to the anomaly of the axial-vector current. First
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a local version of (3.28a) is obtained; upon integration over all

space, (3.28a) is regained. The derivation begins with a consid-

eration of the full eigenvalue problem for the Dirac operator.

- E ^z (3.30)

It is clear that Y 5 , which anti-commutes with the left-hand-side

of (3.30), takes eigenfunctions *„ into i|) _ , while the ZerO-
El —fa

eigenvalue modes can be chosen to be exgenstates of y5-

(3.31a)

To proceed, we construct the resolvent of the differential opera-

tor in (3.30).

f? (*
1 B t i/c

[ iH^MM'^Rlt,^), 6%(*S) (3.32b)

We shall want to take x and y coincident, which may produce

inf in i t ies and ambiguities that must bo regulated. A convenient,

gauge invariant regularization is the Pauli-Villars scheme; from

(3.32a) the same expression i s subtracted with u replaced by M, and

and at the end of the calculation M i s passed to infinity. (It

happens that one regulator mass i s sufficient for the problem at

hand.)

(3.32 c)

Next we form an axial-vector projection of the resolvent — which

we call the "axial vector current* — and also its divergence.

'1.33)

A simple calculation, based on (3.30) gives

E M/f-

fa,MX
B (3.34)

To complete the calculation we need to evaluate the limit:.

(Formally it is given by the ambiguous expression

2iE**(x)Y5*E(x) = 2i try5E*E(x)*g(x) = 2i(0)S*(0).J It is
E E

here that we can use the results about the anomaly of the axial-

vector current operator constructed from quantum Fermi fields

which interact with an external classical vector field. Of

course in the above we are not dealing with a quantum field

theory; rather, we arc studying differential equations in Euclidean

space. Nevertheless, the objects we have constructed are

recognized to be precisely the [Wick rotated] quantal ampli-

tudes. Thus the resolvent R is exactly the (Wick rotated] propa-

gator for a massive Fermi field in an external gauge potential,

and the axial-vector current j|j is the (Wick rotated] vacuum

expectation value of the axial-vector current operator for that

19
theory. Hence we arrive at
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4 - 2t> J^ /,) - -L tT

(3.35)

This anomalous divergence of the axial-vector current is also

the local form of the index theorem.

To derive the global relation, Eq. (3.35) ia integrated

over all x.

(ft iJf

(3.36)

When it is assumed that the integral on the left-hand-side pro-

duces no surface terms, and that the integral on the right-hand-side

can be evaluated term-by-tenn with the helo of (3.31), Eq. (3.28a)

is regained.

The above derivation also exposes circumstances which may

modify the simple, integrated expression (3.28a). The surface

term for the integral of 3 Jv need not vanish; the term-by-term

integration may be illegitimate. In that case an additional

contribution is present in (3.28a); it is called the 'signature

defect". We expect that such pathologies occur when long-range

potentials are present in the Oirac equation. In our example

the gauge potential can be long-range, but gauge-invariant quanti-

ties see only the short-range gauge field, and the simple result

(3.28a) is expected to hold, as is indeed the case in the explicit

computations for iso-spin h and 1. A more mathematical formu-

lation states that the index theorem should be applied only to

compact manifolds without boundaries. In that case there obvi-

ously is no surface term on the left-hand-side of (3.36); the

summation over eigenvalues on the right-hand-side is

truly a sum over discrete eigenvalues, and the term-by-term inte-

gration may be justified. In Our example, we are on the non-

compact manifold of Euclidean 4-space. However, as explained

in Section II, the confornal inva-—nee of the theory and the

assumption that the gauge fields decrease rapidly at infinity

allow our problem to be mapped onto the surface of a 4-dimensional

hypersphere, and a signature defect is not expected.

(This consideration introduces the following subtlety: The

normalizability condition for the Dirac equation in an 0(5) co-

variant formulation requires only that If^ja* (x)»(x) converge,

while Sd'xty (x)4>(x) may diverge. However, we have not encountered

a situation in 4 dimensions where this distinction makes a dif-

ference. )

£ven though the signature defect is absent in the present

application of index theory, it will play a role in other physical

situations. We have encountered Oirac equations in an odd

niunber of Euclidean dimensions, where no anomaly exists, yet

there are zero-eigenvalue modes. These examples involve

soliton-monopole potentials '•'Moll include a long-range Higgs
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field and provide physically interesting applications of the

signature defect.

