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Abstract

In this thesis, the calculation of the full flavour non-smglet Altarelh-Parisi splitting
functions as well as the JV| part of the gluon-gluon splitting functions m next-to-

leading order is presented The calculation has been performed by employing the

method of Curci, Furmanski and Petronzio (CFP), which is based on the light-cone

gauge

In previous calculations relying on the CFP method, the spurious poles of the gluon

propagator in light-cone gauge always had been regularized by using the "principal
value" (PV) prescription As the PV prescription is formally unsatisfactory in several

respects, it entails the application of some "phenomenological rules", whose working

principles are not really understood, to obtain the correct result

The calculation presented here has been done by applying the Mandelstam-Leibbrandt

(ML) prescription, which has a solid field-theoretical foundation, to regulate the gauge

induced poles As a consequence, the phenomenological rules needed in the PV case

became obsolete On the other hand, the use of the ML prescription increased the

complexity of the calculation, mainly due to the fact that unitanty requires the in¬

clusion of so-called "axial ghost" degrees of freedom

The calculation can be organized by studying gauge invariant subparts defined by a

certain colour structure The part proportional to Cp, being of Abehan nature, con¬

stitutes an opportunity to study the effects of the ML prescription in isolation from

other complications The non-Abehan part proportional to CfNc turned out to be

much more involved, revealing new features concerning the cancellation mechanism

of the spurious poles and entailing the application of techniques which have not been

used before in this context in order to overcome the technical difficulties

For colour structure CpTf, the calculation of the two-loop quark selfenergy has been

included, thus being able to extract the full endpoint contribution at x = 1 In this

way it was possible to check the consistency with the sum rules expressing fermion

number conservation, which constitutes a new test not only of the ML prescription,

but also of the CFP method itself

In order to investigate the viability of the ML prescription m all possible one-loop
structures of QCD, the AT? part of the gluon-gluon splitting function, which contains

the highly nontnvial one-loop three-gluon vertex, also has been calculated Using
the methods developed for the CpNc part, the usefulness and reliability of the ML
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prescription m this context again could be confirmed

Having in mind an extension of the calculation to the three-loop splitting functions,
one has to be aware of the fact that the technical complexity of the calculation with ML

prescription might constitute an unsurmountable problem in three loops Therefore,
it is a challenge to further exploit the insights gained from the calculation with ML

prescription One aspect consists in explaining why the "phenomenological rules"

related to the use of PV prescription gave the correct result, thus being able to judge
whether they will still work in three loops As I also did the full calculation with PV

prescription, some interesting relations between the two prescriptions could be worked

out

Another appealing perspective, which may be also useful for a better understanding of

the PV procedure, could consist in reducing the complexity of the ML calculation, for

example by exploiting - even in the context of the non-physical anomalous dimensions

- the fact that the axial ghost degrees of freedom decouple from physical quantities

In summary, having established the CFP method with ML prescription as a method

without conceptual loopholes, this work might serve as a powerful tool to extend the

calculation to three loops
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Zusammenfassung

In dieser Dissertation wird die Berechnung der gesamten flavour non-singlet Altarelli-

Parisi Splitting Funktionen sowie des Beitrags proportional zu A^ der Gluon-Gluon

Splitting Funktionen in nachstfuhrender Ordnung vorgestellt Die Rechnung wurde

unter Anwendung der Methode von Curci, Furmanski und Petronzio (CFP), welche

auf der hchtartigen axialen Eichung beruht, durchgefuhrt
In fruheren Rechnungen innerhalb der CFP Methode wurden die kunsthchen Pole

des Gluon-Propagators m hchtartiger axialer Eichung immer mit Hilfe der "Prin¬

cipal Value" (PV) Vorschnft regulansiert Da die PV Vorschrift jedoch in ver-

schiedener Hmsicht formal unbefriedigend ist, zog dies die Zuhilfenahme von gewissen

"phanomenologischen Regeln" - deren Funktionsweise nicht wirkhch verstanden ist -

nach sich, um das nchtige Resultat zu erhalten

Die Rechnung, welche hier prasentiert wird, beruht auf der Anwendung der Mandel-

stam-Leibbrandt (ML) Vorschrift zur Regularisierung der durch die Eichung mduzier-

ten Pole Es konnte gezeigt werden, dass die phanomenologischen Regeln, die im Fall

der PV Vorschrift gebraucht wurden, dann nicht mehr notwendig sind Andererseits

erhohte die Anwendung der ML Vorschrift die Komplexitat der Rechnung, hauptsach-
lich durch das Auftreten der sogenannten "axialen Geisf'-Freiheitsgrade, welche aus

Unitantatsgrunden mit einbezogen werden mussen

Die Rechnung kann m Unteremheiten orgamsiert werden, welche durch eine bestimm-

te colour-Struktur gegeben sind Der Teil proportional zu Cp ist Abelscher Natur

und bietet sich deshalb an, die Auswirkungen der ML Vorschrift isoliert von anderen

Schwierigkeiten zu studieren Der nicht-Abelsche Teil proportional zu CpNc stellte

sich als wesenthch komphzierter heraus Es zeigten sich andersartige Kurzungsme-
chanismen fur die kunsthchen Pole, und es mussten Techniken angewandt werden, die

in diesem Zusammenhang noch me gebraucht worden sind, um die rechentechmschen

Schwierigkeiten zu uberwinden

Fur die colour-Struktur CpTf wurde zusatzhch die Quark-Selbstenergie m Zwei-

Schleifen-Naherung berechnet, was die Berechnung des gesamten Endpunkt-Beitrages
bei x = 1 ermoghchte Dies stellt einen weiteren Test nicht nur der ML Vorschnft,
sondern auch der CFP Methode selbst dar, denn die Endpunkt-Beitrage sind noch

me zuvor direkt berechnet worden

Um die Anwendbarkeit der ML Vorschnft in alien Em-Schleifen-Strukturen der Quan-
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tenchromodynamik, welche uberhaupt moghch sind, zu testen, wurde auch der Teil

proportional zu A^2 der Gluon-Gluon Splitting Funktion, welcher den ausserst nicht-

tnvialen Drei-Gluon-Vertex enthalt, berechnet Unter Anwendung der Methoden, die

fur den CrNe—Teii entwickelt wurden, konnten der Nutzen und die Verlasslichkeit der

ML Vorschrift in diesem Zusammenhang erneut gezeigt werden

Im Hinblick auf die Berechnung der Splitting Funktionen in Drei-Schleifen-Naherung
muss man sich daruber im Klaren sem, dass die rechentechmsche Komplexitat der

Methode mit ML Vorschrift in dieser Ordnung em unuberwmdliches Pioblem darstellen

konnte Deshalb stellt es eine Herausforderung dar, aus den den Embhcken, welche

bei der Rechnung mit ML Vorschrift gewonnen wurden, weitere Nutzen zu Ziehen

Ein Aspekt besteht dann, zu erklaren, warum die "phanomenologischen Regeln" im

Zusammenhang mit der PV Vorschnft zum korrekten Ergebnis fuhrten, so dass man

beurteilen kann, ob sie m Drei-Schleifen-Naherung immer noch verlasslich sind Da

ich die gesamte Rechnung auch mit PV Vorschnft ausgefuhrt habe konnten eimge

mteressante Beziehungen zwischen den beiden Vorschnften ausgearbeitet werden

Ein anderer Aspekt der Weiterentwicklung, der auch zum besseren Verstandnis der PV

Methode beitragen konnte, besteht dann, zu versuchen, die Komplexitat der Rech¬

nung mit ML Vorschrift zu reduzieren Dies konnte zum Beispiel erreicht werden,
indem man - selbst im Fall der unphysikahschen anomalen Dimensionen - ausnutzt,

dass die "axialen Geisf'-Freiheitsgrade von physikalischen Grossen entkoppeln
Insgesamt konnte diese Arbeit einen wichtigen Baustem liefern fur die Entwicklung
einer Methode, welche sowohl in formaler Hinsicht vertrauenswurdig als auch effizient

genug ist, um die Drei-Schleifen-Rechnung in Angriff zu nehmen
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Chapter 1

Introduction

Quantum chromodynamics (QCD) is the theory of the strong interactions between

quarks and gluons, which bind together to form hadrons like the proton or the neutron

The description of the strong interactions by a non-Abehan gauge theory based on

the SU(3) colour group [1, 2] nowadays is a main building block of the "Standard Mo¬

del" of elementary particle physics Just like the photon which is an Abehan gauge

field mediating electromagnetic interactions between charged particles m quantum

electrodynamics (QED), the non-Abehan gauge field m QCD, the gluon, mediates

colour interactions between quarks While photons have no electric charge, gluons

carry colour charges and hence interact which each other These self-interactions are

the mam reason for the fact that the coupling constant as of the strong interactions

decreases at small distances, a phenomenon which is called asymptotic freedom [3, 4]
At long distances, QCD is characterized by the property of confinement Quark and

gluon degrees of freedom never have been observed as states which propagate over

macroscopic distances, it is always the colourless hadrons that are observed

Only after the discovery of asymptotic freedom it became justified to calculate short-

distance cross-sections m QCD as a perturbative series in the coupling constant as,

supported by factorization properties which permit cross sections to be written as

products of a hard scattenng piece and a factor which contains the long-distance

physics
One of the earliest tests of QCD, respectively of its predecessor, the "naive parton

model" [5], was provided by deep inelastic electron-nucleon scattering The outcome

of these experiments could be successfully described by applying the method of opera¬

tor product expansion (OPE) initiated by Wilson [6] Factorization, which guarantees
the safe application of perturbation theory to the description of deep inelastic scat¬

tering, has been proven withm the context of OPE by Zimmermann [7, 8] The OPE

techniques together with the use of the renormalization group equations [9,10,11,12]
allowed for a description of deep inelastic scattering which was able to explain the

logarithmic scaling violations found experimentally, thus improving considerably the

naive parton model An elegant reformulation of the factorization properties proven
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withm OPE was given by Altarelli and Parisi [13] They worked out a form of the

QCD improved parton model based on parton densities in configuration space, which

is closer to physical intuition These parton densities obey evolution equations known

as Altarelh-Pansi equations, also denoted by DGLAP equations since they were in¬

dependently also considered by Gribov, Lipatov and Dokshitzer [14] The kernels of

these equations are the so-called splitting functions, whose Melhn transforms coincide

with the anomalous dimensions present in the OPE formulation

In the following years, QCD became continuously better established as the theory of

the strong interactions [15, 16] In particular, a systematic separation of the dyna¬
mics associated with short and long distance scales could be achieved also beyond
the scope of deep inelastic scattering, showing that the concept of factonzation is

quite umversal, although it breaks down in special cases [17] The insights gained
into the infrared singularity structure of QCD are expressed in terms of fundamental

cancellation [18] and factorization theorems [19, 20] Hence the success of perturbative

QCD could be extended from deep inelastic scattering to a considerable number of

different processes studied at high energy colliders, like for example photoproduction,

multi-jet production or vector boson production [16]

As cross sections involving hadrons can be measured at present and future high energy

colliders with increasingly high accuracy, the theoretical description of these precision

data requires the evaluation of next-to-leading order or even higher order corrections

in perturbative QCD These QCD corrections will be of particular interest for the

near future since the machines after LEP with the highest center-of-mass energies,

that is, LHC and the Tevatron, will both be hadron colliders

A considerable number of next-to-leadmg order corrections are by now available in

the literature (see e g [16] and references therem) Next-to-next-to-leading order

(NNLO) corrections, however, could be calculated only m few cases [21, 22, 23, 24, 25]
Considering for example the structure functions F2 and Ft of deep inelastic electron-

nucleon scattering, their knowledge in NNLO is of considerable interest for an accurate

comparison of perturbative QCD with experiment To obtain the NNLO expression for

these structure functions, the anomalous dimensions of the corresponding operators

are needed in three-loop order For the non-singlet moments Af = 2,4,6,8,10 and

the singlet moments N = 2,4,6,8 these three-loop anomalous dimensions have been

calculated by Larin, van Ritbergen, Vermaseren and Nogueira [24] A NNLO analysis
based on these moments is possible only as long as one limits oneself to large x and

small Q2, and has been done in [26] But if one wants to study the behaviour of

the structure functions at small x and large Q2 in NNLO, the knowledge of the full

three-loop anomalous dimensions is indispensable

Similarly, in the case of hard processes with two initial hadrons, no complete NNLO

result is available Although the NNLO coefficient functions of the Drell-Yan process

have been obtained in [23], the phenomenological application of this result requires

the calculation of the NNLO Altarelh-Pansi splitting functions (three-loop anomalous
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dimensions) as well

But as long as there is no highly efficient and formally transparent method to calculate

the two-loop anomalous dimensions, it is pointless to go on to the full three-loop
calculation Therefore significant technical and formal development concerning the

two-loop calculation has to be achieved

Two rather different methods [27], [28, 29, 30] have been used for the evaluation of the

spin independent two-loop anomalous dimensions Both methods recently have been

applied successfully to the calculation of the NLO corrections of the spin dependent
Altarelli-Pansi splitting functions [31, 32] The first method is based on operator

product expansion (OPE) and requires the evaluation of the overall ultraviolet di¬

vergences of twist-two local operator insertions The results are obtained m moment

space and the calculation can be carried out in Feynman gauge Unfortunately, the

number of the operator insertions increases very rapidly in higher orders and the

treatment of operator mixing in the singlet sector has been unclear for a long time

Due to this conceptual difficulty there was an error in the original OPE calculation

of the singlet anomalous dimensions which could be fixed only recently [33, 34] The

work of [33, 34] thus finally established the OPE technique to calculate higher order

anomalous dimensions as a method which is conceptually impeccable, but of enor¬

mous algebraic complexity Nevertheless a considerable number of programs already

exists, such that recently even the finite terms of the two-loop operator matrix ele¬

ments could be calculated [35]
The second method, developed by Curci, Furmanski and Petronzio (CFP) [28, 29, 30],
is based on the factorization properties of mass singularities in axial gauges, so it is

built on the infrared properties of the underlying processes It leads to the two-loop

splitting functions in configuration space and admits a physical interpretation which

is very close to the intuitive parton picture The a—space representation also is more

useful from an experimental point of view

The most important technical ingredient of the CFP method is the use of light-like
axial gauge (nllA1' = 0, n2 = 0), also called light-cone gauge It enormously reduces

the complexity of the calculation as compared to the n2 ^ 0 case and provides a

direct link with the OPE method in deep inelastic scattenng On the other hand, the

1/nc/—factor in the gluon propagator m light-like axial gauge gives nse to so-called

"spunous poles", gauge induced smgular terms in both, the real and the virtual con¬

tributions Although these smgulanties have to cancel in gauge invariant quantities,

one has to apply some regulanzation prescription m order to be able to evaluate the

individual diagrams There are basically two prescriptions to regulate these spurious

poles, the principal value (PV) prescription and the Mandelstam-Leibbrandt (ML)
prescription [36, 37] The PV prescription has been applied by Curci, Furmanski

and Petronzio on the basis of rather phenomenological rules Using the PV prescrip¬

tion, Wick rotation produces extra pole terms such that power counting theorems

break down This entails spurious poles and momentum dependent terms in the UV

renormalization constants, whose treatment is not a priori clear Another reason to
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question the validity of the phenomenological rules of CFP is the fact that after the

work of CFP it was pointed out that the principal value prescription is not consistent

with canonical quantization in light-like axial gauge [38, 39] Conectly performed
canonical quantization leads to the ML prescription

Nevertheless, the "recipe" of CFP to subtract the dubious terms together with the

usual UV poles produced the correct result (Although the result obtained by Fur¬

manski and Petronzio [30] for the singlet anomalous dimensions could be confirmed

from the OPE side only more than ten years later )
CFP were aware of the fact that there remains some work to be done m order to

build the treatment of the spurious poles on solid theoretical grounds Literally, they

say [29] "Hopefully, it will be a challenge for field theory experts to provide a more

formal support for our 'phenomenological' rules "

In order to clarify this issue, it is of particular interest to study the CFP method with

the ML prescription A first attempt already appeared in the literature The one-loop
Altarelh-Pansi splitting functions have been calculated by Bassetto [40] The calcu¬

lation of the two-loop splitting functions with ML prescription never has been tried

before and will be presented here It will turn out that with ML prescription, the

phenomenological rules needed in the PV case become obsolete On the other hand,

the complexity of the calculation increases, mainly due to the so-called "axial ghosts"
which appear as a consequence of the ML prescnption

Hence the CFP method with ML prescription due to the present work has reached a

comparable status of conceptual clarity as the OPE method, but the price to pay for

this gain in formal solidity is an increase in technical complexity

The organization of the thesis is as follows A general introduction, elucidating the

role of anomalous dimensions in QCD, is given m Chapter two First the parton

model approach to anomalous dimensions will be treated After the definition of par-

ton distributions, the important concept of factorization will be described Then the

Altarelh-Pansi equation will be introduced, leading immediately to the splitting func¬

tions which are the Melhn transforms of certain anomalous dimensions

Then the approach to anomalous dimensions via operator product expansion will be

presented, with emphasis on the operator product expansion m deep inelastic scat¬

tering, the latter being the most important application of operator product expansion

in perturbative QCD
In Chapter three, first an overview on the existing methods to calculate anomalous

dimensions in two loops will be given The method of CFP, which will be extended

later, is described m some detail m Section 3 2 The features of the light-cone gauge

and the different aspects of PV and ML regulanzation are treated in Section 3 3 As

an example, some basic differences arising from PV respectively ML regulanzation

already in leading order will be exhibited As the different ultraviolet behaviour of

PV respectively ML regularized integrals is of crucial importance for the whole cal¬

culation, the next subsection will be dedicated to UV renormalization

In the following two sections, the calculation ofcertain two-loop anomalous dimensions
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with ML prescription will be presented in detail. In Section 3.4, the contribution to

the non-singlet splitting function with colour structure Cp will be given. This colour

structure has several special features, partly due to the fact that it is of "Abelian" na¬

ture, containing no three-gluon-vertices. "Non-Abehan" contributions to the splitting
functions will be studied in Section 3.5. There, completely new features compared to

the Cp part will arise, which entailed the development of alternative techniques to be

able to calculate some of the diagrams. The colour structure CpTf is treated in some

detail as a pedagogical example. For this colour structure, the full endpoint contri¬

butions at x — 1 also have been calculated. In this way the sum rules derived from

fermion number conservation could be used as an important test for both, the ML pre¬

scription as well as the CFP method itself. This fundamental consistency check never

had been provided in previous calculations. The next subsection treats the calculation

of the colour structure CpNc of the non-singlet two-loop splitting functions, which is

by far more complicated than the Cp and CpTf parts. Having accomplished this task

provides a test of all possible one-loop insertions of QCD except for the non-Abelian

one-loop three-gluon-vertex. Therefore finally the contributions proportional to N% of

the gluon-gluon splitting function, which contain this remaining structure, have been

calculated. This means that altogether, an exhaustive test of the ML prescription
within a highly nontrivial application has been provided.
As I also did the full calculation of the non-singlet and singlet splitting functions with

PV prescription, some insight could be gained into the relations between PV and

ML prescriptions, which is discussed in Section 3.6, especially in view of a possible
extension of one of these schemes to three loops. This view will be broadened in the

conclusions in Chapter four.

5



Chapter 2

Anomalous dimensions in QCD

In a general field theory, anomalous dimensions appear as a consequence of ultraviolet

renormalization and the renormalization group As soon as an operator (a quantum
field or a product of quantum fields) or a parameter requires to be renormalized, its

scale dimension d can differ from its naive mass dimension do by a quantity 7 There¬

fore 7 is called anomalous dimension

There are basically two different approaches to the calculation of the anomalous di¬

mensions which are relevant for QCD One is based on operator product expansion

(OPE), the other one on the QCD improved parton model The OPE approach is

quite general and relies on the scaling properties of certain operators, extracted by

using the renormalization group equations The parton model approach is special to

QCD and is closer to an intuitive physical picture of perturbative QCD Therefore we

will start with the parton model to enter into the subject

2.1 QCD and the parton model

It is well-known that the "naive" parton model [5] gets corrections in perturbative

QCD Nevertheless much of the structure of the parton model remains valid because

of the property of factorization Factorization permits scattering amplitudes with in¬

coming high energy hadrons to be written as a product of a hard scattering piece and

a remainder which contains the physics of low energies and momenta The former con¬

tains only high energy and momentum components and, because of asymptotic free¬

dom, is calculable in perturbation theory The latter piece describes non-perturbative

physics, but can be described by a single, process independent function for each type

of parton, called the parton distribution function Without these properties of asymp¬

totic freedom and factorization it would be impossible to make reasonable predictions

for processes involving hadrons by using perturbation theory
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2.1.1 Deep inelastic scattering

One of the most powerful tests of perturbative QCD is the breaking of Bjorken sca¬

ling in deep inelastic lepton-hadron scattering (DIS) Moreover, the analysis of deep
inelastic structure functions serves to determine the momentum distributions of par-

tons in hadrons, needed as an input in predicting cross sections in high-energy hadron

collisions

Figure 2 1 Deep inelastic scattenng

We consider for defimteness the scattering of a high-energy charged lepton off a proton

target (see Fig 2 1) The standard deep inelastic scattenng vanables are defined by

Q2 = -I2 ,
M2 = P2

V = p-q =

Q2

= M(E' -E)

q-p

2i/
' V

r-p E

where the energy variables refer to the target rest frame and M is the proton mass

The structure functions Ft(x,Q2) which parametrize the structure of the proton as

"seen" by the virtual photon can be defined in terms of the lepton scattering cross

section1

{[l + (l-y)2]*Ff>,a2)
dVm

_

87ra2M£

dxdy
~

Q/

+(1 - y)(Fr(x, Q2) - 2xFT(x, Q2)) - ^ xyFr(x, Q2)} (2 1)

The Bjorken limit is defined as Q2, v -¥ oo with x fixed In this limit the structure

functions are observed to obey an approximate scaling law

F^Q2) -f F,(x)

This expression is strictly valid only for Q2 <SC M§
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Bjorken scaling implies that the virtual photon scatters off point-hke constituents,

since otherwise the dimensionless structure functions would depend on the ratio Q/Qq
with 1/Qo some length scale characterizing the size of the constituents

The parton model picture becomes obvious m the infinite momentum frame in which

the proton is moving very fast, p*1 ~ (P, 0,0, P), P > M In this frame, we can

consider a simple model where the photon scatters off a point-like quark constituent

which is moving parallel with the proton, carrying a fraction f of its momentum, and

the proton mass can be neglected Then Eq (2 1) can be rewritten as

U = ^{[1 + (1 - y)2} F!(x, Q2) + il^1(F2(x, Q2) - 2xF\(x,Q2)}} (2 2)

The terms proportional to Fx and F2 - 2xFx correspond to the absorption of trans¬

versely respectively longitudinally polarized virtual photons Therefore, the combina¬

tion Fl — F2 — 2xF\ is called the longitudinal structure function

The basic assumption of the parton model thus is that the interactions of hadrons

are due to the interactions of constituent partons A necessary condition for such a

picture to make sense is that changes in the number and momenta of the partons

should be negligible during the time in which they are probed In QCD, Bjorken

scaling is broken by logarithms of Q2 The reason is that the transverse momentum

of the partons is not restricted to be small A quark can emit a gluon and acquire large
transverse momentum k± with probability ~ as dk^/k]^ at large kj_ The kj_—integral,

extending up to the kinematic limit Q2, then gives rise to contributions ~ as\ogQ2
which break scaling These logarithmic scaling violations are a particular property of

renormahzable gauge theories with point-like fermion-vector boson interactions

2.1.2 Parton distributions

The amplitude for the process depicted m Fig 2 1 is given by

A = eu(r'hau(r)±{X\3a(a)\P}

where ja is the electromagnetic current The cross section can be factored into a

leptonic and a hadronic piece

The structure of the leptonic tensor La/g, assuming photon exchange only, is completely
determined by QED The hadronic tensor2 contains all the information about the

2We omit spin labels and sums here, so (P\6\P) implicitly means § SA(AP|(5|PA)



interaction of the current ja with the hadron P

WaP(p,q) = i^(Pba(0)|X)<X|^(0)|P)(25r)4«54(c/ + p-px)

= ^ J ^z^(P\\ja(z),j,,(Q)]\P) (2 4)

It is easy to show that the amplitude Wa0 is related to the absorptive part (disconti¬

nuity) of the forward virtual Compton amplitude Tag

Wa? = ^DiscT^ (2 5)

Ta? = i j ^z^{P\T\ja{z)JM\\P) (2 6)

DiscT^ = hm-[T^(g0 + ie)-T^(go-«e)]

Since the electromagnetic current is conserved, we have qaWap = 0 Therefore the

most general form of Wal} for charged lepton-hadron interaction can be written as

Wag(p,q) = (^ - %&) Wx(x,Q2) + (pa + g) (p, + g W2(x,Q2) (2 7)

Comparing Eqs (2 7) and (2 1) finally leads to the relations

Fr(x,Q2) = W1(x,Q2)

F2(x,Q2) = uW2(x,Q2)

To analyze the hadromc tensor Wa$ it is convenient to introduce two light-like vectors

p and n with n p = 1 Any four-vector k can then be written in terms of p, n and a

space-like two-dimensional transverse vector k±

k" = ap" + bn>J + kl (2 8)

p2 = n2 =n kx=p kx = 0

In a frame where the struck proton is moving very fast along the positive z—axis, an

explicit representation of the vectors p and n is

p" = (P,0,0,P)

"" = (2P-'0'0'-^ <29)

In the following we will ignore the target mass M such that the proton momentum

can be identified with p^



Figure 2.2: 'Handbag' diagram

Making the assumption that the photon scatters incoherently off the individual par-

tons, the hadronic tensor Wap is obtained from the diagram shown in Fig. 2.2.

