
Generic OPC UA Server Framework

Piotr P Nikiel1, Benjamin Farnham1, Viatcheslav Filimonov2,3 and
Stefan Schlenker1
1CERN, Geneva, Switzerland
2PNPI, Gatchina, Russia

E-mail:
piotr.nikiel@cern.ch

benjamin.farnham@cern.ch

viatcheslav.filimonov@cern.ch

stefan.schlenker@cern.ch

Abstract. This paper describes a new approach for generic design and efficient development of
OPC UA servers. Development starts with creation of a design file, in XML format, describing
an object-oriented information model of the target system or device. Using this model, the
framework generates an executable OPC UA server application, which exposes the per-design
OPC UA address space, without the developer writing a single line of code. Furthermore,
the framework generates skeleton code into which the developer adds the necessary logic for
integration to the target system or device.

This approach allows both developers unfamiliar with the OPC UA standard, and advanced
OPC UA developers, to create servers for the systems they are experts in while greatly reducing
design and development effort as compared to developments based purely on COTS OPC UA
toolkits. Higher level software may further benefit from the explicit OPC UA server model by
using the XML design description as the basis for generating client connectivity configuration
and server data representation. Moreover, having the XML design description at hand facilitates
automatic generation of validation tools.

In this contribution, the concept and implementation of this framework is detailed along
with examples of actual production-level usage in the detector control system of the ATLAS
experiment at CERN and beyond.

1. Introduction
Distributed control systems require middleware – software which transfers data between
components of a distributed system.

The ATLAS Detector Control System (DCS)[1] is an example of such a distributed control
system. Being organized as a hierarchical mesh of often heterogeneous components, the
middleware must be capable of handling various data models, while being portable and
performant at the same time.

For the ATLAS DCS, OPC Unified Architecture (UA)[2] has been selected as its new standard
for middleware[3]. Thus it is necessary to provide OPC UA servers to numerous types of
subsystems integrated into the DCS. A common approach to create these OPC UA servers
allows to reduce development and maintenance costs, and provides added value in reusable
software components and technology.

3 Present address: CERN, Geneva, Switzerland

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082039 doi:10.1088/1742-6596/664/8/082039

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

OPC-UA server toolkit (C++) – Unified Automation

Logging

Security
(X509

certificate
handling)

XML
configuration

Server
meta-

information

Device logic (custom code)

Hardware access layer (device I/O)

Common
namespace
items and

namespace
utilities

XML
config

file

OPC-UA client OPC-UA client OPC-UA client

Hardware Hardware Hardware

Commercial toolkit

Common components

User specific logic,
Expected ~80/20
Generated/User split

100% vendor

OPC-UA server
generator framework

Figure 1. Overview of the generic server framework components.

Apart from obvious common functionality in which identical software parts were identified
(e.g. server startup code, logging implementation, and others), it became evident that
considerable saving of development efforts could be achieved if the data model of a given
subsystems server was considered a parameter of a generalized OPC UA server. Such a data
model, augmented with additional information, is called design in this paper.

If the format of the design is sufficiently rich to describe and model (potentially complex)
subsystems, then outstanding parts of their OPC UA servers may be automatically created
(generated). Thereafter, hand-written custom code is only necessary for providing high level
business logic between the generated parts and software handling the specific subsystem type
(e.g. a hardware access library or protocol implementation). Such hand-written code may
obviously be very complex in order to provide additional functions. We chose to call this code
device logic.

In the following chapters we explain the approach of generating OPC UA servers starting
with the preparation of a server design and up to obtaining a functional application.

2. Framework architecture
Figure 1 gives an overview of the different layers of the generator framework put into context.
Controllable devices are accessed using their specific access layer – often provided together with
the device. The device logic layer functions as interface with the high level layers provided by
the framework. The framework itself comes in several modules covering different functionality
aspects. The address space module lies on the OPC UA end of the server, exposing data towards
OPC UA clients, and is implemented using a commercial OPC UA SDK[4]. A configuration
module facilitates address space and device instantiation and the definition of their relations.
XML is used as configuration format backed by XML schema definitions. A XML schema to C++
mapping generator (here: xsd-cxx) is used to build actual instances from configuration files. An
additional subsystem called ’calculated items’, operating entirely in the address space, enables
creation of new variables which are derived from existing ones using mathematical functions.
Further functionality such as logging, a certificate handling facility and server metadata are
being developed currently.

