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“Die Welt ist die Gesamtheit der Tatsachen, nicht der Dinge.”

Ludwig Wittgenstein [1].





From meson-baryon scattering to
meson photoproduction

In the present work we investigate the properties of the lowest baryon resonances. The starting
point of our analyses is the low-energy effective theory of quantum chromodynamics, called
chiral perturbation theory. As such it describes the long-range observables in terms of the low-
energy effects, while the high-energy effects are subsumed in the so-called low-energy constants.
In the region of the aforesaid lowest baryon resonances any strict perturbative expansion fails
and some resummation scheme is required. For this we will employ the Bethe-Salpeter equation
(BSE) which guarantees the exact unitarity of the S-matrix and allows to generate resonances
dynamically, however, abandoning some other basic principles of quantum field theory as de-
scribed in chapter 2. Restricting the driving term of this equation to local terms of the second
chiral order, we will derive an exact solution of the BSE for meson-baryon scattering in chapter
2. Without putting the interaction kernel on shell we preserve the exact correspondence of this
solution to an infinite chain of Feynman diagrams.

In chapter 4 we will apply this ansatz for antikaon-nucleon scattering, trying to get a new
insight into the nature of the subthreshold resonance, i.e. Λ(1405). The properties of this
resonance have been debated for decades and in recent years it has again attracted a lot of
attention by theoreticians since this resonance can be dynamically generated from the so-called
chiral unitary approaches. Moreover, the recent measurement of the energy shift and width
of kaonic hydrogen in the SIDDHARTA experiment at DAΦNE has provided a very tight
constraint on K−p scattering length. Typically, these approaches predict a two pole structure
of Λ(1405), but the question is how precise one can determine the position of these poles relying
on data at and above the K̄N threshold.

Moreover, we will apply our framework for the analysis of pion-nucleon scattering in chapter
3. There we will show that the iteration of local terms of second chiral order allows to repro-
duce the s-wave resonances N∗(1535)S11 and N∗(1650)S11. Then in chapter 5 we will adopt
this hadronic amplitude as a part of a gauge invariant framework to address pion and eta pho-
toproduction in a combined analysis. There all terms of the next-to-leading chiral order will be
included reproducing the scattering data very well in both channels. After that we calculate the
photoproduction multipoles in a parameter-free prediction which will then be compared with
more phenomenological analyses by the MAID, ETAMAID, SAID and Bonn-Gatchina groups.
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Chapter 1

Introduction

1.1 Quantum chromodynamics

The world manifests itself via forces, and to our present knowledge nature exhibits four funda-
mental forces: gravitation, the weak, electromagnetic and the strong force. In that order the
strengths of these cover of about 39 orders of magnitude starting from the weakest one, gravity,
which is responsible for the largest observed structures in the universe. The dynamics of the
smallest structures in the universe on the other hand are caused by the three other fundamen-
tal interactions, which together build a theory nowadays called The Standard Model of particle
physics. As such it has to take both quantum effects as well as special relativity1 into account
and the only way to reconcile both is quantum field theory.

In several groundbreaking and Nobel Prize awarded steps over the last century each part
of the Standard Model was identified by the underlying gauge symmetry group which can be
written very compactly as follows

SU(3)︸ ︷︷ ︸
strong

× SU(2)× U(1)︸ ︷︷ ︸
electroweak

.

The electroweak part has been found by Glashow, Weinberg and Salam to unify quantum elec-
trodynamics (QED) and the weak interaction. The remaining part is the symmetry group of a
non-Abelian gauge theory called quantum chromodynamics (QCD) which exhibits a completely
different behaviour of the corresponding coupling compared to the electroweak sector. Whilst
the electroweak sector can essentially be analyzed perturbatively, the strong coupling is antis-
creened by the self-interacting gauge bosons, gluons, due to the non-Abelian character of QCD.
Thus the QCD coupling is large for low energies (large distances) and small for high energies
(small distances). The latter fact is usually referred to as asymptotic freedom. As a matter of
fact it has been shown in Ref. [5] that asymptotic freedom of a renormalizable field theory in
four dimensions requires the incorporation of non-Abelian gauge fields. On the other hand the
increase of the strong coupling at low energies gives rise to the confinement hypothesis which
states that no matter- or gauge-fields of QCD can be observed directly. Thus albeit there is no

1A comprehensive description of General Relativity (gravity) and quantum effects remains an unsolved
question.
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reason to doubt about QCD as the correct theory of strong interactions, its non-perturbative
character calls for more elaborative techniques to understand its implications.

The matter fields of QCD are quarks, q, which appear in three different colours denoted in
the following by the indices a and b. The strong force is mediated by the gluon gauge-field G
which by itself carries a colour quantum number. Additionally six different ’flavours’ of quarks
have been observed, f ∈ {u, d, s, c, b, t}, where each one of them carries a different mass. Thus
we have to sum over all flavours to end up with

LQCD =
∑
f

q̄af
(
iγµD

µ
ab −mfδab

)
qbf −

1

4
Ga

µνG
µν
a − g2

θ

64π2
Ga

µνε
µνµ′ν′Ga, µ′ν′ , (1.1)

where g is the strong coupling. The last term of the above Lagrangian allows for a CP-violation
which has never been observed. Experimentally, the coefficient of this term is constrained to
|θ| < 10−10, see Ref. [6], and we will neglect it in the following. Assuming invariance under
local SU(3) gauge transformations, generated by the 8 Gell-Mann matrices t, one has to replace
simple derivatives by covariant ones which are given in the minimal form by

Dµ
ab = ∂µδab + ig

8∑
i=1

tiabG
i, µ .

With the Lie bracket [ti, tj] = if ijktk the Gell-Mann matrices build a Lie algebra, where f ijk

are called structure constants. The gluon field-strength tensor reads

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gfabcGb

µG
c
ν ,

where the last term is due to the non-Abelian character of QCD and has extraordinary conse-
quences as it induces three- and four-gluon interaction. One typical feature of all gauge field
theories is that mass as well as coupling constants are renormalized by effects involving virtual
particles. As a matter of fact without the self-interaction of gluons the strong coupling would
behave exactly as the QED coupling, i.e. it is small for low energies and large for high energies.
This would allow for a perturbative treatment of QCD in the low energy region. It turns out
that the self-interaction of gluons reverses this pattern (Nf ≤ 16 is assumed) and low-energy
QCD becomes a truly non-perturbative theory.

In recent years two different approaches have crystallized to be promising describing the low
energy sector of QCD, effective field theories (EFTs) and lattice QCD (LQCD). The latter is an
attempt for a direct evaluation of QCD on discretized space-time lattices. Quarks are defined
on the lattice points and gluons are supposed to be situated on the links between those. This
implies directly that Lorentz invariance is broken and that the system to study can only have
discrete values of momentum with the natural UV cutoff of order 1/a, where a is the lattice
spacing. The real-world QCD is assumed to be reproduced on the lattice in the limit a → 0.
Albeit the basic ideas of lattice regularized QCD are quite old, see Refs. [7,8], their applications
are computationally very expensive and became available only with the rise of supercomputers
in the last decade. Nowadays there are numerous groups around the globe working in this field
and the results are now approaching the level of precision of modern experimental physics, see
Ref. [9] for a recent determination of light hadron masses on the lattice.

We will follow a different path analyzing the low energy sector of QCD provided in the
framework of effective field theories. Generally speaking, whenever a physical system exhibits

2



a scale separation one can describe the long-range (low-energy) observables in terms of the
low-energy effects, i.e. integrating out the short-range effects. This gives rise to the so-called
effective degrees of freedom in which this theory is defined, unlike in those of the underlying
theory. There are several areas of physics where this philosophy has found a successful applica-
tion and it is even thinkable that the Standard Model and general relativity itself is an EFT of
some underlying theory. However, no successful candidates are found yet, see the discussion in
Ref. [10]. Let us return to QCD. Its matter fields show a clear scale separation as three of them
(u,d,s) can be considered as light and three others (c,b,t) as heavy compared to the ’typical’
hadron mass scale given by the mass of the proton (938 MeV) or the ρ meson (776 MeV). It is
therefore only natural to consider in the first approximation the light quarks as massless, usu-
ally referred to as the so-called SU(3) chiral limit. Obviously in this limit the QCD Lagrangian
(1.1) is not the most general one, i.e. the right- and left-handed quark fields defined via

qR :=
1

2
(1 + γ5)q and qL :=

1

2
(1− γ5)q

decouple from each other and fulfill the massless part of Eq. (1.1) separately as follows

L0 =
∑

f=u,d,s

(
q̄fLiγµD

µqfL
)
+
∑

f=u,d,s

(
q̄fRiγµD

µqfR
)
− 1

4
GµνG

µν , (1.2)

where we have suppressed the colour indices for convenience. Clearly the above Lagrangian is
invariant under the replacement qR 7→ RqR as well as qL 7→ LqL for R/L ∈ U(3) separately.
Thus massless QCD is invariant under

UL(3)× UR(3) = SUV (3)× SUA(3)× UV (1)× UA(1) ,

where the subscript V denotes the vector (L + R) and A the axial-vector (L − R) symmetry
groups. At the ’classical’ level, using the Noether theorem, we would expect (8 + 8 + 1 +
1) conserved currents, respectively to the above decomposition. The inclusion of loops, i.e.
quantum effects, leads to the observation that the axial-vector current is not conserved if
one imposes the Ward identities as it has been shown in Ref. [11]. On the other hand the
UV (1) symmetry corresponds to the baryon number conservation which we expect to be fulfilled
exactly2. It remains to clarify whether the remaining part of the symmetry group is realized
in nature. First, vector like theories, such as QCD, cannot spontaneously break down vector
symmetries as it was shown (modulo some assumptions) by Vafa and Witten in Ref. [12].
Consequently SUV (3) annihilates the ground state and thus is realized in the so-called Wigner-
Weyl mode. Now let us assume that the generators of SUA(3) also annihilate the QCD vacuum,
then by Coleman’s theorem [13] it will be observed as a symmetry of the hadronic spectrum.
On the other hand applying a generator of the axial group to any state of the hadronic spectrum
will produce a degenerate state with the opposite parity. Because such ’parity doublers’ have
not been observed in nature, the symmetry group of massless QCD, SUV (3)×SUA(3), must be
broken spontaneously to the SUV (3). Consequently by the Goldstone theorem each generator of
the broken/hidden symmetry (SUA(3)) is associated with a massless Goldstone boson. Indeed
the lightest particles of the hadronic spectrum appear to be the pseudoscalar mesons (π,K, η).
The finite masses of these are caused by the explicit symmetry breaking, i.e. finite masses of
u, d and s quarks.

2The issue of Baryogenesis lies outside of the scope of this thesis.
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In principle those symmetry considerations were known since the sixties. Back then they
led to rather protracted calculations of low energy dynamics of hadrons in the framework of
“current algebra“ and “partially conserved axial-vector currents” (PCAC). The most popular
results of that era are the Gell-Mann-Okubo [14], Gell-Mann-Oakes-Renner [15] relations as
well as Weinberg’s prediction [16] for the isovector and isoscalar s-wave pion-nucleon scattering
lengths

a− =
1

8πF 2
π

Mπmp

mp +Mπ

and a+ = 0 , (1.3)

where mp and Mπ denote the proton and pion masses, respectively, and Fπ is the pion decay
constant. In 1979 Weinberg [17] formulated a conjecture (also known as a folk theorem) which
revealed a path of systematical calculations of the “current algebra“ results as well as corrections
to it. The theorem states that to any given order of perturbation theory the matrix elements
calculated from a most general effective Lagrangian which contains all terms consistent with
all fundamental principles and the assumed symmetry yield a most general S-matrix consis-
tent with all fundamental principles of quantum field theory, i.e. analyticity, (perturbative)
unitarity and cluster decomposition as well as the assumed symmetries. There are two crucial
observations to be made: First, one has to include every term allowed by the symmetries into
the effective Lagrangian. These terms are accompanied by coupling constants which will be
renormalized absorbing all possible UV loop divergences. Thus one can go beyond the tree level
calculations which brings us to the second point. For practical calculations one has to organize
the infinite number of terms of the most general effective Lagrangian to ensure some kind of
perturbative expansion. In other words one has to decide which terms are more important and
which are less. Chiral perturbation theory (ChPT) is an effective low energy theory organized
in powers of small momenta and light quark masses as we will demonstrate in detail in the next
section.

To conclude the present section we wish to note that LQCD and ChPT have different histories
and, more importantly, different underlying philosophies. Nevertheless both methods must be
seen as complementary taking benefit from each other. As already mentioned new coupling
constants appear in the effective Lagrangian, in particular the chiral Lagrangian - called low-
energy constants (LECs). These cannot be calculated from the chiral approach but only from
the underlying theory (QCD) directly. Thus, in principle, LQCD should be a perfect method
to pinpoint these constants. On the other hand, typically, calculations on the lattice are carried
out at larger (∼ 200..400 MeV) than the physical pion mass (Mπ = 135 MeV) to reduce the
computational costs. To extract the real world quantities one inevitably has to extrapolate these
results to the ’physical point’ which requires the knowledge of their pion mass dependence. An
almost perfect tool for this is ChPT as it is organized in powers of small external momenta and
light quark masses, where mq ∼M2

π . We will show a particular example of the so-called chiral
extrapolations relying on our results later.

1.2 Chiral perturbation theory

The dynamics of the hadronic systems which we will describe in the main part of this thesis are
given by chiral perturbation theory. Numerous very precise calculations of different observables
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have rendered ChPT a powerful tool and in many cases as a benchmark in the threshold
and subthreshold energy region, see [18–21] and references therein. In the present section we
wish to demonstrate the construction principles of the effective Lagrangian according to the
symmetry considerations presented before. We will follow the general procedure of Gasser and
Leutwyler [22, 23] but wish also to refer the reader to more recent introductions [20, 24, 25] for
more details.

Our quantum field theoretical objects of study are the S-matrix elements which relate the
initial and final state of a physical system. Now the Lehmann, Symanzik, Zimmermann reduc-
tion formula connects these to the time ordered correlation functions which themselves can be
computed from the generating functional Z[J ] via functional derivatives with respect to the
external field J . The generating functional is defined as follows

Z[J ] = 〈0|Tei
∫
d4x q̄J(x)q |0〉 . (1.4)

The external fields, coupling to QCD, can be written in terms of 8 vector (vµ), 8 axial-vector
(aµ), one scalar (s) and one pseudoscalar (p) fields, i.e. J(x) = γµv

µ(x) + γµγ5a
µ(x) − s(x) +

iγ5p(x). The QCD Lagrangian (1.1) can then be obtained from the following generalized
Lagrangian

L = L0 + q̄Jq ,

taking the limit v(x) = a(x) = p(x) = 0, s(x) = M, where the latter denotes the quark
mass matrix, i.e. M = diag(mu,md,ms). In the presence of the external fields the generating
functional can now be calculated in the path integral formalism as follows

Z[J ] =

∫
[DG][Dq][Dq̄]e

∫
id4x(L0(q̄,q,G)+q̄J(v,a,s,p)q) . (1.5)

In principle Weinberg’s conjecture allows one to replace the r.h.s. of the above equation by the
path integral over the effective fields U incorporated in the effective Lagrangian, Leff , as follows

Z[J ] =

∫
[DU ]e

∫
id4x Leff(U,v,a,s,p) . (1.6)

The effective Lagrangian should be invariant under all original symmetries of the QCD La-
grangian as well as the chiral symmetry. In fact the effective Lagrangian should be invariant
under local chiral transformations as it was demonstrated by Leutwyler in Ref. [26] through
analysis of the Ward identities. For the already discussed transformation of quark fields, i.e.
qR 7→ RqR and qL 7→ LqL, the external fields have to transform as follows

vµ + aµ → R(vµ + aµ)R
† + iR∂µR

† ,

vµ − aµ → L(vµ − aµ)L
† + iL∂µL

† , (1.7)

(s+ ip) → R(s+ ip)L† ,

where R/L are space-time-dependent SU(3) matrices.

We wish to note that the validity region of Eq. (1.6) is limited to the low energy region. The
analysis of the spontaneous symmetry breaking (SSB) from SUL(3)×SUR(3) to SUV (3) in the
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last section dictates the presence of (approximately) massless Goldstone bosons, which we have
identified as π, K and η mesons. At low energies the heavy degrees of freedom are ’frozen’ and
the dynamics of QCD is captured by the Goldstone bosons which serve as dynamical degrees
of freedom. The (low energy) expansion of the QCD Green functions in powers of masses
and external momenta of these effective degrees of freedom is in principle equivalent to the
transition from Eq. (1.5) to Eq. (1.6). On the other hand the heavy degrees of freedom, e.g.
meson resonances, have been integrated out and their effects are captured in the coefficients
of the low energy expansion. This procedure is of course valid only as long as the expansion
parameter can be considered as small compared to the hadronic scale, which we previously have
identified with the mass of the ρ meson (776 MeV). Another possibility is to set this scale to
4πFπ ∼ 1.1 GeV, which was discussed in Ref. [27] starting from one typical loop contribution
to ππ scattering. Both suggestions are not that different from each other and we will assign
a hadron scale as Λχ ∼ 1 GeV. Typically, reliable calculations can be done for energies up
to ∼ 200 MeV above the threshold. Later we will discuss a possibility to extend the range
of validity of such strictly perturbative approach by means of unitarized chiral perturbation
theory. It is also worth mentioning that the mass of the strange quark differs significantly from
those of up and down quarks, i.e. (at a scale of µ ≈ 2 GeV, see Ref. [28]) mu/mρ = 0.005,
md/mρ = 0.010 and ms/mρ = 0.168. Of course this means that we can expect the low energy
expansion around the chiral limit to have a better convergence behaviour in the two-flavour
sector than the one in the three-flavour sector. In fact this issue will become even more evident
in the baryon sector to which we will come in the next section.

It remains to clarify how these effective fields are realized in the effective Lagrangian. Con-
sider a symmetry group G being spontaneously broken to a subgroup H⊂G. Then N =
dim(G)− dim(H) Goldstone modes [29] are realized, which we assemble in Φ = (φ1, ..., φN),
where φi is a continuous and real-valued function on Minkowski space M4. Obviously the set
of all Φ build a vector space, denoted by Z. In fact the only non-trivial vector space axiom
here is the existence of the zero element, for which we consider the ground state configuration
of the Goldstone bosons3 Φ0. We define a mapping ζ as follows

ζ : G× Z −→ Z

(g,Φ) 7→ ζ(g,Φ) ,

which is assumed to fulfill the identity as well as associativity (group-homomorphism) axioms.
Moreover, since H leaves the vacuum invariant, ζ(h,Φ0) = Φ0 for all h∈H. Consequently for
each g∈G

ζ(gh,Φ0) = ζ(g, ζ(h,Φ0)) = ζ(g,Φ0) , for all h∈H ,

which simply means that ζ defines a mapping of the left coset space G/H = {gH| g∈G} onto
the space of Goldstone bosons. The dimensionality of the coset space is equal to the number
of Goldstone fields and the mapping is injective since ζ(g1,Φ0) = ζ(g2,Φ0) ⇒ g−1

1 g2 ∈ H or
g2 ∈ g1H. Thus the above mapping defines an unique correspondence between the generators
of the coset space G/H and Goldstone bosons. Note that the latter depend in general on the
coordinates in Minkowski space, however, as discussed before we consider the symmetry group
also to be space-time dependent.

3In a theory consisting of Goldstone bosons only, it is a state with no excitations.
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The considerations made in the last section allow us to identify H = {(V, V )|V ∈SU(3)} and
G = {(L,R)|L∈SU(3), R∈SU(3)}. The choice of representative for the left coset of g = (L,R)
is in principle arbitrary, conventionally one takes

g̃H = (1, RL†) (LV, LV )︸ ︷︷ ︸
∈H

,

which is of course isomorphic to gH = {(LV,RV )|V ∈SU(3)} but has now a property to be
completely characterized by a unitary matrix U = RL†. According to the foregoing analy-
sis this matrix is isomorphic to the Goldstone boson fields. It transforms under the chiral
transformations g̃ = (L̃, R̃) as follows

g̃gH = (L̃, R̃)(1, RL†)H = (L̃, R̃RL†)H = (1, R̃(RL†)L̃†)H ,

i.e. U 7→ R̃UL̃† .

Collecting now the pseudoscalar mesons in a hermitian matrix φ we can establish a represen-
tation of the physical states in the unitary matrix U as follows

U = exp
(
i
φ

F0

)
, φ =

√
2


π0
√
2
+ η√

6
π+ K+

π− − π0
√
2
+ η√

6
K0

K− K̄0 − 2√
6
η

 , (1.8)

where we again omitted the dependence on the space-time coordinates for convenience. The
dimensionful quantity F0 denotes the pion (meson) decay constant in the chiral limit as it is
related to the pion decay π+ → µ+νµ. The above representation of meson fields is not unique,
e.g. frequently in the two-flavour framework one uses the so-called sigma parameterization

U = i
3∑

j=1

τj
πj
F0

+ 12

√√√√1−
3∑

j=1

πj
F0

πj
F0

, (1.9)

where τi denote the Pauli matrices and πi collect the pion fields. Clearly the differences be-
tween different descriptions of the pions (mesons) can only affect the off-shell terms. On-shell
quantities are on the other hand related to physical observables and thus must be independent
of the chosen parameterization, see the equivalence theorems in Ref. [30–32]. We will return to
this issue in the next section, where off-shell effects will become important.

Now having specified the building blocks of effective theory, i.e. U, v, s, a, p and derivatives
thereof, we demonstrate the construction principles of the chiral Lagrangian [17, 22, 23]. It
contains an infinite number of structures, which can be ordered in powers of the low energy ex-
pansion parameter, denoted henceforth by q. Demanding Lorentz invariance only even numbers
of derivatives can appear, thus the effective Lagrangian in the pure meson sector only contains
even powers of q

Leff = L(2) + L(4) + L(6) + ... .

In the case of massless quarks and in the absence of external fields the lowest order chiral
Lagrangian reads as follows

L(2) =
F 2
0

4
〈∂µU∂µU †〉 ,
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where 〈..〉 denotes here and in the future the trace in the flavour space. The necessity of the
foregoing dimensionful prefactor, i.e. F 2

0 /4, becomes obvious if we expand the Eq. (1.8) in
meson fields explicitly, U = 1 + iφ/F0 − φ2/(2F 2

0 ) + ... . Then the term containing only two
meson fields possesses the standard form of the kinetic term. At the beginning of this section
we have discussed the necessity to include the external fields and the transformation properties
of these fields, see Eqs. (1.7). For non-vanishing external fields the above Lagrangian can only
be invariant under the local gauge transformations if we replace the partial derivatives by the
minimal form of covariant derivatives as follows

∂µU −→ ∇µU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ) , (1.10)

which is at the very heart of gauge theories as the demand of local gauge symmetries yields in
a special form of the Lagrangian which allows for a discussion of couplings of external fields to
internal degrees of freedom. The scalar and pseudoscalar external fields transform exactly as
the matrix U . Collecting these in the field χ = 2B(s+ ip) the most general leading order (LO)
chiral Lagrangian reads in its full form

L(2)
φ =

F 2
0

4
〈∇µU∇µU †〉+ F 2

0

4
〈χ†U + χU †〉 . (1.11)

The new constant B is related to the explicit chiral symmetry breaking due to the non-vanishing
quark masses. We have argued before that in the real world we have to consider s = M and
p = 0, i.e. χ = 2BM. Later we have identified the ground state of Goldstone fields by U = 1,
consequently the energy density of the ground state is given at the leading chiral order by

〈Heff〉 = −F
2
0

2
B〈M+M†〉 = −F 2

0B(mu +md +ms) .

The new constant can be related to the vacuum expectation value of the chiral quark condensate
〈q̄q〉 = ∂〈0|H|0〉/∂mq|mq=0 to be F

2
0B = −〈q̄q〉. Moreover, expanding the last term of Eq. (1.11)

up to two mesons and using the representation (1.8) we can write down the mass term of the
LO chiral Lagrangian

L(2)
mass = −B

2
〈φ2M〉 =−B(mu +md)π

+π− −B(mu +ms)K
+K− −B(md +ms)K

0K̄0

− B

2
(mu +md)π

0π0 − B√
3
(mu −md)π

0η − B

6
(mu +md + 4ms)ηη .

Assuming isospin symmetry (m̂ := mu = md), the π
0η mixing term vanishes and the masses of

the Goldstone bosons are given at the lowest order by

M2
π = 2Bm̂, M2

K = B(m̂+ms), M
2
η =

2

3
B(m̂+ 2ms) ,

which actually correspond to the Gell-Mann, Oakes and Renner relations [15] if combined with
F 2
0B = −〈q̄q〉. On the other hand a linear combination of the above mass formulas yields the

Gell-Mann-Okubo relation [14]

4M2
K = 4B(m̂+ms) = 2B(m̂+ 2ms) + 2Bm̂ = 3M2

η +M2
π ,

8



which is fulfilled in nature to a few percent accuracy.

After having introduced the framework of chiral perturbation theory the derivation of the
last two well-known relations fits into few lines. Yet, this effective approach is even more
powerful as it allows for a systematical improvement of the accuracy of such calculations by
going to higher orders. Conceptionally, there is an even more important point of doing so, the
restoration of another fundamental principle of quantum field theory, unitarity. Let us consider
for a moment the elastic scattering of two Goldstone bosons. Above the two-particle threshold
the imaginary part of the scattering amplitude is fixed by unitarity

ImTφφ→φφ ∼ T †
φφ→φφTφφ→φφ .

On the other hand at the leading chiral order the scattering amplitude is given by a contact
term from L(2) only and thus is a real-valued number. Consequently the l.h.s. of the above
equation is zero whereas the r.h.s is not. Excluding the trivial solution of this problem (T 6= 0),
we have to include effects of intermediate particles, i.e. loop contributions. In general these
loop integrals produce UV-divergences which can be absorbed into coupling constants of the
effective Lagrangian. In practical calculations this requires an ordering scheme which is achieved
in ChPT by Weinberg’s power counting [17]. The small parameters of the low energy expansion
are small meson momenta and quark masses which we both scale with a common factor α, i.e.
q 7→ αq and mq 7→ α2mq or using the Gell-Mann-Oakes-Renner relation M 7→ αM for meson
masses at leading order in quark mass expansion. Every internal meson line contributes to a
Feynman diagram via∫

d4k

(2π)4
i

k2 −M2 + iε
7→ α2

∫
d4l

(2π)4
i

l2 −M2 + iε
,

where a replacement of the integration momentum k → αl has been performed. Obviously each
vertex from a L(n) scales with αn but also calls for a four-momentum conserving delta function
which scales as α−4. Thus the S-matrix element scales as S 7→ SD′

with
D′ = 2NI +

∑
nNn(n− 4), where NI and Nn denote the number of internal meson lines and

the number of vertices of chiral order n, respectively. The S-matrix for a process involving Ne

external lines is connected to the transition amplitude M via S ∼ δ4(p1 + ... + pNe)M, which
scales then as D = 4 +D′ i.e.

