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Abstract A new classical theory of gravitation within the framework of general
relativity is presented. It is based on a matrix formulation of four-dimensional
RIEMANN-spaces and uses no artificial fields or adjustable parameters. The geo-
metrical stress-energy tensor is derived from a matrix-trace LAGRANGIAN, which
is not equivalent to the curvature scalar R. To enable a direct comparison with
the EINSTEIN-theory a tetrad formalism is utilized, which shows similarities to
teleparallel gravitation theories, but uses complex tetrads. Matrix theory might
solve a 27-year-old, fundamental problem of those theories (Sect. 4.1). For the
standard test cases (PPN scheme, SCHWARZ-
SCHILD-solution) no differences to the EINSTEIN-theory are found. However, the
matrix theory exhibits novel, interesting vacuum solutions.
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1 Introduction

In the last decades a variety of new classical gravitation theories as alternatives
to the EINSTEIN-theory were proposed [40]. This increased interest is particu-
larly motivated by some new phenomena, which can only be explained with some
additional presumptions (e.g. galaxy rotation problem, Pioneer anomaly, accel-
erated Universe expansion). On the other hand, new and enhanced experimental
possibilities allow, to test their predictions [11; 12; 42] with unthought precision.
We want to mention here only as representatives the Brans-Dicke theory [4], as
famous example of a scalar-tensor theory and MOND [3], which is supposed to
give an alternative to “dark matter”. A recent discussion of this can be found in
[5].

In this paper a new general relativistic gravitation theory, titled “matrix the-
ory”, is presented. It is derived from a matrix-trace LAGRANGIAN, similar to the
well-known EINSTEIN-HILBERT action, but based on matrix formulation of the
four-dimensional RIEMANNIAN spacetime.

Like EINSTEIN’s original theory (without the “cosmological constant”) it con-
tains no free, “adjustable” parameters, except the NEWTONIAN constant of gravi-
tation G. Also, it does not introduce new, artificial fields, like Brans-Dickes scalar-
field or others in vector-tensor theories.

To compare it with the EINSTEIN-theory of gravitation, we generalize this
LAGRANGIAN with tetrad formalism, so that it contains four real, constant param-
eters (a,b,c,d). Each parameter set then characterizes a different gravitation the-
ory, and it is shown that also the EINSTEIN-theory belongs to this class of theo-
ries, esp. it is described by the parameters (a,b,c,d) = (1,− 1

2 ,− 1
4 ,0), while the

matrix-theory is defined with (1,−1,0,− 1
2 ).

Matrix theory uses complex tetrads, because general base matrices τµ can only
be represented with such tetrads. This might look unfamiliar to some readers, but
we consider this similar to the situation in quantum mechanics. There we have a
complex (non-measurable) wave function and real observables. Here, the tetrads
themselves are also not measurable, only the—by definition—real metric is mea-
surable. Moreover, it shows, that all test cases computed here (Sect. 4), which
represent macroscopic matter (real, symmetric stress-energy tensor), have solu-
tions with real tetrads (for the PPN-test in Sect. 4.3 this holds up to the requested
approximation order).

This tetrad formalism shows, that the matrix theory can be regarded as gen-
eralization of the “teleparallel” approach (also called “distant parallelism” or
“absolute parallelism”) of tetrad gravity. This is based on an idea of Einstein,
which uses a non-symmetric “Weitzenböck” connection with vanishing curva-
ture tensor but nonvanishing torsion, which is extensively discussed until today
[15; 25; 34; 36; 39]. A comprehensive overview can be found in [31] and also
[13], where the gauge aspects of the theory are stressed. If we would consider only
real tetrads, the resulting theory (“RMT”, see Sect. 6) would belong to the one-
parameter class of teleparallel theories, which are experimentally viable [31; 32],
like the teleparallel equivalent of Einstein’s GR (TEGR) [27]. The teleparallel the-
ory also allows an alternative coframe representation, which is used in [17; 18] to
derive a conserved energy-momentum current, completely similar to the Maxwell-
Yang-Mills theory.
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However, the usage of complex tetrads, which are necessary to map arbitrary
matrices, and the new matrix-trace LAGRANGIAN, containing a parity violating
term, exclude typical “unphysical” tetrad vacuum solutions, which prevent a pro-
found interpretation of previous teleparallel theories.

In this paper, we use the conventional LEVI-CIVITA- (or CHRISTOFFEL-) con-
nection, which is built from the metric tensor (see Eq. (116) ff.). The tetrad formal-
ism here serves only as a general mathematical tool to compare different theories.
Instead of the tetrads, we consider the base matrices τµ as the fundamental enti-
ties. Matter influence to geometry (field equations) is mediated via these τµ , resp.
ρµν , but matter reacts to geometry only due to metric (equations of motion). Con-
sequently, the geometrical stress-energy tensor is potentially not symmetric and
real, but it is forced to be so, since it is equal to matter tensor (this is sometimes
discussed differently for the teleparallel theory, see e.g. [36], p. 15).

However, many of the general tetrad computations presented here, are mostly
standard (esp. the representation of the RICCI-scalar by tetrads and the derived
stress-energy tensor) and can be found at various places and in various contexts.
E.g. our equation (55) is equivalent to Eq. (1) in [25]. The reason to sketch them
here nevertheless, is to give a homogenous presentation with consistent nota-
tions. This allows the reader to follow them without the necessity to check several
sources with different names for the same variables.

The readers will surely notice, that the hermitian matrices introduced in Eq. (5)
can also be regarded as second order WEYL-spinors (see e.g. [23], p. 59 ff) with
respect to their LORENTZ-transformation rule. However, we do not discuss quan-
tum mechanical effects or quantum fields here, to limit the extent of the paper.

2 Formulation of the matrix theory

To give a clearer picture, we start in 2.1 with the matrix representation of the
widely known tetrad- (or “Vierbein”-) formalism of general relativity (e.g. [28;
37]), which is given by hermitian matrices (real tetrads), and generalize this in
Sect. 2.2 to general complex matrices (complex tetrads).

2.1 Hermitian matrix representation of tetrad formalism in relativity

Here we want shortly sketch, how the main tensors and equations of general and
special relativity can be represented with hermitian matrices. This representation
does not offer new equations, but it needs less independent prerequisits (metric
signature, MAXWELL equation), than the usual component formulation. As far as
we know, this cannot be found in the literature in this compact form.

Tetrads are four real, covariant spacetime vectors, which are defined in each
point of the spacetime. We denote them here by ea

µ(xν), where a = 0,1,2,3 is
the tetrad index and µ = 0,1,2,3 the spacetime index (in this paper Greek let-
ters µ,ν ,α,β , . . . are used for spacetime and Latin letters a,b,c,d, . . . for tetrad
indices). One of the first physicists, who used them for GR (titled as “four-legs”)
was Møller, see eg. his basic paper [27]. As many others, he regards them as
the fundamental gravitational field variables, instead of the metric gµν . Moreover,
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tetrads are also a useful tool in geodesic applications of general relativistic prob-
lems [22].

Each individual tetrad (denoted by a certain fixed “a”) is a covariant tensor of
first rank. When ηab = diag[1,−1,−1,−1] denotes the MINKOWSKI-metric, the
metric tensor gµν is expressed as

gµν = ηabea
µ eb

ν . (1)

Tetrad indices a,b, . . . can be shifted with ηab and ηab while spacetime indices
µ,ν , . . . are shifted with gµν and gµν .

The contravariant (inverse) tetrads eµ
a then fulfil two orthogonality relations,

which are (δ is the usual KRONECKER-symbol):

eµ
a ea

ν = δ
µ

ν and eµ
a eb

µ = δ
b
a . (2)

By contracting with eµ
a or ea

µ any spacetime index of any symbol (tensor or non-
covariant entity), can be transformed into a tetrad index, and vice versa, e.g.

Aµ ea
µ = Aa ↔ Aµ = Aaeµ

a . (3)

Matrix representation: with the tetrads one can construct four complex, her-
mitian 2× 2-matrices, using the generalized PAULI spin matrices σ0 =

(10
01

)
=

I2, σ1 =
(01

10

)
, σ2 =

(0−i
i 0

)
, σ3 =

( 1 0
0−1

)
, which we will denote with τµ :1

τµ

de f
= ea

µ σa. (4)

This definition is very similar to the expression of spinor components of tensors
with the help of Infeld - van der Waerden symbols ([33], p. 123 and [37], p. 48)
gAB′

a = 1√
2
σAB′

a where A,B′ ∈ [1,2] are the spinor indices.
These four matrices τµ are hermitian by construction, linearly independent,

and can replace the tetrads, since Eq. (4) is an invertible map. They form a basis
in the vector space of 2×2 matrices, like the four σk.2 We will denote them here
as “base matrices”. Some general relations with these matrices are listed in the
Appendix 8.1.

Any tensor of first rank with contravariant components Aµ can be expressed
as hermitian matrix A by (boldface Latin letters A,B, . . . as well as Greek letters
τ,σ ,ρ, . . . shall denote hermitian 2×2-matrices here)

A = Aµ
τµ . (5)

Since the base matrices build a covariant “tensor-matrix”, this means that the
matrix A is actually invariant under all transformations x′µ(xν). Of course, also

1 More generally, any set of 4 hermitian matrices σ ′
m can be used as basis, that preserves the

orthogonality 1
2 T (σ ′

mσ̄ ′
n) = ηmn. This is in close relation to the transformations described in

Eq. (15).
2 I.e. every (hermitian) matrix A can be expressed as linear combination A = aµ τµ , with

complex (real) coefficients aµ .
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the infinitesimal line element (1-form) can be expressed as the matrix dx = dxµ τµ

and transformation equations are

dx′µ =
∂x′µ

∂xν
dxν = aµ

ν dxν and τν = aµ

ν τ
′
µ . (6)

This transformation rule for the base matrices states, that all components are trans-
formed with the same coefficients (like the tetrads).

A novelty of the matrix notation, in contrast to usual tetrad notation, is, that it
defines an inner product (matrix product) and with the help of this, the need to pos-
tulate a MINKOWSKI norm for the tetrads (with its sign-arbitrariness) disappears.
This hermitian matrix-algebra can be seen as special representation of Heestenes’
“space-time algebra” (STA), which is widely discussed in the literature, especially
for the DIRAC-theory, see e.g. [14].

The norm of a tensor Aµ is the simple matrix-determinant

|A|= gµν Aµ Aν = Aµ Aµ . (7)

This is easy to derive from the properties of the σk, namely 1
2T (σmσ̄n) = ηmn,

where T (A) denotes the trace and Ā the “adjuncted” matrix3 of a matrix A.
This simple norm definition is only possible for a four-dimensional RIEMANNIAN
spacetime with MINKOWSKIAN signature [+,−,−,−].

Additionally we have to introduce the contravariant basis τµ = gµν τν and can
derive the orthogonality relations

1
2
T (τµ τ̄ν) = gµν and

1
2
T (τµ τ̄

ν) = δ
ν
µ . (8)

If the matrix theory is formulated without tetrads, the first equation is to interpret
as the definition of the metric tensor gµν and the second as the definition of the
matrices τµ .

The more general scalar product of two tensors A,B has a similar matrix rep-
resentation like the norm in Eq. (7)

1
2
T (AB̄) = gµν Aµ Bν = Aµ Bµ . (9)

The inverse relation of Eq. (5) is the trace expression (always real)

Aµ =
1
2
T (Aτ̄

µ) and Aµ =
1
2
T (Aτ̄µ). (10)

Tensors of higher rank are expressed by sets of hermitian matrices, e.g. a general
tensor of second rank with four matrices

Aµ = Aµν τ
ν ↔ Aµν =

1
2
T (Aµ τ̄ν). (11)

3 This term is not widely used in English mathematical textbooks. We define it here as

Ā de f
= |A|A−1. Please note, that only for 2× 2 matrices we have the linear map A ↔ Ā and

consequently only then |A|= 1
2 T (AĀ) is a bilinear form. See Appendix 8.1 for a more detailed

discussion.
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With the above definitions the complete apparatus of special and general relativity
can be drawn in matrix form. E.g. the covariant derivative of the basis is computed
like for a conventional vector

τµ;ν
de f
= τµ,ν −Γ

λ
µν τλ . (12)

The CHRISTOFFEL symbols Γ λ
µν defining the connection here, have to be derived

metric compatible from Eq. (1) (see Appendix 8.3). The matrix-representation of
the antisymmetric second covariant derivatives of the basis then gives a definition
of a RIEMANN tensor matrix, which is very similar to the standard formula:

τµ;ν ;λ − τµ;λ ;ν = Rσ

µνλ
τσ

de f
= Rµνλ . (13)

Interested readers can also have a look at [19], where representations of main top-
ics of special relativity (e.g. electromagnetism, DIRAC-equation) with matrices are
shown. As single example we cite here the matrix representation of MAXWELLS

equations (∂
de f
= σµ

∂

∂xµ is the partial derivation operator matrix, F = (Ek + iBk)σ k

the trace-free electromagnetic field matrix (non-herm.) and J is the hermit. current
matrix):4

∂F = J. (14)

This is only one matrix equation, but it contains 8 real (4 complex) component
equations, which are the four homogeneous (anti-hermit. part) and the four inho-
mogeneous Maxwell equations (hermit. part).

