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Baryon number violation appears in many contexts. It is a requirement for baryogenesis and
is a consequence of Grand Unified Theories (GUTs), which predict nucleon decay. Nucleon
decay searches provide the most direct way to test baryon number conservation and also serve
as a unique probe of GUT scale physics around 1014−16 GeV. Such energies cannot be reached
directly by accelerators. However, they can be explored indirectly at large underground water
Cherenkov (WC) experiments, which due to the size of their fiducial volume are highly sensitive
to nucleon decays. We review searches for baryon number violating processes at the state of the
art WC detector, the Super-Kamiokande. Analyses of the typically dominant non-SUSY and
SUSY nucleon decay channels such as p → (e+, μ+)π0 and p → νK+, as well as more exotic
searches, will be discussed. Presented studies set the world’s best limits, which circumvent
the allowed parameter space of theoretical models.

1 Motivation

Baryon number (B) is a global accidental symmetry of the Standard Model (SM) and ensures
that the lightest baryon (proton) is stable. However, not only is it violated by non-perturbative
effects within the SM itself [1], baryon number violation ( /B) is a required condition for explaining
the observed matter - anti-matter asymmetry of the universe [2]. More so, various theoretical
arguments as well as reductionism hint at the SM being an incomplete theory and that there
exists a more unifying underlying account. Such an account could be provided by Grand Unified
Theories (GUTs) [3, 4, 5], like SU(5) and SO(10), which unite the three SM gauge groups
together GGUT ⊃ SU(3)C ⊗ SU(2)W ⊗ U(1)Y and offer an explanation for charge quantization
as well as coupling unification. With quarks and leptons appearing within a common GUT
representation, one can transform into another, giving rise to nucleon decay (explicit /B). In the
more fundamental domain of quantum gravity, it is expected [6] that global symmetries, such as
B, are violated in general. The presence of nucleon decay could also have profound consequences
for the future fate of the universe [7]. For a topical review of B-violation as well as nucleon
decay predictions see Ref. [8] and Ref. [9], respectively.

While there is no convincing evidence of B-violation thus far, testing B remains a high
priority. Nucleon decay can provide not only one of the most striking signatures of B-violation,
but it also offers a unique way of testing Grand Unified Theories. With the unification scale
being around 1015±1 GeV, Grand Unified Theories cannot be probed directly by accelerators.
However, they can be examined indirectly with large underground water Cherenkov experiments,
which due to the size of their fiducial volume are highly sensitive to nucleon decays. Below, we
review the nucleon decay search results from the current state of the art WC experiment, the
Super-Kamiokande (SK, Super-K).
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2 The Super-Kamiokande Experiment

Super-Kamiokande is a 50 kiloton WC detector (22.5 kiloton fiducial volume) located be-
neath a one-km rock overburden (2700 m. water equivalent) within the Kamioka mine in Japan.
The SK detector is composed of an inner (11,146 inward-facing 20-inch PMTs, providing 40%
photo-coverage) and an outer (1,855 8-inch outward-facing PMTs) detector, which are optically
separated. Cherenkov radiation [10], produced by charged particles traveling through water, is
collected by the PMTs and is used to reconstruct the physics events.

Data collected by Super-Kamiokande (SK) during the periods of SK-I (May 1996-Jul. 2001,
1489.2 live days), SK-II a (Jan. 2003- Oct. 2005, 798.6 live days), SK-III (Sep. 2006-Aug. 2008,
518.1 live days) and the ongoing SK-IV b experiment (Sep. 2008-present, > 1500 live days)
corresponds to a combined exposure of more than 250 kiloton·yrs. Details of the detector
design, performance, calibration, data reduction and simulation can be found in Ref. [11, 12].

The experiment allows one to study a wide variety of physics topics in the MeV - TeV energy
range, including those related to solar and atmospheric neutrinos (oscillations, tests of Lorentz
invariance, day-night asymmetry, sterile neutrino, indirect dark matter searches), supernovae
relic neutrinos as well as nucleon decay.

3 Nucleon Decay Searches

For nucleon decay analyses, only events for which all of the observed Cherenkov light was
fully contained within the inner detector are considered. The observed Cherenkov rings are
classified either as showering (“e-like”, for e± and γ) or non-showering (“μ-like”, for μ±). We
do not distinguish between signal channels with a ν and ν in the final state, since neither of the
neutrinos is observable.