To illustrate the utility of the index theorem, we derive

once irore the result that the self-duality equation Fv =*F11V has

8n-3 gauge invariant deformations. An infinitesimal variation

of this equation, caused by an arbitrary variation 6AM about a

self-dual gauge potential AM, is [see (2.100) and (2.103)1,

(3.37a)

Since the matrix o is anti-symmetric and anti-self-dual, the

above is entirely equivalent to

fcf SAV - o (3.37b)

Next we write o"" as t-(auav-6uv) and impose the background gauge

condition on the small variations.

= O (3.37c)

Hence the equation one is left to solve is

- \J (3.37d)

Dut we recognize (3.37d) to be two decoupled Dirac equations

for two Dirac two-component spinors in the adjoint (T=l) repre-

sentation — these two spinors make up the two columns of the

matrix av6A and move in the external potential A1'. In other

words, the above demonstrates that if * , a=l,2,3, solves

= C (3.38)

with self-dual AJj, then A^+u aMifia is self-dual to first order,

with u being a constant arbitrary two-component spinor. The

index theorem states that there are 4n solutions to (3.38); and,

by the construction ,8n small deformations are found, one shows

that they can be arranged into exactly Sn linearly independent,

real combinations, and one further finds that 3 of them are

infinitesimal gauge transformations D 6. Hence the number of

infinitesimal deturmations is 8n-3, in agreement with our pre-

vious computation. The explicit solution of the Dirac equation

for iso-vector fermions, presented earlier, provides there-

fore explicit formulas for the small deformations of a self-dual

gauge potential, now in the familiar background gauge, rather

than in the somewhat obscure gauge employed previously.

The startling relationship between solutions of the Dirac

equation for iso-vector fermions and small deformations of the

self-dual gauge potential goes even further. The following fact

is easily establihsed by reducing products of gamma matrices. If

F^v solves the Yang-Mills equation, then $ =t*UVY v u and <l> =
« a a ii v a

F*1 y Y Y" x u solve the iso-spin 1 Dirac equation where u is

an arbitrary constant 4-component spinor. (Notice that when

F^v is self-dual (anti-self-dual) only the negative (positive)

chiral components of these spinors are non-vanishing.] These

curious connections between gauge fields and Fermi fields are

related to the super-synraatry properties of iso-vector fermions
25



- 6 8 -

IV HINK0WSK1 SPACE SOLUTIONS

In this last Section we shall discuss some solutions to the

Yang-Mills equations in Minkowski space which have recently been

found. At the present time it is not clear what information

about the quantum theory is contained in these classical field

configurations; towards the end of the presentation we shall

describe some tentative ideas that we have about this question.

A. 0(41x0(2) Formalism

Rather than recording the solutions straight-away, we

first develop a kinematical framework in which their elegance

and significance is manifest. The Vang-Mills theory possesses

the O(4,2) conformal group of invar iances. L'nder conformal

transformations the coordinates xM transform non-linearly.

But as is well known, one may introduce ? light-like six-vector

K*, A=1...6, ??=Ej+tj+S5-?J+C5-5j=O, which has the property

that (pseudo) rotations of ( correspond to conformal trans-

formations of £P/<£5+£,), |i=l,2,3,4. The action of the conformal

group is thus linearized on this null-cone, and it becomes con-

venient to use the f, 's as coordinates, rather than the conven-

tional x • The relationship between the two coordinate systems

contains of course a large amount of ambiguity. For example, one

possible mapping is

t = 1,1, I

(4.1)
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where xJ=ta-x2, * is an arbitrary scale and f is an arbitrary

function of x which parametrizes the ambiguity. Conventionally

the ambiguity is removed by setting homogeneity conditions on all

interesting objects of the theory. An alternate way to remove

the ambiguity is to fix the value of X1*Z\=t.l+f.\- This we do

here; we set that quantity to unity, which forces £ to lie on

a six-dimensional hypertorus. Thus the mapping introduces two

Euclidean vectors; a 4-component R" and a 2-component ra of unit

magnitude. Explicitly one has

and all of Minkowski space is mapped, two-to-one, onto the hyper-

torus r*=Ra=l. The action of the O(4)«0(2) subgroup of the con-

formal group is then represented by independent rotations of R"

and fa, while the remaining conformal transformations mix the

RMls with the fa's. IThe metric of the RM coordinates, as well as

that of the ra coordinates is Euclidean,]

The ordinary derivatives — — and gauge potentials A*1 are

mapped into Jerivatlves and gauge potentials tangential to the

surface of the torus. Thus we have
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-,.
« 2-

(4.3)

r, a- = O (4.4)

(Compare with the similar napping discussed in Section I ID for

the 0(5) formalism in Euclidean space.]