4 In flat MINKOWSKI spacetime we use τµ ≡ σµ = const.
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Additionally to local spacetime covariance, the matrix equations exhibit
another, independent global symmetry: If all matrices are synchronously trans-
formed with one constant, unimodular matrix T (i.e. |T| = 1), preserving their
hermitian property:

A→ TAT†, (15)

then obviously all relations, e.g. the metric in Eq. (8), remain unchanged. The
transformation matrix T then contains 6 real parameters and it is easy to show,
that it can be identified with a LORENTZ-transformation in a local MINKOWSKI-
coordinate system.5 Consequently, in those coordinate systems (locally) both
transformations may be combined arbitrarily.

To describe curvature in RIEMANNIAN geometry, we define the “rho”-tensor-
matrix, as the antisymmetric partial derivative of the basis

ρµν

de f
= τµ,ν − τν ,µ . (16)

The tensor property (covariant transformation rule) of this matrix-tensor is evi-
dent. It consists of 6 hermitian matrices and thus contains 4× 6 = 24 real com-
ponents. From ρµν ≡ 0 follows the vanishing of the RIEMANN-tensor Rσ

µνλ
= 0

(e.g. by the derivations in the Appendix 8.3) i.e. the spacetime is flat. On the other
hand, for a flat spacetime we can always find a coordinate system with τµ = const.
and consequently ρµν = 0. Due to the tensor property this equation remains true,
if an arbitrary coordinate transformation is applied.

From the definition of ρµν and the basis in Eq. (4) we get the tetrad formula
(we use the common []-bracket-notation, but omit a frequently used factor 1/2)

ραγ = (ex
α,γ − ex

γ,α)σx
de f
= ex

[α,γ]σx, (17)

where ex
[α,γ] is the “nonholonomity” [15]. Since the PAULI matrices are constant,

it is evident that ρµν is the matrix representation of the exterior derivative of the
basis 1-forms θ x = ex

µ dxµ .
The expressions are further simplified by transforming the spacetime indices

α,γ into tetrad-indices. For this purpose, we define the antisymmetric tetrad
expressions rx

ac = −rx
ca by (Schouten, [35], pp. 99, denotes them as “objects of

anholonomy” Ω x
ac):

rx
ac

de f
= ex

[α,γ]e
α
a eγ

c . (18)

These 24 coefficients rx
ac can be classified into two types. For 12 of them the upper

index x is equal to one of the lower. They will be denoted here as “r-doublets”.
The other 12, where all three indices x 6= a 6= c are different, are denoted as “r-
triplets”. This classification is independent of the coordinate system, because the
rx

ac are invariant under all coordinate transformations.

5 The group of matrices T with complex elements, satisfying |T| = 1, is commonly denoted
as SL(2,C ). It is the “double cover” of the Lorentz-group, because both matrices T and (−T)
perform the same Minkowski-space rotation.
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By Cartan’s first structural equations one can see, that these terms are closely
related to the “Ricci rotation coefficients”, which may be defined from the covari-
ant derivative (also see Appendix 8.3)

G s
mn

de f
= eµ

meν
n es

µ;ν =
1
2
(rs

mn +η
sb(ηmcrc

nb +ηncrc
mb)). (19)

From these one can directly derive the tetrad representation of the curvature tensor
(see Eq. (114) ff.)

Rs
mnl = eλ

p (δ p
l G s

mn−δ
p
n G s

ml),λ +G s
xy(δ

x
mry

nl +δ
y
n G x

ml −δ
y
l G x

mn). (20)

2.2 General matrices and complex tetrads

For the matrix representation presented above, it looks straightforward, to consider
general instead of special (hermitian) matrices as basis τµ . Another motivation
comes from quantum mechanics, which cannot be formulated without complex
wave functions. Therefore one may hope, that the ideas presented here can help to
find a new link between quantum mechanics and gravity. However, this is not the
topic of this paper, which covers only classical gravity.

On the other hand, for tetrad gravity in usual formulation, it makes no sense
to introduce complex - instead of real - tetrads, because the field equations are not
altered. This is only the case, if we use the matrix-LAGRANGIAN defined in 2.3,
which has additional complex terms.

For general base matrices, we have to generalize the metric definition in
Eq. (8), because the distance ds2 = gµν dxµ dxν must always be a real quantity.

Regarding that under coordinate transformations the hermitian conjugated
matrices τ

†
µ obey the same transformation rule as τµ in Eq. (6) (the transformation

coefficients aµ

ν are real), the appropriate definition is6

gµν

de f
=

1
4
T (τ†

µ τ̄ν + τ
†
ν τ̄µ) =

1
2

ℜT (τ†
µ τ̄ν), (21)

which is symmetric and real for arbitrary matrices τµ and for hermitians τµ = τ
†
µ

it is equal to the definition in (8). It formally resembles definitions of quan-
tum mechanical observables, e.g. the DIRAC current and is invariant under uni-
tary U(1) (phase) transformations τµ → eiϕ τµ , additionally to its T -invariance
described in (15).

Also the scalar product of two tensor matrices A = aµ τµ , B = bµ τµ (with
aµ ,bµ = real) is to define consistently as the real number

(A ·B)
de f
=

1
2

ℜT (A†B̄) = aµ bν 1
2

ℜT (τ†
µ τ̄ν) = aµ bν gµν . (22)

With this definition all equations of general relativity stay valid, except the field
equations. For clarity we add, that for all physical problems covered here, we

6 One might also discuss to use the complex value (without ℜ), which would define a hermi-
tian metric tensor g∗µν = gνµ . For all equations, where only the symmetric part of gνµ occurs,
e.g. the equation of motion, it is equivalent. This form also allows the usual index shifting with
g.
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consider only strictly real and symmetric stress-energy tensors T µν of matter. This
requires, that all possible imaginary and anti-symmetric parts of the geometric
tensor also vanish. We do not discuss possible implications of those terms, instead
we demand that all must be zero, for all classical gravity problems in this paper.
Then, e.g. for the test cases solved with real tetrads in Sect. 4, the imaginary
parts form additional constraints, compared to a corresponding real-tetrad theory
(“RMT”, see Sect. 6).

For the definition of the contravariant base matrices τµ we cannot use the
metric gµν here anymore, but the second Eq. of (8) gives an unique definition. The
contravariant transformation rule stays valid, due to this orthogonality relations.

If we want to utilize the tetrad formalism for general bases, we have to use
complex tetrads in the decomposition τµ = ea

µ σa. The inverse tetrads eµ
a are also

to define with their orthogonality relations in Eq. (2), index shifting with gµν is
also not applicable for them.

We have to add here, that for general (non-hermitian) matrices τµ , the metric is
not necessarily locally Lorentzian. However, this is always true for the physically
important case, when the imaginary parts of the tetrads are small (e.g. for the
PPN-tests in Sect. 4.3). General matrices τµ can be decomposed into a hermitian
and anti-hermitian part, and correspondingly the complex tetrads ea

µ into real and
imaginary parts: ea

µ = f a
µ + iha

µ (with f a
µ ,ha

µ = real). The metric definition (21)
then gives gµν = ( f a

µ f b
ν +ha

µ hb
ν)ηab.

It can be shown, that it is locally Lorentzian, if all imaginary parts are small:
||ha

µ || � 1, ∀a,µ .

2.3 LAGRANGIAN of matrix-theory

It is an important feature of the EINSTEIN-equation in general relativity, that it can
be derived from a LAGRANGIAN L (see e.g. [37]), namely its geometrical part
equals the curvature scalar LE ' R.

For deriving the stress-energy tensor and the field equations one has to find the
stationary solution of the action integral

I =
∫

d4x
√
−gL (gµν , gµν ,λ ) (23)

by variation of the metric tensor δgµν . The same holds for the matrix theory, where
we postulate another scalar based on the “rho”-tensor-matrix defined in Eq. (16).
As explained, this tensor-matrix also characterizes the curvature of spacetime and
it is straight forward to construct a theory of gravity based on this tensor-matrix.

Here we construct the “matrix-LAGRANGIAN” Lz as real, scalar, bilinear form
from the matrices ρµν and ρ

†
µν . We request the same symmetry as for the metric

definition (21), i.e. global T -invariance forces, that the matrix factors in the trace
must build a bar-alternating sequence.

There exist only two distinct tensor matrices, that can be built by bar-

alternating contraction of ρµν , namely ρµ

de f
= τ̄ν ρµν and υµ

de f
= ρµν τ̄ν . With

the request of unitary U(1) invariance we postulate the following LAGRANGIAN,
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which is also quadratic in the first derivatives:7

Lz
de f
= 1

4 ℜT (τα†τ̄β ρ
†
α υβ ). (24)

This expression is a real function of the τµ ,τ†
µ and their first derivatives

Lz(τµ ,τ†
µ ,τµ,ν ,

τ
†
µ,ν) and contains no adjustable parameters. By construction, it is invariant under

arbitrary coordinate transformations and constant (global) T -transformations
described in Eq. (15). Considering its additional unitary invariance under τµ →
eiϕ τµ , we find that the symmetry group is SL(2,C )×U(1), which is a supergroup
of SU(2)×U(1), the important group of standard electro-weak “GSW-theory”
(see [8], we only discuss global symmetry here).

For completeness we have to add, that (24) is of course not the only
possible form. In general, every bar-alternating permutation of the 6 factors
τα†,τγ†,ρ†

αγ ,τ
β ,τδ ,ρβδ exhibits the same symmetries and its tetrad LAGRANGIAN

has the common form (32). But if we request, that the contracted forms ρµ and υµ

should occur, but no doubly contracted matrices (like τ̄ν ρµν τ̄µ ), then only four
alternatives remain: ℜT (τα†τ̄β xαβ ), where xαβ = ρ

†
α υβ , ρ̄

†
α υβ , ρ

†
α ῡβ , ρ̄

†
α ῡβ ,

respectively. The fourth alternative gives a completely similar LAGRANGIAN as
the first Eq. (24) (namely L = L (1,−1,0,+ 1

2 ) in Eq. (32), i.e. only the odd par-
ity term Li has opposite sign, which does not affect any conclusions), while the
second and third form have no odd parity term.

To derive the field equations, similarly to above Eq. (23), one could vary the
base matrices δτµ instead of δgµν

8

I =
∫

d4x||τ||L (τµ ,τµ,ν) → δI =
∫

d4x||τ||T (δτµ T̄µ) (25)

This derivation of the stress-energy tensor matrix Tµ would be straightforward.
But instead of this, we give an equivalent derivation with the use of tetrads in the
next paragraph. This has the advantage to be more general and so allows a direct
comparison to the EINSTEIN-theory.

Tetrad representation of Lz:
With the terms in Eq. (17) the LAGRANGIAN in (24) can be rewritten as (all rx

ab
are scalar and can be drawn out of the matrix trace):

Lz =
1
4

ℜT (τα†
τ̄

β
ρ

†
αγ τ̄

γ†
ρβδ τ̄

δ ) =
1
4

ℜ

(
(rx

ac)
∗ry

bdT (σa
σ̄

b
σxσ̄

c
σyσ̄

d)
)

(26)

7 The more general LAGRANGIAN of “viable” theories Lv, which is discussed in Sect. 3.4 for
comparison, can be written in the same form, with an extra term (exhibiting the same symme-
tries, but real by definition): Lv(c) = Lz + c

4 T (τα†τ̄β υβ ρ̄
†
α ), where “c” is a free, real constant.

With the terminology of Sect. 3 for the extra term holds 1
4 T (τα†τ̄β υβ ρ̄

†
α ) = Lc−2Lb.

