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Abstract. The assumptions used in developing the canonical Galacitic white dwarf binary
background level for LISA are investigated. The differences between several models of the white
dwarf binary population are described and a technique for comparing the onset of the confusion
limit between different population models is introduced.

1. Introduction
The standard galactic white dwarf binary background for LISA that is often used to estimate the
parameters of binary black hole inspirals is usually presented as a smooth curve. Included in this
curve are many assumptions about the nature of the population synthesis, the structure of the
galaxy, and the ability of future (as yet undemonstrated) data analysis techniques. The typical
Galactic binary background curve as generated by the LISA sensitivity curve generator [1] is
shown in Figure 1. This curve is based upon the work of Hils, Bender and Webbink [2, 3, 4].
The low frequency regime is a confusion-limited signal produced by hundreds to thousands
of binaries in each resolvable frequency bin from a one-year observation. The level of this
signal depends upon the number of binaries and average chirp mass per bin as well as the total
number and spatial distribution of binaries in the Galaxy. At higher frequencies (around 2 mHz
in Figure 1) the curve begins to drop dramatically as the signal transitions from confusion-
limited to individually resolvable sources. The value of the transition frequency depends on the
astrophysics of the Galactic population as well as assumptions about the ability of future data
analysis to resolve signals that may overlap in the frequency domain. The smooth curve does not
convey the anticipated fluctuations and complexity of the actual spectrum due to a realization of
the population of close white dwarf binaries, as seen in Figure 2. Here, we introduce a new way
of estimating the transition frequency. We use this measure to evaluate the transition frequency
for several different Galactic models in order to highlight the astrophysical contribution to the
shape of the white dwarf binary background.

2. Overview of Other Models
Other work in the recent literature has sought to produce different representations of the
Galactic binary contribution to the LISA data stream. To varying degrees, these models
incorporate different population syntheses, different fidelities to the LISA data stream, and
different assumptions about the capabilities of data analysis to resolve individual binaries.
Consequently, the range of transition frequencies and confusion levels present in the literature is
the result of different ways of determining the transition frequency as well as real astrophysics.

Institute of Physics Publishing Journal of Physics: Conference Series 32 (2006) 147–153
doi:10.1088/1742-6596/32/1/023 Sixth Edoardo Amaldi Conference on Gravitational Waves

147© 2006 IOP Publishing Ltd



10-21

10-20

10-19

10-18

10-17

0.0001 0.001 0.01 0.1

h
f 
[
p
e
r
 
r
t
H
z
]

f
gw
 [Hz]

Figure 1. The standard Hils-Bender
estimate of the confusion signal due to
Galactic white dwarf binaries, shown with the
standard LISA sensitivity curve.

Figure 2. A spectrum for a binary
realization of 4 × 106 binaries. Shown with
the standard Hils-Bender curve and LISA
sensitivity curve.

In this section we describe the variations between several recent models of the Galactic binary
contribution.

2.1. Population Synthesis Effects
Although the standard curve includes numerous types of binaries, the signal is dominated by
white dwarf binaries above 0.1 mHz. The standard white dwarf curve is based upon an initial
mass function to determine the mass of the primary in the progenitor binary and an assumption
of 0.14 binaries per decade in orbital period to determine the initial period. Using a prescription
from Webbink [5], the final masses and orbital period are found. An assumed stellar birthrate is
then used to give a total population of approximately 3×107 binaries in the Galaxy. Comparing
this number with the known local space density of white dwarf binaries at the time led Hils,
Bender and Webbink to reduce the population by a factor of 10 [2]. Using a Monte Carlo
sampling from the Hils, Bender and Webbink populations of Galactic binaries [2], Timpano,
Rubbo and Cornish [6] have generated a realization of the Galactic white dwarf binaries (among
other populations) and have produced a simulated LISA data stream using the reduced total
number of binaries (3×106). The standard curve is also generated from the reduced population.

A more recent and more sophisticated treatment by Nelemans et al. [7] uses binary evolution
models as generated by SeBa (part of the StarLab suite of codes) [8]. White dwarf cooling
models were applied to the resulting population in order to compare the population synthesis
with observation. Various stellar birthrates, initial mass functions, and spatial distributions
were then used to determine the model that most accurately reproduced current observations.
In these models, the most likely total number of binaries is ∼ 27× 106. However, when a white
dwarf binary background curve generated from Nelemans’ population of 27 × 106 binaries is
compared with the standard curve generated from a population of 3×106 binaries, it is lower [9].
A detailed comparison of the realization of Timpano et al. [6] with Nelemans et al. [7] shows
that differences in the binary evolution have produced an average chirp mass in the standard
model that is nearly twice that of Nelemans’ model (Nelemans, private communication). By
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changing the prescription for evolution in the common envelope phase from energy loss to angular
momentum loss, Nelemans has shown that the overall level of the confusion limit can be varied
by an order of magnitude [10].