D = 2 + 2NL +
∑
n

Nn(n− 2) ,

where we have replaced NI = NL +
∑

nNn − 1 with NL being the number of independent
loops. In full agreement with the discussion above we see that the lowest possible value of
chiral order is given in the case of no loops, i.e. D = 2. The next most simple topology, a
one-loop diagram with vertices from L(2) contributes already at the fourth chiral order and thus
calls for an inclusion of local terms from L(4) to absorb the loop divergences. For instance, for
any specific chiral order the number of diagrams and thus the number of loop diagrams can be
large but remains finite. We wish to repeat that for each loop diagram there is a local term of
the same chiral order which is accompanied by a coupling constant of the effective field theory.
The renormalization of this allows for an absorption of the loop-divergence such that chiral
perturbation theory is renormalizable order by order.
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In the course of this thesis we will only require the leading order chiral Lagrangian in the
pure mesonic sector and refrain for this reason of giving here the explicit form of the L(4), L(6)

etc. . The interested reader is referred to Refs. [22, 23, 33]. Nevertheless some general remarks
should be made for completeness. First, the operators of the chiral Lagrangian of order 2n can
only consist of 2n derivatives of the matrix U , n quark mass matrices (∼ χ) or of combinations
with m derivatives and p quark mass matrices with m+2p = 2n (m,n, p ∈ N). Then one has to
build all possible contractions of these operators which are consistent with Lorentz invariance,
C,P (and with it also T, by means of the CPT theorem) and G-parity. For simple combinatorial
reasons the overall number of such operators must increase with the rising chiral order, i.e.

L(2) =
2∑

i=1

LiOi , L(4) =
12∑
i=1

L′
iOi , L(6) =

90∑
i=1

L′′
iOi ,

where we have denoted all chiral operators generically by Oi and low energy constants by Li.
The latter cannot be determined from the symmetry principles alone and thus can be seen as free
parameters of the effective approach. However, some restrictions on these parameters can be put
from direct numerical evaluations of QCD Green functions on the lattice. Further restrictions
can be obtained utilizing the resonance saturation hypothesis of QCD as proposed by Gasser
and Leutwyler in Ref. [22] and generalized further in Refs. [34,35]. Generally speaking, the idea
is to exploit the duality of the scattering processes as a probe of the particle spectrum being on
the other hand restricted by the chiral symmetry. Technically one has to introduce a resonance
field coupled to the lowest order chiral Lagrangian. Then the coupling of such field to pion
field (working in the two-flavour sector) is adjusted to reproduce the signal of the resonance in
the hadronic spectrum. Finally the resonance field is integrated out at low momenta. Since
its coupling to the Goldstone field is of the order q2 the resonance exchange is of order q4 and
higher, one can expand the LECs of the NLO chiral Lagrangian in terms of these couplings as
well as resonance masses. It turns out that the LECs are almost saturated by these resonance
contributions, see Ref. [25] for a quantitative comparison.

To further extent one should keep in mind that the low energy constants in the two- and
three-flavour formulation of ChPT (denoted henceforth by SU(2) and SU(3), respectively) are
not independent of each other. In fact integrating out the strange quark from the SU(3) ChPT
in the same manner as the heavy quarks have been integrated out before one obtains the SU(2)
version automatically. A comparison of the outcome of both formulations for a specific Green
function yields then a relation between the free parameters of both approaches. These so-called
matching relations help to transfer the information on LECs from the three-flavour theory to
the two-flavour case and vice versa. In the pure mesonic sector several constants have been
matched up to the two loop level, see Refs. [36–40]. In the baryon sector matching relations
have been carried out up to NLO in Ref. [41] as well as in Ref. [42] based on the analysis of
pion-nucleon scattering.

A deeper understanding of meson-baryon scattering is the core issue of the present work.
Moreover, it also serves as a main ingredient for our analysis of photoproduction of mesons.
Thus as a next step we shall give a recipe of how to extend ChPT to the sector where baryons
play a major role.

10



1.3 Baryon ChPT

By far the most prominent extension of chiral perturbation theory is the inclusion of baryon
fields in a consistent way [43, 44]. The interest to do so grows out of the fact that most of
the collected experimental results in nuclear physics involve baryons. On the other hand the
baryonic spectrum itself carries a very rich structure which is described quite well in the naive
quark model but still not understood properly as it does not include effects of virtual hadrons
and gluons. In fact we will show later that some of these excited states can be reproduced
perfectly as what we call dynamically generated states from the meson and baryon intermediate
states.

In this work we will consider processes involving only one single baryon, for the case of more
baryons included we refer to Ref. [45] as well as to the reviews [46, 47]. In contrast to the
previous section, see Eq. (1.4), the object of interest is given here by the transition amplitude
from an asymptotic one-baryon in-state |p in〉 to an asymptotic one-baryon out-state |p′ out〉
as follows

Z(p′,p; v, a, s, p) = 〈p′ out|p in〉connectedv,a,s,p for p′ 6= p ,

where p and p′ denote the three-momentum of the in- and outgoing baryon, respectively. Both
are considered to be small allowing for an effective low-energy analysis.

We wish now to construct an effective chiral Lagrangian which allows for a direct access of
the generating functional in the sense of Eq. (1.6). First of all we collect the baryon fields of
the ground state octet, i.e. JP = 1/2+, in a traceless matrix

B =


Σ0
√
2
+ Λ√

6
Σ+ p

Σ− −Σ0
√
2
+ Λ√

6
n

Ξ− Ξ0 − 2√
6
Λ

 ,

where each element is a Minkowski space dependent Dirac field. To understand the transfor-
mation properties of this object we have to keep in mind that the effective degrees of freedom
are the Goldstone bosons, parametrized in terms of matrix U . To put this in other words it is
insufficient to demand the baryon fields to transform as B 7→ K†BK for K ∈ SU(3)× SU(3),
but one has also to impose that the matrix K is also a function of the matrix U , i.e B 7→
K(L,R, U)†BK(L,R, U). The physical observables are invariant under field transformations,
thus the choice of the matrix K is by no means unique. The common and very convenient
choice is discussed in detail in the book by Georgi [48], it reads

Ru =: u′K(L,R, U) ⇔ K(L,R, U) =
√
LU †R†R

√
U ,

where we have introduced a new symbol u2 := U . In the last section we have argued that
the subgroup H = {(V, V )|V ∈SU(3)} leaves the ground state of Goldstone bosons invariant.
Thus we demand that under this subgroup of chiral symmetry the baryons should transform
independently of U , which is indeed the case since for L = R = V ∈ H

u 7→ u′ =
√
V UV † =

√
(V

√
UV †)2 = V uV † ⇒ K(V, V, U) = (V uV †)−1V u = V.
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Given now the nonlinear realization of the chiral symmetry group and thus the transformation
behaviour of the matter fields, i.e.(

U
B

)
7→
(
U ′

B′

)
=

(
RUL†

K(L,U,R)BK†(L,U,R)

)
, (1.12)

we can construct the most general effective baryonic Lagrangian, for which we again impose
invariance under the local chiral symmetry group for reasons given in the last section. Conse-
quently simple partial derivatives in the Dirac equation (recall that B consists of Dirac fields)
are not independent upon the choice of coordinates and thus have to be replaced by a covariant
form. In its minimal form it reads

DµB = ∂µB + [Γµ, B] with Γµ =
1

2

(
[u†, ∂µu]− iu†(vµ + aµ)u− iu(vµ − aµ)u

†) ,
which transforms as DµB 7→ D′

µB
′ = KDµBK

†, see Ref. [20] for an explicit proof. To further
extent there also exists another quantity which exhibits the same transformation properties, it
is called the chiral vielbein [49] and is defined as follows

uµ = iu†∇µUu
†,

where ∇µU is defined in (1.10) in accordance with the transformation properties of the external
fields as presented in (1.7). Since there are no further operators which are consistent with the
local gauge symmetry, containing one derivative at most (at O(q)), the leading order chiral
meson-baryon Lagrangian reads

L(1)
φB = 〈B̄(iγµD

µ −m0)B〉+ D

2
〈B̄γµγ5{uµ, B}〉+ F

2
〈B̄γµγ5[uµ, B]〉 . (1.13)

Here three new parameters appear which are not fixed by chiral symmetry alone, i.e. the
mass of the baryon octet m0 and the axial-vector coupling constants, D and F , in the chiral
limit. In the two-flavour limit (πN chiral Lagrangian) both operators accompanied by the latter
constants posses the same form such that only one constant is required, i.e. g̊A = D+F . At the
lowest order the latter is equal to the axial-vector strength, which has been in the focus of many
experiments for decades and was measured recently to high precision in the neutron β-decay
using ultracold neutrons to be gA = 1.27590+0.00409

−0.00445, see Ref. [50]. The ratio F/D is predicted
by the SU(6)f non-relativistic quark model (NRQM) to be F/D = 2/3 which is actually quite
close to the value of this ratio extracted from experiments, namely F/D = 0.58 ± 0.05, see
Ref. [51] for a more detailed discussion. In practical calculations one is mostly satisfied with
the tree level calculation [52] of semi-leptonic decays B → B′ + e− + ν̄e which yields

D = 0.8 and F = 0.5 .

The remaining parameter of the above Lagrangian deserves a further discussion as it induces
somewhat more intricate power counting rules for the effective theory involving baryons. The
main point is that in contrast to the matter fields of the purely mesonic chiral Lagrangian the
baryon fields carry a mass which does not vanish in the chiral limit, i.e. m = m0(1 + O(m̂)).
The latter means that both, baryon mass as well as the operator /D count as O(1). Naively this
would destroy any power counting arguments and thus make any application of baryon ChPT
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useless. However, it turns out that the operator (i /D −m0) counts as O(q). To prove this we
follow the arguments given in Refs. [44] and [53] and start with a baryon wave function Ψ of a
momentum p and mass m0 as a plane-wave solution of the free Dirac equation

Ψ(
→
x, t) = e−ipµxµ

√
E +m0

(
χ

→
σ ·→p

E+m0
χ

)
with (i /D −m0)Ψ(

→
x, t) = 0 .

In a non-relativistic limit, i.e. small three momentum |→p | � m0, the multiplicative factor
can be split off and we can write generically Ψτ = (φ, ψ), where the lower component ψ is
suppressed compared to the upper one φ as

ψ =

→
σ · →p
2m0

φ+O
( 1

m2
0

)
.

Moreover, since Ψ fulfills the free Dirac equation it follows in the limit of small three-momenta

i∂tφ− →
σ · →pψ −m0φ = 0 ⇒ (i∂t −m0)φ =

→
σ · →pψ = O(|→p |2) ,

i∂tψ − →
σ · →pφ+m0ψ = 0 ⇒ (i∂t −m0)ψ = −2m0ψ +O(|→p |) = O(|→p |) ,

which implies directly that (i∂t−m0)Ψ = O(|→p |) and consequently also that (i/∂ −m0)Ψ = O(|→p |)
since (γi∂

i)Ψ = O(|→p |). Henceforth, we denote small three-momenta of baryons as well as the
small meson momenta by q for convenience.

The chiral power counting rules of the previous section are completed with the following
rules for the baryonic sector

m0, B, B̄,DµB, 〈B̄B〉, 〈B̄γµB〉, 〈B̄γµγ5B〉 = O(q0) and (i /D −m0)B, 〈B̄γ5B〉 = O(q1) ,

which implies that the effective chiral Lagrangian does not only contain terms of even chiral
order but reads

Leff
φB = L(1)

φB + L(2)
φB + L(3)

φB + ... , (1.14)

whereas all internal baryon lines are counted as O(q−1). That means that after an appropriate
renormalization of mass and axial coupling constant, see Ref. [25] and the references therein, we

can obtain the Weinberg prediction (1.3) for the πN scattering lengths starting from L(1)
φB. For

an explicit calculation we refer the interested reader to e.g. Ref. [42, 54], where the threshold
meson-baryon amplitudes have been calculated up to the third chiral order in the three-flavour
formulation of baryon ChPT. However, doing so one is inevitably confronted with loop diagrams
starting to contribute at the third chiral order whereas the second order corrections are given
entirely by the local terms of L(2)

φB, which will be given later.

We wish to note that the naive assignment of a chiral order according to the counting
rules defined above is not as straightforward as in the pure mesonic case once loop graphs are
included. The complication arises again from the fact that the baryon mass does not vanish
in the chiral limit. The appearance of this new scale of the order of m0 ∼ Λχ leads to the
observation [43] that loop diagrams regularized in the framework of dimensional regularization
(DR) contribute also to lower chiral orders than expected from the above power counting
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rules. To be more specific, a one-loop diagram with vertices from L(1)
φB is formally of the third

chiral order, when regularized in DR it contains also terms of the second chiral order. The
same holds for diagrams with more than one loop, meaning that in principle one would have to
renormalize the low-energy constants due to effects of diagrams with arbitrary number of loops.
Consequently every calculation beyond the leading order would loose any practical meaning.
Two ways out of this dilemma have become popular in the recent years. The first one is called
heavy baryon ChPT [55,56], it relies on a non-relativistic expansion of the baryon kinematics,
where the baryon momentum and baryon fields are separated into a large part and a small
residual component. Whilst this method allows for a consistent power counting (as well as a
massive simplification of the Dirac structures) it sacrifices manifest Lorentz invariance. On the
other hand Becher and Leutwyler [57] (in principle already outlined in Refs. [43, 58, 59]) have
developed a method to separate the loop integrals into an infrared singular and a regular part,
referred to as the infrared regularization4. The singular part contains all non-analytic terms
in quark mass and obeys ’naive’ power counting, whereas the regular part can be written as
a power series in the quark masses and thus can be absorbed order by order into the contact
terms of the effective Lagrangian.

In the last two decades numerous calculations have been performed utilizing both regular-
ization methods in two- and three-flavour formulation of ChPT, see e.g. Refs. [42, 54, 63–66].
An overall observation is that the convergence behaviour is hampered in the three-flavour for-
mulation by the large kaon-loop effects in the baryon sector to even larger extent than in the
pure mesonic case. Exemplary the chiral expansion of pion-nucleon scattering lengths up to
the third chiral order yields in both formulations utilizing infrared regularization

SU(3) :

{
a
3/2
πN = −0.12(1− 0.42− 0.33)

a
1/2
πN = +0.21(1 + 0.23− 0.91)

SU(2) :

{
a
3/2
πN = −0.12(1− 0.54− 0.02)

a
1/2
πN = +0.21(1 + 0.31 + 0.16)

,

which are written in form of aIsospinπN = O(q1) +O(q2) +O(q3) and given in units of fm. Here,
the second order LECs are taken from Refs. [42] and [67], respectively. Obviously the effects
of virtual kaon and eta-mesons starting at the third chiral order are of the same order as the
tree-level result in contrast to the case including only pion-loops. Consequently it is a priori
not clear whether the sum of all contributions up to a certain (third) chiral order is enough
to get a reliable numerical result. Nevertheless, the calculation of higher order corrections can
provide useful information for example via matching relations between the LECs of the two- and
three-flavour effective theories. Moreover, starting from the SU(3) representation one obtains
low-energy theorems for the pion-hyperon scattering as it was done in Ref. [42]. Recently these
formulae became quite useful in the chiral extrapolations of pion-hyperon scattering from lattice
simulations. As described in section 1.1, such numerical simulations are typically performed at
higher than the physical pion mass. The low-energy theorems are perfectly suited to extrapolate
these results to the physical point as it was done by the NPLQCD collaboration for the π+Σ+

and π+Ξ0 scattering lengths, see Fig. 1.1.

Up to now we have introduced a framework of meson-baryon analysis in the strictly pertur-
bative sense of ChPT. Despite the shortcoming of convergence of the SU(3) calculations one
has to keep in mind that any calculation to a certain chiral order is restricted to low energies.
To further extent the hadronic spectrum reveals a whole ladder of (excited) states on top of

4Similar schemes have been also developed in Refs. [58–62].
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Figure 1.1: Chiral extrapolations of the π+Σ+ and π+Ξ0 scattering lengths from Ref. [68]. The
full and dotted lines represent the leading order result and the physical point, respectively. The
points with the error bars represent the lattice data and the filled bands the chiral extrapolation
according to the low-energy theorems as derived in Ref. [42], respectively.

the ground state hadrons, e.g. the excited states of the nucleon N∗(1535)S11, ∆(1620)S31 and
N∗(1650)S11. Dependent on their width and the reaction background these resonances can be
observed in the (partial) cross sections of multi-particle collisions with appropriate quantum
numbers as more or less sharp peaks. From a field theoretical point of view they can be found as
poles of the scattering matrix in the complex energy plane, see chapter 3.1 and 3.8 of Ref. [69]
and the discussion below. Clearly no calculation of the scattering amplitude which is truncated
at a certain chiral order can yield such singular behaviour. In the next section we will demon-
strate a method, called unitarized chiral perturbation theory, which allows for an extension of
the range of applicability of the effective field theory and the description of resonances giving
up some of the rigor of ChPT. It will even help us to shed some light on the nature (production
mechanism) of some of those.

1.4 Chiral unitary approach to hadron physics

Modern physics has always been driven by a vision that the dynamics of a (meson-baryon) scat-
tering system are constrained by a set of fundamental principles, most prominently5 Lorentz
invariance, analyticity, unitarity and crossing symmetry. This belief is so strong that starting
from the forties the axiomatic inclusion of these basic principles into the so-called S-Matrix
theory was handled as a competitor of the quantum field theoretical approach. Later, with the
advent of QCD this path was mostly given up, but the above principles are still believed to
provide a fundamental insight into scattering processes. On the other hand the exact imple-
mentation of these turns out to be very involved. Various approaches have been proposed in
the last decades, mostly favoring some of the properties with respect to the others, to name a
few: Inverse Amplitude Method, K-Matrix, coupled-channel Lippmann-Schwinger Approach,

5For a more comprehensive list of these principles we refer the interested reader to the book by
G. F. Chew [70].
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Dispersion Relations. In principle, the Roy-type equations [71] implement analyticity, unitarity
and crossing symmetry exactly, however, one requires an additional input from phenomenolog-
ical approaches especially when going to higher energies. For a recent analysis of pion-nucleon
scattering in this framework see Ref. [72]. In the present thesis we will stick to yet another
method, called coupled-channel Bethe-Salpeter Equation which enables us to analyse the res-
onance energy region of meson-baryon scattering. Furthermore, using the solution of this
equation as an effective vertex we will establish a connection to the meson photoproduction
amplitude.

One of the primary principles of the S-matrix, already recognized by W. Heisenberg [73],
was that of unitarity. Let us assume a transition of the state αin prepared at the infinite past
to a state βout measured at the infinite future, its probability is given by the S-matrix element
Sβα := (βout, αin). The integral over all possible intermediate states of the product of this
element with the one of the reversed transition (given by S∗

βα) yields∫
dγ S∗

γβSγα =

∫
dγ (βin, γout)(γout, αin) = (βin, αin) = δ(α− β) , (1.15)

where we have used completeness and orthogonality relation in the second and third step,
respectively. In more general words words that means S†S = 1, which involves the conservation
of probability. Here, 1 denotes the identity matrix in the Hilbert space. To be more specific
and following the conventions of Ref. [70] let us first assume a theory of only two spinless fields
of mass m1 and m2 for simplicity. The four-line connected part is described by a scattering
amplitude T as follows

S = (2π)4δ4(p1 + p2 − p′1 − p′2)
(

1 − iT (p′1, p
′
2, p1, p2)

)
,

where p1,2 and p′1,2 are the four-momenta of the in- and outgoing particles, respectively. For
the case of particles with spin T becomes a spinor function and the S-matrix is obtained by
sandwiching it between initial and final spinors. In the sense of Eq. (1.15) we have to integrate
over all open intermediate channels, i.e. particles which are on the mass shell and have positive
energy. Thus the available phase space for each intermediate particle (i) is reduced to

1

(2π)3

∫
d4piδ(p

2
i −m2

i )θ(p
0
i ) .

Here and in the future the limit d→ 4 is taken if not stated otherwise. In principle the number
of these states depends on energy and the selection rules only. However, in the present work
we will be only concerned with the implications of two-particle unitarity but will comment on
the effects of ππN intermediate channel to pion-nucleon scattering later. We denote the four-
momenta of the intermediate particles by k1/2 and insert the last two equations into Eq. (1.15)
to find

T (p′1, p
′
2, p1, p2)− T ∗(p′1, p

′
2, p1, p2) = − i

(2π)2

∫
d4k1δ(k

2
1 −m2

1)θ(k
0
1)

∫
d4k2δ(k

2
2 −m2

2)θ(k
0
2)

× T †(p′1, p
′
2, k1, k2)T (k1, k2, p1, p2) , (1.16)

where again T ∗ corresponds to a process reversed with respect to T . We can capture the
dependence of the scattering amplitude on the external momenta in terms of Mandelstam
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Figure 1.2: Symbolical representation of the Bethe-Salpeter equation. The shaded squares and
circles represent the scattering amplitude and the interaction potential, respectively, whereas
the single and double lines denote the propagation of the particles of masses m1 and m2.

variables s = (p1 + p2)
2, t = (p1 − p′1)

2, u = (p1 − p′2)
2. Since only two of them are independent

we choose for convenience the center-of-mass energy squared s and the cosine of the angle of
the scattering in the center-of-mass system z, which can be related to the momentum transfer
squared6 as t = 2q2cms(z−1) with qcms being the modulus of the three-momentum in the center-
of-mass system

qcms :=
1

2
√
s

√(
s− (m1 +m2)2

)(
s− (m1 −m2)2

)
. (1.17)

In these variables (s, z) and after some algebra the unitarity condition can be written as

T (s, z)− T ∗(s, z) = − i

16π2
√
s

∫
dΩint T

∗(s, z′′) qcmsθ(s− (m1 +m2)
2) T (s, z′) , (1.18)

where z′(z′′) denotes the cosine of the angle between the initial (final) and intermediate direc-
tion. Actually, qcms does not depend on the integration variable and can be pulled out of the
integral. However, for the general case of more than one interaction channel the last equa-
tion turns into a matrix equation, where qcmsθ(s− (m1 +m2)

2) 7→ diag(q1cms, q
2
cms, q

3
cms, ..., 0, ...)

with zero-elements for the energetically closed channels as ensured by the use of the Heaviside
function θ.

It turns out that regardless of the production mechanism of the resonances most of their
properties follow from unitarity. On the other hand it is quite obvious from Eq. (1.18) that
any calculation to a finite order in (chiral) perturbation theory cannot satisfy unitarity exactly.
Assume for example that the scattering amplitude is calculated up to a certain order n of
some coupling g, then the l.h.s of Eq. (1.18) is of order gn whereas the r.h.s contains terms
of order gn+1. Thus a non-perturbative scheme is required to fulfill unitarity exactly. One
very established method utilizes the Bethe-Salpeter Equation (BSE) [74] which reads for an
arbitrary interaction potential V in the formalism defined above

T (p′1, p
′
2, p1, p2) =V (p′1, p

′
2, p1, p2) (1.19)

+

∫
d4k1
(2π)4

V (p′1, p
′
2, k1, p− k1)G(p, k1)T (k1, p− k1, p1, p2) ,

6See also Eq. (D.1) in App. D for a general case.
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where G(p, k1) := i/
(
(k21 − m2

1 + iε)((p − k1)
2 − m2

2 + iε)
)
and the pertinent diagrammatic

representation is given in Fig. 1.2. Keeping in mind the definition of the overall four-momentum
of the scattering p = p1+p2 = p′1+p

′
2 = k1+k2 and the real character of the interaction potential

V we can write in a rather symbolical way

T − T ∗ =V + V GV + V GV GV + ...− V − V G∗V − V G∗V G∗V − ...

=V (G−G∗)V + V (G−G∗)V G∗V + V GV (G−G∗)V + ...

=T (G−G∗)T ∗ ,

where loop integrals are suppressed for simplicity. As a matter of fact this equation is an
alternative version of Eq. (1.16) and thus ensures the unitarity of the S-matrix calculated from
the Bethe-Salpeter equation.

As already emphasized and also presented in the second line of the Fig. 1.2 the solution of
the BSE corresponds to an infinite chain of (Feynman) bubble diagrams. Quite often Eq. (1.19)
is simplified in the so-called on-shell approximation, where the intermediate particles are put
on their mass shell, in which case any connection to the Feynman diagrams is lost and the
solution of the BSE amounts only to a geometric series. Simply iterating a fixed on-shell kernel
in such a geometric series can even lead to significant deviations from the results of Feynman
graphs when iterating Born-terms, as is exemplified by an analysis of box graphs in sec. (5.2)
of Ref. [75]. In the course of this work we will refrain from such approximations, inter alia
in view of the analysis of the meson photoproduction, see chapter 5, which requires the full
diagrammatic interpretation of the BSE solution. Nevertheless it should be mentioned that
this unitarization procedure has two major drawbacks:

• The summation of bubble diagrams in Fig. 1.2 is only performed in the s-channel, thus the
solution of the BSE is in general not crossing symmetric, which is a common shortcoming
of all unitarization schemes. An approximate restoration of this principle is proposed in
the context of meson-meson scattering in Ref. [76,77].

• The second shortcoming of the above resummation scheme concerns analyticity. As a
matter of fact the imaginary part of the one-loop function, given by

G̃(s = p2) =

∫
d4k

(2π)4
G(p, k) =

∫
d4k

(2π)4
i

(k2 −m2
1 + iε)((p− k)2 −m2

2 + iε)
, (1.20)

can be deduced easily utilizing Cutkosky rules to be Im
(
G̃(s)

)
= −qcms/(8π

√
s). Assum-

ing the analyticity of the loop-function in the variable s ∈ C \ [sthr,∞] we can deduce its
full form utilizing a dispersion relation. However, this function is logarithmically divergent
in four space-time dimension, thus we subtract it once to find

G̃(s) = G̃(s0) +
(s− s0)

π

∫ ∞

sthr

ds′
Im
(
G̃(s′)

)
(s′ − s)(s′ − s0)

, (1.21)

where s0 is the so-called subtraction point which has to lie inside the integration contour
and sthr = (m1+m2)

2. Of course the r.h.s of the above equation exhibits the same kind of
logarithmic divergence, which is captured in the subtraction constant G̃(s0), we will turn
to the regularization of the loop-integrals later. Albeit the above solution is built from
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such loop functions, see Eq. (1.19), it is so far not known how to implement this property
in the solution of BSE exactly. In chapter 3 we will propose a method of approximate
restoration of analyticity, also interesting steps in a similar framework have been made
in Refs. [78] and [79].

Despite these shortcomings, the BSE has become quite popular in the framework of the
so-called chiral unitary approaches, where the potential V in Eq. (1.19) is derived from the
chiral Lagrangian. This technique has widened our understanding of the hadronic spectrum
enormously both in the mesonic as well as in the baryonic sector, to name a few references
[61, 79–84]. In the following chapters we will construct and analyse a solution of the Bethe-
Salpeter equation (1.19) for meson-baryon scattering with the chiral potential of the second
chiral order but before doing so we shall make a few last general remarks.

The first question we have not addressed yet is that of renormalization. We have already
mentioned that the loop-integral G̃(s) is divergent in four space-time dimension. There are
various ways of regulating these divergences, e.g cutoff, Pauli-Villars [85] or dimensional regu-
larization [86]. The cutoff regularization is quite convenient for practical calculation and has
been employed in the framework of BSE by different authors, see e.g. Ref. [87] and references
therein. Seemingly the numerical simplicity is gained loosing control of analytic structure,
i.e. often very unnatural cutoff scales are required, which was pointed out in Ref. [88]. To
overcome these shortcomings we will construct a regularization scheme, which is in principle
similar to [57, 60, 62], starting from dimensional regularization. For an exact explanation and
implications of the latter we refer the reader to the textbooks, see e.g. [69, 89, 90]. For our
purposes it is sufficient to say that one starts with the continuation of the Minkowski space to
d dimensions. Then the loop-integral G̃(s) can be evaluated utilizing standard techniques, such
as Feynman parameterization and Wick rotation. After performing the loop-integration one
obtains the physical picture back taking the limit d → 4 in which the UV-divergences of the
loop-integral are captured in the behaviour of the gamma function, i.e. Γ(y) =

∫∞
0
e−xxy−1dx.