3. Modelling the subsystem or device – server design
In the generic approach of the framework, an object oriented model of subsystem or device was
chosen due to two reasons:

• Object orientation is well known and widely understood.

• OPC UA itself follows the object orientated paradigm.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082039 doi:10.1088/1742-6596/664/8/082039

2

The purpose of modelling is to establish a description of such a model using classes, variables
and the relations between them. Classes are types of particular objects. Variables belong to
classes and are factual vectors of data. The purpose of relations is to model aggregations and
type hierarchies.

As an example, let’s prepare a very simplified, informal model of car. A car has a couple of
variables: currentSpeed and acceleration. A car is composed of an engine, which itself has
variables: currentRpm and currentPower, a battery (variable: voltage) and wheels (variable:
tirePressure). We could say that a particular car is identified by the vehicle identification
number (VIN) which is considered constant and therefore could be specified by the configuration.
In addition, there might be some operations defined, e.g. the car can be started and stopped.
This description could obviously be expressed in some formal notation like e.g. UML.

Once the model is prepared, it has to be codified in a common format – we call this a design
file.

4. Server design file
A format was required which parametrizes the generic server such that specific instances (design
files) match particular subsystems/device types. The biggest ingredient of such a design file is
the data model handled by the server (discussed in the previous section) augmented with hints
which are normally hidden behind the OPC UA server abstraction, but are necessary to create
a working server.

Probably the most outstanding hint is capturing the difference between distinct classifications
of variables – two distinct classifications were identified:
Cache Variable: the factual data resides in RAM. Since accessing RAM-based data is a
primitive operation for computers, get/set/monitor are just trivial operations handled behind
the scenes by the UA toolkit and UA stack.
Source Variable: the factual data resides in undisclosed location (might not even be RAM-
based and for our use cases it typically was outside given server computer). An access interface
is necessary to read or modify such data, for which glue logic has to be coded in the server.
Moreover accessing such data may be very time-consuming process and often has to be executed
in separate thread of execution.

Note that these classifications are not seen from the perspective of an OPC UA client, all
variables are simply queried (using write/read OPC UA transaction types) or monitored (by
creating monitored item with this variable). However at the OPC UA server implementation
side it is beneficial to differentiate between classifications.

Another important hint (again, not visible from OPC UA client perspective) is handling of
concurrence inside OPC UA server. The framework provides capabilites to model domains of
mutual exclusion to prevent race conditions in case two objects were to be accessed at the same
time.

Specifying how to configure objects is yet another aspect. By configuration we understand a
set of values that do not change between creation of an instance and its deletion. The primary
configuration parameter is the object name. It was decided that all objects are identified by
a unique name (which is not so obvious – OPC UA allows to identify also by a number, for
example) so that a hierarchy of objects may be easily traversed using dot as a separator (e.g.
car1.wheelFrontLeft.tirePressure). Apart from the name, objects often require additional
configuration. Following the former example, an instance of Car may need to know its colour,
vehicle identification number etc., which are constant and need to be specified on instance
creation. This is also handled by the design of a server in the framework through items called
“config entries”. Config entries belong to classes.

We chose to store the server design in a XML file. The XML Schema of this file is distributed
with the framework.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082039 doi:10.1088/1742-6596/664/8/082039

3

Device logic Utilities

Address space module Configuration module

generated automatically on build
generated on request
overwrites
merges

C++ code

XSD

SCADA scripting

Build info

AddressSpace Class Header

AS Class Body

Visualization (UML, ...)

Configuration.xsd

Configuration.{hxx,cxx}

Device Class Body

Device Class Header

Configurator.cpp

Source Variables glue logic

Information model

Module build information

DRoot.{cpp,h}

Test code

SCADA integration

Module build information

DESIGN FILE

Figure 2. Transformation diagram illustrating the software generation or modification process
for a given design file.

Please note that design XML file is not the configuration XML file which was briefly
aforementioned. The difference may be best described as:

• the design is a description of types,

• the configuration is a description of instances.

5. Transforming the server design into runnable software
The framework generates a number of distinct elements based on the server design:

• source code (mostly C++),

• dependent XML schemas,

• design-dependent parts of the build system,

• visualizations of the object structure,

• OPC UA address configuration for quick integration into a SCADA system,

• additional utilities (e.g. for testing the address space).

Almost all of these tasks are achieved by XSLT transforms, either to text output (e.g. C++ code)
or to XML (e.g. XML schema). Figure 2 illustrates these transformations.