WW(p,g) = 5>2|^[7a(,fc+ /«7/>W*,p)*((* + «)2) (2-10)
9,9

J \ I

The quark four-momentum k, carrying the longitudinal momentum fraction £ of the

incoming momentum p, can be written as

k^^ + ^-^n" + kl (2.11)

The assumption of the parton model is that the structure of the amplitude B(k,p) is

such that it is strongly damped when the transverse momentum k\ and the virtuality
k2 are large. Thus the integral (2.10) is dominated by small values of these variables

and the delta function may be approximated by

6{{k + q)2) = 6(k2 + 2iv - 2q±k± + q2) « &{2& - Q2) = -U(£ - x)

This gives, using q^ = vn» + q^_

e2 t rl^k

„W2 = F2 = J2j terjilMfi+ A) filvB^pW-x)
9,9

J \ )

v-~> f d*k
= 2Jelx 7^)4 M>3B}'(k,P)8(t - x)

9,9
J \ I

= J>2 *<?(*) (2.12)
9,9

where q(x) is the quark distribution

/d4k^Tr[AB{k,p)]6{nk-x) (2.13)
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So we can see that the structure function scales, that is, it depends only on the

dimensionless variable x

It is also possible to give an operator representation [43, 20, 44] for the quark dis¬

tribution q(x) In this representation, the distribution functions are matrix elements

m a hadron state of certain operators that act to count the number of quarks or

gluons carrying a fraction £ of the hadron's momentum The definition may be

motivated by looking at the theory quantized on the plane x+ = 0 in the light-
cone gauge A+ = 0, since in this picture field theory has its closest connection

with the parton model We work in a frame where the hadron's momentum is

P = (P+, P~,0) = (P+,M2/2P+,0), where the plus and mmus components are

defined as r* = 4=(r° ±r3) for an arbitrary four-vector r In this approach the quark

field has two components that represent the independent degrees of freedom ~y+ij){x)
contains only these components One can expand the two mdependent components

in terms of quark destruction operators b(k+, kj_, s) and antiquark creation operators

d(k+, fcj_, s)* as follows

7+<mo,z-,*j = WE/"^/*1
{-T+U{k, s)e-'kzb(k+, k±, s) + i+V(k, s)e'kxd(k+, kr, s)f}

The quark distribution function is just the hadron matrix element of the operator
that counts the number of quarks

fMO# = (2t)~3Ef^p/ dkx(p\b(cp+, k±, s)MtP\ fc±, s)\p)

In terms of ip(x), this is

/,/a(0 = ^y^-e-I«p+^(P|^(0,x-,01)7+V(0,0,0±)|P) (2 14)

The above definition is gauge dependent What is defined to be a quark in one gauge

is a quark plus gluons in another gauge In order to arrive at a gauge invariant

definition, we have to insert the path ordered exponential of the gluon field

g = Vexp{igj dy-A+{0,y-,0x)f} (2 15)

In the light-cone gauge A+ = 0 we obviously have Q = 1 So the gauge invariant

definition of the parton densities is given by

/,/a(0 = ^ Jdx~ e^p+x-(P\mx-,0xh+giP(0,0,0s.)\P} (2 16)

11



For gluons, the definition based on the same reasoning is

fg/A(0 = ^^ Jdx~e-'^p+x-(P\Fr(^x-,0±)gabFb<+l,(0,0,0L)\P) (2 17)

where F£" is the gluon field strength operator and in Q we now use the adjoint

representation of the colour group generators

As we already mentioned, the parton model result (2 12) gets higher order corrections

in as m perturbation theory In our example of a quark being the interacting parton,

the 0(as) correction is due to one-gluon emission of the parton before the interaction

with the photon takes place
So consider the parton process shown in Fig 2 3 in which the quark emits a gluon

Vi 'V
w

(d)

Figure 2 3 Real gluon emission diagrams

F(q) + q(p)^9(r) + q(l) (2 18)

Calculating these diagrams and including also the diagrams for virtual gluon radiation,

we obtain

F2(x, Q2) = e2 x{s(l - x) + g- [Pq/q(x) In ^ + C(x)] } (2 19)

where the "hat" in F2 mdicates that this structure function refers to a quark instead

of a proton target as we deal with the process (2 18) C(x) is a calculable and finite

function The logarithm In % is stemming from the integral over the quark virtuality

\k2\
n Cq2Ix d\k2\

F2\d„ = e2g^xPq/q(x)J^ ^i (220)

We introduced the cutoff k2 to regulate the divergence at small |fc2| The origin and

treatment of this singularity will be discussed below

The coefficient Pq/q{x) of the ln^--term is called the quark-quark splitting function

It is of the form

P^ = Cp{^xT++l^-X)} (221)
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where the "plus" distribution is defined by

[\-M2L~r\Vto-fM (2 22)
J0 (1 - X)+ Jo l-x

for any sufficiently smooth function f(x)
Note that due to fermion number conservation in the splitting of quarks we have the

sum rule

/ dxPq/q(x) = 0,
Jo

whose validity can immediately be checked m this order m as if the "plus" distribution

is used

From Eq (2 19) we can see that beyond leading order the structure function becomes

(J2-dependent The quark distribution function to this order in perturbation theory
is given by

q(x, Q2) = <5(1 - x) + g [Pq/q{x) InJ + C{x)]

2.1.3 Factorization

The singularity at |fc2| = 0 m Eq (2 20) arises when the gluon is emitted parallel to

the quark {k\ = |fc2|(l —£) = 0) For this reason it is called a colhnear divergence The

limit k\ -*• 0 corresponds to a long-range part of the strong interaction which is not

calculable in perturbation theory Nevertheless, reliable predictions for processes with

large momentum transfer can be obtained by exploiting the property oi factorization
The aim is to absorb the infrared smgulanties due to colhnear long-distance effects

into the parton distribution functions, such that the full cross section factonzes into an

infrared safe hard scattering cross section and the parton distribution functions which

have to be measured at a certain scale, but whose evolution with Q2 can be calculated

The parton distribution functions are universal in the sense that they do not depend on

the particular hard process, but only on the type of the incoming parton For outgoing

partons, the procedure is analogous, dealing with parton fragmentation functions
instead of the parton distribution functions

In our example, factorization is achieved in the following way In order to obtain the

proton structure function F2, we must convolute the quark structure function F2 of

Eq (2 19) with a "bare" distribution qo of a quark in a proton and sum over quark

flavours, leading to

F2(x,Q2) =x^e2{go(x) + g£|9o(e)[P,/,(|)ln^+C(|)]+0(as2)} (2 23)

Exactly as for the renormalization of the coupling constant, we can regard c/o(x) as an

unmeasurable, bare distribution The colhnear smgulanties are absorbed into this bare

13



distribution at a factorization scale n, which plays a similar role as the renormalization

scale So we define a "renormalized" distribution q{x,n2) by

q(x, M2) = qo(x) + g £ | ft,«)[P,„(|) Ing + C(|)] + <?(as2) (2 24)

such that

F2{x,Q2)=x^e2^djq(t^){s{l-j) + ^Pq/q{~)\^ + 0(a2)} (225)

The distribution g(£,M2) cannot be calculated from first principles in perturbation

theory, since it receives contributions from the long-distance (non-perturbative) part
of the strong interaction It has to be determined from structure function data

The factorization scale n is an arbitrary parameter From its origin in the above

discussion, it can be thought of as the scale which separates long- and short-distance

physics On the other hand exploiting its arbitrariness, it is often set approximately

equal to the scale Q2 m order to keep the logarithm ln^j-, le the higher order

corrections, small Thus ft2 can vary from about 2 GeV to very large scales The

hard-scattering (short-distance) cross section is obtained from the parton-scattenng
cross section by removing long-distance pieces and factoring them into the parton

distribution functions Hence a parton emitted with a transverse momentum less

than the scale fi is considered as a part of the hadron structure and is absorbed into

the parton distribution A parton emitted at a transverse momentum larger than y, is

part of the short-distance cross section The more terms included in the perturbative

expansion, the weaker the dependence on fi will be, analogous to the case of the

renormalization scale In fact, renormalization and factorization scales are often set

equal

Note that while factorization provides a prescription for dealing with the logarithmic

singularities, there is an arbitrariness in how the finite contnbutions are treated How

much of the finite contribution is factored out defines what is called the factorization
scheme In the MS scheme, only the divergent part and the terms In (Air) — je are

absorbed into the parton distribution

In order to obtain a complete description of the deep inelastic structure functions m

terms of parton distributions, we also have to include the 0(as) contribution from

the process 7*5/ — qq The result is

Fi(x, Q2) = x J2 e2q £[P,/,(*) In J + Cg(x)\ (2 26)
99

where the splitting function is now

Pq/s(x)=TR[x2 + (l-x)2}

14



To obtain the physical structure function, the contribution (2 26) must be folded with

a bare gluon distribution go(x) and added to the result obtained in Eq (2 23), leading
to

q(x,»2) = go(x)4-|£|9o(0[P,/,(|)ln^ + C,(|)]

+g £ f»>(0[iW!)ln£ + C,(|)] + 0{a2) (2 27)

such that m the MS scheme

F2(x,Q2) = ^e2£|9(C,Q2){<5(l-|) + gcp(|) + 0(as2)}

+*Ee9 £ffl(e>Q2){£0|) + 0(Qs2)} (228)

The functions Cq(x) and Cg(x) are called coefficient functions They depend on the

factorization and renormalization schemes and also on the structure function under

consideration

Including also higher order corrections, factorization for the DIS structure functions

is of the following structure

F1(x,Q2) = ^/'1f/<l/A(£^2)c7la(|,^,a4^2))+ remainder

a
Jx i ? M

-F2(x,Q2) = Yl f T Ll^^2)C2,{-.,%,as{ix2))+ remainder (2 29)
x

a
Jx 4 5 M

Here /a/x(£, p2) are the parton distribution functions (defined with charges included)
The quantity fa/A(£,V2)d£ can De interpreted as the probability of finding a parton

of type a (a = gluon,u, u, d, d, ) in a hadron A carrying a longitudinal momentum

fraction £ to £ + <i£ of the hadron's momentum The parton densities are universal

They depend only on whether the evolving parton has space-like momentum (like m

DIS) or time-like momentum (like in e+e~ annihilation)
The hard scattering coefficients C10 are infrared safe functions that depend on the par-

ton type a (and on the factorization scheme, as stated above), but not on the external

hadron A Being free from long-distance effects, they are calculable in perturbation

theory due to asymptotic freedom

The independence of the Cta from the external hadron A allows to calculate these

functions with the simplest choice of the external hadron A = b, b being a parton

The remainders in Eq (2 29) are suppressed by powers of 1/Q2 Inspired by the ter¬

minology of operator product expansion (see Section 2 2), they are called the higher
twist contributions
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Summing up, the fundamental content of the factorization theorem is that all the

short-distance dependence resides in the coefficient functions Cia, while all long¬
distance dependence has been absorbed into universal parton distributions Cor¬

rections to factorization are suppressed by powers of Q2
A rigorous proof of factorization to all orders could be provided for deep inelastic

scattering in the context of operator product expansion [7, 8] The proof for other

hadronic cross sections is highly nontnvial [19, 20, 46, 28] and formally has not reached

the status of the treatment by OPE While the OPE proof could exploit the properties

of Green functions in Euchdean space, the proofs beyond OPE require a detailed exa¬

mination of all the dangerous momentum regions of massless particles in Minkowski

space

The plausibility of factorization properties for processes with one incoming hadron

can be seen from the following argument Considering electron-hadron scattering by
virtual photon exchange at high momentum transfer in the center-of-mass frame, two

important things happen to the hadron It is Lorentz contracted m the direction of

the collision, and its internal interactions are time dilated Hence as the center-of-

mass energy increases, the lifetime of any virtual partonic state is lengthened, while

the time it takes the electron to traverse the hadron is shortened When the latter

is much shorter than the former, the hadron will be in a single virtual state charac¬

terized by a definite number of partons during the entire time the electron takes to

cross it Since the partons do not interact during this time, each one may be thought
of as carrying a definite fraction x of the hadron's momentum It now makes sense to

talk about the electron interacting with partons of definite momentum, rather than

with the hadron as a whole In addition, if the momentum transfer is very high,
the virtual photon which mediates the electron-parton scattenng cannot travel far

Therefore, if the density of the partons is not too high, the electron will be able to

interact with only one single parton So roughly one can say that the initial state

interactions, which give rise to soft and colhnear singularities, are too early, the final

state interactions are too late relative to the short tune scale of the hard scattering

Therefore it is appropriate that these singularities are included in the wave functions

of the incoming hadrons and not in the short-distance cross section The proofs of

factorization establish that this simple picture is m fact valid in perturbation theory

for a large class of processes

In hadron-hadron collisions, the analysis is more complicated since the question arises

whether the partons in hadron Hi, through the influence of their colour fields, change
the distribution of partons m hadron H2, thus spoiling the simple parton picture

Soft gluons which are emitted long before the collision are potentially troublesome

m this respect But it can be argued that soft gluons do in general not spoil this

picture, using a simple model from classical electrodynamics [16] Consider a particle
with charge e travelling in the positive z direction with constant velocity 0 At an

observation point described by the coordinates x,y,z, (the position of hadron H2),
the vector potential A^ at a time t due to the passage of the fast moving charge can
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be calculated to be

A%x) =

ej

y/x2 + y2 + y2(0t - z)2

Ax(t x) = Av{t x) = 0

tfn a
_

e7P
12 3q\

'

v/X2+J/2 + 72(/3<_2)2

where 72 = 1/(1 - /?2) Now it can be shown that the vector potential (2 30) leads to

field strengths which vanish at high energy For example, the electric field along the

z direction is

E*it,x) = d-f + d-f = ^-X)
3 (2 31)

dt dz [x2 + y* + i2{pt-z)2}i
'

Hence at high energy, the field strengths are of order I/72 w M4/s2 Thus the force

experienced by a colour charge in the hadron H2 at any fixed time before the arnval

of the quark decreases as M^/s2 There are residual interactions which distort the

distribution of partons in hadron H2, but their effects vanish at high energies A

breakdown of factonzation at order 1/s2 is therefore to be expected in perturbation

theory and has been demonstrated explicitly in ref [17] Note that these effects are

due to the long-range nature of the massless vector field In the realistic case of an

incoming colour neutral hadron, there are no long-range colour fields It is therefore

possible that power corrections to factorization, 1 e terms of order (M2/s)n, will

occur m general only at a higher power of n than suggested by the above argument

2.1.4 The Altarelli-Parisi equation

We have seen in the last section that the parton distnbutions cannot be calculated

in perturbation theory However, what can be calculated perturbatively is their de¬

pendence on the factorization scale \j? The structure functions of course have to be

independent of n2, so taking the derivative d/d In /j? on both sides of Eq (2 25) will

give us a differential equation for the ^—dependence of q(x,n2) and hence for the

Q2—dependence of the structure functions Defining t = /i2, we obtain

t|^'t) = gj[1fp«/.(|)9«.t) (2 32)

This equation, known as the (Dokshitzer-)Gnbov-Lipatov-Altarelh-Pansi (GLAP)
equation [13, 14], is the analogue of the equation for the /? function describing the

variation of as{t) with t and is one of the most important equations m perturbative

QCD
A more rigorous treatment based on operator product expansion and the renormaliza¬

tion group equations [11, 12] extends the above result to higher orders in perturbation
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theory, leading to

'!«(**) = / yP«/«(f. *.(*)) ?(£.*) (2 33)

where Pq/g{z, as) can be calculated as a power series in as

*./.(*. *) = £ ^fM + (|)2P» + Oias3) (2 34)

The above equation holds for distributions which are non-singlets under the flavour

group 9ns = q, — q} with q„qj being a quark or antiquark of any flavour More

generally, the GLAP equation is a (2n/ + 1)-dimensional matrix equation m the

space of quarks, antiquarks and gluons,

d ( q%{x,t) \_^ [ldt( Wf-<*•(')) *Wf.<*•(*)) ^ ( «,(*,*)
ldt \ g(x,t) )-^Jx t\ />,/„(f, <*.(*)) P,/,(f,a.W) J V 9&t)

(2 35)
where each splitting function is calculable as a power series in as

Beyond leading order, the flavour structure of the function Pqjq> is nontrivial Using

SU{n;) flavour symmetry, we can define the following flavour singlet (S) and non-

smglet (V) quantities

p ,
_ s p(V) , p{S)

P ,
- s

p(v>+P<5>

*«./«;
-

°*]^q/q
+ ^q/q

P± = P%±P$ (236)

At next-to-leading order, the functions P , and P\i are nonzero, but we have the

additional relation

p(.S) _ p(S)

rq/q
~

rq/q

Now we define for each flavour the sum respectively difference of the quark and anti¬

quark distributions as

9* = 9, ±9, (2 37)

It is then straightforward to show that at NLO, the combinations

v, = q;
k

T, = *£q:-kq+,i,k = l, ,nf,l = (k + l)2-l
t=i

are non-swgJets, i e
,
evolve according to Eq (2 33) with the kernels P- and P+,

respectively
The one remaining combination of quark distributions is the singlet distribution

ni

E(*,t)=Elft(a;'t) + ft(a.O] (2 38)
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Note that because of charge conjugation invanance and SU(n/) flavour symmetry
the splitting functions P,/9 and Pg/q are independent of the quark flavour and the

same for quarks and antiquarks Hence taking into account the considerations above,

Eq (2 35) simplifies to

<§
where now

Pq/q = P+ + nf [P<;S> + P$] = P+ + 2nf P$ (2 40)

The leading order splitting functions P§b(x) can be interpreted as the probabilities
of finding a parton of type a in a parton of type b with a fraction x of the longitudi¬
nal momentum of the parent parton and a transverse momentum squared much less

than fi2 The interpretation as probabilities implies that the splitting functions are

positive definite for x < 1, and satisfy the following sum rules which correspond to

quark number conservation and momentum conservation in the splittings of quarks

respectively gluons

IldxPJHl(x) = 0

0

£dxx[PJ®(x) + P%(x)] = 0

j\xx[2nfP§l(x)+P$l(x)] = 0

The leading order splitting functions are given by [13]

1 + x2 3

p%ix) =

CF{j^k+2s{1-x)} (241>

Pfi^x) = 7*{x2 + (l-x)2} TR=\ (2 42)

+S(l-x)[jNc-lnfTR} (2 44)

The calculation of the next-to-leading order splitting functions P^(x) will be the

subject of Chapter 3
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2.1.5 Anomalous dimensions in the parton model

The GLAP equation, which is an integro-differential equation in x—space, can be

written m a factonzed form by taking moments (Mellin transforms) with respect to

the variable x, defined for any function f(x) by

/(JV) = fdxxN-lf(x)
Jo

Convolutions reduce to products under these moments Therefore, the t—dependence
of a non-singlet quark distribution function is given in terms of moments by

tjt qQS{N, t) = lq/q{N, a.(t)) qvs(N, t), (2 45)

where the anomalous dimension fq/q(N, as(t)) is given by the Mellin transform of the

splitting function

7,/t(JV,a,{t)) = f dxx^P^x,a.(t)) (2 46)
Jo

The equation analogous to Eq (2 45) for the moments E[N,t) and g{N,t) of the

singlet quark and gluon distributions correspondingly is given by

8 ( E(JV,t) \
_

/ 79/,(AW*)) 2n/7,/,W «.(*)) \ ( S(JV,t) \
-

,7]
fdt { g(N,t) )

~

{ 7,„(JV,a.(t)) 79/9(N,as(t)) ) { g(N,t) ) (Z/U)

The solution of the non-smglet GLAP equation (2 45) is, in terms of moments, given

by

/„/,„\\<w*o 7(<?(An

9ns(Ar,t)=9ns(Ar,«o)(^J , <^W = Js%T (2 48)

where the lowest order form ccs(Q2) = 1/(6In fa), b = (33 —2n/)/127i for the running

coupling has been used

At this point not only the conceptual, but also the practical importance of anomalous

dimensions becomes obvious Their knowledge allows for a prediction of the parton

densities at a scale t = n2 once they have been measured at a scale ^q

2.2 Operator product expansion

As we already explained in Section 2 12, the parton distributions gns(x,t) or, more

general, fa/b{x,t), can be calculated as matrix elements of certain operators In mo¬

ment space, the analogous structure is obtained by using operator product expansion

(OPE) It allows to relate the moments of the parton distributions to the matrix ele¬

ments between hadron states of local operators The predictive power of the operator

20



product expansion will come from the fact that the coefficient functions Ct have an

increasing power law suppression as the dimensions of the corresponding operators

Ot get larger Therefore, only a small number of terms is relevant, and the renor¬

malization group plus finite order perturbation theory may be used to compute the

coefficient functions to a useful approximation Furthermore, the Q2—dependence
of the moments of the parton densities can be worked out by summing the leading

logarithmic corrections to the matrix elements of twist two operators

2.2.1 Composite operators

Products of fields at the same space-time point are called composite operators When

computed naively, composite operators are not well-defined since they have ultraviolet

divergences The aim of operator product expansion is to construct finite, renorma-

hzed composite operators The operator product expansion has been introduced by
Wilson [6] and is based on the idea that the products of operators A(x),B(y) can

be expanded in a series of well-defined local operators Ot(z) with singular c—number

coefficients C,

A(x)B(y) = f; C(x - y) 6,(^) (2 49)
1=0

The local operator Oz(z) is regular in the sense that the singularity of the product

A(x)B(y) for y = x is fully contained in the coefficient functions C,(x — y) The series

in Eq (2 49) is arranged m the order of decreasing singularity, so Co{x — y) is the

most singular coefficient as y — x

Operator product expansion was proven by Zimmermann [7, 8] within the framework

of perturbation theory using the BHPZ method [56]

Renormalization of composite operators

Now we will consider Green functions which are extended to include the insertions of

composite operators and discuss the renormalization of such Green functions

To be specific, we look at the insertion of the product of two currents in a scalar field

theory, which can be expanded in the following way

(0|T[j(z)j(0)#ci) *(x»)]|0> = Eft(»)(0|T[Ofc(0)^(xi) *(*.)]|0) (2 50)

In momentum space, Eq (2 50) can be wntten as

F{q,Pi, ,pn) = J2^^E"^ >*») (251)

where F(q,pi, ,pn) is the truncated n—point Green function with insertion of the

current product The Green function F(q,pi, ,p„) satisfies the standard renorma-
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hzation group equation3

[V-n>y{g)}F = 0 (2 52)

where V = M|-+ £(5)| _ 7m(ff)mJL
. .

dlnm
7m (g) = -it

(JfJ> I 3b B fixed

.

,
1 d\nZ3\

1(9) = rM—5—
Z Oil Igs ,ms fixed

Z3 is the renormalization constant of the fields (j>(x)
On the other hand, the Green function Ek(pi, ,p„) can be shown to obey the

renormalization group equation

P? + 7o4(9)-n7fo)]£* = 0 (2 53)

where iok{g) is the anomalous dimension of the composite operator Ofc(x)

70k(g) = ^^^\ , 0k = Zol Of (2 54)
CIIt >3b,b fixed

Hence applying V to both sides of Eq (2 51) and using (2 52) and (2 53) leads to

[T>-fok(9)]Ck(q) = 0 (2 55)

This is the renormalization group equation which serves to determine the behavior of

the coefficient function Ck(q) for large momenta —q2 —> oo

If there exist several composite operators O, which have the same quantum numbers

and canonical dimension, those operators mix with each other in the renormalization

procedure, such that the renormalized operators are defined by

0» = EZ«1Cf (256)

This phenomenon is called operator mixing and plays a crucial role in the calculation

of the flavour singlet anomalous dimensions in next-to-leading order via OPE

3We assume that the current j(x) is conserved If this is not the case, j(x) will be renormalized by
a constant Z} and the corresponding anomalous dimension 73(g) = ndinZj/dii has to be included

mEq (2 52)
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2.2.2 Operator product expansion in deep inelastic scattering

The aim of this section is to denve an operator product expansion for the hadronic

tensor W^ introduced in Eq (2 5) in the context of the parton model In this case,

our composite operator is the time ordered product of two electromagnetic currents,

T[]ji(x)jv(x')} Its general form can be determined by the requirements of Lorentz

invanance and current conservation,

Tb»{x)h{x')] = {dll#v-gia0'fyOL(x,x') (2 57)

+(9^9pdl + gadfly - g,u,dx&p - gllxgpvd0'ffa) 02p(x,x')

-hantisymmetnc part

where 9M = dfdx^ and the antisymmetric part does not contribute to the spm-

averaged structure functions such that we will not consider it further

In order to express the bilocal operators 0(x,x') in terms of local operators, we make

use of the so-called light-cone dominance*

For deep inelastic scattering with —q2 -> oo and -q2jv fixed, the dominant contribu¬

tion to W/u, comes from the region 0 < x2 < const j{—q2)
Therefore we can expand the Green functions near the light-cone, leading to

oL(x,x') = e^j/V1 y^°t ^^)
i,n

0?(x,x') = E^i(yV' ircCjil^) (2 58)
tn

where y = x — x'

For the spin averaged matrix element between proton states we therefore obtain from

Eqs (2 6),(2 57) and (2 58) after Fourier transformation

-iT,v = yd4xe^(P|TU,(x)j„(0)]|P>
= {W» - ?V) E(pl°il »MP) I**** ^cPn(x2) e'«*

m
J

+{g^w^ + &»*«wa - g^qPqx - q2g»\gPv)

yZ(P\°T^)\P) h4**"1 x""^i{x2) e«x (2 59)
i n

The matnx elements of the composite operators appearing in Eq (2 59) have the

following tensor structures

(PlOtl „„(0)|P) = 4U*. P^, + terms containing ff^

{P\Ol$p„.(0)\P) = 4!n+2?VPw Pk»+ terms containing&,„, (2 60)

4The proof is straightforward, see for example [57]
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From expressions (2.59) and (2.60), sum rules for the DIS structure functions can be

derived by using dispersion integrals, since the forward virtual Compton amplitude

TM„ is related to the hadronic tensor W^, as already stated in Eq. (2.5).

ldxx-2FL(x,Q2) = E4*!» c&(Q2)

1

dx x»-2F2(x, Q2) = J2 At Ci'liQ2) (2-61)

Equations (2.61) are called the moment sum rules for the structure functions. They
exhibit the property of factorization already discussed in the context of the parton
model: The coefficient functions Cn (Q2) are of short-distance nature and thus calcu¬

lable within the framework of perturbative QCD. The long-distance effects are fully
contained in the An

,
which correspond to the moments of the parton densities, as

can be checked by comparing Eq. (2.61) to Eq. (2.29) derived in the context of the

parton model. If the expressions Ah were really constants, Bjorken scaling would

be satisfied exactly. However, as we already know from the discussion of the parton

model, these quantities actually depend on Q2, i.e. on the renormalization point of

the operators. Since this dependence comes only through operator rescaling, it in¬

volves only logarithms of Q2, and so contributes only to a slow violation of Bjorken

scaling. The Q2 dependence can be worked out quantitatively by summing the leading
logarithmic corrections to the matrix elements of twist two operators, finally arriving
at the solution of the Altarelli-Parisi equation in terms of moments, which for the

non-singlet case already has been given in Eq. (2.48).

Now it also becomes clear why the remainders in Eq. (2.29) have been called higher
twist contributions: For dimensional reasons, following from Eq. (2.59|, the light-cone

singularity of the coefficient functions Cn has to be of the form

Cl''(x2) ~ (z2)-<J3+((f0(n)-n)/2 ^.62)

where d3 and do(n) are ^e sca'e dimensions of the current and the composite operator

Oil] ^ respectively, and n corresponds to the maximum spin (i.e., number of vector

indices) of the operator. The quantity

< = <*o(«) ~ n

is called the twist of the composite operator 0$. .,,„.
It is a measure for the strength

of the light-cone singularity of Cn (x2): The smaller the value of r£, the stronger the

singularity of Cn (x2). Since twist controls the singularities on the light-cone, it con¬

trols the high Q2 behaviour of the Fourier transforms of the products of the currents,

which are directly related to the DIS structure functions as has been shown above.