In the usual (perturbative7) sense of renormalizable field theories one can now subtract this
divergence from the loop-integral, which can then be reabsorbed into the local counter terms of
the theory, see e.g. Ref. [90]. In principle the separation between the finite (G̃fin) and infinite
(G̃∞) piece of the loop-integral is arbitrary. In this context the so-called MS scheme [91] has
found much use in QCD. Utilizing this scheme, the infinite part reads

G̃∞ =
µd−4

16π2

( 1

d− 4
− 1

2

(
log(4π)− γE + 1

))
for G̃ = G̃fin + G̃∞ ,

where µ is the regularization scale and γE ≈ 0.5772 is the Euler-Mascheroni constant. The finite
part is given by G̃fin = IMB(s,m1,m2) as presented in App. A. We remind the reader that we
are dealing with a non-perturbative framework where the loop-integral enters the discussion via
an infinite chain of bubble diagrams with rising number of loops. Obviously this demands for an
infinite number of local terms from the underlying Lagrangian to reabsorb the loop divergences
and thus is not feasible from the technical point of view. To further extent the counter terms
from the local Lagrangian are crossing symmetric by construction [88] in contrast to the BSE
solution as emphasized above. To overcome this obstacle we shall, for a moment, take a look

7Up to date it is not known how to use this method in non-perturbative settings.
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on the solution of the on-shell approximated BSE. The integral equation (1.19) turns into an
algebraic equation with the following solution

Ton = V + V G̃Ton ⇒ Ton =
1

V −1 − G̃
.

The intuitive candidate for an absorption of infinite part of the loop-integral is the interaction
potential V . Let us separate the latter as V = Vfin + V∞ for which we demand that

1

V −1 − G̃
= Ton =

1

V −1
fin − G̃fin

,

which determines the V∞ for any potential V and G∞ for the on-shell BSE solution. The corre-
sponding demonstration for the off-shell BSE can be found in App. F of Ref. [92]. Consequently
the infinite part of the loop-integral is canceled by an appropriate term in the potential V , thus
allowing us for a calculation of the scattering amplitude from exclusively finite quantities.

On the other hand we have to keep in mind that the finite part of the loop integral is
scale (µ) dependent. In perturbative calculations this scale dependence is canceled by the
contact terms from the effective Lagrangian. However, since any practical treatment requires
a truncation of the underlying interaction potential at some finite order the residual scale
dependence reflects the influence of the higher order contributions. For this reason we will use
the appearing regularization scale as a fitting parameter which is in fact similar to the discussion
in Refs. [84,88] where for each loop integral a finite subtraction constant is introduced, used also
as a free parameter. In chapter 5 we will reexamine this strategy adjusting the regularization
scale to a fixed value.

Recently an other question has been discussed widely in the community, i.e. the field
parametrization dependence. In section 1.2 we have argued that the representation of the
meson fields is not unique and have presented two frequently used examples. Physical quanti-
ties do not depend upon the choice of fields as well as the on-shell solution of the BSE, where all
intermediate particles are put on their mass shell. The off-shell quantities are on the other hand
in general not independent of this choice and consequently also the solution of the off-shell BSE.
This argument has become very popular as a justification of the on-shell scheme in the recent
time. Albeit there is no general proof to rebut it we would like to make a remark here. Two
most used parametrization schemes, the exponential- and the sigma-parametrization (Eq. (1.8)
and (1.9)) yield the following expansion in the number of meson fields

uexp = 1 + i
φ

2F
− φ2

8F 2
− i

φ3

48F 3
+O(φ4) ,

uσ = 1 + i
π

2F
− π2

8F 2
+ i

π3

16F 3
+O(π4) .

Both expansions coincide for the case of up to two meson fields, thus the result of one-loop
bubble diagram is independent whether one chooses the sigma- or exponential parametrization.
Such diagrams are the main ingredient of the solution of the BSE and thus we expect it to
be independent of this particular choice. Please note that this argument only holds for two
representatives of the whole class of field variables and thus is not a general proof.

In the main part of this thesis we will analyse various implications of such a chiral unitary
approach based on the solution of the BSE with the full off-shell dependence and interaction

20



kernel from the NLO chiral Lagrangian. In the next chapter we will address several technical
aspects for the construction of the solution of our chiral unitary framework, whereupon different
applications will be presented. In the last two chapters this framework will be extended to a
gauge-invariant chiral unitary framework for meson photoproduction.
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Chapter 2

Solution of the Bethe-Salpeter equation

2.1 Framework

In this complementary chapter we wish to introduce the necessary formalism and the explicit
solution techniques of the Bethe-Salpeter equation for meson-baryon scattering. These tech-
niques apply also for the iteration of higher order potentials and thus may be of interest for
future works.

The pivotal equation of our chiral unitary approach is the Bethe-Salpeter equation which
allows for an implementation of exact two-body unitarity without loosing direct correspondence
to the Feynman graphs. For the process of interest, meson-baryon scattering, we denote the in-
and out-going meson momenta by q1 and q2, respectively. The overall four-momentum shall be
given by p = q1 + p1 = q2 + p2, where p1 and p2 are the momenta of in- and outgoing baryon,
respectively. For meson-baryon scattering amplitude T (q2, q1; p) and potential V (q2, q1; p) the
integral equation to solve reads in d dimensions

T (q2, q1; p) =V (q2, q1; p) (2.1)

+

∫
ddl

(2π)d
V (q2, l; p)

i

(l2 −M2 + iε)(/p− /l −m+ iε)
T (l, q1; p) ,

where m and M denote the mass of baryon and meson, respectively. This equation has to
be understood as a matrix equation in the channel space, spanned by all assumed interaction
channels, which justifies the present model as the coupled-channel approach. In our analysis
these channels will be considered as combinations of the ground state octet mesons and baryons
in agreement with the assumed quantum numbers as specified in the following chapters. The
important point here is that every element of the above equation represents a matrix in this
channel space, e.g. all propagators should be understood as diagonal matrices. The diagram-
matic representation of the BSE (2.1) is of the same structure as the one given before and is
depicted for meson-baryon scattering in Fig. 2.1.

For the driving term of the above equation we will consider the chiral meson-baryon potential.
At the leading order the covariant derivative in the chiral Lagrangian Eq. (1.13) gives rise to the
so-called Weinberg-Tomozawa potential, VWT , which reads after separating the channel space
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Figure 2.1: Symbolical representation of the Bethe-Salpeter equation. Here, the circle and the
square represent the potential V and the scattering amplitude T , respectively. The propagation
of a meson (baryon) is symbolized by a dashed (full) line.

structures from the Dirac-momentum structures as

VWT (q2, q1; p) = AWT ( /q1 + /q2) . (2.2)

The channel matrix AWT is presented in App. C in terms of channel space matrices and me-
son decay constants as explained in section 1.3. The Weinberg-Tomozawa term dominates
the s-wave meson-baryon interaction around the threshold. For instance the calculation of
pion-nucleon scattering lengths starting from it yields the Weinberg prediction (1.3). From a
more practical point of view this term allows for a quite straightforward resummation in the
framework of Bethe-Salpeter type equations due to the simple momentum structure, see e.g.
Ref. [92]. For these two reasons most chiral unitary approaches are restricted to the Weinberg-
Tomozawa interaction kernel. However, there are two additional contributions arising from
the same Lagrangian which are formally of the first chiral order, namely the u- and s-channel
baryon exchange graphs. These, so-called Born-graphs have a much more involved structure
which reads

j

ba

i

c

j

ba

i

c

−→ /q2γ5A
b,j;c
X

/p+mc

s−m2
c

Ac;a,i
X γ5 /q1 ,

(2.3)

−→ γ5 /q1A
b;c,i
X

/p− /q1 − /q2 +mc

u−m2
c

Ac,j;a
X /q2γ5 ,

where we have abandoned the (channel space) matrix notation for a moment to emphasize
that AX is actually a mapping from a meson-baryon channel onto the set of baryons only, as
detailed in App. C. Apart from the fact that both terms possess a much richer structure than
the Weinberg-Tomozawa term they both lead to conceptional and practical difficulties in the
framework of the Bethe-Salpeter type equations:

• The inclusion of the u-channel Born graphs into the kernel of the BSE leads to an infinite
number of multi-loop topologies with 3 (1), 5 (2), 7 (3),... internal baryon (meson) lines.
Obviously such topologies cannot be decomposed into simple series of one-loop integrals
but have to be evaluated directly. To the best of our knowledge this technical issue
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has not been overcome yet and calls in our opinion for an alternative non-perturbative
technique to the Bethe-Salpeter type equation. An interesting idea in this direction
may be the application of the Feynman-Schwinger representation approach [93] which,
however, requires further investigations.

• The inclusion of the s-channel Born graphs is on the other hand technically less tangled
since the denominator of the corresponding potential does only depend upon the Man-
delstam s. However, it leads to conceptional difficulties as it induces graphs responsible
for baryon mass renormalization. An exemplary Feynman graph occurring when a local
term is iterated together with the s-channel Born graph looks as follows

.

Here, in addition to the notation of the Fig. 2.1 we have to distinguish between the
propagation of the baryon with bare and dressed mass (thin and bold full lines). The
reason is that the meson-baryon loop-graphs in the above picture contribute to mass
(and wave function) renormalization of the baryons and consequently to avoid double
counting we have to assign bare mass for these. Contrary the mass of the baryons within
the meson-baryon loops is not renormalized by these effects as the BSE only accounts
for a simple rescattering processes. Not only is this treatment very unsystematic (not
all renormalization effects are accounted for) but more importantly in view of a later
application to photoproduction such a non-perturbative treatment of s-channel exchanges
leads to complications with gauge invariance because the selfenergies are linked (via a
Ward-Takahashi identity) to the electromagnetic baryon form factors, which would also
have to be treated in a corresponding (non-perturbative) fashion, see Ref. [94].

In most chiral unitary approaches these issues are overcome utilizing the on-shell formalism,
see e.g. Refs. [95,96]. Then as mentioned before the direct correspondence to Feynman graphs
is lost, hence neither multi-loop topologies nor renormalization of baryon fields are relevant
issues anymore. A more promising method was developed in Ref. [97] and applied to meson-
baryon scattering in Ref. [98], it utilizes form factors to regularize Wick rotated loop-integrals.
Unfortunately this method requires cutoff parameters and introduces unphysical thresholds.
Similar principles are worked out and utilized in the framework of three dimensional form of
the BSE, the so-called Lippmann-Schwinger equation in Refs. [99, 100].

Our wish remains the preservation of the direct correspondence of the BSE to the Feynman
graphs with no cutoff, hence we do not consider the above approximations, but stick to the
full off-shell BSE with local terms from the chiral meson-baryon Lagrangian as driving terms.
In our earlier analysis of meson-baryon scattering [42] in the framework of strict perturbative
ChPT we have seen that the NLO local terms result in sizable corrections of the scattering
lengths as we have pointed out in section 1.3. Furthermore, the NLO contact terms do not only
contribute to the s-waves but also to p-waves. To see which implications arise from iteration
of such contributions we will also include the second order chiral potential into the kernel of
the BSE. The pertinent Lagrangian density was first constructed in Ref. [44] and reads in its
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minimal form [101]

L(2)
φB = b0〈BB〉〈χ+〉+ bD〈B

{
χ+, B

}
〉+ bF 〈B

[
χ+, B

]
〉

+ b1〈B
[
uµ,
[
uµ, B

]]
〉+ b2〈B

[
uµ,
{
uµ, B

}]
〉+ b3〈B

{
uµ,
{
uµ, B

}}
〉+ b4〈BB〉〈uµuµ〉

+ ib5〈Bσµν
[[
uµ, uν

]
, B
]
〉+ ib6〈Bσµν

{[
uµ, uν

]
, B
}
〉+ ib7〈Bσµνuµ〉〈uνB〉

+
i b8
2m0

(
〈Bγµ

[
uµ,
[
uν ,
[
Dν , B

]]]
〉+ 〈Bγµ

[
Dν ,

[
uν ,
[
uµ, B

]]]
〉
)

+
i b9
2m0

(
〈Bγµ

[
uµ,
{
uν ,
[
Dν , B

]}]
〉+ 〈Bγµ

[
Dν ,

{
uν ,
[
uµ, B

]}]
〉
)

+
i b10
2m0

(
〈Bγµ

{
uµ,
{
uν ,
[
Dν , B

]}}
〉+ 〈Bγµ

[
Dν ,

{
uν ,
{
uµ, B

}}]
〉
)

+
i b11
2m0

(
2〈Bγµ

[
Dν , B

]
〉〈uµuν〉+ 〈BγµB〉〈

[
Dν , uµ

]
uν + uµ

[
Dν , u

ν
]
〉
)

+ b12〈Bσµν [fµν
+ , B]〉+ b13〈Bσµν{fµν

+ , B}〉 , (2.4)

where fµν
+ includes the electromagnetic field strength tensor, which vanishes for vµ = 0 but

will become important for the photoproduction amplitude later, see chapter 5 for details. The
Dirac-momentum structures commute with those of the channel space thus it is convenient to
separate them from each other such that the second order chiral potential, which completes
Eq. (2.2), reads

VNLO(q2, q1; p) = AM + A14(q1 · q2) + A57[ /q1, /q2] + A811

(
/q2(q1 · p) + /q1(q2 · p)

)
, (2.5)

where the low-energy constants bi, which accompany the operators of Eq. (2.4) are included
in the matrices A... as detailed in App. C. Very little is known about the numerical values
of these constants, hence we shall use them as a fit parameters of our model. In order to
remain unbiased we can impose only two constraints, namely they should (i) remain of natural
size, because too large values of LECs would indicate some prominent effects missing in our
approach and (ii) agree with the SU(3) to SU(2) matching relations derived in Refs. [41, 42].
Once determined they still have to be taken with a grain of salt, because the present approach
is suited to account for meson-baryon scattering (later also for the meson photoproduction)
correctly but lacks universality, i.e applicability to other processes. More likely is that from the
present approach one can determine only certain linear combinations of these LECs reliably.

2.2 Regularization

In the previous chapter we have already started the discussion of the regularization procedure
of the loop integrals appearing in the BSE. For reasons given there we utilize the dimensional
regularization for the one-meson-one-baryon loop integrals in the MS scheme, see App. A.
This, however, is not the end of story since without restricting the intermediate particles on
their mass shell one also obtains a non-vanishing contribution from meson and baryon tadpole
integrals, denoted henceforth by IM and IB, respectively. This can be seen easily utilizing the
Passarino-Veltman [102] reduction of the tensor loop integrals. Consider the most simple case
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which already arises in Eq. (2.1) due to the fermionic nature of the intermediate baryon, namely

IµMB := i

∫
ddl

(2π)d
lµ

(l2 −M2 + iε)((l − p)2 −m2 + iε)
= pµI

(1)
MB ,

where the second equality is justified by Lorentz invariance. The unknown scalar function I
(1)
MB

can be determined if one contracts IµMB with pµ which results in

p2I
(1)
MB = i

∫
ddl

(2π)d
pµl

µ

(l2 −M2 + iε)((l − p)2 −m2 + iε)
=

1

2

(
IM − IB + (p2 −m2 +M2)IMB

)
.

where in the second step 2pµl
µ =

(
M2 − m2 + p2 − ((l − p)2 − m2) + (l2 −M2)

)
was used.

The scalar component I
(1)
MB is now completely determined in terms of the standard scalar loop

functions. In the same sense Passarino-Veltman reduction will be applied to all possible tensor
structures appearing in the numerator of the BSE, such that the full solution will be a function
of scalar loop functions only.

This procedure leads to yet an other difficulty which is rooted in the obscurity of non-
perturbative renormalization. The crucial point here is the following: The loop integrals which
enter the solution of the BSE are in general UV-divergent. Considering dimensional regular-
ization we can map these divergences onto (d − 4)−1 poles modulo some higher order terms
in (d − 4). In a perturbative calculation we would then take a limit of d → 4, reabsorbing
the infinite part by a renormalization of the coupling constants entering such calculation, see
discussion in section 1.4. However, in the solution of the BSE one is inevitably confronted with
an infinite number of such integrals, or more specifically with sums of products of arbitrary
many UV-divergent loop integrals. Therefore strictly speaking all terms in the (d−4) expansion
have to be taken into account. Each one of those terms will enter the calculation in a highly
nontrivial (and at present not clarified way). To overcome this obstacle we shall set d = 4
from the beginning which is in principle not a problem for the solution of the BSE itself, but
becomes an issue for the photoproduction amplitude constructed from the hadronic solution as
we will demonstrate now.

Gauge invariance, another fundamental principle of field theory which we will demand for
the photoproduction amplitude, calls for the inclusion of the so-called triangle diagrams1 when
the photon is coupled to the hadronic skeleton, see chapter 5. Now dealing with the NLO
driving term we are inevitably confronted with loop integrals of the form

IµνσMMB := i

∫
ddl

(2π)d
lµlνlσ

(l2 −M2
1 + iε)((l − k)2 −M2

2 + iε)((l − p)2 −m2 + iε)
, (2.6)

IµνσMBB := i

∫
ddl

(2π)d
lµlνlσ

(l2 −M2 + iε)((l − p1)2 −m2
1 + iε)((l − p)2 −m2

2 + iε)
, (2.7)

where in both k denotes the photon four-momentum and m...(M...) the mass of internal baryons
(mesons) in the loop. Similar to the previous case we can reduce the tensor rank of the
numerator utilizing the Passarino-Veltman reduction. It yields for the second integral

IµνσMBB
d=4
= [...]µνσ

IB(m
2
1)− IB(m

2
2)− (m2

1 −m2
2)IBB(k

2,m1,m2)

3k4(p21 − s)
+O(

1

k2
) , (2.8)

1Loop diagrams with three intermediate particles.
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where [...]µνσ denotes generically the tensor structures allowed by Lorentz invariance. As a
matter of fact in perturbative calculations this reduction is performed in d dimensions for all
graphs of the desired order and required by the gauge invariance. Then taking the limit d→ 4,
terms of the form presented on the r.h.s. of the above equation cancel against each other.
Unfortunately, for reasons given above, we are forced to set d equal 4 already in the first steps
of our calculation, hence we are confronted with the terms, formally singular for k2 → 0. On
the first sight the situation should be similar for the case of IµνσMMB, where one formally has to
interchange the meson and baryon masses. However, considering only interactions of the second
chiral order the photon is incapable to change the ’type’ of the meson, hence we can assume
M1 = M2. It turns out that for baryons the same holds at the leading but not at the next-to-
leading order, at which the photon can induce e.g. the Σ0 ↔ Λ transition. Consequently we
have to assume that m1 6= m2, which causes the presence of formal (unphysical) singularities
in the photoproduction amplitude, see Eq. (2.8) and App. B.

At this point it is instructive to recall the discussion of various regularization schemes in
section 1.3 to overcome the infrared divergences in baryon ChPT. Dealing here with a non-
perturbative framework these cannot be rigorously be implemented here, however, utilizing
for example the EOMS [60, 62] or infrared [57] type of regularization all scalar loop integrals
containing only baryons are set to zero, such that terms singular for k2 → 0 vanish exactly,
see Eq. (2.8). Inspired by this, we shall utilize dimensional regularization and apply the MS
subtraction scheme setting all baryon loops, i.e. IB and IBB, to zero. All required scalar loop
integrals as well as the reduction rules are collected in App. A and B.

2.3 Solution

Heaving clarified the regularization scheme we are now in the position to present a technique for
the solution of the Bethe-Salpeter equation (2.1) with the full off-shell dependence. This method
does not rely on any approximation of the BSE which are used very often in the literature, i.e.
on-shell approximation or a three-dimensional reduction of the BSE to the Lippmann-Schwinger
equation. It is also applicable for any kernel with only one restriction: The interaction kernel
must consist of local terms only. Thus the solution of the BSE corresponds to an infinite
chain of the Feynman bubble diagrams as presented in Fig. 2.1. To keep this section short we
will restrict the form of the kernel to the one used in the main text of this work. Up to the
next-to-leading chiral order the meson-baryon local potential is given by the sum of potentials
presented in Eq. (2.2) and (2.5) and can be written in general form as follows

V (q2, q1; p) =
6∑

i=1

Ai Di(q2, q1; p) , (2.9)

with D(q2, q1; p) =
(
/q1, /q2, (q1 · q2), /q2 /q1, id, /q2(q1 · p), /q1(q2 · p)

)
and A =

(
AWT , AWT , (A14 + 2A57), A57, AM , A811, A811

)
,
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where id is supposed to be defined in the space of Dirac matrices. As already discussed the
solution of the BSE corresponds to an infinite chain of Feynman diagrams which formally reads

T (q2, q1; p) = V (q2, q1; p) + i

∫
ddl

(2π)d
V (q2, l; p)

/p− /l +m(
(p− l)2 −m2 + iε

)(
l2 −M2 + iε

)V (l, q1; p) + ... ,

where we again have suppressed the channel indices keeping in mind that T and V are matrices
in channel space. From this equation one easily sees that the iterative use of the interaction
potential introduces new Dirac-momentum structures additionally to those of D. The number
of these structures is limited such that it is convenient to rewrite the scattering matrix as follows

T (q2, q1; p) =
20∑
i=1

Ti(s) ℵi(q2, q1; p) , (2.10)

with ℵ(q2, q1; p) :=
(
/q1, /p /q1, /q2/p /q1, /q2 /q1, /p /q1(q2 · p), /q1(q2 · p),
/q2(q1 · p), /q2 /q1, (q1 · p)(q2 · p), /p(q1 · p)(q2 · p), (q1 · p),
/p(q1 · p), (q2 · q1), /p(q2 · q1), /q2/p, /q2, /p(q2 · p), (q2 · p), id, /p

)
.

Please note that in contrast to the decomposition of the potential V , the coefficients Ti still
depend on the center-of-mass energy squared. Reinserting the latter equation into the BSE (2.1)
and collecting all Ti(s) on the r.h.s. we obtain the following expression

20∑
i=1

Vi ℵi(q2, q1; p) = (2.11)

20∑
i=1

(
ℵi(q2, q1; p)−

20∑
j=1

Vj

(
i

∫
ddl

(2π)d
ℵj(q2, l; p)(/p− /l +m)ℵi(l, q1; p)

(l2 −M2 + iε)((p− l)2 −m2 + iε)

))
Ti(s) ,

where V is expressed in terms of the vector ℵ. The term in the inner brackets has a crucial
property that due to Lorentz invariance it is also an element of the Dirac-momentum subspace
spanned by the elements of the vector ℵ

∀
a∈ℵ(q2,l;p),b∈ℵ(l,q1;p)

: ∃
C∈C20

∫
ddl

(2π)d
a(/p− /l +m)b(

(p− l)2 −m2
)(
l2 −M2

) =
20∑
k=1

Ck ℵk(q2, q1; p) . (2.12)

The coefficients Ci are complex valued functions of scalar quantities only, i.e. s,M,m, IMB, IM , IB
for every two-particle channel. They can be determined utilizing Passarino-Veltman reduction
as exemplified in the previous section and presented explicitly in App. B. Consequently the
r.h.s. of Eq. (2.11) can be rewritten as follows

20∑
i=1

Vi ℵi(q2, q1; p) =
20∑
i=1

20∑
j=1

(
δij − C̃ij

)
Tj(s)ℵi(q2, q1; p) ,

where the coefficients C̃ij are matrices in channel space, obtained from Eq. (2.12) replacing
a = V and b = ℵi. In fact, the latter expression is a system of 20 coupled linear equations
which we can rewrite in an even more elegant way as

X j
i Tj(s) = Vi , (2.13)
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where we have utilized the Einstein summation convention for i, j ∈ [1, 20] and X ∈Mat20×20,
whereas each element is a complex valued channel space matrix defined by Xij = (δij − C̃ij).
The solution of the latter equation is conceptionally unproblematic, however, it turns out that
it contains a large number of very convoluted matrix operations in the channel space. One
observation2 can simplify the situation to some extent, namely that some Dirac-momentum
structures are decoupled from the others. For example, none of the structures of the form
{ℵi|i ≥ 15} can induce any other than these structures, meaning that coefficients C̃ij vanish
for i ≥ 15 and every j. This and similar patterns imply that the only non-vanishing elements
of the matrix X are the following

Xij 6= 0 for


1 ≤ i ≤ 6 and 1 ≤ j ≤ 6

7 ≤ i ≤ 12 and 7 ≤ j ≤ 12

1 ≤ i ≤ 14 and 13 ≤ j ≤ 14

15 ≤ i ≤ 20 and 15 ≤ j ≤ 20

,

hence we can obtain the solution of Eq. (2.13) in computationally more efficient in four steps
according to the above rules. However, even then the solution contains, dependent upon the
case, up to a few thousand matrix operations including several hundred matrix inversions per
Ti(s). As a matter of fact in the realistic case of e.g. six open channels as required in the
following chapters the solution is technically only feasible if all parameters and constants are
fixed to the corresponding numerical values. In principle this is not a problem, but in the
case of the dimension d of the Minkowski space it calls for a modified regularization scheme
as presented in the previous section which is the technical reason for the use of this scheme.
Once having solved the equation (2.13) the scattering amplitude T is obtained back reinserting
the coefficients Ti(s) into Eq. (2.10). The scattering amplitude can then be used in the full
off-shell form as an effective vertex for the photoproduction amplitude. Alternatively setting
the external particles on their mass shell we can study the physical observables of meson-baryon
scattering directly as it will be done in the next chapter.

2This is the actual reason for the somewhat awkward ordering of the vector ℵ in Eq. (2.10).
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Chapter 3

πN scattering and properties of the
N∗(1535) and N∗(1650) resonances1

3.1 Introduction

Pion-nucleon scattering has traditionally been the premier reaction to study the resonance exci-
tations of the nucleon. In particular, in the S11 partial wave, one finds two close-by resonances
at 1535 and 1650 MeV, which overlap within their widths of about 100 MeV. It was pointed
out early in the framework of unitarized coupled-channel chiral perturbation theory [81] that
the N∗(1535)S11 might not be a three-quark (pre-existing) resonance but rather is generated
by strong channel couplings, with a dominant KΣ − KΛ component in its wave function.
This analysis was extended in Ref. [103], where within certain approximations the effects of
3-body ππN channels were also included. Further progress was made in Ref. [84], where the
S11 phase shift was fitted from threshold to about

√
s ' 2GeV together with cross section

data for π−p → ηn and π−p → K0Λ in the respective threshold regions. This led to a satis-
factory description of the S11 phase and a reasonable description of the inelasticity up to the
ηN threshold. Two poles were found corresponding to the N∗(1535)S11 and the N∗(1650)S11

(henceforth called S11(1535) and S11(1650) for brevity) resonances together with a close-by un-
physical pole on the first Riemann sheet. More recently, it was pointed out in a state-of-the-art
unitary meson-exchange model that there is indeed strong resonance interference between the
two S11 resonances, as each of these resonances provides an energy-dependent background in
the region of the other, see Ref. [99].

In view of these developments we consider in this chapter the two s-waves S11 and S31 in pion-
nucleon scattering. We will utilize the framework of a coupled-channel Bethe-Salpeter equation
(BSE) including in the driving potential all local terms of second order in the chiral counting,
thus going beyond the often used approximation of simply including the leading order Weinberg-
Tomozawa interaction. Further, we do not perform the often used on-shell approximation for
reasons given in the previous chapters. Note that K−p scattering including such dimension
two terms was already analyzed in a framework equivalent to the on-shell approximation of
the Bethe-Salpeter equation in Refs. [95, 96, 104,105], we will turn to this interaction channels

1Most of the contents of this chapter have been published in Ref. [2].
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in the next chapter. Our investigation is restricted to center-of-mass energies below 1.8 GeV,
as required for the future meson photoproduction studies. As we will show, both resonances
in the S11 partial wave are dynamically generated, even if the scattering data are fitted only
up to Wcms =

√
s = 1.56 GeV. Quite in contrast, the S31(1620) resonance is not generated

by the coupled-channel dynamics. We also analyze the structure of the dynamically generated
resonances as revealed through their coupling to the various meson-baryon channels.