8 Here is to replace 4
√
−g = ||τ||, where ||τ|| is defined as absolute value of the determinant

|τ| of all 4× 4 components of the basis. For the variation of this term one has to use δ|τ| =
|τ|
2 T (δτµ τ̄µ ).
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The trace of 6 PAULI-matrices above is computed using the techniques in the
Appendix 8.1. If we define for abbreviation the two contracted terms (ra is con-
structed on only of r-doublets and ta only of r-triplets):

ra
de f
= rx

ax and ta de f
=

1
2

ηybry
cd∆

abcd , (27)

where ∆ abcd is the completely antisymmetric symbol, with ∆ 0123 = 1, the result is

Lz = η
mn(rmr∗n− ra

mb(r
b
na)

∗)︸ ︷︷ ︸
de f
= Lr

+i(tar∗a− ta∗ra)︸ ︷︷ ︸
de f
= Li

. (28)

Both terms Lr and iLi are evidently real (L ∗
i =−Li).

The explicit appearance of the imaginary unit “i” in this formula is a conse-
quence of utilizing PAULI-matrices σa as basis in τµ = ea

µ σa.9
We note, that Li has “odd parity” (due to the factor ∆ ) in contrast to all other

terms of Lr and Eq. (32) with respect to the tetrad space (the tetrad parity oper-
ation is equivalent to the matrix transformation τµ → τ̄µ , which inverts the three
spatial tetrads ek

µ ,k = 1,2,3).
We now discuss the implications of using real or complex tetrads for the vari-

ation principle. The variation gives the definition of the stress-energy tensor com-
ponents T γ

h by∫
δLz =

∫
δLr + iδLi

de f
=

∫
δeh

γ T γ

h +(δeh
γ)
∗(T γ

h )∗ != 0. (29)

If we consider only a priori real tetrads, like in conventional tetrad theories, also
the variations must be real, i.e. (δeh

γ)
∗ = δeh

γ , and the variation principle gives only
(T γ

h )∗+ T γ

h = 2ℜ(T γ

h ) = 0, which means that Li does not contribute in this case
(the resulting theory “RMT” is discussed in Sect. 6).

For the case of potentially complex tetrads, both variations δeh
γ , (δeh

γ)
∗ are

independent and we get the full complex equation T γ

h = 0 and both Lr, iLi con-
tribute to T γ

h . Of course, then it is sufficient to consider only e.g. the variation of
δeh

γ , because the second leads to the same equations.

3 Generalized LAGRANGIAN in tetrad-form

To be able to make comparisons between all possible tetrad theories and to find a
general expression of T γ

h , we generalize the LAGRANGIAN of Eq. (28) to a more
general, real bilinear form of the rx

ab, with constant factors Habcd
xy

L = rx
ab(r

y
cd)

∗ Habcd
xy . (30)

9 They are well suited as basis for hermitian matrices, but not the best choice for arbi-
trary complex matrices. Another choice are the matrix-components themselves, which leads

to a spinor-like notation τµ = tAB
µ ϑAB,A,B = (1,2), with ϑ11

de f
=

(10
00

)
, ϑ12

de f
=

(01
00

)
, . . ..

The LAGRANGIAN, computed with these 16 complex terms tAB
µ , instead of the tetrads ea

µ , is
somewhat simpler. However, they must be transformed into tetrads anyway, to describe local
MINKOWSKI-systems and for the test cases of Sect. 4.
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The expression L is real (L = L ∗) for arbitray complex rx
ab, if and only if

Habcd
xy = (Hcdab

yx )∗ holds.
We discuss here a general, LORENTZ-invariant, bilinear form10 that contains

four free, constant parameters a,b,c,d11 and can be constructed with η ,δ and ∆

Habcd
xy = η

ac(aδ
b
x δ

d
y +bδ

d
x δ

b
y + cηxyη

bd)+d i(η f yδ
b
x ∆

a f cd −η f xδ
d
y ∆

c f ab) (31)

The last condition forces, that all four parameters a,b,c,d must be real. Every
specific set of parameters (a,b,c,d) describes a different theory. Because the
Lagrangian is a simple sum, it can also be written as12

L (a,b,c,d) = aLa +bLb + cLc +dLd . (32)

All individual terms La, . . . ,Ld are real for arbitrary complex rx
ab. Some of

these LAGRANGIAN terms are listed explicitly in the Appendix 8.2. Compar-
ing (32) with Eq. (28), we see that the matrix Lagrangian is represented as
Lz = L (1,−1,0,− 1

2 ). In Sect. 3.3 is shown, that also the LAGRANGIAN of
the EINSTEIN-theory LE ' R can be expressed by this formula as LE =
L (1,− 1

2 ,− 1
4 ,0).

Similar decompositions of the LAGRANGIAN into a sum of terms, mostly in
the teleparallel context, can be found in [36] and [26] (Eq. (17) there). Also Itin
[18], following the coframe description, gives a 3-term decomposion (Eqs. 3.3–
3.16) as most general form, which is for real ra

bc equivalent to the first three terms
in our Eqs. (31)–(33). Of course, none of them has a parity violating (PV) term
∼Ld , because for real tetrads obviously holds Ld = 0.

However, a similar term LPV = rata with real tetrads was discussed in [29] as
a possible cure for the initial value problem mentioned in Sect. 4.1. But later it
was shown that this term has to be rejected, because it leads to a ghost for the lin-
earized theory ([21], p. 1219 and [30], p. 751). For the complex theory, presented
here, the situation is quite different, because of the factor i the terms decouple (for
all test cases with real tetrads), as demonstrated in Sects. 4.2 and 4.3. A deeper
analysis of this, in connection with the discussion of the possibility of real tetrads,
should be left to future work.

Now we derive the geometric stress-energy tensor from the general form in
Eq. (30) by variation of the tetrads δea

µ . As usual, we consider ea
µ and (ea

µ)∗ as
independent functions. Consequently we only have to variate rx

ab and then express
δrx

ab in terms of δea
µ .13 So one gets as variation simply

δL = δrx
ab (ry

cd)
∗Habcd

xy︸ ︷︷ ︸
de f
= Uab

x

= δrx
abUab

x =
1
2

δrx
abU [ab]

x . (33)

10 This is not the most general form for complex ra
bc. There exists e.g. a second, parity violating

term Le = rx
ab(r

y
cd)∗ηxy∆ abcd , which is not used here.

11 Please, do not mix indices and parameters. Variable indices can never occur as factors.
12 The summands La, . . . ,Ld are defined by Eqs. (30) and (31), and we note the correspon-

dence Ld ≡−2iLi from comparing it with the definition of Li in Eq. (28).
13 The variation of δea

µ does not affect (rx
ab)

∗ because it is constructed (ea
µ )∗ and their inverses

only. On the other hand, the variation of the complex conjugated δ(ea
µ )∗ gives the same equa-

tions.
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We have defined here a new fundamental symbol Uab
x

de f
= (ry

cd)
∗Habcd

xy . It is a linear
form of the (ry

cd)
∗ with constant coefficients. Because rx

ab is antisymmetric with

respect to the lower indices, only the antisymmetric part U [ab]
x

de f
= Uab

x −Uba
x , which

has also 24 components, is needed in (33). In the following is shown, how the
stress-energy tensor is to compute using this symbol. Its explicit form, i.e. the
form of the factors Habcd

xy and the constants (a,b,c,d) are not needed for those
general derivations.

3.1 Stress-energy tensor for the generalized LAGRANGIAN

For the computation of T from the LAGRANGIAN L , the variation of all terms
of the action integral must be expressed by the variations of covariant tetrads δea

µ ,
so we need the formulas for the inverse (contravariant) tetrads and the absolute

value of the tetrad determinant ||e|| de f
=

√
|e||e|∗ =

√
−g, which are derived from

the orthogonality relations:

δeβ

b =−eβ
a eα

b δea
α and δ|e|= |e|eγ

hδeh
γ . (34)

Inserting this, one gets

δra
f b = δ(ea

[µ,α]e
µ

f eα
b ) = ea

[µ,α](δeµ

f eα
b + eµ

f δeα
b )+δea

[µ,α]e
µ

f eα
b

= −ea
[µ,α](e

µ

h eγ

f eα
b + eµ

f eα
h eγ

b)δeh
γ +δea

µ,α(eµ

f eα
b − eµ

b eα
f ))

= δeh
γ(r

a
h f eγ

b− ra
hbeγ

f )+δea
µ,α(eµ

f eα
b − eµ

b eα
f ) (35)

and the total variation of the action integral becomes

δI =
∫

d4xδ(||e||L ) =
∫

d4x(δ||e||L + ||e||δL )

=
∫

d4x||e||(δeh
γ

(
1
2

eγ

hL +Aγ

h

)
+δeh

γ,α Bγα

h ). (36)

The here introduced new expressions Aγ

h
de f
= ∂L

∂eh
γ

and Bγα

h
de f
= ∂L

∂eh
γ,α

are to compute

by inserting the Eq. (35) into Eq. (33), which expresses them by U [ f b]
a :

Aγ

h =
(

ra
h f eγ

b− ra
hbeγ

f

)
U f b

a = ra
h f eγ

b

(
U f b

a −Ub f
a

)
= ra

h f eγ

bU [ f b]
a (37)

and the second is obviously the antisymmetric expression Bγα

h =−Bαγ

h :

Bγα
a = (eγ

f eα
b − eγ

beα
f )U f b

a = eγ

f eα
b U [ f b]

a . (38)

As usual, the variation term δeh
γ,α in Eq. (36) is eliminated by partial integration

(and neglecting the remaining surface integral) and this leads to the definition of
the gravitational stress-energy tensor, here written as T γ

h :

δI =
∫

d4x||e||δeh
γ

[
1
2

eγ

hL +Aγ

h−
1
||e||

(||e||Bγα

h ),α

]
de f
=

∫
d4x||e|| δeh

γ T γ

h ,

(39)
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with

T γ

h =
1
2

eγ

hL +Aγ

h−
1
||e||

(||e||Bγα

h ),α . (40)

This form with mixed-type indices (spacetime/tetrad, upper/lower) naturally arises
from tetrad variation. If we want to transform it into a homogenous representation,

we have to use a convention about the order of indices. Here we define T µγ de f
=

eµhT γ

h , i.e. the tetrad index should become the first.
The above derivation of T from L is similar to the EINSTEIN-theory

(HILBERT 1915), except that we used a more general LAGRANGIAN and tetrads
instead of the metric tensor. For the EINSTEIN-case with LE = R(gµν ,gµν ,λ ) and
δL = δgµν T µν

(E) it is easy to show, that one would obtain by tetrad variation like

above, the tensor T γ

h = ehν T νγ

(E), which is equivalent.

In the next section it will be shown, that a conservation law can be derived
for the general stress-energy tensor defined in Eq. (40), that expresses energy-
momentum conservation.

However, for the general theory, in contrast to EINSTEIN-theory, where T γλ

(E) =

Rγλ − 1
2 gγλ R holds, the symmetry and reality of T γλ is not guaranteed in all cases.

This will be discussed in Sect. 4.

3.2 Energy-momentum conservation

In this section we derive a conservation law for the stress-energy tensor defined
in Eq. (40). As explained above, this definition holds for all gravitation theories,
which are derived from a LAGRANGIAN of the form (30), including EINSTEIN-
and matrix-theory.

