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Abstract: In particular, Riemann’s impact on mathematics and physics alike is demonstrated using
methods originating from the theory of numbers and from quantum electrodynamics, i.e., from the
behavior of an electron in a prescribed external electromagnetic field. More specifically, we employ
Riemann’s zeta function to regularize the otherwise infinite results of the so-called Heisenberg–Euler
Lagrangian. As a spin-off, we also calculate some integrals that are useful in mathematics and physics.
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1. Usefulness of Riemann’s Functional Equation for the Zeta Function in Physics

Riemann introduced in his talk in Berlin in 1859 [1] (p. 147)
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where ψ(x) is related to one of Jacobi’s θ functions. Notice that there is no change of the right-hand side

under s → (1− s). π−
s
2 Γ
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2
)

ζ(s) has simple poles at s = 0 (from Γ) and s = 1 (from ζ). To remove
these poles, we multiply by 1
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which is an entire function (ζ is a meromorphic function). Obviously, we have

ξ(s) = ξ(1− s)

together with the symmetrical form of the functional equation, which was proved by Riemann for all
complex s:
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Notice that the right-hand side is obtained from the left-hand side by replacing s by 1− s.
Before we continue with Equation (3), we make use of two important formulae due to Euler

and Legendre.
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Legendre’s duplication formula: Γ functions of argument 2s can be expressed in terms of Γ
functions of smaller arguments.
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)
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When we replace s→ s
2 , we obtain:
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Euler’s reflection formula for the Γ function:

Γ(s)Γ(1− s) =
π

sin πs
. (6)
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Now multiply Equation (3) by Γ
(

s+1
2

)
to obtain
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Then, we get from Equations (5) and (7) the following equations:

π−
s
2

√
π

2s−1 Γ(s)ζ(s) = π−
1−s

2
π

cos πs
2

ζ(1− s),

ζ(1− s) =
2

(2π)s cos
πs
2

Γ(s)ζ(s). (9)

Here, we replace s→ 1− s thereby obtaining

ζ(s) =
2

(2π)1−s cos
π(1− s)

2
Γ(1− s)ζ(1− s) (10)

or ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s). (11)

The latter equation is of great importance in the following sections.

2. Correction of the Classical Electromagnetic Lagrangian by Vacuum Electrons

In 1936, Werner Heisenberg and Hans Euler [2] wrote down the first effective Lagrangian in
quantum field theory, which incorporates a quantum correction to the classical Lagrangian of a constant
electromagnetic field; this correction is due to the polarization of the quantum vacuum (Dirac’s idea),
i.e., the effect of an external constant electromagnetic field on the motion of the vacuum electrons.
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To simplify matters, we only consider a constant magnetic field in z direction. For this special case,
the modified Lagrangian takes the form—in Schwinger’s representation:

L(B) = L(0) + L(1) , L(0) = −1
2

B2 ,

L(1)(B) =
1

8π2

∞∫
0

ds
s3 e−im2s

[
(eBs) cot(eBs) +

1
3
(eBs)2 − 1

]
. (12)

The integral was explicitly calculated for the first time in [3] by dimensional regularization and
thereafter in [4] by the so-called zeta-function regularization. The findings of these two different
methods agree exactly, whereby the result obtained by the zeta-function regularization is finite without
the usual subtraction of divergent counterterms. The result turns out to be

L(1)(B) = − 1
32π2

{
−3m4 + 4(eB)2

(
1
3
− 4ζ ′(−1)

)
+ 4m2(eB)(ln 2π − 1)

− 2m4 ln
2eB
m2 − 4m2(eB) ln

2eB
m2 −

4
3
(eB)2 ln

2eB
m2

−16(eB)2

1+ m2
2eB∫

1

dx ln Γ(x)

 . (13)

For those values of the field strength, i.e., for strong fields eB
m2 � 1, the integral over the logarithm

of the gamma function only yields a constant.
With b = eB

m2 , we obtain

b2

1+ 1
2b∫
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dx ln Γ(x) ≈ b2

1+ 1
2b∫

1

dx
[
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d
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]

= b2Ψ(1)

1+ 1
2b∫

1

dx(x− 1) =
1
8

Ψ(1) = −1
8

C. (14)

Here, C is Euler’s number, C = ln γ = 0.57721566490, and the digamma function

Ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

at x = 1 is given by Ψ(1) = − ln γ.