/

L
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Therefore, the leading behaviour of the DIS structure functions can be determined by
retaining only the operators of the lowest twist rln = 2, the higher twist contributions

are suppressed by powers of 1/Q2
The quark operators of lowest twist are of the form

0Fm „.
= t^SfanD,,, D^i -

g^ terms (2 63)

where D^ = 6^ + ig\"A^ is the covanant derivative with A" being the colour group

generators i/> and ip are quark fields and S denotes the symmetnzation of Lorentz

indices, whose number is always even for a non-vanishmg operator The symmetnza¬
tion is necessary since we are dealing with unpolarized scattering The subtraction of

the g^V} terms (the so-called trace terms) makes the operator have definite spin That

the operator m (2 63) is of lowest twist can be seen as follows Consider a composite

operator consisting only of quark fields whose canonical dimension is 3/2 Since an

increase in the number of quark fields m the composite operator results in an increase

in its canonical dimension, the number of quark fields involved must be minimal, that

is, two, in order to keep the twist as small as possible Hence the expected form of

the minimum twist operator is

where AM1 M„
can be composed of 7^, 9M and A^ By gauge invanance, d^ and A^ can

appear only in the combination specified by D„ A % can appear only once because

any multiple of 7^ always reduces to a single or no % due to the symmetnzation S

Thus we are left with an operator of the form (2 63) which has dimension n + 2 and

spin n and thus is of twist two, while the operators containing g^Vi terms have higher
twist

In order to classify all twist two composite operators relevant for DIS, one has to

consider their transformation properties with respect to the flavour group As we

are interested in deep inelastic scattenng, the quark masses may be safely neglected
and so the flavour symmetry SU(nf) can be considered as exact Since the quark
fields i/> and the gluon field A^ belong to the fundamental and singlet representation
of SU(nf) respectively, the twist two composite operators containing two quark fields

belong to the singlet or adjoint representation Explicitly, the twist two non-smglet
operator is given by

°li *.
= °n = i^Sih^D^ D^t"il> - trace terms (2 64)

where t" (a — 1, ,
n2 - 1) are the generators of flavour SU(nj)

The twist-two composite operators which transform as singlets under the flavour group
are of the form

°li im
= jn"l5^7MiCw P>i^J> ~ trace terms (2 65)

0« *.
= 2in~2SF;ixD 0£:;a~,*E-,A - trace terms (2 66)
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where 0^ ^
is built from gluon fields, F°„ being the gluon field strength tensor

Since there are two twist-two singlet operators, operator mixing will occur in the

renormalization process, which complicates the calculation of the two-loop anomalous

dimensions in the singlet sector

2.2.3 Renormalization-group-improved perturbation theory

The renormalization group equation for the Fourier transforms C„(Q2) of the coeffi¬

cient functions5 defined in Eq (2 59) is given analogous to Eq (2 551 by

[v-in(g)]Cn&,g) = 0 (2 67)

where yn(g) = ^-lnZn| (2 68)
Oft lgs,mBfixed

is the anomalous dimension of the operators Ow ^
defined in Eq (2 59)

The solution of Eq (2 67) is given by

Cn(£,g) = Cn(l,g(t,g))exp{-f(td\^} (2 69)

-92
where t —

ln(—F)

It2

and the running coupling constant g(t) is the solution of the differential equation

jtg(t,9) = P(g) , S(0,S) = 9 (2 70)

Expanding i„(g) and 0(g) perturbatively

7,(9) = ln0)f + Jn1)g4+ (2 71)

0(5) = -A>S3 - &S5 +

we obtain from Eq (2 69), keeping the first two terms in the expansions above

CO) (0) (1)

C^,5)~Cn(l,9„)^J (jgr^J (2 72)

where eft = l/(20ot) is the solution of Eq (2 70) with only the first term in the

expansion of 0 kept The values of 7„ ', 0a and 0X are well-known, the calculation of

7n is the mam issue of Chapter 3

5The subscripts L and 2 will be omitted here since the reasoning for both is the same
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Eq (2 72) fully exhibits the virtues of the renormalization group equations in order to

obtain predictions at different scales Note that the coefficient functions are scheme

dependent, the scheme dependence cancelling out when being combined with the

parton densities (see Eqs (2 29),(2 48),(2 61)) to the full cross section

Using a perturbative expansion also for C„(l,g)

C„(l,g) = c0n + Ci„§2 +

and expanding Eq (2 72) we obtain

Cn(Q2) = ^(lnJ)
*"

[con+(ft>m|J)
7^ 0^]\ rf "2

c^+^\wo--w -con~wlnln^}+ l(273)

where Nn is the constant

,(0)

and A is the QCD scale parameter, defined in this order by

-2/fl \MWD
A = p.e

-l/(2ft)S2) (\FlMMX

\ 0o92 J

Equation (2 73) is a basic formula for practical applications of perturbative QCD in

deep inelastic scattering So in order to know the coefficient functions to order g2, it

is necessary to calculate the anomalous dimensions 7„(g) to order g*

Note that the values 7^ depend on the renormalization scheme that is used, whereas

physical quantities clearly do not It has been shown [27] that the prescription depen¬

dence of ta1' is cancelled by that of the coefficient of g2 m the expansion of 01,(1, g)

The gauge independence of the anomalous dimensions 7n(<7) in the MS or MS scheme

follows by Eq (2 68) from the gauge independence of the renormalization constant

Zn in the MS or MS scheme, which in turn can be shown using the gauge invanance

of the unrenormahzed composite operator
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Chapter 3

Calculation of anomalous

dimensions in two loops

3.1 OPE method

The method based on operator product expansion to calculate the two-loop anomalous

dimensions relevant for deep inelastic scattering was developed by Floratos, Ross and

Sachrajda [27] It is based on the scaling properties of the lowest twist (t„ = 2)
operators that control the short-distance behaviour of the deep inelastic structure

functions These operators already have been worked out in Section 2 2 2 and are

given by Eqs (2 64) to (2 66) In order to outline the method, we will concentrate on

the non-singlet part which is not plagued by operator mixing

If we insert the operator OjJ, ^
of Eq (2 64) in all possible ways as a vertex into

the internal lines of a IPI m-point Green function r'm)(pi pm), then the resulting

Green function T^ will have an overall degree of UV divergence i?(m) = do — m,

where do = n + 2 is the naive dimension of the operator On Because we need only the

twist-two part of the functions TqJ we have to consider only the terms proportional

to the external momenta p^1, ,pf" , ik — 1, ,m So the twist-two part of TqJ
has a degree of UV divergence D^2 — d0 — m — n = T-m. Therefore we see that only
the two-point Green functions give counterterms and their divergence is logarithmic
Since only the quark carries flavour, we need to calculate for the non-singlet part only
the Green function T^ (p, —p) with two external quark lines

Defining the bare operators

On,B = $BQlBi>B = ZoOZjt

Qn,B = = ZqQuR

we find that Zq = ZpZF where Zp is the quark wave function renormalization

28



constant Thus the bare and the renormalized Green functions are related by

^oIr(9r, V) = Z5lZFT{2l B(gB, e) = ZQT(2\ B(gB, e) (3 1)

such that the counterterms we obtain from the calculation of Tg' determine Zq and

not directly Zo
The anomalous dimensions for 0°,tp and the 0—function are defined by

7o„ = /ijr-lnZoJ (3 2)
Oft lpB,«faed

^ = rr^L^ (33)

0 = it^-gR\ (3 4)

From these definitions and the n independence of T^ B
we obtain the renormalization

group equation for T^ R

^ + p{9r)
bTr

+ 70-"27F) t<°-r = ° (3 5)

For the anomalous dimension of the operator Q£ we derive, using (3 1)

7q„ = Ifx- In ZQn =2-yF- 70, (3 6)
<?A 1 SB ,e fixed

Thus we see that the two-loop calculation of 7o„ contains the two-loop calculation of

7jt and of the IPI Green functions T^2/
In dimensional regulanzation, the anomalous dimension 7cj„ can be calculated [27]
from the single pole part of the renormalization constant of the operator Q„ Zq^ has

the expansion

*=o

Using the form of the /^-function in 4 - 2e dimensions

/3(te,«) = -«e + 0(fe) (3 7)

and Eq (3 6) leads to

7«„ = -9l|| (3 8)

So we see that the anomalous dimension 7q„ is simply minus twice the coefficient of

the 1/e—part m Zq„
To perform the actual calculation, the symmetnzation and removal of the traces is
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h/ I \fo
/ lt,a \

Mn fc)""1 -gta ^^'{n *i)'"l(n A*)"-'-1

ff2Mw««E;:iE'=i(n fci)1-1!*01*02^ (*i-ft)),_,(n fc2)"-J-2

+W(n (fc2 + 92)):,_,(n ^a)"-3-2]

Figure 3 1 Feynman rules for the effective vertices with zero, one and two outgoing

gluons

most easily achieved by multiplying the operator in Eq (2 63) by the tensor n^1 n*1"

where n is an arbitrary light-like vector This operator gives rise to effective vertices

consisting of an incoming and an outgoing fermion line and and 0,1,2 to n—1 gluons
In next-to-leading order, the cases zero, one and two gluon vertices are required The

Feynman rules for these vertices are given in Fig 3 1 The anomalous dimension 7q„
is obtained by considering the matrix elements of the operator between off-shell quark
states of momentum p (—p2 3> quark mass squared) The diagrams which contnbute

to this IPI two-pomt Green function in two loops are shown in Fig 3 2

According to Eq (3 6), we also have to calculate the fermion wave function renor¬

malization in order to obtain 7o„ Fig 3 3 gives the diagrams needed for the wave

function renormalization of the fermion field

The calculation has been done in Feynman gauge in order to have the simplest form

of the gluon propagators The result is rather lengthy and given m [27] The method

is quite tedious since full two-loop diagrams have to be calculated Furthermore, one

has the complication of operator mixing in the calculation of the singlet part There¬

fore, another method, based on axial gauge and cut diagrams, will be presented in

the next section
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Figure 3.2: Diagrams which contribute to the IPI two-point Green function in two

loops. For diagrams which are not symmetric crossed diagrams have to be included.

In diagrams (f) and (m), the contributions from Faddeev-Popov ghosts and tadpoles
have to be added.

^jFCrrs^—.— ,
P<?,\

.—

Figure 3.3: Diagrams contributing to the fermion selfenergy in two loops. In the

diagram containing the gluon selfenergy, the Faddeev-Popov ghost- and tadpole terms

have to be added.
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3.2 The method of Curci, Furmanski and Petronzio

The method developed by Curci, Furmanski and Petronzio (CFP) [29] to calculate

the two-loop anomalous dimensions is very close to the parton picture In contrast to

the OPE method, which leads to the moments of the splitting functions Pa/b{x,as)
defined in Eqs (2 33) and (2 39), the CFP method directly leads to these functions

in x—space Apart from the fact that the x-representation of Pa/b(x,as) is simpler
than the expressions for the moments, it admits the physical interpretation to be the

generalization to all orders in as of the Altarelh-Pansi probabilities and is in addition

more useful for experimental analysis
The most important technical ingredient of the CFP method is the use of light-like
axial gauge, n^A11 = 0, n2 = 0 This gauge gives rise to spurious singularities which

may be regularized by essentially two different prescriptions A precise analysis of

the validity and practical usefulness of these prescriptions is crucial for all attempts

to calculate the anomalous dimensions beyond next-to-leading order with the CFP

method Therefore we will devote the mam part of chapter 3 3 to the discussion of

the light-cone gauge

The CFP method will be outlined now briefly, for further details the reader is referred

to [28, 29]
As already explained in Section 2 13, the matrix element squared for a specific hard

process can be written m x—space in form of a convolution of some universal parton

density V(x, Q2) with the "short-distance" cross section C(x, Q2) whuh is charactens-

tic for a given process and contains by construction no mass singularities The density

T(x, Q2) depends only on whether the evolving parton has space-like momentum (like
in deep inelastic scattering) or time-like momentum (like in e+e~ annihilation) The

Q2—evolution of the densities F is governed by the probabilities Pa/b(x, as) which can

be calculated perturbatively in the falling coupling constant

To be specific, consider the matrix element squared M for virtual (space-like) photon-

quark interaction M can be expanded into a generalized ladder of two-particle-

lrreducible (2PI) kernels Co and Ko as shown m Fig 3 4 As will be explained in

more detail below, it has been proven [28] that the 2PI amplitudes ir< the axial gauge

with no unphysical degrees of freedom propagating are finite as long as the external

legs are kept umntegrated Hence all colhnear smgulanties originate from the integra¬

tion over the momenta flowing m the lines connecting various kernels (By definition,

the kernels Ko contain full propagators of upper lines, and do not contain lower lines )
For simplicity of notation, all spinor (or vector) indices and momentum dependences

will be suppressed, so we wnte C0 for CHa,(q,p) The product C = A B of two

kernels is a shorthand notation for

C$(kxM) = E/ (J^<(fci«'<(^)
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tt-*-^
Co

X
+ [Co_

fcT"
Ko

pT

W
c

kJ\

Figure 3 4 The generalized ladder expansion m terms of 2PI kernels C0 and K0 and

the final factonzed form M is the matrix element squared for virtual photon-quark
interaction

The contraction of spmor indices will be written shortly as

[ftA denotes Y^k)-,-/A"1^

A fz) denotes X)A^(/fe)7y
7y

The generalized ladder expansion in Fig 3 4 can then be written as

Co
M = Ca{\ + K0 + Kl +

1-Ko
= CoTo

where Co as a 2PI kernel is finite and T0 contains all mass smgulanties As C0 and

F0 are still coupled by momentum integrations and spmor indices, we introduce a

projector V which serves to achieve full factorization We define V = Vt + V„ where

Vn acts in spmor space, decoupling Co and To in spmor indices, and Vt extracts the

singular parts (i e poles m e) of the dmk—integrals, thus decoupling Co and r0 in

momentum space Using the parametnzation k* = xp^ + brf + k± — kt + on* + k^

already introduced in Eq (2 8) and the fact that only kff can give nse to colhnear

poles, it can be easily shown [29] that Vn can be defined as

The operator Vt sets k2 = 0 in the A /fc] part and extracts the pole in the dk2/k2
integral from the [-^B part
The factorization of the infrared singularity in the CqKq term then looks as follows

Think of M being one of the partonic structure functions FW m deep inelastic scat¬

tering Then we have

F« =
1 [c«tfo j\=\ [c^VKo /] + \ [<#>(! - V)Ko *] (3 9)
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where the second term is finite and

1

2 'cPvKof] = \[<$]Vt®VnKa fi]

- /"£[<*«>]„'<?-!>•
f.Q2 1

pp
f aTk kn [ A

T(—r-,i,-) = iPF /
,„ ,

o(i ) Tt—Ko P

V V y (2ir)m
v

pn' [Akn
"

The symbol PP denotes the pole part of the d^k integral. From kinematics one has

k\ = 0 for k2 = 0 so that [Co /fc]fc2-0 can be taken out from the eP"-2^ integral.
Therefore, after the action of the projector V, both kernels are coupled only by the x

integral, which can be written in form of a convolution

\\c^VKoA - /''dyCP&y) f' dzT{%,z,))&{xB - yz)
4 L J Jo ft JO ft e

4L
2kq

where

ci'\%,y) = [cW/fc^o ; v =

it

and xb — Q2/(2pq) is the Bjorken variable.

The procedure to carry out the factorization of mass singularities in all orders in the

generalized ladder expansion is iterative First the singular part of the last kernel K0
is factorized:

M = C0

which can be rewritten as

Af(1 - VKo) = Co

1 + £ K'f'VKo + £ #o-1(l - P)Ko

l + f2K'o-\l-V)K0

(3.10)

(3.11)

In the next step one factorizes the singular part of K"o(l — V)Ko on the right hand

side of Eq. (3.11). Carrying on in this way, one finally ends up with a series which

can be written in compact form

M =

1 - (1 - V)K, )\l-VK) (3.12)

where

K = K0/(l - (1 - V)Ko) = Ko (1 + (1 - V)Ko + (1 - V)(K0(l - V)K0 + ...) (3.13)
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and the kernel 1/(1 - VK) is defined by the series expansion in which V acts only on

the adjacent K on the nght

1

l-VK
= 1 + VK + {VK)(VK) + (3 14)

The final step in constructing the deep inelastic scattering partonic structure func¬

tions consists in performing the necessary contractions and multiplying M by Zp, the

residue of the pole of the full quark propagator, leading finally to

F® (%,xB,a.,^\ = J dyC® (^.»•<*.) / dzT (z,as,-\ 5{xB-yz)

(315)

cw = -

c
'(«)

l-(l-V)K0r \k2=0 y=wq <316>

A
-K;

l

(317)

rUas,-j = ZF{s(l-z)
f cTfc

u _fcn.
+

J (2*)
{Z

pn

Z

4kn"l-TK

In terms of xB moments, Eq (3 15) simply reads

^W {$'N'a" l) = C(l) {$'N'a') r {N' a>< l) (3 18)

In general, F is a matrix m flavor space In the non-singlet case, we need only the

diagonal quark-quark part rq/q

Factorization and finiteness of the kernels K0 in axial gauges

For the whole factorization procedure outlined above, the generalized ladder struc¬

ture, that is, the finiteness of the kernels K"o, is crucial To show m general that

factorization is correct, it is necessary to demonstrate (1) that the smgulanties of all

Feynman diagrams contnbutmg to a given process can be cast into a factonzable form

and (u) that the singular pieces depend only on the type of the incoming parton leg
and not on the particular hard process

In QCD, the graphs which contain smgulanties depend on the gauge chosen for the

exchanged gluon The clearest singularity structure is obtained in an axial gauge,

m which the graphs responsible for colhnear smgulanties are the generalized ladder

graphs shown in Fig 3 4 It is obviously a great advantage in demonstrating property

(1) to have to consider only ladder graphs in which there is already a separation be¬

tween the hard process and the parton dressing coming from the rungs of the ladder
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In leading order in light-like axial gauge, the only graph which contains a singularity
is the ladder graph with one rung, given by graph (a) in Fig 2 3 This property can

be demonstrated by a power counting argument based on helicity conservation and

the scaling properties of the quark-gluon vertex

Consider an incoming quark which emits a spin one gluon Since the quark-gluon
vertex is proportional to ya the helicity of the quark hne must be conserved Conse¬

quently the amplitude for gluon emission must vanish in the forward direction when

the transverse momentum fcj_ of the emitted gluon tends to zero because of angular
momentum conservation In fact the amplitude vanishes as one power of k± This

factor m the numerator is sufficient to make all graphs finite except for the ladder

graph, which contains two singular denominators The divergence in the matrix ele¬

ment squared for the ladder graph is of the form k^/k* ~ \jk\

Note the importance of the spin of the gluon for this argument In covanant gauges,

such as the Feynman gauge, longitudinal gluons propagate in individual graphs and

invalidate the above arguments It is only after summing all graphs, including those

where the gluon is attached to the struck quark line, that the light-cone gauge result

is recovered Thus in covanant gauges we lose the physical picture of the singularities

being due to colhnear gluon emission from incoming legs
The proof to all orders [28] that the kernels K"o are finite, such that the colhnear sin¬

gularities come only from the integrations over the momenta connecting the various

kernels, in principle is based on analogous helicity conservation and power counting

arguments as in leading order First the diagrams involving only gluons and quartic

gluon couplings are considered This has the structure of <j>4 theory, where power

counting arguments can safely establish the finiteness of the 2PI diagrams The cru¬

cial step now consists in extending the result to include also trilinear vertices To

demonstrate the required scaling behaviour of trilinear vertices, a judicious definition

of effective vertices and propagators is worked out This is where axial gauge is crucial

The extra suppression which leads to the right scaling behaviour is provided by the

structures of effective vertices and propagators only in a gauge where only physical
polarizations propagate In covanant gauges, the additional unphysical polarizations
can be "emitted" or "absorbed", giving the individual graphs more complex diver¬

gences, such that the scaling behaviour worked out for the tnlmeai vertices breaks

down Therefore, the use of axial gauge is essential for the proof, but the implications
of the result concerning factorization are more general since the choice of gauge must

be irrelevant for the final physical cross section

Renormalization group

Equations (3 12) respectively (3 18) have the structure of a typical i elation between

bare and renormalized quantities

MB = MR ZBl (3 19)
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where the (divergent) bare quantity Mb = M ~ FW, multiplied by the (divergent)
renormalization constant Zb = 1 - VK ~ T~l gives the (finite) renormalized result

Mr = Col[l — (1 - V)Ko) ~ Cw in this sense, the factorization of mass singularities
in dimensional regulanzation is formally very similar to the ultraviolet OPE technique
This allows to use the powerful methods of the renormalization group

The procedure of renormalization of colhnear divergences is the following We start the

calculation with p2 ^ 0 in m = 4 - 2e (e > 0) dimensions and subtract the ultraviolet

poles The colhnear divergences are regulated by p2 After ultraviolet subtraction has

been performed, we analytically continue the result to m = 4 - 2e (e < 0) dimensions

and take p2 = 0, this operation generates colhnear poles in FW Since the partomc

structure function FW is a "bare" quantity and does not depend on (i, the it2 (and
therefore Q2) -dependence of the "renormalized" quantity CW is determined by the

singularities of T_1 = ZB

However, renormalization group methods can only be used if F (x,as, \) ~ ZBl is

indeed independent of Q2 (i e
, independent of the upper limit of the dk2—integral)

In the ultraviolet method, the analogous property of T (independence of p2/it2) is

a direct consequence of the renormahzability of the theory, whereas m this case the

Q2/ft2 independence of T is by no means obvious In fact, it is one of the most essential

points of the whole factorization program in axial gauge, where the finiteness of the

kernels K"o, proven m ref [28], enters in a crucial way The proof of the Q2//t2
independence of T goes as follows [29] Using the finiteness of the kernels before the

last &2—integration, the structure of T is

r(£«,I) = s(i-x) + \Tl{p) + ^,x) +

= S(l-x) + PPj ~^{k2l^2,x,e) (3 20)

where

hm$(fc2//i2,i,e) <oo (3 21)

Differentiating both sides of Eq (3 20) over Q2, using (3 21) and comparing coefficients

of the same powers of 1/e on both sides we find dT/dQ2 = 0

Now we can act with the renormalization group operator

0(g,e) = 0(g)-eg (m = 4-2e,e<0) (3 22)

on equation (3 18) Since FW as a physical quantity is mdependent of it, we obtain

DlnFW = 0 = PlnCW+DlnT (3 23)

[V + 21{N,ocs)]CU{%,N,as) = 0 (3 24)
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where j(N, as) is defined as

y(N,as) = iv\nT = ip(g,e)^-\nT{N,a„e) (3 25)

d\-
j(N,X)

(3 26)

Integrating Eq (3 25) leads to

F(iW) = exp{-/ ^(A)_£Aj

From Eq (3 24) and the finiteness of CW and V in the limit e —> 0, we conclude that

7(7V, as) is also finite in that limit In the MS factorization scheme T has the Laurent

expansion

r(„,,,i, = I+f;'^-) (327)
fc=l

Using (3 22) and (3 24), we find that the anomalous dimension is determined by the

simple pole term in the expansion of T

l(N,a.) = -±g-^r<»(N,a.) (3 28)

It has been shown [29] that f(N, as) calculated in this way coincides with the anoma¬

lous dimension of the twist-two non-singlet Wilson operator of DIS calculated with

OPE in the MS scheme

Bare and dressed parton densities

In order to construct the hadronic structure functions F#', the partonic structure

functions FW should be convoluted with the "bare" density qB,H{x,as,\) of quarks

mside the hadron According to the generalized ladder expansion, qB^ is given by

. 1, f dTp
., pn

e J (2n)m ptfi Apn
HA (3 29)

where H is the 2PI hadron-quark kernel For our purposes, we need only one property

of H, i e that it is soft in the following sense

n-2,

„, 2 . if <r-2PL

H{P'X)
=

?J2(2^ 4pn
^

]^2|?'
(b2[^oo,<5 > 0)

This assumption is consistent with all phenomenological evidence concerning the in¬

ternal hadron structure Assuming this property, we can extend the p2—integral to

infinity

qB b(x, a., \) = J'"2 d-^H(p2,x) = f~ d^H(p2,x) + 0[(£)'],
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Figure 3 5 The hadronic structure function FH is obtained by convolutmg the par-

tonic quantities C T with the bare parton density qB,H The quantity r qB,H is then

interpreted as the physical parton density qj/g

such that the "bare" density contains only power-like corrections to the Q2—depen¬
dence of the structure functions (higher twists in the Wilson expansion) On the other

hand, the lower limit of the dp2jp2-integral will generate the mass singularities which,

according to the KLN theorem [18] must exactly cancel the divergences of T(x, <*», j)
Therefore, the "dressed" density

qf/H(x, Q2) = (r ® qB,H)(x, a,{Q2)) (3 30)

is free from mass singularities and can be mterpreted as the physical (renormalized)
density of partons of type / m hadron H In terms of moments, the convolution in

Eq (3 30) becomes a simple product

{-f
1flH(N,Q2) =exp{ -

[a4Q\\F^L\qBj(N,as,z)
(3 31)

where expression (3 26) for T has been used This factorization is shown diagrammat-

lcally m Fig 3 5

As can be deduced from relation (3 31), the evolution of the physical parton density

qj/H with Q2 in moment space is given by

Q2-^21!Ih{N,Q2) = lqlq(N,as{Q2))q}IH{N,Q2) (3 32)

where we consider only the non-singlet case for simplicity of notation With the

definition

Jq/q(N, a.) = / dxxN-lPq/q(x, a.) (3 33)
./o
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relation (3 32) m z-space reads

f) r1 Hz t

Q2qq2 «//*(*. Q2) = jx -Pq/qi^ os(Q2)) q!IH{z, Q2) (3 34)

Expanding Pq/q(x,as(Q2)) m powers of as

P^x, a.) = (g) P$(x) + (g)2 P%(x) + 0(a>) (3 35)

we see that Eq (3 34) is the Altarelh-Pansi equation generalized to all orders, so

*«<>-o(£r
Using the expansion (3 35), the density Tq/q(x, as, 1) can be written as

rw, •>.. \) - id - x) - i {(£) «W +
i (*)' »,» + } + »(£)

(3 36)
It will be convenient to treat separately the contribution from Zp, the renormalization

factor of the external leg, and hence to introduce the notation

Tq/q(x,as,-) = ZFtq/t(x,a„-)

tq/q(x,as,-) = <5(1 - x)
'

-;{(s)jaw + i(s),^> + °i*!>} + 0(?>
(3 37)

ZF = i_ift(a.) + 0(i)

e,(«.) = g^W + ^gj'^W + CXO (3 38)

P,/,(i,a.) = £,/,(!, a.)+£,(a,)*(l-s) (3 39)

An important simplification m the the CFP method is that one has 1 o calculate only

P^jb(x) because the contribution of the wave function renormalization factor Zp at

x = 1 can easily be obtained from fermion number conservation and momentum

conservation sum rules

From Eqs (3 13), (3 14) and (3 17) we find

T = l+VKo + V(Ko)2-V{K0VKo) + (3 40)
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This expansion leads to the next-to-leading order diagrams contributing in the CFP

scheme to Pv(i), shown in Fig 3 6

The labeling of the diagrams follows the conventions of CFP The solid circle denotes

an insertion of the projection operator V The diagrams where only one internal

line is cut contain insertions of virtual one-loop diagrams and therefore will be called

virtual diagrams The real diagrams are the ones where two internal lines are cut

3.3 Principal value and Mandelstam-Leibbrandt

prescription

Axial gauges are characterized by a vector nA and the gauge condition

nMJ(z) = B*{x)

The most common ones are homogeneous axial gauges where B"(x) = 0 They can

be classified to be temporal (n2 > 0), space-like (n2 < 0) or light-like (n2 = 0) axial

gauges While temporal and space-like axial gauges exhibit problems already at the

free level [41], light-like axial gauge, also called light-cone gauge, can be consistently

quantized and renormalized, as will be discussed below

Performing perturbative QCD calculations in axial gauges has several advantages
One is of course the absence of Faddeev-Popov ghosts Related to this fact that

in axial gauges in general only physical degrees of freedom propagate is the nice

feature that those gauges allow to retain the parton interpretation even in higher
order calculations

Within the CFP method, the use of axial gauge is crucial to achieve factorization via

the generalized ladder expansion The use of light-like axial gauge in addition reduces

the complexity of the calculation by reducing the number of diagrams as well as the

complexity of the gluon propagator compared to other axial gauges It also allows to

establish a link to the OPE calculation

The light-cone gauge formally leads to a gluon propagator of the form

nab I \
^

f , Wpfr+nrgp, i5ab
DZ(S)