From ft" and Sa one constructs an "electric" f ie ld

and a "magnetic" f ield.

fu- ?*^- ?>-h- i.^*^^»CA.
Both are tangential, i . e . , ^"H^^O, RvEau=0, raEa l l=0. The

nomenclature i s derived from the fact that near the origin

Ej^ and Hj. are proportional to the e lec tr ic FQ^ and magnetic

Fj. components of F .

It i s convenient to parametrize the two-dimensional vector

'.y an angle.

T ^ (4.6)

- 7 1 -

-b 3Then A =-£ . r TT » and we may similarly set
a dD d T

$ [SJ ,4. 7 )

where the dot refers to differentiation with respect to x. The

gauge potentials can be modified by a gauge transformation.

a o

3
3

In particular, one may gauge transform a to zero.

The Hinkowski-space Yang-Mills action

(4.8)

(4.9a)

becomes in terms of new variables

The range of the T integration is from 0 to 2n; the re-

maining integration is over the surface of the sphere (i'=l.

Since the mapping xw-»{T,n} is two-to-one there appears an ad-

ditional factor of >s in (4.9b). For the same reason,

there is no periodicity requirement in t. Note that the range

of integration is compact, hence finiteness of the action is

guaranteed when the fields are non-singular on the t circle

and on the n sphere. The Yang-Mills field equations of motion.
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vhich follow from varying the fields in (4.9b), are

o

f, j = o (4.10)

B. Invariant Solutions

Having developed this hypertoroilial formalism, which makes

explicit the O(4)*O(2) group of symmetries of the problem, we

nay look for solutions which are themselves invariant under

interesting subgroups of 0(4)xo(2). Specifically 0(4) invari-

ant field configurations are obtained by setting

(4.11)

(4.12)

which is identical to the eguation of motion of a pcint particle

in a two-minimum potential, symmetric about f=-l.

The solutions are obvious. A first integral is it-nediate.

a = O

The Yang-Hills equations then reduce to

I) - O

' (4.13)

There are T independent solutions: f=0,-l,-2; these lead to

O(4)*O(2) invariant Yang-Mills potentials. f=0 gives the trivial.
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vanishing potential; f=-2 is a pure gauge; f=-l is the solution

27found by deAlfaro, Fubini and PurIan. In the mechanical analog

problem, f=0 and -2 correspond to the particle sitting at the

minima of the potential; f=-l is in unstable equilibrium at the

maximum. The T dependent solutions have been found by tuscher

and Schechter. These are periodic functions of T-T , where T

is another integration constant. Two different types of solution

are seen: for e<>5 there are separate oscillations about each of

the two minima, for e>% the oscillations range widely across

the central hump. The analytic expression, which we do not record

here, involves Jacobi elliptic functions. For e>% a simple

formula holds

a lr-r.) (4.14)

It is clear that the action of these solutions is finite.

By using the formulas (4.2) and (4.4) the Vang-Hills fields

may be given in conventional variables. Ke do not carry out the

projection, since the resulting configurations do not exhibit any

noteworthy features; the fields have finite energy, but dissipate

in time in accordance to general theorems which tell us that

no soliton solutions exist in the pure Yang-Hills theory.

Rather we prefer to remain with the hypertorodial coordinates

where the solutions are constant or periodic, not in time, to be

sure, but in the new variable i.
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C. Alternate Quantization of Yang-Hills Theory

Let us recall that the evolution of a dynamical system need

not necessarily be described by time evolution. Other combina-

tions of t and x are possible evolution variables, provided

all space-time is covered. In a Lorentz invariant theory one

may use ai.7 time-like vector for describing evolution of initial

data specified on a space-like surface. In a conformally invari-

ant theory there are further possibilities, and in particular

one can use T to describe evolution of data specified on the

!) surface. The generator of T translations is easily determined;

it is R = H <x K° + *P°).

When these considerations are brought to bear on a quantum

theory they lead to the well-known conclusion that in a Lorentz

invariant quantum theory there are alternate methods of quanti-

zation which do not rely on a Hamiltonian evolving the quantal

system in time. Indeed some years ago, light-cone quantization

was profitably employed to analyze deep-inelastic scattering

28
processes. Similarly, alternate quantization methods have

been suggested for conformally invariant quantum theories in

Euclidean space. In the present context it appears very

interesting to take T as the quantization variable. Correspond-

ingly the Hamiltonian is R, which we now shall call 11 , and the

states which diagonalize HT become the "static" basis for the

Hilbert space [rather than the energy eigenstates of conventional

quantum theoryj. Precisely this alternative for <:onformally

invariant theories has been advocated by Fubini. It is empha-

sized that a new quantum theory is not being developed, rather

the conventional theory is discussed in terms of a new set of

basis states. Indeed it was explicitly demonstrated by deAlfaro,

Fubini and Furlan, in the simple example of the conformally

invariant quantum mechanics of a point particle in a 1/r2 po-

tential, that the new approach is entirely equivalent to the con-

ventional one.