The easiest way to compute the covariant derivative is to use a tensor density
(see e.g. [9]), which here is defined by (the tetrad index “h” has to be transformed
into a spacetime index “σ”)

T γ

σ

de f
= ||e||eh

σ T γ

h = ||e||
(

1
2

δ
γ

σL + eh
σ Aγ

h

)
− eh

σ (||e||Bγα

h ),α . (41)

We have to compute the divergence of this tensor density: 14

T γ

σ ,γ =
1
2
(||e||L ),σ +(||e||eh

σ Aγ

h),γ − eh
σ ,γ(||e||B

γα

h ),α − eh
σ (||e||Bγα

h ),αγ︸ ︷︷ ︸
=0

(42)

=
1
2
(||e||L ),σ +(||e||eh

[σ ,α]B
αγ

h ),γ − eh
σ ,γ(||e||B

γα

h ),α (43)

14 Consider the antisymmetry of Bγα

h = −Bαγ

h and the relation eh
σ Aγ

h = −eh
σ eb

α ra
bhBαγ

a =
eh
[σ ,α]B

αγ

h (derived from Eqs. (37), (38). Also used is the derivation of the tetrad determinant:

|e|,σ = |e|eγ

heh
γ,σ and in Eq. (45) the definition of T α

h is inserted again.
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=
1
2
(||e||L ),σ +(||e||eh

[σ ,α]B
αγ

h − eh
σ ,α ||e||B

αγ

h ),γ + eh
σ ,γα(||e||Bγα

h )︸ ︷︷ ︸
=0

(44)

=
1
2
(||e||L ),σ − (||e||eh

α,σ Bαγ

h ),γ =
1
2
(||e||L ),σ − eh

α,σγ ||e||B
αγ

h

−eh
α,σ (||e||Bαγ

h ),γ︸ ︷︷ ︸
=||e||( 1

2 eα
h L +Aα

h −T α
h )

(45)

= ||e||
(

1
2
L,σ +

1
4

(
eγ

heh
γ,σ +(eγ

heh
γ,σ )∗

)
L − eh

α,σγ Bαγ

h

−eh
α,σ

(
1
2

eα
h L +Aα

h −T α
h

))
(46)

= ||e||(1
2
L,σ +

1
4
((eγ

heh
γ,σ )∗− eγ

heh
γ,σ )L − eh

α,σγ Bαγ

h − eh
α,σ (Aα

h −T α
h )).

(47)

If we use the condition, that L (eh
γ ,e

h∗
γ ,eh

α,γ ,e
h∗
α,γ) does not explicitly depend on

xµ , we can compute its partial derivation with the definitions of the terms A,B

L,σ =
∂L

∂eh
γ

eh
γ,σ +

∂L

∂eh
α,γ

(
eh

α,γ

)
,σ

+ cc.

= Aγ

heh
γ,σ +(Aγ

h)
∗(eh

γ,σ )∗+Bαγ

h eh
α,γσ +(Bαγ

h )∗(eh
α,γσ )∗. (48)

Inserting this in Eq. (47), we compute the real part of the expression, where only
one term on the rhs. remains:15

ℜ(T γ

σ ,γ) = ||e||ℜ(eh
α,σ T α

h ) = ℜ(eh
α,σ eµ

h T α
µ ). (49)

At last, we can easily show from the definition of the CHRISTOFFEL symbols
(considering only real tetrads), that for any symmetric tensor T λα = T αλ holds

gλ µΓ
µ

ασ T λα = eh
α,σ ehλ T λα , (50)

so finally, if T is symmetric and real, the covariant derivative vanishes

T γ

σ ;γ = T γ

σ ,γ −Γ
γ

σβ
T β

γ = 0. (51)

As conclusion it is to state, that the divergence of the stress-energy tensor is zero, if
T is symmetric and real. This holds for all theories described by the LAGRANGIAN

of Eq. (30), since the explicit structure of the symbol U [ f b]
a is not used in the above

computation.
We have to add, however, that for spaces which represent real matter distribu-

tions, the actual symmetry follows from the fact, that it equals the stress-energy
tensor of matter T µν

(g) = T µν

(m) . This equation is usually derived by simply adding
both LAGRANGIANS and it postulates that matter acts as the source of the grav-
itational spacetime curvature. Esp. for the cosmological most relevant cases, the

15 consider L = L ∗
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ideal fluid approximation for matter is used, which is given by the real, symmetri-
cal tensor

T µν

(m) = (ρ + p)uµ uν + pgµν , (52)

where ρ is mass-energy density, p pressure and uµ the 4-velocity. This is discussed
in detail in Sect. 4.

3.3 Curvature scalar R and EINSTEIN-LAGRANGIAN in tetrad-form

In this section we will show, that the LAGRANGIAN of the EINSTEIN-theory can
be written as special case of L (a,b,c,d) in Eq. (30). To prove this, we have to
express the curvature scalar R by tetrads (we consider only real tetrads here).
This is a quite lengthy computation, because one has to start with the complete
RIEMANN-tensor, expressed by tetrads, and then to reduce it with R = ηmnRs

mns.
Similar computations can be found, with different notations, in various papers,
e.g. [27]. Therefore, we have put it into the Appendix 8.3 and will give here the

result (again rb
de f
= ra

ba as contracted form)

R =−2eλbrb,λ +
1
4

rc
abη

sb(2ra
cs +ηxcη

anrx
ns)+η

xbrxrb. (53)

This expression contains also second derivatives of the tetrads, namely the first
term rb,λ . For the LAGRANGIAN it is eliminated by partial integration:∫

|e|eλbrb,λ =−
∫

(|e|eλb),λ rb =−
∫

η
sb(|e|eλ

s ),λ rb =
∫
|e|ηsbrsrb , (54)

so we finally get an EINSTEIN-HILBERT-LAGRANGIAN, which is bilinear in the
first derivatives ra

bc:

LE =η
sbrsrb−

1
4

rc
abη

sb(2ra
cs+ηxcη

anrx
ns) = ra

f brc
gdη

f g(δ b
a δ

d
c −

1
2

δ
b
c δ

d
a −

1
4

ηacη
bd).

(55)

The same expression, in different notation, can be found in [24], Eq. (1) and [25],
Eq. (6). Comparing this with Eqs. (30)–(32) gives

LE = L (1,−1
2
,−1

4
,0). (56)

3.4 Isotropic coordinates and “viable” tetrad theories

The term “viable” gravity theories is widely used in the literature. Nester [32]
(introduction), defines it as “one-parameter class of teleparallel theories which
agree with Einstein’s theory to post-Newtonian order”. Muench et. all [31], give
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a similar definition of viable Lagrangians (p. 15), based on a three-parameter-set
(a1,a2,a3), which is obviously equivalent to our set (a,b,c).16

In this section we give a classification of tetrad theories defined by Eq. (32).
We show, that for all spacetimes, where isotropic coordinates can be used, a cer-
tain subset, described by the relation a + b + 2c = 0 (including EINSTEIN- and
matrix-theory), have the same stress-energy tensor. Consequently, they have the
same vacuum solutions, e.g. the fundamental SCHWARZSCHILD-metric for spher-
ical symmetry. Only those are considered as “viable” theories in the following
sections. All others fail in the reality test.

We request, that all viable theories must have real tetrads as solutions repre-
senting the SCHWARZSCHILD-metric. Thus we can neglect the term dLd , which
is zero for real tetrads, in this section. (Its variation produces additional imaginary
terms ∼ i, however, which have to vanish independently, see Sect. 4.2.)

For concrete computations with tetrads, one must be careful not to mix the
different index-types. Therefore we introduce here the symbol zµ

a ≡ eµ
a as replace-

ment term for the inverse tetrads, in this and the next sections.
A static, isotropic coordinate system is defined with two real functions

f (x1, ..,x3),
g(x1, ..,x3) and the diagonal tetrads

(ea
µ) = diag[ f ,g,g,g], (zµ

a ) = diag[
1
f
,

1
g
,

1
g
,

1
g
], |e|= f g3, (57)

and it leads to the diagonal metric (gµν) = diag[ f 2,−g2,−g2,−g2], which
includes the SCHWARZSCHILD-metric. The not vanishing derivatives of the
tetrads are

e0
0,k = f,k, ek

k,m = g,m, k,m = 1,2,3

We now substitute f = exp(µ) and g = exp(λ ). The non-vanishing antisymmetric
forms ra

bc are (k = fixed, all “r-triplets” - with three different indices - are zero):

r0
0k = e0

[0,k]z
0
0zk

k =
µ,k

g
, rk

km = ek
[k,m]z

k
kzm

m =
λ,m

g
, k 6= m

To compute the stress-energy tensor, we need the terms U f b
a defined in Eq. (33),

which are

U f b
a = η

f g(arc
gcδ

b
a +brb

ga + crc
gdηacη

bd)

and the non-zero antisymmetric forms are (m = fixed)

U [0k]
0 = ark− (2c+b)r0

0k =−1
g
[(a+b+2c)µ,k +2aλ,k]

U [mk]
m = ark− (2c+b)rm

mk =−1
g
[aµ,k +(2a+b+2c)λ,k], m 6= k.

(58)

16 They give as viable class a1 = 1,a2 = −2,a3 = arbitrary (a3 = − 1
2 , for the teleparallel

equivalent of Einstein’s theory).
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From the combination of the abc-factors above, one can see, that all real tetrad
theories with a + b + 2c = 0 have the same U-terms (up to a constant factor a,
which we can set to a = 1, without loss of generality).

Since the constants (a,b,c) appear nowhere else in the LAGRANGIAN, those
theories have the same stress-energy tensor. In Sect. 3.3 it is shown, that the
EINSTEIN-LAGRANGIAN is LE = L (1,− 1

2 ,− 1
4 ,0), which fulfills this crite-

rion. Also matrix-theory Lz = L (1,−1,0,− 1
2 ) belongs to this class. Because

a+b+2c is the weight of all “r-doublet”-quadrats in Eq. (32) (terminology intro-
duced in Sect. 3 Eq. (18), this class is characterized by LAGRANGIANs, which do
not contain quadrats of r-doublets.17 It is generated by setting b =−1−2c, which
defines the set of “viable” theories by two real constants c,d

Lv(c,d)
de f
= L (1,−1−2c,c,d) = La−Lb + c(Lc−2Lb)+dLd . (59)

This class is investigated in the following Sect. 4. The value of the parameter c
then defines the theory: c = 0 (and d = − 1

2 ) describes matrix-theory and c = − 1
4

(and d = 0) is the EINSTEIN theory.18 For a convenient checking of the results,
the U-terms for this LAGRANGIAN are listed in the Appendix 8.2.

In generalization of the Eqs. (58), it can be shown, that for tetrad fields, where
all “r-triplets” rx

yz = 0, (x 6= y 6= z) are zero, the U-terms of all viable theories are
equal (independent of “c”) and consequently the stress-energy tensor is equal to
the EINSTEIN-tensor (except terms from Ld , of course).

As the computations in the Sects. 4.3.1–4.3.2 show, these viable theories also
agree with the Einstein-theory in first and second PPN-order.

4 Comparison between EINSTEIN- and matrix-theory

For the comparison of different theories we use the general “viable” LAGRANGIAN
Lv(c), defined in Eq. (59) above. For this we derive from Eqs. (31) and (33) the
following U-terms, which are explicitly listed in the Appendix Eq. (113) for con-
venient checking

U [ab]
x = (ηac

δ
b
x −η

bc
δ

a
x )r∗c − (1+2c)(ηac(rb

cx)
∗−η

bc(ra
cx)

∗)+2cη
ac

η
bd

ηxy(r
y
cd)

∗

+i(δ a
x tb∗−δ

b
x ta∗)+ i∆ c f ab

ηx f r∗c . (60)

The computation of the stress-energy tensor for all test cases is then done with the
following steps.
(A) We start with the 16 covariant tetrads ea

µ which represent the problem and
compute (B) the determinant |e| and (C) the 16 inverse tetrads eµ

a , defined by

the orthogonality Eq. (2). (D) compute the 24 coefficients ra
bc

de f
= ea

[β ,γ]e
β

b eγ
c . (E)

17 We note, that the matrix-LAGRANGIAN can also be characterized as the only one, that con-
tains no quadrats of “r-triplets” neither.

18 The parameter d is not explicitly implemented, because it suffices
to omit all terms ∼ i (or formally set i = 0) to use d = 0. For d 6=
0, its actual value plays no roll for real, symmetric matter tensors (e.g.
vacuum) as it is demonstrated in the various test cases in Sect. 4. However, the matrix
Lagr. forces d =− 1

2 .
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compute the 24 U [ab]
x with above Eq. (60) resp. (113). (F) compute L = 1

2 rx
abU [ab]

x

and the 16 Aγ

h of Eq. (37) and the 24 Bγα
a of Eq. (38). (G) Finally compute T γ

h with
Eq. (40) and optionally T µγ = ηmheµ

mT γ

h . These components of the stress-energy
tensor then contain the parameter “c” and are valid for the class Lv(c).

For comparing the theories, we then have to use c = 0 for matrix theory and
c =− 1

4 (and formally set i = 0) for the EINSTEIN-theory.
The above described computations are straightforward, but quite lengthy and

error-prone. Existing software packages are either not well designed for these
problems, or not free.
That is why, we have developed “Symbolic” [38], a small Java-program for such

symbolic formula manipulations and the test of given solutions. It is a script-driven
formula interpreter, especially designed for tensor calculus in GR, and produces
TeX- and PDF-output files. It can be found, together with various sample scripts
(nearly all test cases of this paper in tetrad formulation, as well as the correspond-
ing problems for the Einstein theory and their results as PDF-files). Also available
on this server is a web interface for testing it.