2.2. The Transition Regime
At higher frequencies, the gravitational wave signal from Galactic binaries transitions from a
confusion of many sources per resolvable frequency bin to individually resolvable sources. In
the canonical white dwarf binary curve, the expected signal strength in this transition zone
is modified to include some assumptions about the ability to resolve foreground sources and
the effect this has on the ability to determine the properties of other interesting extragalactic
sources. The method described in Hils and Bender [3] assumes that the information in three
frequency bins are required to completely parameterize (and therefore subtract) the signal from
an individual binary. These three bins are then lost at the signal strength of the foreground
binary. The effect of this assumption is to produce the dramatic drop in the white dwarf binary
curve at around 3 mHz where the average number of binaries per frequency bin drops below 1.

Timpano, Rubbo and Cornish [6] have used a different method of estimating the ability to
remove signals in the transition zone. Starting with the full signal from the entire population of
binaries, they calculate a running median to determine the background level of the full signal.
Next, they determine the bright binaries that stand above this level with a signal to noise of
at least 5. These binaries are then competely and exactly removed from the data stream. The
process is then repeated on the remaining signal until the number of new bright binaries is less
than 1% of the previously found bright binaries. This process ended after 5 iterations and the
remaining signal was Gaussian. This process is highly optimistic and therefore represents a lower
bound on the cleaned signal. Despite this, the signal remains above the canonical value in the
transition region. On the other hand, it is close to an order of magnitude below the canonical
curve in the low-frequency confusion-limited region.

Nelemans [7, 10] simply cuts the signal off once the average number of binaries per bin drops
below 1.

3. Determining the Transition Frequency
As noted in the previous section, a variety of models of the Galactic binary contribution to
the LISA data stream exist in the literature. There are real and significant differences in
the transition frequencies of these models, but these differences may be obscured by the fact
that different researchers use different prescriptions for determining the value of the transition
frequency. In this section, we describe a new way of measuring the transition frequency that
does not rely on pseudo data analysis techniques (as found in Hils and Bender [3] and Timpano,
Rubbo and Cornish [6]), yet achieves higher realism than simply counting the number of binaries
per frequency bin (as is done by Hils, Bender and Webbink [2] and Nelemans et al. [7, 10]).

3.1. The ζ Criterion
While ignoring potential data analysis techniques, we have developed a technique for determining
the transition frequency at which binaries become individually resolvable that incorporates
the spreading of the signal over several frequency bins due to the motion of the LISA
constellation [12]. We assume that binaries become individually resolvable when their signals
are separated by a few frequency bins that are devoid of signal. We consider the signal strength
in a given frequency bin to be drawn from a probability distribution. If the bin contains noise
(or is located in the confusion-limited regime), then its signal, h(f), is considered to be drawn
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from the following probability distribution function:

P (h(f)) =
h(f)
σ2

f

exp

(
−h2(f)

2σ2
f

)
(1)

where σf is a measure of the averaged spread in signal strength over a suitably small frequency
range so that it can be considered constant. From the mean:

〈h〉 =
∫ ∞

0
hP (h)dh (2)

and the variance:
σ2

h =
∫ ∞

0
h2P (h)dh − 〈h〉2 (3)

we can construct the dimensionless quantity:

ζ =

√
σ2

h

〈h〉 (4)

that is independent of σf . In regions where there are isolated signals separated by empty bins,
we expect the signal in a frequency bin to be drawn from a linear combination of two distribution
functions: one for the noise and one for the signals. If we assume that the average signal to
noise ratio for a signal is b and the probability that a given bin will be empty is a, then the
probability distribution takes the form:
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f

exp
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+ (1 − a)
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In this case, the value of ζ will be:

ζ =

[
4

(
a + b2(1 − a)

)
− π (a + b(1 − a))2

]1/2

√
π (a + b(1 − a))

. (6)

3.2. Dependence of ζ on N
We have applied this criterion to a number of realizations of the galactic population of white
dwarf binaries using the synthesis code of Benacquista, DeGoes and Lunder [11] by calculating:

〈h〉i =
1
n

i+n−1∑
j=i

h(fj), (7)

where n is the frequency range over which we average, and

σ2
hi = 〈h2〉i − 〈h〉2i , (8)

using a synthesized LISA signal [12]. In the transition region the mean signal strength, read from
the amplitude spectral density, is � 10−20 Hz−1/2. We did not directly introduce any simulated
instrumental noise into these models, however numerical round-off errors introduce an effective
noise contribution that we estimate from the amplitude spectral density to be � 10−22 Hz−1/2

in the transition region. Correspondingly, we take b = 100 as an approximation for the signal-
to-noise ratio in the region of interest. We then took a = 0.5 to determine when roughly half
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Table 1. Critical frequencies at which ζ passes through 1.2 for different total numbers of
Galactic binaries.