Here we consider quantizing Yang-Mills theory with T as the

evolution variable and II as the Hamiltonian.

The canonical quantization procedure is entirely straightforward.

The gauge a=0 is very convenient; the canonical coordinates are

then A w with conjugate momenta E P=A". Then Eq. (4.10) ,6*Eu=0,

becomes Gauss1 law which has to be imposed as a condition on the

physical states. Equal-r commutators involve delta functions

on the O surface and in the non-interacting case H can be ex-

plicitly diagonalized. One important result emerges: the spec-

trum is discrete, the eigenvalues are dimensionloss integers.

This of course is a consequence of the fact that the space is

compact; infra-red divergence has been tamed.

D. Semi-classical Quantization of Solutions

vie shall not go into the obvious details of the canonical

approach. Rather we want to inquire to what extent the solu-

tions which we have previously discussed can be used to perform a
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semi-classical analysis of the quantum theory, clearly the

constant solutions £=0 and - 2 , which are pure gauges, correspond

to the vacuums the lat ter being a non-vanishing, pure gauge po-

tential . ^

(4.16a)

This gauge has unit winding number, and obviously describes one

of the many classically degenerate vacua of Yang-Hills theory.

The other vacua are 0(3) invariant configurations.

3* (4.16b)

Of course there is tunnelling between the vacua; the pseudo-

particle solution which exists for imaginary T insures this.

(The pseudoparticle is just the kink solution of (4.12) with

f replaced by -f.]

The f=-l solution is seen to correspond to an unstable

vacuum, hence no quantum state is associated with it. Never-

theless we can use this solution to compute the height of the

barrier which separates the two minima; it is -5-. [Another

curious feature of this Bolution can be noted. If the pseudo-

particle is continued from imaginary T to real 1, we obtain a

complex self-dual gauge potential. Since the equations are non-

linear one does not expect, a priori, that the real and imaginary
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parts of this complex configuration satisfy the Yang-Mills equa-

tion. Nevertheless, the real part of the self-dual complex

potential is just the f--l solution. 2]

Of course it is the periodic solutions that offer the most

interesting probe into the quantum theory since it is possible

to quantize them by the Bohr-Sommerfeld method, thus obtaining

the semi-classical spectrum of H^. Before proceeding, let us

review the Bohr-Sommerfeld method aa applied to field theory.

For quantum mechanics of a point particle in one-dimensional

motion, the WKB quantization condition reads

where p(q) is the local momentum /2E-2V(q) and the q. are the

turning points of the bound motion. The quantity nn on the left-

hand-side arises from the correspondence principle; the quantity

fsn is derived from the details of one-dimensional motion, and

is specific to that problem. The approximation is presumed

accurate for large n. When one drops H compared with n,

one is left with the Bohr-Sommerfeld quantization, which after

a change of variable from q to t may also be written as

v\r -- J<*t
( 4. 1 7 b )

where the integration is now over a semi-period.

Although the full WKB condition may also be derived for

many degrees of freedom, as well as for a field theory with
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infinite degrees of freedom, we remain with the simpler Bohr-

Sominerfeld condition. For several degrees of freedom (4.17b)

generalizes to

Z p*ll

while for field theory we take

Mir - Jdt [cIV jrlt,V)§lt,v)

(4.18a)

(4.18b)

Eq. (4.18b) instructs us to find a periodic solution *, multiply

i t s time derivative by the canonical momentum H and integrate

over a l l variables V, save the evolution parameter t . The

resulting quantity,/dvn*. depending on t as well as various

constants of integration, i s then integrated over a semi-period

of t and set equal to an, thus achieving one quantization con-

dition on the constants of motion.

For the Yang-Mills theory governed by the action (4.9b),

the Bohr-Sommerfeld condition reads

h¥ *

§JL = O
a

(4.19a) becomes

V~

(4.19a)

(4.19b)

t-r

(4.19c)

An integration by parts and use of the equation for Eu shows

that the second terra in the curly brackets can be set to zero,

and we are left with the gauge-invariant quantization condition.

CY I_ ^ (4.19d)

We insert into this formula the known periodic solutions,

for which ^ s^

Rv

with f satisfying

and get

(4.20a)

(4.20b)

' ' (4.21)

where the f integration ranges between the two turning points

of the classical motion. The meaning of c is clear. If

we evaluate the t-Hamiltonian, Eq. (4.15),



-80-

for the solution (4.20), we find 3«*e. Evidently our semi-

classical procedure provides the semi-classical eigenvalues of

UT, which we call ET=3»
2e.