In the signal Monte Carlo (MC) simulations, the effects of Fermi momentum, nuclear binding
energy as well as nucleon-nucleon correlated decays are taken into account [13]. The atmospheric
neutrino background interactions are generated using the neutrino flux calculations of Honda
et. al. [14] and the NEUT simulation package [15], which uses a relativistic Fermi gas model.
The SK detector simulation software is based on the GEANT-3 [16] package. Background MC
corresponding to a 500 year detector exposure-equivalent is generated for each SK period.

3.1 p→ e+π0 and p→ μ+π0

The p → e+π0 channel is often the most dominant nucleon decay mode in GUTs, with
typical lifetime predictions of 1029−36 yrs. Previous searches for this channel have already
excluded minimal SU(5) [17, 18, 19, 20]. Within some models (e.g. flipped SU(5) [21]), a
similar channel, p→ μ+π0, can also appear with a significant branching ratio.

Since e+, μ+(→ e+νν) as well as π0(→ γγ) produce visible Cherenkov rings, one can fully
reconstruct the invariant mass and momentum of the parent proton. Figure 1 displays the signal
MC, background MC and data (306 kiloton·yrs of exposure), after all the event selection criteria
have been applied. The signal region consists of two portions, a “lower box” (free protons) and an
“upper box” (bound protons), separated in the analysis for improved sensitivity. For p→ e+π0,
the average signal efficiency as well as the total expected background within the selected region is
38.7% and 0.61 events, respectively. For p→ μ+π0, it is 34.6% and 0.87 events, respectively. No
data events pass the selection for p→ e+π0, while two events pass for p→ μ+π0. The Poisson
probability of observing two such events for a given exposure is 23%. Since both events also
display background-like features, they are judged as coming from atmospheric-ν background.
Hence, the 90% confidence level (C.L.) lower lifetime limits of 1.7× 1034 yrs. and 7.8× 1033 yrs.
are placed on the p→ e+π0 and p→ μ+π0 channels [22], respectively.

aAn accident caused SK-II photo-coverage to be reduced to 20%. Full photo-coverage was restored in SK-III.
bElectronics have been upgraded in SK-IV.
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Figure 1 – Reconstructed invariant mass vs. total momentum for p → e+π0 [left] and p → μ+π0 [right]. The left
panels show signal MC, where light blue corresponds to free protons and dark blue to bound protons. The middle
panels show atmospheric-ν MC and the right panels show data. From Ref. [22].

The analyses for the other p→ l++m0 and n→ l−+m+ searches are conducted in a similar
manner. Here, l±(e±, μ±) represents a charged lepton, while m0(ω0, η, ρ0,K0) and m+(π−, ρ−)
denote a neutral and a charged meson, respectively. No significant signal excess is observed in
any of these channels, resulting in the 90 % C.L. lower lifetime limits of around 1032−33 years
[13, 23].

3.2 p→ νK+

The introduction of supersymmetry (SUSY), which is theoretically well motivated, allows
one to make GUT coupling unification precise. New operators come into play and typically the
dominant SUSY GUT mode is p→ νK+, with lifetime predictions around 1029−36 yrs. Previous
searches for this channel have already excluded minimal (TeV-)SUSY SU(5) [24]. Since neutrino

Figure 2 – Results for three different p → νK+ search methods. promt-γ tagging [left], μ+ momentum [center]
and visible energy for π+ [right]. The signal MC, atmospheric ν MC and data are shown in blue, red, and black,
respectively. From Ref. [25].

and the kaon are invisible (kaon below Cherenkov threshold) in this mode, reconstruction of the
parent nucleon is not possible. However, analysis can be done on the kaon decay products,
coming from the K → μ+ν (Br. 64%) and K → π+π0 (Br. 21%) channels. Three different
analyses are performed at SK. The first search is done in the muon channel, where a prompt-γ,
which could appear from nuclear de-excitation after the proton has decayed, is tagged. The
second search is also done in the muon channel, where a spectral χ2 fit to the μ+ momentum is
performed. The third search is done in the pion channel, where the π0(→ γγ) is reconstructed
and the visible energy from π+ is analyzed. Figure 2 displays the signal MC, background MC
and data (260 kiloton·yrs exposure), after all the event selection criteria have been applied.
The average efficiency and background for the three searches is 7.9% and 0.39 events, 33.7%
and 579.4 events and 8.2% and 0.56 events for the prompt-γ, μ-spectrum and the pion search,

439



respectively. No significant excess is observed and a 90% C.L. lower lifetime limit of 6.6× 1033

yrs. is placed on this channel [25].