= -j-;—{-&«/ +
—

-}
= -o—.— <W? (3 41

^
<T + ir] qn q2 +ir]

The 1/qn—factor in the gluon propagator gives rise to the so-called "spurious poles",

singular terms which are gauge artifacts m both, the real and the virtual contributions

Although these singular contributions must cancel in gauge invariant quantities, one

has to use some regulanzation method in order to be able to evaluate the individual

contributions As yet, in all calculations based on the CFP method, the principal
value (PV) prescription has been used which is defined as

JL I ( 1 1 \
= h

qn

qn t-*o 2 \qn + i8{jm) qn — id(pn)J 6-*o {qn)2 + 62(pn)2
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where pn ^ 0, pi = 0

The factor pn in conjunction with the (^-regulator is present in order to keep the 5

dimensionless and to preserve the invannance of the gluon propagator under a resca-

lmg of n In our calculation we use the parametrization of p and n given in Eq (2 9)
and Appendix B
It is well-known1 that by applying the PV prescription, Wick rotation becomes im¬

possible without crossing a spurious pole, since it places the poles m the complex

go-plane in the first and fourth quadrants As a consequence the possibility to use

power counting theorems breaks down Nevertheless, the spurious poles appearing as

In 5, In2 5—terms in individual contributions cancel m the sum of all virtual and all

real contributions Another difficulty of the PV method is related to the ultraviolet

renormalization constants which become dependent on longitudinal momentum frac¬

tions and on In 5 These spurious pole terms in the UV renormalization constants of

course will cancel when calculating the full cross section But in the CFP factorization

scheme, the cancellation would have to take place independently in C and T in order

to preserve the finiteness of the 2PI kernels In fact, this is not the case, but the spuri¬

ous poles from ZF cancel with the photon vertex This means that the factonzability
would be broken in light-cone gauge with PV prescription without local subtraction of

the spurious poles m the UV singular terms On the other hand, if one does subtract

them, the scheme works, giving the same result as obtained with the OPE technique
CFP call this subtraction procedure a "phenomenological rule", being aware of the

fact that there remains some theoretical justification for this procedure to be worked

out

A further reason to mistrust the PV prescription has been provided from a different

context Using the PV prescription in N = 4 supersymmetnc Yang-Mills theory, there

are divergent one-loop contributions remammg [60], at variance with the correspon¬

ding covanant gauge calculations which do not exhibit such a singularity [41]

After the work of CFP it was pointed out that the pnncipal value prescnption is not

consistent with canonical quantization m light-like axial gauge [38, 39] Canonical

quantization leads to the ML prescription [36, 37] defined as

— -* hm 3_
= hm 9IL (3 43)

qn »!-+o+ qn + in sign(gra*) t|-»o+ qn qn* + in

which introduces a second vector n* "conjugate" to n^ which is subject to the condi¬

tions

(n')2 = 0,nri' ^0

If "(j = ("o, n) and if we set nn* = 1, then n* = (n0, —n)l2n\
The first definition in Eq (3 43) has been given by Mandelstam [36], while the second

1The subject of quantization and renormalization in noncovariant gauges and their use in pertur¬

bation theory is described in refs [41, 42]
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is due to Leibbrandt [37] The two are identical in the sense of the theory of distri¬

butions, therefore one usually simply denotes it by "the ML prescription"

A crucial property of the ML prescription is that the spurious poles are placed in the

complex go ~plane in the same way as the "usual" covanant poles Therefore, Wick

rotation will not produce extra terms and a generalized power counting theorem for

UV divergences can be established [41]
The origin of the difference between PV and ML prescription can be traced back

to different quantization procedures This can be sketched by considering the usual

Yang-Mills Lagrangian and the gauge fixing term

L = ~F^Fa^v - Xa n"Al (3 44)

which leads in the Hamiltoman formalism to an equation of the form [38]

d-Xa = 0 (3 45)

Following now the null-plane formalism and quantizing the system on the surface

x+ = 0, Eq (3 45) is not an equation of motion, since m this case the derivative n**3^
can be considered as a spatial derivative If we now impose the boundary condition

that the A" should vanish at x~ = ±oo, we obtain X" = 0 everywhere, and a forma¬

lism which cannot be equivalent to the equal time quantized version of the Lagrangian

(3 44) Thus we are led to a principal value (or an equivalent one-vector) prescription
for the spurious poles [41] However, according to an analysis done by McCartor and

Robertson [39], a careful light-cone quantization implies that the initial conditions

A° = 0 at x~ = ±oo are too naive m this context The unphysical degrees of freedom

must be initialized on a surface of equal x~, satisfying equal x~ commutation relations

Thus one is lead to the existence of a second characteristic surface which is related to

the second "gauge vector" n* needed to formulate the ML prescription, and the ML

form of the gauge field propagator is recovered

Hence it can be concluded that even the light-cone quantization does not lead un¬

avoidably to the PV prescription On the other hand, quantizing the theory with equal
time commutation relations m the usual space-time coordinates leads unavoidably to

the ML prescription [38]
In the usual space-time coordinates, we cannot interpret Eq (3 45) as a constraint,

but rather as a genuine equation of motion since a time derivative is involved Thus

the Xa describe degrees of freedom propagating on the hypersurface nq = 0, tangent
to the light-cone Carrying through the quantization procedure, one finds the gluon

propagator in the ML prescription [38] This propagator can be decomposed into a

term corresponding to the propagation of the physical polarizations and into a term

which descnbes the propagation of scalar and longitudinal gluons m the qn = 0 plane

< o|T{^(x)A*(o)}|o >=< o|r{r;(x)r>)}|o > + < o\t{l;(x)lI(o)}\o > (3 46)
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where

i6°>> fd'qe"1*
< o|r{W^(o)}|o> =

7^/^

q\ nn*

_

(n^gy + qy.nv) 2qn'
_

n^go,, + n„goM 2\
9»»+ j „„, 92_

? J

and

<0|T{I$(s)L£(0)}|0> = -(f^/;g + gi + *«

fo„g„ + g„n„) 2gra* w„ff0t, + n,,^ . 2 2\

gi nn* gi
W 9jJ

Adding up these contributions and using g2 + gi = 2(gn*)(gn)/nn* we obtain the

axial-gauge propagator with ML regulanzation

D»»{X) - (2^ i ?T^ XT9""+ qnqn* + in J
(3 4?)

The discontinuity of this propagator can be decomposed into the physical axial-gauge
contribution and an unphysical contnbution

DiscD£(?) = 2^(g0) J* {-^ +g (n&+ "**) | %2) (3 48)

-2^(go) *- { |£iM^l}%> + gi) (3 49)

As this is an important equation, we will also give its form with light-cone parametnza-
tion of the momenta Using

fa = -y=(go±g3)

g2 = 2g+g_-g2=^:-g2
nn

one obtains

Disc^(g) = 2^(g0) 6<"> |-<^ + ("-*> +"»fe) | 5{q2) (3 50)

-2^(g0) f» |2g- ("*g" + "^ } %2 + gi) (3 51)

The term proportional to the delta function <5(g2 + gi) is the so-called axial ghost
contribution It has been shown by Bassetto et al [38] that all vectors of the physical
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Hilbert-space are annihilated by the creation operator of these degrees of freedom

Therefore, similarly to the Gupta-Bleuler ghosts of QED, they decouple from the S-

matnx The ghosts have negative mass squared, indefinite metric, they live in the

qn = 0 plane and their polarization sum is

M<?)M9) = ——

-j (3 52)
A=i2

nn ?J-
E

It should be pointed out that the ghost part of the discontinuity of the gluon propaga¬

tor is not transverse Note also that the explicit presence of gi is a clear manifestation

of the Lorentz non-covanance of the gauge entailing technical complications in loop-
and phase space integrals

On the other hand, in expressions (3 48) and (3 49) for the discontinuity of the pro¬

pagator with ML prescription one can identify a cancellation mechanism between

the standard axial gauge contribution and the axial ghost contribution In the limit

gi —> 0 the spurious poles 1/gi appeanng in Eqs (3 48) and (3 49) cancel each other

But we will show that this mechanism is more sophisticated in two loops

Using PV prescription, the second term (3 51) in the discontinuity of the gluon propa¬

gator is absent since the PV regulated l/g+ pole does not have the causality structure

of propagating degrees of freedom

One can find a decomposition similar to the one m Eqs (3 48) and (3 49) also for the

virtual contributions with the help of a formula given in refs [59, 60] Let us consider

the integral

J" {h ^^ =

J ^V + «] [(<? + *l)2 + «] [(? + *n-l)2 + "] in
(3 53)

defined and calculated m detail in Appendix A Using exponential parametnzation
for the propagator denominator factors and the ML prescription to regulate the

1/gn-denominator leads to

1 /*°°
"~i

J^ih fcn_t) = -/ da0 dan^ax.-p{iY^o.3k21-iP2lz-ze}
1 J°

,=i

f fnq eXP{lZq2}
^— (3 54)

J q+-R+/z + »T7Sign(g--#-//)

R" = aifcf+ -t-a^ifc^j
z = oo + + an-i

The g—integral

exp{«zg2}
jyL = JdqUq-dtm-VqL-

g+ - PFjz + insign(g_ - R~/z)
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has been evaluated using the Cauchy theorem and integrating first over dq+, then

over dq" The integral over the transverse momenta is a standard Gaussian integral,
and one obtains finally

jml =
=

v"W '

ft _ exp{2iR+R-/z - 2v\R'\}\ (3 55)
ienJ?~ ( Ji?+ + 477 2 sign J?'

Rescaling at = z b, (1 = 0 n - 1) and carrying out the z-integration we get

n-1

J*ML{h K-i) = mrr(n-j)(-lT+1 fdb, ddn_1(5(l-^6;)

fi+ + Jsignfi-{^f"" ~ ^ - 2R+R'^n] (3 ">

J=l J=l

whereas PV regulanzation leads to

j*pv{h k^) = lwfr(n-^)(-ir+i/(f60 («>„_!<s(i-y>)

[M,]*"" (3 57)
R% + 62p2+

Thus we see that the term proportional to [Mn — 2R+R ] _n
in (3 56) obtained with

ML prescription is completely absent in the PV result (3 57)

In the following, we will distinguish between the "PV scheme" and the "ML scheme"

In the PV scheme, all virtual integrals are evaluated by applying the PV prescnp-

tion defined m Eq (3 42) before doing the m-dimensional integration over the loop
momentum g The same prescription is also used to regulate the spurious poles of the

real diagrams As explained above, axial ghosts are not present m the PV scheme

In the ML scheme, the virtual integrals are evaluated using the ML prescnption
defined in Eq (3 43) before doing the g—integration After having carried out the

m-dimensional integration over the loop momentum, there will be infrared spurious

poles in the integrals over Feynman parameters Such infrared spurious poles will also

appear in the transverse real diagrams and in the ghost diagrams We can regulate
these poles as we like, as long as we do it in the same way in both, the virtual and the

real parts We will present two different methods to regulate these infrared spurious

poles

1 J—regulanzation or PVI-regulanzation
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2 e—regulanzation

The 5—regulanzation introduces a regulator 8 for the spurious poles whereas the "usu¬

al" soft and colhnear poles (and ultraviolet poles of course) are still regulated by the

dimensional t In the real part, the 8—regulator is introduced in exactly the same

way as has been done for the calculation with PV prescription Of course, the ghosts,
which are not present in the PV scheme, also have to be regulated by the same 8 in

the ML case We call the 6—regulanzation PVI regulanzation because it is a principal

value regulanzation for the spurious infrared poles appearing within the ML scheme

The advantage of the PVI regulanzation originates from the fact that the calculation

of the transverse real part then is identical to the one in the PV scheme Besides

the obvious advantage of having to do this part of the calculation only once for both

schemes, it also allows to identify those subparts which make up the difference be¬

tween PV and ML schemes

A similar identification can be done in the virtual part, as will be explained below

This possibility of mapping subparts provided by the PVI regulanzation is very im¬

portant for a proof that PV and ML schemes might be equivalent We will come back

to this point in section 3 6

The e—regulanzation method uses the e from dimensional regulanzation as a regulator
for all sorts of poles, "usual" and spurious ones One advantage of this method is of

course that we do not have to bother whether we regulate the spurious poles in virtual,

transverse real and ghost parts in the same way The other advantage is of technical

nature Some integrals, being analytical functions of t only instead of e and 6, are

much easier to calculate using the t—regulanzation method

To be concrete, the different regulanzation methods within the ML scheme are imple¬

mented in the following way

1 In the virtual part

From Eq (3 56), we see that all virtual integrals done with ML prescription

contain the denominator
1

fl+ + insign.R-

where the spurious poles correspond to the limit R+ -v 0 PVI regulanzation
now means to do the replacement

1 R+
PVI

R+ + ivsignR-
~*

(i?+)2 + (<5p+)2
(3 58)

whereas e—regulanzation means

e-reg —— ^r-^-^r (359)
R+ + in sign R R+
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In general, R+ is some combination of Feynman parameters, say u and y, and

the external parameter x = fc+/p+ In the e—regulanzation method, the limit

R+ — 0 will be regulated by terms like (au 4- by)~e stemming from the nume¬

rators [Mn]t-n and [M„ - 2R+R-]f~n in Eq (3 56)
Concrete examples of virtual integrals regulated in both ways are given in Ap¬

pendix A 2

Comparing Eq (3 56) with PVI regulanzation to Eq (3 57), we see that the

first part of the difference m Eq (3 56) is then identical to the PV result

(3 57) Therefore the second term, the one proportional to [M„ — 2RJrR~]r?~n m
Eq (3 56), is an additional virtual contribution only present in the ML scheme,

similar to the ghosts being an additional real contnbution only present in the

ML scheme How these additional ML contributions are related to the extra

terms in the PV scheme, arising there due to the special UV renormalization,

will be explained in section 3 6

2 In the real part

As the spurious poles in the transverse real part arise from g+ —> 0, whereas

those in the ghost part arise from gi -> 0, we have the following relations

For the transverse part
1

-
£

g+ (g+)2 + (5p+)2

„+ _

92 + gj
„. „2.

which leads, using g+
=

2——-
and g

= 0, to
2g

1
n2

-

-*
9±

(3 60)
fli (9i)2 + <J2(2p+g-)2'

where we could use g2 = 0 because for gi — 0, g2 also becomes on-shell in the

ghost kinematics, as can be seen from Eq (3 49)

In both, real and virtual parts, the 8—regulator of the PVI regulanzation gives rise

to parameter integrals of the following form, denoted by I0 and Ii

7° = / du^Tl2 = -ln<5 + 0{5) (3 61)

Jl = ^^^J2 = -\^^-\L^W + 0(8) (3 62)

Note that terms of order eIo,eIi can be dropped since they are of order e, whereas

with the e-regulanzation method, J0 appears as a pole l/espUnous) and terms of order

«/«spunous give a finite contnbution
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Figure 3 7 Leading order diagrams

3.3.1 Leading order as an example

As a first example, we will redenve the leading order (LO) result for the non-singlet

splitting function Pq/i(x), with both prescriptions, PV and ML This is a rather

trivial calculation that nevertheless displays the mam improvements provided by the

use of ML Furthermore, the virtual graphs in the NLO calculation have the LO

kinematics, such that this section also serves to prepare the NLO calculation We

note that the LO example has already been worked out in [40] where colhnear poles
were regularized by keeping the initial quark off-shell, p2 < 0, rather than by using

dimensional regulanzation This is perfectly fine at the LO level, but beyond LO it

becomes technically too involved to keep p2 ^ 0, and m fact the underlying method of

CFP that we are employing has been set up in such a way that it relies on the use of

dimensional regulanzation, yielding final results that correspond to the MS scheme

It therefore seems a useful exercise to sketch the calculation of Pqfq(x) if dimensional

regulanzation is used

From Eq (3 17) and the expansions (3 13),(3 14) we obtain

r9/,(W) = ZF\8{l-x) + PPxj^8{
= ZF{8{l-x) + PPIqq!

kn.
x )

pn Akn
Kofi J

(3 63)

where Zp is the contribution from the quark selfenergy and PP denotes the pole part

The diagrams which contribute to the kernel K"o in leading order are shown in Fig 3 7

The momenta are parametrized as

p = (P,0,P) (P>0) •-(5.1-g>

„ «
KP+!^,^(P^*A,

4£P 4£P

,
fcn

,,

£ = — ,
fc2 < 0

pn
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where the "plus" distribution has been defined in Eq (2 22), we obtain

rP{C->Hc,£{-f«(i-,) +^} &*D

In the PV scheme, we do not regulate the singularity at x = 1 in (3 66) with the

dimensional t, but with 8, according to [29]

= I08{l-x) + -

l-x {l-x)2 + 62
" " '

(l-x)+

such that we have, since Iqqms is the only real contribution in the PV scheme,

In the ML scheme, we additionally have to calculate the ghost contribution to obtain

the full real part Inserting the matrix element

68)

'& *f ^ h Sfu/(l) = Ak2
-p-, (3 69)Mgh = Tr

stemming from the ghost part of the gluon propagator, into expression (3 64) leads to

ijT = -2 CF £$^<1 - «)f flf*i <*)- (3 70)

Note that l\ = k\ and that the factor l~ in (3 69) is cancelled with a factor \jl~ in

the ghost phase space, stemming from

8(l2 + ll) = 6(2l+r) = ±6(l+) + ±8(l~)

The term proportional to 8(l~) vanishes when being combined with JWgh because of

the factor l~ in (3 69)
After the substitution

k\ = \k2\ y , 0<y<l

one arrives at

PP{CSt} = \ Cf g<5(l - x) jf1 dyy+' =
-i CF £*(1 - a) \ (3 71)

such that the result for I&0*1 combined with T^*"8 from Eq (3 67) is completely finite

m a distributional sense

pp{iZ°' + ig*} = —cF?
1 + *2

t 2tt (1 - x)+

*%(*>*.$ = Z'fo-*)-!**^} <372>
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Therefore, in the ML scheme, the ghost contnbution regulates the transverse real part,

which in the PV scheme, where these ghosts are not present, is singular at x = 1

the singularity being contained in I0 In the PV scheme, it is the virtual contribution

which regulates x = 1

Virtual contribution

The contribution ZF from the quark selfenergy insertion on the legs of the ladder

shown in Fig 3 7 can be extracted in two ways Either by direct calculation, or by

usmg quark number conservation In order to guarantee the conservation of quark

number, we must have
1

1
dxYq/q(x,as,-) = 1 (3 73)

o e
I

Therefore the full answer for F has to be of the form

r^(,,c,,i)B!*(l-,)-i(7,g{i±^-*(l-«)jr1*i±^} (374)

which is, using the plus prescription

r,/,(*,a.,i) = *(i-*)-^0*> (375>

l + x2

The direct calculation proceeds in the following way

ZF is defined as the residue of the pole of the full quark propagator

G(p) ~ZFl-4 forp2->0 (3 76)

The full quark propagator is related to the selfenergy by

G(p] =
T^

where the general decomposition of S mto invariant amplitudes has the form

SW-^BA£ +CA-^ (377)

Note that the vector n* only is present in the ML scheme, so C = 0 in the PV scheme

The presence of n* also influences the possible form of A, B and C In the PV scheme,

A and B can only depend on p2,pn,e whereas m the ML scheme, A,B and C can

depend on p2,pn,pn*,nn*,e, containing therefore the scale mvanant dimensionless
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= --h + Li^ + Oie) (3.85)

Hence one obtains, after having subtracted the UV poles and having combined Eqs.

(3.83),(3.84) and (3.77)

Apv + Bpv =
-1- CF^{3--2I0 + O(e)} (3.86)

1% i

such that we have according to Eqs. (3.78) and (3.76)

ZPFV = PP _L_ = 1 + PP{APV + Bpv} + 0(a2) = 1 - - CF £& - 2/0} (3.87)

Inserting the result (3.87) for ZF into expression (3.68) we end up at expression (3.75)
again, thus having shown that in the PV scheme it is the virtual contribution which

regulates the singularity at x = 1 from the real contribution.

Selfenergy with Mandelstam-Leibbrandt prescription

In the ML scheme, we obtain after insertion of the ML form factors into Eqs. (3.83)
and (3.84)

AML(p) = CFg(-p2r{(l + e)(^ + l) + f^} (3.88)

BML(p) = CF^(-p2r{2[Lii(l-Xr)-Li2(l)-f
xP

+[^ + 2xp+*^]} (3.89)
-I- Xn •*

CML(P) = CF%-(-p2r{-^-2Xf-*^} (3.90)
iir 1 euv 1 — Xp '

2pnpn*
Xp =

nn"p2

The extraction of ZF in the ML scheme is quite different from the one in the PV

scheme, since we have (1—cr)_1 ^ ZF due to the presence of the n*—term in Eq. (3.78).
In fact, it has been shown [41] that there is an additional renormalization constant Z2

necessary to account for the renormalization of the additional structures due to the

presence of n*. The quark field then is renormalized according to

*. = (Z2Z2)i [1 - (1 - Z?)t~} </< • (3.91)
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In our special case however, one can find the appropnate expression for ZF by using

the fact that n* has to be proportional to p in the limit p2 — 0, pi —» 0 This is

because in the limit p2 -» 0, pi —» 0, one has three light-like vectors with vanishing
transverse components, but only two of them can be independent So choosing n and

p as independent light-like vectors, n* has to be proportional to p

In more physical terms, one can axgue that for on-shell incoming momentum p, this

incoming momentum can always be chosen to be equal to n*, choosing the axis such

that the transverse components are zero

Then one has according to (3 78)

G(P) =

fr B A C pn A

a Xp2 1 - A 2pn 1- A Xpnn'

i> b a c A

•W

1 for n* -*p (3 92)
1 - a 1 p2 1 - A 2pn (1 - A)xP p2

Thus from (3 76) and (3 92) we conclude

Zf- = m(1-,ri(i-_£_)}
= l + PP{A + B + C(\-—)+0(a2)}

Inserting this result into Eq (3 72) gives the result (3 75) already obtained m the PV

scheme

rq/q(x,as,])=8(l-x)-]cF^{^- + l8(l-x)} (394)

To summarize, the advantage of the ML prescription at the LO level mainly amounts

to producing truly finite results for the 2PI kernels, as required for the CFP method

Furthermore, there is no need for introducing renormalization constants depending
on additional singular quantities like Io that represent a mix-up in the treatment of

UV and IR singularities

3.3.2 UV renormalization with PV respectively ML prescrip¬
tion

Treating the UV renormalization of the virtual diagrams, it has to be stressed again

that in the ML scheme, the UV renormalization procedure is formally solid and well

understood, although being not straightforward due to the additional counterterm

structures containing n and n* In the PV scheme, however, the UV poles have spu¬

rious infrared divergent residues Io and the renormalization constants depend on the
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Xi

Zp '(Xi,X2,X3

>*
x2

Z<G)(Xi,X2,Xi)

Zp(x)

x2

ZFVs{xi,x2,x3)

Tnnnrc <Tnnnr* Ttfrnri Vtt

ZG(x) Znf(x)

Figure 3.8: UV renormalization constants with PV prescription

longitudinal momentum fraction x. Although the Ward identities are still fulfilled [29],
it is not a priori clear how to deal with these spurious poles and x—dependent terms

in the UV renormalization constants. As we explained in the beginning of Section

3.3, the phenomenological rule of CFP is to subtract them locally, since this preserves

the finiteness of the 2PI kernels Ko and turned out to give the right result. But there

is no warranty that this procedure will also work in three loops.
In both, PV and ML schemes, the counterterms are obtained by inserting the UV di¬

vergent one-loop structures into the corresponding virtual diagram. In the PV scheme,
this leads to an expression proportional to the Born term (the leading order splitting
function P-?J; i,j e {q,g}) times the renormalization constant Z(a) for the correspon¬

ding one-loop diagram (a). The one-loop diagrams are collected in Fig. 3.8 and the

corresponding renormalization constants in the PV scheme are given by Eqs. (3.95)
to (3.100).
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ZFv)(xl,x2,x3) = 1 + ^~ (CF - \nc) (-4/o - 2 Inn - 21nx2 + 3) (3 95)

Zcf)(xi,x2,x3) = 1 + ^^- Nc (-4/0 - lnxi - lnx2 - 21na3 + \) (3 96)
Z7T i6uv L

Z(gs(x\,x2,xz) = 1 4- £«— Nc (-6/0 - 21nxi - 21nz2 - 2 lnx3 + —)
2tt 2auv 3

ZFvs)(xu x2,x3) = 1+£dbr'<4 (397)

ZF(x) = 1 + ^--^-0^(4/0 + 4^1 -3) (3 98)
Z7T /6Uv

ZG(x) = l + g2^Wc(4/o + 41nx-y) (3 99)

Zn;(x) = i+at^T4 (310°)

AT2- 1 1
Cf =

iivr ' r/=2n>

Note that Z^J contains both, the "triangle" and the "swordfish" (see Fig 3 9) con¬

tribution to the three-gluon vertex

One can check from Eqs (3 95) to (3 100) that for a physical quantity, only the well-

known renormalization of the bare coupling remains

a.<°> = astt2i[ZFv)(xl,x2,xz) + ZGv)(xl,x2,x3)} (ZF(xx)ZF(x2)[Za(xl) +2B,(s,)])*

Furthermore, the QED Ward identity can be easily checked also for x—dependent
renormalization constants Considering topologies (c),^ and (e) of Fig 3 6 and the

counterpart of topology (e) with selfenergy insertion on the p—line and using kn =

x, pn = 1, we find the following relation for the one-loop insertions

[Z^ix) - 1] + \ [ZF(x) - 1] + \ [ZF(1) - 1] = 0

But it has to be pointed out here that according to the CFP ladder expansion of 2PI

kernels K0, the diagram with selfenergy insertion on the p—line does not contribute

since the kernels K0 do not contain lower lines, whereas the diagram with selfenergy
insertion on the fc—line (topology (e)) does not obtain a factor 1/2 since the fc—lme is

an internal line This is a subtle point, since we then obtain the following contribution

proportional to CF

[4v)(x) - 1] + [ZF(x) - 1] = ^CP lnx
iV £uv
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As we will see m section 3 4, this remaining In x term is important to obtain the

correct answer for the NLO splitting functions in the PV scheme

In the ML scheme, the renormalization constants are really constant, but the coun¬

terterms are not proportional to the Born term due to the presence of n* in the UV

divergent one-loop structures The latter have been calculated in [37, 47, 48, 49, 50]
and are given in Fig 3 9 and Eqs (3 101) to (3 104) We only show the structures

we need for our calculation, details can be looked up in [41, 42] As expected, the

structures are gauge dependent and Lorentz noncovanant Even more, the expres¬

sions for the nonabehan quantities T\.fuG(l) and T°A(l) as well as some structures

contained in T^^ip^p^pi) and S°\%%(pi,p2,p3) (see Fig 3 9) are nonpolynomial
in the external momenta, owing to terms like 1/Zn It is an important feature of the

ML prescription that these nonlocal terms exist, but decouple from physical Green

functions [55] thanks to the orthogonality of the free propagator with respect to the

gauge vector, nflDt"'(l) = 0 (this has actually been an important ingredient for the

proof [55] of the renormhzabihty of QCD m the ML light-cone gauge) Thus, the

nonlocal terms never appear in our calculation

r*»(i) >9T(CP-Y)-- 7" + n^^~ **"" (3 101)