The full procedure of creating an OPC UA Server using the framework is as follows:

(i) create the design,

(ii) request creation of device logic stubs for classes defined in the design (initially empty stub
implementations are generated, thereafter existing implementations are merged with respect
to the new design),

(iii) extend device logic stubs by providing factual implementation,

(iv) build the server (when using the provided build system – based on CMake),

(v) develop by re-iterating the steps (i) → (iv).

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082039 doi:10.1088/1742-6596/664/8/082039

4

5.1. Address Space module transformation
Generation of Address Space C++ classes: For each class in the server design, one C++
class is generated, conforming to the interface provided by the UA Toolkit (therefore instances
of these classes can be directly “injected” into the server address space). For every variable
of the class, appropriate setters, getters and/or write/read handlers are generated; this ensures
that code outside of the Address Space module (typically, hand-written code in the Device Logic
module) can interface with the address space class using straightforward C++ function calls. For
example, imagine that the class Car has an output variable currentSpeed, then there will be a
method Car::setCurrentSpeed(double speed) which, when invoked from C++ code, pushes
the new value into the address space (i.e. the new speed will be available to OPC-UA clients).
Information model: OPC UA has rich modelling capabilities from which smart OPC UA
clients may profit. The framework exposes the information model derived from the design. For
example, when class Car is part of the design, an OPC UA object type called Car becomes
available in the address space within the folder for object types. Moreover all instances of class
Car declared in the configuration file expose that their type is the same OPC UA object type
Car.

5.2. Configuration module transformation
Generation of the configuration XSD schema: Each class from the design is transformed
into a complexType in an XSD schema. Aggregation relations between classes are respected in
generated XSD (e.g. complexType may have a sequence of elements of different class). Moreover,
config entries (specified in the design), which provide configuration data to specific instances
become attributes within given the relevant complexType. An example of a config entry for a
class Car could be vin (vehicle identification number), nominalPower or colour.
Generation of the configuration loader: C++ code is generated to handle parsing a given
XML configuration file to create instances of objects at the startup of the server. This code builds
on top of code generated using xsd-cxx with Configuration schema as a parameter. Furthermore,
an additional validator is generated to check for constraints that are not easily explained through
Configuration schema but easy to explain through server’s design.

5.3. Device Logic transformation
The Device Logic is the only framework-provided module in which the developer is expected to
write C++ source code – the device specific implementation – starting from the stubs generated
by the framework.

For example, imagine a class Car has a variable named acceleration and assume that every
time the variable is altered by an OPC UA Client, the OPC UA Server shall instruct the engine
to alter fuel flow accordingly. Once the appropriate design is created, the developer requests the
framework to create a device logic class for Car. Inside the generated class there is a stub method
called Car::writeAcceleration(...). Following the initial code generation this stub will be
empty. The developer shall add implementation to the class such that it opens a communication
channel with the engine and creates and sends the relevant command to increase/reduce the fuel
flow.

As development progresses, the design may be fluid; classes may be added or removed;
variables may change type or perhaps are suppressed completely. After every change of design,
the developer re-runs the Device Logic generation. If class sources exist already (i.e. user stub
implementations), the hand-written code will not be overwritten – a merge tool opens to facilitate
the merging of the hand-written code for the new design.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082039 doi:10.1088/1742-6596/664/8/082039

5

5.4. SCADA integration code transformation
Additionally, the framework may generate tools which let the server be easily integrated into
some SCADA systems. The typical use case at CERN is as follows: SCADA (here: Siemens
WinCC OA) scripts are generated which can create Datapoint4 types according to server’s
design, instantiate the actual Datapoints and set up appropriate OPC UA addressing. This step
may not be necessary if a SCADA is used which provides information model aware OPC UA
clients.

6. Additional tools for developers
Significant efforts have been invested to avoid duplication of work of users of the framework.
Thus it provides a number of tools helping to carry out the following tasks:

• Visualizing object structures: an UML-like diagram creator is provided which helps to
visualize the design. It was used for example to generate Fig. 3 and 5.

• Validating and upgrading design files.

• Managing consistency of source files: a tool is provided which ensures that source files are
properly versioned and that certain files (e.g. XSLT transformations) are not accidentally
modified.

• Creating installers: a preconfigured spec file for creating RPM5 packages.

• Testing the address space: a tool is added which keeps on pushing random data into the
address space. This can be used e.g. to test client mappings and server/client performance
under specific conditions.