3.3 n− n

For this mode, ΔB = 2 and it parametrizes the scale of U(1)B−L symmetry breaking. The
process is naturally connected with baryogenesis as well as neutrinos, since Majorana neutrinos
and the see-saw mechanism require ΔL = 2. Since the effective operator corresponding to this
process has dimension nine, n−n can be viewed as a probe of intermediate 103−1011 GeV scale
physics [26]. When the resulting n is captured by a p or n, a variety of mesons (predominantly

Figure 3 – Reconstructed invariant mass vs. total momentum for n− n. The signal MC, atmospheric ν MC and
data are displayed on the left (red), center (blue) and right (black) panels, respectively. From Ref. [27].

pions) are released. This can be used to reconstruct the invariant mass and momentum of the
original “di-nucleon” np or nn systems and perform a search analysis similar to p → e+π0.
Figure 3 displays the signal MC, background MC and data (91.5 kiloton·yrs exposure), after all
the event selection criteria have been applied. The efficiency and expected background for this
search is 12.1% and 24 events, respectively. No significant excess is observed and a 90% C.L.
lower lifetime limit of 1.9× 1032 yrs.c is obtained [27].

3.4 np, nn, pp→ mesons

Similar to n − n, di-nucleon decays of np, nn and pp are ΔB = 2 processes and can pro-
vide novel insights beyond the single nucleon decay searches. The di-nucleon decay channels
np → π+π0, nn → π0π0 and pp → π+π+ allow testing models with an extended Higgs sector
and suppressed proton decay [28]. Within the context of supersymmetry, the di-nucleon decay
mode pp→ K+K+ can provide the most sensitive experimental probe of the R-parity violating
coupling λ′′112 [29, 30]. Due to complicated systematics, associated with the final state mesons
and their nuclear interactions, as well as the resulting convoluted multi-ring signatures, the
analyses for the di-nucleon decays to mesons are done using a boosted decision tree (BDT) [31].
This allows one to get a far better discrimination between signal and background than by solely
applying the event selection criteria. We illustrate this with a pp→ K+K+ search in SK-I [32].

Unlike p → νK+, the kaons in pp → K+K+ are above Cherenkov threshold and produce
visible rings. Subsequently, the kaons decay, primarily through the K+ → μ+ν, π+π0 channels.
The two resulting kaon vertices are spatially separated by ∼ 2 meters. After the pre-selection
criteria have been applied, the remaining events are processed with BDT. The final BDT output
is displayed in Figure 4. The cut on the final BDT output variable is chosen at 0.12, maximizing
the (Sig./

√
Sig. + Bkg.) ratio. Events to the right of the cut are taken to be signal candidates.

With (without) BDT, one achieves the final signal efficiency of 12.6% (21.9%) and an expected
total SK-I background of 0.3 (33.9) events. The data is found to be consistent with background
and a 90% C.L. lower lifetime limit of 1.7 × 1032 yrs.d is placed. This lifetime limit can be
translated [30] into a limit on the λ′′112 SUSY R-parity violating coupling, resulting in |λ′′112| <
7.8× 10−9 [32].

cThis result can be converted into a limit for n− n oscillations in vacuum, yielding lifetime of around 108 s.
dThe lifetime limits for di-nucleon decays are calculated per 16O nucleus.
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Figure 4 – Final output of the boosted decision tree for pp → K+K+ search. Events to the right of the cut at
0.12 are considered signal candidates. From Ref. [32].

Similarly, no significant signal excesses are observed in the di-nucleon np→ π+π0, nn→ π0π0

and pp → π+π+ decay searches, resulting in the 90% C.L. lower lifetime limits of around 1032

yrs. for all three modes [33].

3.5 Spectral Searches

Due to a large theoretical uncertainty in the nucleon decay predictions, it is important to
study a variety of channels. Since e-like and μ-like single-ring atmospheric-ν background is well
understood, an array of modes producing such signatures can be readily analyzed. These include
p → (e+, μ+)νν, p → (e+, μ+)X e, np → (e+, μ+, τ+)ν and n → νγ channels. The trilepton
p → (e+, μ+)νν decays can appear within Pati-Salam models, with some [34] predicting their
lifetime to be around 1030−33 yrs.

The search for all these channels is performed by applying a spectral “pull-method” χ2 fit
[35] to the e-like and the μ-like single-ring momenta, after the event selection. Figure 5 displays
the best-fit result for the atmospheric-ν background MC, data (273.4 kiloton·yrs exposure) and
the 90% C.L. allowed amount of nucleon decay signal (×10) after the fit. For these searches,
the average signal efficiency is ∼ 95% for the e-like modes and ∼ 80% for the μ-like modes, with
the latter being lower due to the decay-electron detection efficiency f . With no significant excess
observed in either search, 90% C.L. lower lifetime limits of around 1032 yrs. are placed on all of
the above channels [36, 37].