Therefore, by only considering the dominant forms for large magnetic field strength, we obtain for
the asymptotic form of the one-loop effective Lagrangian in spinor quantum electrodynamics (QED)

lim
eB
m2→∞

L(1)(B) = − 1
32π2

{
4(eB)2

(
1
3
− 4ζ ′(−1)

)
− 4

3
(eB)2 ln

2eB
m2

}

=
αB2

6π

{
ln

eB
m2 + 12ζ ′(−1)− 1 + ln 2

}
, α =

e2

4π
. (15)

On the other hand, we find in Ritus’ paper [5] under Formula (60) the expression

lim
eB
m2→∞

L(1)(B) =
αB2

6π

{
ln

eB
γπm2 +

6
π2 ζ ′(2)

}
. (16)
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Since Equations (15) and (16) are just two different representations of the same strong-field
Lagrangian L(1)(B), we have the equality

ln
2eB
m2 − 1 + 12ζ ′(−1) = ln

2eB
m22πγ

+
6

π2 ζ ′(2)

or
− 1 + 12ζ ′(−1) = − ln(2πγ) +

6
π2 ζ ′(2). (17)

This important equation is in fact a direct consequence of a variant of the famous functional
equation of Riemann’s zeta function [1]

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s). (18)

Note that the result in Equation (17), which arises from long, complicated field theoretic
calculations, follows from solving a physics problem—not from analytical theory of numbers,
namely by studying the behavior of vacuum electrons in presence of a constant external strong classical
magnetic field. (Later, we meet ζ ′(−1) and ζ ′(2) again in connection with the Glaisher–Kinkelin
constant.) Thus far, we consider nonlinear spinor QED where spin 1

2 particles with mass m are
coupled to an external constant magnetic field. The corresponding effective Lagrangian is given by
Equation (12).

Now, we study charged spinless particles with mass m, associated with a complex scalar field,
which interact with a constant magnetic field. Here, the starting point is given by the Heisenberg–Euler
effective Lagrangian, which in Schwinger’s proper time representation reads:

L(1)scalar(B) = − 1
16π2

∫ ∞

0

1
s3 e−im2s

[
eBs

sin(eBs)
− 1

6
(eBs)2 − 1

]
ds. (19)

Without going into detail, we just repeat the former results for spinor particles obtained for strong
magnetic fields, when performing the calculation in both the ζ function and proper time regularization.
Here are the results for scalar QED:

lim
eB
m2→∞

L(1)scalar(B) =
αB2

24π

[
ln

2eB
m2 +

(
12ζ ′(−1)− 1 + ln 2

]]
(20)

=
αB2

24π

[
ln

2eB
m2 +

(
− ln γπ +

6
π2 ζ ′(2)

)]
(21)

This brings us back to Equation (17), which is equivalent to Riemann’s functional equation
for the zeta function. This functional equation is evidently independent of the masses involved,
be they fermionic or scalar. Were it not for the factors 1

24π instead of 1
6π and ln 2eB

m2 instead of ln eB
m2

in the spinor case, we could have guessed Equations (20) and (21). However, arriving from the
proper-time integrals of Equation (12) or Equation (19) at Equations (15), (16), (20), and (21) is a highly
challenging undertaking.

Finally, let us mention that the results of Equations (15) and (20) can be used in the
Callan–Szymanzik renormalization equation to calculate the βζ(α) function for spinor and scalar
QED to result in

βζ(α) =
2
3

α

2π
(spinor), βζ(α) =

1
6

α

π
(scalar). (22)

This confirms the correctness of the results in Equation (22) calculated otherwise.



Universe 2019, 5, 79 5 of 10

3. Proof of Equation (17) from the Functional Equation of Riemann’s Zeta Function

Since Equation (17) contains derivatives of the ζ(s) function at s = −1 and s = 2, we need the
derivative of Equation (18). Writing 2sπs−1 = es ln 2e(s−1) ln π , we obtain

ζ ′(s) = (ln 2 + ln π)2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)

+
π

2
2sπs−1 cos

(πs
2

)
Γ(1− s)ζ(1− s)

− 2sπs−1 sin
(πs

2

)
(Γ′(1− s)ζ(1− s) + Γ(1− s)ζ ′(1− s)).

For s = −2, we find

ζ ′(−2) =
π

2
2−2π−3 cos(−π)Γ(3)ζ(3), Γ(3) = 2,

ζ ′(−2) =
−ζ(3)

4π2 (23)

or
ζ(3) = −4π2ζ ′(−2),

a result we use below.
For s = −1, we employ ζ(2) = π2

6 (Euler’s Basel problem) and Γ′(2) = 1−C = 1− ln γ, Γ(2) = 1,
so that

ζ ′(−1) = − ln 2× 1
12
− ln π × 1

12
+ (1− ln γ)× 1

12
+

1
2
× 1

π2 ζ ′(2)

or

ζ ′(−1) =
1

12

[
1− ln(2πγ) +

6
π2 ζ ′(2)

]
, (24)

that can also be written as

− 1 + 12ζ ′(−1) = − ln(2πγ) +
6

π2 ζ ′(2), (25)

which is exactly the equation that followed from the two regularization methods, which produced the
physically motivated results Equations (15) and (16).