Number of
N (×106) Realizations fc (mHz)

4 3 2.90 ± 0.07
8 6 4.01 ± 0.11

12 1 4.64
20 2 5.56 ± 0.18

the bins had strong signal and half were empty (or had weak signal). We note that ζ is only
weakly dependent upon b in this region and that b ∝ f2/3, so we need not consider the frequency
dependence of ζ. The critical frequency (fc) at which ζ passes through a predefined value should
scale with the number density of binaries per frequency bin as fc ∝ N3/11 in the absence of the
Doppler spreading of the signal. Including the spreading of the signal (which is proportional to
f), would have fc ∝ N3/8. Choosing a = 0.5 and b = 100 gives ζ = 1.2. We have evaluated
ζ for a number of realizations with N = 4, 8, 20 × 106 binaries [12] and one realization with
N = 12 × 106 binaries [13]. The values of fc at which ζ passes through 1.2 using an average of
n = 20, 000 bins are given in Table 1. The choice of n was made to ensure a reasonably smooth
curve for ζ. If smaller values of n are chosen, the effect is to increase the variation in ζ. This,
in turn, increases the spread in frequencies through which ζ passes through the threshold value
of ζ without significantly altering the value of fc. A least-squares fit to the data for a function
of the form fc = αNβ gives β = 0.39 ± 0.04, indicating that ζ does a reasonable job of tracking
the transition frequency.

4. Different Galactic Models and the Transition Frequency
Now that we have a tool to explore the behavior of the transition frequency for a range of Galactic
models, we apply ζ to study the effect of the disk scale height on the transition frequency. This
is motivated by the different scale heights used in the literature. The standard Hils-Bender
estimate of the Galactic white dwarf binary population assumes a number density distribution
throughout the galaxy given by [2]:

ρ(r) = ρ0 exp (−R/R0) exp (− |z| /z0) (9)

where R and z are galactocentric cylindrical coordinates. The radial scale is R0 = 3500 pc and
the scale height is z0 = 90 pc. The value of the scale height is probably too low and should be
between 240 and 500 pc [14]. Nelemans uses a radial scale of R0 = 2500 pc, a scale height of
z0 = 200 pc and a density distribution of [7]:

ρ(r) = ρ0 exp (−R/R0) sech2(−z/z0). (10)

Given the variation in scale height in the above models and the range of scale heights described
in Nelson et al. [14], we have explored the effect that different scale heights have on the transition
frequency using ζ. We have also chosen to use a density distribution that incorporates a small
amount of cusp to the center of the galaxy [12]:

ρ(r) = ρ0 exp (−R/R0) sech2(−z/z0), (11)

where
ρ0 =

N

4πRR0z0
. (12)
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The cusp incorporated in this fashion does a reasonable job of reproducing a bulge, and is
the actual density distribution used in earlier work by Nelemans [7, 9] (see the footnote in
Nelemans [15]). In this context, we note that N , the total number of binaries in the Galaxy, can
either be determined by comparison with the local space density or through some global property
such as stellar birthrates or supernova Ia rates. If N is determined by the local space density, it
will increase in direct proportion to z0. Consequently, choosing a lower scale height while basing
the total number of binaries on the local space density will result in a lower transition frequency.
This is shown in Figure 3.
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Figure 3. The value of ζ as calculated for
3 realizations of Galactic populations with
z0 = 100 pc and N = 4 × 106 (black curves)
and 2 realizations of Galactic populations
with z0 = 500 pc and N = 20 × 106 (gray
curves). Both populations have the same local
space density. The vertical axis is ζ and the
horizontal axis is the frequency in mHz. The
horizontal lines give the value of ζ for a = 0.5
and b = 100 for the upper line and b = 20 for
the lower line.

5. Conclusion
Reasonable variations in the models that are used to generate the Galactic white dwarf binary
foreground curve can significantly alter several features of the curve. Differences in binary and
stellar evolution models can substantially lower or raise the level of the confusion-limited low
frequency regime by changing the average chirp mass of binaries in this frequency range. This
effect can be larger than changing the total number of binaries in the Galactic population.
Altering the total number of binaries has a more profound effect upon the transition frequency
at which binaries may become individually resolvable. Most curves that describe the effective
noise level of the Galactic population with respect to detecting extragalactic sources incorporate
some model of the efficiency by which these individually resolvable signals can be removed
from the LISA data stream. These models are generally overoptimistic in their results. We
have introduced a technique for comparing this transition frequency that seems to accurately
represent the expected behavior of the transition frequency as a function of the total number of
Galactic binaries. We have used ζ to explore the effect of scale height on the transition frequency
when local space density is used to determine the total number of Galactic binaries. Finally,
we note that a more detailed study of the reasonable parameter space for Galactic populations
may enable anaylsis of the overall shape and structure of the LISA curve to place constraints
on possible stellar evolution and binary population synthesis models.
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