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Abstract

In this thesis, the calculation of the full flavour non-singlet Altarelli-Parisi splitting
functions as well as the N2 part of the gluon-gluon splitting functions in next-to-
leading order is presented. The calculation has been performed by employing the
method of Curci, Furmanski and Petronzio (CFP), which is based on the light-cone
gauge.

In previous calculations relying on the CFP method, the spurious poles of the gluon
propagator in light-cone gauge always had been regularized by using the “principal
value” (PV) prescription. As the PV prescription is formally unsatisfactory in several
respects, it entails the application of some “phenomenological rules”, whose working
principles are not really understood, to obtain the correct result.

The calculation presented here has been done by applying the Mandelstam-Leibbrandt
(ML) prescription, which has a solid field-theoretical foundation, to regulate the gauge
induced poles. As a consequence, the phenomenological rules needed in the PV case
became obsolete. On the other hand, the use of the ML prescription increased the
complexity of the calculation, mainly due to the fact that unitarity requires the in-
clusion of so-called “axial ghost” degrees of freedom.

The calculation can be organized by studying gauge invariant subparts defined by a
certain colour structure. The part proportional to C%, being of Abelian nature, con-
stitutes an opportunity to study the effects of the ML prescription in isolation from
other complications. The non-Abelian part proportional to Cr N, turned out to be
much more involved, revealing new features concerning the cancellation mechanism
of the spurious poles and entailing the application of techniques which have not been
used before in this context in order to overcome the technical difficulties.

For colour structure CpTy, the calculation of the two-loop quark selfenergy has been
included, thus being able to extract the full endpoint contribution at z = 1. In this
way it was possible to check the consistency with the sum rules expressing fermion
number conservation, which constitutes a new test not only of the ML prescription,
but also of the CFP method itself.

In order to investigate the viability of the ML prescription in all possible one-loop
structures of QCD, the N2 part of the gluon-gluon splitting function, which contains
the highly nontrivial one-loop three-gluon vertex, also has been calculated. Using
the methods developed for the CrN, part, the usefulness and reliability of the ML
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prescription in this context again could be confirmed.

Having in mind an extension of the calculation to the three-loop splitting functions,
one has to be aware of the fact that the technical complexity of the calculation with ML
prescription might constitute an unsurmountable problem in three loops. Therefore,
it is a challenge to further exploit the insights gained from the calculation with ML
prescription. One aspect consists in explaining why the “phenomenological rules”
related to the use of PV prescription gave the correct result, thus being able to judge
whether they will still work in three loops. As I also did the full calculation with PV
prescription, some interesting relations between the two prescriptions could be worked
out.

Another appealing perspective, which may be also useful for a better understanding of
the PV procedure, could consist in reducing the complexity of the ML calculation, for
example by exploiting ~ even in the context of the non-physical anomalous dimensions
~ the fact that the axial ghost degrees of freedom decouple from physical quantities.
In summary, having established the CFP method with ML prescription as a method
without conceptual loopholes, this work might serve as a powerful tool to extend the
calculation to three loops.
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Zusammenfassung

In dieser Dissertation wird die Berechnung der gesamten flavour non-singlet Altarelli-
Parisi Splitting Funktionen sowie des Beitrags proportional zu N? der Gluon-Gluon
Splitting Funktionen in néachstfiihrender Ordnung vorgestellt. Die Rechnung wurde
unter Anwendung der Methode von Curci, Furmanski und Petronzio (CFP), welche
auf der lichtartigen axialen Eichung beruht, durchgefiihrt.

In fritheren Rechnungen innerhalb der CFP Methode wurden die kiinstlichen Pole
des Gluon-Propagators in lichtartiger axialer Eichung immer mit Hilfe der “Prin-
cipal Value” (PV) Vorschrift regularisiert. Da die PV Vorschrift jedoch in ver-
schiedener Hinsicht formal unbefriedigend ist, zog dies die Zuhilfenahme von gewissen
“phinomenologischen Regeln” — deren Funktionsweise nicht wirklich verstanden ist —
nach sich, um das richtige Resultat zu erhalten.

Die Rechnung, welche hier prisentiert wird, beruht auf der Anwendung der Mandel-
stam—Leibbrandt (ML) Vorschrift zur Regularisierung der durch die Eichung induzier-
ten Pole. Es konnte gezeigt werden, dass die phanomenologischen Regeln, die im Fall
der PV Vorschrift gebraucht wurden, dann nicht mehr notwendig sind. Andererseits
erh6hte die Anwendung der ML Vorschrift die Komplexitit der Rechnung, hauptséch-
lich durch das Auftreten der sogenannten “axialen Geist”—Freiheitsgrade, welche aus
Unitaritatsgriinden mit einbezogen werden miissen.

Die Rechnung kann in Untereinheiten organisiert werden, welche durch eine bestimm-
te colour-Struktur gegeben sind. Der Teil proportional zu C% ist Abelscher Natur
und bietet sich deshalb an, die Auswirkungen der ML Vorschrift isoliert von anderen
Schwierigkeiten zu studieren. Der nicht—Abelsche Teil proportional zu CrN, stellte
sich als wesentlich komplizierter heraus. Es zeigten sich andersartige Kiirzungsme-
chanismen fiir die kiinstlichen Pole, und es mussten Techniken angewandt werden, die
in diesem Zusammenhang noch nie gebraucht worden sind, um die rechentechnischen
Schwierigkeiten zu iberwinden.

Fiir die colour-Struktur CrTy wurde zusétzlich die Quark-Selbstenergie in Zwei~
Schleifen—-Naherung berechnet, was die Berechnung des gesamten Endpunkt-Beitrages
bei z = 1 erméglichte. Dies stellt einen weiteren Test nicht nur der ML Vorschrift,
sondern auch der CFP Methode selbst dar, denn die Endpunkt-Beitrage sind noch
nie zuvor direkt berechnet worden.

Um die Anwendbarkeit der ML Vorschrift in allen Ein-Schleifen-Strukturen der Quan-
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tenchromodynamik, welche iiberhaupt méglich sind, zu testen, wurde auch der Teil
proportional zu N? der Gluon-Gluon Splitting Funktion, welcher den dusserst nicht—
trivialen Drei~Gluon—Vertex enthilt, berechnet. Unter Anwendung der Methoden, die
fiir den Cp.N,—Teil entwickelt wurden, konnten der Nutzen und die Verlasslichkeit der
ML Vorschrift in diesem Zusammenhang erneut gezeigt werden.

Im Hinblick auf die Berechnung der Splitting Funktionen in Drei-Schleifen—Néherung
muss man sich dariiber im Klaren sein, dass die rechentechnische Komplexitat der
Methode mit ML Vorschrift in dieser Ordnung ein untiberwindliches Problem darstellen
kénnte. Deshalb stellt es eine Herausforderung dar, aus den den Einblicken, welche
bei der Rechnung mit ML Vorschrift gewonnen wurden, weitere Nutzen zu ziehen.
Ein Aspekt besteht darin, zu erklaren, warum die “ph&nomenologischen Regeln” im
Zusammenhang mit der PV Vorschrift zum korrekten Ergebnis fiihrten, so dass man
beurteilen kann, ob sie in Drei-Schleifen-Naherung immer noch verlasslich sind. Da
ich die gesamte Rechnung auch mit PV Vorschrift ausgefiihrt habe, konnten einige
interessante Beziehungen zwischen den beiden Vorschriften ausgearbeitet werden.
Ein anderer Aspekt der Weiterentwicklung, der auch zum besseren Verstindnis der PV
Methode beitragen konnte, besteht darin, zu versuchen, die Komplexitit der Rech-
nung mit ML Vorschrift zu reduzieren. Dies kdnnte zum Beispiel erreicht werden,
indem man — selbst im Fall der unphysikalischen anomalen Dimensionen — ausnutzt,
dass die “axialen Geist”—Freiheitsgrade von physikalischen Grossen entkoppeln.
Insgesamt konnte diese Arbeit einen wichtigen Baustein liefern fir die Entwicklung
einer Methode, welche sowohl in formaler Hinsicht vertrauenswiirdig als auch effizient
genug ist, um die Drei-Schleifen~-Rechnung in Angriff zu nehmen.

VI



Chapter 1

Introduction

Quantum chromodynamics (QCD) is the theory of the strong interactions between
quarks and gluons, which bind together to form hadrons like the proton or the neutron.
The description of the strong interactions by a non-Abelian gauge theory based on
the SU(3) colour group [1, 2] nowadays is 2 main building block of the “Standard Mo-
del” of elementary particle physics. Just like the photon which is an Abelian gauge
field mediating electromagnetic interactions between charged particles in quantum
electrodynamics (QED), the non-Abelian gauge field in QCD, the gluon, mediates
colour interactions between quarks. While photons have no electric charge, gluons
carry colour charges and hence interact which each other. These self-interactions are
the main reason for the fact that the coupling constant a, of the strong interactions
decreases at small distances, a phenomenon which is called asymptotic freedom [3, 4].
At long distances, QCD is characterized by the property of confinement. Quark and
gluon degrees of freedom never have been observed as states which propagate over
macroscopic distances; it is always the colourless hadrons that are observed.

Only after the discovery of asymptotic freedom it became justified to calculate short-
distance cross-sections in QCD as a perturbative series in the coupling constant a,
supported by factorization properties which permit cross sections to be written as
products of a hard scattering piece and a factor which contains the long-distance
physics.

One of the earliest tests of QCD, respectively of its predecessor, the “naive parton
model” [5], was provided by deep inelastic electron-nucleon scattering. The outcome
of these experiments could be successfully described by applying the method of opera-
tor product expansion (OPE) initiated by Wilson [6]. Factorization, which guarantees
the safe application of perturbation theory to the description of deep inelastic scat-
tering, has been proven within the context of OPE by Zimmermann (7, 8]. The OPE
techniques together with the use of the renormalization group equations [9, 10, 11, 12]
allowed for a description of deep inelastic scattering which was able to explain the
logarithmic scaling violations found experimentally, thus improving considerably the
naive parton model. An elegant reformulation of the factorization properties proven
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within OPE was given by Altarelli and Parisi [13). They worked out a form of the
QCD improved parton model based on parton densities in configuration space, which
is closer to physical intuition. These parton densities obey evolution equations known
as Altarelli-Parisi equations, also denoted by DGLAP equations since they were in-
dependently also considered by Gribov, Lipatov and Dokshitzer [14]. The kernels of
these equations are the so-called splitting functions, whose Mellin transforms coincide
with the anomalous dimensions present in the OPE formulation.

In the following years, QCD became continuously better established as the theory of
the strong interactions [15, 16]. In particular, a systematic separation of the dyna-
mics associated with short and long distance scales could be achieved also beyond
the scope of deep inelastic scattering, showing that the concept of factorization is
quite universal, although it breaks down in special cases [17]. The insights gained
into the infrared singularity structure of QCD are expressed in terms of fundamental
cancellation [18] and factorization theorems [19, 20]. Hence the success of perturbative
QCD could be extended from deep inelastic scattering to a considerable number of
different processes studied at high energy colliders, like for example photoproduction,
multi-jet production or vector boson production [16].

As cross sections involving hadrons can be measured at present and future high energy
colliders with increasingly high accuracy, the theoretical description of these precision
data requires the evaluation of next-to-leading order or even higher order corrections
in perturbative QCD. These QCD corrections will be of particular interest for the
near future since the machines after LEP with the highest center-of-mass energies,
that is, LHC and the Tevatron, will both be hadron colliders.

A considerable number of next-to-leading order corrections are by now available in
the literature (see e.g. [16] and references therein). Next-to-next-to-leading order
(NNLO) corrections, however, could be calculated only in few cases [21, 22, 23, 24, 25].
Considering for example the structure functions F; and Fy, of deep inelastic electron-
nucleon scattering, their knowledge in NNLO is of considerable interest for an accurate
comparison of perturbative QCD with experiment. To obtain the NNLO expression for
these structure functions, the anomalous dimensions of the corresponding operators
are needed in three-loop order. For the non-singlet moments N = 2,4,6,8,10 and
the singlet moments N = 2,4, 6,8 these three-loop anomalous dimensions have been
calculated by Larin, van Ritbergen, Vermaseren and Nogueira {24]. A NNLO analysis
based on these moments is possible only as long as one limits oneself to large z and
small @2, and has been done in [26]. But if one wants to study the behaviour of
the structure functions at small z and large Q* in NNLO, the knowledge of the full
three-loop anomalous dimensions is indispensable.

Similarly, in the case of hard processes with two initial hadrons, no complete NNLO
result is available. Although the NNLO coefficient functions of the Drell-Yan process
have been obtained in {23], the phenomenological application of this result requires
the calculation of the NNLO Altarelli-Parisi splitting functions (three-loop anomalous
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dimensions) as well.

But as long as there is no highly efficient and formally transparent method to calculate
the two-loop anomalous dimensions, it is pointless to go on to the full three-loop
calculation. Therefore significant technical and formal development concerning the
two-loop calculation has to be achieved.

Two rather different methods [27], {28, 29, 30] have been used for the evaluation of the
spin independent two-loop anomalous dimensions. Both methods recently have been
applied successfully to the calculation of the NLO corrections of the spin dependent
Altarelli-Parisi splitting functions [31, 32]. The first method is based on operator
product expansion (OPE) and requires the evaluation of the overall ultraviolet di-
vergences of twist-two local operator insertions. The results are obtained in moment
space and the calculation can be carried out in Feynman gauge. Unfortunately, the
number of the operator insertions increases very rapidly in higher orders and the
treatment of operator mixing in the singlet sector has been unclear for a long time.
Due to this conceptual difficulty there was an error in the original OPE calculation
of the singlet anomalous dimensions which could be fixed only recently {33, 34]. The
work of [33, 34] thus finally established the OPE technique to calculate higher order
anomalous dimensions as a method which is conceptually impeccable, but of enor-
mous algebraic complexity. Nevertheless a considerable number of programs already
exists, such that recently even the finite terms of the two-loop operator matrix ele-
ments could be calculated {35).

The second method, developed by Curci, Furmanski and Petronzio (CFP) [28, 29, 30],
is based on the factorization properties of mass singularities in axial gauges, so it is
built on the infrared properties of the underlying processes. It leads to the two-loop
splitting functions in configuration space and admits a physical interpretation which
is very close to the intuitive parton picture. The z—space representation also is more
useful from an experimental point of view.

The most important technical ingredient of the CFP method is the use of light-like
axial gauge (n,A* = 0, n? = 0), also called light-cone gauge. It enormously reduces
the complexity of the calculation as compared to the n2 # 0 case and provides a
direct link with the OPE method in deep inelastic scattering. On the other hand, the
1/ng—factor in the gluon propagator in light-like axial gauge gives rise to so-called
“spurious poles”, gauge induced singular terms in both, the real and the virtual con-
tributions. Although these singularities have to cancel in gauge invariant quantities,
one has to apply some regularization prescription in order to be able to evaluate the
individual diagrams. There are basically two prescriptions to regulate these spurious
poles, the principal value (PV) prescription and the Mandelstam-Leibbrandt (ML)
prescription {36, 37]. The PV prescription has been applied by Curci, Furmanski
and Petronzio on the basis of rather phenomenological rules. Using the PV prescrip-
tion, Wick rotation produces extra pole terms such that power counting theorems
break down. This entails spurious poles and momentum dependent terms in the UV
renormalization constants, whose treatment is not a priori clear. Another reason to
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question the validity of the phenomenological rules of CFP is the fact that after the
work of CFP it was pointed out that the principal value prescription is not consistent
with canonical quantization in light-like axial gauge [38, 39]. Correctly performed
canonical quantization leads to the ML prescription.

Nevertheless, the “recipe” of CFP to subtract the dubious terms together with the
usual UV poles produced the correct result. (Although the result obtained by Fur-
manski and Petronzio [30] for the singlet anomalous dimensions could be confirmed
from the OPE side only more than ten years later.)

CFP were aware of the fact that there remains some work to be done in order to
build the treatment of the spurious poles on solid theoretical grounds. Literally, they
say [29]: “Hopefully, it will be a challenge for field theory experts to provide a more
formal support for our 'phenomenological’ rules. “

In order to clarify this issue, it is of particular interest to study the CFP method with
the ML prescription. A first attempt already appeared in the literature: The one-loop
Altarelli-Parisi splitting functions have been calculated by Bassetto {40]. The calcu-
lation of the two-loop splitting functions with ML prescription never has been tried
before and will be presented here. It will turn out that with ML prescription, the
phenomenological rules needed in the PV case become obsolete. On the other hand,
the complexity of the calculation increases, mainly due to the so-called “axial ghosts”
which appear as a consequence of the ML prescription.

Hence the CFP method with ML prescription due to the present work has reached a
comparable status of conceptual clarity as the OPE method, but the price to pay for
this gain in formal solidity is an increase in technical complexity.

The organization of the thesis is as follows: A general introduction, elucidating the
role of anomalous dimensions in QCD, is given in Chapter two. First the parton
model approach to anomalous dimensions will be treated: After the definition of par-
ton distributions, the important concept of factorization will be described. Then the
Altarelli-Parisi equation will be introduced, leading immediately to the splitting func-
tions which are the Mellin transforms of certain anomalous dimensions.

Then the approach to anomalous dimensions via operator product expansion will be
presented, with emphasis on the operator product expansion in deep inelastic scat-
tering, the latter being the most important application of operator product expansion
in perturbative QCD.

In Chapter three, first an overview on the existing methods to calculate anomalous
dimensions in two loops will be given. The method of CFP, which will be extended
later, is described in some detail in Section 3.2. The features of the light-cone gauge
and the different aspects of PV and ML regularization are treated in Section 3.3. As
an example, some basic differences arising from PV respectively ML regularization
already in leading order will be exhibited. As the different ultraviolet behaviour of
PV respectively ML regularized integrals is of crucial importance for the whole cal-
culation, the next subsection will be dedicated to UV renormalization.

In the following two sections, the calculation of certain two-loop anomalous dimensions
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with ML prescription will be presented in detail. In Section 3.4, the contribution to
the non-singlet splitting function with colour structure C% will be given. This colour
structure has several special features, partly due to the fact that it is of “Abelian” na-
ture, containing no three-gluon-vertices. “Non-Abelian” contributions to the splitting
functions will be studied in Section 3.5. There, completely new features compared to
the CZ part will arise, which entailed the development of alternative techniques to be
able to calculate some of the diagrams. The colour structure CrT} is treated in some
detail as a pedagogical example. For this colour structure, the full endpoint contri-
butions at z = 1 also have been calculated. In this way the sum rules derived from
fermion number conservation could be used as an important test for both, the ML pre-
scription as well as the CFP method itself. This fundamental consistency check never
had been provided in previous calculations. The next subsection treats the calculation
of the colour structure Cr N, of the non-singlet two-loop splitting functions, which is
by far more complicated than the C% and Cr¢T; parts. Having accomplished this task
provides a test of all possible one-loop insertions of QCD except for the non-Abelian
one-loop three-gluon-vertex. Therefore finally the contributions proportional to N2 of
the gluon-gluon splitting function, which contain this remaining structure, have been
calculated. This means that altogether, an exhaustive test of the ML prescription
within a highly nontrivial application has been provided.

As T also did the full calculation of the non-singlet and singlet splitting functions with
PV prescription, some insight could be gained into the relations between PV and
ML prescriptions, which is discussed in Section 3.6, especially in view of a possible
extension of one of these schemes to three loops. This view will be broadened in the
conclusions in Chapter four.



Chapter 2

Anomalous dimensions in QCD

In a general field theory, anomalous dimensions appear as a consequence of ultraviolet
renormalization and the renormalization group. As soon as an operator (a quantum
field or a product of quantum fields) or a parameter requires to be renormalized, its
scale dimension d can differ from its naive mass dimension d, by a quantity . There-
fore « is called anomalous dimension.

There are basically two different approaches to the calculation of the anomalous di-
mensions which are relevant for QCD. One is based on operator product expansion
(OPE), the other one on the QCD improved parton model. The OPE approach is
quite general and relies on the scaling properties of certain operators, extracted by
using the renormalization group equations. The parton model approach is special to
QCD and is closer to an intuitive physical picture of perturbative QCD. Therefore we
will start with the parton model to enter into the subject.

2.1 QCD and the parton model

It is well-known that the “naive” parton model [5] gets corrections in perturbative
QCD. Nevertheless much of the structure of the parton model remains valid because
of the property of factorization. Factorization permits scattering amplitudes with in-
coming high energy hadrons to be written as a product of a hard scattering piece and
a remainder which contains the physics of low energies and momenta. The former con-
tains only high energy and momentum components and, because of asymptotic free-
dom, is calculable in perturbation theory. The latter piece describes non-perturbative
physics, but can be described by a single, process independent function for each type
of parton, called the parton distribution function. Without these properties of asymp-
totic freedom and factorization it would be impossible to make reasonable predictions
for processes involving hadrons by using perturbation theory.
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2.1.1 Deep inelastic scattering

One of the most powerful tests of perturbative QCD is the breaking of Bjorken sca-
ling in deep inelastic lepton-hadron scattering (DIS). Moreover, the analysis of deep
inelastic structure functions serves to determine the momentum distributions of par-
tons in hadrons, needed as an input in predicting cross sections in high-energy hadron
collisions.

Figure 2.1: Deep inelastic scattering

We consider for definiteness the scattering of a high-energy charged lepton off a proton
target (see Fig. 2.1). The standard deep inelastic scattering variables are defined by

QZ — _q2 . M2=p2

v = p-g=M(E -E)
_ @ _q¢p_. F
T ow y_r-p_l E

where the energy variables refer to the target rest frame and M is the proton mass.
The structure functions Fi(x,@?) which parametrize the structure of the proton as
“seen” by the virtual photon can be defined in terms of the lepton scattering cross
section!:
d*o°m 81’ ME
— 14 (1— 2 T Fem z, 2
dy oL+ (0 -9 )2 F(e @)

1= (e, Q) - 2F7™(5, @) - S s Fm@, @)} (2)

The Bjorken limit is defined as Q?,v — oo with z fixed. In this limit the structure
functions are observed to obey an approximate scaling law:

Fi(z,Q%) — Fi(z).