3.2 Formalism

We consider the process of meson-baryon scattering at low energies. As already explained
before, the s-wave interaction near the thresholds is dominated by the Weinberg-Tomozawa
contact term, derived from the effective chiral Lagrangian Eq. (1.13). Most chiral unitary
approaches restrict their meson-baryon potential to this interaction, which generates the leading
contribution to the s-wave scattering lengths. This approach has been remarkably successful
in many cases, see e.g. Ref. [61, 79–83]. However, at first chiral order, there are also the
Born graphs, describing the s-channel and u-channel exchanges of an intermediate nucleon.
The full inclusion of these graphs in the driving term of the Bethe-Salpeter equation leads to
conceptional and practical difficulties, which have not yet been solved to the best of our know-
ledge, see the discussion in section 2.1. Therefore, we will approximate our interaction kernel
by a sum of contact terms. To go beyond the simple Weinberg-Tomozawa potential, we shall
include the full set of meson-baryon vertices from the second order chiral Lagrangian. These
terms may lead to sizeable corrections to the leading-order results, see e.g. the calculation of
NNLO corrections on meson-baryon scattering lengths within SU(3) ChPT [42]. The pertinent
Lagrangian density was first constructed in Ref. [44] and is presented in its minimal form [101]
in Eq. (2.4).

Dealing with the specific case of meson-baryon scattering we set all external sources to zero
except the scalar one, which is equal to the quark mass matrix, i.e. s = M := diag(mu,md,ms),
hence, leaving out some terms formally of third chiral order, our considered interaction potential
reads

V (q2, q1; p) = AWT ( /q1 + /q2) (3.1)

+ A14(q1 · q2) + A57[ /q1, /q2] + AM + A811

(
/q2(q1 · p) + /q1(q2 · p)

)
,

where A... denote matrices in the channel space. As the premier goal of our present discussion
is the analysis of pion-nucleon scattering we restrict ourselves to meson-baryon channels with
strangeness S = 0 and electric charge Q = +1 . This leaves us with the following channels:

pπ0, nπ+, pη, ΛK+, Σ0K+, Σ+K0 .

The channel matrix AWT depends upon the meson decay constants Fπ, FK , Fη, whereas all
other channel matrices also depend upon 14 new constants bi, as presented in App. C. The
decay constants will be fixed to their physical values as specified below. However, the numerical
values of the next-to-leading order low-energy constants2 bi cannot be derived from symmetry

2The LECs b0,D,F are the so-called symmetry breakers while the bi (i = 1, . . . , 11) are referred to as dynamical
LECs.
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principles alone and shall be used here as free fitting parameters imposing only that they remain
of natural size and fulfill the matching relations from Ref. [42] as argued in section 2.1.

The strict perturbative chiral expansion is only applicable at low energies. Moreover, it
certainly fails in the vicinity of resonances. The purpose of the present chapter is the extension
of the range of applicability of the low-energy effective theory by means of a coupled-channel
Bethe-Salpeter equation (BSE). Introduced in [74] it has been proven to be very useful both
in the purely mesonic and in the meson-baryon sector [61, 79–83]. In contrast to perturbative
calculations this approach implements two-body unitarity exactly and in principle allows to
generate resonances dynamically. Due to the exact correspondence of the Bethe-Salpeter scat-
tering amplitude with an infinite sum of dimensionally regularized Feynman graphs, we can
use our solution of the BSE as an extended vertex in a model amplitude for meson photopro-
duction and arrive at a natural and straightforward way to implement gauge invariance in a
chiral unitary framework. For details on the construction principles the reader is referred to
chapter 5.

Now we wish to recall the formalism of the Bethe-Salpeter approach as it was introduced in
section 2.1. We denote the in- and outgoing meson momenta by q1 and q2, respectively, whereas
the overall four-momentum is given by p = q1+ p1 = q2+ p2, where p1 and p2 are the momenta
of in- and out-going baryon, respectively. For meson-baryon scattering amplitude T (q2, q1; p)
and chiral potential V (q2, q1; p) the integral equation to be solved is presented in Eq. (2.1). The
loop diagrams appearing there are in general divergent and require renormalization. In case of
a strict chiral perturbation expansion, they can be renormalized in a quite straightforward way,
order by order, including at a given order of the calculation all the counterterms absorbing
the loop divergences. On the other hand the treatment of the divergences of the BSE is
known to be a complicated issue, see e.g. Refs. [88, 106]. There are various ways to treat
the divergent integrals and the large baryon mass scale appearing. In the previous chapter
we have developed a proper regularization scheme which preserves the analytic structure of
the loop integrals utilizing dimensional regularization and just replacing the divergent part
by a subtraction constant. The purely baryonic integrals are set to zero from the beginning.
Thus, our treatment of the loop integrals is, in effect, similar to the EOMS regularization
scheme advocated in Ref. [62]. As it was argued in Ref. [106] it is not possible to express the
terms necessary to absorb the divergences in the BSE as counterterms derived from a local
Lagrangian. However, it is possible to alter the loop integrals in the solution of the BSE in a
way that is in principle equivalent to a proper modification of the chiral potential itself (for
an explicit demonstration, see section 1.4 as well as App. F of Ref. [92]). In this spirit we
apply the usual MS subtraction scheme, keeping in mind that the modified loop integrals
are still scale-dependent. This regularization scale (µ) dependence would be canceled by the
corresponding scale dependence of higher-order contact terms in the perturbative approach.
In our non-perturbative framework, the scale µ is used as a fitting parameter, reflecting the
influence of higher order terms not included in our potential. Note that in Refs. [84, 88], the
12 loop integrals (4 for each meson-baryon, meson and baryon case) appearing there, gave rise
to 12 finite subtraction constants, which were then also used as fitting parameters of their
approach.

Having specified the kernel and the regularization procedure we can solve the Bethe-Salpeter
equation with the full off-shell dependence. The solution techniques are described in detail in
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section 2.3. To our knowledge this is the first time the NLO corrections of the chiral potential
are included and unitarized within the full relativistic BSE, without making use of the on-shell
approximation or s-wave projection of the chiral potential, so that also a p-wave is iterated.
Once the BSE has been solved, we can of course set the external particles on their mass shell,
which leaves us with only two independent structures for the on-shell amplitude, i.e. 1 and /p.
Starting from these we will derive more accessible quantities, such as partial wave amplitudes
and then compare them with the outcome of other (more phenomenological) approaches as
described below.

3.3 Numerics

Throughout the present work we use the following numerical values for the masses and the
meson decay constants:

Mπ0 = 0.135 GeV, mp = 0.9383 GeV,
Fπ = 0.0924 GeV, Mπ+,π− = 0.1396 GeV, mn = 0.9396 GeV,
Fη = 0.12012 GeV, Mη = 0.5478 GeV, mΛ = 1.1157 GeV,
FK = 0.113 GeV, MK0,K̄0 = 0.4977 GeV, mΣ0 = 1.1926 GeV,

MK+,K− = 0.4937 GeV, mΣ+ = 1.1894 GeV.
mΣ− = 1.1975 GeV.

(3.2)

The use of physical masses rather than of those in the chiral limit is motivated by the wish to
reproduce the physical thresholds correctly. On the other hand the baryon mass in the chiral
limit, m0 in Eq. (2.4), can be fixed to 1 GeV without loss of generality, as any other value only
amounts to a rescaling of some unknown LECs.

There are 17 free parameters in the present approach, given by the 14 LECs, as well as
three subtraction constants for the regularized loop integrals, corresponding to the logarithms
of the undetermined regularization scales (in GeV), i.e. log(µπ/(1GeV)), log(µK/(1GeV)) and
log(µη/(1GeV)). Here, we take the regularization scale of each channel to be fixed by the
respective meson, i.e. in addition to µπN =: µπ and µηN =: µη, we take µKΣ = µKΛ =:
µK . The latter constraint appears to be natural in view of our forthcoming work on meson
photoproduction, where loops are present in which a photon-induced Λ ↔ Σ0 transition occurs,
the detailed discussion of this issue can be found in section 2.3.

For the fits, we consider the very established analysis of the pion-nucleon data provided by
the SAID program at GWU. There partial wave analysis relying on the so-called K-matrix
approach has been performed both for single energy bins (energy independent solution) as well
as for a wide energy range simultaneously (energy dependent solution), see Ref. [107] as well
as [108] for a more recent analysis. In principle our amplitude does not only accounts for s-
but also for p-waves as the interaction kernel of the BSE (2.1) exhibits an explicit angular
dependence. However, the P11 as well as the P33 partial waves are dominated by Roper and
∆ resonances, respectively. At our present state of knowledge both have different origin than
the considered meson-baryon dynamics of the BSE, e.g the ∆ is a three-quark state. Thus
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without explicitly including these resonances3 the BSE solution will be spoiled drastically if
one includes the information in these partial waves. Hence as a first step we shall consider only
the s-waves (both real and imaginary parts) of the SAID analysis on πN scattering for energies
up toWcms = 1.56 GeV in the energy dependent solution. Comparing an earlier analysis by the
Karlsruhe group [109] to the current one, we assign for the energies below Wcms = 1.28 GeV an
absolute systematic error of 0.005 and for higher energies an error of 0.030 to the partial wave
amplitudes. To some extent this is in agreement with error estimates done in Ref. [84], which
are motivated by the expectation of pronounced three-body effects above the ππN threshold,
see also Ref. [25].

The BSE solution turns out to be dependent upon the free parameters of the model in a
very tangled way. Hence very elaborative techniques are required to adjust the parameters such
that the experimental (phenomenological) input is reproduced correctly. The most established
and convenient method is the minimization of a suitable χ2 function. There are various ways
how this function can be defined with various advantages and disadvantages, however, in this
theoretical work we find it most convenient to use the following definition

χ2
DOF :=

∑
i ni

N(
∑

i ni − p)

∑
i

χ2
i

ni

, (3.3)

where p is the number of free parameters, ni is the number of data points available for the
observable i and N is the number of observables. This choice of χ2 ensures the equal weight of
all fitted observables. To be more specific in the present case p = 17, N = 4 and ni = 30 for
all i ∈ {ReS11, ImS11,ReS31, ImS31}. Our solution is fully analytical but very complicated and
time-consuming. In both versions, as a Mathematica(TM) and a C++ routine, the calculation
takes ∼ 30 − 60 seconds for one specific parameter set and fixed energy. The Mathematica
(TM) version serves more as an analysis tool whereas the C++ routine is written solely for the
minimization procedure of χ2

DOF , which is performed utilizing the MINUIT C++ library, see
Ref. [110]. Since this numerical procedure requires typically several thousands steps (each of
them taking up to ni = 30 minutes), we have parallelized the calculation routine on the HISKP
cluster such that for each energy it is performed on a separate thread of the cluster. Then all
results are combined and inserted into Eq. (3.3), which is then passed through to the MINUIT
driven main routine. There a variable-metric method MIGRAD [111] is utilized to find the
minimum of χ2

DOF in the 17-dimensional parameter space.

3.4 Results

For the best fit, found using the MINUIT library, with a χ2
DOF = 1.23 we obtain the following

parameter set (all µi in GeV)

log(µπ/(1GeV)) = +0.924
log(µη/(1GeV)) = −0.218
log(µK/(1GeV)) = +0.581

3The inclusion of explicit resonances leads to other conceptional difficulties within the present framework
and lies outside of the scope of the present work. For an attempt to do so see Ref. [79].
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Figure 3.1: Real and imaginary part of the S11 partial wave amplitude compared with the
SAID-data (WI08-analysis). Full curves correspond to the best fit, the dashed ones to fits with
slightly larger χ2

DOF . The bold vertical line limits the region of the fit, where in the not fitted
region single energy values are taken from the SAID analysis.

b1 = −0.082 GeV−1 b8 = +0.609 GeV−1

b2 = −0.118 GeV−1 b9 = −0.633 GeV−1

b3 = −1.890 GeV−1 b10 = +1.920 GeV−1

b4 = −0.215 GeV−1 b11 = −0.919 GeV−1

b5 = −0.963 GeV−1 b0 = −0.768 GeV−1

b6 = +0.218 GeV−1 bD = +0.641 GeV−1

b7 = −1.266 GeV−1 bF = −0.098 GeV−1

All parameters are of natural size and the LECs agree with the estimates from the SU(3) to
SU(2) matching relations provided in Ref. [42]. At this point we are only able to estimate the
computational errors on the above parameters within the MIGRAD (MINUIT) minimization
procedure, which appear to be negligible. As a consequence of the sizeably increased computing
time, when fitting the full amplitudes rather than the on-shell approximations to them, we are
not able to perform a full error analysis as e.g. done in Ref. [105] for K−p scattering. However,
in the course of this thesis we will develop and perform a more systematic error analysis.

In Figs. 3.1 and 3.2 we present the results of our approach for the S11 and S31 partial waves.
Clearly the uncertainty of our predictions grows with increasing energy. For an indication of
the error bands on the partial wave amplitudes we present the second, third and fourth best
fits in Figs. 3.1 and 3.2 as dashed lines. As already seen in earlier publications on the BSE
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Figure 3.2: Real and imaginary part of the S31 partial wave amplitude compared with the
SAID-data (WI08-analysis). Full curves correspond to the best fit, the dashed ones to fits with
slightly larger χ2

DOF . The bold vertical line limits the region of the fit, where in the not fitted
region single energy values are taken from the SAID analysis.

approach with leading order chiral potential [84], the low-energy region (e.g. Wcms < 1.4 GeV)
is reproduced for both isospin 3/2 and 1/2 reasonably well. For the two s-wave scattering
lengths, we obtain

a1/2 = 145.8× 10−3/Mπ+ and a3/2 = −91.6× 10−3/Mπ+ ,

to be compared with the direct extraction of these scattering lengths from the GWU solution,
a1/2 = (174.7 ± 2.2) × 10−3/Mπ+ and a3/2 = (−89.4 ± 1.7) × 10−3/Mπ+ .4 The theoretically
cleanest determination of these observables stems from the analysis of pionic hydrogen and
pionic deuterium data based on effective field theory [112], a1/2 = (179.9 ± 3.6) × 10−3/Mπ+

and a3/2 = (−78.5 ± 3.2) × 10−3/Mπ+ . The description of the πN amplitude at low energies
will certainly be improved by a more complete treatment of the Born terms, which is beyond
the scope of this work. One might also think about constraining the well-known pion-nucleon
scattering lengths, e.g. by adopting a matching procedure to the perturbative expansion.
However, since we did not put a special weight on the threshold region in our fits, and the
overall description of the partial waves seems to work well over a rather broad energy range,
we regard the obtained results for the scattering lengths as satisfactory.

4We thank Ron Workman for providing us with these values.
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Moreover, and more importantly, within the fit region we reproduce the S11(1535). At the
same time the S31(1620) resonance is not reproduced by our approach, which is in agreement
with the current state of knowledge that the first S31 resonance does not have a prominent dy-
namically generated component. To emphasize this we exclude the data on S31 and recalculate
the χ2

DOF for the above parameter set, we end up with χ2
DOF (S11) = 0.59. Let us remark at

this point that the S11(1535) is reproduced without any use of explicit vector meson resonances
or even taking into account the ππN channels as for example in Ref. [103]. As a matter of fact
the neglect of these inelastic channels is expected to lead to an overestimate of the πN → ηN
cross section not considered here (see e.g. Ref. [113]). We will turn to this issue in more detail
in chapter 5.

At this point one realizes an even more interesting fact: After fixing the S11 partial wave in
the energy region up to

√
s = 1.56 GeV every curve with minimized χ2

DOF possesses a second
structure between the KΛ and KΣ threshold. Obviously this corresponds to the well-known
S11(1650) resonance and is predicted here only by demanding a good description in the low-
energy and the first resonance region. To some extent this is in agreement with Ref. [84], where
the S11(1650) was reproduced in the fit of the phase shifts and inelasticities for the full region
of 1.077 <

√
s < 1.946 GeV. While only the leading order chiral potential was considered there,

the authors introduced additional parameters appearing for every loop integral. Apparently
these parameters contain some of the information that has to be attributed to neglected terms of
higher order in the chiral potential. Additionally, in contrast to our approach this method does
not allow to identify the higher partial waves than the s-wave, which might become important
for higher energies as emphasized in Ref. [106].

Up to now we have been very sloppy using the word ’resonances’ for the structures in the
s-wave projected scattering amplitudes. Indeed it is common to denote a bump in the spectrum
of an observable (e.g. cross section) by the word ’resonance’. Then it is quite convenient to fit
this Breit-Wigner formula which is parametrized by two parameters WR related to the mass of
the resonance and ΓR called the resonance width which is inverse to the resonance mean life
time. Actually, this is an approximation which is well enough to describe the resonances, if
the width is not too large and as long as the background is weakly energy-dependent. From
the field theoretical point of view it is much cleaner to assign the resonances to the poles of
the scattering amplitude in the complex plane, see e.g Refs. [69, 70]. The real part of the pole
position is equal to the mass of resonance and the negative imaginary part to half its width.
However, these poles have to lie on the unphysical (second) Riemann sheet as the microcausality
forbids the complex-valued poles on the first Riemann sheet. In Figs. 3.3 and 3.4 we present
the modulus of the analytic continuation of T 11

πN into the complex s-plane. In Fig. 3.3 two poles
appear on the (222-111) Riemann sheet, which labels the unphysical Riemann sheet connected
to the physical (scattering) axis in the energy region between the third (ηp) and fourth (KΛ)
threshold. For the position of the two poles we extract:

W1535 = (1.506− i 0.140) GeV,

W1650 = (1.692− i 0.046) GeV. (3.4)

Choosing the (2222-11) Riemann sheet, i.e. the unphysical sheet reached by analytic continu-
ation from the region (MK +mΛ)

2 < s < (MK +mΣ)
2, see Fig. 3.4, we obtain one single pole

structure, which is located at

W1650 = (1.682− i 0.042) GeV . (3.5)
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Figure 3.3: (222-111) Riemann sheet of the s-plane. The five-star and the six-star correspond
to the values obtained in Refs. [99] and [88], respectively, the dots represent results of phe-
nomenological models listed in Ref. [28].

We conclude that the S11(1650) can also be described as a dynamically generated resonance,
just like the S11(1535). Recall that this resonance appears in our framework, although no
information is included from phenomenology in this energy region.

It is further interesting to analyze the structure of these states. To do that, we consider the
on-shell scattering matrix in the vicinity of the two poles, where it takes the form

T on
ij (s) '

gigj
s− sR

, (3.6)

with gi (gj) the complex coupling constant for the initial (final) transition of the meson-baryon
system, including a complex wave function renormalization constant. For the S11(1535), we
obtain the following ordering

|gΛK+ |2 > |gpη|2 > |gΣ+K0|2 ' |gnπ+ |2 > |gΣ0K+ |2 ' |gpπ0 |2. (3.7)

We remark that the inequalities between couplings to different πN and KΣ channels are mostly
due to Clebsch-Gordan coefficients in the associated isospin decompositions. However, isospin

38



ä
ä
ä

ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä

ä
ä
ä

ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä
ä

ààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààààà

æ

KLKL KSKS

æ

æ

÷

ø

æ
æ

2.5 2.55 2.6 2.65 2.7 2.75 2.8

0

-0.1

-0.2

-0.3

-0.4

Re s

Im
s

Figure 3.4: (2222-11) Riemann sheet of the s-plane. The five-star and the six-star correspond
to the values obtained in Ref. [99] and Ref. [88], respectively, the dots represent results of
phenomenological models listed in Ref. [28].

symmetry is not exact in the present approach. We find that the largest component is the KΛ
one and that the coupling to ηN is significantly bigger than the πN ones, in agreement with
the empirical fact that the S11(1535) couples dominantly to ηN . The pattern for the S11(1650)
looks different,

|gΣ+K0 |2 > |gpη|2 > |gΣ0K+ |2 ' |gnπ+|2 > |gpπ0 |2 � |gΛK+ |2, (3.8)

i.e. for this resonance the KΣ component is dominant and the KΛ one is completely negligible,
which for instance is indicated by the fact that the pole associated with the S11(1650) is
accompanied by a second one on a neighboring sheet, with almost the same coordinates. As
for the lower-lying resonance, the coupling to ηN is bigger than the one to πN .
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3.5 Summary and outlook

In this chapter, we have analyzed s-wave pion-nucleon scattering in coupled-channel unitarized
chiral perturbation theory. The driving kernel includes all local interactions terms of first and
second order from the chiral effective Lagrangian. We consider all two-body channels with
strangeness zero and charge plus one, but do not include inelasticities generated from three-
body ππN states. The Bethe-Salpeter equation has been solved including the full off-shell
dependence of the chiral potential. The parameters are fitted to the real and imaginary part
of the S11 and the S31 partial waves for cms energy below 1.56 GeV. We show that both
the S11(1535) and the S11(1650) are generated dynamically, even though the fit range does
only include the first resonance. We have also analyzed the structure of these states, which
exhibit some marked differences as indicated by the couplings given in Eqs. (3.7,3.8). Quite
differently, no resonance is generated in the S31 partial wave. We consider this an important
step in our program of describing pion photoproduction from coupled-channel unitarized chiral
perturbation theory. Clearly, in the future more work is needed to properly include the Born
terms and to perform a systematic error analysis. The first issue is an ongoing project and for
the latter the reader is referred to chapter 5.
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Chapter 4

K̄N scattering and properties of the
Λ(1405) resonance1

4.1 Introduction

The unitarization procedures are in general of an enormous use for systems, where the reso-
nances are located around two-particle thresholds. In such cases the radius of convergence of
a strict perturbative calculation is restricted by the presence of a nearby resonance. This fact
becomes most evident in the case of K̄N scattering as clearly shown in Refs. [65] and [42].
There the real part of the scattering length of K̄N scattering for Isospin I = 0 came with right
magnitude but with the wrong sign in both approaches, which is due to the presence of the
very near (∼ 50 MeV) lying subthreshold resonance Λ(1405).

With the recent precise measurement of kaonic hydrogen observables in the SIDDHARTA
experiment at DAΦNE [114], an accurate determination of the so important antikaon-nucleon
scattering amplitude is now possible. The appropriate framework to perform this task is unita-
rized coupled-channel chiral perturbation theory, which combines the strictures from the chiral
SU(3) dynamics of QCD with coupled channel effects, that e.g. generate the much discussed
Λ(1405) resonance, as first pointed out by Dalitz and Tuan [115]. From earlier studies by
various groups, it is already known that simply taking the leading order chiral interactions in
the effective potential of the respective scattering equation is insufficient to achieve the desired
accurate theoretical description, see e.g. Refs. [96, 104, 105]. In fact, Ikeda et al. [95, 116] have
performed such a combined analysis based on the next-to-leading order chiral effective meson-
baryon Lagrangian, nicely demonstrating that indeed a more precise description of theK−p and
K−n interaction arises. Here, we perform a similar analysis, but in contrast to Refs. [95, 116],
we use a Bethe-Salpeter framework without an on-shell approximation for the intermediate
meson-baryon states. The framework we use has already been successfully applied to pion-
nucleon scattering for the s-waves in the previous chapter and thus it is quite natural to extend
this analysis to antikaon-nucleon scattering.

1Most of the contents of this chapter can be found in Ref. [3].
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4.2 Framework

In chapter 1 we have introduced a unitarization procedure which relies on the solution of the
Bethe-Salpeter equation. In the following, chapter 2, we have derived the solution of this
equation for the driving term derived from the chiral Lagrangian of the leading and next-to
leading order, which was then applied successfully in chapter 3 to pion-nucleon scattering. Here,
we wish to refine this procedure and utilize it for the description of the meson baryon scattering
in the strangeness S = −1 sector. For completeness the basic ingredients of our model shall be
specified in the following in a more succinct style to avoid (larger) repetitions.

In chiral perturbation theory the meson-baryon interaction at the leading chiral order is
encoded in the Lagrangian (1.13). For the present case of hadronic scattering we set the
external currents to zero except for the scalar one, which is set equal to the quark mass matrix,
i.e. s = M := diag(mu,md,ms). Starting from the covariant derivative DµB, the so-called
Weinberg-Tomozawa term can be derived. This term dominates the s-wave interaction near
the thresholds, therefore in most chiral unitary approaches the meson-baryon interaction is
restricted to this term. Secondly, a meson can couple to a baryon via the axial vector current
∼ D,F , generating the s- and u-channel exchanges of the intermediate baryons, see Eqn. (2.3).
The inclusion of these so-called Born graphs in the driving term of the Bethe-Salpeter equation
leads to conceptional and practical difficulties, which are described in detail in section 2.1. The
latter are usually overcome, making use of the on-shell approximation or via projection of the
kernel to the s-wave, see e.g. Ref. [105] and Ref. [116] for a more recent study. However, the
particular attention of the present work lies on the solution of the Bethe-Salpeter equation with
the full off-shell dependence. Thus we will restrict the interaction kernel to a sum of contact
terms, but refrain from the approximations mentioned above.

Aside from the Weinberg-Tomozawa term, we will take into account the full set of meson-
baryon vertices from the second-order chiral Lagrangian. The pertinent Lagrangian density
was first constructed in Ref. [44] and is presented in its minimal form [101] in Eq. (1.13). There
all operators are accompanied by dimension-two low energy constants (LECs), bi. On the one
hand such terms may lead to sizable corrections to the leading-order result, see e.g. Ref. [42] for
the calculation of meson-baryon scattering lengths up to the third chiral order. On the other
hand, including such terms with full off-shell dependence we hope to account for some of the
structures created by the missing Born graphs.

Let us denote the in- and out-going meson momenta by q1 and q2, respectively. The overall
four-momentum is given by p = q1 + p1 = q2 + p2, where p1 and p2 are the momenta of in-
and out-going baryon, respectively. Separating the momentum space from the channel space
structures, the chiral potential considered here takes the form:

V (q2, q1; p) = AWT ( /q1 + /q2)

+ A14(q1 · q2) + A57[ /q1, /q2] + AM + A811

(
/q2(q1 · p) + /q1(q2 · p)

)
,

where the first matrix AWT only depends on the meson decay constants Fπ,K , whereas A14,
A57, A811 and AM also contain the NLO LECs as specified in appendix C. In going from the
Lagrangian (2.4) to the above vertex rule, we have left out some terms, which are formally of
third chiral order. The channel space is defined in accordance with the quantum numbers as
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well as the energy range of interest. For the purpose of gaining some insight into the nature of
the Λ(1405) it is spanned by six vectors corresponding to the following meson-baryon states:

K−p, K̄0n, π0Λ, π0Σ0, π+Σ−, π−Σ+

It should be noted that in principle there are four additional channels which have the same
quantum number and can be build from the ground state octet of mesons and baryons, i.e.
ηΛ, ηΣ0, K+Ξ−, K0Ξ0. However, these channels are much heavier (≥ 1.663 GeV) than the
six given above (≤ 1.437 GeV) and thus their effects can be considered to be absorbed in the
LECs to be fitted.