*
2 4^uv

In*

9 2! 4nem

7,-^[M;+AX-2ARn,]

4
,

+
i^uiuius

~r•WW
~

'*Jto.WI*i

(3 102)

(3 103)

Nc .a, I

-'sy/010203^— MW««-6CW»«+ ) (3104)

few (?2 _ Pa)w + few (Ps - Pi)« + few (Pi ~ Pa)w

Q.wi = fewnw(P2-P3)-n + 5wwn*2(p3-pi)-n

+fe«n^(Pi-P2) n
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* ^ E(fc) = z^£q/fc + 2{/n(fcn*)-//i*(fcn)}]

La

-2l2(n,.hl+nlnv)}

"a = "a _ 77 '/j , iM =
nj — jet

> [in] "»»

'^rQw n^(o = -•££** [/2 v - y„]

( = p — fc,o

rF-"(/)

>4>J = p ~~ k< °

r^(/)

Pi I 01,^1 elf

P2,a2,p.2

P3,o.3,ft3

T£S*(pi,P2,p3)

Pi,oi,A*i C,|

L/* +perm

:i ^;s(pi,p2 p3)
P2,<t2,lt2

Figure 3 9 UV divergent parts of one-loop diagrams with ML prescription
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3.4 Next-to-leading order for colour structure Cp

Since every colour structure defines a gauge invariant contribution, we can first re¬

strict our study of the ML prescription within the CFP scheme to the terms that are

proportional to Cp [65] Besides the obvious advantage of reducing the number of

contributing Feynman diagrams, this colour structure has two additional simplifying
features (1) the ultraviolet counterterms satisfy the QED Ward-identities, (11) the

sums of the real and virtual contnbutions are separately free from soft and colhnear

singularities and from spurious poles The axial-ghost contributions, however, remain

important and therefore the Cp structure gives a good opportunity to study these

contributions in isolation from other complications In order to be able to exhibit

clearly the cancellation mechanism of the spurious poles, we use PVI regulanzation

throughout Section 3 4 Thus all spurious poles appear in terms of Io and /j defined

in Eqs (3 61) and (3 62), whereas the "physical" ultraviolet and infrared poles are

still regulated by dimensional regulanzation as usual

As we know from Section 2 14, the non-singlet evolution kernel pfV at NLO is given

by

$\=K?)+*W+**tpfi) (3105)

The diagrams contnbutmg to pty. are the same with PV and ML prescription smce

they do not contain any virtual loop or cut gluon line Therefore we do not need to

consider PFl in the following

The Feynman diagrams contributing to the part of P r being proportional to Cp

are shown in Fig 3 10 We recall that, as indicated in Eq (3 39), the "hat" means

that we do not include the contributions at x = 1 here The axial ghosts are denoted

by dotted lines replacing cut gluon lines

Virtual corrections

The virtual part of the CF colour structure is given by topologies (c)v,rt and (e) in

Fig 310

One special feature of the Cp virtual part is that in the ML scheme, the UV poles
cancel between the Cp part of the vertex diagram (c)v,rt and the quark selfenergy

diagram (e), whereas in the PV scheme, this cancellation is incomplete due to the

fact that the UV poles depend on Ig and logarithms of the longitudinal momentum

fraction x, as has been shown m the previous section We will see that this difference

in the treatment of the UV poles leads to extra terms in the PV scheme, which in the

ML scheme will be accounted for by the ghost contributions

The second special feature of the Cp virtual part is given by the fact that each virtual

integral appearing in this part is separately free from spurious poles The reason for
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Topology (b)

~ C2 - ICFNC

Topology (c)real

C2 - ±CFNC /j
(C)n

Topology (c)reai is equal in the ML and PV

schemes since only quark lines are cut

Topology (c)v,rt

~C2F-\CFNC p/ \
(C)virt

Topology (h)

Topology (i)

Topology (e)

Figure 3.10: Diagrams contributing to PF \x) with colour factor CF
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this can be deduced from Eq (3 56) Consider the term

57—
—{[Mn}T-n-[Mn-2R+R-}T-n\ (3106)

P+ -MnsignP
lL J

This expression is vanishing in the limit R+ -*• 0, R+ = 0 being the spurious singu¬

larity, as long as there is no conflict with the limit Mn —>• 0 In the Cp part, M„ is

always different from zero, such that the spurious poles appearing in the first part of

the difference in (3 106) will always be cancelled by the ones contained in the second

part, no matter how we regulate them

In the following, we will give explicit expressions for the virtual diagrams in a scheme

independent way by using the integral form factors defined and given in Appendix A

Inserting the form factors obtained in the PV scheme, the well-known result for the

virtual part of the CFP calculation is reproduced We will proceed by first calcula¬

ting the one-loop insertions, extracting their UV poles, and then evaluating the UV

renormalized contribution to tF (x,e)

Quark selfenergy

The quark selfenergy (see topology (e) in Fig 3 10) already has been calculated for the

leading order and is given by Eqs (3 83) and (3 84), where the external momentum

of the selfenergy insertion is now fc instead of p Furthermore, we set p = n* since p

has to be proportional to n* if we have pn # 0 and pi = 0, as has been explained in

Section 3 3 1 For all virtual diagrams we use the condition I2 = 0 coming from the

one-body phase space Usmg these kinematics and m — 4 — 2e we have

E(fc) = ZF(k)+£A(k)

SF(fc) = CV Ts^^T^^ (3 107)

S^(fc) = -CFj^Q(2 Ak2[Pi~Po) + P2(A t> H £ t> A))

= -Cpjfir^ (2 ^ {Pl ~ Po)+2P2^- *kn+T *))
Inserting the above expression for £(fc) into the full diagram leads to

TW(x,fc2,e) = -CF^Tr[^ fiX fi-f jrf fid^p-k)

\ {Pq/q(x, e) [To (« - 1) + 4 (P, - Po) + | Pa]

+2p2!i±£h (3108)
1 — x J

Pg/,(x,e) = i±^--e(l-x)= p„(x) - e (1 - x), x<l (3109)
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Vertex correction

The vertex insertion in diagram (c)vlrt can also be split into a Feynman part and an

axial part

F^ i, — F^ b + T^ j

rF6 = Tb (cF - y)-J^ {{6n» hJ[{k,p)+ frtfJLfap) + F% WZAKp)

+-y\FJL(k,p)]

-«[/*7*. i>J!(k,p) + Fi, i>Jl{k,p)+ h^Jl(k,p) + Fi,FJL(k,P)]}

rAb = r4(cF-^)(rt + r^)

K = j£^{ A fi% J?(k)+ AF% Ji(k) +-r, A A Jfo) + i»F A Jim

rt = --^{k^AAJ^k^ + k^FJiKk^A

+ M" JiiKph, t> A+ Wirf Jix{k,P) A]

Inserting the expression for TMb into the full diagram and defining T(c'v analogous to

T(e) above, we obtain for the Feynman part

rW^(x,fc2,) = Cf(CF-^)as2(47r)T(l + e)(-fc2)-

-\{R1-R0 + {2- e)R2 - (1 - e)(it, + R*,)) [x + e (1 - x)]
x i

+2fi6(l-e)2Pg/,(x,£)} (3110)

and for the axial part

T^**(x,k2,e) = CF(CF-y>s2(47r)T(l + 6)(-fc2r

{|((iWx)A/,(M-^£f
+(p2/fc2ri(B0-B1-B2)P9/,(x,e)

+- [(5i + S4 + (2 - x) S2 - 2 So + Ro) Pqq(x, e)

^(Ri + Rt-Ro)^] | (3 111)
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The form factors are defined and given in Appendix A 3 both for PV and ML pre¬

scription

Ultraviolet renormalization

We use dimensional regulanzation to regulate both the ultraviolet and the infrared

singularities Doing the loop integrals we first must assume that m m = 4 — 2e, e

is positive After adding the UV counterterms for the quark selfenergy and vertex

one-loop subdiagrams we obtain an ultraviolet finite answer Then we can analyti¬

cally continue the result to negative values of e and go on with the evaluation of the

Feynman parameter mtegrals Thus we should keep p off-shell first and set it on-shell

only after ultraviolet renormalization It is known that the sum of the two ultraviolet

counterterms for the vertex and quark selfenergy diagrams in regular gauges vanishes

as a consequence of Abelian gauge invanance

Inserting the UV divergent one-loop structures given in Section 3 3 2 into the corres¬

ponding full diagrams, we obtain the counterterms for these diagrams In particular,
we find for the CF-case

3

T$ML = CFa2±l[ZPq/q(x,e)-2}

>'BT$ML = CF(Cp-I-f)as2^l[-3Pq/q(x,e) + 2}

1 2 A

T$PV = C2Fa2— -Pq/q(x,e)[3-4IB-4lnx)

T$pv = CF(CF-^)a2— -/,/,(*,£) [-3 + 4/0 +2 lnx]

and so

<Ti(e+cv) ML
_

«

-'uvcj
_ U

T^ciPV = -CW^-Pqlq(x,e)\nx (3112)
F tuv A

This is an essential difference between the PV and ML schemes The leftover UV

singularity (3 112) in the PV scheme is a remainder from the contributions of the

spurious poles to the UV renormalization constants In the ML prescription, there

are terms in the UV pole parts of the single diagrams which Me even not proportional
to the Born term pqq(x), stemming from the n'-part of the virtual integrals, but

those terms completely cancel when summing up diagrams contnbuting to a gauge

invariant subpart Therefore it does not matter in the ML case whether they are

subtracted or not In the C\ part we even have

7<e+cv) ML np(e+cv) ML
_ ^e+Cv) ML

1
ren

*
bare

3Note that the e-dependence m P,/,(x,e), stemming from the trace of the diagram with the

one-loop counterterm insertion, has to be kept to obtain the complete counterterm
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and the contribution to f^(x, e) is, according to Eqs (3 17) and (3 37), given by4

tq)r)ML(x,e) = PP^Jl^^^Hfc2!—x(i-*r

2T{e+c^ML(x,k2,e)} (3 113)

Details about the phase space integral are given m Appendix B 1

In the PV case however, the leftover term in (3 112) leads to an additional contribution

to the splitting function in the following way The renormalized expression for the

sum of diagrams (c)virt and (e) is given by

T(e+cv) PV = T(e+c) PV _ T(e+cv) PV (g m)

Note that T<e+<:">PV contains a factor of |fc2|"e whereas T^Cv) pv does not Inserting
the UV subtracted expression (3 114) into the fc2—integral (3 113) and disregarding

for the moment the finite parts of TrwCv) we obtain

pp{iir|l~^r ^llfcV-Mi-*)-' 2T<^>-F^}

= ^^n^-xrj^ d\k2\\k2\-^Pq/q(x,t)

= -ic2(g)2(^p„(x)-2 1nx[l-x + p„(x)ln(l-x)] + 0(e))
The double pole term has to be dropped since Pq/q(x) is defined through simple poles

in t (see Eq (3 37)) But the single pole term gives a contribution to Pqfq(x) which is

exactly the difference of the virtual contributions (PV-ML)v,rt obtained by using PV

respectively ML prescription, as can be seen in Tables 3 1 and 3 4 This difference

will be compensated by the ghost diagrams present only in the ML case

The complete contributions of the virtual diagrams to Pq/q{x) are listed m Table 3 1

Virtual diagrams where the cut line is a ghost line would give a contribution at x = 1

only, so they do not contribute to Pl/Jx) according to Eq (3 39)

Real contributions

Now we will give some details concerning the calculation of the contnbutions from

the diagrams of topologies (b),(c)reai,(h) and (i) Topology (i) represents the subtrac¬

tion term V(K0VKo) in Eq (3 40) and consists of two Born diagrams linked by an

additional projection Diagram (c)rMi has no cut gluon lines, therefore it contains no

axial ghosts

„,,,,
,lnx „lnx

2fc2
-'

h2

4A factor of two has to be included for diagrams which are not symmetric
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C2p
Finite part

c-ml CvML ePV CyPV (e + Cy)ML (e + Cy)pV

pqq(x) 6 -6 7 -7 0 0

pqq(x) ln2x 0 0 -2 2 0 0

pqq(x) lnxln(l-x) 0 0 -4 2 0 -2

p„(x) lnx -1 1 0 0 0 0

pqq(x) ln(l-x) 3 -3 3 -3 0 0

pqq(x) Li2(l - x) 4 -2 0 2 2 2

Pqq(x)*2/3 -2 2 -2 2 0 0

x/(l-x) 2 -2 0 0 0 0

X -2 3 -3 4 1 1

1 -2 2 3 -3 0 0

x lnx -1 1 4 -2 0 2

lnx 1 -1 -4 2 0 -2

In (1 - x) -2 2 0 0 0 0

Spurious poles

pqq(x) Io In (1 - x) 0 0 -4 4 0 0

pqq(x) I0 In x 0 0 -4 4 0 0

Pqq(x) Io 0 0 0 0 0 0

Pqq(x) h 0 0 4 -4 0 0

xl0 0 0 4 -4 0 0

Io 0 0 -4 4 0 0

Ultraviolet poles

Pqq(x) V«uv 0 0 -4 4 0 0

pqq(x) lnx/euv 0 0 -4 2 0 -2

Pqq(x)/tm 3 -3 3 -3 0 0

lAuv -2 2 0 0 0 0

Table 3 1 Contributions to Pljg(x) from the virtual diagrams proportional to Cp

The calculation will be divided into transverse real part and axial ghost part The

spurious poles present m transverse and ghost parts will be shown to cancel This

cancellation can be regarded as being twofold

1 Within a given topology
The spurious poles of the transverse contnbutions are always regulated by the

corresponding ghost contributions of the same topology

2 Within transverse part and ghost part separately
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The sum of all transverse real diagrams is free from spurious poles as well as

the sum of ail ghost diagrams

Note that these two properties are only true in the case of the Cp colour structure

In the CpNc and N2 colour structures treated in the next section, the spurious poles
do not cancel separately in virtual and real parts in the ML scheme, and therefore the

feature that all spurious poles in the transverse real part are directly regulated by the

corresponding ghost diagrams within the real part is destroyed As a consequence, it

is important there to regulate the spurious poles m real and virtual parts in the same

way

But m the case of the Cp colour structure, due to the fact that the virtual part is sepa¬

rately free from spunous poles, we can choose in the real part PVI- or e—regulanzation,

independently from what we did in the virtual part We did the calculation with both

regulanzation methods, but only the result obtained with the PVI regulanzation
method will be shown here since this is the method where the cancellation mecha¬

nism for the spurious poles is exhibited in the clearest way

Physical contributions

The physical contributions to the real part, containing only transveise gluon propa¬

gators, are given by topologies (bDn), (c)reai, (hDu) and (iDn) shown m Fig 3 10 The

typical integral we have to evaluate for topologies (b),(c)reai and (h) can be wntten as

I(a) = \~SrI%dU± jmh'h) ^"Wi.*».*•«) (3115)

where d$(l\, l2) is the two-body phase space for the two cut lines and M<o) the matrix

element for topology (a)
All details about the phase space are given in Appendix B 2 1 The matrix elements

have been evaluated by using FORM [61], the phase space integrations have been

implemented m Mathematica [62]

The results for the individual diagrams are shown in Tables 3 2 and 3 3

Ghost contributions

The diagrams considered m this section are given by topologies bDl2, hDl2, h°21, iDl2

and i°21) in Fig 3 10 Topology (b°21) leads to the same result as (b1712) because the

diagrams are symmetric under exchange of ^ -H-12 Diagrams with two cut ghost lines

only give a contribution at x = 1, which has been omitted since it can be obtained

more easily from fermion number conservation

The phase space for diagrams with one ghost line and one gluon hne cut is given by

(for details see Appendix B 2 2)

P5ghost = F^k2]2-2ex-i+t(l_xyt
f

duu-«(!_u)i-« f dyy-c
Jo Jo

R,i
\ r f dw HI - to)]"*"' (3 116)

B\2 -£'2 -) JO
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The results for the ghost diagrams are given m Tables 3 2 and 3 3 Table 3 4 shows

the results for both, the real and the virtual part m the PV and ML schemes, where

real means standard plus ghost contributions in the ML case

Comparison of PV and ML schemes for the Cp part

It is instructive to make a detailed comparison of the Cp part results obtained in

the PV respectively ML scheme The necessary informations are summarized in Ta¬

bles 3 1 to 3 4 In evaluating one-loop insertions in the ML scheme, the spurious

poles cancel withm the loop integrals, whereas the PV integrals can be recovered as a

subpart of the ML integrals, this subpart being plagued by spurious singularities (see
Eqs (3 56),(3 57) and Table 3 1) Nevertheless, the sum of all virtual contributions

m the PV scheme is free from spurious poles The difference (ML-PV)^ of the sums

of all virtual contributions calculated m the ML respectively PV scheme is due to

the second term m (3 56) which is not present in the PV case (3 57) and due to the

difference in the UV counterterms

The differences m the real contributions can be organized according to the expressions

(3 50) and (3 51) The first term is the standard axial gauge contribution, the second

term defines the axial ghost contribution Using PVI regulanzation, the transverse

real contributions are exactly the same in the PV and the ML scheme, such that the

difference (ML-PV)reai is entirely made up by the ghost contributions present only in

the ML scheme These ghost contributions exactly compensate the difference found

in the virtual part, as can be seen from Table 3 4

From Tables 3 2 and 3 3, we see that the individual terms in the ML scheme are

more regular than in the PV scheme If we combine the contnbutions of the diagrams
(bDn, bD», b°21) or((h- i)Dli, (h - t)Dl2, (h - i)D"), their sum is separately finite,
whereas in the PV scheme, only the contnbutions (bDll,hDn,iDn) exist, which are

finite only when combining the different topologies Consequently, the sums of the

ghost and non-ghost diagrams in the ML scheme are also separately finite

In summary, the evaluation of the Cp part of the two-loop splitting functions in the

ML scheme is a consistent method The axial ghost contributions are important to

get the correct answer It is remarkable that the phenomenological rule of CFP for

subtracting all ultraviolet contributions (spurious and non-spurious ones) leads to the

same additional terms as provided by the axial ghost contributions in the ML scheme

It is interesting to see the differences between the two schemes and the higher con¬

sistency of the ML scheme also for the remaining colour structures, treated in the

following sections

69



s
u
b
t
r
a
c
t
e
d

b
e

t
o

h
a
v
e

(l
)

to
po
lo
gy

f
r
o
m

c
o
n
t
r
i
b
u
t
i
o
n
s

t
h
e

t
h
a
t

N
o
t
e

c
o
n
t
r
i
b
u
t
i
o
n
s

t
r
a
n
s
v
e
r
s
e

t
h
e

b
y

g
i
v
e
n

en
ti

re
ly

i
s

it
s
i
n
c
e

t
a
b
l
e

t
h
i
s

f
r
o
m

o
f
f

r
e
a
d

b
e

c
a
n

a
l
s
o

s
c
h
e
m
e

P
V

t
h
e

w
i
t
h
i
n

o
b
t
a
i
n
e
d

r
e
s
u
l
t

T
h
e

r
e
g
u
l
a
n
z
a
t
i
o
n

P
V
I

a
n
d

p
r
e
s
c
r
i
p
t
i
o
n

M
L

w
i
t
h

C
\

~
d
i
a
g
r
a
m
s

r
e
a
l

f
r
o
m

Pq
/„
(x
)

t
o

c
o
n
t
u
b
u
t
i
o
n
s

T
h
e

2
3

T
a
b
l
e

0
0

8
0

4
4

0
0

-
8

-
8

0
0

x)
-

x
/
(
l

I0

0
0

0
-
4

-
2

-
2

0
0

4
4

0
0

h
Pq

q{
x)

0
0

-
4

0
-
2

-
I

0
0

4
4

0
0

x)
-

(1
I
n

I0
pq

q(
x)

0
0

0
4

2
2

0
0

-
4

-
4

0
0

l
n
x

Pq
q{

x)
h

0
0

-
4

0
0

0
-
2

-
2

4
0

0
4

la
Pq

q(
x)

po
le
s

S
p
u
r
i
o
u
s

0
0

-
4

-
4

0
0

x)
—

x)
/(
l

—

(1
I
n

x
In

x
2

0
0

0
0

-
1

0
1

0
3

-
2

1
-
7

0
1
-
x

0
0

2
2

0
0

-
x
)

x)
Li
2{
\

+
{l

-
2

4
0

0
0

-
2

0
0

-
2

0
-7
/2

2
a
;

In

2
-
2

0
0

0
2

0
0

0
-
4

-7
/2

2
l
n
x

x

0
-1
/2

0
-1

/2
0

0
l
n
2
x

0
-1
/2

0
-1
/2

0
0

ln
2x

x

0
0

-
2

-
2

0
0

7r
2/
3

pq
q(

x)

0
0

0
0

0
-
2

1
1

0
0

-
2

0
-
x
)

Pq
q(
x)
Li
2{
\

0
0

0
0

-3
/2

0
l
n
x

pq
q(

x)

0
0

0
-
4

0
4

x)
-

(1
I
n

pq
q(

x)

-
2

0
0

0
0

-
2

0
0

-
2

-
2

0
0

-
x
)

In
xl
n(
l

pq
q(

x)

0
1

0
2

0
1

1/
2

1/
2

-
2

0
-
1

-
1

l
n
2
x

pq
q{
x)

0
0

0
0

0
0

0
0

6
6

0
0

x)
-

(1
In

2
pq

q(
x)

i)
gh

h
-

+
(b

«)
tr

-
h

+
(6

jC
2i

i
«
»

/
i
D
"

h
D
"

6D
31

b
D
"

%
D
n

h
D
"

C
r

b
D
n

gh
os
ts

t
i
a
n
s
v

gh
os
ts

t
r
a
n
s
v
e
r
s
e

c'
F



r
e
g
u
l
a
n
z
a
t
i
o
n

P
V
I

w
i
t
h

s
c
h
e
m
e

M
L

t
h
e

i
n

d
i
a
g
r
a
m
s

r
e
a
l

o
f

p
a
r
t
s

Si
ng

ul
ar

3
3

T
a
b
l
e

00000

00000

00002

00022

00002

00022

00000

00000

2-1-
40-
4

2-
1

-
40-
4

00000

00000

(
i
-
x
)
Aln

x/
e

x)
+

(1
l
n
(
l
-
x
)
/
e

p„
(x
)

ln
x/
e

pq
q(

x)
h
i
t

Pq
q{
x)

i)
gh

-
h

+
(6

t)
tr

h
-

+
(b

»
c
»

i
D
"

b
P
^

h
D
"

6°
='

6D
l2

*
D
"

h
D
"

c
r

h
D
n

gh
os
ts

t
r
a
n
s
v

gh
os
ts

t
i
a
n
s
v
e
i
s
e

C
l



s
c
h
e
m
e
s

M
L

a
n
d

P
V

i
n

C
%

t
o

pr
op
or
ti
on
al

p
a
r
t
s

v
i
r
t
u
a
l

a
n
d

r
e
a
l

o
f

C
o
m
p
a
r
i
s
o
n

4
3

T
a
b
l
e

00-
22000-
20

002-
200020

10-
22002-
20

100000200

00-
22000-
20

-
334-
2

-1
/2

-1
/2001

-
3320

-1
/2

-1
/20-
21

X1l
n
xl
n
x

xl
n
2
x

l
n
2
x

x

~
X
)

Pq
q{
x)
Ll
2(
l

x)
-

l
n
x
l
n
(
l

p„
(x

)

l
n
2
X

Pq
q{
x)

o
n
l
y

gh
os

tso
f

s
u
m

(
M
L
-
P
V
)
*

cv
)p
v

+
(e

cv
)m
l

+
(e

(M
L-
PV
)r
ea
l

i)
pV

h
-

+
(b

j)
ml

-
h

+
(6

dl
ff
vn
t

d
i
a
g
i
a
m
s

v
i
r
t
u
a
l

o
f

s
u
m

dl
ff

re
al

d
i
a
g
r
a
m
s

l
e
a
l

o
f

s
u
m

c
l



3.5 NLO techniques and results for CpTf, CfNc and

JVC2 parts

The following three subsections treat the remaining colour structures CFTS and CFNC
of the non-smglet splitting functions and the contributions proportional to A^2 of the

gluon-gluon splitting functions

The calculation of the CFNC part turned out to be considerably more complicated
than the Cp part calculation Especially the real diagrams of topology (d) where

one cut gluon line is an axial ghost (see Fig 3 14) turned out to be technically too

involved to be calculated analytically Therefore we had to recur to another method,
which we will call "imaginary part method" Instead of calculating all real diagrams
via the two-body phase space described in Appendix B 2, we calculated the full two-

loop diagram and then extracted the discontinuities, the latter corresponding to all

possible cuts of the given diagram This turned out to be the most convenient method

for all topologies which have two cuts, leading to a real and a virtual diagram, as it

is the case for topologies (f) and (d) in the CFNC part (see Fig 3 14) Using this

method, unitanty is manifest The sum of all cuts of a certain topology is free from

soft and colhnear poles and, even more important m our context, is free from spurious

poles
But it has to be stressed that the cancellation mechanism of the spurious poles in

the CFNc part is quite different from the one in the Cp part It is no longer the

case that the spurious poles of the transverse real part are fully regulated by the

corresponding ghost contributions Thus, besides the well-known fact that the usual

soft and colhnear poles cancel between real and virtual cuts of the same topology, we

also found that there are spunous poles m both, real and virtual parts, which cancel

only in the sum

The main virtue of the "imaginary part method" is given by the fact that the discon¬

tinuity corresponding to the real-cut diagram already contains both, transverse and

axial ghost contributions, such that for example the diagrams (d)^ and (d)*j can

be done m one step Nevertheless, it is quite interesting to have separate results for

transverse and ghost parts We will explain in Section 3 6 how we managed to obtain

separate results for ghost- and non-ghost parts even when applying the imaginary

part method

The key features of the imaginary part method can be studied considering the colour

structure CFTf to which at x < 1 only topology (g) in Fig 3 6 contributes The

calculation is rather trivial since the inner loop contains no gluons and thus no ML

or PV prescription is needed for this subpart Therefore we will consider the colour

structure CFTf very explicitly, as a pedagogical example, in Section 3 5 1 In addition,
we will calculate the full contribution at x = 1 for the CFTf part, which requires the

calculation of the two-loop quark selfenergy contribution shown in Fig 3 13 As

in all previous calculations the contributions at x = 1 have never been explicitly
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calculated, but instead have been deduced from fermion number conservation, our

calculation constitutes not only a test of the ML prescription in a wider range, but

even a more fundamental test of the CFP method itself, since only after inclusion of

the x = 1 contributions the crucial issue of the finiteness of the 2PI kernels in the

light-cone gauge will be fully checked This finiteness even at x = 1 actually has

been checked [66] for all colour structures treated in Sections 3 4 and 3 5, but we will

show it explicitly only for the CFTj part, where we have also calculated the finite

contributions at x = 1

After having set up the imaginary part method in the CFT; colour structure as a ped¬

agogical example, we will apply it to the CpNc part in Section 3 5 2 This completes
the calculation of the non-smglet splitting functions in next-to-leading order Then

we will have tested all possible one-loop structures of QCD except the non-Abehan

three-gluon vertex In order to include also this last and most involved structure, we

will present the calculation of the N2 part of the gluon-gluon splitting function PJjV
in Section 3 5 3 This accomplishes the task to show that all NLO splitting functions

can be obtained withm the CFP scheme by applying the ML prescription, which is

the only formally solid method in this context The remaining contributions, that is,

the functions Pr) and P ) as well as the remaining parts of P ,', do not contain any

new feature compared to the most complicated cases we studied

We used the e—regulanzation method in all calculations presented in Section 3 5

for two reasons First because the integrals of the CFNC and N% parts are quite

involved, thus being almost impossible to do if two different regulators, e and 8, are

present Second, it seemed appealing to us to show that no additional regulator to

the dimensional e is really needed when using the ML prescription

3.5.1 Colour structure CfT/ and endpoint contributions

Quark vacuum polarization contribution

I, It,a \F l,v,b

Figure 3 11 Ufv(l)

The expression for the fermion loop shown m Fig 3 11 is given by

»m _

jTSob f dm° Trh» fri»U+ A)}
1VW

- 9 ijo
J {2n)m[q2 + tr]][{q + l)2 + zrl]
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where a statistical factor 1/2, a factor minus one for the fermion loop and a factor

two for antifermions has been included

Inserting the expression for Tlfu(l) into the full diagram (topology (g) m Fig 3 6)
leads to

Tfloop =
-g2TaT^2n2 l^2 Tr[-£- fa £ris fc]da"(l)U^(l)d^(l)

92

\k2\2 (I2 + in)2 '4fcn

CFTf^Q%{^+^} (3118)
(2*)'

Q[ = m?r(l +e)(-l2y<
1 7T2

To = i + 2 + e(4-T)
e o

„
, ,

8 32 8 ,

Fk(x,e) -

-3~T
+ -e2

F,(x,t,ln) = ^fi- + Bt(x,e)
[ln\

, l ^ l, ^ r
8 8 16

2,

A,(x,t) = (l + x)[~-+ -+ —£*]

_ , „
8 8 o 1

r
o 32 8 o,

*«(*.«) = -3+9e +x[-3 + V'27e]

where the symbol l/[ln] means that this factor has to be regulanzed, in our example

here according to the ML prescription, defined by

7TT -» 1

l

i, ,n (3 H9)
[ln\ in + 2r?sign(ln*)

The tensor mtegrals appearing in IIJ$,(J) have been reduced to scalar integrals by

Passarmo-Veltman reduction [63]
The contribution to the splitting function is given by the pole part of the integral

7* = X f^S{x-^)IdmiS{p-k-m°) T*»*

= ^y^Jd\k2\dk2Fkl)-<f dri8(p-k-l)6(l<>) Tfloop

Inserting the expression (3 118) for Tfl00p leads to

If, - tCFT,{-) -(4*) -—Toy-rpi-dfcxCfcj.)