! This expression is strictly valid only for Q* « M2.
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Bjorken scaling implies that the virtual photon scatters off poini-like constituents,
since otherwise the dimensionless structure functions would depend on the ratio Q/Qo
with 1/Q some length scale characterizing the size of the constituents.

The parton model picture becomes obvious in the infinite momentum frame in which
the proton is moving very fast, p* ~ (P,0,0,P); P > M. In this frame, we can
consider a simple model where the photon scatters off a point-like quark constituent
which is moving parallel with the proton, carrying a fraction £ of its momentum, and
the proton mass can be neglected. Then Eq. (2.1) can be rewritten as

d?ct™  4rmol

Td0E F{Il +(1 -9 Az, Q%) + @(Fz(z, Q) - 2zF‘1(x,Q2))} (2.2)

The terms proportional to F; and F» — 2zF] correspond to the absorption of trans-
versely respectively longitudinally polarized virtual photons. Therefore, the combina-
tion Fy = F, — 2z F) is called the longitudinal structure function.

The basic assumption of the parton model thus is that the interactions of hadrons
are due to the interactions of constituent partons. A necessary condition for such a
picture to make sense is that changes in the number and momenta of the partons
should be negligible during the time in which they are probed. In QCD, Bjorken
scaling is broken by logarithms of Q2. The reason is that the transverse momentum
of the partons is not restricted to be small. A quark can emit a gluon and acquire large
transverse momentum k; with probability ~ a, dk2 /k? at large k.. The k, —integral,
extending up to the kinematic limit Q?, then gives rise to contributions ~ &, log Q*
which break scaling. These logarithmic scaling violations are a particular property of
renormalizable gauge theories with point-like fermion-vector boson interactions.

2.1.2 Parton distributions
The amplitude for the process depicted in Fig. 2.1 is given by

- 1 .
A= eu(r’)'r"u(r)#x 17a(0)|P)
where j, is the electromagnetic current. The cross section can be factored into a
leptonic and a hadronic piece:

d*c B
Ty ~ LW (2.3)

The structure of the leptonic tensor L,g, assuming photon exchange only, is completely
determined by QED. The hadronic tensor® contains all the information about the

2We omit spin labels and sums here, so (P|O|P) implicitly means § 3", (\P|O|P)).
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interaction of the current j, with the hadron P:
1 . .
Was(p,0) = 7= 3 (Plial0) I X)(X15s(0)P)(2r)* 54+ p ~ px)
X

= o [ @ Pliaz) ONIP) (24)

It is easy to show that the amplitude W, is related to the absorptive part (disconti-
nuity) of the forward virtual Compton amplitude Tps:

1 _.
Was = ﬂDlSCTaﬂ (2.5)
T = i [ de (PTG OIP) (26)
. .1 . .
DiscTps = 61_1)%*L E[Tag(qo+ze)—’[‘a,g(qo—ze)]

Since the electromagnetic current is conserved, we have ¢*W,s = 0. Therefore the
most general form of W, for charged lepton-hadron interaction can be written as

Wos(p.0) = (500 = 22 ) Wi(0, @)+ (o + 22) (o + 2) Wt @) 27)

Comparing Egs. (2.7) and (2.1) finally leads to the relations

Fi(z, Q%) Wi(z, Q%)
Fy(z,Q) v Wa(z, @)
To analyze the hadronic tensor W it is convenient to introduce two light-like vectors

p and n with n - p = 1. Any four-vector k can then be written in terms of p, n and a
space-like two-dimensional transverse vector k, :

I

K = apt+bn* +EE (2.8)
2

p = nzzn-kJ_:p'kl———O.

In a frame where the struck proton is moving very fast along the positive z—axis, an
explicit representation of the vectors p and n is

* = (P,0,0,P)
1 1
o (e —-—

In the following we will ignore the target mass M such that the proton momentum
can be identified with p*.



Figure 2.2: ‘Handbag’ diagram

Making the assumption that the photon scatters incoherently off the individual par-
tons, the hadronic tensor Waﬁ is obtained from the diagram shown in Fig. 2.2.

a/3 p: q) Z

The quark four-momentum k, carrying the longitudinal momentum fraction ¢ of the
incoming momentum p, can be written as

(k+ A)v6liiBsi(k, p) ((k + 9)*) (2.10)

k= Ept +

k* + k3
5 Lt +kf (2.11)

The assumption of the parton model is that the structure of the amplitude B(k, p) is
such that it is strongly damped when the transverse momentum k? and the virtuality
k? are large. Thus the integral (2.10) is dominated by small values of these variables
and the delta function may be approximated by

8((k +9)%) = 6(k" + 26v — 2q. k1 + ¢°)  6(26v - Q) = %‘6(5 - 2)

This gives, using ¢* = vn# + ¢}

2 4
oWim b = D3 [ (o AR+ 4) AlyBthpite -2

Ze I/ ]u J:(k p)6(§ 1‘)

= Zeqzq (z) (2.12)
(24
where g(z) is the quark distribution
d*k
g(z) = T Tr[AB(k,p)] 6(nk — z) (2.13)
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So we can see that the structure function scales, that is, it depends only on the
dimensionless variable z.

It is also possible to give an operator representation {43, 20, 44] for the quark dis-
tribution g(z). In this representation, the distribution functions are matrix elements
in a hadron state of certain operators that act to count the number of quarks or
gluons carrying a fraction £ of the hadron’s momentum. The definition may be
motivated by looking at the theory quantized on the plane z+ = 0 in the light-
cone gauge At = 0, since in this picture field theory has its closest connection
with the parton model. We work in a frame where the hadron’s momentum is
P = (P*,P~,0) = (P*,M%/2P+,0), where the plus and minus components are
defined as r* = 712=(r° +73) for an arbitrary four-vector r. In this approach the quark
field has two components that represent the independent degrees of freedom. y*9(x)
contains only these components. One can expand the two independent components
in terms of quark destruction operators b(k*, k., s) and antiquark creation operators
d(k*,ky, )t as follows:

+ - -3 * dk*
YY0,27,3) = @m)Y = dk
YUk, s)e ™ bk, k1, 8) + 7TV (k, s)e*=d (k™ k., 5)1} .

The quark distribution function is just the hadron matrix element of the operator
that counts the number of quarks:

fun@de = (n 5 [7 R [ ar pert b, o bleP™ ki, 1)

In terms of ¥(z), this is

fual®) = g5 [ do” e PIB0,57, 0 00,0,0)/P) . (29

The above definition is gauge dependent: What is defined to be a quark in one gauge
is a quark plus gluons in another gauge. In order to arrive at a gauge invariant
definition, we have to insert the path ordered exponential of the gluon field

G =Pexp {z‘g/ dy~ AX(0, y‘,Ol)tc}. (2.15)
0

In the light-cone gauge A* = 0 we obviously have G = 1. So the gauge invariant
definition of the parton densities is given by

fual®) = 3 [ 45 T P0.7, 007 GHO.0,001P) . (219)
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For gluons, the definition based on the same reasoning is

1 I
Foal®) = mePT / dz~ e ¥ (PIFI(0,27,01)6%F, 4,(0,0,0,)|P) . (2.17)

where F* is the gluon field strength operator and in G we now use the adjoint
representation of the colour group generators.

As we already mentioned, the parton model result (2.12) gets higher order corrections
in @, in perturbation theory. In our example of a quark being the interacting parton,
the O(a;) correction is due to one-gluon emission of the parton before the interaction
with the photon takes place.

So consider the parton process shown in Fig. 2.3 in which the quark emits a gluon:

Figure 2.3: Real gluon emission diagrams

7" (g) + alp) = g(r) + ¢() (2.18)
Calculating these diagrams and including also the diagrams for virtual gluon radiation,
we obtain . _
Pofe, Q%) = {61~ 2) + 2 [Pyy(z) In g +e@)) (2.19)
’ e 2r Ve K2 .
where the “hat” in £, indicates that this structure function refers to a quark instead
of a proton target as we deal with the process (2.18). C(z) is a calculable and finite
function. The logarithm In %1 is stemming from the integral over the quark virtuality
LAE
.0 @

Bylaw = eqﬁ T Pyyq(z) /2 ] (2.20)

We introduced the cutoff «? to regulate the divergence at small |k?|. The origin and
treatment of this singularity will be discussed below.

The coefficient P, (z) of the In %i—term is called the quark-quark splitting function.
1t is of the form

Fyjq(z) =Cr { (11 jz; + g 6(1— x)} (2.21)

12



where the “plus” distribution is defined by

oot _ ) [fl@) - fQ)]
[)dx(l_x)+—[;dx e (2.22)

for any sufficiently smooth function f(z).
Note that due to fermion number conservation in the splitting of quarks we have the
sum rule

1
/ dz Pye(z) =0,
0

whose validity can immediately be checked in this order in a; if the “plus” distribution
is used.

From Eq. (2.19) we can see that beyond leading order the structure function becomes
@*—dependent. The quark distribution function to this order in perturbation theory
is given by

2
a2, @) = 61~ 1)+ 22 [Pry(o)n & + 0.

2.1.3 Factorization

The singularity at |k?] = 0 in Eq. (2.20) arises when the gluon is emitted parallel to
the quark (k2 = |k?|(1—€) = 0). For this reason it is called a collinear divergence. The
limit k2 — 0 corresponds to a long-range part of the strong interaction which is not
calculable in perturbation theory. Nevertheless, reliable predictions for processes with
large momentum transfer can be obtained by exploiting the property of factorization:
The aim is to absorb the infrared singularities due to collinear long-distance effects
into the parton distribution functions, such that the full cross section factorizes into an
infrared safe hard scattering cross section and the parton distribution functions which
have to be measured at a certain scale, but whose evolution with Q2 can be calculated.
The parton distribution functions are universalin the sense that they do not depend on
the particular hard process, but only on the type of the incoming parton. For outgoing
partons, the procedure is analogous, dealing with parton fragmentation functions
instead of the parton distribution functions.

In our example, factorization is achieved in the following way: In order to obtain the
proton structure function F, we must convolute the quark structure function £ of
Eq. (2.19) with a “bare” distribution gy of a quark in a proton and sum over quark
flavours, leading to

1 2
Fe.0) =25 é{al@+52 [ Fa@PuPnG+o@Ioen) 2o

Exactly as for the renormalization of the coupling constant, we can regard gy(z) as an
unmeasurable, bare distribution. The collinear singularities are absorbed into this bare

13



distribution at a factorization scale u, which plays a similar role as the renormalization
scale. So we define a “renormalized” distribution g(z, %) by

e 1) = ao(a) + o [ L w@P s +oE)+ 06y (29

¢ £

such that
(s @) =s L4 / Foe) {50 - D+ PP G + O]} (229)

The distribution g(£, #2) cannot be calculated from first principles in perturbation
theory, since it receives contributions from the long-distance (non-perturbative) part
of the strong interaction. It has to be determined from structure function data.

The factorization scale p is an arbitrary parameter. From its origin in the above
discussion, it can be thought of as the scale which separates long— and short~distance
physics. On the other hand, exploiting its arbitrariness, it is often set approximately
equal to the scale @? in order to keep the logarithm In 97, i.e. the higher order
corrections, small. Thus z? can vary from about 2 GeV to very large scales. The
hard-scattering (short-distance) cross section is obtained from the parton-scattering
cross section by removing long-distance pieces and factoring them into the parton
distribution functions. Hence a parton emitted with a transverse momentum less
than the scale u is considered as a part of the hadron structure and is absorbed into
the parton distribution. A parton emitted at a transverse momentum larger than p is
part of the short-distance cross section. The more terms included in the perturbative
expansion, the weaker the dependence on p will be, analogous to the case of the
renormalization scale. In fact, renormalization and factorization scales are often set
equal.

Note that while factorization provides a prescription for dealing with the logarithmic
singularities, there is an arbitrariness in how the finite contributions are treated. How
much of the finite contribution is factored out defines what is called the factorization
scheme. In the MS scheme, ouly the divergent part and the terms In (47) — vg are
absorbed into the parton distribution.

In order to obtain a complete description of the deep inelastic structure functions in
terms of parton distributions, we also have to include the O(a,) contribution from
the process v*g — ¢§. The result is

2

7 Qs Q
H(2,Q") =23 _ ;5" [Pyo(z) In 5 + Cy()] (2.26)
9.4
where the splitting function is now
Pyq(z) = Trlz? + (1 - 2)%].
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To obtain the physical structure function, the contribution (2.26) must be folded with
a bare gluon distribution go(z) and added to the result obtained in Eq. (2.23), leading
to

wi) = 0@+ 2 [ LRt + )
12 [ Lo@rn@uroGirow) @
such that in the MS scheme
@) = 254 [ %ae (o0 5+ £ 0FE) + o)
+2y e / Zoe{z CMS( 3+ 0@} (2.28)
aq
The fanctions C,(z) and Cy(z) are called coefficient functions. They depend on the

factorization and renormalization schemes and also on the structure function under
consideration.

Including also higher order corrections, factorization for the DIS structure functions
is of the following structure:

Fl (.’E, Qz)

1 2
Zf d_ffam(s,m Culg Q—waswz)) + remainder

%Fz(l\Qz) Z / — foaléi® 020,( ,a,(u )) + remainder (2.29)

Here fo/a(€, 4?) are the parton distribution functions (defined with charges included).
The quantity f,/4(¢, #?)d€ can be interpreted as the probability of finding a parton
of type a (a = gluon,u,@,d,d,...) in a hadron A carrying a longitudinal momentum
fraction & to £ + d€ of the hadron’s momentum. The parton densities are universal:
They depend only on whether the evolving parton has space-like momentum (like in
DIS) or time-like momentum (like in e*e~ annihilation).

The hard scattering coefficients C;, are infrared safe functions that depend on the par-
ton type a (and on the factorization scheme, as stated above), but not on the external
hadron A. Being free from long-distance effects, they are calculable in perturbation
theory due to asymptotic freedom.

The independence of the C;, from the external hadron A allows to calculate these
functions with the simplest choice of the external hadron: A = b,b being a parton.
The remainders in Eq. (2.29) are suppressed by powers of 1/Q?. Inspired by the ter-
minology of operator product expansion (see Section 2.2), they are called the higher
twist contributions.
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Summing up, the fundamental content of the factorization theorem is that all the
short-distance dependence resides in the coefficient functions C;,, while all long-
distance dependence has been absorbed into universal parton distributions. Cor-
rections to factorization are suppressed by powers of Q2.

A rigorous proof of factorization to all orders could be provided for deep inelastic
scattering in the context of operator product expansion [7, 8). The proof for other
hadronic cross sections is highly nontrivial [19, 20, 46, 28] and formally has not reached
the status of the treatment by OPE. While the OPE proof could exploit the properties
of Green functions in Euclidean space, the proofs beyond OPE require a detailed exa-
mination of all the dangerous momentum regions of massless particles in Minkowski
space.

The plausibility of factorization properties for processes with one incoming hadron
can be seen from the following argument: Considering electron-hadron scattering by
virtual photon exchange at high momentum transfer in the center-of-mass frame, two
important things happen to the hadron: It is Lorentz contracted in the direction of
the collision, and its internal interactions are time dilated. Hence as the center-of-
mass energy increases, the lifetime of any virtual partonic state is lengthened, while
the time it takes the electron to traverse the hadron is shortened. When the latter
is much shorter than the former, the hadron will be in a single virtual state charac-
terized by a definite number of partons during the entire time the electron takes to
cross it. Since the partons do not interact during this time, each one may be thought
of as carrying a definite fraction z of the hadron’s momentum. It now makes sense to
talk about the electron interacting with partons of definite momentum, rather than
with the hadron as a whole. In addition, if the momentum transfer is very high,
the virtual photon which mediates the electron-parton scattering cannot travel far.
Therefore, if the density of the partons is not too high, the electron will be able to
interact with only one single parton. So roughly one can say that the initial state
interactions, which give rise to soft and collinear singularities, are too early, the final
state interactions are too late relative to the short time scale of the hard scattering.
Therefore it is appropriate that these singularities are included in the wave functions
of the incoming hadrons and not in the short-distance cross section. The proofs of
factorization establish that this simple picture is in fact valid in perturbation theory
for a large class of processes.

In hadron-hadron collisions, the analysis is more complicated since the question arises
whether the partons in hadron Hj, through the influence of their colour fields, change
the distribution of partons in hadron H,, thus spoiling the simple parton picture.
Soft gluons which are emitted long before the collision are potentially troublesome
in this respect. But it can be argued that soft gluons do in general not spoil this
picture, using a simple model from classical electrodynamics [16}: Consider a particle
with charge e travelling in the positive z direction with constant velocity 4. At an
observation point described by the coordinates z,y, z, (the position of hadron Hj),
the vector potential 4, at a time ¢ due to the passage of the fast moving charge can
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be calculated to be

by o= ey

D = Ty

A7) = AY(tE) =0

A7) = L (2.30)

VI? + 42 + (Bt - 2)?

where 42 = 1/(1 — #%). Now it can be shown that the vector potential (2.30) leads to
field strengths which vanish at high energy. For example, the electric field along the
z direction is

0A* DA ev(Bt — z)

E (t,$)=3t—+ 5 [272+y2+72(,3t—z)2]% .

(2.31)

Hence at high energy, the field strengths are of order 1/7% ~ M*/s%. Thus the force
experienced by a colour charge in the hadron H; at any fixed time before the arrival
of the quark decreases as M*/s%. There are residual interactions which distort the
distribution of partons in hadron Hj, but their effects vanish at high energies. A
breakdown of factorization at order 1/s? is therefore to be expected in perturbation
theory, and has been demonstrated explicitly in ref. [17]. Note that these effects are
due to the long-range nature of the massless vector field. In the realistic case of an
incoming colour neutral hadron, there are no long-range colour fields. It is therefore
possible that power corrections to factorization, i.e. terms of order (M?/s)", will
occur in general only at a higher power of n than suggested by the above argument.

2.1.4 The Altarelli-Parisi equation

We have seen in the last section that the parton distributions cannot be calculated
in perturbation theory. However, what can be calculated perturbatively is their de-
pendence on the factorization scale u?. The structure functions of course have to be
independent of 42, so taking the derivative 8/01n u? on both sides of Eq. (2.25) will
give us a differential equation for the p*—~dependence of g(x, u?) and hence for the
Q*—dependence of the structure functions. Defining ¢ = u?, we obtain
1

Qs d€ z
— | = Py(=)g{,t 2.32
5 | T Pue(@alet) (232
This equation, known as the (Dokshitzer-)Gribov-Lipatov-Altarelli-Parisi (GLAP)
equation [13, 14], is the analogue of the equation for the B function describing the
variation of o,(t) with ¢ and is one of the most important equations in perturbative
QCD.

A more rigorous treatment based on operator product expansion and the renormaliza-
tion group equations [11, 12] extends the above result to higher orders in perturbation

i)
t5t_ Q(xvt) =
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theory, leading to .
d
de.t) = [ F RSt ate0) (233)

where Py/,(z, ;) can be calculated as a power series in a,:

Pz, 05) = o Pq/q( z) + (%sr‘) Pq(/q( ) +0(es®). (2.34)

The above equation holds for dlstrlbutlons which are non-singlets under the flavour
group: gss = ¢; — ¢; with ¢;,¢; being a quark or antiquark of any flavour. More
generally, the GLAP equation is a (2n; 4+ 1)—dimensional matrix equation in the
space of quarks, antiquarks and gluons,

ta ( ‘Iz z, t) ) Z/ df ( qi/g; gvas(t)) P'/g(g,as(t)) ) ( q]‘(ﬁvt) >
ot \ 9(z,1) Pyj;(§:05(8)  Pos(F: (t)) 9,1)
(2.35)
where each splitting function is calculable as a power series in a;.
Beyond leading order, the flavour structure of the function FP,,/y; is nontrivial. Using

SU(ny) flavour symmetry, we can define the following flavour singlet (S) and non-
singlet (V) quantities:

- V) pls)

Pujey = 0 Pq/q Pera

S

Py = 5”P Pq(/q)
P* = P;/‘;) i P (2.36)

At next-to-leading order, the functions P(S) and ij) are nonzero, but we have the
additional relation

() _ p(9)
F 9/ PQ/q

Now we define for each flavour the sum respectively difference of the quark and anti-
quark distributions as

GF=qtq (2.37)
It is then straightforward to show that at NLO, the combinations

Vi = ¢
= gt —kaiik=1,..,n;l= (k+17~1

are non-singlets, i.e., evolve according to Eq. (2.33) with the kernels P~ and P*,
respectively.
The one remaining combination of quark distributions is the singlet distribution

ny

Sz, t) =Y [gilz, 1) + Gilz, )] (2.38)

i=1
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Note that because of charge conjugation invariance and SU(ny) flavour symmetry
the splitting functions Py, and Py, are independent of the quark flavour and the
same for quarks and antiquarks. Hence taking into account the considerations above,
Eq. (2.35) simplifies to

9 [ S(z,t) \ _ [T [ Pyfeu(t)) 2nsPoq(% 04(t) \ [ T(¢,1)
a5 (o )‘/ ; (Pg/qé ault) Pua(Z,00(t) ) (568 ) e
where now

Pyg = P* 4y [P + Pl = P* o+ 2ng P) (2.40)

The leading order splitting functions Pa(?b (z) can be interpreted as the probabilities
of finding a parton of type a in a parton of type b with a fraction z of the longitudi-
nal momentum of the parent parton and a transverse momentum squared much less
than u2. The interpretation as probabilities implies that the splitting functions are
positive definite for £ < 1, and satisfy the following sum rules which correspond to
quark number conservation and momentum conservation in the splittings of quarks
respectively gluons:

/01 dzP{)z) = 0

[ @ 1pe) + P = 0

/0 doz 20, PO() + PO()] = 0

The leading order splitting functions are given by [13]
PO) = CF{(%}E:: + ; 81— z)} (2.41)
POz) = TR{z2+(1—z)2} TR=% (2.42)
PO@) = Cp{ﬂlz"—zﬁ} (2.43)
PO = 2N+ T a1 - 0))

(1= )N, ~ gn,:r&] (2.44)

The calculation of the next-to-leading order splitting functions P, (l)(x) will be the
subject of Chapter 3.
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2.1.5 Anomalous dimensions in the parton model

The GLAP equation, which is an integro-differential equation in z—space, can be
written in a factorized form by taking moments (Mellin transforms) with respect to
the variable z, defined for any function f(z) by

f(N) =/0 drzV1f(z).