4 Summary and Outlook

Baryon number violation is motivated by various theoretical considerations and can be tested
by nucleon decay searches. Large underground water Cherenkov detectors are highly sensitive
to nucleon decays. We have reported on results for an extensive array of nucleon decay searches
carried out at the current state of the art WC experiment, Super-Kamiokande. No significant
signal excess has been found in any of the analyzed channels. These results, which correspond
to the world’s best lifetime limits, are summarized in Table 1.

The majority of the limits are already in the 1032 yrs. range, signifying that even some of the
more baroque types of theoretical models are constrained. The projected gadolinium dissolution
in the SK detector will allow us to further reduce the nucleon decay background and thus improve
on the search sensitivity. Future experiments, such as Hyper-Kamiokande and DUNE/LBNF,
are expected to improve the presented results by up to an order of magnitude. Since the majority

eHere, X denotes a massless and invisible particle.
fThe decay-electron detection efficiency is improved in SK-IV by 20% compared to other SK periods, due to

upgraded electronics.
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Figure 5 – [top] Reconstructed momentum distribution, with the SK data (black dots) and the best-fit result for
the atmospheric-ν background MC (solid line) displayed. The corresponding residuals are shown below, after the
fitted background has been subtracted from the data. [bottom] The 90% confidence level allowed nucleon decay
signal multiplied by 10 (hatched histograms), from the signal and background MC fit to data. All modes are
shown (overlaid), with e-like channels on the left and μ-like channels on the right. From Ref. [36, 37].

of the nucleon lifetime predictions from the various theoretical models lie below the ∼ 1036 yrs.
range, significant discovery potential is expected in the upcoming searches.
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Table 1: Summary of Super-Kamiokande nucleon decay search results.

Decay Mode |Δ(B − L)| τ/B (90%C.L.) Reference

p→ e+π0 0 1.7× 1034 yrs. [22]
p→ μ+π0 0 7.8× 1033 yrs. [22]
p→ νK+ 0(ν), 2(ν) 6.6× 1033 yrs. [25]
p→ μ+K0 0(ν), 2(ν) 6.6× 1033 yrs. [23]
p→ e+η 0 4.2× 1033 yrs. [13]
p→ μ+η 0 1.3× 1033 yrs. [13]
p→ e+ρ0 0 7.1× 1032 yrs. [13]
p→ μ+ρ0 0 1.6× 1032 yrs. [13]
p→ e+ω0 0 3.2× 1032 yrs. [13]
p→ μ+ω0 0 7.8× 1032 yrs. [13]
p→ νπ+ 0(ν), 2(ν) 3.9× 1032 yrs. [38]
p→ e+νν 0(νν), 2(νν, νν) 1.7× 1032 yrs. [36]
p→ μ+νν 0(νν), 2(νν, νν) 2.2× 1032 yrs. [36]
p→ e+Xa 0(X?) 7.9× 1032 yrs. [37]
p→ μ+Xa 0(X?) 4.1× 1032 yrs. [37]
n→ e+π− 0 2.0× 1033 yrs. [13]
n→ μ+π− 0 1.0× 1033 yrs. [13]
n→ e+ρ− 0 7.0× 1031 yrs. [13]
n→ μ+ρ− 0 3.6× 1031 yrs. [13]
n→ νπ0 0(ν), 2(ν) 1.1× 1033 yrs. [38]
n→ νγ 0(ν), 2(ν) 5.5× 1032 yrs. [37]
pp→ K+K+ 2 1.7× 1032 yrs.b [32]
pp→ π+π+ 2 7.2× 1031 yrs.b [33]
np→ e+ν 0(ν), 2(ν) 2.6× 1032 yrs.b [37]
np→ μ+ν 0(ν), 2(ν) 2.0× 1032 yrs.b [37]
np→ τ+ν 0(ν), 2(ν) 3.0× 1031 yrs.b [37]
np→ π+π0 2 1.7× 1032 yrs.b [33]
nn→ π0π0 2 4.0× 1032 yrs.b [33]
n− n oscillations 2 1.9× 1032 yrs. [27]

a X denotes a single particle which is assumed to be massless and invisible.
b The lifetime limits for di-nucleon decays are calculated per 16O nucleus.
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