(iTlJ(p-fc-!)9(l,)(-l,)-e(|k,|-1F»(i,e)
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ln + insiga(ln*)+Bi{x'e)\\

[<ri6(p-k- 1) 9{l°)(-l2)"{ Itfr'Ftfo e)

l2 +

~ tCpT^ 8^{4w) W=7)T° ir

+{PV(j2-)-ik6(12)} At(x, c){PV(^) - »ttsign(M*) 8(ln)} + 5,(x, e) }
(3 120)

Now we keep only the terms proportional to iw and write for simplicity PV(l/z) =

1/z Note that the term (-'2)~£ glves an imaginary part only for I2 > 0, stemming
from the expansion

l.mH2 - iV)~< = (l2r<{l - ^n2 + t«r(l -A + 0(e<)} (3 121)
7/4-0 2 0

So the discontinuity of Ip is given by 5

Disc/,, = CFTf(^)2\(4^^^ToJ^dk2±(kirJd-lS(p-k-l)e(l°)
{ -e(l2r(l - e2^) (\k2\->Fk(x,z) + I ^(*.«)

+(-«2)-esign(/n*) 8{ln)(l2)~l A,(x, e)

- + Bj(Mj}

In
+ Bt(x,e) 9(l2)

+(-l2)-'8(l2) (^-e)
\ In

= CFTf(^)2\(4^^^J^{l^ + I^+I^} (3122)

The integrals /W, 7("sh) and 7W correspond to the diagrams shown m Fig 3 12 Note

that for the virtual loops, the counterterms also have to be included After UV

renormalization, 7("' will be zero since it is proportional to {-l2)~c with I2 = 0 and
- y n
£<0

Now the contributions from the integrals defined in (3 122) will be calculated explicitly
starting with 7<r)

5Note that I/i/i has to be multiplied by 2i to obtain the discontinuity, according to the relations

Disc.%2) = hm{/(?2 + «/) - I(q2 -irj)}= 2i hm3m/(g2 +in)
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- e-a » / i VnT '« ftt{ \-j— Tnnrf j a|ct-
i

' '

r(r) /(vj/l) j(t>)

Figure 3.12: Diagrams corresponding to the different imaginary parts

Note that 1^ has only an imaginary part for

I2 = i(|fc2|x - k{) > 0

Therefore, when substituting

k\ = |fc2|x • k ; (x = 1 — x)

we know that Kmax = 1. Thus we have

J(r) = -e(l - e2j) To |fcT2Vx-2e f cfc«fe(l - k)~1 [xFk(x, e)

+x(l-n)-l[^^-rBl(x,e)]}
= -e(l - e2j) TQ |/t2|-2fx£{f1-2£Beta(l - e, 1 - e) Fk

+x • Beta(-6,1 - e) U{-^«(1 -x) + Jy^fc ~ 2e (^) > +^ Bl} }

where we used the expansion

Inserting now the functions Fk(e), Ai(x, e) and £;(x, e) leads to

/('> = 4|t'r='{pJ,W[-i|-|]-5p„WlnI + l(l+«!)(!ii^)

+ ,
.

1 + X2 1 + X2

p»(x)
=

(1^)7
; ^x) =—
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The virtual diagram where the cut line is a ghost is given by

jivgh) = T()Jdkl(kl)-< /"draiJ(p-fc-0«(J°)H2)-'*(M('a)"1^i(a;.e)

= -T0 j dk\(k\)~l f dl+dl~dlj(l - x - l+)8(k~ + r)8(k± + l±)8(l+)

e^ + n^l+r + ll)-1'1 Mx,e) (3 124)

= -T08(\ - x) J dk2x(k2±)-l-2ee(\k2\ - k\) At(l,t)

Note that we used sign(/n*) = +1, which follows from In* ~ l~ and the constraints

8(l+)8(l+ + l~) in (3 124)

Now we substitute

fci = l*2l y

From the 6—function we know that 7/max = 1 Then

pvto = -To8(\-x)\k2\-2< f dyy-^MU
Jo

-«'-)*V[-?|-;t-S + t] ^

The counterterm for 7'"'*' is obtained by replacing To by l/euv and (—12)~* by one

Furthermore, the 0(e) terms stemming from the virtual integrals have to be dropped,
whereas those stemming from the trace have to be kept This can be achieved m the

present case by the substitution Fk(e), At(x, e),Bt(x, e) -» Fk(0), Ai(x, 0), Bt(x, 0) and

multiplication with the factor

P< = Pq+/q(x,e)/p^(x)

P+/q(x,e) = P+qq(x)-e (1-x)

(3 126)

Note that this difference of 0(e) is vanishing when multiplied with .5(1 — x), but it

will be important for the non-ghost virtual integral 7'°'

So the counterterm /counter 1S given by

tt&l = -8(l-x)\k2\-'-L fdyy-^MW)

= J(l-x)4|fc2|-I (-1) (3 127)

where we have set euv = e in the last step
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The integral 7'"' is given by

/W =7i jdk2L(kl)-1 feriSip-k-QfiQPU-fy-SiP) (^^- +B,(x,e))
(3.128)

which is zero for I2 = 0,e < 0, such that the only contribution comes from the

counterterm of the virtual non-ghost diagram Doing the steps explained above to

obtain the counterterm leads to

4:U = ^/*i(^)-^(l*J|i-*i))^(^ZT + Bi(*,0))
= ~\k2rP(x(Al(x,0){-U(l-x) + -^-e(1^) } + x-7?,(x,0))

e„v V « (1 - xh \ x j + )

= 4|fc2r{-i|p?>)+|(i+x2)(lf)++^(i-x)
+*(l-s)I|} (3 129)

Inserting now the results for the different integrals into Eq (3.122), we obtain

Disc/,, = CfT/(g)2(4^^i±| jd\k2\\k2\-^
{\k2r(ptq(x)[-\l-j]-lPqq(x)lnx
+i(1 + x2)(f)+-,(l-x)^)

-(1)
The contnbution to rv

c T (x, e) is given by the coefficient of the single pole of the

| fc2|—integral

r&Ur,^) = -hCpT'&2 P«lcrT>{x)
>«

. _
M = _ p+ {x) _ 2p?g(:c) ln, _

4

(1 _ x) _ ^ _ x)
4

(

C(2) =

j (3.131)

Two-loop quark selfenergy contribution

In the PV calculations [29, 30, 45] of the two-loop splitting functions the contributions

proportional to 5(1 — x) were never directly calculated, but inferred from fermion
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number conservation, expressed by the requirement

fdx(Pql(q\x)-PqV;f)(x))=Q (3132)

In general, we proceed m the same way, but m the case of the CFTf part, the cal¬

culation we have performed with the ML prescription allows us to go beyond this

pragmatic approach, since we have always picked up the finite amounts ~ 8(1 - x)
contributed by the 2PI kernels in the preceding calculation If we now perform the

calculation of the graph shown in Fig 3 13 which is the only graph contributing to

the CFTf part of Q1} (see Eq (3 38)), we have all terms ~ 5(1 - x) m the CpTf part
of the flavour non-smglet splitting function and can check for this colour structure

whether indeed (3 132) is correctly reproduced

Figure 3 13 Two-loop quark selfenergy contribution ~ CFT; at x = 1

Let us first establish what we have to obtain for the CFTf part of £, The coefficient

of 5(1 — x) in the NLO splitting function, which we will denote by Cs, was determined

in [52, 45] via (3 132) to be

Cs = C2F (| - 3C(2) + 6<(3))+07> (-± - |C(2))+C,JVC (g + yC(2) - 3<(3))
(3 133)

Considering only the CFTf part, we have from Eq (3 131)

Cs cft,
= ((q%T! + CpTf (-|<(2)) (3 134)

Comparing Eqs (3 133) and (3 134), we get the following prediction for the CFTS
part of Q

'
m the light-cone gauge with ML prescription

4c,r, = ~\CFT1 (3 135)

which is the result we have to obtain from the calculation of the diagram shown in

Fig 313

The calculation is relatively easy since the inner quark loop has obviously no light-
cone gauge propagator and can in fact be calculated exactly Inserting the integrals
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in Eq (3 117) we obtain

Il£(r) = -iTf8^(^Y&T(e)^FA (-r2)" [>"V ~ V„] (3 136)

This selfenergy can then be renormalized with the help of the counterterm in Fig 3 9

The renormalized loop is then inserted into the outer loop Here it is very convenient

that nMV is transverse, that is,

da"(r) [:r2g^ - v„ ^(r) = -r2 daf)(r) (3 137)

<*9

7CFT,

In other words, the whole calculation is not very different from a simple one-loop
calculation of the quark selfenergy, the only exception being that we now need loop

integrals with the extra factor (—r2)_E present in (3 136) The integrals we need if

we embed the whole graph into the Dirac trace according to Fig 3 13 are collected

in Appendix A 4 Since we have renormalized the inner loop, the left-over divergence
after loop integration determines the two-loop counterterm and thus the contnbution

to
tf] We find in the MS scheme

=1+@)W4+ik) (3138)

Comparing to Eq (3 38) this implies that the CFTf part of Q1' is exactly what we

expected it to be in (3 135)

Cr, = -\C?Tl (3 139)

This result clearly demonstrates the consistency of the whole approach Our example
shows that the light-cone gauge method of CFP is also able to determine the contn¬

butions

~ 5(1 — x) to the splitting functions by explicit calculation It would be interesting in

this context to calculate also the other contributions to g1', Actually, the Cp part of

Eq (3 133) could be confirmed already [66] by using the results obtained by [53, 54]
for the two-loop quark selfenergy diagrams ~ CF with ML prescription
It is important to note at this point that the ability to obtain the correct endpomt
contributions is not restricted to the ML prescription, this is also possible for the PV

prescription With PV prescription, the coefficient of 5(1 - x) in the CpTf part of

P<;> reads

^r,=C-^/» (3140)

where Q^'Fr, denotes the CpTf part of $' when the PV prescnption is used The

explicit calculation gives

^FCFTf — 1 + (!M-sH*H(s+i«»-T*; (3 141)
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that is

tf&y,=<W>(-i-ic(2) + £/o) (3142)

It is interesting to see how upon combining Eqs (3 140) and (3 142) the 7o terms

drop out, and the CFT; part of the endpomt contributions comes out correctly as

m (3 133) also for the PV prescription We note, however, that again this happens
at the expense of having renormalization constants depending on singular quantities
like 70 that represent a mix-up m the treatment of UV and IR singularities

3.5.2 Colour structure CpNc

Now we will turn to the CFNC part which is the most complicated part of the non-

smglet splitting functions The contributing diagrams are shown in Fig 3 14 Topolo¬

gies (f) and (d) have been calculated by extracting the imaginary parts of the uncut

diagram

Virtual part

The virtual diagrams, which correspond (for x < 1) to the discontinuity ~ iw8(l2) of

topologies (f) and (d), will first be given m a scheme independent form, that is, the

final answer contains the integral form factors given in Appendix A, which can be

inserted then according to the PV or the ML scheme

An important qualitative difference between the PV and the ML scheme can be ob¬

served in this way In the PV scheme, k2 and I2 are the only possible scales, whereas

in the ML scheme, terms like 2ln* (n/n'n = I2 +12± are also present, which are non-

vamshing even for I2 = 0 Therefore, considering for instance diagram (f)v,rt, its scale

dependence m the PV scheme is identical to the one in covanant gauges Thus calcu¬

lating the diagram with off-shell I2, renormahzing it and then taking the limit I2 —> 0,

almost all contributions of the diagram will vanish since all loop integrals have to

be proportional to (-l2)~l (e < 0) on dimensional grounds Only the contribution

from the MS counterterm remains because this is the only quantity not proportional
to (—l2)~e In contrast to this, in the ML scheme l\ sets an extra mass scale For

graph (f)virt one therefore encounters terms ~ (—l2)~e, but also terms of the form

~ (I2 + l\)~l Since l\ = k\, the latter terms yield non-vamshing contributions to the

virtual part even at I2 = 0

Furthermore, if we included also the contributions at x = 1, we would obtain an

additional contribution from an axial ghost momentum with kinematics I2 + l\ = 0

running into the loop, in the same way as has been explained for 7("9'11 (see Fig 3 12)
in the previous section, and in contrast to the PV scheme, where this contribution is

completely absent
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CFNC

real (d)&

(f)real

C% - \CFNC

C2F - \CFNC

Figure 3 14 Diagrams contributing to the CFNC part
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Gluon selfenergy

The one-loop gluon selfenergy IIJJ,(i) is given by

U?»il) = 2^Nc5ab{J2{l)[&l29^~[m + ^lv]

+J[lu/(l) (4m - 8)

I2
+J2(l) 8 /2{—rvv + nl g^ - (n^l„ + njtl)}

I2
+lxJAx(l) {8—n.nv - 4(tU„ + nj,)}

nl

-4l2{nilJi(l) + n„j£(Z)}} (3 143)

The integrals are given m Appendix A The UV divergent part of expression (3 143)
with ML prescription already has been given m Section 3 3 2 With PV prescription
one obtains

11,
n£"(0 =

277^^{y('2^-W

+412 (Io + log(ln)) [-</,„ + ^±W _ ~n»n„]

-M[^-/»('»"" ~U'+^n,,n,)]} (3 144)

The UV counterterm is obtained by inserting NfyUVd"'(l) into the full diagram, using

n* = p

Tester = f^T6 Tr [A fa Aj„fc ]^n%UVd«'(l) d^(l)

= (g)2«|P|-^ 4f

qOW^v = J_p9/9(xe){^_2r0_21„(i_x)} (3 146)

After having subtracted the UV counterterm Tc90'„nter, one can go to the infrared region

where I2 = 0,£ < 0 As already explained, we see that in the PV scheme the whole

infrared part is vanishing since it is proportional to (—12)~' and e < 0, I2 = 0 in
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the infrared region With ML prescription, the axial part integrals contain a factor

(2ln* ln/n*n)~e = (2l+l~)~( = (I2 + l\)~c which will not vanish in the infrared region

(for details see Appendix A 2) Therefore, there is a remaining nonzero contribution

m the ML scheme, given by

T9luML = ^Ta^Tr[J^A%^A]d^p_u^{l)dX,{l}
= CFATc(^i)2(47r)T(l + £)|A;2|-1-e— f^M1

27T X

fgiuML = -2 Pq/q(x, e) C0r + 2X(11^) C? (3147)

The phase space for the virtual diagrams is given by (see Appendix B 1 for details)

PST* = 2nzj-^8(x-z)8((p-k)2)

such that the contribution from the gluon selfenergy diagram (f)v,rt to fJV' (x, e) is

given by

[T*«(x,k2,e)-T^ta(x,k2,e)}}
= PP{CFNC (g)2^| M2'JqQ2 d\k2\ |*2r-<(l - x)~'

[\k2\-<f«"(*, e) - d$T{x, e)]} (3 149)

where in the PV scheme Tgiu(x, e) = 0 according to the discussion above

Vertex, non-Abelian part

The vertex msertion m topology (d),^ is given by

V3g(it, -l, v, -(k + q), X,p + q)

Using the results of Section 3 3 2, the UV counterterms are of the form

T^ = -T*^Tr[J^ *!«%<" tyvfi]dr(p-k)
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= (g)2CWVc|fc2|-^ vfr

,Ad)vML If 1D / x ,
ll(Hr)l

/0iKf>\
v

=

^\-ip^(x'e) +2T^^/ (3150)

P,/9(x,e){ - ^ + 470 + 21n(l - x) +lnx} (3 151)
v(d)vPV

_

1 1

vuv -
—

o

Note that the term proportional to nj.n* /[In] m (3 102) does not contribute to

Tcolltfr1 because of nlid'u'(l) = 0

The expression for the vertex m the infrared region is obtained by inserting T° into

the full diagram (topology (d)virt), using n* = p and I2 = 0

rWv = _r._^Lrr[A/ftrj^/t]<r'(p_fc)
= CF7Vc(g)2(47r)T(l + e)|fc2|-1-f^ fM'

fMv =
T
-l-x-3x2-2xe(2-x)

0

4(1 - x)

-jP9/,(x,e) {t/0-3Cor-3P0-.D0r + Po}

x(l + x)
_Ci"T^x~

-i((2-x)P1 + P2)i^i^} (3152)

Note that P2, D0r, C0r and Cf are zero in the PV scheme because P2 is the coefficient

of n* and Z>0r, CJr and Cf are proportional to (-p2)~e resp (—Z2)_e For details see

Appendix A

Including a combinatorial factor of two for the vertex diagram yields the following
contribution to tQ) (x,e)

f^W) = pp{^-2^f*<Wi-mi -xr

2[T^(x,k2,e)-T<±tel(x,k2,e)]}
= Pp{cFNc(^)2^^(^r£ d\k2\\k2r-<(l-x)-<

2 [|fe2|-T^(x,£) - V$*(*,«)]} (3 153)
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Vertex, Abelian part

The vertex diagram (c)v,rt containing no three-gluon-vertex is proportional to

Cp — ^CFNC, so it already has been treated in Section 3 4

The results for the virtual diagrams are given in Table 3 5

CFNC

(f)JS (d)JS (c)JS ML£? vvirt (PV-ML)v,rt

Pqq(x) In2 (1 - x) -2 1/2 0 -3/2 -2 -1/2

pqq(x) ln(l-x) 11/3 -3/2 3/2 11/3 11/3 0

Pqq(x) InX 0 1/2 -1/2 0 0 0

pqq(x) Li2(l - x) 0 -2 1 -1 -2 -1

pqq(x) 7T2/3 3/2 3/4 -1 5/4 3/2 1/4
pqq(x) -4 1/2 7/2 0 0 0

x In (1 - x) 2 0 0 2 2 0

In (1 - x) -2 1 -1 -2 -2 0

x lnx 0 1/2 -1/2 0 0 0

lnx 0 -1/2 1/2 0 0 0

X -11/3 0 -1 -14/3 -14/3 0

1 23/3 -5/2 -3/2 11/3 11/3 0

Table 3 5 Contributions ~ CFNC to P„;'0e) from virtual diagrams

Real part

The diagrams contributing to the real CFNC part are given by topologies (f)^al, (f)J*a,
(d)5a. (d)£i ^d (b)Sai. 0>)*a Topology (b), being proportional to C% - \CFNC,
already has been calculated m Section 3 4 Note that we used PVI regulanzation m
Section 3 4 whereas here we use e—regulanzation, but the calculation of topology (b)
with e-regularization via the two-body phase space given in Appendix B 2 has no

new features such that we only will quote the result

Diagrams (f)reai and (d)reai also have been tried to be calculated using the two-body

phase space, but the phase space integrals for the ghost contnbutions became ex¬

tremely complicated For graph (f)^ it was still possible to obtain the right result in

this way, but for graphs (d)^, this seemed a forbidding task The main reason is the

presence of the denominator l/l2 which can go through zero and change sign The
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kinematics for a physical gluon imposes I2 > 0, but the ghosts have the kinematics

I2 = —l\, such that a singularity at I2 = 0 appears within the range of the phase space

mtegrals
Of course, this singularity still is present when evaluating these graphs via the imagi¬

nary part of the full two-loop diagram But m this case, it could be treated uniquely by

using a principal value regulator6 A, leading to a perfectly well-defined, A—independent
result This result includes both, transverse and ghost-like real contnbutions

Nevertheless, it is possible to obtain separate expressions for those diagrams which

have only transverse cut gluon lines (graphs (f)^ and (d)^) and those which have

one transverse and one ghost line cut (graphs (f)reai and (d)^) How this can be

achieved will be explained in Section 3 6

Note that the ML results for the transverse real diagrams are not identical to the PV

results with 5 ^ 0 if we use e—regulanzation, they are only identical if we use PVI

regulanzation Nevertheless, in the final sum of all diagrams, real and virtual ones,

we reproduce the PV result also with e-regularization, thus showing that there is no

need for an additional regulator when using the ML prescription

The detailed results for the real diagrams are given in Table 3 6

6To avoid confusion, we emphasize at this point that this principal value regulator has nothing
to do with the principal value prescnption for the light-cone gauge denominator
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3.5.3 Colour structure 7V| of the gluon-gluon splitting func¬

tion

Let us now turn to the calculation of Pv We restrict ourselves to ils A''2 part, since

the contributions ~ CFTf, NcTf are essentially trivial as far as the m\estigation of the

ML prescription is concerned The CpTf part comprises no gluon emission at all, and

all diagrams contributing to the NcTf part contain a quark loop and the emission of

at most one gluon Such diagrams with one-gluon emission have the LO kinematics

and will not reveal any new features as compared to what we have already discussed

In contrast to this, the N2 part of Prj' requires the renormalization of the highly
nontrivial three-gluon-vertex and therefore really provides a further challenge for the

ML prescription

The diagrams contributing to the N2 part of PF' at NLO are shown in Fig 3 15 We

do not show here the axial ghosts explicitly, having kept m mind that each cut gluon
line has a transverse and a ghost contribution

The calculation of the various real and virtual diagrams proceeds in exactly the same

way as before For the renormalization of the triangle graph (d)vlrt ind the "sword-

fish" ones (si)v,rt and (s2), we need the UV counterterm for the three-gluon-vertex
in the light-cone gauge with ML prescription, which already has been discussed in

Section 3 3 2

Concerning the real cuts, we mention that graphs (h),(b),(j) and (k) are most con¬

veniently calculated using the two-body phase space For topologies (d),(f) and (si)
which have two cuts, a real and a virtual one, it is much more convenient to calculate

the real diagrams with the imaginary part method

We have again verified that in the ML scheme all 2PI graphs give truly finite contri¬

butions to Tg/g before the final integration over |A:2| is performed Tables 3 7 and 3 8

present the contributions of the various diagrams to PlF where we have defined

(1-x + x2)2
Pgg(x) =

S2tx) = f1+'liin (—) =-2Li2(-x)- 21nxln(l + x) + \\x?x-?-
_/_£_ z \ z I 2 6

We mention in passing that topology (j) and the "swordfish" diagram (si) give vani¬

shing contributions to P^) if the PV prescription is used, but are non-vanishing for

the ML prescription, where finite contributions arise from their ghost parts

It also has to be noted that no separate results for ghost- and transverse parts of

topology (1) can be given when using e—regulanzation, since only the combination of

both parts leads to a well-defined result

As for the case of P[\'q, the full result for the N2 part of Pff, given by the column

"Sum" in Table 3 8, is in agreement with the PV result of [30], which in turn coincides
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(b) (h) minus (i)

(d)„ (d)v (e)

swordfish2 (s2) (si)reai (Sl)v

fflr, (Ov

0) (k)

Figure 3.15: Diagrams contributing to the N% part of Pq).

91



with the OPE one [33, 34]. Thus, the CFP method with ML prescription has also led

to the correct final answer in this case, which clearly constitutes a further nontrivial

and complementary check.

92



£6

3PrO<0

11"d-^—'
-S,^'IS*

1

lnx/x
H

5"
^•e>-*>_.«Htj'ts's'W'eis'w
tototjtotocoto(0toto
to^T-teCQtototococo

5"~TT^>oii1ct3"3"
MtON»

u
»»

"to^o*-^"
t-j^-s

£717
n7£

oOOO00

CO

-17/2
1

-J

to

1tL.*-*
wh-*

M
.roO0CO

,.

.^,kc35^OT,0=Oo<0000,i.O
05"cooo~2jCO

tr*.

real
top

(b)
Oooo^

1

to

0
to

COCn

-STOOOOOOOOtOOh-O
to<^>

era
=r

^
CO

-5/213/21

-a

1

CJ\Co00
.

Oi-q
,

or^^o^-^-iijtoo^-^a,0001—
totoCO\to

CO

vat

top

(d)
oooog;

CO

-23/6-23/6i>COtbf5
,

£511
,,,

iJCO00COCO
w

ff

real
*.coo-irt-1

^5"•
M

1

01cn

1

1-*

CO

to

1

<£oooo£o.w£oo>-
to

TO
cr

00000000
CO0

ooo-irooooooooo

to*>

virt
swordfishi 00000000oooooooooooooff

real COAj

00o-!r0
to

M

0-3/20
CO

ooooooooooooo
to

era
tr

to

0000-^
CO

000oooocog^^ocooooi.virt

top

(f)

1

0000.05

CO

000

to1cni,
^^
°-SLO"^"2j4?OiOijtO00

COCOtoK"^
trt-

teal
,-Lori,CO00>fc*Oro>iiiooooojou^ijiera

cr

OOOOO0O0ooooooooooooo•-*

real
<7t-

O

OOOOO-3/23/20

CoCO
~-~\.00000000000

toto

TO
cr

OOOOO000
<oco

00o~^<rOOOOOOOO
0000

real
top

(k) OOOOO000OOOOOOOOOOOOOera



S
3

Oi Oi
CM

CM Oi CO CO CO

Hl'l'f CjiN [^"?-~ t- I- O -^ ^ IO O OOOOO

cn CO co CM co
<—c

CM
1

00 oo

m OOOOOOOOO o o o o r> O ooooo

1
OS

CM CM CM CM

OOOOOOOOO o o o o OOOOO
CO CO CO

1

„—v CO CM IM CO CO CO

J3 CNf^^^OOOffl Oi rH O
CO

CO 00 o o o o

1
-cc* "*? CO

<M

o " ^ CO CO

Si 000"*"foO^>o
CO <?