4.1 “Unphysical” tetrads

In the literature this kind of tetrads are discussed since the 1980-ies and by some
authors they are considered as “death warrant” for the teleparallel theory (tetrad
gravity). The first author, who presented them was Kopczyński. He showed in
[20], that for some metrices the field equations are insufficient to determine the
tetrads (resp. torsion tensor) completely. Then followed several papers, which tried
to circumvent the problem, but all of them suffering from other serious physi-
cal problems [6; 21; 30]. Esp. Nester [32] gives a very good overview about this
dilemma. The essential statement of his paper is, however, that those tetrads are
non-geneneric and occur only for very special solutions. Later work, using Dirac’s
constraint algorithm showed, that generic initial values have deterministic evolu-
tion while certain special initial configurations allow some undetermined evolu-
tion possibly only within a limited spatial region [7].

Here we show, that typical “strange” tetrads are excluded in the matrix theory,
due to the parity violating term Ld in Eq. (32). A deeper, general analysis has to
be done yet. A prototype for this kind of tetrads (compare [32], p. 1008) is given
with one arbitrary function χ(x0):

ea
µ =

 cosh χ 0 0 sinh χ

0 1 0 0
0 0 1 0

sinh χ 0 0 cosh χ

 , |e|= 1 (61)

and it produces a flat MINKOWSKI-metric gµν = ηµν , if χ is real.19 The prob-
lem, that arose within previous tetrad gravity theories was, that the vacuum field
equations T γ

h = 0 are identically fulfilled for any function χ(x0) and thus do not
pose any restriction on it. This fact obviously contradicts the assumption, that the

19 I.e. χ = χ∗. For the matrix theory, however, we generally consider χ(x0) as complex valued
function, which gives g00 =−g33 = ℜ(eχ−χ∗),g03 = 0, from the definition (21).
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tetrads (resp. torsion) possess a physical meaning, because they cannot be derived
from some initial conditions.

In the following we show, that for the matrix theory - also for solutions with
real tetrads - there are non-vanishing terms T γ

h 6= 0, accruing from Li, and thus
this problem here does not exist.

We have only non-vanishing 2 r-terms, namely20

r0
03 =−χ,0 cosh χ, r3

03 =−χ,0 sinh χ. (62)

For the EINSTEIN-theory it is obvious (the curvature tensor is zero), that the vac-
uum field equations are identically fulfilled. Since here all “r-triplets” are zero,
it is consequently already clear from the considerations of Sect. 3.4, that for real
tetrads only the variation of Ld can contribute to the field equations.

For explicit computing, we do not list the intermediate U-terms here (10 of
them 6=
0). We only note that L = 0, all 16 Aγ

h = 0 and 10 Bγα
a are 6= 0. Finally, four

T γ

h do not vanish, which are explicitly

T 1
1 = T 2

2 =
1
2
(χ

∗
,00 +(χ

∗
,0)

2)(eχ−χ∗ − eχ∗−χ)

+
1
2

χ
∗
,0χ,0(eχ−χ∗ + eχ∗−χ)− (χ

∗
,0)

2eχ−χ∗ and

T 1
2 = −T 2

1 =
i
2
(χ

∗
,00 +(χ

∗
,0)

2)(eχ−χ∗ + eχ∗−χ)

+
i
2

χ
∗
,0χ,0(eχ−χ∗ − eχ∗−χ)− i(χ

∗
,0)

2eχ−χ∗ . (63)

We recognize from Eq. (63): 1. The constant “c” does not appear in any com-
ponent of T , and consequently the real part of the stress-energy tensor is indepen-
dent of “c”, i.e. equal for all viable theories.
2. For real tetrads (χ = χ∗) follows T 1

1 = T 2
2 ≡ 0 and the other two components

T 1
2 ∼ i, T 2

1 ∼ i are only present for matrix-theory and the vacuum equations
T 1

2 = T 2
1 = 0 pose restrictions on χ(x0) only here.

3. The unique solution of T 1
1 = T 1

2
!= 0 for general complex χ (within the matrix-

theory) is easily derived as simple linear function χ(x0) = kx0 + c with two con-
stants: k = real, but complex c. The free parameters c,k are then clearly deter-
mined by boundary conditions.

As bottom line we resume again, that the problem solved in this section was
not the existence of a solution, but the exclusion of physically unreasonable solu-
tions. Of course, our computations here are no ultimate proof, that such solutions
do not exist, but a strong argument.

20 For the inverse tetrads we use again the symbols zµ
a

de f
= eµ

a to distinguish them from
the ea

µ . They are given as z0
0 = z3

3 = cosh χ, z0
3 = z3

0 = −sinh χ . From this we get e.g.
r0

03 =−e0
3,0(z

0
0z3

3− z3
0z0

3) = χ,0 cosh χ .
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4.2 SCHWARZSCHILD-solution

In this section we show, that the important SCHWARZSCHILD-metric is also a vac-
uum solution of the matrix field equations. From the considerations in Sect. 3.4 it
is clear, that the real parts of the stress-energy tensor are equal for all viable the-
ories, i.e. also for matrix theory. It remains to clarify, however, that the additional
imaginary terms do not pose unsolvable constraints.

The tetrads to use are the same as in Eq. (57). It shows, that it suffices to use
only real tetrads for simplicity, i.e. real functions f (r),g(r). The computations
(again following all steps from (A) to (G) on page 18, which we do not list here)
finally gives the following components of |e|T γ

h (we list here 5 representatives, the
other 11 are similar)

|e|T 0
0 = 2(g,11 +g,22 +g,33)− (g2

,1 +g2
,2 +g2

,3)/g (64)

|e|T 0
1 = 2i( f,2g,3− f,3g,2)/ f

|e|T 1
0 = −4i( f,2g,3− f,3g,2)/g

|e|T 1
1 = ( f g2

,1− f g2
,2− f g2

,3)/g2 +(2 f,1g,1 + f g,22 + f g,33)/g+ f,22 + f,33

|e|T 1
2 = − f,12 +( f,2g,1− f g,12 + f,1g,2)/g+2 f g,1g,2/g2

Their inspection shows, that imaginary terms ∼ i only occur for T 0
k and

T k
0 . They are zero for all spherically symmetric functions f (r),g(r), which was

required. All other terms are real, and - since independent of “c” - equal for
all theories. Hence it is obvious, that the vacuum solution is the well-kown
SCHWARZSCHILD-field. For completeness, we sketch some basic steps here. By
the substitution g = eλ we get for T 0

0 = 0 the simple second order equation

2(λ ′′+
2
r

λ
′)+λ

′2 = 0. (65)

This is solved by λ ′ = − 2
r(1+2r/M) and leads to the well-known expression with

an arbitrary constant c1:

gkk =−g2 =−exp(2λ ) =−c1(1+
M
2r

)4. (66)

The other components give two similar equations and finally lead to

g00 = f 2 = exp(2µ) = c0
(1− M

2r )
2

(1+ M
2r )

2
. (67)

which is the known metric for isotropic coordinates [28], [37]. According to the
metric definition (21) the signature [+,−,−,−] is a forced result of the matrix
theory. This is in contrast to other tetrad- or the Einstein-theory, where the signa-
ture must be postulated as additional assumption (eg. as boundary condition for
r → ∞). Unlike other tetrad theories, the matrix theory also does not presuppose
the MINKOWSKI metric, when the fundamental matrix LAGRANGIAN Eq. (24) is
considered.
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4.3 PPN-test

In this section we perform a comparison between Einstein- and matrix-theory,
based on the well-known PPN-scheme. It is shown, that both theories give iden-
tical results up to standard parametrized post-Newton (PPN) approximation order
[28; 42].21

4.3.1 Linear PN approximation

For solving the linear field equations of the PPN scheme, we use a tetrad ansatz
with 2× 3 non-diagonal - generally complex valued - terms vk ± hk (k = 1,2,3)
and 3 equal space-diagonal elements ek

j = gδ k
j , with f ,g∼ 1+O(ε2) and hk,vk ∼

O(ε3). It produces the metric tensor, which is used for the linear PPN approxima-
tion. Latin letters j,k, .. = 1,2,3 denote space indices. The symbols used here are
in accordance to those for the SCHWARZSCHILD metric in Eq. (57) and Sect. 4.2,
because this ansatz can be considered as its generalization.

e0
0 = f = 1+ µ, e0

k = vk +hk, ek
0 = vk−hk, ek

k = g = 1+λ

(e) =

 f v1 +h1 v2 +h2 v3 +h3
v1−h1 g 0 0
v2−h2 0 g 0
v3−h3 0 0 g

 . (68)

and gives the linearized metric

g00 = ℜ((e0
0)
∗e0

0− (e1
0)
∗e1

0−·· ·)≈+1+2ℜ(µ)
de f
= +1+h00 = +1+O(ε2),

g11 = ℜ((e0
1)
∗e0

1− (e1
1)
∗e1

1−·· ·)≈−1−2ℜ(λ )
de f
= −1+h11 =−1+O(ε2) , . . .

g01 = ℜ((e0
0)
∗e0

1− (e1
0)
∗e1

1−·· ·)≈ 2ℜ(h1)
de f
= h01 = O(ε3) , . . .

g12 ≈ 0, . . . .

In this approximation only the real parts of hk enter into the metric, and the vk
do not contribute at all. For the computation of the stress-energy tensor in linear
approximation, as inverse tetrads eµ

a are to use the simple diagonals eµ
a ≈ δ

µ
a and

for the determinant |e| ≈ f g3 ≈ 1. It shows in the following, that it suffices again
to consider only real tetrads, i.e. all λ ,µ,hk,vk = real. This ansatz is valid up to
the requested approximation order and solves all complex equations.

We receive the following r-terms as step (D) in the general scheme (six repre-
sentatives listed here):

r0
01 =−(h1 + v1),0 + µ,1 r0

12 = h1,2−h2,1 + v1,2− v2,1

r1
01 = (v1−h1),1−λ,0 r1

02 = (v1−h1),2 r1
12 = λ,2 r1

23 = 0 (69)

21 We use the flat spacetime metric with the signature η = [1,−1,−1,−1], which has the
opposite sign as in most GR-textbooks, and also for the metric results the opposite sign. Our
form naturally evolves from the matrix theory (see Eq. (7). It is also the form mostly used in
relativistic quantum mechanics.
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In the linear case, there is no need for the auxiliary terms L ,Aγ

h,B
γα

h , since the

stress-energy tensor can be computed from the U [ f b]
a directly as T γ

h ≈ −Bγα

h,α ≈
−U [γα]

h,α . Here we need the components T µγ ≈ ηµhT γ

h which have to be equal to
the ideal fluid tensor of the matter T µγ

M . For this comparison we compute the sym-
metrized T (µγ) = T µγ +T γµ and antisymmetrized components T [µγ] = T µγ−T γµ ,
for which we list six representatives here

1
2

T (00) = 2(λ,11 +λ,22 +λ,33)+O(ε4) (70)

1
2

T (10) = h1,22 +h1,33−h2,12−h3,13−2λ,01 + i(v3,2− v2,3),0 +O(ε5) (71)

1
2

T (11) = 2h2,02 +2h3,03 +2λ,00−λ,22−λ,33−µ,22−µ,33 +2i(v2,3− v3,2),1 +O(ε5) (72)

1
2

T (21) =−h1,02−h2,01 +λ,12 + µ,12 + i(v3,1− v1,3),1 + i(v2,3− v3,2),2 +O(ε5) (73)

1
2

T [10] = (4c+1)(v2,12 + v3,13− v1,22− v1,33)+ i(h3,2−h2,3),0 +2i(v3,2− v2,3),0 +O(ε5) (74)

1
2

T [21] = (4c+1)(v2,01− v1,02)+ i(h1,13 +h2,23 +h3,00 +h3,33)+ i(λ,03−µ,03)

+i(v3,00 + v3,11 + v3,22− v3,33−2v1,13−2v2,23)+O(ε5) (75)

The inspection of these terms shows the following.
1. The Einstein theory is given by c =− 1

4 and formally i = 0, which results in -
as it must be - all T [µν ] ≡ 0. The symmetric terms are simplified with the usual 4
gauge conditions, which read here

λ,k + µ,k = O(ε4) and 2hk,k +3λ,0 = O(ε5)

The fact, that the field variables vk do not enter the field equations, is a conse-
quence of not contributing to the metric in this approximation. This is a basic
problem of the - a priory symmetric - TEGR theory: the number of field variables
exceeds the number of field equations, resulting in free fields [27].