To determine the dependence of ET on n, the f inte-

gration in (4.21) must be performed. The formulas involve the

complete elliptic integrals of the first and second kind. Two

distinct expressions emerge depending whether e is less than

or greater than %. ue record harp only thp asymptotic forms.

For email n, doubly degenerate levels are found with

For large n, there is no degeneracy and

(4.22)

(4.23)
7

[When small oscillations about any of the vacuum configurations

are canonically quantized one also obtains a linear spectrum.)

The quantal significance of the periodic solution may be

given: when it is expanded in a Fourier series, the Fourier co-

efficients provide a semi-classical approximation to the matrix

elements of the quantum field A*1 between successive bound states.

What corrections to these semi-classical results are

envisioned? it is clear that tunnelling removes the degeneracy;

this is clear and causes no conceptual problems. Much more

problematical are the questions which arise if one confronts

this entire program with the realities of Yang-Mills perturba-

-Bl-

tion theory. The problem is of course that the well-known

anomalies prevent the theory from being confonnally invariant

— the renormalization procedure introduces confonrtal symmetry

breaking. In other words it is not obvious how to relate

results of the alternate quantization method to the physically

relevant, Poincare covariant theory.

Ona of two approaches is possible. The theory is regulated

in a conventional way: I!T acquires a T dependence; bound states

disappear but perhaps some kind of adiabatic perturbation theory

can be used to study further properties of the spectrum. Al-

ternatively, a non-conventional regularization scheme may be

adopted such that HT remain* a constant of motion. The theory

loses translation covariance, since translation generators acquire

a T dependence. Let us suppose however that even in the renorma-

lized theory it is true that Pu» lim y B*1. Then information

about the translationally covariant theory could be regained

in the limit.

E. Reduced Yang-Hills Theories

To conclude these considerations, we put aside the serious

obstacles which still exist in assessing the physical relevance

of our alternate proposals, and proceed to another suggestion

for obtaining results about Yang-Mills theory. It is apparent

that at the present time the model appears too complicated for a

complete solution, either classically or quantum mechanically.

Nevertheless it has been possible to obtain complete classical
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solutions which respect a symmetry. A suggestion for the analysis

of the quantum theory is to reduce the full degrees of freedom

to those that are invariant under a subgroup of the conformal

qroup. In this way we obtain quantum systems which are consid-

erably simpler than the full Yang-Mills theoryf yet may retain

some of the physical properties of the complete theory.

A very simple model is obtained if we freeze out all but

the 0(4) invariant degrees of freedom. The Ansatz (4.11) leads

to the action

(4.24)

The quantum mechanics, though tr iv ia l , already exhibits some

of the features of the complete theory: classical degeneracy,

vacuum tunnelling, an anharmonic osc i l la tor bound state spectrum.

Richer i s the model where only 0(3) symmetry i s imposed.

The most general 0(3) Ansat2 i s

c

a
* 3*'- R"r

(4.25)

Here C is a unit 4-voctor which picks out the direction of

0(4) breakdown to 0(3). We set R"0=0050, 0<6<n, and the f . ' s

depend on t and 0. With the redefinitions

(4.26)

the action becomes

-•*•')•]
<4.27)

where Fuu=SlV-3vAM, 4=*, + ̂ , and the metric is (J _°) with the

first coordinate being T, the second e. The above is an Abelian

Higgs model in a 2-dimenaional space of constant curvature,

with a 3-parameter 0(2,1) conformal invariance group of coordi-

nate transformations.

re*
o s

(4.28)
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The gauge theory possesses an infinite set of topologically

inequivalent classical vacua, just as does the complete theory.

_ 2i"n 6

- e
If - o
A ~2n (4.29)

The imaginary time lt*iT] version of the theory has n-pseudo-

particle solutions. IThe Euclidean model is a conformal trans-

formation of Kitten's Lagrangian. ] Thus the simplified theory

gives rise to the .aultiple vacua and tunnelling of the complete

theory.

At present nothing more is known about the reduced classical

or quantum nechanical theory (4.27), beyond of course its 0(4)

invariant "sub-theory". There is a fine tradition in theoretical

physics of studying 2-diinensional models for clues to realistic

4-dimensional ones. We hope that an understanding of our 2-

dimensional model (4.27) will help unravel the complexities of

the full Yang-Hills theory from which, after all, it was obtained.
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