OS
CO 103/ 23/

--^ CO
T-H 1

CO tO -cf O CO «p IO ^

£
Oi

CO

cu OOOO00"*O"'*hH
1

CO

CD CM
f-H

00
1

t—t CM
1

-5f
1

rH

CM

, ^ CM CM CM CM CM CM

CO
OOOOOOOO'^

cs
o

Oi
1

o O \
CO
o

CO
O O t> O "OO

co co

r v
CM CM

CO
OOOOOOOOO o o

CO i
t-O o — <y o o

Oi CO CO
'

°> CO CO CO CO CO CO CO CO CO CO CM

-o '->c20*tf<:?mooo~i> CO CM ^-H~ rH* CM N- o~^r 2 ^o~oo
°?
"

"V IO CN tH t—( IO
1

CM CO
1 1

Oi 00 00 Oi
cm

<° CM CO

-Q OOOOCNOIMOCO IO
o
t-H

1

IO CO

r

00
r-- >* o o o o

CO o

1

T—f
1

CM

^

H

1

^ «
H

"*-^" 1 ^-v

c: h

£ £ ^ % ^
H iRl? -9.

)ln
lnx x/x

,5 1 1 H H

'—^n, i i

^cn H ^^i^t^L^i.
«
it a

«
' ' B ( i—1 T—1

a, .. tn oi oi t» o,tN

ft, H .5 a, 1ft, ta, B, R, H H ~ t-H sT« H J3 _c eTcs h £ £

s
B

>>
hO
_o
"o
Q.
O

S

o

3

(3
O

o

oo

CO

g

94



3.6 Relations between PV and ML schemes

We have shown in the previous sections that the application of the ML prescnption to

calculate the next-to-leading order splitting functions within the CFP scheme [28, 29]
is a consistent method, since the ML prescription has a solid field-theoretical founda¬

tion and there is no need to recur to "phenomenological rules" to obtain the correct

result On the other hand, the complexity of the calculation with ML prescription
exceeds the one with PV prescription considerably Therefore it seems to be appealing
to use the insights gained from doing the calculation with both prescriptions in order

to find out the deeper reason why the "phenomenological rules" used in the PV case

worked so well An important step towards answering this question is given by our

observation that certain subparts of the structures appearing in the ML calculation

can be mapped to the structures present m the PV calculation This can be done m

the virtual as well as in the real diagrams contributing to the NLO splitting functions

The key observation is based on the expressions (3 56) and (3 57) obtained for the

virtual integrals with ML respectively PV prescnption From Eq (3 56), we see that

any one-loop integral calculated with ML prescription appears as the difference of two

terms, one being proportional to

[Mn]f-"
R+ + vnsiga.R-

'

the second proportional to

[Mn-2R+R-]?~n
R+ + in sign R~

'

which we will call part I and part II respectively Furthermore, we observe that part

I with n -* 0 is identical to the PV result (3 57) with 8 -> 0 In general, we can say

that part I of any ML integral with e—regulanzation is the same as the PV integral
with <5 = 0, and part I of any ML integral with PVI regulanzation is the same as

the PV result for this integral with 5^0 This observation also has been checked by

explicit calculation for all virtual integrals

Using this result as a starting point, it is not difficult to realize why in the PV scheme

we have to subtract ultraviolet poles which contain spurious singularities, whereas m

the ML scheme we don't In the ML scheme, it is the second term proportional to

[Mn — 2R+R~]f~n which always provides this subtraction automatically To be more

explicit, consider again expressions (3 56) and (3 57) We know that the limit R+ —v 0

corresponds to the spurious pole From Eq (3 56), we see that no ML integral can

ever have a spurious pole as a residue of an UV pole, since the limit R+ -> 0 is finite

in (3 56) even for n = 0 as long as [Mn]9~n is nonvamshing, but [Mn]^~n is always

nonvamshmg in the UV region
7

7In the infrared region, where some of the momenta are on-shell, this term of course con vanish,

which was one reason for the new features and technical difficulties encountered in the CFNC part,
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On the other hand, in the PV integral (Eq (3 57)) we do not have a second term

which regulates the first one in the limit R+ -> 0 Therefore one had to introduce

the 8 to regulate the spurious pole, which will appear as a coefficient of the possible
UV pole and thus - by lack of a "natural" subtraction term which contains exactly
the same 1/R+ pole, as we have it in the ML case - one has to subtract this mixture

of spurious pole and UV pole by hand when performing UV renormalization This is

the situation in the virtual part

Concerning the real part, we already explained that a mapping of subparts can be

achieved by exploiting Eqs (3 48) and (3 49) The discontinuity given by Eq (3 48)
is the only one present m the PV scheme If we now do the ML calculation with PVI

regulanzation, we regulate the spurious poles in the real part exactly in the same way

as m the PV scheme, such that the transverse real parts are identical in the ML and

the PV case Then the difference (ML-PV)reai is entirely given by the ghost contribu¬

tions which are not present with PV prescription
Therefore it suggests itself to investigate whether the two additional stuctures in the

ML scheme - the second term ~ [Mn — 2R+R~]f~n in the virtual part and the ad¬

ditional "ghost" term ~ 8(2q+q~) of the discontinuity of the gluon propagator in the

real part - are related Indeed, the following relation could be shown by using the

imaginary part method With this method, the discontinuities of part I of any virtual

integral appearing in a certain diagram correspond to the real diagram where only
transverse gluon lines are cut, since those are the only ones present in the PV scheme

The discontinuities of part II then have to correspond to the real diagram where one

of the cut lines is an axial ghost As a corroboration of this result, it is instructive

to consider topologies (c)reai and (g)reai (see Fig 3 6) They cannot contain ghost
lines since only fermion lines are cut The one-loop integrals for the vertex and the

fermion loop insertions with ML prescription of course are of the foi m part I mmus

part II as usual But doing the second loop integration over I2 ~ (1 - k) (for details

see Appendix C), the integral over part II in these diagrams has no imaginary part
Therefore the contribution from part II is zero, such that we get no real ghost dia¬

grams for these topologies, as expected
Thus the imaginary part method allows a rather clear insight into the relation of the

ML to the PV scheme for those topologies which have two cuts, a real and a virtual

one

In the virtual-cut diagram with ML prescription, there is always the difference be¬

tween two terms, part I minus part II, from the virtual ML integrals Both parts

separately contain spurious ultraviolet poles which exactly cancel in the difference In

the same virtual diagram with PV prescription, only part I is present As a conse¬

quence, the spurious UV poles contained in part I have to be subtracted by hand

In the real-cut diagram, we have the discontinuities of part I and of part II with ML

prescription, which directly correspond to the transverse and the ghost contnbutions

but the occurrence of spurious infrared poles is unavoidable m the light-cone gauge and does not

constitute a principal problem
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respectively. With PV prescription, we only have the discontinuity from part I since

part II is absent in the virtual PV integrals, therefore we obtain no ghost contribu¬

tions in the PV case.

Hence, if we assume that it was not by accident that the PV prescription together
with the recipe of CFP for handling the spurious UV poles lead to the right result, we

conclude that there must be a general argument why in the ML case the additional

parts II in the virtual integrals and their discontinuities in the real parts (respectively
the ghost contributions in topologies which have only a real cut), always nearly add up

to zero - but not exactly: The remaining terms are just equal to the ones produced in

the PV scheme by doing this special UV subtraction, such that we obtain the correct

result in both, ML and PV schemes.

The following Tables as well as Tables 3.5 and 3.6 illustrate the above arguments and

exhibit the cancellation mechanisms of the poles in the ML respectively PV scheme

for the two most sophisticated colour structures CFNC and AT2.
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CFNC

(f)& (fC (<-)& (dC (c)Si (c)Si (b)pv Sum

Double poles

l/e2pqq(x) 0 0 -1 1 0 0 0 0

Ultraviolet poles

tafel/0 -2 4 -2 0

^ln(l-x) -2 2 0 0

Sakfox 0 1 -1 0

Cuv
11/6 -3/2 3/2 11/6

Single poles of inal result after UVsubtraction

PwW T 4 -2 -6 2 2 0 0 0

^cM in (i _ x) 4 -2 -2 0 0 0 0 0

p_vM lnx 0 0 -1 0 1 0 0 0

P«(»)
-11/3 11/6 3/2 0 -3/2 0 0 -11/6

1-1 0 0 1 -1 0 0 0 0

Spurious poles

p„(x) h 0 2 -2 -2 2 0 0 0

Pqq(x) Io 0 -2 0 4 0 0 -2 0

pqq(x)I0ln(l-x) -4 2 6 -2 -2 0 0 0

pqq(x)Ia\nx 0 -2 2 2 -2 0 0 0

h (1 - x) -4 2 6 -2 -2 0 0 0

Table 3.10: Spurious poles and poles in e of CFNC part with PV prescription.
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N2

sum real ML sum virtual ML sum real PV sum virtual PV

Pggix) In2 (1 - X) 3 -3 4 -4

Pgg(x) ln2X 1 0 1 0

x ln2x 4 0 4 0

ln2x 4 0 4 0

pgg(x) lnxln(l -x) -4 0 0 -4

Pgg(x) Lt2(l - X) -2 2 0 0

Pggix) T2/3 1 -2 -4 3

Pgg(-x)S2(x) 2 0 2 0

Pggix) 67/9 0 67/9 0

X2 49/9 2 67/9 0

X -67/6 -7/3 -79/6 -1/3
1 29/2 -1 27/2 0

1/x -67/9 0 -67/9 0

pgg(x) lnx 0 0 0 0

x2lnx -44/3 0 -44/3 0

x lnx 11/3 0 11/3 0

lnx -25/3 0 -25/3 0

In x/x 0 0 0 0

Ptrate) In (1 - x) -22/3 22/3 -22/3 22/3
x2 In (1 - x) 0 0 0 0

x In (1 — x) 0 0 0 0

In (1 - x) 0 0 0 0

ln(l — x)/x 0 0 0 0

Table 3 13 PV and ML results for PF (x) compared in virtual and real parts
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Chapter 4

Conclusions and outlook

We have performed the first calculation with the Mandelstam-Leibbrandt prescnp¬

tion [36, 37] of the flavour non-singlet splitting function and the N2 part of the gluon-
gluon splitting function in next-to-leading order within the light-cone gauge method

of CFP [28, 29] In all previous calculations [29, 30, 45], the PV prescnption has

been used to regulate the spurious poles generated by the gluon propagator in the

light-cone gauge Although the PV prescription has several features that could raise

doubts on its reliability - like the breakdown of power counting or the dependence
on longitudinal momenta of the renormalization constants - CFP obtained the right
result by giving recipes how to handle the spurious poles and the UV subtraction

mainly based on physical intuition, being aware of the fact that a formal justification
of these "phenomenological rules" remains to be provided

By doing the calculation with the ML prescription, which has a solid field theoretical

foundation, we contributed to a progress in several respects
First we could confirm the usefulness of the CFP method [28, 29] to calculate the

splitting functions in next-to-leading order We were able to show that neither the

"phenomenological rules" to treat the UV poles nor additional regulators apart from

dimensional regulanzation are needed when using the ML prescnption

Furthermore, we tested the ML prescription itself in a highly nontrivial application
We found that with ML prescnption, the individual topologies contnbuting to the

2PI kernels which allow to extract the splitting functions are in general more regular
than with PV prescription This is mamly due to the presence of the so-called axial

ghosts, which soften the spurious singular infrared behaviour of the discontinuities of

the gluon propagator with ML prescription, and which do not exist in the PV case

The NLO contributions at x = 1 never had been calculated before, they were deduced

from the sum rules expressing fermion number conservation Since we explicitly cal¬

culated the full x = 1 contribution, including the finite part, for the gauge mvanant

subpart proportional to CpTf, with ML as well as with PV prescription, we were able

to check the consistency with the sum rules, thus corroborating the viability of the

CFP method and of the ML prescription We even could show the finiteness of the
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2PI kernels at x = 1 for all colour structures considered [66]

One has to admit that the calculation with ML prescnption, while being much more

satisfactory than with PV prescription from a formal point of view, is technically by
far more complicated This is due to the fact that the ML prescription is a two-vector

prescription - containing the vector n* in addition to the gauge vector n^, which

entails the existence of additional structures - and due to the presence of the ghost
contributions Therefore we had to develop methods which had not been used before

to be able to surmount these technical difficulties These techniques could be very

useful in view of an extension of the calculation to three loops
As the three-loop result will be really required for the collider physics of the near

future, we have to judge which methods are viable for this task First of all it has to

be emphasized that the application of two independent methods is almost mandatory

in order to control such a complex calculation The OPE method, after the recent

development [33, 34], surely is conceptually solid Its algebraic complexity is enor¬

mous, but a number of programs serving to develop a machinery which can treat the

algebraic part systematically already exists [24, 35]
The CFP method with ML prescription has achieved a status of formal solidity com¬

parable to the one of OPE due to the present work, but at the expense of a growth
in technical complexity as compared to the PV case Nevertheless, there is a con¬

siderable chance that this complexity still can be reduced At the present status, it

could not be exploited that the axial ghosts decouple from physical quantities since

the anomalous dimensions are non-physical, the scheme dependence cancelling only

m combination with the coefficient functions But a first attempt to define physical
anomalous dimensions, which are certain combinations of anomalous dimensions and

coefficient functions, already exists m the literature [64] Thus there is some prospec¬

tive that a further development could reduce the complexity of the ML calculation by

establishing a sort of "decoupling theorem" which assures that a major part of the

ghost contributions does not have to be calculated since it will cancel to zero anyhow

At present, the CFP method with PV prescription is the one with the least technical

complexity, but its formal solidity is not satisfactory The insights gained from the

calculation with ML prescription however could serve to give a formal justification
for the PV "recipes" It has been shown above that one can map subparts of the

structures appearing with ML prescription to the ones present with PV prescription

If one could also show that the additional structures present only in the ML case

always have to cancel, no matter in which order of the perturbative expansion we

do the calculation, one could be sure that the PV prescription is safe Of course,

this again would mean nothing else than a confirmation of the reliability of the ML

prescription together with a reduction of its complexity down to the PV level

In any case, there is some room for further development, since it might be some as yet

unexploited underlying structure that leads to such considerable cancellations when

combining the various contributions to the final result In this sense, the present
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work can give some inspirations and guidelines concerning the development of me¬

thods to calculate higher order anomalous dimensions which are both, highly efficient

and formally solid.
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Appendix A

Virtual integrals

A.l Definitions and sample calculation

We define general n-pomt integrals, containing no axial denominator X/qn, by

J"'" "(fcl kn-l] = I ^V +1«] [(q + h)2 + le]

q

[(q + kn_,f + u]

and n-pomt integrals containing one axial denommator 1/tjn by

J"W "'(kl kn'l] =

J *"*
[q2 + u] [(q + fc,.)2 + te) [(q + kn_x)2 + ic] qn

/qin
qi*s

^[(q + ktf+xe] [(q + kn)2 + u]w

The integrals J**1 '''(ki fc„-i) are called Feynman part integrals since they arise

from the g^—part of the gluon propagator in axial gauge

The 1/tjn factor in the axial part integrals has to be regulanzed with ML or PV

prescription In order to exhibit the effect of the ML respectively P'V prescription on

the virtual loop integral over q, we will give the calculation of the axial part integral
Jn111 M'(&i fcn-i) wltn both prescriptions in detail here

Calculation of virtual integrals with ML and PV prescription

In this section we give the detailed calculation of the axial integral JAn ^ (fci fcn-i)
with both, PV and ML prescription We evaluate the integrals in Minkowski space

They also have been evaluated via Wick rotation, but the difference between ML and

PV prescription can be seen more directly if the calculation is done in the way given

below
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The covariant denominator factors of JA(k\... fc„_i) will be written in the exponential

parametrization, exploiting the relation

i 1 rx
-F— = - dae^x+lt)
x + ie i Jo

This parametrization is leading to

JA(kx fcn-i) =
tt / dao... dctn-x / <T<j— exp {-ze} exp {zcj2 + 2Xq + Y^ a.k2}
i Jo J qn

rf

i f°° F\
= — / da0 •. • dan_i exp {-ze} exp {z 2J %fc2} exp {-rX2/z}

2"Jo
;=1

• /<f"g—exp{Jz(g + X/z)2}
J qn

n-\ n—1

Now substitute q' = q + *, then

J^(fci... kn-\) = — / rfao • • ^n-! exp {-ze} exp {z^ a3k2} exp {-jX2/z}
8 •/o

j=i

/></-—V^-expW2>
J q'n — Xn/z

n /-oo
n~l

= — / tiap... da,,-! exp {-ze} exp fo y' Qjfc2} exp {—iX2/z}

I cr-2q± exp {-izq2±} I dq+dq~
+_x+/z

exp {2izq+q~}

(A.1)

The integral Jq± over q+ and q~

J,± = / dq+dq-
+_x+,z

exp{2izq+q~} (A.2)

now has to be regulated according to the ML or the PV prescription.

ML: -i; ->
, ,

\
, , (A.3)

q+ q+ -rir)Sign(q-)

1 g+
PV:

i+
^

(<j+)2 + 52(p+)2
(A'4)
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The calculation of Jq± will be given below. The results are:

1

X+ + ir)zsign(X-) {l-exp{2iX+X-/2-2)?|X-|}} (A.5)

over q±

J ~

~n(X+)2 + z282(p+)2
(A'6)

Inserting the result for J%.L into Eq. (A.l) and performing the Gaussian integration

|V-2g-xexp{-lzg2}=g)!2f2
one obtains

JAmj(h...kn^) =
^szr / da0...dan_1exp{!^o;,fc2-ze}-z1-T
1 2 Jo

j=i

exp{-^2/z} r

_ exp{M+x-/2 _ 2r?|x-|}}
X+ -M»?zsignA i J

Rescalmg at = z -bt (i = 0... n - 1) and carrying out the z-integration results in

JnAML(fci...fc„-i) = *7r¥r(n-^)(-l)"+1 /<i&0... <»„_,. .5(1-£>)

.*.
p

|[Mn]T-"-[Mn-2^K-]T-"j (A.7)
nsienP- I JP+ + in sign P"

n-l

.2
R» = £>fc? : Mn = P2-^6;^2

j=i j=i

whereas PV regularization leads to

^^(fci... fcn_!) = «r*r(n - ^)(-l)"+1 / d6o ... *„_! <5(1 - ]T &;)
^ J

3=0

P4T^-^]?"" (A-8)

Calculation of the integrals J^x and Jp±

With ML prescription

Applying the ML prescription to Jq± (see Eq. (A.2)) leads to

J$L = j dq+dq- , y+. ^

l
.

_

„. , exp {2jzg-g-} (A.9)
4 J q+- X+/z + if]sig!x(q - X-/z)
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Substituting g' = g - 7 gives

3lL = exp {2iX+X~/z} f dq+dq-— —-r-r exp {2i [zq+q~ + X+q~ + X~q+}}q J g+ + ?77sign(g-)

= exp {2iX+X~/z} j dq~ exp {2iX+q~} Iq+

J q+ + ir)sign(q-)

The integral i,+ has a pole at g+ = —tr;sign(g_) with residue exp{2?7Sign(g~)[zg~ + X~}}
Now two cases have to be considered

1 zq~ + X~ > 0

The contour has to be closed in the upper half plane, the pole is inside the

contour for g~ < 0

2 zq~ + X~ < 0

The contour has to be closed m the lower half plane, the pole is inside the

contour for g~ > 0 There will be a mmus sign for the opposite orientation of

the contour relative to case 1

Using the Cauchy theorem yields

I,+ = 2-ki exp {2r?sign(g-)[zg- + X-]}{9{-q-)9(zq- + X~) - 0(q-)B(-zq- - X~)}
and so

J$L = 2mexp{2iX+X~/z}{ f dq~exp{2iX+q~} exp{-2n[zq-+ X~]}0(zq-+ X~)
J—OO

- f dq~ exp {2iX+q~} exp{2r?[zg- + X']}9(-zq- - J*")}

Substituting g = —g" m the first part leads to

J$L = 2mexp{2iX+X~/z}{ f dqexp{-2iq[X++ ii]z]} exp{-2VX'}0(-zq +X~)

- I dq- exp {2iq~[X+ - ir]z}} exp {2nX~}9(-zq- - X~)\

= 2mexp{2iX+X-/z}{9(X~) [ dqexp{-2iq[X+ + ir)z}} exp{-2r?X-}}
r-x-h

-6(-X~) / dqexp{2iq[X+ - ir,z}} exp{2riX~}j

= 2,iexp{2iX^XFz}exp{-2n[X-\}{9(XF^^
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v_,(exp{-2iXFz[X+-ir,z}}-\)}
~e{~X }

2i(X+-iVz) )
= -7rexp{2iX+Z-/z}

exp{-2n\X~\} (exp{-2zX+X~/z + 2r,\X-\} - l) {J^l- + |^1}
= -, (1 - exp &X+X-I, - 2n \X-\S) -x+ + irj^_}

(All)

With PV prescription

Applying the PV prescription to Jq± leads to

V = J^-{q+S~/z7iZ62ip+)2 ^^^ (AJ2)

Now doing the q+ -integration, one has to evaluate

V = Jdq+{q+ _ 9x~M2+iZ82(p+)2 e*P*2^V}
= \j^exP{2,zgV}((g+_^_^+ + {q+_^) + l6p)

(A.13)

Two cases have to be distinguished

1 g- >0

The contour has to be closed in the upper half plane, so the pole at g+ =

%£ + i8p+ contnbutes and the residue of the pole is exp{2tg~(X+ + iz8p+)}

2 g" <0

The contour has to be closed in the lower half plane, so the pole at q+ =

%£ - iSp+ contributes and the residue of the pole is exp {2iq~(X+ - izi5p+)}

Then the integral (A.13) can be written as

V = ^/Vexp{Wg-}((g+_j)_^++(g+_j)+^+)
= iw {9(q-) exp {2eg~(X+ + iz8p+)} - 9(-q~) exp {2zg'(X

f
- iz8p+)}}

Now the dq" integration will be done to obtain the final expression for the integral
jPV

1 f°° ( 1 1 \
J" =

2 L^^^^^ {(q+-!±)-i8p+
+

(q+-^) + i8p+)
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/•oo rO

= tit J dq" exp {2tg~(X+ 4- iz8p+)} -ml dq~ exp {2«g~(X+ - iz8p+)}
Jo J-oc

The substitution q = —g~ in the second integral leads to

/TOO /TOO

j£v = J7r / dq~ exp {2ag-(X+ + jz<5p+)} - wr / dgexp {-2«g(X+ - jz<5p+)}
Jo Jo

Renaming g into q" yields

/*00

J*/ = ml dq-{exp{2iq-(X+ + iz8p+)}-exp{-2iq-(X+ - iz8p+)}}
Jo
poo

= ml dg~exp{—2g~z<Sp+} {exp{2ig~X+} — exp{—2ig~X+}}
Jo

ytx
= -27r / dg~exp{-2g~z<5p+}sin(2g~X+)

Jo

Now we use the formula (Gradshteyn/Ryzhik integral no 3 893 1)

/•OO D

/ dye'Avsm By = for A>0

The condition A > 0 is fulfilled because of 0 < q~ < oo, z, 8, p+ > 0 Hence we obtain

tpv _
-tX+

(X+)2 + z282p+2

A.2 Two-point integrals in the ultraviolet and in¬

frared regions

In this subsection, we will show through the calculation of the integral JA(l), appear¬

ing for example in the gluon selfenergy, what happens in the ML scheme when doing
the analytical continuation in e from the UV to the IR region

From the general integral (A 7), one obtains the following expression for JA(l) with

ML prescription

jfML{l) = -l^T(e)f^1^L-{[-l2u(l-u)r-[-l2u(l-u)-2u2in-r}
(A 14)

Note that l~ = -fc"
,
k" < 0, such that sign(/~) = 1
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We consider first the integral in the UV region where e < 0,12 ^ 0

For I2 ^ 0, the u-mtegral is finite and thus n can be dropped m l/(ul+ + in), leading
to

JA£L(i) = -^r(e)Fi2rJ\uu-^{(i-ur-[i-ua-xt)Fe}
21H"

_

2lnln*
Xl ~

~l2~~l^Fi2'

As long as we assume I2 ^ 0, we can expand in e and we obtain

jLml{1) = _£(_?)-., r(e){-[\u^^+[\u^F^LzM\
l+ l Jo u Jo u )

o "Jo

(-l')-T(l + e){Li2(l) - Li2(\ - xi)} (A 15)_!Iif_,2W

which is an UV finite expression

For I2 = 0, the integral (A 14) is only meaningful if e < 0 But since the integral
is UV finite, expression (A 14) can be analytically continued to negative e without

doing any subtraction For negative e, I2 can be set to zero in (A 14), leading to the

following expression for JAML(l) m the infrared region

JAfL(l) = «r* r(e) jf1 du ^-^ [-2U2 tr]- (A 16)

If I2 = (p — k)2 = 0 holds, one has the relation

21+1" = -2l+k" = -2(1 - x)p+k" = -(1 - x)fc2 = (1 - x)|fc2| (A 17)

leading to

JAfL(l)=mfT(e)[-(l-x)\k2\r ["dun"2'—!-- (A 18)
Jo mi + in

Note that there is an overall factor (-l)_e in (A 18) which will be of importance m

connection with the imaginary part method explained m detail in Appendix C Since

m this Appendix we treat only those virtual integrals which appear together with the

phase space constraint 8(l2), we need only the real part of (—l)~e here

7T2
(-l)-( = l-e2y + e»(e4) + Sm

Now we have to choose whether we regulate the spurious infrared pole ti-»0m(A 18)
with the PVI- or with the e-regularization method
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e-regularization method

If we use the e—regulanzation method, we simply drop 77 in l/(ul+ + 117), using the

dimensional e to regulate also the spurious pole u — 0 Then we obtain

J&ML(l) = «r* T(e) [-(1 - x)|fc2|]-i (-i) (A 19)

Therefore, using the general definition

Jtril) = -£(%
Q\ = «7rfr(l-fe)|fc2|-e

we obtain with ML prescription and e—regulanzation

c^'ir=2^27ln(1-*) + Iln2(1-x)~T (A20)

PVI regularization method

The PVI regulanzation method suggests to do the replacement

1 ul+

ul+ + iri (ul+)2 + 82
(A.21)

This allows to distinguish the spurious poles from the "usual" ones, since the spurious

poles will now appear in terms of Io and h defined in Eqs (3 61) and (3 62), while

the usual soft and colhnear poles will still appear as poles in e Hence doing the

replacement (A 21), we obtain

C$$ = --[Io + In (1 - x)] + 2/x - Io In (1 - x) (A 22)

A.3 Results for virtual integrals in terms of form

factors

In our calculation we need two-pomt integrals and three-point integrals, which, de¬

pending on their number of Lorentz indices, can be classified as scalar, vector or rank

two tensor integrals Higher rank tensor integrals have been reduced withm the pro¬

grams to the ones given below by using Passanno-Veltman reduction [63]
The ubiquitous factor Qr( which can be extracted from each integral is defined as

Q: = *7r?r(l + e)(-r2)-£
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A.3.1 Feynman part integrals

J((r) = QreTo To = • + 2

jf"(r) = -QJTxr" , T, = ir0

^""H = QrAT2r„rv + Tzr2gii„)

T -

X +13 T-
*

3euv 18 12eu

Jf(M = -Q*(-fc2)-2Po

^"(fc,?) = ^(-fc2)-1(PiP^ + P2fc")

Jf,"(M = -<9j(-fe2)"1(P3puP,/ + P4fc'1fc''-

{fcp}'" = fc"p" + fcV

ft^r+^v)

The following table gives the parameters Pn for the special kinematics p2 = 0 and

(p—k)2 — 0 which is the kinematics for all one-loop insertions into the virtual diagrams
if we do not consider the contributions at x = 1, which arise when the cut gluon line

in the virtual diagrams has axial ghost kinematics Those integrals which are needed

to calculate real diagrams via the imaginary part of the full two-loop diagrams also

require (p — fc)2 ^ 0, they will be treated separately m Appendix C

Po Pi P2 P3 Ri P5 P6

1 7T2
e2 6 £+?+4-T -1-2 Pi + \ + 3 "i-1

1 3

2e
~

2 4cr„v
T

4

A.3.2 Axial part integrals

The axial part two-point integrals JA(r) and J2ll(r) will first be given in both schemes

for an arbitrary off-shell external momentum r Then we will list 1he result for all

axial integrals needed in our calculation, using the special kinematics given there As

explained in Section A 2, we have to distinguish in the two-pomt integrals between

on-shell and off-shell external momenta For an arbitrary off-shell external momentum

r, we have

J2A(r) = Po(r)

Ql
4W =

^{AMr, + .rMr)n; + P,(rK}

The results for the form factors P0, P\,P2 and P3 depend on the regulanzation of the

axial denominator 1/gn
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Form factors for the ML scheme

If we use ML prescription we get

PoML(r) = Li2(l)-Li2(l-Xr) (A 23)

pML[r) = _X^Xr (A24)
1 — Xr

^ = S(i + 2 + T^r) <A25>

p - S f_1 + r2^ + v[Ll2(1) ~ Lli{1 ~Xr)]) (A 26)
nn \ i Xr Xr /

2 rn rn*

(A 27)
nn* rz

Form factors for the PV scheme

Using PV prescription we obtain

PoPV(r) = — [/o + ln(r+)]-Il + /oln(r+) + iln2(r+) + Ll2(l) (A 28)

^(r) = — + 2 (A 29)

Jf(r) = 0 (A 30)
2

|i-[J0 + ln(r+)-2]-J1 + 7oln(r+) + Iln2(r+)-4 + Ll2(l)J
(A 31)

2r«

We used the definitions (3 61) and (3 62) for I0 and I\ as well as r+ = rn/pn Note

that n* is not present m the PV case

Two-point and three-point integrals for special momenta fc and p

The special kinematics used in the calculation of the virtual diagrams for x < 1 after
UV renormalization is given by

p = n*
, (n*)2 = 0

Z2 = (p-fc)2 = 0 => Pk = j , fcl = -fc2(l-x) ,
fc2<0

fc+ = x
, p+ = l

2fcnfcn*
,, .