Since it is known, that the Einstein-theory gives the correct results, there is
no need to compute it here. We sketch here only the basic computation steps,
needed in the following, after [28; 42]. The matter tensor of a perfect fluid is in
this approximation given as (with rest-mass density ρ , pressure p and velocity
u j)22

T 00 !=−8πρ, T j0 !=−8πρu j, T jk !=−8π(ρu juk + pδ
jk) (76)

The known result is

µ =
1
2

h00 =−U +O(ε4), h j =
1
2

h0 j =
7
4

Vj +
1
4

Wj +O(ε5),

λ =−1
2

h11 = U +O(ε4), . . . (77)

22 The geometric stress-energy tensor T αβ in our notation equals −8π× the matter tensor
T αβ

M , and u j = u j .
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with the auxiliary fields:

U
de f
=

∫
ρ(t,x′)
|x−x′|

d3x′, Vj
de f
=

∫
ρ(t,x′)u′j
|x−x′|

d3x′,

Wj
de f
=

∫
ρ(t,x′)(u′ · (x−x′))(x j− x′j)

|x−x′|3
d3x′.

(78)

2. For the matrix theory we have to show, that all additional terms in
Eqs. (71). . . (75) (compared to the Einstein-case above) are zero in the requested
order, and consequently the metric is the same. The above computation has made
no use of the fields vk, which thus can be freely chosen (within the order limit
vk ∼O(ε3)). We set it here as with a simple ansatz from one potential “v”

vk = v,k. (79)

With this ansatz all additional summands in the symmetric Eqs. (71). . . (73) van-
ish. Also the term i(h3,2 − h2,3),0 ∼ O(ε4) in (74) does not contribute in the
required order T 10 ∼O(ε3) and finally the last Eq. (75)23

1
2

T [21] = i
(

h3,00 + v3,00 +
1
2

λ,03−∆v,3

)
≈ i

(
1
2

λ,03−∆v,3

)
!= O

(
ε

5) (80)

leads to an additional “gauge” condition for the potential v

∆v =
1
2

λ,0. (81)

It is solved with the help of the “super-potential” χ(x, t)
de f
= −

∫
ρ(t,x′)|x−x′|d3x′

(defined in [42], p. 94) and gives v =− 1
4 χ,0 and finally

v j =−1
4

χ,0 j =−1
4
(Vj−Wj).

As bottom line of this section we can state, that all T µν and consequently also
the metric for the matrix theory are identical to those of the Einstein theory.

4.3.2 Second PPN-order

To perform the second order calculations we have to determine g00 up to O(ε4).
For this we have to use the same ansatz (68) for (e) with more accurate inverse
and the gauge conditions of Sect. 4.3.1 already implemented

(e) =

 f h1 + v,1 h2 + v,2 h3 + v,3
v,1−h1 1/ f 0 0
v,2−h2 0 1/ f 0
v,3−h3 0 0 1/ f



(z) =

 1/ f −h1− v,1 −h2− v,2 −h3− v,3
h1− v,1 f 0 0
h2− v,2 0 f 0
h3− v,3 0 0 f

 (82)

23 Consider h3,00,v3,00 ∼O(ε5).
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with f = eµ . The inverse tetrads (z) = (e)−1 above are sufficiently accurate up to
O(ε5) and also |e| = 1/ f 2 +O(ε6). Again, all tetrads can be considered as real,
also for this approximation order. We skip all intermediate steps (D)...(G) here and
give only the requested T 00 = ηmhz0

mT 0
h .

We obtain accurately up to order O(ε5):24

T 00 = µ
2
,1 + µ

2
,2 + µ

2
,3−2(µ,11 + µ,22 + µ,33)+2iµ,3(h1,2−h2,1)

+2iµ,2(h3,1−h1,3)+2iµ,1(h2,3−h3,2)+O(ε6) (83)

= µ
2
,1 + µ

2
,2 + µ

2
,3−2(µ,11 + µ,22 + µ,33)+O(ε5). (84)

Again T 00 does not depend on the value of the parameter “c”, i.e. it is identical
for all theories of this class. It is consequently clear without computation, that
matrix theory is up to this order not distinguishable from the EINSTEIN theory.

4.4 New vacuum solutions

The aim of this section is, to present some new vacuum solutions, which the
EINSTEIN-theory does not possess. In the light of Sect. 4.1, where we showed,
that the matrix theory includes additional constraints, these extra degrees of free-
dom are not quite obvious. It might be possible, that solutions of this type can help
to solve the galaxy rotation problem without the obscure “dark matter”, [5; 41].

We use the following simple, static tetrads, with all diagonal elements = 1
and three real functions vk(x1,x2,x3),k = 1,2,3. Here exact vacuum solutions can
be computed quite easily, because |e| = 1 holds, and the inverse tetrads are also
simple:

(e) = (ea
µ) =

 1 v1 v2 v3
0 1 0 0
0 0 1 0
0 0 0 1

 , (e)−1 = (zµ
a ) =

 1 −v1 −v2 −v3
0 1 0 0
0 0 1 0
0 0 0 1

 .

(85)

The resulting metric is

g00 = 1, g0k = vk, gik = vivk−δik. (86)

The only three non-vanishing ra
bc terms are from the definition Eq. (18)

r0
12 = v1,2− v2,1, r0

13 = v1,3− v3,1, r0
23 = v2,3− v3,2

24 The terms 2iµ,3(h1,2−h2,1)+ · · · ∼ O(ε5) can also be neglected, because µ is needed only
up to O(ε4).
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and the stress-energy tensor T γ

h can be computed exactly, following the remaining
steps (E),.. , (G), with 5 repesentatives listed here (the 11 others similar):

T 0
0 = 3c(v1,2− v2,1)2 +3c(v1,3− v3,1)2 +3c(v2,3− v3,2)2

+2c(v1,22 + v1,33− v2,12− v3,13)v1 +2c(v2,11 + v2,33− v1,12− v3,23)v2

+2c(v3,11 + v3,22− v1,13− v2,23)v3

T 0
1 = (1+2c)(v2,12 + v3,13− v1,22− v1,33)

+c[(v1,2− v2,1)2 +(v1,3− v3,1)2− (v2,3− v3,2)2]v1

+2c(v1,3− v3,1)(v2,3− v3,2)v2 +2c(v1,2− v2,1)(v3,2− v2,3)v3

+iv1(v2,3− v3,2),1 + iv2(v3,1− v1,3),1 + iv3(v1,2− v2,1),1
T 1

0 = 2c(−v1,22− v1,33 + v2,12 + v3,13)

T 1
1 = −c(v1,2− v2,1)2− c(v1,3− v3,1)2 + c(v2,3− v3,2)2 + i(v3,2− v2,3),1

T 1
2 = 2c(v2,3− v3,2)(v3,1− v1,3)+ i(v3,2− v2,3),2

We discuss here the vacuum solutions T γ

h = 0. For the case c 6= 0 they force
immediately

v1,2− v2,1 = v1,3− v3,1 = v2,3− v3,2 = 0 (87)

This is exactly the condition for the flat (Minkowskian) spacetime ra
bc = 0, which

is consequently the only vacuum solution for the EINSTEIN-theory with c =−1/4.
For the matrix-theory we have instead c = 0, where the situation is quite dif-

ferent. Then the solutions of T γ

h = 0 are given by

(vk, j− v j,k),m = 0, i.e. vk, j− v j,k = ck j = const., (k, j,m = 1,2,3),
(88)

which is obviously a generalization of Eq. (87). The three antisymmetric constants
ckm =−cmk, which define an axial vector, offer new degrees of freedom as linear
functions vk = 1

2 ckmxm, that in the EINSTEIN-theory all must be zero. We have
to discuss however, that these solutions - although exact - cannot be regarded as
global solutions, because the associated metric is not asymptotically flat. But they
could probably be considered as regional approximation of similar generalized
tetrads, which have to be found yet.

In the realm, where the above solutions are approximately valid, they signif-
icantly modify e.g. the motion of test particles. This should be shortly sketched
by a simple example. The relativistic equations of motion for small velocities
u0 ≈ 1,uk � 1 give approximately25

u̇m ≈ (vm,k− vk,m)uk (89)

If the motion then is considered as rotation inside a plane, perpendicular to the axis
ckm, we find a constant angular velocity, i.e. the tangential velocity is proportional
to the distance from the axis. If we consider this as galaxy rotation, this increase
is too fast, compared with the known flat rotation curves, [5; 41], but this could be
surely attributed to the simplicity of the tetrad ansatz Eq. (85).

25 The relevant CHRISTOFFEL-symbols are Γ m
0k ≈

1
2 (g0m,k−g0k,m) = 1

2 (vm,k− vk,m).
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5 U(1) Noether-current

Noether’s theorem tells us, that every symmetry of the LAGRANGIAN leads to a
conserved current. The simplest case for matrix theory is the abelian U(1) sym-
metry ea

µ → eiϕ ea
µ , as explained on page 7. This current has no counterpart in real

tetrad theories. In DIRAC’s theory, however, it results in the conservation of charge
[8].
To derive it here, we define the complex tensor Iα de f

= ||e||Bγα

h eh
γ = ||e||eα

b U [ f b]
f

(definition Eq. (38)). Inserting the field Eqs. (40) gives (with T
de f
= T γ

h eh
γ ):26

Iα
,α = (||e||Bγα

h eh
γ),α = (||e||Bγα

h ),α eh
γ + ||e||Bγα

h eh
γ,α

= ||e||
(

1
2

eγ

hL +Aγ

h−T γ

h

)
eh

γ + ||e||Bγα

h eh
γ,α = ||e||

(
−T +

1
2

Bγα

h eh
[γ,α]

)
= ||e||(−T +L ).

Since L = real (and also T = real assumed) follows ℑ(Iα),α = 0, and conse-
quently is the conserved real U(1)-Noether-current to define as the imaginary

part Jα de f
= ℑ(Iα). By inserting the U-terms Eq. (60) for the matrix theory (with

c = 0, see also (28) and (113) we get

Iα = ||e||eα
b U [ f b]

f = ||e||eα
b (−2η

bcr∗c +3itb∗)

and finally the conserved real current

Jα = ℑ(Iα) =
i
2
(Iα∗− Iα) = ||e||

[
iηbc(eα

b r∗c − eα∗
b rc)+

3
2
(tb∗eα

b + eα∗
b tb)

]
.

(90)

Therein the first term vanishes for real tetrads (it contains only r-doublets) and the
second term contains only r-triplets.

The physical interpretation of this current is yet unclear. Its explicit computa-
tion shows, that it is zero for all astrophysical test cases in Sect. 4, including PPN-
tests up to order≤O(ε4). Hence it can clearly not be identified with a macroscopic
matter flow. However, Jα is not zero for the new vacuum solutions in Sect. 4.4.

6 When are real tetrads possible?

For comparison with existing “real tetrad theories”, we discuss here a modified
matrix theory, which is described by the LAGRANGIAN L (1,−1,0,0)≡La−Lb
in Eq. (32) (i.e. without the PV-term Ld , resp. d = 0), and only considering real
tetrads, for briefness labelled here as “real matrix theory” (RMT). Its U-terms
are represented by setting c = 0, and formally i = 0 in Eq. (60). As explained
in Sect. 3.4, it belongs to the set of viable theories, which is widely discussed
in the literature [31; 32]. The gravitational field equations of this “RMT” (e.g.

26 consider eγ

heh
γ = 4 and Aγ

heh
γ =−2L .
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for the vacuum T γ

h = 0) are then a set of 16 real equations for the 16 real tetrad
components ea

µ .
The “complex matrix theory” - presented in this paper - differs from this

“RMT” by additional terms T γ

(i)h ∼ i in the stress-energy tensor27 in Eq. (40),
which originate from the variation of Ld (as an example see the linear PPN-tensor
in the eq-system (70). . . (75).

If therein the tetrads are still constrained to be real, these terms are purely
imaginary and decouple from the real parts T γ

(r)h (equal to the matter tensor) and
build 16 homogeneous (non-linear, second order), partial differential equations
T γ

(i)h
!= 0, which are then additional and independent compared to the correspond-

ing RMT. In this case, we consequently have a set of 32 independent real equa-
tions28 for only 16 real tetrad components, which is expected to have generally no
solution.