4. Asymptotic Expansions of ln Γ(x + 1) and ln Γ1(x + 1)

On the way to calculating the constant L1 (for the definition cf. Equation (33)), we start with the
asymptotic expansion of ln Γ(x + 1) [6]:

ln(x!) =
x

∑
x=1

ln x = L0 +

(
x +

1
2

)
ln x− x +

B2

1× 2x
+

B4

3× 4x3 +
B6

5× 6x5 + . . .

= ln Γ(x + 1). (26)

This is called the Moivre–Stirling formula. Actually, it was discovered by Moivre (1667–1754) with
the aid of Euler’s (1707–1783) summation formula. Stirling (1692–1770) “only” showed, using Wallis’
(1616–1703) product formula, that the constant L0 is given by

L0 = ln
√

2π = 0.918938533 . . . . (27)
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The Bernoulli numbers in Equation (26) are

B1 = −1
2

, B2n+1 = 0, n = 1, 2, 3, . . . ,

B2 =
1
6

, B4 = − 1
30

, B6 =
1
42

, B8 = − 1
30

. . . . (28)

Useful integrals of ln Γ(x + 1) are due to Raabe (1801–1859):

x+1∫
x

dt ln Γ(t) =
x∫

x−1

dt ln Γ(t + 1) = x ln x− x + ln
√

2π. (29)

In particular,

1∫
0

dx ln Γ(x + 1) = ln
√

2π − 1,

1∫
0

dx ln Γ(x) = ln
√

2π.

The generalized Γ function Γ1(x) shows up in the value of the integral

x∫
0

dt ln Γ(t) = ln Γ1(x)− x
2
(x− 1) + x ln

√
2π. (30)

One could use Equation (30) as defining equation for ln Γ1(x). Putting x = 1
2 , we obtain from

Equation (30)

1
2∫

0

dx ln Γ(x) = ln Γ1(
1
2
) +

1
8
+

1
2

ln
√

2π

=
3
2

L1 +
5

24
ln 2 +

1
4

ln π, (31)

where we use
ln Γ1(

1
2
) =

3
2

L1 −
1
8
− 1

24
ln 2, (32)

which can be looked up in Ref. [6]. The constant L1 remains to be determined, which is the main goal
of this paper.

Next, we introduce the asymptotic expansion of ln Γ1(x + 1) [6]:

ln
(

11 × 22 × 33 . . . xx
)
=

x

∑
k=1

k ln k =: ln Γ1(x + 1)

=L1 +

[
x
2
(x + 1) +

1
12

]
ln x− 1

4
x2 −

(
B4

2× 3× 4x2 +
B6

4× 5× 6x4 +
B8

6× 7× 8x6 + . . .
)

. (33)

As pointed out in the title of this paper, the constant L1 is determined by comparing different
regularization methods arising from physics arguments.
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The generalized Γ function of the first kind satisfies the relations

ln Γ1(x + 1) =
x∫

0

dt ln Γ(t + 1) +
x
2
(x + 1)− x ln

√
2π, (34)

ln Γ1(x) =
x∫

0

dt ln Γ(t) +
x
2
(x− 1)− x ln

√
2π. (35)

Γ1(x) satisfies the functional equation

Γ1(x + 1) = xxΓ1(x) (36)

with the constraints Γ1(0) = Γ1(1) = Γ1(2) = 1.
The resemblance to the usual Γ function (of the zeroth kind Γ0 ≡ Γ) becomes obvious in observing

that Γ1 for integer values of the argument reduces to

Γ1(n + 1) = 11 × 22 × 33 . . . nn , n > 0 .

The generalized Γ function of the kth kind satisfies

Γk+1(x + 1) = xxk+1
Γk+1(x),

ln Γk+1(x + 1) = xk+1 ln x + ln Γk+1(x),

k = 0 : ln Γ1(x + 1) = x ln x + ln Γ1(x). (37)

The analog of Raabe’s formula is given by

x∫
x−1

dt ln Γ1(t + 1) =
x2

2
ln x− x2

4
+ L1 −

1
12

. (38)

In particular,

1∫
0

dx ln Γ1(x + 1) = L1 −
1
3

, (39)

1∫
0

dx ln Γ1(x) = L1 −
1

12
. (40)