Convolutions reduce to products under these moments. Therefore, the t—dependence
of a non-singlet quark distribution function is given in terms of moments by

2 (V.6 = 2V, (2) gl 1), (2.45)

where the anomalous dimension v,/(N, as(t)) is given by the Mellin transform of the
splitting function:

afal N, as(8)) = /0 4z 5B (5, 00(0) (2.46)

The equation analogous to Eq. (2.45) for the moments £(N,t) and g(N,t) of the
singlet quark and gluon distributions correspondingly is given by

B (TN _ { YeaNyas(t) 205 74/0(N, as(8) \ { S(N,2)
5 ( g(N, 1) ) - ( 7:/z(N, a(t)) 79/9(;\rfae(t)) ) (g(N,t) ) . (247)

The solution of the non-singlet GLAP equation (2.45) is, in terms of moments, given
by
0)
as(to) daal) 7q/q(N)

V) =V, t0) (25 gy = )
where the lowest order form o, (Q?) = 1/(bln %) ; b= (33—2n;)/12n for the running
coupling has been used.

At this point not only the conceptual, but also the practical importance of anomalous
dimensions becomes obvious: Their knowledge allows for a prediction of the parton
densities at a scale ¢ = u? once they have been measured at a scale p3.

2.2 Operator product expansion

As we already explained in Section 2.1.2, the parton distributions gns(z,t) or, more
general, f,;(z,t), can be calculated as matrix elements of certain operators. In mo-
ment space, the analogous structure is obtained by using operator product expansion
(OPE). It allows to relate the moments of the parton distributions to the matrix ele-
ments between hadron states of local operators. The predictive power of the operator
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product expansion will come from the fact that the coefficient functions C; have an
increasing power law suppression as the dimensions of the corresponding operators
O; get larger. Therefore, only a small number of terms is relevant, and the renor-
malization group plus finite order perturbation theory may be used to compute the
coefficient functions to a useful approximation. Furthermore, the Q*—dependence
of the moments of the parton densities can be worked out by summing the leading
logarithmic corrections to the matrix elements of twist two operators.

2.2.1 Composite operators

Products of fields at the same space-time point are called composite operators. When
computed naively, composite operators are not well-defined since they have ultraviolet
divergences. The aim of operator product expansion is to construct finite, renorma-
lized composite operators. The operator product expansion has been introduced by
Wilson [6] and is based on the idea that the products of operators A(z), B(y) can
be expanded in a series of well-defined local operators O;(z) with singular c—number
coefficients Cj:

T+Yy

ABW =Y Cila -4 05

i=0

) (2.49)

The local operator O;(z) is regular in the sense that the singularity of the product
A(z)B(y) for y = z is fully contained in the coefficient functions C;(z — ). The series
in Eq. (2.49) is arranged in the order of decreasing singularity, so Cy(z — y) is the
most singular coefficient as y — z.

Operator product expansion was proven by Zimmermann [7, 8] within the framework
of perturbation theory using the BHPZ method [56].

Renormalization of composite operators

Now we will consider Green functions which are extended to include the insertions of
composite operators and discuss the renormalization of such Green functions.

To be specific, we look at the insertion of the product of two currents in a scalar field
theory, which can be expanded in the following way:

OIT[j(2)i(0)¢(z1) . .. $(z)]10) = Y Cilz) OIT[Ox(0)$(x1) . . . §(z2)}|0)  (2.50)
k
In momentum space, Eq. (2.50) can be written as

F(g:p1,--,p0) = 3_ Ce(@)Ei(pr, - - -, Pn) (2.51)
k

where F(q,p1,...,ps) is the truncated n—point Green function with insertion of the
current product. The Green function F(g,py,...,p,) satisfies the standard renorma-

21



lization group equation®

[D-ny(gF =0 (2.52)
8 i} 8
D = pu— —_ -
where ﬂau+ﬂ(9) 79 Tm(g)Mo
@ = - dlnm
Tm\g) = e O lgp,mp fixed
@) = L0m%
na = 2}1. 5# 98,mp fixed

Z3 is the renormalization constant of the fields ¢(z).
On the other hand, the Green function Ex(py,...,p,) can be shown to obey the
renormalization group equation

(D +70,(9) —nv(9)] B = 0 (2.53)
where o, (g) is the anomalous dimension of the composite operator Oy (z):

()_ aanok
Yor\g) = U au

i Or=2Z5 -OF (2.54)

gBymp fixed

Hence applying D to both sides of Eq. (2.51) and using (2.52) and (2.53) leads to

[D - 70,(9)] Celq) = 0. (2.55)

This is the renormalization group equation which serves to determine the behavior of
the coefficient function Cy(q) for large momenta —g2 — oo.

If there exist several composite operators O; which have the same quantum numbers
and canonical dimension, those operators mix with each other in the renormalization
procedure, such that the renormalized operators are defined by

Opi = Z z;lof (2.56)

J

This phenomenon is called operator mizing and plays a crucial role in the calculation
of the flavour singlet anomalous dimensions in next-to-leading order via OPE.

3We assume that the current j(z) is conserved. If this is not the case, j(z) will be renormalized by
a constant Z; and the corresponding anomalous dimension «;(g) = 81n Z;/0u has to be included
in Eq. (2.52).
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2.2.2 Operator product expansion in deep inelastic scattering

The aim of this section is to derive an operator product expansion for the hadronic
tensor W), introduced in Eq. (2.5) in the context of the parton model. In this case,
our composite operator is the time ordered product of two electromagnetic currents,
T{ju(x)5,(2)]. Its general form can be determined by the requirements of Lorentz
invariance and current conservation,

Tlju()iv(a)] = (8u0, — 9u8;) OL(z, &) (2.57)

+(9:20,9), + 90048, — 91028, — 9190 0°8,) O3° (3,7
“+antisymmetric part

where 9, = 0/8z, and the antisymmetric part does not contribute to the spin-
averaged structure functions such that we will not consider it further.

In order to express the bilocal operators O(z, z') in terms of local operators, we make
use of the so-called light-cone dominance*:

For deep inelastic scattering with —¢*> — 0o and —¢?/v fixed, the dominant contribu-
tion to Wy, comes from the region 0 < z? < const./(—¢?).

Therefore we can expand the Green functions near the light-cone, leading to

; r+2z
Oule.7) = Y CHW WO, . (~5)
i ,M .'L'+£L'l
0Y(,5) = Y O .. v 0y () (2:58)

i
where y =z — 2'.
For the spin averaged matrix element between proton states we therefore obtain from
Eqgs. (2.6),(2.57) and (2.58) after Fourier transformation:

/ diz €9 (PIT [j,(x)7,(0))| P)

(000 = ) S (PIOE L, O1P) [ dizom ... om0 ) e

—iT,

i

+(9urgoly + GoGudr — Gudodr — € Gurdpw)

-Z(PlOéﬂi’_’_M(O)lP)/d"zz"‘...z“"Cz(fi(f) e (2-59)
in

The matrix elements of the composite operators appearing in Eq. (2.59) have the

following tensor structures:

PlO(i) o)P) = A(Li),,p L---Pu, + terms containing g,.,.
Lpy...ppn (e v
(P]O;(,L);\f’. . O)|P) = ,n+2p*p‘°p,,, -Pu + terms containing g, (2.60)

4The proof is straightforward, see for example [57].
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From expressions (2.59) and (2.60), sum rules for the DIS structure functions can be
derived by using dispersion integrals, since the forward virtual Compton amplitude
T, is related to the hadronic tensor W, as already stated in Eq. (2.5).

/ dz I"—ZFL(:L‘ Q2) — ZA@) (l) (QZ)

[ et en = Y A c@) (2:61)
0

i

Equations (2.61) are called the moment sum rules for the structure functions. They
exhibit the property of factorlzatlon already discussed in the context of the parton
model: The coefficient functions G (Qz) are of short-distance nature and thus calcu-
lable within the framework of perturbative QCD. The long-distance effects are fully
contained in the AY , which correspond to the moments of the parton densities, as
can be checked by comparing Eq. (2 61) to Eq. (2.29) derived in the context of the
parton model. If the expressions A were really constants, Bjorken scaling would
be satisfied exactly. However, as we already know from the discussion of the parton
model, these quantities actually depend on @2, i.e. on the renormalization point of
the operators. Since this dependence comes only through operator rescaling, it in-
volves only logarithms of Q2, and so contributes only to a slow violation of Bjorken
scaling. The Q? dependence can be worked out quantitatively by summing the leading
logarithmic corrections to the matrix elements of twist two operators, finally arriving
at the solution of the Altarelli-Parisi equation in terms of moments, which for the
non-singlet case already has been given in Eq. (2.48).

Now it also becomes clear why the remainders in Eq. (2.29) have been called higher
twist contributions: For dimensional reasons, following from Eq. (2.59), the light-cone
singularity of the coefficient functions C% has to be of the form

C,(,'i)(fl?z) ~ (xZ)—dj+(d’b(")—ﬂ)/2 (2.62)

where d; and d(n) are the scale dimensions of the current and the composite operator

O,,, .un Tespectively, and n corresponds to the maximum spin (i.e., number of vector
indices) of the operator. The quantity

i =dh(n) —n

is called the twist of the composn:e operator O“1 un- 1t is a measure for the strength
of the light-cone singularity of c (z?): The smaller the value of 7%, the stronger the
singularity of C,(f)(xz). Since twist controls the singularities on the light-cone, it con-
trols the high Q2 behaviour of the Fourier transforms of the products of the currents,
which are directly related to the DIS structure functions as has been shown above.
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Therefore, the leading behaviour of the DIS structure functions can be determined by
retaining only the operators of the lowest twist i = 2; the higher twist contributions
are suppressed by powers of 1/Q2.

The quark operators of lowest twist are of the form

O;i...un =i"'S¢7, Dy, ... Dy th ~ Guv; terms (2.63)

where D, = 9, +igA®4;, is the covariant derivative with A* being the colour group
generators. ¢ and 1 are quark fields and S denotes the symmetrization of Lorentz
indices, whose number is always even for a non-vanishing operator. The symmetriza-
tion is necessary since we are dealing with unpolarized scattering. The subtraction of
the g,.,,; terms (the so-called trace terms) makes the operator have definite spin. That
the operator in (2.63) is of lowest twist can be seen as follows: Consider a composite
operator consisting only of quark fields whose canonical dimension is 3/2. Since an
increase in the number of quark fields in the composite operator results in an increase
in its canonical dimension, the number of quark fields involved must be minimal, that
is, two, in order to keep the twist as small as possible. Hence the expected form of
the minimum twist operator is

’J’Aul...un"l}

where Ay, can be composed of v, 8, and Aj. By gauge invariance, 9, and Aj can
appear only in the combination specified by D,. A -y, can appear only once because
any multiple of -y, always reduces to a single or no 7, due to the symmetrization S.
Thus we are left with an operator of the form (2.63) which has dimension » + 2 and
spin n and thus is of twist two, while the operators containing g, terms have higher
twist.
In order to classify all twist two composite operators relevant for DIS, one has to
consider their transformation properties with respect to the flavour group. As we
are interested in deep inelastic scattering, the quark masses may be safely neglected
and so the flavour symmetry SU(ny) can be considered as exact. Since the quark
fields 1) and the gluon field A% belong to the fundamental and singlet representation
of SU(ny) respectively, the twist two composite operators containing two quark fields
belong to the singlet or adjoint representation. Explicitly, the twist two non-singlet
operator is given by

08 pn = 08 =189, Dy, ... D, t°% — trace terms (2.64)
where ¢ (a = 1,...,n% — 1) are the generators of flavour SU(n;).
The twist-two composite operators which transform as singlets under the flavour group
are of the form

Of,.",Jn = "'8¢y,, Dy, ... D, ¢ — trace terms (2.65)
OF . = 2"SFS,Duer | Din-ien-afan-id _ trace terms  (2.66)
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where Of, , is built from gluon fields, Fj;, being the gluon field strength tensor.
Since there are two twist-two singlet operators, operator mizing will occur in the
renormalization process, which complicates the calculation of the two-loop anomalous
dimensions in the singlet sector.

2.2.3 Renormalization-group-improved perturbation theory

The renormalization group equation for the Fourier transforms G (Q?) of the coeffi-
cient functions® defined in Eq. (2.59) is given analogous to Eq. (2.55) by

2

~ 9
[D - 7a(9)] Cn(pg) =0 (2.67)
where (9) = ian (2.68)
) R :
is the anomalous dimension of the operators O,, . defined in Eq. (2.59).
The solution of Eq. (2.67) is given by
~ q? ~ _ /ﬁ(t) ey
Cn(=,9) = Ca(1,3(t, g)) exp{— dA 2.69
(9 (1,5(t, 9)) exp{ | ﬁ(/\)} (2.69)
where ¢t = ln(F)

and the running coupling constant g(t) is the solution of the differential equation

Lat.9)=6@) ; 30.0)=0. (2.70)

Expanding v,(7) and 3(g) perturbatively

(@) = W +10g +. (2.71)
8@ = —BT -HT+...
we obtain from Eq. (2.69), keeping the first two terms in the expansions above
O NN
Gul L) ~ Gall -)("’3)%(""”’@3)#”‘ 272)
M 9T LI g2 Bo + Big? )

where g2 = 1/(26yt) is the solution of Eq. (2.70) with only the first term in the
expansion of 3 kept. The values of 7,(10), Bo and B, are well-known; the calculation of
7&” is the main issue of Chapter 3.

5The subscripts L and 2 will be omitted here since the reasoning for both is the same.
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Eq. (2.72) fully exhibits the virtues of the renormalization group equations in order to
obtain predictions at different scales. Note that the coefficient functions are scheme
dependent, the scheme dependence cancelling out when being combined with the
parton densities (see Eqs. (2.29},(2.48),(2.61)) to the full cross section.

Using a perturbative expansion also for C, (1, g):
én(l, g) = Cgp, + c1n§2 +...

and expanding Eq. (2.72) we obtain

(0)

2\ ~ % » 2\ —1
én(QQ) = N, ( iz) i [COn + (ﬁolﬂ %)
(1) (0) (0) 2

where N, is the constant

0

Ny = (U—ﬁ-g—/ﬁ) (1 + Bug? o) B

Bog?
and A is the QCD scale parameter, defined in this order by

A= ;Le—l/(?ﬁay’) (1 +_________ﬂ192/ﬂ )ﬂl/ ) .
Bog?

Equation (2.73) is a basic formula for practical applications of perturbative QCD in
deep inelastic scattering. So in order to know the coefficient functions to order g7, it
is necessary to calculate the anomalous dimensions v,(g) to order g*.

Note that the values fy.fll) depend on the renormalization scheme that is used, whereas
physical quantities clearly do not. It has been shown [27] that the prescription depen-
dence of 753) is cancelled by that of the coefficient of 2 in the expansion of é',,(l, 9)-
The gauge independence of the anomalous dimensions v,(g) in the MS or MS scheme
follows by Eq. (2.68) from the gauge independence of the renormalization constant
Z,, in the MS or MS scheme, which in turn can be shown using the gauge invariance
of the unrenormalized composite operator.
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Chapter 3

Calculation of anomalous
dimensions in two loops

3.1 OPE method

The method based on operator product expansion to calculate the two-loop anomalous
dimensions relevant for deep inelastic scattering was developed by Floratos, Ross and
Sachrajda [27]. It is based on the scaling properties of the lowest twist (7, = 2)
operators that control the short-distance behaviour of the deep inelastic structure
functions. These operators already have been worked out in Section 2.2.2 and are
given by Egs. (2.64) to (2.66). In order to outline the method, we will concentrate on
the non-singlet part which is not plagued by operator mixing.

If we insert the operator Of , of Eq. (2.64) in all possible ways as a vertex into
the internal lines of a 1PI m-point Green function I'"™)(p; ...p,,), then the resulting
Green function I‘< ™ will have an overall degree of UV dlvergence DM = dy —
where dg = n+2is "the naive dimension of the operator O%. Because we need only the
twist-two part of the functions F(m) we have to consider only the terms proportional
to the external momenta p}?,. pf ;i = 1,...,m. So the twist-two part of 1“8’})
has a degree of UV divergence D,_2 = dy~m—n = 7—m. Therefore we see that only
the two-point Green functions give counterterms and their divergence is logarithmic.
Since only the quark carnes flavour, we need to calculate for the non-singlet part only
the Green function F (p7 —p) with two external quark lines.

Defining the bare operators

nB = ¥BQ: ¥ =200 p
Z,B =2Zq ng,R

we find that Zp = Z, anl where Zp is the quark wave function renormalization
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constant. Thus the bare and the renormalized Green functions are related by

Fg},., (gr, ) = ZOIZFFO sl9s. €)= ZQI‘(oz.).,g(gB,f) (8.1)

such that the counterterms we obtain from the calculation of 1‘(02: determine Zg and
not directly Zo.
The anomalous dimensions for O%, and the f—function are defined by

7]
To. = bz InZo, opeiieed (3-2)
1 8
V= 5#511121? opebeed (38:3)
0
B = HEaIR| . et (34)

From these definitions and the y independence of 1" .5 We obtain the renormalization
group equation for Fo,. B

( 2 + B(9r) z— 3 + 70, — 2'yp) I‘O2) = (3.5)

For the anomalous dimension of the operator Q2 we derive, using (3.1)

Yo, = ,ua InZp, =29r — Y0, (3.6)

9B, fixed

Thus we see that the two-loop ca.lculatlon of 7o, contains the two-loop calculation of
~r and of the 1PI Green functions I‘o

In dimensional regularization, the anomalous dimension vg, can be calculated [27]
from the single pole part of the renormalization constant of the operator Q,: Zg, has
the expansion

—14 Z Zk (93) .
Using the form of the S—function in 4 — 25 dxmensmns
B(gr,€) = —ge+ B(gr) 3.7
and Eq. (3.6) leads to
- ggZ; (3.8)

So we see that the anomalous dimension 7¢, is simply minus twice the coefficient of
the 1/¢—part in Zg,.
To perform the actual calculation, the symmetrization and removal of the traces is
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+t"2t“‘( < (k2 + 2) 7 (n - k)" 777

Figure 3.1: Feynman rules for the effective vertices with zero, one and two outgoing
gluons.

most easily achieved by multiplying the operator in Eq. (2.63) by the tensor n#! ... n#n
where n is an arbitrary light-like vector. This operator gives rise to effective vertices
consisting of an incoming and an outgoing fermion line and and 0,1,2 to n—1 gluons.
In next-to-leading order, the cases zero, one and two gluon vertices are required. The
Feynman rules for these vertices are given in Fig. 3.1. The anomalous dimension vg,
is obtained by considering the matrix elements of the operator between off-shell quark
states of momentum p (—p? > quark mass squared). The diagrams which contribute
to this 1PI two-point Green function in two loops are shown in Fig. 3.2.

According to Eq. (3.6), we also have to calculate the fermion wave function renor-
malization in order to obtain 7¢,. Fig. 3.3 gives the diagrams needed for the wave
function renormalization of the fermion field.

The calculation has been done in Feynman gauge in order to have the simplest form
of the gluon propagators. The result is rather lengthy and given in [27]. The method
is quite tedious since full two-loop diagrams have to be calculated. Furthermore, one
has the complication of operator mixing in the calculation of the singlet part. There-
fore, another method, based on axial gauge and cut diagrams, will be presented in
the next section.
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Figure 3.2: Diagrams which contribute to the 1PI two-point Green function in two
loops. For diagrams which are not symmetric crossed diagrams have to be included.
In diagrams (f) and (m), the contributions from Faddeev-Popov ghosts and tadpoles

A O A
CEDN B

Figure 3.3: Diagrams contributing to the fermion selfenergy in two loops. In the
diagram containing the gluon selfenergy, the Faddeev-Popov ghost— and tadpole terms
have to be added.




3.2 The method of Curci, Furmanski and Petronzio

The method developed by Curci, Furmanski and Petronzio (CFP) [29] to calculate
the two-loop anomalous dimensions is very close to the parton picture. In contrast to
the OPE method, which leads to the moments of the splitting functions P,/(z, a;)
defined in Eqgs. (2.33) and (2.39), the CFP method directly leads to these functions
in z—space. Apart from the fact that the z—representation of P,/s(z, ;) is simpler
than the expressions for the moments, it admits the physical interpretation to be the
generalization to all orders in a, of the Altarelli-Parisi probabilities and is in addition
more useful for experimental analysis.

The most important technical ingredient of the CFP method is the use of light-like
axial gauge, n,A* = 0, n? = 0. This gauge gives rise to spurious singularities which
may be regularized by essentially two different prescriptions. A precise analysis of
the validity and practical usefulness of these prescriptions is crucial for all attempts
to calculate the anomalous dimensions beyond next-to-leading order with the CFP
method. Therefore we will devote the main part of chapter 3.3 to the discussion of
the light-cone gauge.

The CFP method will be outlined now briefly, for further details the reader is referred
to [28, 29].

As already explained in Section 2.1.3, the matrix element squared for a specific hard
process can be written in z—space in form of a convolution of some universal parton
density I'(z, Q%) with the “short-distance” cross section C(z, @?) which is characteris-
tic for a given process and contains by construction no mass singularities. The density
['(z, @) depends only on whether the evolving parton has space-like momentum (like
in deep inelastic scattering) or time-like momentum (like in e*e~ annihilation). The
@*—evolution of the densities I' is governed by the probabilities P,/(z, a;) which can
be calculated perturbatively in the falling coupling constant.