However, one remarkable result of the test cases in Sect. 4 was, that they all
actually can be solved with real tetrads (for the PPN-tests they are real up to the
required approximation order).29 Therefore we shortly list the general form of
these additional conditions in the following, although we are not yet able to give
a complete mathematical and physical analysis of the solvability with real tetrads.

If we consider only real tetrads, all terms ra
bc,rc, ta, |e|, . . . are also real, and the

imaginary part of the symbol U [ab]
x of Eq. (60), which builds T γ

(i)h becomes

U [ab]
(i)x = i(δ a

x tb−δ
b
x ta)+ i∆ c f ab

ηx f rc, i.e. U [xb]
(i)x = 3itb and Li = 0. (91)

If we define the term T m
(i)h = em

γ T γ

(i)h, the following 16 conditions result, after some
formula manipulations:

T m
(i)h = i[(ra

h f ∆
cx f m

ηxa +
1
2

rm
ab∆

c f ab
ηh f )rc− eα

b ∆
c f mb

ηh f rc,α + eα
h tm

,α ] != 0

(92)

By contracting with eh
β

it is possible to derive explicit formulas for tm
,β = · · ·. For

the trace results the simple divergence-equation

T m
(i)m = i(−tmrm + eα

mtm
,α) =

i
|e|

(|e|eα
mtm),α

!= 0 (93)

For the important linear case ea
µ ≈ δ a

µ we receive the following approximation,
which can be expressed by an antisymmetric “superpotential” Fmb

h =−Fbm
h :30

Fmb
h

de f
= −i∆ mbc f (η f hea

c,a +η f aea
c,h) with T m

(i)h = Fmb
h,b

!= 0. (94)

27 For general complex tetrads these terms T γ

(i)h ∼ i are not purely imaginary, nor are the T γ

(r)h
real. This is only the case for real tetrads.

28 again look at the linear PPN example in Sect. 4.3.1, where actually all 32 equations are
solved with real tetrads.

29 Obviously all statements in this section stay true, if we consider a constant, unitary trans-
formation of all tetrads ea

µ → eiϕ ea
µ , which also does not affect the metric.

30 using T m
(i)h ≈−U [mb]

(i)h,b =−i(∆ c f mbηh f rc,b− tm
,h).
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The trace vanishes identically T m
(i)m ≡ 0, since tm

,m ≡ 0. For the solvability of this

system it is also important, that the identity Fmb
h,bm ≡ 0 holds (because of the anti-

symmetry of F).
It remains to clarify, for which matter tensors the Eqs. (92) resp. (94) have no

solutions, which also satisfy (40), i.e. complex tetrads are actually required.

7 Conclusions and outlook

Here is presented a new classical theory of gravitation, which is in most test
cases (SCHWARZSCHILD-metric, post-Newtonian approximation), identical to the
EINSTEIN-theory. But unlike other tetrad gravity theories, it does not exhibit some
typical physical unreasonable vacuum solutions.

It remains to clarify, if the correspondence of the symmetry groups of matrix-
theory and standard electro-weak theory in particle physics SL(2)×U(1) ⊃
SU(2)×U(1) is merely a pure coincidence, or if there are deeper connections
between both. If the latter is the case, this would surely be worth of discussing in
another paper. It should be possible to extend the global symmetry to a local one
by introducing new gauge fields, likewise for the GSW-theory. But this is a quite
complicated task, also needing a lot of new ideas. Also the issue of complex vs.
real tetrads, requires further investigations. It should be clarified, in which cases
real tetrad solutions are possible and how to interpret the possible imaginary parts
physically.

As shown in Sect. 4.4, there exists a novel type of vacuum solutions, which are
not present in the EINSTEIN-theory. Although the sources of the field are not yet
identified, these solutions have interesting properties regarding the galaxy rotation
problem. To describe the sources of these solutions, it might be necessary to con-
sider non-symmetrical stress-energy matter tensors. EINSTEIN spent his last years
searching for a non-symmetrical field theory [9], which was supposed to incor-
porate also electromagnetism, but without success. We know nowadays, however,
that a classical field theory will not be able to answer all questions, because the
wave-function in quantum mechanics cannot be regarded as physical field.

Also the cosmological implications of the matrix-theory should be investi-
gated. A very preliminary, first test with the simplest real tetrads, which produce
the usual cosmological Robertson-Walker metrices, gives additional imaginary
constraints, which force a spatially flat spacetime metric, i.e. κ = 0. According
to current astronomical knowledge, the matter density is nearly equal the critical
density and does not allow the discrimination of κ , so there is no contradiction.

A remarkable, quite new perspective of the matrix-theory to spacetime geome-
try are the absolute matrices e.g. in (5). These matrices are by definition invariant
under all space-time transformations.
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8 A. Appendix

8.1 A.1 Matrix calculus

Here we want to list some formulas for matrix calculations, which are needed for
the computations in Sects. 2.1 and 2.3. Although quite elementary, they do not
appear in most mathematical textbooks.

a) For quadratic n×n matrices A,B, . . . of arbitrary dimension n holds the fol-
lowing.

• Matrix factors inside the trace can be rotated cyclically31

T (ABC ·X) = T (BC ·XA) = T (C ·XAB) = · · · . (95)

• The trace of a hermitian matrix A† = A is always a real number T (A) =
real, and also of the product of two hermitian matrices T (AB) = real (using
Eq. (95)). But this generally does not hold for traces of more than two factors.

31 The simple proof starts with T (AB) = T (BA), which follows e.g. from the component
representation T (AB) = ∑i j ai jb ji. Due to the associativity of matrix multiplication this can be
extended for more than two matrix factors.
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• For the variation principle we need the following theorem:
The vanishing of the trace T (δxT) != 0 for every variation matrix δx forces

the matrix equation T != 0.

b) The rest of this section holds for 2×2 matrices only.
We define for a matrix A =

(
α,β
γ,δ

)
a “bar”-operation (“adjunction”) as the lin-

ear map Ā de f
=

(
δ ,−β

−γ, α

)
.

• It is obviously interchangeable with hermitian adjugation (Ā)† = (A†), fulfills
¯̄A = A and the evident equations with the identity matrix I:

AB= B̄Ā, ĀA=AĀ= |A|I, A+ Ā=T (A)I, T (A)=T (Ā). (96)

• The product of two matrices AB obeys no definite transformation rule under
T -transformations defined in (15), but the “bar-alternating” product AB̄ trans-
forms in a definite manner as

AB̄→ T AT † T̄ †B̄T̄ = T (AB̄)T̄ . (97)

The same holds for products of more than 2 matrices.

• As a special case of above, the trace of a bar-alternating matrix product with
even number of factors is invariant under T -transformations, eg.

T (. . .AB̄CD̄ . . .) = inv. (98)

• If x,y,z,u are hermitian matrices, representing Minkowski spacetime vectors,
the expressions

F(x,y)
de f
=

i
2
(xȳ−yx̄), V(x,y,z) de f

=
i
2
(xȳz− zȳx),

V4(x,y,z,u)
de f
=

1
2

ℑT (xȳz)ū
(99)

are: F(x,y) = area (non-hermitian, traceless, 6 real comp.), V(x,y,z) = 3-
volume (hermitian, 4 real comp.) and V4(x,y,z,u) = 4-volume (real scalar),
respectively. All three expressions change the sign on odd permutations and
vanish for linearly dependent vectors.

c) Relations including the base-matrices τµ :

• For every matrix A hold the three identities (to derive from the orthogonality
and completeness of the basis)

T (Aτ̄µ)τµ = T (Aτ̄
µ)τµ = 2A, τ

µ Āτµ =−2A,

τ̄
µ Aτµ = 2IT (A) = 2(A+ Ā).

(100)
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• For any non-singular basis (|τ| 6= 0) and any index-combination α,β ,γ holds

τ
α

τ̄
β

τ
γ − τ

γ
τ̄

β
τ

α =−2iεαβγλ
τλ and εαβγλ τ

α
τ̄

β
τ

γ = 6iτλ (101)

where ε is the completely antisymmetric tensor, with the scalar components
ε0123 = 1

|τ| , . . . and ε0123 =−|τ|, . . .. These formulas allow an explicit compu-
tation of the contravariant- from the covariant matrices and vice versa.

• To compute traces of products of PAULI-matrices, like in the Eq. (26) an “index
shifting” technique can be used, which is shortly sketched here. It is based on
the orthogonality relations Eq. (8), which can also be written as σmσ̄l +σlσ̄m =
2ηmlI. We get e.g.

T (σmσ̄lσ
a · · ·) = T ((2ηml −σlσ̄m)σa · · ·) = 2ηmlT (σa · · ·)−T (σlσ̄mσ

a · · ·)
= · · · . (102)

Using this technique multiple times, in combination with the symmetry rela-
tions Eqs. (95) and (96) gives the requested formulas. One example with 4
PAULI-matrices is the identity

1
2
T (σa

σ̄
b
σ

c
σ̄

d) = (ηab
η

cd −η
ac

η
bd +η

ad
η

bc)− i∆ abcd , (103)

where ∆ abcd is the completely antisymmetric symbol, with ∆ 0123 = 1.

8.2 A.2 Some explicit LAGRANGIAN terms expressed by the symbols ra
bc

The following explicit expressions are included, to allow readers to check some
formulas in this paper. They are computed with the help of a small computer pro-
gram for symbolic computations “Symbolic” [38] (see page 19), but can be easily
verified by hand. For uniqueness, the antisymmetric ra

bc are always selected by
the index combination b < c. Then the contracted terms of Eq. (27) are explicitly
given as

r0 = r1
01 + r2

02 + r3
03, r1 =−r0

01 + r2
12 + r3

13, r2 =−r0
02− r1

12 + r3
23,

r3 =−r0
03− r1

13− r2
23

(104)

t0 =−r1
23 + r2

13− r3
12, t1 =−r0

23− r2
03 + r3

02, t2 = r0
13 + r1

03− r3
01,

t3 =−r0
12− r1

02 + r2
01

(105)

First we list some terms of the general Lagrangian in Eq. (32).

La
de f
= η

mnrmr∗n =−
(
r0

01− r2
12− r3

13
)(

r0∗
01 − r2∗

12 − r3∗
13

)
−

(
r0

02 + r1
12− r3

23
)(

r0∗
02 + r1∗

12 − r3∗
23

)
−

(
r0

03 + r1
13 + r2

23
)(

r0∗
03 + r1∗

13 + r2∗
23

)
+

(
r1

01 + r2
02 + r3

03
)(

r1∗
01 + r2∗

02 + r3∗
03

)
(106)

Lb
de f
= η

mnra
mb

(
rb

na
)∗ =−r0

01r0∗
01 − r0

02r0∗
02 − r0

03r0∗
03 +

(
r0

12 + r1
02

)
r2∗

01 +
(
− r0

12 + r2
01

)
r1∗

02 +
(
r0

13 + r1
03

)
r3∗

01

+
(
− r0

13 + r3
01

)
r1∗

03 +
(
r0

23 + r2
03

)
r3∗

02 +
(
− r0

23 + r3
02

)
r2∗

03 + r1
01r1∗

01 +
(
− r1

02 + r2
01

)
r0∗

12

+
(
− r1

03 + r3
01

)
r0∗

13 − r1
12r1∗

12 − r1
13r1∗

13 +
(
r1

23− r2
13

)
r3∗

12 +
(
− r1

23− r3
12

)
r2∗

13 + r2
02r2∗

02

+
(
− r2

03 + r3
02

)
r0∗

23 − r2
12r2∗

12 +
(
− r2

13 + r3
12

)
r1∗

23 − r2
23r2∗

23 + r3
03r3∗

03 − r3
13r3∗

13 − r3
23r3∗

23 (107)
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Lc
de f
= η

mn
ηabη

cd ra
mc

(
rb

nd
)∗ =−2r0

01r0∗
01 −2r0

02r0∗
02 −2r0

03r0∗
03 +2r0

12r0∗
12 +2r0

13r0∗
13 +2r0

23r0∗
23 +2r1

01r1∗
01

+2r1
02r1∗

02 +2r1
03r1∗

03 −2r1
12r1∗

12 −2r1
13r1∗

13 −2r1
23r1∗

23 +2r2
01r2∗

01 +2r2
02r2∗

02 +2r2
03r2∗

03 −2r2
12r2∗

12

−2r2
13r2∗

13 −2r2
23r2∗

23 +2r3
01r3∗

01 +2r3
02r3∗

02 +2r3
03r3∗

03 −2r3
12r3∗

12 −2r3
13r3∗

13 −2r3
23r3∗

23 (108)