7. Examples
At the time of writing, the framework had already been used to create nine different OPC UA
server implementations which cover numerous use cases, applications and various subsystems
which are interfaced. These servers are currently in production use at CERN (in numerous
instances) or will enter production soon. We briefly discuss two of these servers – VME crates
server and SNMP server – as their architecture and use case are very different, demonstrating
the flexibility of the framework.

7.1. VME crates server
VME is a computer hardware bus standard, where VME-based boards are hosted by so called
VME crates which provide a common back-plane, power supplies and a VME control module.
In order to integrate the monitoring and control of VME crates into a parent control system,
the crate needs to have a communication interface and communication protocol for which an
industry standard is unfortunately lacking. Many experiments at CERN use VME crates from
the WIENER Plein & Baus GmbH manufacturer. They can be interfaced using CAN bus and
using a manufacturer-developed polling-based protocol[5]. The OPC UA server implements full
monitoring and control based on this protocol and is in production use within the ATLAS DCS
since the end of 2014.

The object decomposition used in the server models all elements of the VME crates monitoring
and control chain including CAN interfaces for communication via COTS rack servers of the
control system. The chosen object model is as follows: root instances are CAN buses which
contain VME crates. The crates in turn may contain channels, fans and temperature probes.
Note that each of these elements (buses, crates, etc.) is to be hierarchically declared in the

4 Datapoints are structures to store data in SCADA systems.
5 Common Linux software packet format compatible with numerous Linux distributions

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082039 doi:10.1088/1742-6596/664/8/082039

6

 CanBus

speed : UaString

port : UaString

type : UaString

listenOnly : OpcUa_Boolean

controlEnabled : OpcUa_Boolean

 Crate

queryPeriod : OpcUa_UInt32

currentFlags : OpcUa_UInt32

underVoltFlags : OpcUa_UInt32

overVoltFlags : OpcUa_Double

overVoltageProtFlags : OpcUa_Double

powerOn : OpcUa_Boolean

onOffCrate : OpcUa_Boolean

crateStatus : OpcUa_UInt32

noExtInhibit : OpcUa_Boolean

localControl : OpcUa_Boolean

acInLimit : OpcUa_Boolean

noErrors : OpcUa_Boolean

tripIfAnyErrorEnable : OpcUa_Boolean

noVmeSysFail : OpcUa_Boolean

eepromChanged : OpcUa_Boolean

eepromError : OpcUa_Boolean

hwWriteProtect : OpcUa_Boolean

softStart : OpcUa_Boolean

uncompatible : OpcUa_Boolean

vmeSysReset : OpcUa_UInt32

idStringPs : UaString

softwareVersionCrate : UaString

softwareVersionPs : UaString

connectionState : UaString

operatingTimePs : OpcUa_Float

refreshNonMonitoredItems : OpcUa_Int32

id : OpcUa_UInt32

0..*

 Channel

currentLimitSetPoint : OpcUa_Float

currentValue : OpcUa_Float

minCurrentCompSetPoint : OpcUa_Float

overCurrentCompSetPoint : OpcUa_Double

overVoltCompSetPoint : OpcUa_Float

overVoltProtection : OpcUa_Float

underVoltCompSetPoint : OpcUa_Float

voltageSetPoint : OpcUa_Float

voltageValue : OpcUa_Float

id : OpcUa_UInt32

0..*

 FanModule

changeFansSpeed : OpcUa_UInt32

fansOK : OpcUa_Boolean

tripFansBrokenEnabled : OpcUa_Boolean

idStringFan : UaString

middleSpeed : OpcUa_UInt32

nominalSpeed : OpcUa_UInt32

operatingTimeFan : OpcUa_Float

softwareVersionFan : UaString

1

 TemperatureModule

extTempErrorFlags : OpcUa_UInt32

tempErrorFlags : OpcUa_UInt32

1

 Fan

speed : OpcUa_UInt32

id : OpcUa_UInt32

0..*

 TemperatureProbe

tempLimit : OpcUa_Float

tempValue : OpcUa_Float

tempWarning : OpcUa_Float

id : OpcUa_UInt32

0..*

ROOT

0..*

Figure 3. Generated de-
sign diagram of the VME
crates server.

Figure 4. OPC UA
client view of a running
VME crates server.