To be specific, consider the matrix element squared M for virtual (space-like) photon-
quark interaction. M can be expanded into a generalized ladder of two-particle-
irreducible (2P1) kernels Cy and Kj as shown in Fig. 3.4. As will be explained in
more detail below, it has been proven [28] that the 2PI amplitudes in the azial gauge
with no unphysical degrees of freedom propagating are finite as long as the external
legs are kept unintegrated. Hence all collinear singularities originate from the integra-
tion over the momenta flowing in the lines connecting various kernels. (By definition,
the kernels K, contain full propagators of upper lines, and do not contain lower lines.)
For simplicity of notation, all spinor (or vector) indices and momentum dependences
will be suppressed, so we write Cy for Cgf;,(q, p). The product C = A - B of two
kernels is a shorthand notation for

] dml !
O35/ (k) = ¥ [ 155 432 0 DBR 0 ko)
Y
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Figure 3.4: The generalized ladder expansion in terms of 2PI kernels C; and K, and
the final factorized form. M is the matrix element squared for virtual photon-quark
interaction.

The contraction of spinor indices will be written shortly as

[ ¥4  denotes Z( k) ./Aa,,,

A k]  denotes ZAM, Yoy
Y

The generalized ladder expansion in Fig. 3.4 can then be written as

M=Co(1+Ko+K§+...)=lTCK——CoI‘O

where Cp as a 2PI kernel is finite and I'y contains all mass singularities. As Cp and
Ty are still coupled by momentum integrations and spinor indices, we introduce a
projector P which serves to achieve full factorization: We define P = P, + P, where
‘P, acts in spinor space, decoupling Cy and I'y in spinor indices, and P, extracts the
singular parts (i.e. poles in €) of the d™k—integrals, thus decoupling Cy and Ty in
momentum space. Using the parametrization k* = zp* + bn¥ + k{ = kff + bn* + k!
already introduced in Eq. (2.8) and the fact that only kl’l‘ can give rise to collinear
poles, it can be easily shown {29] that P, can be defined as

AP.B = A [

The operator P. sets k> = 0 in the A /| part and extracts the pole in the dk?/k?
integral from the [z;{;B part.
The factorization of the infrared singularity in the Cy K, term then looks as follows:
Think of M being one of the partonic structure functions F® in deep inelastic scat-
tering. Then we have

O = 2 (09K, 4] =

3 [COPKy g+ 5 [Fa-PIK 8] 39)
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where the second term is finite and

5 [c¥Px 4] % [P, @ Puks #]

- 1[05") k2 [é‘;m ,p]
- [Eer 4, &b,

PGy = op [t [ o]

The symbol PP denotes the pole part of the d™k integral. From kinematics one has
k2 =0 for k? = 0 so that [C{ Alxe=q can be taken out from the d™~2k, integral.
Therefore, after the action of the projector P, both kernels are coupled only by the z
integral, which can be written in form of a convolution

1 2 1 2
=), @ = Q% 1
/0 dy Gy (F’y)/o sz(?,z, ;)5(563—1,/2)

|

e s

where
0@ ; Q?
CC7w) = (6 Kamo 5 y=35t

and zp = Q*/(2pq) is the Bjorken variable.

The procedure to carry out the factorization of mass singularities in all orders in the
generalized ladder expansion is iterative. First the singular part of the last kernel Kj
is factorized:

00 oo
M=C, [1 + Y KPR+ Y KM (1-P)Ko (3-10)
=1 i=1
which can be rewritten as
od .
M(l - ’PKo) =Cy [1 + ZKS_I(I - P)Ko} . (3.11)
i=1

In the next step one factorizes the singular part of Ko4(1 — P)K, on the right hand
side of Eq. (3.11). Carrying on in this way, one finally ends up with a series which
can be written in compact form

M= (1 - (1C—O7>)Ko> (1 —l’PK) (312)

where

K=Ky/1-(1-P)Ko) =Ko (1+(1-P)Ko+ (1 -P)(Ko(1 =P)Kp+...) (3.13)
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and the kernel 1/(1 — PK) is defined by the series expansion in which P acts only on
the adjacent K on the right:

1
—_—=1 RN .
PR +PK + (PK)(PK) + (3.14)
The final step in constructing the deep inelastic scattering partonic structure func-
tions consists in performing the necessary contractions and multiplying M by Zg, the
residue of the pole of the full quark propagator, leading finally to

L 2 1 ) 2 1 1
EFO (%,x&as,l> = / dyCct (Q—zyas)/ dzl"(z,as,—) §(zs - y2)
H ¢ 0 H 0 €

(3.15)
) 1[ 1 Q?
@) — lo@_____+ . - )
¢ 2 {C" 1-(1-P)K, /“L2=0 PYT gy 319
1
r (za ;> = Zp{é(l —2)
amk kn A 1
+pr_(zﬁ>m5<z—p“;)'z [mK”‘~1 e 1’}}
(3.17)
In terms of 5 moments, Eq. (3.15) simply reads
FO (Q—2N as, 1) =c® (%N a,) r (N, as, l) (3.18)
I € Y €

In general, T' is a matrix in flavor space. In the non-singlet case, we need only the
diagonal quark-quark part I'y/,.

Factorization and finiteness of the kernels Kj in axial gauges

For the whole factorization procedure outlined above, the generalized ladder struc-
ture, that is, the finiteness of the kernels Ky, is crucial. To show in general that
factorization is correct, it is necessary to demonstrate (i) that the singularities of all
Feynman diagrams contributing to a given process can be cast into a factorizable form
and (ii) that the singular pieces depend only on the type of the incoming parton leg
and not on the particular hard process.

In QCD, the graphs which contain singularities depend on the gauge chosen for the
exchanged gluon. The clearest singularity structure is obtained in an axial gauge,
in which the graphs responsible for collinear singularities are the generalized ladder
graphs shown in Fig 3.4. It is obviously a great advantage in demonstrating property
(i) to have to consider only ladder graphs in which there is already a separation be-
tween the hard process and the parton dressing coming from the rungs of the ladder.
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In leading order in light-like axial gauge, the only graph which contains a singularity
is the ladder graph with one rung, given by graph (a) in Fig 2.3. This property can
be demonstrated by a power counting argument based on helicity conservation and
the scaling properties of the quark-gluon vertex:

Consider an incoming quark which emits a spin one gluon. Since the quark-gluon
vertex is proportional to v the helicity of the quark line must be conserved. Conse-
quently the amplitude for gluon emission must vanish in the forward direction when
the transverse momentum &, of the emitted gluon tends to zero because of angular
momentum conservation. In fact the amplitude vanishes as one power of k,. This
factor in the numerator is sufficient to make all graphs finite except for the ladder
graph, which contains two singular denominators: The divergence in the matrix ele-
ment squared for the ladder graph is of the form k% /k* ~ 1/k% .

Note the importance of the spin of the gluon for this argument. In covariant gauges,
such as the Feynman gauge, longitudinal gluons propagate in individual graphs and
invalidate the above arguments. It is only after summing all graphs, including those
where the gluon is attached to the struck quark line, that the light-cone gauge result
is recovered. Thus in covariant gauges we lose the physical picture of the singularities
being due to collinear gluon emission from incoming legs.

The proof to all orders [28] that the kernels K are finite, such that the collinear sin-
gularities come only from the integrations over the momenta connecting the various
kernels, in principle is based on analogous helicity conservation and power counting
arguments as in leading order. First the diagrams involving only gluons and quartic
gluon couplings are considered. This has the structure of ¢* theory, where power
counting arguments can safely establish the finiteness of the 2PI diagrams. The cru-
cial step now consists in extending the result to include also trilinear vertices. To
demonstrate the required scaling behaviour of trilinear vertices, a judicious definition
of effective vertices and propagators is worked out. This is where axial gauge is crucial:
The extra suppression which leads to the right scaling behaviour is provided by the
structures of effective vertices and propagators only in a gauge where only physical
polarizations propagate. In covariant gauges, the additional unphysical polarizations
can be “emitted” or “absorbed”, giving the individual graphs more complex diver-
gences, such that the scaling behaviour worked out for the trilinear vertices breaks
down. Therefore, the use of axial gauge is essential for the proof, but the implications
of the result concerning factorization are more general since the choice of gauge must
be irrelevant for the final physical cross section.

Renormalization group

Equations (3.12) respectively (3.18) have the structure of a typical relation between
bare and renormalized quantities:

Mp = Mg - Z5" (3-19)
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where the (divergent) bare quantity Mz = M ~ F multiplied by the (divergent)
renormalization constant Zg = 1 — PK ~ I'"! gives the (finite) renormalized result
Mg = Cy/(1—(1—P)Ky) ~ CH. In this sense, the factorization of mass singularities
in dimensional regularization is formally very similar to the ultraviolet OPE technique.
This allows to use the powerful methods of the renormalization group.

The procedure of renormalization of collinear divergences is the following: We start the
calculation with p? # 0 in m = 4 ~ 2¢ (¢ > 0) dimensions and subtract the ultraviolet
poles. The collinear divergences are regulated by p®. After ultraviolet subtraction has
been performed, we analytically continue the result to m = 4 ~ 2¢ (¢ < 0) dimensions
and take p? = 0; this operation generates collinear poles in #). Since the partonic
structure function £®) is a “bare” quantity and does not depend on u, the y? (and
therefore %) —dependence of the “renormalized” quantity C®) is determined by the
singularities of I'"! = Zp.

However, renormalization group methods can only be used if T (z, 05, 1) ~ Z5' is
indeed independent of @? (i.e., independent of the upper limit of the dk*—integral).
In the ultraviolet method, the analogous property of I' (independence of p?/u?) is
a direct consequence of the renormalizability of the theory, whereas in this case the
Q?/u? independence of I is by no means obvious. In fact, it is one of the most essential
points of the whole factorization program in axial gauge, where the finiteness of the
kernels Kj, proven in ref. [28], enters in a crucial way. The proof of the Q%/p?
independence of " goes as follows [29]: Using the finiteness of the kernels before the
last k*—integration, the structure of T is

QZ 1 1 Qz 1 2
F(—;{,x,;) = (5(1—Z‘)-!-;Fl(—ﬁ,x)-{-grz(ﬁ,x)'{'...

a2, o,
= 6(1—g)+ PP - ¥k /) (3.20)
0
where
lim O(k?/u?, 3, €) < 00 (3.21)

Differentiating both sides of Eq. (3.20) over @, using (3.21) and comparing coefficients
of the same powers of 1/e on both sides we find 9T'/3Q? = 0.

Now we can act with the renormalization group operator

i} 8

D = p-— -

En +ﬁ(g,e)ag
Blg.9) = Blg)—eg (m=4-1¢,¢c<0) (3:22)

on equation (3.18). Since FO 352 physical quantity is independent of u, we obtain
PwfFD=0 = DInCY 4+ Dl (3.23)
02

[D+2y(N, a,)]C(’)(%, N,a,) = 0 (3.24)
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where Y(N, o) is defined as

1 1 0

== 1 = - [R—
¥{(N, ) 2’D nl 2[3(g, e)ag InT(N, as,¢€) . (3.25)

Integrating Eq. (3.25) leads to
Q,
s (N A)
N = - NN )

(N, a5,¢€) exp{ /0 dAﬂ(/\)—e/\ (3.26)

From Eq. (3.24) and the finiteness of C) and D in the limit ¢ — 0, we conclude that
(N, o) is also finite in that limit. In the MS factorization scheme I' has the Laurent
expansion

1 2. T®(N, o,
T(N,a,7) =1+ > —(Zk_) } (3.27)
k=1

Using (3.22) and (3.24), we find that the anomalous dimension is determined by the
simple pole term in the expansion of T':

1 9

Nyay)=—=g—

7( ’ O!s) 2 g a g

It has been shown [29] that (N, a;) calculated in this way coincides with the anoma-

lous dimension of the twist-two non-singlet Wilson operator of DIS calculated with

OPE in the MS scheme.

rM(N,a,) (3-28)

Bare and dressed parton densities

In order to construct the hadronic structure functions Fg’, the partonic structure
functions @) should be convoluted with the “bare” density ¢p x(z, as, f) of quarks
inside the hadron. According to the generalized ladder expansion, ¢ y is given by

1 _ d"p .l A
qB,H(a:, O, -€~) =T (27\')"‘6(1 - ;h—n) [HH m] (329)

where H is the 2PI hadron—quark kernel. For our purposes, we need only one property
of H, i.e. that it is soft in the following sense:

1 fdvp [ A c
Hoto) = [ S [zp—nH ph] < oo (5] 00,6 > 0).

This assumption is consistent with all phenomenological evidence concerning the in-
ternal hadron structure. Assuming this property, we can extend the p?—integral to
infinity:

1 -Q? dn? - Jn? 2
waat) = [ Fnee = [ F 1D+ 015,
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Figure 3.5: The hadronic structure function F# is obtained by convoluting the par-
tonic quantities C - I with the bare parton density g z. The quantity I'- gp g is then
interpreted as the physical parton density gy/5.

such that the “bare” density contains only power-like corrections to the Q?—depen-
dence of the structure functions (higher twists in the Wilson expansion). On the other
hand, the lower limit of the dp*/p?—integral will generate the mass singularities which,
according to the KLN theorem [18] must exactly cancel the divergences of ['(z, ay, 1).
Therefore, the “dressed” density

a7/u(z, Q%) = (T ® ¢z.5) (2, 0(Q%)) (3.30)

is free from mass singularities and can be interpreted as the physical (renormalized)
density of partons of type f in hadron H. In terms of moments, the convolution in
Eq. (3.30) becomes a simple product

as(Q?)
Qf/H(Nsz) = exp {— /(; d/\B’z—f\%—f\g—/\} qB,H(N, as,c) (331)

where expression (3.26) for I has beer used. This factorization is shown diagrammat-
ically in Fig. 3.5.

As can be deduced from relation (3.31), the evolution of the physical parton density
gs/x with Q? in moment space is given by

@50 01N, @) = (M, @) a1V, @) (332

where we consider only the non-singlet case for simplicity of notation. With the
definition

1
'y,,/.,(N,cus)=/0 d:c:c”’qu/q(z,as) (3.33)
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relation (3.32) in x—space reads

QZ%E%/HWfb / % Pa( @) gyl @) (3.34)

Expanding P,/,(z, a,(Q%)) in powers of o,

Pysl@.a) = (52) Piia) + (52 ) PO)z) + O(esd) (3.35)

we see that Eq. (3.34) is the Altarelli-Parisi equation generalized to all orders, so

© 1+
Pq/q( ) Cr (1——:1:)+

Using the expansion (3.35), the density T'y/o(z, &, ) can be written as

Tyl d) =80 -2) - 1 (82) Plio) + 5 (32) P+ f 40 (5

(3.36)
It will be convenient to treat separately the contribution from Zp, the renormalization
factor of the external leg, and hence to introduce the notation

1 A 1
rq/q(z! au;) ZFI‘Q/G(z’as’Z)

ful@ans) = 8(1-2)
- H(2) A+ 5 () #e) + o)} + o
(3.37)
ZF = 1- l{q(as) + 0(-1_)
gq(as) = 6(0 ( ) ) $) + O ) (338)
Pyglz,05) = Pq/«z(:c O‘S) +&g(as) 6(1 - z). (3.39)

An important simplification in the the CFP method is that one has to calculate only
P(l)(z) because the contribution of the wave function renormalization factor Zz at

= 1 can easily be obtained from fermion number conservation and momentum
conservatlon sum rules.

From Eqs. (3.13), (3.14) and (3.17) we find
T =14 PKy+ P(Ko)* — P(KoPKo) + ... (3.40)
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Figure 3.6: Diagrams contributing to P;}g(x)
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This expansmn leads to the next-to-leading order diagrams contributing in the CFP
scheme to Pq q(x) shown in Fig. 3.6.

The labeling of the diagrams follows the conventions of CFP. The solid circle denotes
an insertion of the projection operator P. The diagrams where only one internal
line is cut contain insertions of virtual one-loop diagrams and therefore will be called
virtual diagrams. The real diagrams are the ones where two internal lines are cut.

3.3 Principal value and Mandelstam-Leibbrandt
prescription

Axial gauges are characterized by a vector n, and the gauge condition
n*Aj(z) = B*(x) .

The most common ones are homogeneous axial gauges where B%(z) = 0. They can
be classified to be temporal (n? > 0), space-like (n? < 0) or light-like (n? = 0) axial
gauges. While temporal and space-like axial gauges exhibit problems already at the
free level [41], light-like axial gauge, also called light-cone gauge, can be consistently
quantized and renormalized, as will be discussed below.

Performing perturbative QCD calculations in axial gauges has several advantages.
One is of course the absence of Faddeev-Popov ghosts. Related to this fact that
in axial gauges in general only physical degrees of freedom propagate is the nice
feature that those gauges allow to retain the parton interpretation even in higher
order calculations.

Within the CFP method, the use of axial gauge is crucial to achieve factorization via
the generalized ladder expansion. The use of light-like axial gauge in addition reduces
the complexity of the calculation by reducing the number of diagrams as well as the
complexity of the gluon propagator compared to other axial gauges. It also allows to
establish a link to the OPE calculation.

The light-cone gauge formally leads to a gluon propagator of the form

(=g + L Tl t n,,qu} _ igeb

()—q2+ an ¢* +in

du(q) - (3.41)

The 1/gn—factor in the gluon propagator gives rise to the so-called “spurious poles”,
singular terms which are gauge artifacts in both, the real and the virtual contributions.
Although these singular contributions must cancel in gauge invariant quantities, one
has to use some regularization method in order to be able to evaluate the individual
contributions. As yet, in all calculations based on the CFP method, the principal
value (PV) prescription has been used which is defined as

L tims L — = lim ———
qn §-02 \ gn +id(pn)  gn — id{pn) paY; {gn)? + &(pn)?
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where m#0; 5. =0.
The factor pn in conjunction with the d—regulator is present in order to keep the ¢
dimensionless and to preserve the invarinance of the gluon propagator under a resca-
ling of n. In our calculation we use the parametrization of p and n given in Eq. (2.9)
and Appendix B.
It is well-known! that by applying the PV prescription, Wick rotation becomes im-
possible without crossing a spurious pole, since it places the poles in the complex
go—plane in the first and fourth quadrants. As a consequence the possibility to use
power counting theorems breaks down. Nevertheless, the spurious poles appearing as
In 6, In? §—terms in individual contributions cancel in the sum of all virtual and all
real contributions. Another difficulty of the PV method is related to the ultraviolet
renormalization constants which become dependent on longitudinal momentum frac-
tions and on Ind. These spurious pole terms in the UV renormalization constants of
course will cancel when calculating the full cross section. But in the CFP factorization
scheme, the cancellation would have to take place independently in C and T in order
to preserve the finiteness of the 2P kernels. In fact, this is not the case, but the spuri-
ous poles from Zr cancel with the photon vertex. This means that the factorizability
would be broken in light-cone gauge with PV prescription without local subtraction of
the spurious poles in the UV singular terms. On the other hand, if one does subtract
them, the scheme works, giving the same result as obtained with the OPE technique.
CFP call this subtraction procedure a “phenomenological rule”, being aware of the
fact that there remains some theoretical justification for this procedure to be worked
out.
A further reason to mistrust the PV prescription has been provided from a different
context: Using the PV prescription in N = 4 supersymmetric Yang-Mills theory, there
are divergent one-loop contributions remaining (60}, at variance with the correspon-
ding covariant gauge calculations which do not exhibit such a singularity [41].

After the work of CFP it was pointed out that the principal value prescription is not
consistent with canonical quantization in light-like axial gauge (38, 39]. Canonical
quantization leads to the ML prescription {36, 37] defined as

1 *
= 5 lim ——————— = lim (3.43)
gn  n=0t gn +insign(gn*)  9-0* gngn* + iy

which introduces a second vector n;, “conjugate” to n, which is subject to the condi-
tions
(R*)?=0;nn" #0.
If n, = (ng, @) and if we set nn* =1, then n* = (ng, —7)/2n3.
The first definition in Eq. (3.43) has been given by Mandelstam {36], while the second

! The subject of quantization and renormalization in noncovariant gauges and their use in pertur-
bation theory is described in refs. [41, 42].
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is due to Leibbrandt [37]. The two are identical in the sense of the theory of distri-
butions; therefore one usually simply denotes it by “the ML prescription”.

A crucial property of the ML prescription is that the spurious poles are placed in the
complex go—plane in the same way as the “usual” covariant poles. Therefore, Wick
rotation will not produce extra terms and a generalized power counting theorem for
UV divergences can be established [41].

The origin of the difference between PV and ML prescription can be traced back
to different quantization procedures. This can be sketched by considering the usual
Yang-Mills Lagrangian and the gauge fixing term:

L= —%F;},,F“’“" — A nPA2 (3.44)

which leads in the Hamiltonian formalism to an equation of the form [38]
BN =0. (3.45)

Following now the null-plane formalism and quantizing the system on the surface
zt =0, Eq. (3.45) is not an equation of motion, since in this case the derivative n#,
can be considered as a spatial derivative. If we now impose the boundary condition
that the A% should vanish at 2= = %00, we obtain A* = 0 everywhere, and a forma-
lism which cannot be equivalent to the equal time quantized version of the Lagrangian
(3.44). Thus we are led to a principal value (or an equivalent one-vector) prescription
for the spurious poles [41]. However, according to an analysis done by McCartor and
Robertson [39], a careful light-cone quantization implies that the initial conditions
A% = 0 at z~ = oo are too naive in this context: The unphysical degrees of freedom
must be initialized on a surface of equal z~, satisfying equal z~ commutation relations.
Thus one is lead to the existence of a second characteristic surface which is related to
the second “gauge vector” n* needed to formulate the ML prescription, and the ML
form of the gauge field propagator is recovered.

Hence it can be concluded that even the light-cone quantization does not lead un-
avoidably to the PV prescription. On the other hand, quantizing the theory with equal
time commutation relations in the usual space-time coordinates leads unavoidably to
the ML prescription [38].