The strict perturbative chiral expansion is only applicable at low energies and certainly fails
in the vicinity of (subthreshold) resonances. We extend the range of applicability by means of
a coupled-channel Bethe-Salpeter equation (BSE). Introduced in Ref. [74] it has been proven
to be very useful both in the purely mesonic and also in the meson-baryon sector. In contrast
to perturbative calculations this approach implements two-body unitarity exactly and in prin-
ciple allows to generate resonances dynamically. For the meson-baryon scattering amplitude
T (q2, q1; p) and the chiral potential V (q2, q1; p) the integral equation to be solved is presented
in Eq. (2.1). To treat the loop diagrams appearing there, we utilize the regularization scheme
developed in section 2.2. It relies on the dimensional regularization but sets all purely baryonic
integrals to zero. In the spirit of the discussion there, we apply the usual MS subtraction
scheme, keeping in mind that the modified loop integrals are still scale-dependent. The scale
µ reflects the influence of the higher-order terms not included in our potential and is used as
a fitting parameter of our approach. As mentioned before, this treatment is similar to those
adopted in similar approaches, e.g. [84, 95], where subtraction constants are assigned to the
loop integrals and used then as a fitting parameters. In any case we should impose that these
free parameters remain of natural size, otherwise it would indicate that some important effects
are missing.

The solution of the BSE Eq. (2.1) with full off-shell dependence is obtained following the
construction principles described in chapter 2. As an extension of this approach we wish also
to address an other issue here, namely analyticity, which is one of the fundamental principles
of modern physics as described in section 1.4. Let us first start with the one-meson-one-baryon
loop-function IMB(s = p2) in four dimensions

IMB(s) :=

∫
d4l

(2π)4
i

(l2 −M2 + iε)((p− l)2 −m2 + iε)
. (4.1)

Applying the Cutkosky rules, one immediately obtains the imaginary part of this integral, given
by

Im
(
IMB(s)

)
= −qcms(p

2)

8π
√
s

for qcms =

√
(s− (m+M)2)(s− (m−M)2)

2
√
s

.

Working in the complex s-plane we can apply Cauchy’s integral formula for holomorphic func-
tions which states that their values in their domain of analyticity are completely determined
by their value on the boundary of that domain. Now since the above function exhibits a cut
along the real axis starting from the threshold (m +M)2 (gray area), the boundary has the
following shape:
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.

The idea is then to widen the contour to infinity, where for the fast enough decreasing functions
the value of the function on the contour part (1) vanishes. Then the function value at any
point within the integration contour is given entirely by its functional behaviour along the
integration parts (2) and (3). The Schwarz reflection principle allows on the other hand to
replace the integration along the paths (2) and (3) by the integration along the path (2) over
the imaginary part of the function in question. These arguments are at the heart of dispersion
relations.

Taking yet another look on Eq. (4.1) one realizes that the function IMB diverges logarithmi-
cally for s→ ∞. Hence the dispersion relation has to be subtracted to ensure that the contour
integral is well-defined. Restricting to the real part the dispersion relation for the function
IMB(s) can be written as follows

Re
(
IMB(s)

)
= Re

(
IMB(s0)

)
+

(s− s0)

π
p.v.

∫ ∞

sthr

ds′
Im
(
IMB(s

′)
)

(s′ − s)(s′ − s0)
,

where sthr = (M+m)2 and s0 is a subtraction point chosen not to lie on the integration contour
and ’p.v.’ denotes the principal value. As a matter of fact the loop integral IMB depends upon
the regularization scale µ as argued above. This dependence is now carried by the subtraction
constant Re

(
IMB(s0)

)
on the r.h.s. of the last equation.

The solution of the BSE Eq. (2.1) corresponds to a bubble sum of the form exemplified in the
Fig. 1.2, containing exactly the same one loop-functions IMB. Thus, demanding microcausality
of the scattering amplitude one should in principle be able to write an equation similar to the
last one for the scattering amplitude

Re
(
T (s)

)
= Re

(
T (s0)

)
+

(s− s0)

π
p.v.

∫ ∞

sthr

ds′
Im
(
T (s′)

)
(s′ − s)(s′ − s0)

, (4.2)

where for the moment we have suppressed the q1,2 dependence. We have checked numerically
that the above integral is well-defined as |T (s)| decreases with increasing |s| in the whole
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complex plane. However, to the best of our knowledge, it is not possible to implement the last
relation Eq. (4.2) into the BSE Eq. (2.1) directly. To put it in other words, the BSE ansatz is
known to produce poles on the physical Riemann sheet, which are forbidden by the postulate
of maximal analyticity. Thus a scattering amplitude, which solves Eq. (2.1), does not satisfy
Eq. (4.2) exactly.

Nevertheless it is possible to find a solution of the BSE Eq. (2.1), which fulfills Eq. (4.2)
at least approximately, as we wish to describe now. One way to do so is to keep only those
solutions of the BSE, which do not produce poles on the first Riemann sheet ’near’ the real
(physical) axis. E.g. in Ref. [105] solutions producing poles for Im(Wcms) < 250MeV were
excluded by hand. To overcome such unsatisfactory intervention into the fitting procedure we
continue differently. First, for a fixed s0 and several values of s along the whole fitting region
we define the following quantity

χ2
DISP =

Re (T (s)− T (s0))− (s−s0)
π

p.v.
∫∞
sthr

ds′
Im
(
T (s′)

)
(s′−s)(s′−s0)

Re (T (s)− T (s0))


2

. (4.3)

Then the fitting parameters of our model are adjusted to minimize the quantity χ2
FULL =

χ2
DISP+χ

2
DATA, where the latter is based on the experimental data. It should be clear that such

a procedure is not suited to overcome the unphysical poles. It ensures, however, that they are
moved far away from the real axis in a systematic manner, without manual intervention. We
consider this as an improvement of the model.

4.3 Fit strategy

We are now able to confront our approach with the experimental results. The baryon mass in
the chiral limit, m0 in Eq. (2.4), is fixed to 1 GeV, whereas the remaining meson and baryon
constants are fixed to their physical values, see Eqs. (3.2). For the experimental data we consider
total cross sections for the processes K−p→ K−p, K−p→ K̄0n, K−p→ π0Σ0, K−p→ π+Σ−

and K−p → π−Σ+ taken from Refs. [117–120]. Moreover, we consider the following threshold
decay ratios

γ =
Γ(K−p→ π+Σ−)

Γ(K−p→ π−Σ+)
= 2.38± 0.04 ,

Rn =
Γ(K−p→ π0Λ)

Γ(K−p→ neutral states)
= 0.189± 0.015 , (4.4)

Rc =
Γ(K−p→ π+Σ−, π−Σ+)

Γ(K−p→ inelastic channels)
= 0.664± 0.011 ,

where the first one is taken from Ref. [121] and the last two from Ref. [122]. Additionally to
these quite old data we use a recent determination of the energy shift and width of the kaonic
hydrogen in the 1s state, i.e. ∆E − iΓ/2 = (283± 42)− i(271± 55) eV from the SIDDHARTA
experiment at DAΦNE [114]. These are related to the K−p scattering length via the modified
Deser-type relation [123]

∆E − iΓ/2 = −2α3µ2
caK−p [1− 2aK−pαµc(lnα− 1)] ,
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where α ' 1/137 is the fine-structure constant, µc is the reduced mass and aK−p the scattering
length of the K−p system.

There are 17 free parameters in the present approach. First of all, the low-energy constants
represent the heavy degrees of freedom of QCD, which are integrated out. Thus they have
to be fixed in a fit to the experimental data. As a matter of fact, the fitting parameters of
our approach correspond to the SU(3) low-energy constants, renormalized by the effects of
the not included channels {ηΛ; ηΣ0;K+Ξ−;K0Ξ0}, which one has to keep in mind when using
these constants for the further analysis. Additionally, three subtraction constants have to be
determined from a fit, which correspond to the logarithms of the undetermined regularization
scales, i.e. {µπΛ, µKN , µπΣ}.

To reproduce the experimental data as well as to preserve the property of analyticity as
described above, we minimize the following quantity χ2

FULL = χ2
DISP + χ2

DATA, where the first
part is given in Eq. (4.3) and the second part by the quantity

χ2
DATA :=

χ2

d.o.f
=

∑
i ni

N(
∑

i ni − p)

∑
i

χ2
i

ni

.

Here p is the number of the free parameters, ni is the number of data points available for the
observable i and N is the number of observables. There is a huge number of data points on
cross sections of the above reaction channels, which have been collected for the last 50 years.
For practical reasons we consider only up to 12 typical data points distributed over the range
of 100 ≤ plab ≤ 300 MeV for the total cross sections in addition to the threshold parameters
∆E, Γ, γ, Rn and Rc. The unequal number of the data points for the cross sections and
threshold parameters makes the present choice of χ2

DATA absolutely inevitable as it ensures the
equal weight of different observables. The minimization itself is performed using MINUIT [110],
especially the MIGRAD strategy in two steps, which is due to the quite complicated structure
of the BSE solution with full off-shell dependence. First, parameters are found to minimize
the χ2

FULL in the on-shell parametrization. In the second step we turn on the “off-shellness”
slowly, minimizing in each step the χ2

DATA and taking the parameters of the best fit from the
previous step as starting values. Such a procedure guarantees preservation of the right analytic
properties of the solution, found in the first step.

4.4 Results

For the best fit, i.e. χ2
DATA, BEST = 0.524, we obtain the following parameter set (all µi in GeV)

with the corresponding uncertainties as calculated in the hesse subroutine of the MINUIT
library

log(µKN/(1GeV)) = +1.155± 0.181
log(µπΣ/(1GeV)) = −0.008± 0.002
log(µπΛ/(1GeV)) = −0.010± 0.003
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Figure 4.1: Total cross sections for the scattering of K−p to various channels versus the K−

laboratory momentum. The black points with error bars denote the experimental data from
Refs. [117–120] considered for the fits. Shaded (green) bands denote the 1σ error bands calcu-
lated as described in the text. The reaction K−p→ Λπ0 is not a part of our fit and presented
here only for completeness.
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b1 = +0.582± 0.052 GeV−1 b8 = −0.332± 0.045 GeV−1

b2 = −0.310± 0.092 GeV−1 b9 = +0.298± 0.087 GeV−1

b3 = +0.227± 0.038 GeV−1 b10 = +0.198± 0.058 GeV−1

b4 = −0.939± 0.069 GeV−1 b11 = +0.516± 0.058 GeV−1

b5 = +0.023± 0.007 GeV−1 b0 = +0.710± 0.211 GeV−1

b6 = +0.001± 0.001 GeV−1 bD = −0.291± 0.068 GeV−1

b7 = −2.518± 0.110 GeV−1 bF = −0.057± 0.014 GeV−1

We note that the LECs are all of natural size, indicating that all relevant physical mechanisms
are included in the calculations. The experimental data on total cross sections are reproduced
quite nicely, see Fig. 4.1. We first wish to remark that due to the very small number of data
points and since our focus lies only on the Isospin (I=0) channel, the data on the process
K−p → Λπ0 are not considered as experimental input in the fit procedure. For completeness,
we present the outcome of our approach for this channel in Fig. 4.1. Secondly, all of the cross
sections presented here are due to the strong interaction only. Additionally, Coulomb interaction
was taken into account in Refs. [95, 105] via a non-relativistic quantum mechanical formula.
Since this alone cannot count for an interference between the strong and the electromagnetic
interactions, we relegate the proper inclusion of the electromagnetic contributions to a future
work. We also note that the data are at sufficiently high momenta, so that effects due to
Coulomb interaction should be negligible.

In the previous chapter we have pointed out the importance of a more systematic error
analysis. To address here for this we have calculated the error bars (confidence bands) on all
observables in the following manner. First we generate a large number (∼ 10, 000) of randomly
distributed parameter sets in the error region given above. Then for each of these parameter
sets we calculate the χ2

DATA and keep only those sets, for which χ2
DATA − χ2

DATA, BEST ≤ 1.05.
Quantities calculated for these parameter sets are assumed to lie in the 1σ region around the
central value. Sometimes the latter definition is applied w.r.t. the χ2 instead of χ2

DATA, however,
we have checked numerically that in this case the error bars do not change drastically. In view
of the very different number of observables we wish to stick to the above prescription for the
determination of error bars.

The results for the threshold quantities are in excellent agreement with experimental data,
see Eqs. (4.4), and read

∆E − iΓ/2 = +296+56
−49 − i 300+42

−54 eV,

γ = +2.44+0.73
−0.67 , Rn = +0.268+0.110

−0.086 , Rc = +0.643+0.015
−0.019 .

As a matter of fact, the shape of the 1σ region for the energy shift and width of kaonic hydrogen
cannot be assumed to be rectangular a priori. Its actual form is depicted in Fig. 4.2, where also
the constraints from two older experiments (DEAR and KEK) are presented for completeness.
The resulting scattering lengths for isospin I = 0 and I = 1, i.e. a0 and a1, are displayed in
Fig. 4.3, in comparison to some older determinations and the determination based on scattering
data alone [105]. The inclusion of the SIDDHARTA data leads to much smaller errors, especially
for a1. Our values for the scattering lengths are

a0 = −1.81+0.30
−0.28 + i 0.92+0.29

−0.23 fm ,
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a1 = +0.48+0.12
−0.11 + i 0.87+0.26

−0.20 fm . (4.5)

The inclusion of the Λπ0 data in the fitting procedure could yield an additional constraint
on the isospin I = 1 amplitudes and fix the value of a1 as done in Ref. [105]. We have not
considered this channel as an experimental input for the reasons given above. The scattering
length for the elastic K−p channel reads aK−p = −0.68+0.18

−0.17 + i 0.90+0.13
−0.13 fm. For comparison,

taking the SIDDHARTA data only, one obtains aK−p = −0.65+0.15
−0.15+ i 0.81

+0.18
−0.18 fm, while Ikeda

et al. find2 aK−p = −0.70+0.13
−0.13 + i 0.89+0.16

−0.16 fm. Therefore, these fundamental chiral SU(3)
parameters can now be considered to be determined with an accuracy of about ∼ 15%,

Having fixed the parameters of our model, we can extrapolate the amplitudes of elastic K−p
scattering to the subthreshold region, i.e. center-of-mass energies 1330 ≤ Wcms ≤ 1450MeV.
The result is presented in Fig. 4.4. For both real and imaginary parts of the amplitude the
maximum lies close to the K̄N threshold and is quite narrow, which indicates the presence of
a close-by pole. It is also worth mentioning that the error band gets smaller to low energies,
different to the recent analysis by Ikeda et al. [95, 116].

To obtain a more complete picture about the structure of Λ(1405), the amplitudes are
analytically continued to the complex Wcms-plane. As already argued in the last chapter,
microcausality forbids poles on the first Riemann sheet, that is for Im(Wcms) > 0. This is
fulfilled in our model automatically due to the restoration of analyticity as described above.
On the other hand some pole structure has to be responsible for the functional form of the
scattering amplitudes fK−p→K−p, see Fig. 4.4. Two poles are found on the second Riemann
sheet for isospin I = 0, which is achieved via analytic continuation to Im(Wcms) < 0. We
denote the second Riemann sheet connected to the physical axis in the region between the Σπ
and K̄N threshold as RΣπ and the one connected to the physical axis for Wcms > (MK̄ +mN)
as RKN . The absolute value of the scattering amplitude is presented on both these sheets in
Fig. 4.5. We find that two poles lie on different Riemann sheets, the pole position reads

RΣπ : W1 = 1428+2
−1 − i 8+2

−2 MeV .

RKN : W2 = 1497+11
−7 − i 79+9

−9 MeV .

The real part of the position of the first pole agrees quite well with determination from Refs. [79,
95,105,116]. Its imaginary part agrees roughly with the determination of Refs. [79,105] and is
significantly smaller than extracted by Ikeda et al. [95,116]. For the second pole, the situation
is different, its imaginary part is in agreement with Refs. [95,105,116], but the real part is much
larger.

We have investigated the origin of these observations qualitatively. First, from our previous
analysis of πN scattering in the same framework, see chapter 3, we know that off-shell effects
can account for large modifications of the pole positions. Setting the tadpole integrals to
zero, we obtain immediately the solution of the BSE in the on-shell factorization. Note that
this solution is still different to the one by Ikeda et al. [95, 116] since no s-wave projection is
performed. We found that in the present case the off-shell effects do not alter the pole position
drastically. More precisely, the imaginary part of the first pole decreases and the one of the
second increases by about 10 MeV. The real parts of both poles do not change significantly.
Secondly, we noticed much smaller values of the NLO LECs found by Ikeda et al. additionally

2Here, the error bars are extracted from Fig. 4 of Ref. [95].
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Figure 4.4: Real and imaginary part of theK−p→ K−p scattering amplitude. The shaded band
indicates the uncertainty of the calculation. The data point at Wcms =MK +mp is determined
from the energy shift and width of kaonic hydrogen from the SIDDHARTA experiment.

to the fact that the LECs bi (i = 5, .., 11) were neglected there due to the s-wave projection.
To keep track of this we scale down our LECs continuously from the values found above to
zero. Such a solution of the BSE is of course by no means physical since no further fitting to
experimental data is done here. Qualitatively, however, we observe that both poles move (the
second one by about 100 MeV) to lower values of Re(Wcms). The conclusion to be drawn is that
the s-wave projection in the on-shell approximation of the interaction kernel is the main reason
for the difference in pole positions extracted in Ikeda et al. compared to the one extracted
from our approach. Despite all these differences the calculated πΣ mass distributions from the
reaction Σ+(1660) → π+(π−Σ+) [128], see Fig. 4.6, are of similar quality as the one obtained
by Ikeda et al. .

To further elaborate on the two obtained poles, we have analyzed the structure of both
resonances utilizing the following representation of the scattering matrix

Tij ∼
gigj
s− sR

,

where gi and gj are coupling constants of the in- and out-going states, respectively. For each
pole (isospin I = 0) we extract the coupling constants to the K̄N and πΣ channel as follows

W1 : |gK̄N | = 3.02 and |gπΣ| = 1.61,

W2 : |gK̄N | = 1.89 and |gπΣ| = 4.39.

At the position of the first pole (the one located at the smaller imaginary value of Wcms) the
coupling to the K̄N channel is nearly twice as large as to the πΣ channel. For the second pole
this pattern is reversed. Qualitatively both observations agree quite nicely with the ones made
in Refs. [104,129].
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uncertainty of our prediction.
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4.5 Summary and outlook

In this section we have applied our chiral unitary framework as developed in chapter 1 and 2 to
antikaon-nucleon scattering. We have fitted the scattering data for K−p→ K−p, K̄0n, Σ±π∓,
and Σ0π0 for laboratory momenta plab ≤ 300MeV together with the SIDDHARTA data, which
allows for a good description of the antikaon-proton cross section data (cf. Fig. 4.1) and an
accurate determination of the scattering lengths, cf. Eq. (4.5). We can give a precise prediction
for the real and imaginary part of the K−p → K−p scattering amplitude for center-of-mass
energies 1330 ≤ Wcms ≤ 1450MeV, cf. Fig. 4.4. We have investigated the two-pole structure of
the Λ(1405) [79, 129]. While the first pole is in agreement with other determinations, we find
the real part of the second pole at larger energies than usually obtained. We trace this back
to the contributions from the NLO terms in the driving potential. In contrast to most other
works we neither restrict those to be small nor perform an s-wave projection of the kernel. We
determine the coupling of both isospin I = 0 poles to the K̄N and πΣ channels. We observe a
nice qualitative agreement with the observation made in Refs. [104,129].

The πΣ invariant mass distributions can be of the great interest to shed more light on the
structure of the Λ(1405). Currently available data [128] are in agreement with our as well as
with the earlier analyses [95,105,116]. New results have been reported recently [130,131]. Once
analysed these may help to put narrow constraints on the position of both Λ(1405) poles. From
a more conceptional point of view we consider the approximate restoration of analyticity as
an improvement of the present analysis. It may be also of interest for the analysis of related
processes as it allows for an additional restriction of the typically very large parameter space.
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Chapter 5

Pion photoproduction off the proton in
a gauge-invariant chiral unitary
framework1

5.1 Introduction

Pseudoscalar meson photoproduction off protons is one of the premier tools to unravel the
spectrum and properties of baryons made of the light up, down and strange quarks, as witnessed
e.g. by the dedicated baryon resonance programs at ELSA (Bonn) and CEBAF (Jefferson
Laboratory). Some of the low-lying resonances like the Roper N∗(1440), the S11(1535) or the
Λ(1405) exhibit features that cannot easily be reconciled with a simple constituent quark model
picture. Therefore, it was speculated since long that some of these peculiar states and their
properties can be explained if one assumes that they are generated through strong coupled-
channel dynamics. Arguably the best tool to address such a dynamical generation of resonances
is unitarized chiral perturbation theory [2, 3, 61, 79–83,95].

Over the years, we have developed and applied a gauge-invariant chiral unitary coupled-
channel approach based on the leading order (LO) chiral effective Lagrangian of QCD to kaon
[106] and eta photoproduction, see Ref. [132]. To go beyond LO, one first has to refine the
description of meson-baryon scattering in this framework as the strong hadronic final-state
interactions are a crucial ingredient in evaluating the complete photoproduction amplitudes.
Therefore, we have developed a framework to analyse meson-baryon scattering incorporating
next-to-leading order (NLO) contributions of the chiral Lagrangian [133]. Our scheme is based
on the solution of the Bethe-Salpeter equation (BSE), with a kernel derived from the contact
terms of the NLO chiral Lagrangian. We have summed up the full infinite series of Feynman
diagrams generated by the BSE without resorting to any of the commonly made approximations
as e.g. the on-shell approximation. In this way we were able to reproduce successfully both
s-waves of pion-nucleon scattering (S11 and S31) between the πN and ηN thresholds. For higher
energies we have observed that only the resonance S11(1535) but not the S31(1620) could be

1Most of the contents of this chapter can be found in Ref. [4] which has been accepted for publication in
Physical Review D.
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described well. We have concluded that the S31(1620) does not have a prominent dynamically
generated content. As a matter of fact after fixing the S11 partial wave in the first energy
region, i.e. Wcms < 1.56GeV, the S11 amplitude for the higher energies came out in astonishing
agreement with current partial wave analyses. The examination of the complex energy plane
showed that also the pole position of the second s-wave resonance, i.e. the S11(1650), agrees
rather well with those given by the particle data group [28]. It is therefore natural to extend
this approach to s-wave photoproduction of pions, where a large data base already exists. This
is the main issue of the present chapter.

This chapter is organized as follows: In section 5.2, the underlying approach to analyse
meson-baryon scattering is described. Two fit strategies to pin down the occurring parameters
are presented and fits to data and predictions for some scattering lengths and the fundamental
ηN scattering amplitude are given. The approach is extended to photoproduction in section 5.3,
where parameter-free predictions for pion and η production off protons are given. Many tech-
nicalities are relegated to the appendices.

5.2 Hadronic scattering

In the present section we wish to present the basic formalism for meson-baryon scattering as it
will serve us as the most important ingredient in our analysis of the photoproduction processes.
For details and fundamental properties we refer the reader to the introductory chapter 2. We
wish also to give a more systematic error analysis of our results as it was done in chapter 3.
Moreover, from this first study we know that our coupled-channel approach is applicable to
relatively high energies, when including the full NLO terms from the chiral Lagrangian. Thus
we will extend our analysis also to the process πN → ηN , studied within a simplified approach
in Ref [132].

5.2.1 Formalism

Inspired by Chiral Perturbation Theory, which gives the driving terms of the meson-baryon
interaction, our framework relies on the coupled-channel Bethe-Salpeter equation [74]. The
latter implements the requirement of two-body unitarity exactly and in principle allows to
generate resonances dynamically. It already improved our understanding of the purely mesonic
and meson-baryon sector in recent years, see e.g. Refs. [2, 3, 61, 79–83, 95]. We denote the
in- and out-going meson momenta by q1 and q2, respectively. Moreover, the overall four-
momentum is given by p = q1 + p1 = q2 + p2, where p1 and p2 are the momenta of in-
and out-going baryons, respectively. To iterate the meson-baryon potential V (q2, q1; p) we
utilize once again the Bethe-Salpeter equation in d dimensions as presented in Eq. (2.1) and
visualized in Fig. 2.1. Restricting the meson-baryon states to have the quantum numbers of
the proton, the channel space reduces to the 6-dimensional space spanned by the following
channels {π0p, π+n, ηp,K+Λ, K+Σ0, K0Σ+}. Note that the loop integration in Eq. (2.1) is
performed in d dimensions, without restricting the loop momenta to be on the mass shell. Such
an approximation would certainly reduce the technical effort to solve the BSE, however, it spoils
the direct correspondence of the solution of the BSE Eq. (2.1) to the series of Feynman graphs,
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which we evaluate as it stands. Thus, every term in our solution of the BSE is related, in a one-
to-one correspondence, to a properly evaluated Feynman diagram. It comes as an advantage of
this prescription that the implementation of gauge invariance in a combined analysis of hadronic
scattering and meson photoproduction is straightforward and very natural: It follows essentially
the guidelines from quantum field theory textbooks, see e.g sec. (7.4) of Ref. [89], and will be
explained in sec. 5.3. Moreover, it is also straightforward to compare our amplitude to the
perturbative expansion at any fixed chiral order. We complete our discussion of the off-shell-
dependence of the effective vertices with the remark that the use of the on-shell-approximation
is not more “physical” than taking the off-shell-dependence into account, though reducing
the effort of the calculation significantly down to the evaluation of a geometric series. Simply
iterating a fixed on-shell kernel in such a geometric series can even lead to significant deviations
from the results of Feynman graphs when iterating Born-terms, as is exemplified by an analysis
of box graphs in sec. (5.2) of Ref. [75]. In our case, off-shell behavior of the potential reflects
itself in tadpole - integral terms in the full scattering amplitude. These terms might in general
depend on the chosen parameterization of fields as long as only a subset of Feynman graphs is
summed up, see section 1.4. Setting them to zero as done using the on-shell approximation is
just one possible “choice of gauge” (in the space of field parameterizations) in a non-invariant
result, which, however, is not in line with the proper evaluation of loop diagrams we aim at
here. As the analytic energy-dependence of the tadpole-terms is trivial, it should be possible to
compensate for this non-invariance effect by an adjustment of coupling constants in the kernel.
As a byproduct of our procedure for finding fits2, we have checked numerically that this is
indeed the case. Thus, while the exact numerical values of the coupling constants should be
taken with a grain of salt (they should be considered as model parameters in our approach) the
overall properties of the amplitude are solely based on the unambiguous analytic properties of
the selected infinite subset of loop graphs.

Relying on the previous analyses, see chapter 3 and 4, we will approximate the driving
term of the meson-baryon interaction, i.e. the potential V (q2, q1; p) by the sum of contact
terms from the leading and next-to-leading order chiral Lagrangian, see Eqn. (1.13) and (2.4),
respectively. The one-baryon exchange graphs, both in the s and u channel will be omitted from
this potential since they induce several (up to now not solved) technical and practical difficulties
in the framework of Bethe-Salpeter type equations as described in extenso in section 2.1. Hence
the interaction potential of the first and second chiral order takes the form

V (q2, q1; p) =AWT ( /q1 + /q2) (5.1)

+ A14(q1 · q2) + A57[ /q1, /q2] + AM + A811

(
/q2(q1 · p) + /q1(q2 · p)

)
,

where A... denote matrices in channel space as defined in App. C. The matrix AWT depends
upon the meson decay constants, which will be fixed to their physical values in the following.
However, the remaining matrices A... depend also upon the so-called low-energy constants, bi,
which appear in this low-energy effective field theory while integrating out the heavy degrees
of freedom of the underlying theory (QCD). As a matter of fact the importance of the second
order terms in the kernel of the BSE is twofold. First of all, as can be seen in Ref. [42], such
terms lead to sizable corrections of the meson-baryon scattering amplitudes. Secondly, the
contact interactions of the second chiral order not only contribute to the s-wave but also to the

2See the discussion in section 4.3.
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p-waves, which are then iterated in the BSE. In App. D we demonstrate in a toy model that
the presence of the first two partial waves is sufficient to reproduce the correct behavior of the
differential cross sections at sufficiently low energies.