Lx
de f
= Lc−2Lb =−2ηabtatb∗ = 2

(
r0

12 + r1
02− r2

01
)(

r0∗
12 + r1∗

02 − r2∗
01

)
+2

(
r0

13 + r1
03− r3

01
)(

r0∗
13 + r1∗

03 − r3∗
01

)
+2

(
r0

23 + r2
03− r3

02
)(

r0∗
23 + r2∗

03 − r3∗
02

)
−2

(
r1

23− r2
13 + r3

12
)(

r1∗
23 − r2∗

13 + r3∗
12

)
(109)

The EINSTEIN-LAGRANGIAN LE reads explicitly (for real tetrads):

LE = La−
1
2
Lb−

1
4
Lc = 2r0

01r2
12 +2

(
r0

01− r2
12

)
r3

13−2r0
02r1

12 +2
(
r0

02 + r1
12

)
r3

23−2r0
03r1

13

−2
(
r0

03 + r1
13

)
r2

23−
1
2
(
r0

12
)2− 1

2
(
r0

13
)2− 1

2
(
r0

23
)2 +2r1

01r2
02 +2

(
r1

01 + r2
02

)
r3

03 + r0
12r1

02

−1
2
(
r1

02
)2 + r0

13r1
03−

1
2
(
r1

03
)2 +

1
2
(
r1

23
)2−

(
r1

02 + r0
12

)
r2

01−
1
2
(
r2

01
)2 + r0

23r2
03−

1
2
(
r2

03
)2

+r1
23r2

13 +
1
2
(
r2

13
)2−

(
r1

03 + r0
13

)
r3

01−
1
2
(
r3

01
)2−

(
r2

03 + r0
23

)
r3

02−
1
2
(
r3

02
)2 +

(
r2

13− r1
23

)
r3

12

+
1
2
(
r3

12
)2 (110)

The two terms of the matrix LAGRANGIAN Lz = Lr + iLi in Eq. (28) are

Lr = La−Lb =
(
r2

12 + r3
13

)
r0∗

01 +
(
− r1

12 + r3
23

)
r0∗

02 +
(
− r1

13− r2
23

)
r0∗

03 +
(
r1

02− r2
01

)
r0∗

12

+
(
r1

03− r3
01

)
r0∗

13 +
(
r2

03− r3
02

)
r0∗

23 +
(
r2

02 + r3
03

)
r1∗

01 +
(
r0

12− r2
01

)
r1∗

02

+
(
r0

13− r3
01

)
r1∗

03 +
(
− r0

02 + r3
23

)
r1∗

12 +
(
− r0

03− r2
23

)
r1∗

13 +
(
r2

13− r3
12

)
r1∗

23

+
(
− r0

12− r1
02

)
r2∗

01 +
(
r1

01 + r3
03

)
r2∗

02 +
(
r0

23− r3
02

)
r2∗

03 +
(
r0

01− r3
13

)
r2∗

12

+
(
r1

23 + r3
12

)
r2∗

13 +
(
− r0

03− r1
13

)
r2∗

23 +
(
− r0

13− r1
03

)
r3∗

01 +
(
− r0

23− r2
03

)
r3∗

02

+
(
r1

01 + r2
02

)
r3∗

03 +
(
− r1

23 + r2
13

)
r3∗

12 +
(
r0

01− r2
12

)
r3∗

13 +
(
r0

02 + r1
12

)
r3∗

23 (111)

Li =
(
r0

23 + r2
03− r3

02
)(

r0∗
01 − r2∗

12 − r3∗
13

)
+

(
− r0

13− r1
03 + r3

01
)(

r0∗
02 + r1∗

12 − r3∗
23

)
+

(
− r1

23 + r2
13− r3

12
)(

r1∗
01 + r2∗

02 + r3∗
03

)
+

(
r0

12 + r1
02− r2

01
)(

r0∗
03 + r1∗

13 + r2∗
23

)
+

(
− r1

13− r2
23− r0

03
)(

r0∗
12 + r1∗

02 − r2∗
01

)
+

(
r1

12− r3
23 + r0

02
)(

r0∗
13 + r1∗

03 − r3∗
01

)
+

(
r2

12 + r3
13− r0

01
)(

r0∗
23 + r2∗

03 − r3∗
02

)
+

(
r2

02 + r3
03 + r1

01
)(

r1∗
23 − r2∗

13 + r3∗
12

)
(112)

La consists solely of “r-doublets”, Lx solely of “r-triplets”. None of the
Lagrangians Lr,Li,LE contains quadrats of r-doublets. In the terms La,Lb,Lc,Lr,LE
r-doublets and r-triplets do not mix, while Li consists solely of mixed products.
Lz = Lr + iLi does not contain quadrats of r-triplets. All La,Lb,Lc have even
parity and only Li has odd parity.
The generalized “viable” LAGRANGIAN of Sect. 3.4 has the form Lv(c) =
Lz +c(Lc−2Lb) = Lz +cLx (definition in Eq. (59), but only for the special case
d = −1/2, see footnote 18). The antisymmetrized U-terms, defined in Eqs. (33)
and (60), for this Lv(c) are explictly (we list here 6 representatives, the other 18
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symbols are similar)

U [01]
0 = −ir0∗

23− ir2∗
03 + ir3∗

02 + r2∗
12 + r3∗

13

U [12]
0 = −(2c+1)r2∗

01 +(2c+1)r1∗
02 +2cr0∗

12 + ir0∗
03 + ir1∗

13 + ir2∗
23

U [01]
1 = ir1∗

23− ir2∗
13 + ir3∗

12 + r2∗
02 + r3∗

03

U [02]
1 = −(2c+1)r2∗

01 +(2c+1)r0∗
12 +2cr1∗

02 + ir0∗
03 + ir1∗

13 + ir2∗
23

U [12]
1 = ir0∗

13 + ir1∗
03− ir3∗

01− r0∗
02 + r3∗

23

U [23]
1 = −(2c+1)r3∗

12 +(2c+1)r2∗
13−2cr1∗

23− ir1∗
01− ir2∗

02− ir3∗
03 (113)

8.3 A.3 Computation of RIEMANN-, RICCI-tensors and R with tetrads

The aim of this section is to compute the R scalar with the tetrad-formalism of
Sect. 2.1 to enable its comparison with the LAGRANGIAN of the matrix-theory, as
presented in Sect. 3.

The RIEMANN-tensor is defined as the [λν ]-antisymmetric expression

Rσ

µνλ

de f
= Γ

σ

µλ ,ν +Γ
σ

ανΓ
α

µλ︸ ︷︷ ︸
de f
= Sσ

µλν

−Γ
σ

µν ,λ −Γ
σ

αλ
Γ

α
µν︸ ︷︷ ︸

de f
= Sσ

µνλ

= Sσ

µλν
−Sσ

µνλ
= Sσ

µ[λν ].

(114)

The CHRISTOFFEL-symbols therein can be expressed by the tetrads (we only con-
sider real tetrads here, because they suffice to describe RIEMANN-spacetime)
using the standard formula

Γ
σ

µν =
1
2

gσα(gµα,ν +gνα,µ −gµν ,α)

=
1
2

gσα((ea
µ eaα),ν +(ea

ν eaα),µ − (ea
µ eaν),α)

=
1
2

gσα(ecµ(ec
α,ν − ec

ν ,α)+ ecν(ec
α,µ − ec

µ,α)+ ecα(ec
µ,ν + ec

ν ,µ))

=
1
2

gσα(ecµ ec
[α,ν ] + ecν ec

[α,µ])+
1
2

eσ
c ec

(µ,ν).

We introduce the new symbols Γ s
µν by transforming the upper index into tetrad

type σ → s

Γ
s

µν

de f
= es

σΓ
σ

µν ↔ eσ
s Γ

s
µν = Γ

σ
µν , (115)

and with them the covariant tetrad derivative is defined as the expression (in con-
trast to the Γ s-symbols, the G s are obviously tensors):

G s
µν

de f
= es

µ;ν = es
µ,ν −Γ

σ
µν es

σ = es
µ,ν −Γ

s
µν (116)

=
1
2
(es

[µ,ν ] + esα(ecµ ec
[ν ,α] + ecν ec

[µ,α])). (117)
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In the following we also will need their tetrad components, which are with the
definitions in Eq. (18)

G s
mn

de f
= eµ

meν
nG s

µν =
1
2
(rs

mn +η
sb(ηmcrc

nb +ηncrc
mb)). (118)

In some references these termes, which are by definition scalars, are titled “Ricci’s
coefficients of rotation”. Then we can compute the second summand as32

Sσ

µνλ
= Γ

σ

µν ,λ +Γ
σ

αλ
Γ

α
µν (119)

= (eσ
s Γ

s
µν),λ +Γ

σ

αλ
eα

s Γ
s

µν = eσ
s Γ

s
µν ,λ +Γ

s
µν(eσ

s,λ + eα
s Γ

σ

αλ
) (120)

= eσ
s Γ

s
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and we get33
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(123)

With this we can compute the tetrad components as
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so we have finally the tetrad representation of the RIEMANN tensor:
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mn−δ
p
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x
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32 The derivatives of contravariant tetrads are obtained from the orthogonality relations as
eσ

s,λ =−eα
s eσ

b eb
α,λ .

33 with es
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λ ,µν
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[ν ,λ ],µ =

−es
[µ,ν ],λ + es

[µ,λ ],ν .
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Remarkable in this representation is the fact, that it is completely expressed by the
G and thus the r-terms, which in turn can be expressed by the ρ-tensor-matrix.

From this we get by contracting over first and fourth index the tetrad compo-
nents of the RICCI tensor as
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(125)

and finally the R scalar34
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study for the determination of the lunar gravity field from PRARE-L tracking
onboard the German LEO mission. Adv. Space Res. (2007) (submitted)

13. Gronwald, F., Hehl, F.W.: On the gauge aspects of gravity. http://arxiv.
org/pdf/gr-qc/9602013 (1996)

14. Gull, S., Lasenby, A., Doran, C.: Imaginary numbers are not real—the geo-
metric algebra of spacetime, and subsequent articles. Found. Phys. 23(9)
(1993)

15. Hammond, R.: Tetrad formulation of gravity with a torsion potential. Gen.
Relativ. Gravit. 26(11) (1994)

16. L. Iorio (2002) Is it possible to test directly general relativity in the gravita-
tional field of the Moon? Class. Quant. Grav. 19 2393 – 2398

17. Y. Itin (2002) Coframe energy-momentum current algebraic properties Gen.
Relativ. Gravit. 34 1819

18. Y. Itin (2002) Energy-momentum current for coframe gravity Class. Quant.
Grav. 19 173
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20. W. Kopczyński (1982) Problems with metric-teleparallel theories of gravita-
tion J. Phys. A. Math. Gen. 15 493 – 506

21. R. Kuhfuss J. Nitsch (1986) Propagating modes in gauge field theories of
gravity Gen. Relativ. Gravit. 18 1207

22. Kusche, J.: Relativistic modeling for geodetic experiments in local space-
times. Reihe A, Heft 110, Deutsche Geodätische Kommission, München
(1996)

23. Liftschitz Landau (1991) Quanten-Elektrodynamik Akademie Verlag Berlin
24. J.W. Maluf A. Goya (2001) Space-time

defects and teleparallelism Class. Quant. Grav. 18
5143 – 5154

25. J.W. Maluf F.F. Faria S.C. Ulhoa (2007) On reference frames in spacetime
and gravitational energy in freely falling frames Class. Quant. Grav. 24 2743
– 2753

26. Mei, T.: A New Variable in General Relativity and Its Applications for Clas-
sic and Quantum Gravity. http://arxiv.org/pdf/gr-qc/0611063
(2006)

27. C. Møller (1961) Further remarks on the localization of energy in the general
theory of relativity Ann. Phys. 12 118 – 133

http://www.spaceflight.esa.int/projects
http://arxiv.org/pdf/gr-qc/9602013
http://arxiv.org/pdf/gr-qc/9602013
http://arxiv.org/pdf/physics/0701105
http://arxiv.org/pdf/physics/0701105
http://arxiv.org/pdf/gr-qc/0611063


38 W. Köhler
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