In the usual space-time coordinates, we cannot interpret Eq. (3.45) as a constraint,
but rather as a genuine equation of motion since a time derivative is involved. Thus
the A* describe degrees of freedom propagating on the hypersurface ng = 0, tangent
to the light-cone. Carrying through the quantization procedure, one finds the gluon
propagator in the ML prescription [38]. This propagator can be decomposed into a
term corresponding to the propagation of the physical polarizations and into a term
which describes the propagation of scalar and longitudinal gluons in the gn = 0 plane:

< O|T{A%(z) A%(0)}0 >=< 0|T{T2(z)T2(0)}]0 > + < O|T{L:(z) L5 (0)}[0 > (3.46)
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where

o b _ 6% d4qeiq:
<OIT{Tp(x)T;(0)}o > = (21r)4/

¢ +in

(_g + (nuqv + Qllnl/) 2(]"1«‘ _ NyuGov +nv90u 2
v —_—

7 nn* il ! )

a b _ 16“" d4q eiqﬂ:
< 0|T{L; (=)L (0)}o > (27)* / ¢ +qi +in
((nuq,, + gu) 24_":

2, 2
+4q )
z o z 1)
Adding up these contributions and using ¢* + ¢%

= 2(gn*)(gn)/nn* we obtain the
axial-gauge propagator with ML regularization

and

Nugov + Rw oy
—_ 3 (

ab ig® / digel® (nugy + guna) gn* 3
= bl SO AL LARIR L 47
(%) @2mt) ¢+ 9w+ gngn* +1in (347)
The discontinuity of this propagator can be decomposed into the physical axial-gauge
contribution and an unphysical contribution:
2qn* (n
Disc D% (q) = 2r(go) 6% {-—gw, g (AJ:"—@} 8(¢®)  (3.48)
nn g
*
—2mB(gq) 6% {zﬂ (M#—‘L‘—)} §@P+q).  (3.49)
nn* qy
As this is an important equation, we will also give its form with light-cone parametriza-
tion of the momenta: Using

1
= —(go +
g ﬁ(qo as)
2gngn”
2 2 2
= 2 - = —
q 9+4 91 oy q;
one obtains

. gy + 0
DiscD%(q) = 2r6(q) 6" {—gw + (Puty + mug,) - 2 } §(a?) (3.50)
_(nug + 1,
—278(qo) 6* {2q (_qu___q__“z} 5 +q). (8.51)
1
The term proportional to the delta function (g% + g3 ) is the so-called azial ghost
contribution. It has been shown by Bassetto et al. [38] that all vectors of the physical
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Hilbert-space are annihilated by the creation operator of these degrees of freedom.
Therefore, similarly to the Gupta-Bleuler ghosts of QED, they decouple from the S-
matrix. The ghosts have negative mass squared, indefinite metric, they live in the
gn = 0 plane and their polarization sum is

PIRACIACIE 2o (g +amy) (3.52)

13 * 2
A=12 nn i
Tt should be pointed out that the ghost part of the discontinuity of the gluon propaga-
tor is not transverse. Note also that the explicit presence of g2 is a clear manifestation
of the Lorentz non-covariance of the gauge, entailing technical complications in loop-
and phase space integrals.

On the other hand, in expressions (3.48) and (3.49) for the discontinuity of the pro-
pagator with ML prescription, one can identify a cancellation mechanism between
the standard axial gauge contribution and the axial ghost contribution: In the limit
g2 — 0 the spurious poles 1/¢% appearing in Egs. (3.48) and (3.49) cancel each other.
But we will show that this mechanism is more sophisticated in two loops.

Using PV prescription, the second term (3.51) in the discontinuity of the gluon propa-
gator is absent since the PV regulated 1/¢* pole does not have the causality structure
of propagating degrees of freedom.

One can find a decomposition similar to the one in Egs. (3.48) and (3.49) also for the
virtual contributions with the help of a formula given in refs. [59, 60]. Let us consider
the integral

1
A -
b kna) = /qu[q2 +i€] [(q + k1)? + 2€). .. [(g + kn1)? + i€] gn

defined and calculated in detail in Appendix A. Using exponential parametrization
for the propagator denominator factors and the ML prescription to regulate the
1/gn—denominator leads to

(3.53)

n-1

JAMUE k) = ;l;/ day . ..dan-1 exp{i Za,-k? — iﬁlz/z — z2¢}
0 j=1
9
[ara—— eplizg) (3.54)
gt — Rt/z+insign (¢~ — R~ /z)

R = akl+.. 4 anikh_,
2 = a+...+ap-1.

The g—integral

: 2
JML _ /d +dg—dm=-Dg ; exp{iz¢*} }
J T S TR s v insen(q - R /2)

46



has been evaluated using the Cauchy theorem and integrating first over dg*, then
over dg~. The integral over the transverse momenta is a standard Gaussian integral,
and one obtains finally
ML — Tﬂﬂi—{l — exp{2iR*R™ [z — 217|R']}} . (3.55)
¢ R* +inzsign R-
Rescaling a; =z -b; (¢ =0...n — 1) and carrying out the z—integration we get

n~-1

JAMLGE k) = in%l"(n—%)(—l)nﬂ / dby...dbaa §(1 =Y by)
Jj=0
1 m_on + p—12—n
W{[Mn]’ - [M,-2R*R7]? } (3.56)
n-1 n-1
R = Y bk, Ma=RP-) bkl
j=1 j=1

whereas PV regularization leads to

n—1
JAPY(ky  kpy) = iniD(n— %)(4)"“ / dby...dbyy 8(1 - ij)
r
R -n
m MR)E (3.57)

Thus we see that the term proportional to [M, —2R*R™]% " in (3.56) obtained with
ML prescription is completely absent in the PV result (3.57).

In the following, we will distinguish between the “PV scheme” and the “ML scheme”.
In the PV scheme, all virtual integrals are evaluated by applying the PV prescrip-
tion defined in Eq. (3.42) before doing the m—dimensional integration over the loop
momentum ¢g. The same prescription is also used to regulate the spurious poles of the
real diagrams. As explained above, axial ghosts are not present in the PV scheme.
In the ML scheme, the virtual integrals are evaluated using the ML prescription
defined in Eq. (3.43) before doing the g—integration. After having carried out the
m—dimensional integration over the loop momentum, there will be infrared spurious
poles in the integrals over Feynman parameters. Such infrared spurious poles will also
appear in the transverse real diagrams and in the ghost diagrams. We can regulate
these poles as we like, as long as we do it in the same way in both, the virtual and the
real parts. We will present two different methods to regulate these infrared spurious
poles:

1. J—regularization or PVI-regularization
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2. e—regularization.

The d—regularization introduces a regulator ¢ for the spurious poles whereas the “usu-
al” soft and collinear poles (and ultraviolet poles of course) are still regulated by the
dimensional ¢. In the real part, the d—regulator is introduced in exactly the same
way as has been done for the calculation with PV prescription. Of course, the ghosts,
which are not present in the PV scheme, also have to be regulated by the same § in
the ML case. We call the §—regularization PVI regularization because it is a principal
value regularization for the spurious infrared poles appearing within the ML scheme.
The advantage of the PVI regularization originates from the fact that the calculation
of the transverse real part then is identical to the one in the PV scheme. Besides
the obvious advantage of having to do this part of the calculation only once for both
schemes, it also allows to identify those subparts which make up the difference be-
tween PV and ML schemes.

A similar identification can be done in the virtual part, as will be explained below.
This possibility of mapping subparts provided by the PVI regularization is very im-
portant for a proof that PV and ML schemes might be equivalent. We will come back
to this point in section 3.6.

The e—regularization method uses the € from dimensional regularization as a regulator
for all sorts of poles, “usnal” and spurious ones. One advantage of this method is of
course that we do not have to bother whether we regulate the spurious poles in virtual,
transverse real and ghost parts in the same way. The other advantage is of technical
nature: Some integrals, being analytical functions of ¢ only instead of ¢ and d, are
much easier to calculate using the e—regularization method.

To be concrete, the different regularization methods within the ML scheme are imple-
mented in the following way:

1. In the virtual part:
From Eq. (3.56), we see that all virtual integrals done with ML prescription

contain the denominator )

R+ + insign R-
where the spurious poles correspond to the limit RY — 0. PVI regularization
now means to do the replacement

1 R*
PVL: R+ +insign R~ - (Rt)?+ (dpt)? (3.58)
whereas e—regularization means
€—reg.: S S — ! (3.59)

R+ +insign R~ R+
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In general, R* is some combination of Feynman parameters, say u and y, and
the external parameter ¥ = k™ /p*. In the e—regularization method, the limit
R* — 0 will be regulated by terms like (au + by) ¢ stemming from the nume-
rators {M,)% " and [M,, - 2R*R~]3™" in Eq. (3.56).

Concrete examples of virtual integrals regulated in both ways are given in Ap-
pendix A.2.

Comparing Eq. (3.56) with PVI regularization to Eq. (3.57), we see that the
first part of the difference in Eq. (3.56) is then identical to the PV result
(3.57). Therefore the second term, the one proportional to [M, —2R*R~]% ™ in
Eq. (3.56), is an additional virtual contribution only present in the ML scheme,
similar to the ghosts being an additional real contribution only present in the
ML scheme. How these additional ML contributions are related to the extra
terms in the PV scheme, arising there due to the special UV renormalization,
will be explained in section 3.6.

2. In the real part:
As the spurious poles in the transverse real part arise from g+ — 0, whereas
those in the ghost part arise from ¢? — 0, we have the following relations:

For the transverse part: L - g
T (g5 + (0p*)?
2
which leads, using ¢* = qzz-;-_q_,_ and ¢*>=0, to
1 @
- = e, 3.60
2~ @PFEerTY (360

where we could use ¢ = 0 because for g2 — 0, ¢? also becomes on-shell in the
ghost kinematics, as can be seen from Eq. (3.49).

In both, real and virtual parts, the d—regulator of the PVI regularization gives rise
to parameter integrals of the following form, denoted by I and I;:

1

I, = /o duﬁ =—Ind + O(4) {3.61)
1

L = fo du;%—% = -% In? 6§ — %Liz(l) + 0(5). (3.62)

Note that terms of order ¢ Iy, ¢ I; can be dropped since they are of order ¢, whereas
with the e—regularization method, I, appears as a pole 1/€purious; and terms of order
€/ €spurious Give a finite contribution.
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Figure 3.7: Leading order diagrams

3.3.1 Leading order as an example

As a first example, we will rederive the leading order (LO) result for the non-singlet
splitting function Pq(?;(a:), with both prescriptions, PV and ML. This is a rather
trivial calculation that nevertheless displays the main improvements provided by the
use of ML. Furthermore, the virtual graphs in the NLO calculation have the LO
kinematics, such that this section also serves to prepare the NLO calculation. We
note that the LO example has already been worked out in [40] where collinear poles
were regularized by keeping the initial quark off-shell, p?* < 0, rather than by using
dimensional regularization. This is perfectly fine at the LO level, but beyond LO it
becomes technically too involved to keep p? # 0, and in fact the underlying method of
CFP that we are employing has been set up in such a way that it relies on the use of
dimensional regularization, yielding final results that correspond to the MS scheme.
It therefore seems a useful exercise to sketch the calculation of Pq(;’; (z) if dimensional
regularization is used.

From Eq. (3.17) and the expansions (3.13),(3.14) we obtain
1
Fq/q (1', «, E)

where Z is the contribution from the quark selfenergy and PP denotes the pole part.
The diagrams which contribute to the kernel Kj in leading order are shown in Fig. 3.7.
The momenta are parametrized as

Ze {6(1—x)+PPx/(—§:Tlin6(z—z—Z)- [Z:—nKo 1)]}

Zp{6(1-z) + PPI,} (3.63)

i

p = (POP) (P>0) ; n=(20-2

2P’ 2P
E+k2 o K+ K2 kn
— P~ L . - . 2
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Real contributions

Inserting the leading order expression for the kernel K, the integral I, is given by

In = P Orgme [ Goia-OTr [ kot o 4]
: / L S(p—k—1) -Disc[;f—"j%] (3.64)

The discontinuity of the gluon propagator in the PV scheme is given by

Disc?¥ [;-?‘;—%)7] = 210(l0) §(12) - du (1)
nyl, + nl
dl“’(l) = _gﬂy + _"_T—”

whereas in the ML scheme, as explained above, we have

Disc™™ [%t%] = 276(l0) [3(%) - (1) + 6 +12) - 5,0 1))
swll) = —21-"“—1”%ﬂlﬁ (3.65)

such that in the ML scheme, we have an additional diagram, denoted by (LO)gh°s"
Fig. 3.7.

Using the parametrization of momenta given above and evaluating the trace in m =
4 — 2¢ dimensions leads to the following expression for the transverse real part?

e = 0 2l ag [T B it ()t + -0

271 k2|
1 a, 1+1° —e .
=~z Cr py g 1-2) + finite (3.66)

Using the identity

—1—e __ 1 _ 1 — ln(l—-z)
(1-=) ——;6(1 $)+(1~z)+ ( = )++O(e2),

2We can consider the last integral over k? as either infrared or ultraviolet divergent, depending on
how we define the integration range. CFP treat its divergence as a collinear infrared singularity, using
an ultraviolet cutoff Q2, given by the large momentum scale of the process. Collins and Soper [43]
instead introduce an infrared cutoff and consider the last integral as an ultraviolet divergent integral.
As we only need the pole part of the k2 —integral and since the integrand before the k°—integration
is finite, there will be no Q*—dependence in the final result for Ly/ql@s€).
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where the “plus” distribution has been defined in Eq. (2.22), we obtain

2
PP{Iis —~§cF ;ﬂ{ Z5(1-g)+ (ifz)+} . (3.67)

In the PV scheme, we do not regulate the singularity at z = 1 in (3.66) with the
dimensional ¢, but with &, according to [29]

1 1—2 1
iz (1—z)2+62_106(1‘z)+(1—z)+

such that we have, since Itmns is the only real contribution in the PV scheme,

PRy (a: as,—> zp{a( D-1Cr 2 ((111’“)++210( ))} (369)

In the ML scheme, we additionally have to calculate the ghost contribution to obtain
the full real part. Inserting the matrix element

21~
M® =Ty [_/L ey /c] sw(l) = 4k - T (3.69)
stemming from the ghost part of the gluon propagator, into expression (3.64) leads to
¢ Q? 2 1%
Izhost —2Cp == (?ﬂ.éu )) ( - )/ d[lkk;ll / dk2 (kL —l-¢ (3.70)
0

Note that 12 = k% and that the factor I~ in (3.69) is cancelled with a factor 1/1~ in
the ghost phase space, stemming from

1
S +12)=6(2%7) = —=5(F 5.
F+B)=0602")= 6(l)+2[+ @)
The term proportional to §(I~) vanishes when being combined with M because of
the factor {~ in (3.69).
After the substitution
=Ky ; 0Sy<1

one arrives at

PP{Ies} = (5(1 -z / dyy 't = . Cr25(1 - 1)- 2 (3.71)

“ € 2 €

such that the result for Ig;“’s‘ combined with I;*** from Eq. (3.67) is completely finite
in a distributional sense:

a, 1+22
PP+ I8} = ~1Cn gt (“"1_x‘)
1 a;, 1+z
I‘q/q (z,as,z) = Zp {6(1 z) — Cp 57 _$)+} (3.72)
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Therefore, in the ML scheme, the ghost contribution regulates the transverse real part,
which in the PV scheme, where these ghosts are not present, is singular at x = 1,
the singularity being contained in Iy. In the PV scheme, it is the virtual contribution
which regulates z = 1.

Virtual contribution

The contribution Zz from the quark selfenergy insertion on the legs of the ladder
shown in Fig. 3.7 can be extracted in two ways: Either by direct calculation, or by
using quark number conservation. In order to guarantee the conservation of quark
number, we must have

1
1
/ deTyale, 0 1) = 1 (373)
0

Therefore the full answer for T has to be of the form

Fq/q(z,as,%)=6(l- 2) -~ Cp 2t {11‘:’” —b(1-z / dy1+y} (3.74)

which is, using the plus prescription

1 _ loz,3 (0)
To/e (z,a;,;) = §(1~2z)- ~5r o Pyolz) (3.75)
O(r) — 1+2 3ol 1+ 2
Pq/q() = CF{(1_$)++25(1 m)}_CF[l—fE .

The direct calculation proceeds in the following way:
Zr is defined as the residue of the pole of the full quark propagator

G(p) ~ Zp %2& for p* = 0. (3.76)

The full quark propagator is related to the selfenergy by
i
C0 =3

where the general decomposition of ¥ into invariant amplitudes has the form

2
E(p)=A,{)+B/L2—pZ-’-T-L+Cﬁ*2—I:E. (3.77)

Note that the vector n* only is present in the ML scheme, so C' = 0 in the PV scheme.
The presence of n* also influences the possible form of A, B and C: In the PV scheme,
A and B can only depend on p?, pn, ¢ whereas in the ML scheme, A, B and C can
depend on p?, pn, pn*, nn* ¢, containing therefore the scale invariant dimensionless
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quantity

Xp = 2pnpn*/(nn*p?) which diverges in the limit p> — 0. This issue will be very
important in two loops.

Inserting the above expression for E(p) into G(p) one obtains after some algebra

_ 1 b B 4 _ c
cl) = 1—0{p2 1-A2pn 1—A2p‘n*} (3.78)
BC
= A+B+C+ —F——+ 3.79
7 Xp(l - 4) ( )
_ 2pnpn*
Xp - nntPZ

The general expression for £(p) in light-cone gauge is given by

() = =f(p)+24p)
2 [ 479 2 (8t A)w {_ gt + qy
g / @ proie | T m

i

} (3.80)

where ©F denotes that part of the expression which stems from the Feynman part
(the part proportional to —gy,) of the gluon propagator, &4 denotes the remaining
axial part. ZF can be written in terms of simple loop integrals as

£7(p) = ¢°Cr (( - M =2 (I ) + 1 IE D) (3.81)

z4(p) -4*Cr

(zﬁ)m (20° A I D)+ AT b+ pIL(DY £) (3.82)

The integrals can be found in Appendix A.3. In terms of form factors we obtain

) = O i P (3.83)
£Ap) = ~Cr (21),,,%{2 #5° (By = Bo) + 2 Bal frn’+ fipn'— #'pm)}
(3.84)

Selfenergy in the PV scheme

Note that in the PV scheme the form factor Bj is zero since there is no n* present in
this scheme. In the PV scheme, the form factors are given by

2 1
T, ;/ dyy (1 =9)" = +2+0(9
0
BFY =13
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BPV - l/ld —e(l_ )—e Y
0 - € Jo Yy Y y2+62
I
= ?O—Il+Li2(1)+O(e) (3.85)

Hence one obtains, after having subtracted the UV poles and having combined Egs.
(3.83),(3.84) and (3.77)

S Ay
AT 4 BY = == Cp32{5 - 2 + O(9)} (3.86)
such that we have according to Eqs. (3.78) and (3.76)
vopp_l - PV 4 P 51 Lo Qs
_PP1_0—1+PP{A +BY}+ 0(af) =1 eCsz{2 21} (3.87)

Inserting the result (3.87) for Zr into expression (3.68) we end up at expression (3.75)
again, thus having shown that in the PV scheme it is the virtual contribution which
regulates the singularity at = 1 from the real contribution.

Selfenergy with Mandelstam-Leijbbrandt prescription

In the ML scheme, we obtain after insertion of the ML form factors into Eqgs. (3.83)
and (3.84)

ML) = Op (ot
AMEp) = Cp ()

11+ %0% %) (3.88)

ML — Qs (L 2y—e Y _XplnXp
B“Lp) = Crz(-p") {2 [Lir(1 X,,) Lia(1) = =271

Xp p 0 Xp
2L 4 ox, + 22 :
+[€W+ Xp + l—xp]} (3.89)
2
a; - Xp In X;
CHip) = Crgt(p"){ - -2 - 2222} (3.90)
u P
Zpn pn”
Xp = nn*pz

The extraction of Zp in the ML scheme is quite different from the one in the PV
scheme, since we have (1—c)™* # Zr due to the presence of the n*—term in Eq. (3.78).
In fact, it has been shown (41] that there is an additional renormalization constant Z,
necessary to account for the renormalization of the additional structures due to the
presence of n*. The quark field then is renormalized according to

= (ZZ) - (- 2 Ay (391)

2nn*
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In our special case however, one can find the appropriate expression for Zr by using
the fact that n* has to be proportional to p in the limit p? — 0,5, — 0. This is
because in the limit p? — 0, . — 0, one has three light-like vectors with vanishing
transverse components, but only two of them can be independent. So choosing n and
p as independent light-like vectors, n* has to be proportional to p.

In more physical terms, one can argue that for on-shell incoming momentum p, this
incoming momentum can always be chosen to be equal to n*, choosing the axis such
that the transverse components are zero.

Then one has according to (3.78)

- _t J#_B A __C m#p
¢l = 1—0{}72 1-A2pn l—Ax,,nn“pz}
i {g_ B A c _#
-0l 1-4A2mn (1-Ax

Thus from (3.76) and (3.92) we conclude

—

} forn*—p (3.92)

-1 c
Z}A,“’ = PP{(1-o0) (l—m)}
= 1+PP{A+B+C(1—XL)+O(%2)}
1 as 3
— 1_26'15._2_7;.5 (3.93)

Inserting this result into Eq. (3.72) gives the result (3.75) already obtained in the PV
scheme:

2
Tu/q (za—i—) —6(1—2)— %cpgi {(—11;—%+§—5(1—z)} (3.94)
To summarize, the advantage of the ML prescription at the LO level mainly amounts
to producing truly finite results for the 2PI kernels, as required for the CFP method.
Furthermore, there is no need for introducing renormalization constants depending
on additional singular quantities like I, that represent a mix-up in the treatment of
UV and IR singularities.

3.3.2 UV renormalization with PV respectively ML prescrip-
tion

Treating the UV renormalization of the virtual diagrams, it has to be stressed again

that in the ML scheme, the UV renormalization procedure is formally solid and well

understood, although being not straightforward due to the additional counterterm

structures containing n and n*. In the PV scheme, however, the UV poles have spu-
rious infrared divergent residues Ip and the renormalization constants depend on the
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Figure 3.8: UV renormalization constants with PV prescription

longitudinal momenturm fraction z. Although the Ward identities are still fulfilled {29],
it is not a priori clear how to deal with these spurious poles and z—dependent terms
in the UV renormalization constants. As we explained in the beginning of Section
3.3, the phenomenological rule of CFP is to subtract them locally, since this preserves
the finiteness of the 2PI kernels Kq and turned out to give the right result. But there
is no warranty that this procedure will also work in three loops.