Using x = 1
2 in Equation (34) and Equation (32) in

ln Γ1

(
3
2

)
=

1
2

ln
1
2
+ ln Γ1(

1
2
) (41)

we obtain

ln Γ1

(
3
2

)
= −13

24
ln 2 +

(
3
2

)
L1 −

1
8

,
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so that

1
2∫

0

dx ln Γ(x + 1) = ln Γ1

(
3
2

)
− 3

8
+

1
4

ln 2 +
1
4

ln π

= − 7
24

ln 2 +
3
2

L1 −
1
2
+

1
4

ln π. (42)

5. Numerical Value of L1 from Γ1 Function Regularization

Here, we make substantial use of the results contained in the rather elaborate paper of the authors
of Ref. [7], from which we can extract the Γ1 function regularization for L(1)(B) limiting ourselves to
strong fields, eB/m2 � 1.

Here is the result:

lim
eB
m2→∞

L(1)(B) =
αB2

6π

{
eB
m2 + ln 2− 12L1

}
. (43)

Comparing the right-hand side with the results from the ζ function regularization in Equation (15)
or from Ritus’ formula in Equation (16), the equality of the three different regularization methods
teaches us

L1 =
1
12
− ζ ′(−1) (44)

or
L1 =

C
12

+
1
12

ln 2π − 1
2π2 ζ ′(2). (45)

Upon using the constants

ζ ′(−1) = −0.165421 , ζ ′(2) = −0.93754

and Euler’s constant
ln γ = C = −Ψ(1) = 0.57721566490,

we obtain
L1 = 0.248754477 . (46)

This number can be inserted into the text wherever we meet the constant L1.
Given the explicit expression in Equation (46), it is worthwhile looking at the so-called

Glaisher–Kinkelin constant A. Here is one of the many representations:

A = e
1

12−ζ ′(−1) from ln A =
1

12
− ζ ′(−1) = L1. (47)

When we take the value of L1 from Equation (45), we obtain:

A = (2π)
1

12

[
e

π2
6 ln γ−ζ ′(2)

] 1
2π2

= 1.2824271291 (48)

Here are two more representations:

∫ 1
2

0
ln Γ(x)dx =

3
2

ln A +
5
24

ln 2 +
1
4

ln π (49)

yields

A = 2−
5

36 π−
1
6 exp

[
2
3

∫ 1
2

0
ln Γ(x)dx

]
. (50)
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∫ 1
2

0
ln Γ(x + 1)dx =

3
2

ln A− 7
24

ln 2 +
1
4

ln π − 1
2

(51)

results in

A = 2
7

36 π−
1
6 exp

[
1
3
+

2
3

∫ 1
2

0
ln Γ(x + 1)dx

]
. (52)

A final remark should be made concerning the importance of ζ(3), i.e., the infinite sum of all the
inverse cubes,

ζ(3) = 1 +
1
23 +

1
33 +

1
43 +

1
53 + . . . . (53)

No complex numbers are needed because ζ(3) lies in the original Euler domain of convergence,
i.e., x > 1. No wonder that Euler became interested in the fundamentals of its value, e.g. is it rational,
transcendental, etc.? Remarkably, it took until the late 20th century before a major breakthrough
was achieved in 1979 by the 61-year-old French mathematician Roger Apéry, who was able to prove
the irrationality of ζ(3). Today, due to his proof, the constant ζ(3) is known as Apéry constant.
Its numerical value is given by

ζ(3) ≈ 1.202056903159 . . . . (54)

Hence, everywhere we meet ζ(3) in the foregoing text, one can use this value. However, ζ(3) is
not only of great interest to researchers working in number theory, but is also of immense value for
people doing calculations in QED, e.g. the second- and third-order (in α) radiative corrections of the
electron (and muon) anomalous magnetic moment, which is one of the best-measured and -calculated
numbers in all of physics. Furthermore, ζ(3) is needed in the second-order radiative corrections to the
so-called triangle anomaly, which is essential for the understanding of the π0 decay into two photons.

Finally, while knowledge of the numerical value of Apéry’s constant ζ(3) = −4π2ζ ′(−2) ≈
1.202056903159 is absolutely necessary for computing the just-mentioned elementary particle processes,
the constants ζ ′(−1) ≈ −0.165421 and ζ ′(2) ≈ −0.93754—tied together by the relation in
Equation (25)—are likewise of utmost importance for evaluating effects arising from the effective
Lagrangian in QED, i.e., from the Heisenberg–Euler non-linear contribution. An example of this is the
impact of the QED birefringent quantum vacuum structure on the propagation of light in the universe
in the neighborhood of neutron stars, which constitute the laboratory for studying physical processes
in superstrong magnetic fields.
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