 Agent

CE address : UaString

CE community : UaString

 Folder

0..*

 DataItem

CV monitor : UaVariant

CV oid : UaString

SV set : UaVariant

SV get : UaVariant

CE type : UaString

0..*0..*

0..*

ROOT

0..*

Figure 5. De-
sign diagram of
the SNMP server.

configuration file, so essentially any configuration may be obtained, from a very simple single-
crate systems up to multi-bus, multi-crate systems which have thousands of channels. Figure 3
shows the class hierarchy generated directly from the design file.

From the hardware point of view, each crate has a communication module which has to be
polled for the status of the crate itself and its channels and sensors. From the device logic
point of view, a software entity at the server side called communication controller manages
communication between factual crates and device logic of the OPC UA server. Even though the
crate communication protocol is polling based, the software of the device logic is event based
and as soon as new data arrives from a crate, it is pushed into variables of the OPC UA address
space and then further to any subscribed OPC UA client – in OPC UA terms ”monitored data”.
Figure 4 shows a screenshot of an OPC UA client browsing through the address space of one of
instances of the server used in production.

In addition to the framework-provided modules, the server uses a “CAN interface” module
– a hardware access library supporting CAN interfaces from numerous vendors (e.g. SYS TEC
electronic, Kvaser, PEAK-System, Analytica Anagate and others). This module is a common
software component developed at CERN used for many projects, including other OPC UA

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082039 doi:10.1088/1742-6596/664/8/082039

7

servers. A second module represents the specific VME crate communication protocol facilitating
encapsulation of data.

The VME crates server proved to work stably in production and is used in a wide span of
configurations – the biggest being a system of 62 VME crates of the ATLAS TDAQ system
which effectively has ∼5000 channels. Even for such a configuration its load on the CPU and
memory is negligible on a modern server computer.

7.2. SNMP OPC UA server
The SNMP (Simple Network Management Protocol) is an Internet-standard protocol for
managing devices on IP networks. At CERN it has numerous applications, e.g. to monitor
and control the experiment computing infrastructure.

We developed a server which exposes a tree-shaped address space in which data items are
basic building blocks (leaves of the tree). Figure 5 shows the design of the server. Each data item
is bound to one SNMP variable by specifying its OID (object identifier) in the configuration. In
such configuration each read/write request coming from an OPC UA client is transformed into
a get/set SNMP operation.

Compared to previous example where cached data coming from the hardware is pushed into
memory, this server makes extensive use of Source Variables, which assumes that only the data
provider (here: SNMP agent) has the most up-to-date contents of variables. Since a SNMP
transaction is a blocking operation (which compared to in-memory access may fail), appropriate
processing has to be estabilished in order to avoid blocking the whole server while transactions
are ongoing. Such functionality is provided by the framework through the means of spawning
each SNMP transaction as a job belonging to a thread pool. Please note that no user code
is needed to profit from such concurrent execution of SNMP transactions – the only thing the
developer has to provide is a function which implements such a transaction and setting the
appropriate variable options in the server design file.

8. Conclusions
Having applied the framework to the creation of a number of OPC UA servers demonstrates
its advantages: versatility and efficiency of development. The former has been demonstrated
by a vast span of applications, from custom devices to generic designs for well-known protocols
like SNMP. The efficiency of the development process becomes evident by the reduction of
development efforts since up to 90% of source code can be generated which results in a lower
chance of bugs being introduced and at the same time better source code managability. The
framework doesn’t add any overhead compared to classic server development using an UA
toolkit only and thus no performance penalty is expected nor observed. Further expansion
of the framework at CERN and beyond is envisaged while more features are currently being
developed.

References
[1] Barriuso Poy A, Boterenbrood H, Burckhart H J, Cook J, Filimonov V, Franz S, Gutzwiller O, Hallgren

B, Khomutnikov V, Schlenker S and Varela F “The detector control system of the ATLAS experiment”,
Journal of Instrumentation, Vol. 3, May 2008, doi:10.1088/1748-0221/3/05/P05006

[2] The OPC Foundation, “OPC Unified Architecture”, http://opcfoundation.org/opc-ua/
[3] Nikiel P P, Farnham B, Franz S, Schlenker S, Boterenbrood H and Filimonov V “OPC Unified Architecture

within the Control System of the ATLAS Experiment”, Proceedings of ICALEPCS2013, San Francisco,
CA, USA, p 113-6

[4] Unified Automation GmbH, “C++ based OPC UA Server SDK”
[5] W-IE-NE-R Plein & Baus GmbH, “CAN-BUS Interface for W-Ie-Ne-R Crate Remote Control”

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 082039 doi:10.1088/1742-6596/664/8/082039

8