In both, PV and ML schemes, the counterterms are obtained by inserting the UV di-
vergent one-loop structures into the corresponding virtual diagram. In the PV scheme,
this leads to an expression proportional to the Born term (the leading order splitting
function Pi</°j); i,7 € {q,9}) times the renormalization constant Z,) for the correspon-
ding one-loop diagram (a). The one-loop diagrams are collected in Fig. 3.8 and the
corresponding renormalization constants in the PV scheme are given by Egs. (3.95)
to (3.100).
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1 1
Z0 (@1, 20,35) = 14 22— (Cp — =N,) (—4lo — 2Inz1 ~ 210z, + 3) (3.95)
27 264y 2
as 1 3
Z9 @y, 20,25) = 1+ 5r5e Ne(=4h ~Inoy —Inz, — 2lnzs +5)  (396)
1
Z(G‘Q(zl,xg,zg,) = 1+ N, (—6Ip—2Ilnz; — 2ln2z, — 2Inzs + 1—1)
27 2€4y
v o, 1 4
Z0 (@, 22,75) = 1+ e (=3) (3.97)
as; 1
Zr(z) = 14355~ Cr (4l +4Ins-3) (3.98)
a1 1
Zs(z) = 1+ 5 T N, (4o +4lnz 3 ) (3.99)
_ o, 1 4
Zuy(@) = 1+555—Ty(3) (3.100)
NZ-1 1
Cr = 2N, Tr=3ns

Note that Z(G'? contains both, the “triangle” and the “swordfish” (see Fig. 3.9) con-
tribution to the three-gluon vertex.

One can check from Egs. (3.95) to (3.100) that for a physical quantity, only the well-
known renormalization of the bare coupling remains:

1
o® = au* [Z;V)(xlsx23x3) + qu (21, %2,73)] - (Zr(21) Zp(22)[Z5(23) + Zn,(23)])?
1 1
a,u (1 +2 {—-1——Nc + §Tf] +.. )

27 2%, - 6

Furthermore, the QED Ward identity can be easily checked also for x—dependent
renormalization constants: Considering topologies (c)virt and (e) of Fig. 3.6 and the
counterpart of topology (e) with selfenergy insertion on the p—line and using kn =
z, pn =1, we find the following relation for the one-loop insertions:

(Z¥(z) - 1]+ % (Zp(z) — 1] + % [Zr(1)-1]=0

But it has to be pointed out here that according to the CFP ladder expansion of 2P1
kernels Ky, the diagram with selfenergy insertion on the p—line does not contribute
since the kernels K do not contain lower lines, whereas the diagram with selfenergy
insertion on the k—line (topology (e)) does not obtain a factor 1/2 since the k—line is
an internal line. This is a subtle point, since we then obtain the following contribution
proportional to Cr:

s 1
(28 (2) = 1]+ Zr(2) ~ 1] = 22— Cr - Inz
uv
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As we will see in section 3.4, this remaining Inz term is important to obtain the
correct answer for the NLO splitting functions in the PV scheme.

In the ML scheme, the renormalization constants are really constant, but the coun-
terterms are not proportional to the Born term due to the presence of n* in the UV
divergent one-loop structures. The latter have been calculated in [37, 47, 48, 49, 50]
and are given in Fig. 3.9 and Egs. (3.101) to (3.104). We only show the structures
we need for our calculation, details can be looked up in [41, 42]. As expected, the
structures are gauge dependent and Lorentz noncovariant. Even more, the expres-
sions for the nonabelian quantities I1% (1) and I'$*(l) as well as some structures
contained in T};1223(py, py, pg) and S2142%3 (py, po, p3) (see Fig. 3.9) are nonpolynomial
in the external momenta, owing to terms like 1/In. It is an important feature of the
ML prescription that these nonlocal terms exist, but decouple from physical Green
functions [55] thanks to the orthogonality of the free propagator with respect to the
gauge vector, n,D#(l} = 0 (this has actually been an important ingredient for the
proof [55] of the renormlizability of QCD in the ML light-cone gauge). Thus, the
nonlocal terms never appear in our calculation.

8 = z‘gT“(Cp—%-)ﬁ’— [u+;21?[/m;— ﬂ*nu]] (3.101)

AT €4y
Nea, 1
G0 - 4 a_C 78
roel) igT > e [7# — — [An+ A, — 2/z[l ]n“]]
(3.102)
aza3 N 21828, Qs 1 4
Tt (1, pa,p3) = —ig— 3 °f N o [3/1“1“2,,3 +2C s + - - ] (3.103)
o N, as 1

SZiZiu’s(Phpz, P3) = —ig fawza3 4;_ . [GAmmus - chwws +.. ] (3.104)

Aprpass = uaps P2 — D3y + G (P3 = P1) iz + s (P1 — P2)ss

Crprps = guzusnzl (p2 = p3) -n+ gﬂsmn;, (ps—p1)-n
F s (P1 — P2) - 10

59



£ n(k) =i S [k 2 Alkne)— A (kn))]

4T eyv

lwb I 6 (1) = 152 2263 (2 g — L)

=21 (i, fy, + i, )]

fpy=mn, - %1,; ﬁ;:@—f—{‘;‘lnﬂ
l,a l,b o T} sal

oo oot T2 (1) = i I8 (1 g — L)

k k

l=p—k,a l=p—-k,a

rie(l) roe)

p 4

P1, a1, /1 gy D, a1, 1

D3, 03, 43 D3, a3, 13

<« <+ perm.

41220
y T (e o) b Sz (o1, P2 p3)

D2, G2, 2 D2, G2, 2

Figure 3.9: UV divergent parts of one-loop diagrams with ML prescription.
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3.4 Next-to-leading order for colour structure C%

Since every colour structure defines a gauge invariant contribution, we can first re-
strict our study of the ML prescription within the CFP scheme to the terms that are
proportional to C% [65]. Besides the obvious advantage of reducing the number of
contributing Feynman diagrams, this colour structure has two additional simplifying
features: (i) the ultraviolet counterterms satisfy the QED Ward-identities, (ii) the
sums of the real and virtual contributions are separately free from soft and collinear
singularities and from spurious poles. The axial-ghost contributions, however, remain
important and therefore the CZ structure gives a good opportunity to study these
contributions in isolation from other complications. In order to be able to exhibit
clearly the cancellation mechanism of the spurious poles, we use PVI regularization
throughout Section 3.4. Thus all spurious poles appear in terms of I, and I; defined
in Eqgs. (3.61) and (3.62), whereas the “physical” ultraviolet and infrared poles are
still regulated by dimensional regularization as usual.

As we know from Section 2.1.4, the non-singlet evolution kernel Pq(/l; at NLO is given
by

(1 _ pvi1) V(L) S,(1)
Poa=PFyy +Fy g’ +2n; Py (3.105)
The diagrams contributing to Pq(l‘; are the same with PV and ML prescription since
they do not contain any virtual loop or cut gluon line. Therefore we do not need to
consider Pq(/l; in the following.

The Feynman diagrams contributing to the part of f’qv/él) being proportional to C%
are shown in Fig. 3.10. We recall that, as indicated in Eq. (3.39), the “hat” means
that we do not include the contributions at z = 1 here. The axial ghosts are denoted
by dotted lines replacing cut gluon lines.

Virtual corrections

The virtual part of the C% colour structure is given by topologies (c)virt and (e) in
Fig. 3.10.

One special feature of the C% virtual part is that in the ML scheme, the UV poles
cancel between the C% part of the vertex diagram (€)yi, and the quark selfenergy
diagram (e), whereas in the PV scheme, this cancellation is incomplete due to the
fact that the UV poles depend on Ij and logarithms of the longitudinal momentum
fraction z, as has been shown in the previous section. We will see that this difference
in the treatment of the UV poles leads to extra terms in the PV scheme, which in the
ML scheme will be accounted for by the ghost contributions.

The second special feature of the C% virtual part is given by the fact that each virtual
integral appearing in this part is separately free from spurious poles. The reason for
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this can be deduced from Eq. (3.56): Consider the term
1 n .

—[M,]Z" -2R*R7]7 " 3.10

Rt 4+ insign R~ {[ JB7 — Mo - 2R R } (3.106)
This expression is vanishing in the limit R* — 0, R* = 0 being the spurious singu-
larity, as long as there is no conflict with the limit M, — 0. In the C% part, M, is
always different from zero, such that the spurious poles appearing in the first part of
the difference in (3.106) will always be cancelled by the ones contained in the second
part, no matter how we regulate them.

In the following, we will give explicit expressions for the virtual diagrams in a scheme
independent way by using the integral form factors defined and given in Appendix A.
Inserting the form factors obtained in the PV scheme, the well-known result for the
virtual part of the CFP calculation is reproduced. We will proceed by first calcula-
ting the one-loop insertions, extracting their UV poles, and then evaluating the UV
renormalized contribution to [ /L(z €).

Quark selfenergy

The quark selfenergy (see topology (e) in Fig. 3.10) already has been calculated for the
leading order and is given by Eqs. (3.83) and (3.84), where the external momentum
of the selfenergy insertion is now k instead of p. Furthermore, we set p = n* since p
has to be proportional to n* if we have pn # 0 and P, = 0, as has been explained in
Section 3.3.1. For all virtual diagrams we use the condition I = 0 coming from the
one-body phase space. Using these kinematics and m = 4 — 2¢ we have

() = TR +TAR)
SF(k) = m)ka(’" 2 r1, (3.107)
9 Q¥

SAKk) = -Cr F oo k (2 AK? (Pu~ Po) + Po(p b K+ K b A1)

i 2

Inserting the above expression for £(k) into the full diagram leads to
(g k2. ¢) := g N . _
T (z, k% ¢€) : (k2) T’r[ i ES Br p7 Kdu(p—F)
= Cha’(4n)T(1+¢) (k)¢
2(p 2
= {Pyalz, O [To (e~ 1) +4 (P~ P) + = P

+2P, (1 “_”;)} (3.108)
- 1+2?
Pyolz,€) = T e(l—z)=pulz)—e(l-z); z<1. (3.109)
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Vertex correction

The vertex insertion in diagram (c).ir can also be split into a Feynman part and an
axial part:

L., = I,+T8,
N., 2¢°

Toe = T(Cr—)

3 Gy LRI (kDb b T 6,0) +9 2 AT (op)

+7 Y I35 (k. )]
~el kv BIE(6,0)+ 7% BIE (D) Fny JE(K,2) + 707" I (k. )]}

N,
Ty, = T (Cr— ?c)(l“‘{‘u +T4%,)

3
Th = Gy h A IR A w IR+ b AIEE) + 0" AT}

3
M = Gy B 8 AP + Ko Tlp) A
+ kY I5 kD) Y b At FY Y Taa(kp) AY

Inserting the expression for ', into the full diagram and defining T analogous to
T(®) above, we obtain for the Feynman part

TO- (5 k2,9 = Cr(Cr— 5%) sk (4n)T(1 +¢) (k)™
AR~ Rt 2 - ORe— (1 - O(Re+ B} [z ¢(1 — )]
42 Re (1 — €)? Pq,q(x,e)} (3.110)
and for the axial part

TO(. k) = Cr(Cr ~ 3o (4n)T(1 + 0 (k)

{_;1_ ((Po - P) Pyglz,€) - Py i tz)

z

22 (Bo~ By~ By) Byylz o

+2[( S+ 80+ (2= 2) S - 250+ Ro) Pz, )

—2(Ry + Rz — Ro) i J_’i] } (3.111)
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The form factors are defined and given in Appendix A.3 both for PV and ML pre-
scription.

Ultraviolet renormalization

We use dimensional regularization to regulate both the ultraviolet and the infrared
singularities. Doing the loop integrals we first must assume that in m = 4 ~ 2¢, ¢
is positive. After adding the UV counterterms for the quark selfenergy and vertex
one-loop subdiagrams we obtain an ultraviolet finite answer. Then we can analyti-
cally continue the result to negative values of ¢ and go on with the evaluation of the
Feynman parameter integrals. Thus we should keep p off-shell first and set it on-shell
only after ultraviolet renormalization. It is known that the sum of the two ultraviolet
counterterms for the vertex and quark selfenergy diagrams in regular gauges vanishes
as a consequence of Abelian gauge invariance.

Inserting the UV divergent one-loop structures given in Section 3.3.2 into the corres-
ponding full diagrams, we obtain the counterterms for these diagrams. In particular,
we find for the C%—case:?

12, -
TOML C}aszé—;BPq/q(x:‘)"Z]
uv
N, 12 o
T = Op(Cr - 220 23 Py(a 0 +2)
€uv T

12,
T&}’PV = C}a,zéu—v p w/a(Z,€) [3—4Iy — 4Inx]

Ney 512
TR = Cr(Cr-Ha’ =

= P/a(%, €) [=3 + 41, + 2Inz]
UV

and so

(e+en) ML _
Tuv,cg 0

T&:gg'}’v = —C}aszglll—v—i- wa(Z,€) lnz. (3.112)
This is an essential difference between the PV and ML schemes. The leftover UV
singularity (3.112) in the PV scheme is a remainder from the contributions of the
spurious poles to the UV renormalization constants. In the ML prescription, there
are terms in the UV pole parts of the single diagrams which are even not proportional
to the Born term pgg(z), stemming from the n*—part of the virtual integrals, but
those terms completely cancel when summing up diagrams contributing to a gauge
invariant subpart. Therefore it does not matter in the ML case whether they are
subtracted or not. In the C% part we even have

{e+cv), ML __ ple+ev) ML _ mpfe+ey),ML
Tren ) - Tbate - T( )

3Note that the e—dependence in f’,,/,,(a;,e), stemming from the trace of the diagram with the
one-loop counterterm insertion, has to be kept to obtain the complete counterterm.
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and the contribution to 1"( o(%, €) is, according to Egs. (3.17) and (3.37), given by*

A(Letev),ML = 1 (4m) / 21 |1.2|~1~¢ e
e (z.6) = PP{s s k| K"z (1 - 1)
2T+ ML(z,kz,e)} (3.113)

Details about the phase space integral are given in Appendix B.1.

In the PV case however, the leftover term in (3.112) leads to an additional contribution
to the splitting function in the following way: The renormalized expression for the
sum of diagrams (c)vix and (e) is given by

v PV
Tt(::cv),PV = Tle+e),PV _ T{(Je\;'c WP . (3‘114)

Note that T(+<)PV contains a factor of |k?|~¢ whereas Tier """ does not. Inserting
the UV subtracted expression (3. 114) into the k2—integral (3.113) and disregarding

for the moment the finite parts of Tie """ we obtain

1 (4m) / 22| 1=e 1 — (e+¢y),PVsing
P{—— 1611'2 1"(1 dk®| (k| z(l-z)"¢ 2T }

( )2(1 g 0 dlkz]]kQ]_ ~Pyjala, e)[ 2]k2|" +2P—15£]

1203

= -5 CF(27(’) (2 lnzpqq(z) —2Inz(l -2+ pgglz) In(l—z)]+ (’)(e))

The double pole term has to be dropped since f’q(/lg () is defined through simple poles

in € (see Eq. (3.37)). But the single pole term gives a contribution to }5;/13(:5) which is
exactly the difference of the virtual contributions (PV-ML)y; obtained by using PV
respectively ML prescription, as can be seen in Tables 3.1 and 3.4. This difference
will be compensated by the ghost diagrams present only m the ML case.

The complete contributions of the virtual diagrams to Pq )(z) are listed in Table 3.1.
Virtual diagrams where the cut line i 1s a ghost line would give a contribution at z =1
only, so they do not contribute to Pq y q( z) according to Eq. (3.39).

Real contributions

Now we will give some details concerning the calculation of the contributions from
the diagrams of topologies (b),(¢)real,(h) and (i). Topology (i) represents the subtrac-
tion term P(KyPK)) in Eq. (3.40) and consists of two Born diagrams linked by an
additional projection. Diagram (c)rea has no cut gluon lines, therefore it contains no
axial ghosts.

4A factor of two has to be included for diagrams which are not symmetric.
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Cr
Finite part
emr | comr | epv [ ovpv | (e+e)me | (e+¢)pv
D) 6 | 6 | 7| 7 0 0
Pee(z) In’z 0 0 | -2 2 0 0
Pg(z) Inzln(l-z) § O 0 -4 2 0 -2
Pgqo(z) Inz -1 1 0 0 0 0
Pgolz) In(1 — ) 3 -3 3 -3 0 0
Peg(2) Lia(l — ) 4 -2 0 2 2 2
Pyq(2) ©2/3 -2 2 121 2 0 0
z/(1- 1) 2 | 20| o 0 0
T -2 3 -3 4 1 1
1 -2 2 3 -3 0 0
zlnz -1 1 4 -2 0 2
Ing 1 -1 -4 2 0 -2
In(l1-x) -2 2 0 0 0 0
Spurious poles
Pog(z) Ip In (1 ~ ) 0 0 -4 4 0 0
Pog(z) Ip Inx 0 0 |41 4 0 0
Poq(z) Io 0 0 0 0 0 0
Pegl) I 0 0 4 -4 0 0
zl, o | o | 4] 4 0 0
Iy 0 0 -4 4 0 0
Ultraviolet poles
Peq(2) To/€uv 0 0 -4 4 0 0
Pog(T) Inz /€y 0 0 -4 2 0 -2
Pog(2)/€uv 3 -3 3 -3 0 0
1/en 21 2 0] o 0 0

Table 3.1: Contributions to P;};(x) from the virtual diagrams proportional to C%.

The calculation will be divided into transverse real part and axial ghost part. The
spurious poles present in transverse and ghost parts will be shown to cancel. This
cancellation can be regarded as being twofold:

1. Within a given topology:
The spurious poles of the transverse contributions are always regulated by the
corresponding ghost contributions of the same topology.

2. Within transverse part and ghost part separately:
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The sum of all transverse real diagrams is free from spurious poles as well as
the sum of all ghost diagrams.

Note that these two properties are only true in the case of the CZ colour structure.
In the Cr N, and N? colour structures treated in the next section, the spurious poles
do not cancel separately in virtual and real parts in the ML scheme, and therefore the
feature that all spurious poles in the transverse real part are directly regulated by the
corresponding ghost diagrams within the real part is destroyed. As a consequence, it
is important there to regulate the spurious poles in real and virtual parts in the same
way.

But in the case of the C% colour structure, due to the fact that the virtual part is sepa-
rately free from spurious poles, we can choose in the real part PVI- or e—regularization,
independently from what we did in the virtual part. We did the calculation with both
regularization methods, but only the result obtained with the PVI regularization
method will be shown here since this is the method where the cancellation mecha-
nism for the spurious poles is exhibited in the clearest way.

Physical contributions

The physical contributions to the real part, containing only transverse gluon propa-
gators, are given by topologies (b°11), (C)rea, (A1) and (i°1) shown in Fig. 3.10. The
typical integral we have to evaluate for topologies (b),(c)rea and (h) can be written as

@_1 ¢ [d& o (@
I = 5—(2—’”)—7: —k-rdk‘_]_ d@(ll,lz) -M (I,ll,lz,k,é) (3115)

where d®(ly, 1) is the two-body phase space for the two cut lines and M® the matrix
element for topology (a).

All details about the phase space are given in Appendix B.2.1. The matrix elements
have been evaluated by using FORM [61], the phase space integrations have been
implemented in Mathematica [62].

The results for the individual diagrams are shown in Tables 3.2 and 3.3.
Ghost contributions

The diagrams considered in this section are given by topologies bP12 hDPiz pDz D12
and iP#) in Fig. 3.10. Topology (b°#) leads to the same result as (b”12) because the
diagrams are symmetric under exchange of [, ¢+ lo. Diagrams with two cut ghost lines
only give a contribution at z = 1, which has been omitted since it can be obtained
more easily from fermion number conservation.

The phase space for diagrams with one ghost line and one gluon line cut is given by
(for details see Appendix B.2.2)

1 1
PSghost = Fe ‘kZ‘z—Zc $—1+e(1 _ m)“ / du’u—‘(l _ u)l—c/ dy y—e
0 0
! /1 dw[w(l — w)]"1¢ (3.116)
B(l T_ 6) A w . .
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The results for the ghost diagrams are given in Tables 3.2 and 3.3. Table 3.4 shows
the results for both, the real and the virtual part in the PV and ML schemes, where
real means standard plus ghost contributions in the ML case.

Comparison of PV and ML schemes for the C% part

It is instructive to make a detailed comparison of the C% part results obtained in
the PV respectively ML scheme. The necessary informations are summarized in Ta-
bles 3.1 to 3.4. In evaluating one-loop insertions in the ML scheme, the spurious
poles cancel within the loop integrals, whereas the PV integrals can be recovered as a
subpart of the ML integrals, this subpart being plagued by spurious singularities (see
Eqgs. (3.56),(3.57) and Table 3.1). Nevertheless, the sum of all virtual contributions
in the PV scheme is free from spurious poles. The difference (ML-PV),;; of the sums
of all virtual contributions calculated in the ML respectively PV scheme is due to
the second term in (3.56) which is not present in the PV case (3.57) and due to the
difference in the UV counterterms.

The differences in the real contributions can be organized according to the expressions
(3.50) and (3.51). The first term is the standard axial gauge contribution, the second
term defines the axial ghost contribution. Using PVI regularization, the transverse
real contributions are exactly the same in the PV and the ML scheme, such that the
difference (ML-PV),eq is entirely made up by the ghost contributions present only in
the ML scheme. These ghost contributions exactly compensate the difference found
in the virtual part, as can be seen from Table 3.4.

From Tables 3.2 and 3.3, we see that the individual terms in the ML scheme are
more regular than in the PV scheme. If we combine the contributions of the diagrams
(8P, BP13 pP2) or ((h— 4)P1, (h—i)Ps2, (h —i)P2), their sum is separately finite,
whereas in the PV scheme, only the contributions (5”1, hP11,iP11) exist, which are
finite only when combining the different topologies. Consequently, the sums of the
ghost and non-ghost diagrams in the ML scheme are also separately finite.