In the second chapter of this thesis we have developed the recipe for the solution of the BSE
with the interaction kernel consisting of local terms. As described there we utilize dimensional
regularization to treat the divergent loop integrals, where the purely baryonic integrals are
set to zero from the beginning, while only an energy-independent constant is subtracted from
the fundamental meson-baryon loop integral. This prescription to treat the large baryon mass
scale is similar to the EOMS regularization scheme described in Ref. [62]. On the other hand
it resolves several technical problems, which appear in the course of the study of the photo-
production amplitudes described in the next section. To further extent, the solution of the
BSE corresponds to an infinite chain of one-meson-one-baryon loop diagrams, see e.g. Fig. 1.2.
From the point of view of the usual perturbative treatment this would demand an infinite num-
ber of counterterms from a local Lagrangian to absorb the loop divergences. This is of course
not feasible in an effective field theory. In our non-perturbative framework, the ignorance of
higher-order terms in the scattering kernel, which would serve to cancel the divergences and the
scale-dependence of the loop integrals in a perturbative setting, reflects itself by the appearance
of a new free parameter for every loop-integration, parametrized here by the logarithm of the
renormalization scale. This pragmatic approach is commonly adopted in the literature, see e.g.
Refs. [2,3,84,88,95]. The new free parameters are not completely arbitrary, however: At least,
we must impose that the values for the renormalization scale correspond to neglected higher
order terms of natural size. Should this not be the case, and a scale of e.g. µ ∼ TeV emerge
from some fits, we must discard that solution as unnatural. As a side remark, we note that
any modification of the loop integrals corresponds to a specific modification of the potential V
in the solution of the BSE. For an explicit demonstration of this procedure we refer to App. F
of Ref. [92]. The requirement that the modification of the potential is not dominating the
leading order terms also yields the mentioned constraints on the free scales. In conclusion, the
foregoing discussion suggests that it is sufficient in the present work to apply the subtraction
scheme described above, keeping in mind that the modified loop integrals still depend on the
renormalization scale, which constitutes a free fitting parameter. In the next subsection we will
re-examine this as well as the possibility to adjust this scale to a fixed value due to constraints
on the loop dressing of vertex functions.

The essential advantage of the above treatment is the preservation of the analytic structure
of the loop integrals, which allows for a continuation of the scattering amplitudes into the
complex energy plane. The solution of the BSE is presented in section 2.3. It can be written
in terms of elementary functions (that is without resorting to a numerical solution) of the loop
integrals, which are collected in App. A. Once the BSE has been solved we put the external
particles on their mass shell and calculate partial wave amplitudes as well as differential cross
sections for hadronic scattering. For the evaluation of the photoproduction amplitudes we will
require the full off-shell dependence of the hadronic solution, as will be described later.
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5.2.2 Fit

It is important to clarify the physical input to the scattering amplitudes. Throughout this
chapter we will use physical hadron masses (in GeV), as specified in Eq. (3.2). The baryon
mass in the chiral limit, m0 in Eq. (1.13), can be fixed to 1 GeV without loss of generality, as
any other value only amounts to a rescaling of the unknown LECs. In contrast to the earlier
work [106], the meson decay constants are also fixed to their physical values, see Eq. (3.2).

To pin down the free parameters of our approach we have to specify experimental input
available on the market for the considered meson-baryon channels. From the experimental
point of view elastic πN scattering is by far the best explored reaction. On the other hand
it is clear that the low-energy region is dominated by the p-wave resonances, namely Roper
and Delta. Our investigations presented in chapter 3 have shown that we are not able to
dynamically generate these resonances consistently with the s-wave resonances. Since these
degrees of freedom are not included in our approach, we restrict ourselves to the analysis of s-
waves. We fit our results for these πN partial waves to the widely accepted partial wave analysis
(WI08) by the SAID collaboration [108]. Comparing an earlier analysis by the Karlsruhe
group [109] to the current one, we assign for the energies below Wcms = 1.28 GeV an absolute
systematic error of 0.005 and for higher energies an error of 0.030 to the partial wave amplitudes.
To some extent this is in agreement with error estimates done in Ref. [84], which are motivated
by the expectation of pronounced three-body effects above the ππN threshold.

Another widely explored channel is π−p→ ηn, for which we consider quite recent but already
very established results on differential cross sections measured by Prakhov et al. in Ref. [134].
For all seven measured incident pion beam momenta plab we assign a measurement error as well
as the systematic error of 6% as pointed out in Ref. [134]. Moreover, one should keep in mind
that also plab itself entails an uncertainty, which hampers the clear pairwise separation between
most of the given beam momenta [135]. We do not consider this uncertainty in our fitting
routine as the inclusion would require an additional model-dependent input. The necessary
formalism is collected in App. D.

To fit the above data we follow two different fit strategies, which allow us to make additional
tests of the stability of our solution.

Fit strategy (I): We start from the best fit obtained in chapter 3 and additionally include
the π−p → ηn differential cross sections by Prakhov et al. adjusting all 17 parameters
of the model (log(µπ), log(µK), log(µη) as well as the 14 LECs). The fitting region in the
elastic πN channel is chosen to be (mp + Mπ) < Wcms < 1.56 GeV for both S11 and
S31. It is obvious that the new data will restrict our parameter set additionally, possibly
corrupting the agreement of the elastic πN to the SAID data compared to the fit obtained
in chapter 3.

Fit strategy (II): One of the main observations of the analysis in chapter 3 was that the
S11 but not the S31 partial wave of πN scattering can be described well in the res-
onance region. On the other hand the main goal of the present work is to see how
hadronic resonances manifest themselves in the photoproduction amplitude. Moreover,
since the ηN final state is an isospin 1/2 state we fit the elastic S11 partial wave in the
energy region (mp +Mπ) < Wcms < 1.7 GeV together with π−p → ηn differential cross
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sections of Prakhov et al.. The S31 is considered only in the near-threshold region for
Wcms < 1.2 GeV. Furthermore, we reduce the number of the free parameters of the model
to LECs fixing the regularization scales from the beginning. It turns out that the correc-
tions to the tree-level result of the photoproduction multipole E0+ due to the dressing of
the B → φB vertex are large already at the πN threshold. Thus we choose the scales
such that the meson-baryon loop integral evaluated at s = m2

p vanishes in every meson-
baryon channel, to assure that the axial vertex-function does not deviate much from the
corresponding tree-level expression.

For both fit strategies we minimize χ2 := χ2
DOF as specified in Eq. (3.3). This choice of χ2

ensures the equal weight of both fitted observables, compensating for the different number of
data points. Albeit the solution of the BSE is fully analytical, it costs a huge amount of compu-
tational power. Thus the fitting as well as error estimation routine is performed in a parallelized
version on 20-30 threads of the HISKP cluster utilizing the (migrad) minimization routine of
the MINUIT C++ library [110]. The uncertainty of the model is estimated as established al-
ready in chapter 4. First, after obtaining the best fit (χ2

BEST ) the errors on the parameters
are calculated in the hesse subroutine of the MINUIT package. Then within these errors we
generate a large number of parameter sets (∼ 10, 000) and calculate for each the corresponding
χ2
DOF . Then each set corresponding to a χ2 < χ2

BEST +1.15 is considered to produce results in
the 1σ region around the central value3.

5.2.3 Results

Solution I: Following the first fit strategy, we obtain the best fit as presented in Figs 5.1 and
5.2. As already discussed, the differential cross sections on π−p → ηn are taken at seven dif-
ferent pion beam energies, which by themselves entail a non-negligible uncertainty. The latter,
however, is not included into the definition of the χ2 for the reasons given above. Therefore,
we refrain from giving any numerical value for this quantity4. The corresponding parameters
(all µi in GeV) are of natural size and read:

log(µπ/(1GeV)) = +1.003± 0.331
log(µη/(1GeV)) = +1.034± 0.298
log(µK/(1GeV)) = −0.168± 0.080

b1 = −0.126± 0.039 GeV−1 b8 = +0.610± 0.012 GeV−1

b2 = −0.139± 0.045 GeV−1 b9 = −0.677± 0.037 GeV−1

b3 = −2.227± 0.133 GeV−1 b10 = +2.027± 0.100 GeV−1

b4 = −0.288± 0.080 GeV−1 b11 = −0.847± 0.027 GeV−1

b5 = −1.402± 0.094 GeV−1 b0 = −1.063± 0.038 GeV−1

b6 = +0.474± 0.118 GeV−1 bD = +0.771± 0.042 GeV−1

b7 = −1.751± 0.368 GeV−1 bF = −0.169± 0.054 GeV−1

3One might argue, whether or not one should divide by the number of degrees of freedom. It turns out that
the error bars do not change significantly.

4We wish to note that χ2 restricted to the SAID data lies only slightly above the one given in chapter 3,
where no other than elastic πN channels were included as observables.
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Figure 5.1: Best fit according to fit strategy (I) to the real and imaginary part of the S11 partial
wave compared to the WI08 analysis done by the SAID collaboration [108]. The dashed vertical
lines correspond to the two particle thresholds and the bold vertical line limits the energy range
up to which the fit has been performed. The blue and red bands represent the 1σ uncertainty
of our approach as described in the main text.
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Figure 5.2: Best fit according to fit strategy (I) to the differential cross sections for π−p→ ηn
from Ref. [134]. The error bars of experimental data include the systematic error of 6% as argued
in Ref. [134]. The green bands represent the 1σ uncertainty of our approach as described in
the main text.
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Figure 5.3: Total cross section of the best fit for π−p → ηn according to fit strategy (I). The
model is fixed to reproduce the differential cross section and thus the total cross section as
measured by Prakhov et al. (black symbols). The black curve including the uncertainty band
is the result of our model. The blue circles correspond to older measurements as selected by
the SAID collaboration which are presented for completeness.

The observation in the elastic πN channels is similar the one made in chapter 3. Between
the πN and ηN thresholds both partial waves can be fitted nicely to the SAID partial wave
analysis. For the πN scattering lengths of isospin I, aI (in units of 10−3/Mπ+), we obtain:

aπN3/2 = −87.0+4.3
−4.2 and aπN1/2 = +174.5+15.2

−32.8. (5.2)

The theoretically cleanest determination of these observables stems from the analysis of pionic
hydrogen and pionic deuterium data based on effective field theory [112], a1/2 = (179.9 ±
3.6) × 10−3/Mπ+ and a3/2 = (−78.5 ± 3.2) × 10−3/Mπ+ , which is in nice agreement with our
determination for the I = 1/2 channel, but our result is slightly too small for I = 3/2. For
both isospins our determination agrees perfectly with those from the direct extraction by the
SAID collaboration: a1/2 = (174.7± 2.2)× 10−3/Mπ+ and a3/2 = (−89.4± 1.7)× 10−3/Mπ+ .5

In the higher energy region the lowest S11 but not S31 resonances could be reproduced as
dynamically generated states in our model. The pole positions can be extracted via analytic

5We thank Ron Workman for providing us with these values.
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Figure 5.4: The result of our model in the fit strategy (I) for the real and imaginary part of
the s-wave scattering amplitude of the ηN (top) and π−p → ηn (bottom) channels. The error
bands represent the uncertainty due to the variation of the model parameters as described in
the text.
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continuation of the scattering amplitude to the complex Wcms plane and read

W1535 = (1.547+0.004
−0.021 − i0.046+0.004

−0.017) GeV,

W1650 = (1.597+0.017
−0.020 − i0.045+0.010

−0.015) GeV. (5.3)

Obviously the inclusion of ηN observables into the analysis forces the pole of N∗(1535) to the
higher and the pole of N∗(1650) to the lower energies compared with the previous analysis
in this thesis. This observation is in some agreement with the analysis in Ref. [113]. There
in a meson-exchange model the analysis of the inelasticities has shown that a simultaneous
description of the ηN and πN scattering amplitude is hampered by the missing ππN channels,
which are also missing in our approach. However, let us repeat that the starting values of the
present fit strategy are chosen to be those from the analysis done in chapter 3. Although there
is no reason to doubt about them for the description of elastic πN scattering one should keep
in mind that the inclusion of additional, i.e. ηN data, alter the amplitudes in the πN channel
as well.

For the pion induced eta production, Fig. 5.2, we observe that the outcome of the model
agrees with the experimental data, keeping in mind the uncertainty on the pion beam momenta.
The inclusion of the latter is crucial especially for the lowest pion beam momenta, where the
slope of the total cross section is enormous as can be seen in Fig. 5.3. There we present the
outcome of the model for higher beam momenta than included in the fit. Obviously the total
cross section agrees with the experimental data within the error bars. We also observe a large
qualitative agreement of the outcome of the model with the older and less precise measurements,
selected by the SAID collaboration. The overshooting of the total πN → ηN cross section by
30% as discussed in Ref. [113] is overcome obviously via moving of the N∗(1535) peak towards
higher energies, which is a direct consequence of the present fit strategy. In App. D we show
that the present model is in principle capable to simulate a cos2 θ like behavior in the differential
cross sections, usually referred to as the influence of the D13 resonance. The observation to be
made from Fig. 5.2 is that the inclusion of the elastic πN channels prevents (or at least damps)
such behavior. One should notice that the curvature in the data is of comparable size as the
uncertainty in the data as well as the uncertainty band of our approach.

We can make a prediction of the s-wave amplitudes for elastic ηN as well as π−p → ηn
scattering as presented in Fig. 5.4. Here and in the future we use the standard Höhler partial
waves denoted by f0+ in contrast to the S11 partial wave used by SAID collaboration, see e.g.
Fig. 5.1, which is f0+(I = 1/2) multiplied by qcms. In both channels the real and imaginary
part shows a similar behavior to the one shown in Ref. [136]. However, the position of the S11

peak is systematically shifted to higher energies in our approach, which is again a feature of the
present fit strategy. For the scattering lengths we obtain the following values (in commongly
used units of fm)

aηN→ηN = (+0.219+0.047
−0.068 + i0.235+0.148

−0.055) fm,

aπ−p→ηn = (−0.234+0.020
−0.024 − i0.129+0.048

−0.104) fm. (5.4)

There is a large spread in the results on ηN scattering lengths debated for a long time, see
Ref. [137] for a nice collection of those. One can note that most models predict a positive real
and imaginary part of the scattering length, which is in agreement with our result as well.
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Solution II: As argued above, the number of free parameters is reduced in this fit strategy
by the three regularization scales. They are fixed such that for each meson-baryon channel (i):

IMB(m
2
p,mi,Mi)

!
= 0 in the nomenclature of App. A, which yields the following values

log(µπ) = −0.368, log(µη) = 0.056, log(µK) = 0.210 .

The best fit of the 14 LECs, which are the only free parameters of the model in the present fit
strategy, is presented in Fig. 5.5 and 5.6. All parameters are of natural size and read including
the error bars:

b1 = −0.014± 0.023 GeV−1 b8 = +0.272± 0.015 GeV−1

b2 = −0.207± 0.051 GeV−1 b9 = −0.483± 0.032 GeV−1

b3 = −1.063± 0.032 GeV−1 b10 = +1.054± 0.021 GeV−1

b4 = −1.312± 0.023 GeV−1 b11 = +0.328± 0.015 GeV−1

b5 = −0.628± 0.060 GeV−1 b0 = −1.228± 0.005 GeV−1

b6 = +0.508± 0.045 GeV−1 bD = +1.097± 0.011 GeV−1

b7 = +1.041± 0.191 GeV−1 bF = −0.858± 0.011 GeV−1

In the elastic πN channel the S11 partial wave agrees almost perfectly in the whole energy
range with the one from the analysis by the SAID collaboration. The corresponding scattering
lengths are extracted to be (in units of 10−3/Mπ+)

aπN3/2 = −93.0+4.7
−6.3 and aπN1/2 = +168.9+5.9

−6.4. (5.5)

A comparison with the result of other calculations, given before, shows the same pattern as in
the previous fit. Both scattering lengths agree within the error bars with the direct extraction
by the SAID collaboration and are smaller than the values extracted in Ref. [112].

Both N∗(1535) and N∗(1650) are reproduced as dynamically generated states of the lowest
meson and baryon octet states. The pole positions of both N∗ resonances read

W1535 = (1.512 +8
−7 − i0.070 +9

−5) GeV,

W1650 = (1.715+32
−24 − i0.116+15

−24) GeV. (5.6)

As a matter of fact we expect the pole positions from the present fit strategy to be even more
realistic than those from the previous fit strategy as well as from the analysis done in chapter 3,
where no physical information was included for energies in the region of the second resonance.
The pole position of theN∗(1535) is perfectly within the uncertainty band presented in Ref. [28],
i.e. W1535 = (1.490...1.530)− i(0.045...0.125) GeV. On the other hand the position of N∗(1650)
differs slightly from the one given there, i.e. W1650 = (1.640...1.670) − i(0.050...0.085) GeV.
Note that both bands in Ref. [28] are mostly based on a selection of partial wave analyses.
The pole positions from two comparable theoretical works read W1535 = 1.519 − i0.064 GeV
and W1650 = 1.669 − i0.068 GeV from Ref. [138] as well as W1535 = 1.496 − i0.041 GeV and
W1650 = 1.686− i0.096 GeV from Ref. [88].

For the pion induced eta production we observe that, taking into account the uncertainty of
the pion beam energy, all seven differential cross sections agree with the data by Prakhov et
al., see Fig. 5.6. Again the cos2 θ behavior does not appear. We have discussed in App. D
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Figure 5.5: Best fit according to fit strategy II to the real and imaginary part of the S11 partial
wave compared to the WI08 analysis done by the SAID collaboration [108]. The dashed vertical
lines correspond to the two particle thresholds and the bold vertical line limits the energy range
up to which the fit has been performed. The blue and red bands represent the 1σ uncertainty
of our approach as described in the text.
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Figure 5.6: Best fit according to fit strategy II to the differential cross sections for π−p → ηn
from Ref. [134]. The error bars of experimental data include the systematic error of 6% as argued
in Ref. [134]. The green bands represent the 1σ uncertainty of our approach as described in
the text.

65



ç

ç

ç

çç
ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç
ç

ç

ç

ç

ç

ç

ç
ç
ç

ç

700 800 900 1000
0

1

2

3

4

plab@MeVD

Σ
to

t@
m

bD

Figure 5.7: Total cross sections of the best fit for π−p→ ηn according to fit strategy (II). The
model is fixed to reproduce the differential cross section and thus also the total cross section as
measured by Prakhov et al. (black symbol). The black curve including the uncertainty band is
the outcome of the model. The blue circles correspond to the older measurements as selected
by the SAID collaboration which are only presented for completeness.

that in principle such a behavior could be reproduced in our amplitude by means of enhanced
contributions from the p-waves, which are iterated in our approach. We conclude from this
observation that such a behavior is excluded in this combined πN and ηN fit. In Fig. 5.7 we
present the total cross section for the same process beyond the fitting region. In contrast to
the previous fit, we observe here a behavior of the resulting cross section σ(plab) much more in
line with our earlier analysis6. As a matter of fact we do not see any overprediction of the total
cross section at the position of the N∗(1535) peak which has been pointed out before, relying
on the analysis of [113].

As a further prediction we extract the scattering lengths of the ηN channels, which read

aηN→ηN = (+0.378+0.092
−0.101 + i0.201+0.043

−0.036) fm,

aπ−p→ηn = (−0.208+0.016
−0.017 − i0.138+0.025

−0.029) fm. (5.7)

6That means that no forced shift of the N∗(1535) pole to higher energies emerges from the fits.
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Figure 5.8: The result of the model employing fit strategy (II) for the real and imaginary part
of the s-wave scattering amplitude of the ηN (top) and π−p → ηn (bottom) channels. The
error bands express the uncertainty due to variation of the model parameters as described in
the text.
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Figure 5.9: Types of diagrams of the turtle approximation. Shaded circles, squares and black
dots represent the dressed meson-baryon vertex Γ, scattering amplitude T and the photon
vertex as described in the main text.

The observation to be made is that both are consistent with the extraction from other (more
phenomenological) approaches [137]. The s-wave amplitude in both channels can be found in
Fig. 5.8. For energies lower than the KΛ threshold we observe similar behavior as for the
amplitudes extracted in fit strategy I, see Fig. 5.4.

5.3 Pion photoproduction off the proton

Pion photo- and electroproduction off protons has been one of the premier objects of study in
hadron physics for decades. One of the major issues was [139, 140] and still is the interplay
between the hadronic scattering and the photoproduction of mesons off the baryons. It is
unquestionable that the meson-baryon interaction plays a crucial role in the photoproduction
processes via the rescattering processes. At the production threshold, pion photoproduction
can be successfully analysed within strictly perturbative ChPT as has been done to one loop
about twenty years ago [141, 142]. Going to higher energies, one is again confronted with
the problems already appearing in the hadronic sector as discussed in the previous section,
namely, resonance phenomena. Thus a non-perturbative framework is required to implement
the rescattering mechanism adequately. In the early years the unitarized hadronic amplitude
was simply used as the final state interaction (FSI) multiplied on top of the γp→ πN contact
interaction, which in general violates the Ward-Takahashi identities and thus gauge invariance.
Recently a framework for pion photoproduction based on the Jülich model was constructed in
Ref. [143]. There the hadronic part of the amplitude is also used as the FSI coupled to a special
form of contact terms and fulfilling the gauge Ward-Takahashi identities by construction.
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Our approach follows a different direction, where gauge invariance is not enforced via ad hoc
conditions on vertex functions and propagators, but follows most straightforwardly from the
selected infinite subset of Feynman graphs which are summed up. The basic ideas can be
traced back from Refs. [144–147]. Essentially, one adopts a generalization of the construction
of a gauge-invariant amplitude (as spelled out e.g. in sec. (7.4) of Ref. [89]) to the present
non-perturbative setting. It was first applied to the analysis of kaon photoproduction, relying
on the leading s-wave terms from the three-flavour chiral Lagrangian, in Ref. [106]. There,
the selected subset of Feynman graphs was referred to as “turtle approximation”. In principle
this is the most natural way of constructing a gauge-invariant photoproduction amplitude as
the photon is coupled to any point of the p → φB amplitude, ensuring current conservation.
Nevertheless, it requires as an input the underlying hadronic amplitude with the full off-shell
dependence. Such an amplitude was provided in the previous section. It fulfills the two-body
unitarity requirement exactly and the parameters are fixed such as to reproduce the s-wave of
πN as well as πN → ηN scattering. Without any further fitting, we wish to investigate what
we can learn about the multipole amplitudes by just plugging in our fixed hadronic amplitude
as an effective vertex function.

The outstanding feature of our analysis is the precise analysis of the pion-nucleon scattering
amplitudes and the determination of both lowest S11 resonances. Obviously the hadronic in-
teraction is a part of a more involved photoproduction amplitude, hence both resonances will
certainly appear in the spectrum of the photo-induced meson production. It is, however, a
priori not clear whether they will be enhanced or suppressed. To put it in the words of Berends
et al. [140] the question we are addressing here is:

“How do these resonances manifest themselves in photopion (and electropion) production?“

There they refer this question among others to the (in that time) novel and not very precise
measured resonances S11(≈ 1500) and S11(≈ 1650).

5.3.1 Formalism

Closely following the formalism explained in Ref. [106], the gauge-invariant photoproduction
amplitudeMµ(q′, k; p), is a sum of nine different types of Feynman diagrams, see Fig. 5.9. Here,
q′ is the four-momentum of the produced meson and p is again the overall four-momentum.
The four-momentum of the incoming photon is denoted by k. The scattering amplitude T has
been calculated in the previous section, consequently there are only two buildings blocks left to
be clarified, i.e. Γ denoting the dressed meson-baryon vertex and the photon vertices Wγφ→φ,
WγB→B, WγB→Bφ and WγBφ→Bφ.

The exact two-body unitarity is a crucial property of the hadronic amplitude. For this to be
preserved in the photoproduction amplitude as well, the axial meson-baryon coupling has to
be dressed properly. The tree level axial meson-baryon potential stems from the leading order
chiral Lagrangian Eq. (1.13) and reads

Vax(q
′) = AX /q

′γ5 , (5.8)

where we have separated off the channel space structure, which is specified in App. C. Dressing
of this amplitude in the ’turtle approximation’ [106] is presented in a rather intuitive pictorial
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Figure 5.10: Symbolical representation of the dressed meson-baryon amplitude Γ (circle), where
the shaded square represents the meson-baryon scattering amplitude T .

way in Fig. 5.10 and reads

Γ(q′, p̃) = Vax(q
′) +

∫
ddl

(2π)d
T (/q′, /l ; p̃)iS(/̃p− /l)∆(l)Vax(l) , (5.9)

where p̃ denotes the total four-momentum of this process which can take values of the proton
momentum or the overall four-momentum of the photoproduction process. The scattering
amplitude T consists of 20 different Dirac structures as presented in section 2.3 and gives rise
to 6 different structures of the amplitude Γ, i.e.

Γ(q′, p̃) = Γ1(p̃) · /̃pγ5 + Γ2(p̃) · γ5 + Γ3(p̃) · /q′/̃pγ5 (5.10)

+ Γ4(p̃) · /q′γ5 + Γ5(p̃) · γ5(q′ · p̃) + Γ6(p̃) · /̃pγ5(q′ · p̃) .

The coefficients Γi(p̃) are elementary functions of p̃2, masses, scalar loop integrals, IM and
IMB(p̃

2), collected in App A, coefficients Ti of the scattering amplitude as well as of the axial
coupling constants D and F from Eq. (1.13).

The numerical values of the latter constants should be taken with a grain of salt. Within our
approximation the axial coupling enters the photoproduction amplitudes dressed by the meson-
baryon loops, for instance the kaon-loops. These effects are known to be quite sizable and thus
one has to choose at which level, i.e. on tree level or that of the dressed vertex Γ, one wishes to
obtain an agreement with the physical (measured) quantities. It turns out that although the
value of Γ depends strongly on the choice of axial couplings, the photoproduction amplitudes
calculated with both sets of axial couplings agree with each other within the uncertainty band.
For this reason we stick to the commonly used values of D = 0.8 and F = 0.5.

It remains now to specify how to couple the photon to the hadronic skeleton described above.
For consistency reasons we shall consider the photon induced contact terms up to the second
chiral order utilizing the first and second order chiral Lagrangian, Eq. (1.13) and Eq. (2.4).
Previously we have set all the external currents to zero except the scalar one, whereas here we
consider a vector current vµ = −eQAµ with the electromagnetic vector potential Aµ and charge
matrix Q = diag(2/3,−1/3,−1/3). A vector current modifies the covariant derivative as well
as the chiral vielbein

[Dµ, B] =∂µB +
1

2
[
(
[u†, ∂µu]− i(u†vµu+ uvµu

†)
)
, B] ,

uµ =iu†
(
∂µU − i[vµ, U ]

)
u† .
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A non-vanishing vector potential also features in L(2)
φB via the field-strength tensor

fµν
+ = u(∂µvν − ∂νvµ)u† + u†(∂µvν − ∂νvµ)u .

It appears in Eq. (1.13) accompanied by the two LECs b12 and b13, which cannot be determined
from the scattering process, but are related to the magnetic moments of proton and neutron. As
mentioned before we do not wish to perform a fit for the photoproduction observables, therefore
we stick to the values determined in Ref. [148] for these two new LECs. Furthermore, the pure
mesonic chiral Lagrangian of second chiral order, see Eq. (1.11), gives rise to the photon vertex
Wγφ→φ. This and the remaining vertices are collected in App. E.