* =

^*J^
= X (A32)

Before having subtracted the UV poles, we obviously have to keep p2 and I2 off-shell
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Two-point integrals

The space-like momentum fc2 m our calculation is always different from zero, therefore

we can read off the form factors for J2(k) and J2ll(k) directly from relations (A 23)
to (A 31) The integrals JA(p) and J^ip) only contnbute to the UV counterterm, so

p2 has to be off-shell in this case and xP = 2p+p~/p2 = 1 for p2 ^ 0, pj. = 0 In the

infrared region, where e < 0 and p2 = 0, the integrals J2(p) and J2li(p) vanish due to

the overall factor (-p2)"'

The form of the integrals J$ ML(l) and J2A1ML(l) in the UV region (I2 £ 0, e > 0) is dif¬

ferent from the one in the IR region where I2 = 0, e < 0, as has been explained in Sec¬

tion A 2 Therefore we distinguish form factors Ctuv and C" m this case In addition

we have to decide how to regulate the spurious infrared poles present in JA (I) PVI

regulanzation leads to a result containing I0 and I\ whereas e—regulanzation leads

to a 1/e2 pole m J2'ML(l) The form factors obtained with the two regulanzation
methods of the spurious infrared poles are denoted by C0 pv^r and C0,

ir

respectively

Two-point integrals in parameter form:

JA(k) = _9lPo
fcn

Kik) = |i{Pifc^ + P2n; + P3nfl}

JAip) = -®Bo
pn

JiM = ^{Bip(1 + S2n; + B3n>,}
pn

jA(i) = _KCo
In

J&ii) == pfAJp + CinJ + Csn,,)

iA(k,P) =

pn

l£(-k,l) = -^D0

(A 33)

pn

Note that m the PV scheme, the parameters Cpv'" (i = 0, ,3), Kpv" and Dpv"

are not needed since they have an overall factor (—l2)"' or (—p2 re In the ML

scheme, the situation is different Due to the presence of n", (—Z2)_t is not the only
invariant scale, so the integral in the IR region can be nonvamshing, e g proportional
to (2lnln*/nn*)" ~ [—(1 — x)fc2]~e, as can be seen from the example m Section A 2

That is why we extract only the overall factor

R = 27r?r(l + e)
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in integrals dependmg on I, whereas the factor (-J2) e
or (-fc2) '

is shown m this

case explicitly together with the corresponding form factor

Form factors for two-point integrals in the ML scheme

pML
r0

= Li2(l) - Li2(l - x)

pML =

xlnx

1-x

r>ML
r2

=

f 1
„

x In x 1

X\l+2+l-x)
r>ML
r3

= £{-1+l^^lLl2(1)-Lt2(1-X)]}
oML
Bo

= Li2(l) , BfL = l
, BfL = — + 1

Cuv

r>ML
B3

= £-{-2 + Ll2(l)}
2pn

siML,v.v
°0

= (-l2)-<(Li2(l)-Li2(l-Xl)) , Xi = ^$
pML,uv = <_,,-. (_a^)
stML,uv

=

n*n \euv 1 - Xi /

f,ML,V.V
=

/ ;2)-</n* I
y ,

lnM
,
lnxiln(l-Xi)

(
nn* V 1 - X( Xi

rvM£Tuv
u0

= finite

/~iML,vc

°0,PVI
= (-fc2)-e f-i [In (1 - x) + Io] + 2/i - Io In (1 -

*~,ML,it

°0,e
= {"fc2r(2i"2^ln(1~l) + Iln2(1"x)"

/-iML,it
= (-fc2W-i-2 + ln(l-:r))

/-iML,ir
= (-fc2)-(l-x) Q+ 2-In(1-x))

syMLjr
=

1 k2

(-k2)-F~v '

2pn
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<ilr = (-k2rT^(^-Li2(l-x)-^ln2x
Do"1" = (-fc2rQ[lnx-ln(l-x)]-iln2x + iln2(l-x)-^)

Form factors for two-point integrals in the PV scheme

pFV =

[^ + M_/i + folng+iln2g + Lta(1)

Ppv = ^ + 2

Ppv = 0

PV
_

fc2 /[Jo + lni-2]
.

,
. ,

,

1.,
P[v =

^j1^^
i-/i + /olnx + -ln2x-4 + .Ml)

Bpv = I^-Il + Li2(l) , Bfv = —+ 2
, Pfv = 0

2pn [ euv J

Cr" = (-i2)-'([/o
+

1^1"iC)1-/i + /oln(l-x) + iln2(l-g) + Lta(l))
CfVov = H2rf—+ 2

C2PVuv = 0

c^ = H»r^-{tfo + In(1"j)~2]-Ji + .r.in(i-»)
2/n I eUT

+iln2(l-x)-4 + LJ2(l)}

D0PVuv = (-p2)"e(—[ln(l-x)-lnx] + ^ln2x-iln2(l-x)+I«2(l)
-2Li2(l - x) - In (1 - x) lnx)

Three-point integrals

The three-point integrals needed for the virtual part are given by JA(p, fc), JtJjP, fc)
and JA(—k,l) They are calculated only m the IR region since they are UV finite

The integral JA(—k,l), like J2(l), in the ML scheme contains spurious infrared poles
which can be regulated either by PVI- or by e-regulanzation, therefoie we distinguish
between the form factors c^pvi and Uo[L
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1
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-
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i

=^0%

x—1e
4

zlnx
|

1
-5^i

21-xl-xel-x

ln2x1
,„T.

2a;In1
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.
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A.4 Two-loop integrals

For the calculation of the CpTf part of the two-loop quark selfenergy we need some

integrals with an extra non-mteger power of (—r2) in the integrand, where r is the

loop momentum Making use of the identities

a^b
- aJo dX[ax + b(l-x)]a+1'

I rl pi-* x<*-i
—— = a(a + 1) dx dy- -—j , (A 34)
aabc

y
'Jo Jo Fax + by-rc(l-x-y)]a+2

one obtains rather easily

L±f)l
=

'
UjtY( ^-* ^(2e) r(l-e)r(l-2e)

)m (p _ r)2 167r2
^1 \ V )

r(! + £) r(3 _ 3e)

(A 35)

f dm

J (2*

r dm

J (2*

r (-rT<
_

«
(4<T)t( pi)-u

T(2e) r(l - c)r(l - 2e)

imr2(p-r)2 16tt2V y v y ' T(l + e) T(2-3e)

r^L_±f)_l_ (_>r(1 +
tc(2))[JZ_ 1

J (2ir)"'r2(p-r)2[nr]ML
yP) { T U " J (2*) r2(p - r)2[nr]UL

(A 36)

where the integral on the right-hand side of (A 36) has been determined in Ap¬

pendix A 3 Note that the integral in (A 35) vanishes if the factoi (-r2)-' is not

present

Finally, with PV prescription one obtains for the integral m (A 36)

/ (2^2(P-X]rv = it^ (-pT2e 2^ '« + «V ~ ** + °W '

(A 37)
while

*"* X T^2(^)£(-P2)"ei[/o
+ <(2)-e71] + 0(e)

r d

J (2* mr2(p-r)2[nr]pv 16?r2 v ;
epn

(A 38)
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Appendix B

Phase spaces

The momenta are parametrized as

P = (P,0,P) (P>0) ,
„ = (g,rj,-g)

k = {xP+^p^^xp--^r)

h = {ZiP+^p^i'ZiP'^p] rfI?=o,*i#o

1
422P""'~" 4*2P'

h = (z2P + -^5,t2,Z2P-F^) iill = Q,z2^0

fcn lin l2n
x = —

, Zi = — , z2 = —

pn pn pn

In light-cone parametnzation, the momenta are written as r = (r+, r_, fj_), where

r± = —7=(r0 ± r3) and thus
v2

r2 = 2 r+r_ - r]_

It is convenient to set pn = p+ — 1

The Feynman rule for a cut gluon line is given by

'TJ-OO-OOTOTT 27r<5(/2) 0(7°) <L„(J) <506
a,M ' b,v

whereas for a cut axial ghost line we have
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-'---- 2ir8(ln) 9(1") B*{1) <5ai, Df„(l) = -fcn, + UM)/ii
a,/t b, v

So for the cut lines one has to distinguish between "physical" gluon lines and axial

ghost lines The case that all cut lines of a given diagram are ghost lines only gives a

contribution at x = 1

B.l Phase space integral for virtual contributions

The phase space integral needed for the virtual diagrams, where only one physical

gluon line is cut, is given by

/dmk-^-8(x-z)8((p-k)2) where (B1)

(p-fc)2 = -l^-^lzl>.k2==^s((p-k)2)=x8(kl + (l-x)k2)
X X

Since the integrand has no angular dependence, the angular integral is trivial here, so

J <Tfc = Km.2 J dk2 fx d\k±\ \hr3 = Km„2 jdk2^_\ dk\ (fc2)"?

Km-2 = 2 tFt-/r(22^) is the surface of a (m - 2) dimensional hypersphere Thus in

m = 4 — 2e dimensions, the phase space for the virtual diagrams is given by

PS"- = 2*zj-^8(x-z)8((p-k)2)
= T^hri^-2, j dk2dk\ (fc2p xs(k\ + (i - x)fc2)

1 (4;it rQ2

i67r2r(i-e;
/
Jo

difc2iifc2rx(i-x)-e

The upper limit of the d|fc2| integral (fc2 < 0) is denoted by a large momentum scale

Q2 whose actual value is irrelevant since only the pole part of the fc2 —integration is

needed

B.2 Phase space integrals for real contributions

The real contributions are the ones where two internal lines are cut If the cut lines

are gluon lines, we will distinguish between "usual" real diagrams where both gluon
lines are physical on-shell gluons and "ghost diagrams" where one cut line, say l2, is

an axial ghost line The case that both cut gluon lines are ghost lines only gives a

contribution at x = 1 The following table summanzes the different kinematics
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l2 being a physical gluon l2 being an axial ghost

/22 = 0 l2 = —t2

It = Z2P+ # = o

l2 = fj/(2z2p+) 2pn2 =: £

l+ = (l-x-z2)p+ ;+ = (i-x)p+

pl2 = t22l(2z2) Ph = \i

'ife = £«S+ £*?-*& hh = 2^zi ~ *i*2

B.2.1 Phase space for physical real part

Using the parametrization of momenta given above, the two-body phase space for Z?

and l2 being on-shell physical momenta is given by

. 2 r

d$(h,l2) = -~ J dltdltdl^dl2 d(m-%Sm-2%8(p+ - fc+ - If - It)

•c$<m-2>(fcL + h +12) 8(k~ + Zr +12) 8(l2) 8(l2)
1

_

i2
Now we use 5(l\) — -rp^SQi — ri) and the analogous relation for l2,

then

«('..« = ($r/||^2^+-fc+-^-^)
8(ki + t1 + t2)8(k_ + ^ + ^)
2ir2 I

(27T) J dt\dt2 8(1 — x - zi — z2)
Zl Z2

8(kj_ + tl+t2)8{_ + _i + J, + J.)
X X 2l 22

Including also the fcx-part from the (f'fc-integration into the phase space leads to

PS*- = Jdk^M^f^Sd-x-z, Z2)
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/ dtldt2 6(* +
^hH +tl+tl) (B 2)

Now new momenta hi and h2 will be introduced such that the 8—function becomes

diagonal in hi and h2 and the angular dependence of the denominators gets as simple
as possible The angular integration will be earned out m the following way In

all diagrams where no axial ghost is present, hi and h2 can be chosen such that

one denominator factor is only proportional to h\ or h\ and the other denominator

factor is proportional to (hi + h2)2 or has no angular dependence at all Then the

arguments of the matrix element M(fc2, h\,h\,h\h2,x,2\,Z2,e) will be changed to

M(k2,h\, A, 9, x, zi, z2, e) where X is defined by the ratio

A2 = hj/h2

and 9 is the angle between hi and h2
The transformation of integration variables is given by

/ dti dt2 —>• / dhi dh2 \DJ\

where the dht integrals can, for m = 4 - 2e, be written as

jdhxdh2 = p^yj'dh\(h\rdh2(h2r J^-_t}t)f*d9(Slne)-2<
So m terms of the new variables, the phase space PSphys is given by

'*- - &T>ihiJ$>-—>-*vm
dh2(h2)-edh2(h2)-< 8(f(a\k2, h\, h\, x, zi,<2))I'

t^Ff^-*" (B3)

The functions ^(kt^^h^x,zi,z2) depend on the topologies (a), since for different

denominators the new variables ht are defined differently They are given in Table

Bl
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Transverse momentum integration

After having integrated out h\ using the ^-functions given in Table B 1, the inte¬

gration over h\ can be transformed into an integral from zero to one, in the case of

topology (d)'^ for example by defining

fc2
-

lfc2l
„n, = —
u

xzx

„ ,2 h\ au z2
Then X* = -r~ = ,

a = —

h\ 1 — it xzi

and

{a"c f1+° duu~l (1 - u)-< + or1 f duu~l (1 - u)~l\

After insertion of the matrix element

M(u,x,2i,22) = Ic(a,u) Ui(u,x,zi,z2)+ U2(u,x,zi,z2) and the substitution

au
,

1
v = - for u <

1 — u 1 + a

1-u
.

1
for u >

au 1 + a

we arrive (besides trivial integrals) at integrals of the type

Jo = / dvv-1-'(1 +-)21 F(l,l + e,l-£,«0
Jo a

r1 i
+ / dvv-'(v + -)2e F(l,l + e,l-e,i>)

Jo o,

Ji = a"1 [ dvv-'(l + -)~l+2t F(l,l + e,l-e,v)
Jo t

r1 i

-fa"1/ dvv-< (v + -)"1+2e P(l,l + e,l-e,«)
Jo a

J2 = a~2 [ dvvl-((l + -)-2+:u F(l,l + e,l-e,v)
Jo a

+a-2 f dvv-<(v + -)-2+2e F(l,l + e,l-e,tf)
Jo a

Using

P(l, 1+e, 1-e, v) = (l-v)-l-2eF(-e, -2e, 1-e, v) = (l-v)-1-2c{l+2e2 Li2(v)+0(e3)}
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we obtain the results

2 T2(l-e) /, ,
1 + a ,tt2

nl , N\ , ,

Ji =

-7(ira)
+ (r+^)+0(e^ (B1°)

t
11 lna a-1

_,,
.

,_

j2 =

-7(r+^F+(TT^+(iTa^ + 0(e2l) (Bn)

The remaining integrals over 21 are straightforward, containing in the PV scheme and

in the ML scheme with PVI regulanzation terms like z\~el(z( + 82) which lead to the

spurious poles 70 and Ix defined in Eqs (3 61) and (3 62)

B.2.2 Phase space for axial ghost contributions

We fix our notation such that li is always the usual gluon momentum, and l2 is the

axial ghost momentum The phase space PSgh then is governed by the condition

47T2 f
PS& = —— I dltdltdlidl2 dhdh dk± <5(p+ - fc h

- /+ - It)
(27T) J

8(kx + ti + i2) 8(k" + Zf +12) 8(lt) 5(l\) 9(l°2)

1
_

i2
Now we use 5(l2) =

—j- 5(lx — —\^) to eliminate it and substitute l2 by

( = 2pF2^dl2=^
Note that <J > 0 because of the theta function 0($) 6>(Z2) = 0(1% + /J) = 9(1^) for

It = 0 Hence

PSgh =
--^— / —rf22J(22)J(l - x - 2! - 22) / dkL diidt2 8 (fcj. + fj + f2)
(27T)m J ZX J

Jo x X Zi

2tt2 1 f - -

,-
- _ -,

=

T^w^l^i^AM^
+ ii + 'a)

^4+a+{+|) (Bi2)

The condition i9(/°) = 0(1 - x + ^^y) is trivially fulfilled
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Now there are two different ways to proceed, depending on whether the spurious poles

are regulated with 8 or with e If all poles are regulated with e, parametnzation 1,

which shifts the angular dependence into t\, is the most convenient one, since then

the 5—function containing £ is naturally diagonal On the other hand, the spunous

poles correspond to the limit t\ —> 0, so if we choose to regulate the spurious poles

with 5, we should avoid an angular dependence in addition to the ^-dependence in

t2 by using parametnzation 2

Parametrization 1

In parametnzation 1, we define the angle 9 and the parameter /? by

k2
fcj.fi = fexii cos 0

, /32 = -i, (B13)

leading to

t\ = (ti + fcj.)2 = t2(l + /32 + 2/3 cos 9) (B 14)

Hence we obtain

Ps& = Ftj^8(i-x-zi)jdt2(t\r(dki(k\r
u5{k±+k±+z+% r(i-*) r^^ (B15)

Jo x x zx i/irV(* - e) Jo

'
~

(27r)T2(l-e)

Now we substitute

fcl = |fc2| u
, *l = lfc2l^(l-

then

fc2 xu bu
0 -

t?-(l-

b - x.

-x)(l-u)y
_

(1-u)

(1 - x)y

This is leading to

(BIB)

(B17)

PS& = Pe|fc2|2-2ex-1+f(l-x)-£ / duu-^l-u)1-* [ dyy-e
Jo Jo

f.i{/(l-t.)(l-»)+0 ^(1~f) fde(sine)-2f (B18)
Jo x y/irl (j - ej Jo
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Finally the integral over 9 can, by substituting w = |(1 + cos 9), be written as

PS** = F|fc2|2-2fx-1+£(l-x)-f / duu-\l-uf-' ( dyy--
Jo Jo

H,i 1 i A
f dv I>(1 - W)]"H (B.19)

#(j-£, j-£) Jo

The momenta occurring m the matrix elements in this parametnzation are of the form

(Z1 + /2)2 = ^i(l-x-ti)
x

*2 11.21

(p-'i)2 = -7^- = -^ (!-«)»
1—x x

(B.20)

<2 = |fc2|^-^(l-«)-y
x

t| = (fi + fcx)2 = t2(l+J52 + 2J(3cos6l)

= |fc2|(izfl(l_u)y(l_^tl_^])Z= -4^

(1-/?J 2

(p-y2 = -[<f + t2] = -^(l-u)[l-2/+(l-x)j/(l + /32+2/?cose)]

= -^(l-u)[l-y+(l-x)y(l-p)2[l-zw}} (B.21)

Parametrization 2

A parametnzation where i| contains no angular dependence and the S—function m

(B 12) is diagonal shifts the angular dependence into t\ and fcx Substituting

t2 = h2 , t\ = x hi — (1 — x) A2

fcj. = -x (fti + /i2)

leads to

PS& = F( (1 - a;)"1*2-2* f dhl(hl)-edh22(h2)"

fd48(-
+ s-r-^ +

h2)- ^~e\ Fanner*
J0^ vx i-x

2I

0Fr(|-e)io
;

Now we substitute

/i2 = ^-i(l-x)-«
,

hi = —- (1 - u) • y ; w = -(1 + cos<9) (B 22)
x2 x 2

to obtain again expression (B 19) for the phase space PSgb
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The momenta occurring m the denominators of the matrix elements are in this

parametnzation given by

t\ = ^(i-«) y (B23)

t\ = |fc2
(1-x)2

(p-y2 = -{t + tl] = -^(l-u
<2 |fc21

(l-«)j/(l + A2-2Acos(?)

\k2\,

t

(p-h)2 = __^_ = _J^i(i-x)(i-u)j/(i + A2-2AcosI9) (B24)
1—X X

(f1 + /2)2 = J^i[l-x-X2/(l-«)(l + /?2 + 2/9cos6')l
x

bu

1-u
6 =

(1-*)

xv

A =
1-x'

(B25)

(B26)

The 5-regulator for the spunous poles then regulates the spurious pole at rj -+ 0 as

follows

t\

2p+l2

(tl)2 + 82(2pn2)2

fs=J*!l(l-«)(l-y)

t2 = J*!i(l_„) y
X

Hence t,2 a,,..,
y2 + <52(l-y)2

y2 + <52

(B27)

(B28)

where 82(l — y)2 has been set equal to 82 since only the limit y = 0 has to be regulated

by 8, so the difference between (B 27) and (B 28) will be of order 8
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Appendix C

Imaginary parts of two-loop

integrals

In this Appendix, we will show explicitly how to obtain the imaginary part of a

nontrivial loop integral done with ML prescription As an example we will choose

the two-point integral JA (I) where we did already the integration over the loop

momentum, ending up at expression (A 14) The next integration we have to do is

the one over dmk, given by Eq (B 1), but without the (5-function 8((p - fc)2) = 8(l2)
since we want to evaluate the full two-loop diagram without any cut and only then

take the discontinmty How the different discontinuities are related to the cuts of a

certain diagram has been explained in Section 3 5 1 Here we show how to extract

the imaginary part of a given two-loop integral, the latter consisting of a one-loop

integral as defined in Appendix A, but with I2 ^ 0, and the following integration over

I2 The tranverse momentum integration over fc^ contained in / d^k is related to the

I2 integration by

l2 = (p-k)2 = -2p+fc- + fc2 = --(fc2 + fc2L) + fc2 = i(|fc2|x-fci)
x = 1 — x

Now we substitute

k\ = |fc2|x k to obtain I2 = |fc2| - (1 - k) (C 1)

Furthermore, we will use

21+1- = l2 + l2=l2 + kl = |fc2| - (1 - kx)
x

Thus we have, combining the phase space for the dfc integration with the virtual

integral ^JA ML(l) given in (A 14)

8(x-z)JAML(l)J (2-n
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=
_LJ^L. fQ2

d\k2\
fdk2±(kirc

—---
JA-MLii)

32ir3 T(l - e) J0
' ' 7 ^ x'

(2ir)m
2 w

- 2x(167r2)2r(l-e)ei0 *<* "* ' *

J0
*"

r^^T^{["|P|!(l"K)(1"U)r_("|fc2|!U(1_K + KIU)r}
_

i (4.r)2t r(l+e) 1-e
/"32dlfc2Mfc2|i-2e

jX"*
~

2tt (16^)2 ra-e)1 A d|fc||fe| '«

[k — 1 — rCX«]~£ >

= 7K/ - IKn

Li = -(f)";r"&"*'/1*,5^[-(i-'t)(i-,,)r
'x"\_el /"w f1 1
— I - / dun £

/ du— f/c - 1 — /cxul
£

yx/ ej0 Jo ui++tnl

.A ML

Now we have to extract the imaginary parts of 7K2 We see that IKl develops an

imaginary part for k < 1, leading to

i. = -±(-ir (l)"/1*^ - «r/l*.^(i - .r (c 2)

whereas 7K// has an imaginary part for u > ~ From the condition 0 < u < 1 we

therefore deduce rtmax = 1/x in the case of 7Kjr, leading to

im = -i(-ir (-)' [l/xdKK-'(K-ir< f du-^—\i--~r (C3>
« \x/ y0 y^ ui+ + i7?1 «-iJ

Using now1

(-l)-£ = et7r(l - e2^) + real + C(e5)
o

and extracting the coefficients of «r we obtain the imaginary parts of the integrals 7K/
and IK[[ after having carried out the parameter integrations over u and k

Note that in the same way as for the one-loop integrals treated in Appendix A, we

'The sign of the e m term actually is determined by the it) term accompanying the term P + tr],

seeEq (3 121)
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still have the choice to use PVI or e-regularization for the spurious infrared poles, as

has been explained in Sections 3 3 and A 2

PVI
ul+

ul+ + in (ul+)2 + 82

u"f 1

£-reg uFTT^^1"

The imaginary parts of the integrals given m Table C 1 are the values obtained by

using e—regulanzation
The full matrix element of the diagrams calculated with this "imaginary part method"

contains additional factors (1 — k)_1 from the l/(l2 + in) denominator of the gluon

propagator D^,(l) Additional factors (1 — k) from the numerator also appear We

therefore need three types of integrals

/ dKK~e(l — k)~1 J(k) ,
I dKK~eJ(K) and / dnk~'(1 — k) J(k)

Jo Jo Jo

where J(k) stands for any one-loop integral needed during the calculation and having
an imaginary part The definitions of the one-loop mtegrals are given in Appendix
A The vector and higher rank tensor integrals have been reduced to scalar ones by
Passarino-Veltman reduction [63] There is only one parameter of a vector integral

containing an imaginary part which cannot be fully expressed by scalai ones due to the

presence of n*, which is the parameter C2(k) of the integral 72^Mi(t!) (see Eq (A 33))
Since we do not need the imaginary part of the full vector integral, we only give the

result for this parameter in Table C 1
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