In summary, the evaluation of the CZ part of the two-loop splitting functions in the
ML scheme is a consistent method. The axial ghost contributions are important to
get the correct answer. It is remarkable that the phenomenological rule of CFP for
subtracting all ultraviolet contributions (spurious and non-spurious ones) leads to the
same additional terms as provided by the axial ghost contributions in the ML scheme.
It is interesting to see the differences between the two schemes and the higher con-
sistency of the ML scheme also for the remaining colour structures, treated in the
following sections.
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3.5 NLO techniques and results for CzTf, CpN, and
N? parts

The following three subsections treat the remaining colour structures CzTy and CrN.
of the non-singlet splitting functions and the contributions proportional to N2 of the
gluon-gluon splitting functions.

The calculation of the CrN, part turned out to be considerably more complicated
than the C% part calculation. Especially the real diagrams of topology (d) where
one cut gluon line is an axial ghost (see Fig. 3.14) turned out to be technically too
involved to be calculated analytically. Therefore we had to recur to another method,
which we will call “imaginary part method”: Instead of calculating all real diagrams
via the two-body phase space described in Appendix B.2, we calculated the full two-
loop diagram and then extracted the discontinuities, the latter corresponding to all
possible cuts of the given diagram. This turned out to be the most convenient method
for all topologies which have two cuts, leading to a real and a virtual diagram, as it
is the case for topologies (f) and (d) in the CpN, part (see Fig. 3.14). Using this
method, unitarity is manifest: The sum of all cuts of a certain topology is free from
soft and collinear poles and, even more important in our context, is free from spurious
poles.

But it has to be stressed that the cancellation mechanism of the spurious poles in
the CpN, part is quite different from the one in the C% part. It is no longer the
case that the spurious poles of the transverse real part are fully regulated by the
corresponding ghost contributions. Thus, besides the well-known fact that the usual
soft and collinear poles cancel between real and virtual cuts of the same topology, we
also found that there are spurious poles in both, real and virtual parts, which cancel
only in the sum.

The main virtue of the “imaginary part method” is given by the fact that the discon-
tinuity corresponding to the real-cut diagram already contains both, transverse and
axial ghost contributions, such that for example the diagrams (d)i, and ()&%, can
be done in one step. Nevertheless, it is quite interesting to have separate results for
transverse and ghost parts. We will explain in Section 3.6 how we managed to obtain
separate results for ghost— and non-ghost parts even when applying the imaginary
part method.

The key features of the imaginary part method can be studied considering the colour
structure CrTy to which at z < 1 only topology (g) in Fig. 3.6 contributes. The
calculation is rather trivial since the inner loop contains no gluons and thus no ML
or PV prescription is needed for this subpart. Therefore we will consider the colour
structure CrT very explicitly, as a pedagogical example, in Section 3.5.1. In addition,
we will calculate the full contribution at z = 1 for the C¢T} part, which requires the
calculation of the two-loop quark selfenergy contribution shown in Fig. 3.13. As
in all previous calculations the contributions at z = 1 have never been explicitly
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calculated, but instead have been deduced from fermion number conservation, our
calculation constitutes not only a test of the ML prescription in a wider range, but
even a more fundamental test of the CFP method itself, since only after inclusion of
the z = 1 contributions the crucial issue of the finiteness of the 2PI kernels in the
light-cone gauge will be fully checked. This finiteness even at z = 1 actually has
been checked [66) for all colour structures treated in Sections 3.4 and 3.5, but we will
show it explicitly only for the C¢Ty part, where we have also calculated the finite
contributions at z = 1.

After having set up the imaginary part method in the CrT} colour structure as a ped-
agogical example, we will apply it to the Cr N, part in Section 3.5.2. This completes
the calculation of the non-singlet splitting functions in next-to-leading order. Then
we will have tested all possible one-loop structures of QCD except the non-Abelian
three-gluon vertex. In order to include also this last and most involved structure, we
will present the calculation of the N2 part of the gluon-gluon splitting function Pg(};
in Section 3.5.3. This accomplishes the task to show that all NLO splitting functions
can be obtained within the CFP scheme by applying the ML prescription, which is
the only formally solid method in this context. The remaining contributions, that is,
the functions Pq(}; and Pg(;()] as well as the remaining parts of Py(};, do not contain any
new feature compared to the most complicated cases we studied.

We used the e—regularization method in all calculations presented in Section 3.5
for two reasons: First because the integrals of the CrN, and N2 parts are quite
involved, thus being almost impossible to do if two different regulators, ¢ and 4, are
present. Second, it seemed appealing to us to show that no additional regulator to
the dimensional ¢ is really needed when using the ML prescription.

3.5.1 Colour structure CrTy and endpoint contributions

Quark vacuum polarization contribution

l:/J'va : i,V,b

Figure 3.11: I12 (1)

The expression for the fermion loop shown in Fig. 3.11 is given by

_g2 Tf&ab qu T"[')’u 14711(1'*' /ﬁ)]

ab
M) Gr)n @ + el l(a + 0% + 7]

em)™

12
Ty6% {z,,JZF,(z) + LI (0) + 205, (1) + g IF <l)}(3-117)
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where a statistical factor 1/2, a factor minus one for the fermion loop and a factor
two for antifermions has been included.

Inserting the expression for II%(I) into the full diagram (topology (g) in Fig. 3.6)
leads to

Thoop = zTaTbikziz(F:—n) Trl o foa s A0 T ()
2
= (—297); CrTs IR QLT {Fkl(;’l G F’l(f J:;}") } (3.118)

Q = nI(1+e) (-1
Ty = l+2+e(4—ﬁ)
07 e 6

8 32 8 ,
Fi(z,e) = 3~ —9—6 + 2—76
Fi(z,¢,ln) = Al e) + By{z,€)

[in]
Az, e) = (A+2z)[- —+ e+ ]
Bi(z,e) = —§e+ 24 [ 4 —e - =€

where the symbol 1/[In] means that this factor has to be regularized, in our example

here according to the ML prescription, defined by

1 1

Tl ~ in+ insiga(in) (3.119)

The tensor integrals appearing in I'I ® (1) have been reduced to scalar integrals by
Passarino-Veltman reduction {63].
The contribution to the splitting function is given by the pole part of the integral

dmk kn 0
Iﬂ = :c/Wé(z——;)/d’"lé(p—k—l)e(l)Tﬂoop

= .3_2‘1;115?7?:) /d‘kz‘ dk (k2 )“ fd’"l 6(]) -k- l) 6(10) N Tﬂoop

Inserting the expression (3.118) for Tgoop leads to

2
Iﬂ = ZCFTf( )817r(47l') gg+€§ d||lf;|l

/ a16(p — k - 1) 8() (1) { ¥ Fy(z, o)

T k2 (K3 )¢
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Az, e€)
12 j— n [ln + z'j] sign(ln* ) (z,e)] }

1, o T(+e, [di
2 4 2¢
w T T e

/ a15(p ~ k ~ ) 0(°)(~){ K21 Fyla, )

= iCeT ("") dk? (k2)~¢

+{PV(Zl§) —ind(1%)} [Al (z, e){PV(%} —imsign(in*) §(In)} + Bi(z, e)] }
(3.120)

Now we keep only the terms proportional to ¢w and write for simplicity PV (1/z) =
1/z. Note that the term (—I2)~¢ gives an imaginary part only for /> > 0, stemming
from the expansion

&2 2
111’51( —in) ¢ = (13)7{1 - —7r T tien(l—e ?) + O(eh)} . (3.121)
So the discontinuity of Iy is given by ®

2
CFTI(;—;)ZE(M)"%T dl‘k’z“dkl(kl - / d™5(p — k- 1) 6(1°)

{-etq- )(lk’\“Fk(x )+ [A’(f 29 1 Bys, e)] 9@”))

+{(=1®)"sign{in*) 8(In)(1%)™* - Ai(z, €)
+(=12)~8(%) (A'(x 9 | By, e)) }

- 2142 L1 +€) / AR} ¢ 1) L qteam 4 )
=: CFT;(27r) 04m =9/ T {10 4 109M 4 [0} (3.122)

Disc I

it

The integrals 1), I®*s") and I™ correspond to the diagrams shown in Fig. 3.12. Note
that for the virtual loops, the counterterms also have to be included. After UV
renormalization, I* will be zero since it is proportional to (—I2)~¢ with > = 0 and
e<0.

Now the contributions from the integrals defined in (3.122) will be calculated explicitly,
starting with I().

SNote that Iy, /i has to be multiplied by 2i to obtain the discontinuity, according to the relations

Disc I(g?) = lilnox{I(q2 +in) = I(g* —in)} =2i liirg SmI(g? +in)
n 7
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Im Jvgh) I®)

Figure 3.12: Diagrams corresponding to the different imaginary parts

Note that I™ has only an imaginary part for
2= %([kzlfs -k)>0
Therefore, when substituting
B =gk ; E=1-12)
we know that Kmax = 1. Thus we have

2
M = —6(1—-62-7[—) To |K2| % E"‘ZS/ de k™ '(1—-5)“{11’1(1‘ €

sz (-t (A2

+Bi(a,4)]}
— el 52%) Ty [k { £~ *Beta(l - ¢,1 - ¢ F
+2 - Beta(—¢,1 —€) {A;{——;;é(l )+ (T_l—z): —2 (lnf) }+ 52 B,} }

where we used the expansion

Comime Lo 1 (ln(l—z)) 2
(1-2) = 55(1 z)+(1_z)+ € =) ++0(e)
and Beta(a,b) = ?‘((Z)E(II:)) .
Inserting now the functions Fi(e), Ai(z, €) and B(z, €) leads to
_ 12 10 4 In(1-z)
" = o9=2¢f +o gt N, 4 2y (0l —2)
I e {pp@l-1 3~ 5 pqq(x)lnz+3(1+z)( s >+
12 110 56 «?
+4(1-12) [€—2§+€ . +—--3-]} (3.123)
1+ 122 1422
+ _ T . -
Pplz) = A-2)s i Pof(T) -z
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The virtual diagram where the cut line is a ghost is given by

100 = T, / k2 (k2)~¢ / d™8(p — k — 1) B°)(=12)~¢ 8(In) (1)~  Ai (=, €)

-T / dk? (k2)~¢ / ditdl=dl 6(1 — z — IT)6(k™ +17)é(ky + 1L)6(I%)
BT + 1) (2T +2)71 - Ay, e) (3.124)
~Toé6(1 —z) / dk2 (K2) 7 20(1K% - k2) - Au(1,€)

Note that we used sign(in*) = +1, which follows from In* ~ [~ and the constraints
S(IM)O(IF +17) in (3.124).

Now we substitute
KL=k -y

From the #—function we know that ymax = 1. Then

1
I®M = —Ty6(1 - z) |k~ / dyyT*Al(L€)
0

2 12 110 56 «?
6(1—1‘)4|k2| 2 [—6—2-3-—23'-574-—9- (3.125)

The counterterm for 7®*9") is obtained by replacing Ty by 1/, and (—I?)~¢ by one.
Furthermore, the O(e) terms stemming from the virtual integrals have to be dropped,
whereas those stemming from the trace have to be kept. This can be achieved in the
present case by the substitution F(¢), A;(z, €), Bi(z,€) = Fi(0), A(z,0), Bi(z,0) and
multiplication with the factor

P = B} (3,€)/p5(x)
Br(ze) = pha)—e (1~1)

(3.126)

Note that this difference of O(e) is vanishing when multiplied with §(1 — z), but it

will be important for the non-ghost virtual integral I(®.

So the counterterm Ic(gﬂ,',',)e, is given by

v el
Ic(ogx}:t)er = _6(1_$)|k2| e_e__ A dyy ! Al(l,o)
1 4
- 61— a2t (-4 3.127
a-aa-(-3) (3.127)

where we have set €,y = € in the last step.
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The integral I®®) is given by

I® —Tg/dkl )~ /dmw(p k= 1) 000 (~1?)~5(1?) (A‘(z ) . By(a, ¢

(3.128)
which is zero for I = 0,¢ < 0, such that the only contribution comes from the
counterterm of the virtual non-ghost diagram. Doing the steps explained above to
obtain the counterterm leads to

B = — [ @265 w7 - 1) 2. (222 + 5ie,0))

1
= ;‘%Ik:’l—epe:c (Al(x,O){—%é(l —-z)+ a _lz)+ —c (l!;x) }+27By(z, 0))
= A { - 22 pp0) + 30+ 2) (me) )
+
+8(1 - 7) 612 g} (3.129)

Inserting now the results for the different integrals into Eq. (3.122), we obtain

Discl; = CFTf( )(4) 1+€ /dlkzllkzl‘ -

-{|k2|-*(p;:,( )[—% § - 3991 - §pqq( ) lng

4 (1+ 22) (‘”) —5(1—:1:)—-—)

_(’igl"&() §(1+x)(1’;’”) +30-2)} @1

The contribution to ') 4/9.CF Ty (z,€) is given by the coefficient of the single pole of the
|k?|—integral :

F(‘/’qm, (0,6 = =5 CeTy(E2P - Py, @)
10 " 4 4
q/q Cpr(m) = pqq(z) pq(I( ) Inz - 5 (1 - ‘T) - 6(1 - .'L‘) g ((2)
¢(2) = %i (3.131)

Two-loop quark selfenergy contribution

In the PV calculations [29, 30, 45) of the two-loop splitting functions the contributions
proportional to §(1 — ) were never directly calculated, but inferred from fermion
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number conservation, expressed by the requirement

/0 1d;zc( () - Pq"/;“(z))=o. (3.132)

In general, we proceed in the same way, but in the case of the CT} part, the cal-
culation we have performed with the ML prescription allows us to go beyond this
pragmatic approach, since we have always picked up the finite amounts ~ 6(1 — z)
contributed by the 2PI kernels in the preceding calculation. If we now perform the
calculation of the %raph shown in Fig. 3.13 which is the only graph contributing to
the CrTy part of &Y (see Eq. (3. 38)), we have all terms ~ §(1 — ) in the CrT} part
of the flavour non-singlet splitting function and can check for this colour structure
whether indeed (3.132) is correctly reproduced.

Figure 3.13: Two-loop quark selfenergy contribution ~ C¢Ty at z =1

Let us first establish what we have to obtain for the C¢T} part of 551). The coefficient
of (1~ z) in the NLO splitting function, which we will denote by Cj, was determined
in (52, 45] via (3.132) to be

Cs=C2 (g —3¢(2) + 6((3)) +Cr T} (—é - §<(2)> +CpNe (;—Z + 13—1g(2) - 34(3))

(3.133)
Considering only the CrTy part, we have from Eq. (3.131):

4
Cscery = ;}gFT!+CFTf (—54(2)) . (3.134)

Comparing Eqs. (3.133) and (3.134), we get the following prediction for the CrT}
part of 5&1) in the light-cone gauge with ML prescription:

1
&6y = —5CFT; (3.135)

which is the result we have to obtain from the calculation of the diagram shown in
Fig. 3.13.

The calculation is relatively easy since the inner quark loop has obviously no light-
cone gauge propagator and can in fact be calculated exactly. Inserting the integrals
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in Eq. (3.117) we obtain

% (r) = ~iT, 5“69—3(4#)‘81"(6)3(—2:-6—) (=r)~ ['rzg —7,T ] (3.136)

w a— T(4 - 2) e ‘
This selfenergy can then be renormalized with the help of the counterterm in Fig. 3.9.
The renormalized loop is then inserted into the outer loop. Here it is very convenient
that II,,, is transverse, that is,

daﬂ(,r) [T2guu - 1"#7"’:( dUﬁ(T) =—r? daﬁ(r) - (3137)

In other words, the whole calculation is not very different from a simple one-loop
calculation of the quark selfenergy, the only exception being that we now need loop
integrals with the extra factor (—r%)™° present in (3.136). The integrals we need if
we embed the whole graph into the Dirac trace according to Fig. 3.13 are collected
in Appendix A.4. Since we have renormalized the inner loop, the left-over divergence
after loop integration determines the two-loop counterterm and thus the contribution
to 5 . We find in the MS scheme

C 1 1
Z5°7T = 1+( ) cFT,< 22+T52) . (3.138)

Comparing to Eq. (3.38) this implies that the CrT; part of E.(,l) is exactly what we
expected it to be in (3.135):

1
551():';-7'{ €CFTf . (3.139)

This result clearly demonstrates the consistency of the whole approach: Our example
shows that the light-cone gauge method of CFP is also able to determine the contri-
butions

~ §(1 —z) to the splitting functions by explicit calculation. It would be interesting in
this context to calculate also the other contributions to fg’; Actually, the C% part of
Eq. (3.133) could be confirmed already {66] by using the results obtained by [53, 54]
for the two-loop quark selfenergy diagrams ~ C% with ML prescription.

It is important to note at this point that the ability to obtain the correct endpoint
contributions is not restricted to the ML prescription; this is also possible for the PV
prescription. With PV prescription, the coefficient of 6(1 — z) in the CrTy part of

P;} . reads
Cider; = §q,lc)::q‘~,, CFTf 5 fo (3.140)

where 5(1) Fv denotes the CrTy part of § when the PV prescription is used. The
explicit calculatlon gives

1 4 1/1 2 10
Zpter, =1+ ( ) OFTI[ % (1 - 310) + <ﬁ+ 36 - —Q—IOH (3.141)
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that is

ENEY = CpT, (-% - §C(2) + 39910) . (3.142)
It is interesting to see how upon combining Egs. (3.140) and (3.142) the I, terms
drop out, and the CrTy part of the endpoint contributions comes out correctly as
in (3.133) also for the PV prescription. We note, however, that again this happens
at the expense of having renormalization constants depending on singular quantities
like I, that represent a mix-up in the treatment of UV and IR singularities.

3.5.2 Colour structure CrN,

Now we will turn to the CpN, part which is the most complicated part of the non-
singlet splitting functions. The contributing diagrams are shown in Fig. 3.14. Topolo-
gies (f) and (d) have been calculated by extracting the imaginary parts of the uncut
diagram.

Virtual part

The virtual diagrams, which correspond (for z < 1) to the discontinuity ~ imd(1?) of
topologies (f) and (d), will first be given in a scheme independent form, that is, the
final answer contains the integral form factors given in Appendix A, which can be
inserted then according to the PV or the ML scheme.

An important qualitative difference between the PV and the ML scheme can be ob-
served in this way: In the PV scheme, k? and {? are the only possible scales, whereas
in the ML scheme, terms like 2/n* In/n*n = (2 + 2 are also present, which are non-
vanishing even for [2 = 0. Therefore, considering for instance diagram (f)yir, its scale
dependence in the PV scheme is identical to the one in covariant gauges. Thus calcu-
lating the diagram with off-shell 12, renormalizing it and then taking the limit [ — 0,
almost all contributions of the diagram will vanish since all loop integrals have to
be proportional to (—I2)¢ (¢ < 0) on dimensional grounds. Only the contribution
from the MS counterterm remains because this is the only quantity not proportional
to (~I?)7¢. In contrast to this, in the ML scheme 2 sets an extra mass scale. For
graph (f)yir one therefore encounters terms ~ (~1*)=¢, but also terms of the form
~ (IB+13)~¢. Since 12 = k2, the latter terms yield non-vanishing contributions to the
virtual part even at I = 0.

Furthermore, if we included also the contributions at z = 1, we would obtain an
additional contribution from an axial ghost momentum with kinematics 12 + 12 = 0
running into the loop, in the same way as has been explained for I (see Fig. 3.12)
in the previous section, and in contrast to the PV scheme, where this contribution is
completely absent.
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Figure 3.14: Diagrams contributing to the CrN, part
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Gluon selfenergy
The one-loop gluon selfenergy 1% (1) is given by
WO = 55 ) 5oy Ne 0 { () 8 g = (m+ 6)] )
+J2W(l) (4m ~ 8)
2
LI - 8l2{l—nun., il g — (mdy + 1L}

+JA ) {8 — ey = 4(ndy + )}

+4nl {I“Jz,,(l) +4,J5 (D}

~4P{n, J4(0) +n I (D} ) (3.143)
The integrals are given in Appendix A. The UV divergent part of expression (3.143)

with ML prescription already has been given in Section 3.3.2. With PV prescription
one obtains

eb,UVdiv _ ab 2 -
M0 = 225 N 5 (P g~ L)
ILon, +1n I
2 _ s + Ly
+41% (Iy + log(in)) [ g + i (ln)2n”n”]
Ln, —ln 2
_ 2T = Ly
+4 L, ~ PR (ln)Znun,,)]} (3.144)

The UV counterterm is obtained by inserting I1%:UV4"(J) into the full diagram, using
n=p

Tcgél':nter = k4 TaTb Tr [_/L k'Yu 17’)’11

— ) oA le_l G(f)vm

( ) abUVdnv(l) d'\"(l)

Dwed _ 1 11 _2x(1+1) 4
Gt = L% Pyle 0 - LD (3.145)
G(f)vimPV _ 1 P 11

v = = q/q(:c,e){—ﬁ— ~2~2In(1-2)} (3.146)

uv

After having subtracted the UV counterterm T ..., one can go to the infrared region
where [2 = 0,¢ < 0. As already explained, we see that in the PV scheme the whole
infrared part is vanishing since it is proportional to (—?)~¢ and € < 0,12 = 0 in
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the infrared region. With ML prescription, the axial part integrals contain a factor
(2In* In/n*n)~¢ = (21*17)~¢ = (I* + 1%)~¢ which will not vanish in the infrared region
(for details see Appendix A.2). Therefore, there is a remaining nonzero contribution
in the ML scheme, given by
Tglu,ML - 7'9 TaTb Tr [_/h_ /k')'u p ,IC] ( ) ab (l) d).v(l)
= CrNe(ZP(m) T+ IR ‘1 - FotuML

(1+:c)

TowMl —  _9 P, (z,€) CF + o) Cir (3.147)

The phase space for the virtual diagrams is given by (see Appendix B.1 for details)

pgvirt = 27rz/(2 e 8z — z) 6((p - k)?)
- 161«2rgm) / dl? 8%~z (1 - 2) ™ (3.148)

such that the contribution from the gluon selfenergy diagram (f)yi to I‘q /q(z, €) is
given by

1 (4'”) 2 —€ €
P 1672 T(1 — e)] diE| K0 (1 - 2)

(T5(2, K2, €) ~ Tz, K%, €)1}

1 v,
q/qf )(z e)

It

= Pp{o N( )211:8 +9) (4m)* / AR JE (1 - z)
[Tz, €) ~ Mwmm} (3.149)

where in the PV scheme 79%(z, €) = 0 according to the discussion above.