Having specified all building blocks of the graphs collected in Fig. 5.9 we now calculate the
photoproduction amplitudeMµ =

∑H
i=A S

µ
i , where the amplitudes Si correspond to a respective

class of graphs defined in Fig. 5.9. We wish to emphasize that there are 5 classes which by
themselves obey two-body unitarity in the subspace of meson-baryon channels, namely

Mµ(q′, k; p)−Mµ(q′k; p)† = 2i

∫
ddl

(2π)d
T (q′, l; p)Im

(
G
)
Mµ(l, k; p) ,

where G = S(/p − /l)∆(l). Each of the unitarity classes is defined via a prescription that an
application of the scattering matrix T from right yields an element of the same class. These
classes are given by Mµ

A, M
µ
B+Mµ

E, M
µ
C+Mµ

D, M
µ
F , M

µ
G+Mµ

H , where the subscript denotes
the topology class as denoted in the Fig 5.9. Gauge invariance is fulfilled for the amplitudes
proportional to b12 and b13 automatically. On the other hand for the remaining terms it is only
fulfilled if all graphs presented in Fig. 5.9 are taken into account, i.e. the photon is coupled to
every possible part of the hadronic skeleton.

5.3.2 Results

In this section we present the prediction of our model for both sets of scattering amplitudes fixed
in the hadronic sector in the last section. There, in both strategies, we have been concentrating
on the description of the s-wave, thus we shall stick to the prediction of the quantities connected
to this particular partial wave. Such a quantity is the electric multipole E0+, which can be
expressed in terms of the Chew, Goldberger, Low and Nambu (CGLN) amplitudes as presented
in App. F.

After having fixed the hadronic part of this amplitude, the photoproduction amplitude contains
only 4 new parameters, namely D, F , b12 and b13. The first two are fixed to the commonly used
values of D = 0.8 and F = 0.5. The ’magnetic’ LECs b12 and b13 shall be taken from Ref. [148],
where they have been adjusted to fit the experimental data on magnetic moments. Within the
uncertainty due to the choice of m0 there, these LECs are given by (in units of GeV−1)

b13 = 0.32± 0.06 and b12 = 0.095± 0.015.

In order to give an impression of the uncertainty we proceed as follows. First for a fixed energy
Wcms and for each hadronic solution which lies in the uncertainty band of the hadronic solution
as presented in the last section we calculate the photoproduction multipoles as functions of
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the 4 new LECs. Then for fixed D and F and a large set of randomly distributed values
for b12 and b13 within the uncertainty range on these two LECs we obtain a prediction on the
photoproduction multipoles at the chosen energy. Repeating this procedure for different energy
values we obtain a family of curves E0+(Wcms). The envelope of all these curves is assumed to
reflect the uncertainty of the model properly.

Solution I: As a central prediction of this chapter we present the outcome of the multipole
E0+ for pion photoproduction in the isospin 1/2 channel in Fig. 5.11. We restrict ourselves to
energies below the second nucleonic resonance as its position seems to be shifted as discussed
in the last section. Without any fitting we observe an astonishing agreement of our prediction
with the outcome of the fit from MAID2007 (updated unitary isobar model) [149] and the one
by the SAID group [150]. Of course it is clear that, if none but πN channels are open, Watson’s
theorem guarantees that the phase of E0+ comes out right, once the phase of πN scattering
has been fixed to the physical value. This theorem, however, does not fix the magnitude of the
real and imaginary part of the photoproduction amplitude, neither it is clear how to apply it
above the ηN threshold.

The value of E0+ at the threshold has been debated for a long time, see [25] for a nice review
on that topic. We obtain the following value

Eπ
0+(S11) = (+10.4± 1.3)× 10−3/Mπ+ ,

which has to be compared with E0+(S11) = (+12.5±0.3)×10−3/Mπ+ from experimental results
[153–155]. Seemingly our prediction is slightly below the experimental result. Throughout this
work we have not discussed the isospin 3/2 channel and refrain from giving a numerical value
of E0+. For completeness, let us note that in all solutions we observe that the absolute value
of the E0+(S31) is underestimated significantly. We trace that discrepancy to the missing Born
graphs which are known to be important in this channel.

We can go further and make a prediction on the multipole amplitude for eta photoproduction.
At the ηN threshold we extract the following value

Eη
0+ =

(
(3.9± 2.5) + i(10.7± 2.7)

)
× 10−3/Mπ+ .

The energy-dependence of E0+(Wcms) is presented in Fig. 5.12, where it is compared with fits
by the ETAMAID [151] and Bonn-Gatchina [152] groups. Seemingly there is a large qualitative
agreement between our prediction and the phenomenological analysis by the ETAMAID and
Bonn-Gatchina group. On a quantitative level we observe that the real part of the E0+ is
suppressed compared to the outcome of the phenomenological analysis. We wish to remind
the reader that the ’magnetic’ LECs are taken from a tree level calculation only. In some
additional fits we have observed that the results of ETAMAID and Bonn-Gatchina group can
be reproduced nicely in our approach using these LECs as free parameters. This, however, is not
the original purpose of this work, namely the parameter free prediction of the photoproduction
after fixing the hadronic scattering.

Solution II: Starting from the second hadronic solution we obtain a prediction for pion photo-
production in the S11 channel as presented in Fig. 5.13. Although all parameters of the model
are fixed in the hadronic solution or taken from the literature as described above one observes
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Figure 5.11: Prediction for the multipole E0+ for pion photoproduction corresponding to the
hadronic solution I. For comparison, fits of the MAID (circles) [149] and SAID (squares) [150]
models are represented by blue and black symbols, respectively.
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Figure 5.12: E0+ for eta photoproduction as predicted based on hadronic solution I. For
comparison, we also present the results of the ETAMAID (circles) [151] and Bonn-Gatchina
(crosses) [152] analyses.

a fair qualitative agreement of our prediction with the outcome of the SAID and MAID2007
analysis in a very large energy region. At the threshold we extract the following values for the
lowest multipole

Eπ
0+(S11) = (+13.1± 0.7)× 10−3/Mπ+ ,

which agrees nicely with the extraction from the experimental results in Ref. [153–155]. For
higher energies, i.e. around 1200 MeV and 1550 MeV, we observe a discrepancy of E0+ com-
pared to the fits by SAID and MAID groups. Additionally the uncertainty band appears quite
underestimated in this solution. We wish to remind the reader that the main difference of
both solutions are the three regularization scales. In the first solution those are used as free
fit parameters whereas in the second they are fixed. The particular choice of these values is
motivated as described in the previous section, however, one should in principle investigate the
influence of this choice on the hadronic solution as well as on the photoproduction amplitudes.
To do so one would have to refit the hadronic scattering for any other choice of the parameters
in the solution II. Due to an enormous amount of computational time required for each fit,
we refrain from including that uncertainty. One should keep in mind that a more realistic
uncertainty band might be larger than the one presented here.

To be complete we wish to comment now on the higher energy region, i.e. above the KΛ
threshold, where the outcome of our prediction starts to deviate from the results of the SAID
and MAID groups. In fact this observation is identical to the one made in the analysis of
the photoproduction amplitudes in Ref. [138], where no good overall fit could be achieved
for the E0+ in the low and resonance energy region simultaneously. Although no fit to the
photoproduction data was done in the present work, four new parameters are entering the
calculation. The axial coupling as well as the ’magnetic’ LECs b12 and b13 are taken from
estimations which rely on a strict perturbative calculation. Our non-perturbative framework is
on the other hand suited to extend the range of applicability of the effective field theory. Thus
it is a priori not clear whether it is sufficient to use these new LECs in the whole energy range.
To underline this we fit our model to the SAID pion photoproduction data with axial coupling
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Figure 5.13: Prediction for the multipole E0+ for the pion photoproduction corresponding to the
hadronic solution II. For comparison, fits of the MAID (circles) [149] and SAID (squares) [150]
models are represented by blue and black points with errorbars, respectively.
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Figure 5.14: A typical fit of our model to the SAID [150] (blue) and MAID [149] (black) analysis
for the pion photoproduction as described in the text.

and ’magnetic’ LECs treated as free parameters. The best fit is presented in Fig. 5.14, where
we observe a nice agreement above the KΛ threshold with the phenomenological models from
SAID and MAID.

For the eta photoproduction the prediction of the second solution is presented in Fig. 5.15. At
the ηN threshold we obtain the following value

Eη
0+ =

(
(−1.2± 2.2) + i(6.9± 2.3)

)
× 10−3/Mπ+ ,

which undershoots the numerical value obtained in the previous solution for the real part slightly
and agrees for the imaginary part within the uncertainty range. The functional behavior of
E0+ is suppressed compared to the previous solution and even more in comparison to the
ETAMAID and Bonn-Gatchina fits. As already discussed in the previous solution we can
trace this discrepancy to the ’magnetic’ LECs, which are taken from the tree level calculation
[148]. These LECs do not change the functional form of the photoproduction amplitude but
seem to enhance or suppress the structures present in the photoproduction amplitude. Those
structures on the other hand seem to reflect one-to-one the structures arising from the dynamics
of the hadronic scattering process. Thus the correct description of meson photoproduction
is necessarily to be connected to a proper description of the underlying hadronic scattering
reactions.
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Figure 5.15: E0+ for eta photoproduction as predicted starting from the hadronic solution II.
For comparison we also present the outcome of the ETAMAID (circles) [151] and Bonn-Gatchina
(crosses) [152] analysis.

5.4 Summary and outlook

As the first step, we have considered the meson-baryon scattering processes that are relevant
for pion photoproduction. We consider six coupled channels, utilizing the chiral effective La-
grangian at NLO. In the kernel of the underlying Bethe-Salpeter equation, we include all local
terms allowed by the symmetries. To pin down the parameters of the approach (low-energy
and subtraction constants), we perform two fit strategies. In strategy (I), we use as input
the data on elastic πN scattering in the S11 and S31 partial waves for energies in the range
(mp +Mπ) < Wcms < 1.56 GeV. In strategy (II), three subtraction constants are fixed and the
S11 partial wave is fitted up to Wcms < 1.70 GeV, but the S31 only in the near-threshold region,
Wcms < 1.20 GeV. The data on π−p→ ηn from Ref. [134] are included in both fit strategies.

In both fit strategies, the S11 partial wave and the data on π−p → ηn are well described. The
N∗(1535) and the N∗(1650) are both dynamically generated, the precise pole positions depend
on the fit strategy, cf. Eqs. (5.3,5.6). We also give predictions for the scattering lengths aηN→ηN

and aπ−p→ηn. Having scrutinized the hadronic sector, we have extended our approach to s-wave
pion photoproduction. The only new parameters can be determined from the nucleon magnetic
moments and thus parameter-free predictions emerge. We find a good description of the s-wave
multipole E0+ for pion photoproduction in the S11-wave and also for eta photoproduction.

Having summarized the most important results of our study, it is important to briefly discuss
possible improvements of the method. First, the crossed channel dynamics has to be included
properly. This will allow e.g. to get a better description of the near-threshold region in pion-
nucleon scattering. Unfortunately, the exact implementation of both crossing symmetry and
unitary has not been possible so far in approaches based on Feynman diagrams, in contrast to
other approaches as e.g. the one based on Roy-Steiner equations [72] where these constraints
are met by construction. For an attempt to approximately restore crossing symmetry in an
ansatz comparable to the one employed here, see e.g. Ref. [156]. Further, in some channels,
explicit resonance degrees of freedom will have to be incorporated as not all resonances are
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generated dynamically. For a method to do that, see e.g. Ref. [78]. Finally, a larger data
base including also kaon-nucleon scattering and kaon photoproduction should be considered
simultaneously with the processes studied here.
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Chapter 6

Outlook

At the end of each chapter we have summarized the results presented there. Hence we refrain
from repeating the summaries of each chapter, but wish to take the opportunity to present
possible ways in which this work can be developed further.

The analysis in chapters 3 and 4 has shown that our model, described and developed in the
first two chapters, can address the hadronic scattering, both for the πN as well as K̄N systems,
correctly in a fairly large energy region. Nevertheless, our framework is suited for separable
potentials only and lacks two important contributions from the s- and especially u-channel
baryon exchange graphs as explained in detail in section 2.1. Hence, from the theoretical point
of view, a proper treatment of these contributions in our non-perturbative framework should be
the next major step towards a more comprehensive description of the hadronic scattering. Also
in view of photoproduction this will presumably allow for a simultaneous description of both
lowest multipoles E0+(S11) and E0+(S31), where the latter could not be described properly in
our framework. In the context of Bethe-Salpeter equations, there is presumably only one way to
undertake this improvement, namely to perform an appropriate expansion of the Born graphs
in some small variable which has to be chosen very carefully. In a (small) region around the
expansion point this may allow to account for the dynamics of these graphs properly. Without
such an expansion, one probably has to modify the resummation routine. At present, we can
only speculate how this modification might look like - some interesting steps have been done
utilizing the so-called Feynman-Schwinger representation, see Ref. [93].

Meson-baryon scattering: The field of lattice QCD is evolving very rapidly and in the near
future more information on the resonance spectrum might become available. At suf-
ficiently low quark mass such resonances decay on the lattice and the phase shift can
be extracted from the energy levels and their dependence on the size of the lattice via
Lüscher’s formalism [157]. Going to higher energies more channels can be open, the ef-
fects of which must be parametrized by some model such as e.g. the coupled-channel
Bethe-Salpeter approach, presented in this thesis. Having the solution of this approach
on hand one can use the scheme proposed in Ref. [158] to predict the outcome of a lattice
simulation or extract the infinite volume limit.

Pion photoproduction: One quite ambitious project which can and should be attacked in the
next future is the inclusion of the data on pion- and photon-induced kaon production into
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the set of observables in addition to the pion production data. The main modification
to be done in the hadronic part is that one cannot stick to the s-wave analysis only,
as one has to fix the (differential) cross sections in the π−p → K0Λ, π−p → K0Σ0,
π−p → K+Σ− and π+p → K+Σ+ channels at quite high energies. Hence, to meet the
theoretical standards one has first to fix at least the description of the p-waves which
will certainly play a significant role at such high energies. At present, a full inclusion of
the p-waves is lacking, that would feature the very prominent resonances ∆(1232)P33 and
Roper(1440)P11 which cannot be generated in our approach. In our opinion, the proper
inclusion of these resonances and better description of the p-waves is the next issue to be
solved before a simultaneous analysis of pion-nucleon scattering and kaon pion-induced
production data can be done.

Antikaon-nucleon scattering: The K̄N scattering amplitude was believed to be fixed in
the subthreshold region by the very precise data on energy shift and width of the kaonic
hydrogen from the SIDDHARTA experiment at DAΦNE as well as by the older mea-
surements on total cross sections for the processes K̄N → K̄N and K̄N → πΣ. We
have shown that we can reproduce the same data very precisely, predicting, however, a
different subthreshold behaviour of the scattering amplitudes than usually expected. Also
the prediction of our model on the invariant mass distribution of the πΣ system is not
in contradiction with the rather old experimental data. Recently, preliminary results on
the process γp→ (K+)πΣ were reported by the CLAS collaboration at Jefferson Lab, see
Ref. [159]. Not only that the theoretical analysis of these data requires a full machinery
of unitarized ChPT it also has to be built in a larger framework of photoproduction. As
a matter of fact, the gauge invariant framework for meson photoproduction presented in
this thesis will be (modulo some modifications) a perfect tool for analysis of the upcoming
πΣ photoproduction data.
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Appendix A

Loop integrals

Here we collect all loop integrals required for the calculation of the scattering as well as the
photoproduction amplitudes. Note that for reasons given in the main part all purely baryonic
integrals are set to zero from the beginning. Utilizing dimensional regularization in the MS
scheme the renormalized one-meson integral is given by

IM(M) :=

∫
MS

ddl

(2π)d
i

l2 −M2 + iε
d=4
=

2M2

16π2
log
(M
µ

)
,

where µ is the regularization scale and M denotes the meson mass. We use in the following the
common abbreviation λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc, such that the meson-baryon
(of masses M and m, respectively) integral reads

IMB(s,m,M) :=

∫
MS

ddl

(2π)d
1

l2 −M2 + iε

i

(l − p)2 −m2 + iε

d=4
=

1

16π2

[
− 1 + 2 log

(m
µ

)
+
M2 −m2 + s

s
log
(M
m

)
− 2

√
λ(s,m2,M2)

s
arctanh

(√λ(s,m2,M2)

(m+M)2 − s

)]
.

The photoproduction amplitude involves further loop integrals. The triangle graph of class
“D” in the Fig. 5.9 gives rise to a meson-meson-baryon as well as via the Passarino-Veltman
reduction to a meson-meson loop integral at s = k2, which read

IMM(k2,M) :=

∫
MS

ddl

(2π)d
1

l2 −M2 + iε

i

(l − k)2 −M2 + iε

d=4
=

1

16π2

[
− 2 + 2 log

(M
µ

)
− 2

√
λ(s,M2,M2)

s
arctanh

(√λ(s,M2,M2)

4M2 − s

)]
,

IMMB(s, k
2,m,M) :=

∫
MS

ddl

(2π)d
1

l2 −M2 + iε

1

(l − k)2 −M2 + iε

i

(l − k − p1)2 −m2 + iε
,
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where p1 = p−k is the four-momentum of the incoming proton. We wish to emphasize that the
photon coupled to a meson propagator does not induce a transition of this meson. Differently,
coupled to a baryon propagator it can induce the Σ0 ↔ Λ transition. Thus a meson-baryon-
baryon loop integral required for the calculation of Feynman diagrams of class “E” reads in
general

IMBB(s, k
2,M,m1,m2) :=

∫
MS

ddl

(2π)d
1

l2 −M2 + iε

i

(l − p1)2 −m2
1 + iε

i

(l − k − p1)2 −m2
2 + iε

.

Both last integrals cannot be written in terms of elementary functions. We evaluate both
integrals utilizing Cutkosky rules to calculate the imaginary part of the meson-baryon-baryon
integral. A non-subtracted dispersion relation then gives the real part of the loop integral as
follows,

Im(IMBB(s, k
2,M,m1,m2)) =

1

32πkcms

√
s
log
(m2

1 −m2
2 + k2 − 2k0q0 − 2qcmskcms

m2
1 −m2

2 + k2 − 2k0q0 + 2qcmskcms

)
,

Re(IMBB(s, k
2,M,m1,m2)) =

1

π

∫ ∞

(m2+M)2
ds′

Im(IMBB(s
′, k2,M,m1,m2))

s′ − s
,

where kcms =
√
λ(s, p21, k

2)/(2
√
s), qcms =

√
λ(s,m2

1,M
2)/(2

√
s) and k0 =

√
k2cms + k2, q0 =√

q2cms +M2. The same holds for IMMB, where in the last formulas one has to replace: m1 →M
and m2 → m.
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Appendix B

Reduction of the loop integrals

The solution of the Bethe-Salpeter equation is deduced in chapter 2. As described there, it
relies on the separation of the scattering amplitude into invariant Dirac-momentum structures,
collected there in the vector ℵ, which is allowed as long as the interaction potential is separable.
After this separation, one is left with various tensor loop integrals, which can be reduced to a
sum of scalar loop integrals only via the so-called Passarino-Veltman reduction procedure. In
this section we collect all necessary reduction formulas required in the main text of this thesis.

Throughout this section we neglect the iε prescription for brevity and start with the one-meson-
one-baryon tensor loop integral of the following form

IµMB := i

∫
ddl

(2π)d
lµ

(l2 −M2)((l − p)2 −m2)
= pµ I

(1)
MB(p

2,m,M) ,

where the last equality is due to Lorentz invariance. The unknown function I
(1)
MB(p

2,m,M) can
be deduced contracting the above equation with pµ which yields

I
(1)
MB(p

2,m,M) =
1

2p2

(
IB(m)− IM(M) + IMB(p

2,m,M)(p2 +M2 −m2)
)
.

Here the loop integration is expressed in terms of scalar loop integrals IB, IM and IMB, which are
given in App. A. Please note that we do not address the issue of regularization in this section.
Thus neither d is set equal to 4, nor the purely baryonic loop integrals are neglected. The latter
are defined in the same way as those containing mesons, replacing the masses adequately. The
second tensor loop integral, required for the solution of the BSE, is the following

IµνMB :=i

∫
ddl

(2π)d
lµlν

(l2 −M2)((l − p)2 −m2)

=pµpν I
(2)
MB(p

2,m,M) + gµν I
(3)
MB(p

2,m,M) .

Contracting both sides of this equation with gµν and pµpν , one obtains a system of two equations
which has the following solution

I
(2)
MB(p

2,m,M) =
d

4(d− 1)p4

(
IM(M)(m2 −M2 − p2) + IB(m)

(
d(M2 −m2) + (3d− 4)p2

)
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+ IMB(p
2,m,M)

(
d(m2 −M2)2 + dp4 − 2(dm2 − dM2 + 2M2)p2

))
,

I
(3)
MB(p

2,m,M) =
1

4(d− 1)p2

(
IB(m)(m2 −M2 + p2) + IM(M)(−m2 +M2 + p2)

− IMB(p
2,m,M)

(
(m2 −M2)2 + p4 − 2(m2 +M2)p2

))
.

Finally, dealing with the NLO contact terms in the driving term of the Bethe-Salpeter equation
we have to carry out the tensor loop integrals of the following form

IµνσMB :=i

∫
ddl

(2π)d
lµlνlσ

(l2 −M2)((l − p)2 −m2)
,

which can only possess four tensor structures build from the four-momentum p and metric
tensor, i.e. pµpνpσ, pµgνσ, pνgσµ and pσgµν . However, only symmetric combinations in µ ↔
ν ↔ σ can appear and consequently

IµνσMB = (pµgνσ + pνgσµ + pσgµν) I
(4)
MB(p

2,m,M) + pµpνpσ I
(5)
MB(p

2,m,M) ,

which again can be expressed in terms of the usual scalar loop integrals contracting both sides
with the above tensor structures as follows

I
(4)
MB(p

2,m,M) =
1

8(d− 1)dp4

(
IB(m)(4(d− 1)p2m2 − d(m2 −M2)2 + dp4)

+ IM(M)(d(m2 −M2)2 + p2(4M2 − 2d(m2 +M2) + dp2))

+ dIMB(p
2,m,M)((m−M)2 − p2)(m2 −M2 − p2)((m+M)2 − p2)

)
,

I
(5)
MB(p

2,m,M) =
1

8(1− d)dp6

(
− IB(m)

(
d(d+ 2)(m2 −M2)2 + d(7d− 10)p4

− 4(d− 1)((d+ 2)m2 − dM2)p2 + IM(M)
(
d(d+ 2)(m2 −M2)2

+ p2(−2d(d+ 2)m2 + 2((d− 2)d+ 4)M2 + d(d+ 2)p2)
)

+ dIMB(p
2,m,M)(m2 −M2 − p2)

(
(d+ 2)(m2 −M2)2

+ p2(−2(d+ 2)m2 + 2(d− 4)M2 + (d+ 2)p2)
))

.

The photoproduction amplitude contains also the loop integrals with three intermediate parti-
cles, see graphs “D” and “E“ in Fig. 5.9. All required scalar loop integrals of this form1, i.e.
IMBB and IMMB, are collected in App. A and the tensor structures can be reduced utilizing
Passarino-Veltman procedure. In the simplest case we are confronted with the following integral

IµMBB :=i

∫
ddl

(2π)d
lµ

(l2 −M2)((l − p)2 −m2
1)((l − p1)2 −m2

2)
,

where p1 and k is the four-momentum of the incoming proton and photon, respectively. There
are two possibilities to build a tensor of rank one, namely IµMBB = pµI

(1)
MBB + pµ1I

(2)
MBB. The

coefficients of these tensor structures can be deduced as explained above, which yields

I
(1)
MBB =

2

A

(
IMBB

(
(p1 · k)(p2 −M2) +m2

2(p · p1)−m1p
2
1

)
1We suppress the arguments of these loop integrals for brevity, cf. IMBB = IMBB(p

2, k2,M,m1,m2).
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+ IMB(p
2,M2,m2

1)(p · p1) + IMB(p
2
1,M

2,m2
2)p

2
1 + IBB(k

2,m2
1,m

2
2)(k · p1)

)
,

I
(2)
MBB =

2

A

(
IMBB

(
(p · k)(p2 −M2) +m2

2p
2 −m2

1(p · p1)
)

+ IMB(p
2,M2,m2

1)p
2 − IBB(k

2,m2
1,m

2
2)(p · k)− IMB(p

2
1,M

2,m2
2)(p · p1)

)
.

Here we have used A = 4
(
(k ·p1)2−k2p21

)
as well as k+p1 = p but without putting the external

particles on shell.

The next structure contains two integration momenta in the numerator of the loop integral

IµνMBB :=i

∫
ddl

(2π)d
lµlν

(l2 −M2)((l − p)2 −m2
1)((l − p1)2 −m2

2)
,

which again can be expressed in terms of (scalar) Passarino-Veltman loop functions, which
accompany Lorentz invariant tensor structures, as follows

IµνMBB = gµν I
(3)
MBB + pµpν I

(4)
MBB + (pµpν1 + pµ1p

ν) I
(5)
MBB + pµ1p

ν
1 I

(6)
MBB .

Note that only four functions can occur since IµνMBB is symmetric under index permutation

µ ↔ ν. Each one of them, i.e. {I(i)MBB|i ∈ [3, 6]}, can be written in terms of the usual scalar
loop integrals as follows

I
(i)
MBB =F

(i)
1 IM(M) + F

(i)
2 IB(m1) + F

(i)
3 IB(m2) + F

(i)
4 IBB(k

2,m2
1,m

2
2)

+ F
(i)
5 IMB(p

2,M2,m2
1) + F

(i)
6 IMB(p

2
1,M

2,m2
2) + F

(i)
7 IMBB ,

where the coefficients F
(i)
j read

F
(3)
1 = 0 , F

(3)
2 = 0 , F

(3)
3 = 0 ,

F
(3)
4 =

1

(d− 2)A

(
(m2

1 −m2
2)(k · p1) + k2(M2 −m2

2 − (k · p1)− p21)
)
,

F
(3)
5 =

1

(d− 2)A

(
2(k · p1)2 − (M2 +m2

1 − p21)(k · p1) + k2(−M2 + (k · p1))−m2
1p

2
1 +m2

2p
2
)
,

F
(3)
6 =

1

(d− 2)A

(
(k · p1)(M2 −m2

2 − p21) + (m2
1 −m2

2 − k2)p21

)
,

F
(3)
7 =

1

(d− 2)A

(
p21(m

2
1 −m2

2)
2 − 2(k · p1)(−M2 +m2

2 + p21)(m
2
1 −m2

2) + 4m2
2(k · p1)2

+ k4p21 + k2((M2 −m2
2)

2 + p41 − 2(M2 +m2
1)p

2
1 + 2(k · p1)(−M2 +m2

2 + p21))
)
,

F
(4)
1 =

(p · p1)
Ap2

, F
(4)
2 =

(p · p1)(k · p1)
Ak2p2

− 1

4k2p2
, F

(4)
3 = −(k · p1)

Ak2
,

F
(4)
4 =

4

(d− 2)A2k2

(
(2− d)(m2

1 −m2
2)(k · p1)3 − k2(k · p1)2(2− d)((k · p1) +M2 −m2

2 − p21)

+ k2p21(k · p1)(2d− 3)(m2
1 −m2

2)− k4p21(−M2 +m2
2 + (2d− 3)(k · p1) + p21)

)
,
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F
(4)
5 =

4

(d− 2)A2p2(
2(2− d)(k · p1)4 + ((2− d)(3M2 −m2

1 − 2m2
2)− (d− 6)p21)(k · p1)3 + p21((6− 4d)M2

− dm2
1 + 5dm2

2 − 6m2
2 + 2dp21)(k · p1)2 − (d− 1)(M2 + 3m2

1 − 4m2
2 − p21)p

4
1(k · p1)

− (d− 1)(m2
1 −m2

2)p
6
1 + k4p21(−M2 +m2

2 + (2d− 3)(k · p1) + 2(d− 2)p21)

+ k2((2− d)(k · p1)3 + (4(d− 1)p21 − (d− 2)(M2 −m2
2))(k · p1)2) + k2p21(k · p1)(−3M2

− 2dm2
1 + 3m2

1 + 2dm2
2 + (7d− 12)p21) + k2p41((d− 3)M2 − 2dm2

1 + 3m2
1

+ dm2
2 + 2(d− 2)p21)

)
,

F
(4)
6 =

4(d− 1)p21
(d− 2)A2

(
(m2

1 −m2
2 − k2)p21 + (k · p1)(M2 −m2

2 − p21)
)
,

F
(4)
7 =

4

(d− 2)A2(
((d− 2)(M2 −m2

2)
2 + (d− 2)p41 + (2dm2

2 − 2(d− 2)M2)p21)(k · p1)2

− 2(d− 1)(m2
1 −m2

2 − k2)(−M2 +m2
2 + p21)p

2
1(k · p1) + p21k

2((M2 −m2
2)

2

− 2(M2 + (d− 1)m2
1 − (d− 2)m2

2)) + (d− 1)k4p41 + p41(d− 1)(m2
1 −m2

2)
2 + p61k

2
)
,

F
(5)
1 = − 1

A
, F

(5)
2 = −(k · p1)

Ak2
, F

(5)
3 =

k2 + (k · p1)
Ak2

,

F
(5)
4 =

4

(d− 2)A2k2(
(d− 2)p21k

6 + ((k · p1)2 + (dp21 − (d− 1)(M2 −m2
2))(k · p1)− p21(M

2 + (d− 2)m2
1

− (d− 1)m2
2 − p21))k

4 + (k · p1)((d− 2)(k · p1)2 − ((d− 2)M2 +m2
1 − dm2

2 +m2
2

− (d− 2)p21)(k · p1)− (2d− 3)(m2
1 −m2

2)p
2
1)k

2 + (d− 2)(m2
1 −m2

2)(k · p1)3
)
,

F
(5)
5 =

4

(d− 2)A2(
− 2(k · p1)3 + ((2d− 3)M2 +m2

1 − 2(d− 1)m2
2 + (1− 2d)p21)(k · p1)2 + (d− 1)(M2 + 2m2

1

− 3m2
2 − p21)p

2
1(k · p1) + (d− 1)(m2

1 −m2
2)p

4
1 − (d− 2)k4p21 + k2(+((d− 1)(M2 −m2

2)

+ (5− 3d)p21)(k · p1) + p21(M
2 + (d− 2)m2

1 − (d− 1)m2
2 − (d− 2)p21)− (k · p1)2)

)
,

F
(5)
6 = − 4

(d− 2)A2

(
(M2 −m2

2 + (3− 2d)p21)(k · p1)2 + (d− 1)(M2 +m2
1 − 2m2

2 − k2 − p21)p
2
1(k · p1)

− p21(k
2(p21 − (d− 2)(M2 −m2

2))− (d− 1)(m2
1 −m2

2)p
2
1)
)
,

F
(5)
7 =

4

(2− d)A2(
2((2− d)M2 + dm2

2 + (d− 2)p21)(k · p1)3 + ((M2 −m2
2)((d− 2)M2 + dm2

1 − 2(d− 1)m2
2)

+ p21(2(2− d)M2 + (4− 3d)m2
1 + (5d− 4)m2

2 + (d− 2)p21))(k · p1)2
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+ (d− 1)(m2
1 −m2

2)(2M
2 +m2

1 − 3m2
2 − 2p21)p

2
1(k · p1) + (d− 1)(m2

1 −m2
2)

2p41
+ k4p21((2− d)(M2 −m2

2) + (d− 1)(k · p1) + p21) + k2((d(m2
2 −M2) + (3d− 4)p21)(k · p1)2

+ ((d− 1)(M2 −m2
2)

2 + (d+ 1)p41 + 2(m2
1 − 3m2

2 − d(M2 +m2
1 − 2m2

2))p
2
1)(k · p1)

+ p21((M
2 −m2

2)(M
2 + (d− 2)m2

1 − (d− 1)m2
2)− p21(2M

2 + dm2
1 − (d− 2)m2

2 − p21)))
)
,

F
(6)
1 =

(k · p1) + p21
Ap21

, F
(6)
2 =

k2 + (k · p1)
Ak2

, F
(6)
3 = − 1

A

(2 + (k · p1)
p21

+
(k · p1)
k2

)
,

F
(6)
4 =

4

(d− 2)A2k2(
((d− 1)(M2 −m2

2 − (k · p1)) + (d− 3)p21)k
6 + k4(p21M

2 + (6− 4d)(k · p1)2

+ ((d− 1)(2M2 +m2
1 − 3m2

2)− 3p21)(k · p1) + (2(d− 2)m2
1 + (3− 2d)m2

2 − p21)p
2
1)

+ (k · p1)(−3(d− 2)(k · p1)2 + ((d− 2)M2 + 2m2
1 − dm2

2 − (d− 2)p21)(k · p1)

+ (2d− 3)(m2
1 −m2

2)p
2
1)k

2 − (d− 2)(m2
1 −m2

2)(k · p1)3
)
,

F
(6)
5 =

4

(d− 2)A2

(
(d− 1)(k2 + 2(k · p1) + p21)(−(M2 +m2

1 − 2m2
2 − 2(k · p1))(k · p1)

+ k2(−M2 +m2
2 + (k · p1)) + (−m2

1 +m2
2 + (k · p1))p21)

)
,

F
(6)
6 =

4

(d− 2)A2p21(
(2− d)(M2 −m2

2 + 3p21)(k · p1)3 + p21(k · p1)2(2M2 + (d− 2)m2
1 − dm2

2 − (d− 2)k2

+ (6− 4d)p21) + p21(k
2((2d− 3)(M2 −m2

2)− 3p21) + (d− 1)(M2 + 2m2
1 − 3m2

2 − p21)p
2
1)(k · p1)

+ p41(−k4 + (2(d− 2)M2 +m2
1 + (3− 2d)m2

2 + (d− 3)p21)k
2 + (d− 1)(m2

1 −m2
2)p

2
1)) ,

F
(6)
7 =

4

(d− 2)A2(
4(d− 2)(k · p1)4 − 4(−2(d− 1)m2

2 + (d− 2)(M2 +m2
1)− (d− 2)p21)(k · p1)3

+ (dM4 − 2M4 + 2dm2
1M

2 + dm4
1 − 2m4

1 + 4(d− 1)m4
2 − 4(d− 1)(M2 +m2

1)m
2
2

+ p21(2(2− d)M2 + (8− 6d)m2
1 + 8(d− 1)m2

2 + (d− 2)p21))(k · p1)2

+ 2(d− 1)(m2
1 −m2

2)(M
2 +m2

1 − 2m2
2 − p21)p

2
1(k · p1) + (d− 1)(m2

1 −m2
2)

2p41 + k6p21
+ k4((d− 1)(M2 −m2

2)
2 + (d− 2)(k · p1)2 + 2p41 − 2(M2 +m2

1)p
2
1

+ 2(k · p1)(2p21 − (d− 1)(M2 −m2
2))) + k2(4(d− 2)(k · p1)3 + 2((4− 3d)M2

− (d− 2)m2
1 + 4(d− 1)m2

2 + dp21)(k · p1)2 + 2((d− 1)(M2 +m2
1 − 2m2

2)(M
2 −m2

2)

− (−2(d− 1)m2
2 + (d+ 1)(M2 +m2

1)− 2p21)p
2
1)(k · p1) + p21(M

4 + 2dm2
1M

2 − 4m2
1M

2

+m4
1 + 2(d− 1)m4

2 − 2(d− 1)(M2 +m2
1)m

2
2 + p21(p

2
1 − 2(M2 +m2

1))))
)
.

Clearly, the unphysical poles in the limit k2 → 0 appear only due to the structures F
(i)
2 , F

(i)
3

and F
(i)
4 which accompany the purely baryonic scalar loop integrals. As a matter of fact this is

the starting point of the modification of the regularization procedure described in section 2.2.
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The last and most involved tensor loop integral contains three integration momenta in the
numerator of the loop integral and is only present if the chiral potential of the next-to-leading
order is considered. It reads

IµνσMBB : = i

∫
ddl

(2π)d
lµlν

(l2 −M2)((l − p)2 −m2
1)((l − p1)2 −m2

2)

= (pµgνσ + pνgσµ + pσgνµ)I
(7)
MBB + (pµ1g

νσ + pν1g
σµ + pσ1g

νµ)I
(8)
MBB

+ pµpνpσI
(9)
MBB + (pµ1p

νpσ + pµpν1p
σ + pµpνpσ1+)I

(10)
MBB

+ (pµ1p
ν
1p

σ + pµ1p
ν
1p

σ + pµpν1p
σ
1 )I

(11)
MBB + pµ1p

ν
1p

σ
1I

(12)
MBB ,

where the last equality is again due to Lorentz invariance and the symmetry of IµνσMBB under
the index permutation µ↔ ν ↔ σ.

In the usual sense of the Passarino-Veltman reduction we can determine the coefficients I
(i)
MBB

contracting each element of the above equation with the invariant structures, such as e.g. pµgνσ.
This leads to enormously long algebraic expressions. On the other hand it is possible to express
every tensor loop integral of the third rank through the coefficients of the tensor loop integrals
of the first and second tensor rank. To do so we contract the last equation only with invariant
tensors of the first rank, namely pµ and pµ1 . Consequently the rank of both sides of the above
equation will be reduced by one, allowing us to establish a connection between the coefficients
{I(i)MBB|i ∈ [7, 12]} and {I(i)MBB|i ∈ [1, 6]}, where the latter have been presented explicitly before.
The whole set of these relations reads

I
(7)
MBB =

4

A

(
p21 E− p1 · p I

)
,

I
(8)
MBB =

4

A

(
p2 I− p1 · p E

)
,

I
(9)
MBB =

4

A

(
C− (p1 · p)

p21
G− 8p21

A
E +

8(p1 · p)
A

I
)
,

I
(10)
MBB =

4

A

(
p2 G− p1 · p C +

8(p1 · p)p21
A

E− 8(p1 · p)2

A
I
)
,

I
(11)
MBB =

1

(p1 · p)

(
F− 4p4

A
G+

4p2p1 · p
A

C− 32p2p21(p1 · p)
A2

E +
32p2(p1 · p)2

A2
I
)
,

I
(12)
MBB =

1

(p1 · p)
D− 1

(p1 · p)

(
F− 4p4

A
G+

4p2p1 · p
A

C− 32p2p21(p1 · p)
A2

E +
32p2(p1 · p)2

A2
I
)
,

where we have used the following abbreviations

C =
p2 −m2

1 +M2

2
I
(4)
MBB +

1

2
I
(2)
BB(k

2,m2
1,m

2
2) + I

(1)
BB(k

2,m2
1,m

2
2) +

1

2
IBB(k

2,m2
1,m

2
2) ,

D =
p2 −m2

1 +M2

2
I
(6)
MBB − 1

2
IMB(p

2
1,M

2,m2
2) +

1

2
I
(2)
BB(k

2,m2
1,m

2
2) ,

E =
p2 −m2

1 +M2

2
I
(3)
MBB − 1

3
IMB(p

2
1,M

2,m2
2) +

1

2
I
(3)
BB(k

2,m2
1,m

2
2) ,

F =
1

2
I
(5)
MBB − 1

2
I
(2)
BB(k

2,m2
1,m

2
2)−

1

2
I
(1)
BB(k

2,m2
1,m

2
2) ,

G =
p2 −m2

2 +M2

2
I
(4)
MBB − 1

2
I
(2)
MB(p

2,M2,m2
1)
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+
1

2
I
(2)
BB(k

2,m2
1,m

2
2) + I

(1)
BB(k

2,m2
1,m

2
2) +

1

2
IBB(k

2,m2
1,m

2
2) ,

I =
p2 −m2

2 +M2

2
I
(3)
MBB − 1

2
I
(3)
MB(p

2,M2,m2
1) +

1

2
I
(3)
BB(k

2,m2
1,m

2
2) .

Here the Passarino-Veltman functions I
(i)
MB(p

2
1,M

2,m2
2) and I

(i)
BB(k

2,m2
1,m

2
2) can be obtained

from above formulas replacing the arguments correspondingly.
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Appendix C

Channel space structures

For the channel indices {b, j; i, a} corresponding to the process φiBa → φjBb, the relevant
coupling matrices from the leading, Eq. (1.13), and next-to leading, Eq. (2.4), order chiral
Lagrangian read

Ab,j;i,a
WT =− 1

4FjFi

〈λb†[[λj†, λi], λa]〉 ,

Ab,j;i,a
14 =− 2

FjFi

(
b1

(
〈λb†[λj†, [λi, λa]]〉+ 〈λb†[λi, [λj†, λa]]〉

)
+ b2

(
〈λb†{λj†, [λi, λa]}〉+ 〈λb†{λi, [λj†, λa]}〉

)
+ b3

(
〈λb†{λj†, {λi, λa}}〉+ 〈λb†{λi, {λj†, λa}}〉

)
+ 2b4〈λb†λa〉〈λj†λi〉

)
,

Ab,j;i,a
57 =− 2

FjFi

(
b5〈λb†[[λj†, λi], λa]〉+ b6〈λb†{[λj†, λi], λa}〉

+ b7

(
〈λb†λj†〉〈λiλa〉 − 〈λb†λi〉〈λaλj†〉

))
,

Ab,j;i,a
811 =− 1

FjFi

(
b8

(
〈λb†[λj†, [λi, λa]]〉+ 〈λb†[λi, [λj†, λa]]〉

)
+ b9

(
〈λb†[λj†, {λi, λa}]〉+ 〈λb†[λi, {λj†, λa}]〉

)
+ b10

(
〈λb†{λj†, {λi, λa}}〉+ 〈λb†{λi, {λj†, λa}}〉

)
+ 2b11〈λb†λa〉〈λj†λi〉

)
,

Ab,j;i,a
M =− 1

2FjFi

(
2b0

(
〈λb†λa〉〈[λj†λi]M̄〉

)
+ bD

(
〈λb†{{λj†, {M̄, λi}}λa}〉+ 〈λb†{{λi, {M̄, λj†}}, λa}〉

)
+ bF

(
〈λb†[{λj†, {M̄, λi}}, λa]〉+ 〈λb†[{λi, {M̄, λj†}}, λa]〉

))
.
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Here λ... denote the 3×3 channel matrices (e.g. φ = φiλi for the physical meson fields) and the
Fi are the meson decay constants in the respective channel. Moreover, M̄ is obtained from the
quark mass matrix M via the Gell-Mann-Oakes-Renner relations, and given in terms of the
meson masses as follows, M̄ = 1

2
diag(M2

K+−M2
K0+M2

π0 ,M2
K0−M2

K++M2
π0 ,M2

K++M2
K0−M2

π0) .

For the channel indices {b, j; a} corresponding to the process Ba → φjBb the channel-space
matrix is given by

Ab,j;a
X = − D√

2Fj

〈λb†{λj†, λa}〉 − F√
2Fj

〈λb[λj†, λa]〉 ,

where D and F are the axial coupling constants.
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Appendix D

Partial wave analysis of πN → ηN
scattering

The pion-induced eta production off the neutron is dominated by the contribution of the nearby
nucleon resonances, i.e. the S11(1535) and D13(1520). From the previous study of elastic πN
scattering we already know that the first one is described perfectly as a dynamically generated
resonance within our approach, whereas the d-wave resonance is not. Thus we wish to clarify,
whether an ansatz for the scattering amplitudes, which contains s- and p-waves only, is capable
to generate a cos2(θ)-like behavior of the differential cross sections dσ/dΩ(s, cos(θ)) (θ here
denotes the scattering angle in the c.m. frame). As a matter of fact this generation of a
cos2(θ)-like structure through the iteration of p-waves does not seem to be appreciated in
several experimental works, see e.g. Ref. [134]. There, the presence of a cos2(θ)-behavior in the
shape of differential cross section is assumed to be a direct indication for a d-wave dominance.
Let us start from the most general form of the T-matrix, which is invariant under Lorentz as
well as parity transformations. For the scattering of a meson-baryon system from initial state
(i) with the meson momentum (q), and baryon momentum and spin (p, s) to the final state (f)
with meson momentum (q′), and baryon momentum and spin (p′, s′) it reads with the usual
conventions used by Höhler [160]

Mfi =
1

8π
√
s
ūf (p

′, s′){Afi(s, t) +
1

2
(/q + /q

′)Bfi(s, t)}ui(p, s),

where s = P 2 := (p+q)2 = (p′+q′)2 and t = (q−q′)2 = (p−p′)2 are the Mandelstam variables.
The amplitudes A and B can be recombined to the scattering amplitude on the mass shell
TON(/q

′, /q;P ) as follows

TON(/q
′, /q;P ) = T 0

ON(s, z) + /PT 1
ON(s, z) = A(s, t) +

1

2
(/q + /q

′)B(s, t).

Here, z = cos(θ) is the standard representation of the scattering angle. In fact, z is related to
the Mandelstam t via

t =M2
f +M2

i − 2
√
q2i +M2

i

√
q2f +M2

f + 2qiqf z , (D.1)
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where qi/f is the modulus of the center of mass momentum of the in- and outgoing system,
respectively. Suppressing the kinematic variables for the moment the unpolarized differential
cross section in the center of mass system reads(dσ(i→ f)

dΩ

)
=

1

64π2

qf
qi

1

2

∑
s,s′

∣∣∣ūf (p′, s′){T 0;fi
ON + /PT 1;fi

ON }ui(p, s)
∣∣∣2.

For Dirac spinors normalized such that ūf (p)ui(p) = 2mδfi, and suppressing for brevity the
channel indices, the spin sum can be calculated in terms of T 0

ON and T 1
ON as follows

1

2

∑
s,s′

∣∣∣ūf (p′, s′){T 0
ON + /PT 1

ON}ui(p, s)
∣∣∣2 = c00|T 0

ON |2 + 2c01Re(T
1∗
ONT

0
ON) + c11|T 1

ON |2,

where

c00 =
1

2s

(
(s+m2

i −M2
i )(s+m2

f −M2
f ) + 4s(mimf − zqfqi)

)
,

c01 = mi(s+m2
f −M2

f ) +mf (s+m2
i −M2

i ) ,

c11 =
1

2

(
(s+m2

i −M2
i )(s+m2

f −M2
f ) + 4s(mimf + zqfqi)

)
.

The above formulae specify all required kinematics and spin structure. The dynamical input is
incorporated within the scattering amplitudes, A and B. In the main body of this work these
are taken to be solutions of the BSE. In view of the above question, we wish to make an ansatz
for the scattering amplitudes. First of all, the standard amplitudes A and B can be expanded
in Legendre polynomials Pl(z) as follows

A(s, t)

4π
=

√
Wcms +mi√
Ecms;i +mi

f1(s, t)

√
Wcms +mf√
Ecms;f +mf

−
√
Wcms −mi√
Ecms;i −mi

f2(s, t)

√
Wcms −mf√
Ecms;f −mf

,

B(s, t)

4π
=

1√
Ecms;i +mi

f1(s, t)
1√

Ecms;f +mf

+
1√

Ecms;i −mi

f2(s, t)
1√

Ecms;f −mf

,

where Wcms =
√
s and Ecms;i/f =

√
q2i/f +m2

i/f . After a variable transformation the amplitudes

f1,2 are related to the commonly used partial wave amplitudes fl±(s) as follows [160,161],

f1(s, z) =
∞∑
l=1

(f(l−1)+(s)− f(l+1)−(s))P
′
l (z) ,

f2(s, z) =
∞∑
l=1

(fl−(s)− fl+(s))P
′
l (z) .

For the purpose of this section we do not consider additional constraints for the partial wave
amplitudes, e.g. due to analyticity or unitarity. Thus both real and imaginary part of those
are used as free parameters, which will be adjusted to reproduce the data on differential cross
sections for the process π−N → ηN , measured by Prakhov et al., see Ref. [134]. For the
truncation of the partial wave expansion we assume three different scenarios:
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Figure D.1: Best fits of three assumed scenarios to the data of the differential cross sections
from Ref. [134] for different pion momenta plab. The dashed (blue), red (dotted) and green
(full) line correspond to the first, second and third scenario, respectively, as described in the
text.

1. The scattering amplitude contains only the s-wave dynamically, meant in the sense of the
above discussion. Free parameters are {Re(f0+), Im(f0+)}.

2. Both, s- and p-waves are included dynamically. This is the case for the solution of the BSE
with contact terms from NLO chiral Lagrangian as performed in our approach. Without
restricting the parity of the p-waves we end up with the following free parameters for this
scenario: {Re(f0+), Im(f0+),Re(f1−), Im(f1−),Re(f1+), Im(f1+)}.

3. The scattering amplitude is determined by s- and d-wave (for instance D13), whereas the
p-wave is negligible. This is the case for the process πN → ηN from the phenomenological
point of view. For phenomenological reasons we assume only the D13 wave to be non-
negligible. Thus the free parameters are {Re(f0+), Im(f0+),Re(f2−), Im(f2−)}.

For each incident π− momenta separately and for each scenario we obtain best fits as presented
in Fig. D.1. As expected the first scenario is only capable to fit the data at lowest beam
momenta. The s-wave is dominant at low energies, however, at higher energies it lacks the
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angular dependence and thus fails to describe the data properly. Going to higher beam momenta
both, the second and third scenario describe the data equally well. It turns out that the presence
of p-waves of both parities is required to reproduce the z2-behavior. Thus albeit our approach
based on the unitarization of the NLO chiral potential does not produce d-waves in the sense
of the above discussion, it is in principle capable to reproduce the data on differential cross
sections well enough.
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Appendix E

One-photon vertices

For all vertices the in-(out-)going meson and baryon are denoted by the channel index i(j)
and a(b), respectively, whereas the charge of the corresponding particle is denoted by Q. All
required photon induced vertices W from the leading order chiral Lagrangian Eq. (1.13) read

W µ b;a
γB→B = ieQaγ

µ , W µ j;i
γφ→φ = ieQi(2q

µ
2 − kµ) ,

W µ b,j;a
γB→φB = ieQjA

b,j;a
x γµγ5 , W µ b,j;i,a

γφB→φB = −ie(Qi +Qj)A
b,j;i,a
WT γµ,

where q2 denotes the four-momentum of the produced (outgoing) meson. The vertices from
the second order chiral Lagrangian (2.4) posses more involved channel structures, which for
instance can be traced back elegantly to the already defined channel matrices in App. C. The
interaction vertex for the process γ(k)φi(q1)Ba(p1) → φj(q2)Bb(p2) reads

W µ b,j;i,a
γφB→φB = iA14

(
Qjq

µ
1 +Qiq

µ
2

)
+ iA57

(
Qj[γ

µ, /q1] +Qi[γ
µ, /q2]

)
+ iA811

(
Qjγ

µ(q1, p1 + q1) +Qj /q1(q
µ
1 + pµ1)

+Qiγ
µ(q2, q2 + p2) +Qi /q2(q

µ
2 + pµ2) +Qj /q1q

µ
1 +Qi /q2q

µ
2

)
− i

2FiFj

(/kγµ − γµ/k)(
b12〈λb†[Qi[λ

i, λj†]−Qj[λ
j†, λi], λa]〉+ b13〈λb†{Qi[λ

i, λj†]−Qj[λ
j†, λi], λa}〉

)
.

The latter expression originates from the electromagnetic field-strength tensor fµν
+ . Further-

more, the same term gives rise to an additional coupling of the photon to a baryon, which does
not vanish for electrically neutral baryons. It also induces a baryon transition Σ0 ↔ Λ, the
corresponding vertex reads

W µ b;a
γB→B = 2ie

(
b12〈λb†[Q, λa]〉+ b13〈λb†{Q, λa}〉

)
(/kγµ − γµ/k),

where Q = diag(2/3,−1/3,−1/3) is the charge matrix and e is the charge of the electron.
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Appendix F

Multipoles

In this section we wish to specify the major technical steps on the way from the photoproduction
amplitude as calculated utilizing usual Feynman rules to the multipole amplitudes as well as
to the cross sections. In large parts of this section we use the conventions of Ref. [140] and
start from the most general Lorentz covariant transition matrix element for the process of
meson (φf ) production of the baryon (Bi) via an incoming photon (γ(k)), i.e. γ(k)Bi(p− k) →
Bf (p− q)φf (q). It reads

Tfi = iεµ ūf (
8∑

k=1

BkN µ
k )ui , (F.1)

where εµ is the photon polarization vector. The initial and final Dirac spinors ui and uf are
normalized like ūu = 2m, with m the mass of the corresponding baryon. The coefficients Bi are
functions of the coefficients of the hadronic scattering amplitude {Ti; i = 1, ..., 20} as defined
in section. 2.3, loop integrals from App. A as well as vertices from App. C. Since both baryons
are on-shell there are only 8 different structures, i.e.

N µ
i ∈ {γ5γµ/k, 2γ5P µ, 2γ5q

µ, 2γ5k
µ, γ5γ

µ, γ5/kP
µ, γ5/kk

µ, γ5/kq
µ} ,

where P = 1
2
(2p− q − k).

Fixing the axis of quantization to the z-axis, one is able to reduce the Dirac spinors to the
two-component spinors χ as follows

Tfi = 8π
√
s χ†

f

8∑
k=1

FkGkχi . (F.2)

amplitudes Fi, which are defined in the basis given by

Gk ∈ {i(→σ · →
ε ), (

→
σ ·q̂)(→σ ·[k̂× →

ε ]), i(
→
σ ·k̂)(q̂· →

ε ), i(
→
σ ·q̂)(q̂· →

ε ),

i(
→
σ ·k̂)(k̂· →

ε ), i(
→
σ ·q̂)(k̂· →

ε ), i(
→
σ ·q̂)(k̂· →

ε ), i(
→
σ ·q̂)ε0, i(

→
σ ·k̂)ε0} .

Here, an arrow denotes a three-dimensional vector and a hat a normalized three-vector. Due
to current conservation, two of the eight CGLN amplitudes can be eliminated via

F1 + (k̂ · q̂)F3 + F5 −
k0
|k|

F8 = 0 and (k̂ · q̂)F4 + F6 −
k0
|k|

F7 = 0 ,
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which serves as a good check of our calculation. Furthermore, two of the remaining six ampli-
tudes are accompanied by scalar components of ε only and thus have no influence on photopro-
duction amplitudes, i.e. process including real photons. Finally the lowest electric multipole
E0+ can be calculated as follows

E0+ =

∫ 1

−1

dz
(1
2
P0F1 −

1

2
P1F2 +

1

6
(P0 − P2)F4

)
, (F.3)

where Pl denote the Legendre polynomials. The latter as well as the CGLN amplitudes are
functions of the cosine of the scattering angle in the c.m. system, z. The unpolarized differential
cross section for meson photoproduction is given by

dσ

dΩ
=

|q|
|k|

(
|F1|2 + |F2|2 +

1

2
|F3|2 +

1

2
|F4|2 +Re(F1F∗

4 ) + Re(F2F∗
3 ) + zRe(F3F∗

4 − 2F1F∗
2 )

− z2(
1

2
|F3|2 +

1

2
|F4|2 +Re(F1F∗

4 + F2F∗
3 ))− z3Re(F3F∗

4 )
)
. (F.4)
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