Vertex, non-Abelian part

The vertex insertion in topology (d)i is given by

N. Yo Ao
re = 3Ta / P dvp k+ d,\a +
g (@2m)™ ¢?(k + ¢)*(p + ¢)? (k+9b+e)
‘/39( ,—l,V,—(k-f-q),A,p-*—q)

Using the results of Section 3.3.2, the UV counterterms are of the form
d)y a Zg /3 a UVdiv
Tém.)mter = -T [_kz_lg'Tr [41‘1 y CAd i) /k ] d‘w(P k)
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= Cpoen i BTy
., 1 1 1 z(l+z
Vipt = o { =7 Paelz,6) + 5 '-(1—'_—1—)} (3.150)

d)v,PV
Vi

il

Zu—V§1>q/q(gp,e){ - S+4h+2h(1-2) +Inz}  (3.151)

Note that the term proportional to n,ln*/(in] in (3.102) does not contribute to
Tfjmg‘? because of n,d*(I) = 0.

The expression for the vertex in the infrared region is obtained by inserting I'} into
the full diagram (topology (d)virt), using »* = p and 12 = 0:

T(d)v = -T° 'kzlzTT[ ,ch‘;j p7v ,k]dw(p_ k)
2 -~
= CpN, ( ) (47)T(1 + €)|k?| 71 6;’ Tl
. —1-7—322-27¢(2 - 1)
@ -
T To )
1 . .
"Z q/q(.’l?, 6) . {Uo - 30:; - 3P0 - Dg-f— Ho}
w21+ 1)
-G -z
1 I—e(l—
-;(@-2)P+P) ———; (_ - x)} (3.152)

Note that Py, DI, CF and C¥ are zero in the PV scheme because P, is the coefficient
of n* and D¥,C¥ and C¥¥ are proportional to (—p?)~¢ resp. (—I2)~¢. For details see
Appendix A.

Including a combmatonal factor of two for the vertex diagram yields the following
contribution to Pq / q(z €):

1,dy)
Fg/q (z,¢€)

! __—(47r)€ < 2112.2|—¢ )€
P{167r2 T(1-¢ /0 dlk*[ |&*|"* 2 (1 — z)
2 [T(d)v (SB, kz’ 6) - Tc(:lz;)ter (.’l?, k2, 6)]}

- PP{CFN( )%%(4 )2 f Ik K261 — 2)"¢
2 [k~ T D (z, &) - Vi (z, e)]} (3.153)
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Vertex, Abelian part

The vertex diagram (c)y containing no three-gluon-vertex is proportional to
C} — 3CrN,, 50 it already has been treated in Section 3.4.
The results for the virtual diagrams are given in Table 3.5.

CrN,
(V5 | @uF | (W% [ MR | PVSR | (PV-ML)uin
Pe(z) I (1-2) || 2 | 1/2 0 -3/2 2 -1/2
pe(z)In(1—2) || 11/3 | -3/2 | 3/2 | 11/3 | 11/3 0
Dog(z) InzT 0 1/2 | -1/2 0 0 0
Pgq(z) Lin(1 — ) 0 -2 1 -1 -2 -1
Deg(z) /3 3/2 { 3/4 { -1 5/4 3/2 1/4
Dgg(T) 4 | 12 | 7/2 0 0 0
zln(l-1) 2 0 0 2 2 0
In(1-z) -2 1 -1 2 -2 0
zlnz 0 1/2 | -1/2 0 0 0
Inz 0 | -1/2 | 1/2 0 0 0
z -11/81 0 -1 | -14/3 | -14/3 0
1 23/3 | -5/2 | -3/2 | 11/3 | 11/3 0

Table 3.5: Contributions ~ CrN, to F; /q(z) from virtual diagrams.

Real part

The diagrams contributing to the real Cr N, part are given by topologies ()=, (F)&,,
(d)%;, (d)&, and (b)), (b)%. Topology (b), being proportional to C3 — 1CrN.,
already has been calculated in Section 3.4. Note that we used PVI regularization in
Section 3.4 whereas here we use e—regularization, but the calculation of topology (b)
with e—regularization via the two-body phase space given in Appendix B.2 has no
new features such that we only will quote the result.

Diagrams (f);ear and (d)ea also have been tried to be calculated using the two-body
phase space, but the phase space 1ntegrals for the ghost contributions became ex-
tremely complicated. For graph ()% it was still possible to obtain the right result in
this way, but for graphs (d)%%, this seemed a forbidding task. The main reason is the
presence of the denominator 1/i which can go through zero and change sign: The
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kinematics for a physical gluon imposes {2 > 0, but the ghosts have the kinematics
I = —12%, such that a singularity at I = 0 appears within the range of the phase space
integrals.

Of course, this singularity still is present when evaluating these graphs via the imagi-
nary part of the full two-loop diagram. But in this case, it could be treated uniquely by
using a principal value regulator® A, leading to a perfectly well-defined, A—independent
result. This result includes both, transverse and ghost-like real contributions.
Nevertheless, it is possible to obtain separate expressions for those diagrams which
have only transverse cut gluon lines (graphs (f),, and (d),,)} and those which have
one transverse and one ghost line cut (graphs (f)f;‘a'l and (d)f:‘a]) How this can be
achieved will be explained in Section 3.6.

Note that the ML results for the transverse real diagrams are not identical to the PV
results with § # 0 if we use e—regularization, they are only identical if we use PVI
regularization. Nevertheless, in the final sum of all diagrams, real and virtual ones,
we reproduce the PV result also with e—regularization, thus showing that there is no
need for an additional regulator when using the ML prescription.

The detailed results for the real diagrams are given in Table 3.6.

5To avoid confusion, we emphasize at this point that this principal value regulator has nothing
to do with the principal value prescription for the light-cone gauge denominator.
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3.5.3 Colour structure N? of the gluon-gluon splitting func-
tion

Let us now turn to the calculation of Pg“;, We restrict ourselves to its N2 part, since
the contributions ~ CrTy, N Ty are essentially trivial as far as the investigation of the
ML prescription is concerned: The CrT; part comprises no gluon emission at all, and
all diagrams contributing to the N,Ty part contain a quark loop and the emission of
at most one gluon. Such diagrams with one-gluon emission have the LO kinematics
and will not reveal any new features as compared to what we have already discussed.
In contrast to this, the N? part of P’% Tequires the renormalization of the highly
nontrivial three-gluon-vertex and therefore really provides a further challenge for the
ML prescription.

The diagrams contributing to the N? part of f’g“; at NLO are shown in Fig. 3.15. We
do not show here the axial ghosts explicitly, having kept in mind that each cut gluon
line has a transverse and a ghost contribution.

The calculation of the various real and virtual diagrams proceeds in exactly the same
way as before. For the renormalization of the triangle graph (d)yi+ and the “sword-
fish” ones (s1)virt and (s;), we need the UV counterterm for the three-gluon-vertex
in the light-cone gauge with ML prescription, which already has been discussed in
Section 3.3.2.

Concerning the real cuts, we mention that graphs (h),(b),(j) and (k) are most con-
veniently calculated using the two-body phase space. For topologies (d),(f) and (s;)
which have two cuts, a real and a virtual one, it is much more convenient to calculate
the real diagrams with the imaginary part method.

We have again verified that in the ML scheme all 2P1I graphs give truly finite contri-
butions to Ty, before the final integration over |k?| is performed. Tables 3.7 and 3.8

present the contributions of the various diagrams to P where we have defined

9/
(1-z+12?)’°
Pog() -
Tdr (1-z ) 1,, =
Sy(z) = /HL, -z—ln( p, ) = -2 Lis(—z) - 2lnzln(l +z) + Eln T- -

We mention in passing that topology (j) and the “swordfish” diagram (s;) give vani-
shing contributions to f’g(}; if the PV prescription is used, but are non-vanishing for
the ML prescription, where finite contributions arise from their ghost parts.

It also has to be noted that no separate results for ghost- and transverse parts of
topology (i) can be given when using e—regularization, since only the combination of
both parts leads to a well-defined result.

As for the case of P;/l;, the full result for the N? part of P;;;, given by the column

“Sum” in Table 3.8, is in agreement with the PV result of [30], which in turn coincides

90



swordfishy () {81 )reat {81 )virt

0 (k)

Figure 3.15: Diagrams contributing to the N? part of Pg(;;.

91



with the OPE one [33, 34]. Thus, the CFP method with ML prescription has also led
to the correct final answer in this case, which clearly constitutes a further nontrivial
and complementary check.
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3.6 Relations between PV and ML schemes

We have shown in the previous sections that the application of the ML prescription to
calculate the next-to-leading order splitting functions within the CFP scheme (28, 29}
is a consistent method, since the ML prescription has a solid field-theoretical founda-
tion and there is no need to recur to “phenomenological rules” to obtain the correct
result. On the other hand, the complexity of the calculation with ML prescription
exceeds the one with PV prescription considerably. Therefore it seems to be appealing
to use the insights gained from doing the calculation with both prescriptions in order
to find out the deeper reason why the “phenomenological rules” used in the PV case
worked so well. An important step towards answering this question is given by our
observation that certain subparts of the structures appearing in the ML calculation
can be mapped to the structures present in the PV calculation. This can be done in
the virtual as well as in the real diagrams contributing to the NLO splitting functions.
The key observation is based on the expressions (3.56) and (3.57) obtained for the
virtual integrals with ML respectively PV prescription. From Eq. (3.56), we see that
any one-loop integral calculated with ML prescription appears as the difference of two
terms, one being proportional to

(Ma)Z "
R* +ipsign R~

the second proportional to

[M, —2R*R7])%™

R+ 4+ insign R~

which we will call part I and part II respectively. Furthermore, we observe that part
I with 7 — 0 is identical to the PV result (3.57) with 6 — 0. In general, we can say
that part I of any ML integral with e—regularization is the same as the PV integral
with § = 0, and part I of any ML integral with PVI regularization is the same as
the PV result for this integral with § # 0. This observation also has been checked by
explicit calculation for all virtual integrals.
Using this result as a starting point, it is not difficult to realize why in the PV scheme
we have to subtract ultraviolet poles which contain spurious singularities, whereas in
the ML scheme we don’t: In the ML scheme, it is the second term proportional to
(M, — 2R+R‘]"2L" which always provides this subtraction automatically. To be more
explicit, consider again expressions (3.56) and (3.57). We know that the limit Rt — 0
corresponds to the spurious pole. From Eq. (3.56), we see that no ML integral can
ever have a spurious pole as a residue of an UV pole, since the limit R* — 0 is finite
in (3.56) even for = 0 as long as [M,,]3~" is nonvanishing, but [M,]%Z ™ is always
nonvanishing in the UV region.”

"In the infrared region, where some of the momenta are on-shell, this term of course can vanish,
which was one reason for the new features and technical difficulties encountered in the Cr N, part,
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On the other hand, in the PV integral (Eq. (3.57)) we do not have a second term
which regulates the first one in the limit R* — 0. Therefore one had to introduce
the & to regulate the spurious pole, which will appear as a coefficient of the possible
UV pole and thus ~ by lack of a “natural” subtraction term which contains exactly
the same 1/R™ pole, as we have it in the ML case - one has to subtract this mixture
of spurious pole and UV pole by hand when performing UV renormalization. This is
the situation in the virtual part.

Concerning the real part, we already explained that a mapping of subparts can be
achieved by exploiting Eqs. (3.48) and (3.49). The discontinuity given by Eq. (3.48)
is the only one present in the PV scheme. If we now do the ML calculation with PVI
regularization, we regulate the spurious poles in the real part exactly in the same way
as in the PV scheme, such that the transverse real parts are identical in the ML and
the PV case. Then the difference (ML-PV),.. is entirely given by the ghost contribu-
tions which are not present with PV prescription.

Therefore it suggests itself to investigate whether the two additional stuctures in the
ML scheme ~ the second term ~ [M, — 2R*R~]%~" in the virtual part and the ad-
ditional “ghost” term ~ §(2¢7q™) of the discontinuity of the gluon propagator in the
real part — are related. Indeed, the following relation could be shown by using the
imaginary part method: With this method, the discontinuities of part I of any virtual
integral appearing in a certain diagram correspond to the real diagram where only
transverse gluon lines are cut, since those are the only ones present in the PV scheme.
The discontinuities of part II then have to correspond to the real diagram where one
of the cut lines is an axial ghost. As a corroboration of this result, it is instructive
to consider topologies (C)rear and (g)rea (see Fig. 3.6): They cannot contain ghost
lines since only fermion lines are cut. The one-loop integrals for the vertex and the
fermion loop insertions with ML prescription of course are of the form part I minus
part II as usual. But doing the second loop integration aver I2 ~ (1 — ) (for details
see Appendix C), the integral over part II in these diagrams has no imaginary part.
Therefore the contribution from part II is zero, such that we get no real ghost dia-
grams for these topologies, as expected.

Thus the imaginary part method allows a rather clear insight into the relation of the
ML to the PV scheme for those topologies which have two cuts, a real and a virtual
one:

In the virtual-cut diagram with ML prescription, there is always the difference be-
tween two terms, part [ minus part II, from the virtual ML integrals. Both parts
separately contain spurious ultraviolet poles which exactly cancel in the difference. In
the same virtual diagram with PV prescription, only part I is present. As a conse-
quence, the spurious UV poles contained in part I have to be subtracted by hand.
In the real-cut diagram, we have the discontinuities of part I and of part II with ML
prescription, which directly correspond to the transverse and the ghost contributions

but the occurrence of spurious infrared poles is unavoidable in the light-cone gauge and does not
constitute a principal problem.
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respectively. With PV prescription, we only have the discontinuity from part I since
part II is absent in the virtual PV integrals, therefore we obtain no ghost contribu-
tions in the PV case.

Hence, if we assume that it was not by accident that the PV prescription together
with the recipe of CFP for handling the spurious UV poles lead to the right result, we
conclude that there must be a general argument why in the ML case the additional
parts II in the virtual integrals and their discontinuities in the real parts (respectively
the ghost contributions in topologies which have only a real cut), always nearly add up
to zero - but not exactly: The remaining terms are just equal to the ones produced in
the PV scheme by doing this special UV subtraction, such that we obtain the correct
result in both, ML and PV schemes.

The following Tables as well as Tables 3.5 and 3.6 illustrate the above arguments and
exhibit the cancellation mechanisms of the poles in the ML respectively PV scheme
for the two most sophisticated colour structures Cr.N, and Nf.
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CpN,

B | (O | @%% | () | (% | (©fa | (0)FY | Sum

Double poles

1/€% pgg(x) 0 0 -1 1 0 0 0 0

Ultraviolet poles

2ul®) J, -2 4 -2 0
pale) (1 — 5) -2 2 0 0
3%9“—{51 Inz 0 1 -1 0
Zaal2) 11/6 -3/2 3/2 11/6

Single poles of final result after UV subtraction

2@ 4 | 2 | -6 2 2 0 0 0
2@ Jy (1 ~ ) 4 2| 2] 0 0 0 0 0
Paalz) 1y g 0 0 -1 0 1 0 0 0
Zag(z) a1/3|11/6 | 3/2 1 0 |-3/2( 0 0 |-11/6
=z 0 0 1 -1 0 0 0 0
Spurious poles
Peo(2) Iy 0 2 -2 -2 2 0 0 0
Paqe(z) I 0 -2 0 4 0 0 -2 0
Pe(z) oln(1~2z) || -4 2 6 2 | -2 0 0 0
Poolz) Inlnz 0 -2 2 2 -2 0 0 0
I(1-z) -4 2 6 2 ] -2 0 0 0

Table 3.10: Spurious poles and poles in € of CrN, part with PV prescription.
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N2

sum real ML | sum virtual ML || sum real PV | sum virtual PV
Pgg(z) In? (1 - z) 3 -3 4 -4
Pgo(z) In*z 1 0 1 0
zln’z 4 0 4 0
In*z 4 0 4 0
Peg(z) Inzln (1 —2) -4 0 0 -4
Dgg(x) Lia(1 — ) -2 2 0 0
Peg(z) 72/3 1 -2 -4 3
Pgg(—%) S2() 2 0 2 0
Dgo() 67/9 0 67/9 0
z? 49/9 2 67/9 0
z -67/6 -7/3 -79/6 -1/3
1 29/2 -1 27/2 0
1/z -67/9 0 -67/9 0
Pge(z) Inz 0 0 0 0
2?Inz -44/3 0 -44/3 0
zlnz 11/3 0 11/3 0
Inz -25/3 0 -25/3 0
Inz/z 0 0 0 0
Peo(z) In (1 — 1) -22/3 22/3 -22/3 22/3
z¢ln (1 —1z) 0 0 0 0
zln(l-z) 0 0 0 0
In(l-1z) 0 0 0 0
In(l-z)/z 0 0 0 0

Table 3.13: PV and ML results for f’g(/l;(x) compared in virtual and real parts
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Chapter 4

Conclusions and outlook

We have performed the first calculation with the Mandelstam-Leibbrandt prescrip-
tion [36, 37] of the flavour non-singlet splitting function and the N? part of the gluon-
gluon splitting function in next-to-leading order within the light-cone gauge method
of CFP [28, 29]. In all previous calculations [29, 30, 45], the PV prescription has
been used to regulate the spurious poles generated by the gluon propagator in the
light-cone gauge. Although the PV prescription has several features that could raise
doubts on its reliability — like the breakdown of power counting or the dependence
on longitudinal momenta of the renormalization constants — CFP obtained the right
result by giving recipes how to handle the spurious poles and the UV subtraction
mainly based on physical intuition, being aware of the fact that a formal justification
of these “phenomenological rules” remains to be provided.

By doing the calculation with the ML prescription, which has a solid field theoretical
foundation, we contributed to a progress in several respects:

First we could confirm the usefulness of the CFP method [28, 29] to calculate the
splitting functions in next-to-leading order. We were able to show that neither the
“phenomenological rules” to treat the UV poles nor additional regulators apart from
dimensional regularization are needed when using the ML prescription.

Furthermore, we tested the ML prescription itself in a highly nontrivial application.
We found that with ML prescription, the individual topologies contributing to the
2PI kernels which allow to extract the splitting functions are in general more regular
than with PV prescription. This is mainly due to the presence of the so-called axial
ghosts, which soften the spurious singular infrared behaviour of the discontinuities of
the gluon propagator with ML prescription, and which do not exist in the PV case.

The NLO contributions at £ = 1 never had been calculated before, they were deduced
from the sum rules expressing fermion number conservation. Since we explicitly cal-
culated the full z = 1 contribution, including the finite part, for the gauge invariant
subpart proportional to CrT}y, with ML as well as with PV prescription, we were able
to check the consistency with the sum rules, thus corroborating the viability of the
CFP method and of the ML prescription. We even could show the finiteness of the
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2P1 kernels at z = 1 for all colour structures considered [66].

One has to admit that the calculation with ML prescription, while being much more
satisfactory than with PV prescription from a formal point of view, is technically by
far more complicated. This is due to the fact that the ML prescription is a two-vector
prescription - containing the vector n in addition to the gauge vector ny, which
entails the existence of additional structures ~ and due to the presence of the ghost
contributions. Therefore we had to develop methods which had not been used before
to be able to surmount these technical difficulties. These techniques could be very
useful in view of an extension of the calculation to three loops.

As the three-loop result will be really required for the collider physics of the near
future, we have to judge which methods are viable for this task. First of all it has to
be emphasized that the application of two independent methods is almost mandatory
in order to control such a complex calculation. The OPE method, after the recent
development (33, 34], surely is conceptually solid. Its algebraic complexity is enor-
mous, but a number of programs serving to develop a machinery which can treat the
algebraic part systematically already exists [24, 35].

The CFP method with ML prescription has achieved a status of formal solidity com-
parable to the one of OPE due to the present work, but at the expense of a growth
in technical complexity as compared to the PV case. Nevertheless, there is a con-
siderable chance that this complexity still can be reduced. At the present status, it
could not be exploited that the axial ghosts decouple from physical quantities since
the anomalous dimensions are non-physical, the scheme dependence cancelling only
in combination with the coefficient functions. But a first attempt to define physical
anomalous dimensions, which are certain corbinations of anomalous dimensions and
coefficient functions, already exists in the literature [64]. Thus there is some prospec-
tive that a further development could reduce the complexity of the ML calculation by
establishing a sort of “decoupling theorem” which assures that a major part of the
ghost contributions does not have to be calculated since it will cancel to zero anyhow.

At present, the CFP method with PV prescription is the one with the least technical
complexity, but its formal solidity is not satisfactory. The insights gained from the
calculation with ML prescription however could serve to give a formal justification
for the PV “recipes”. It has been shown above that one can map subparts of the
structures appearing with ML prescription to the ones present with PV prescription.
If one could also show that the additional structures present only in the ML case
always have to cancel, no matter in which order of the perturbative expansion we
do the calculation, one could be sure that the PV prescription is safe. Of course,
this again would mean nothing else than a confirmation of the reliability of the ML
prescription together with a reduction of its complexity down to the PV level.

In any case, there is some room for further development, since it might be some as yet
unexploited underlying structure that leads to such considerable cancellations when
combining the various contributions to the final result. In this sense, the present
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work can give some inspirations and guidelines concerning the development of me-
thods to calculate higher order anomalous dimensions which are both, highly efficient
and formally solid.
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Appendix A

Virtual integrals

A.1 Definitions and sample calculation

We define general n-point integrals, containing no axial denominator 1/gn, by

Fuy...ps = q[q e q;‘s
Ji (k1 ... kn-1) /qu[qz + i€ [(q + k1)? + 3€) - .- [(q + kn_1)? + G€]

and n-point integrals containing one axial denominator 1/gn by

ql-l-l . qﬁ‘x

Apy s — -
J: (k1. kna1) /qu [ + i€ (g + k1)? + i€] .. . [(@ + km_1)? + i€ qn

B gt
) = /qu[((1+k1)2+ie].--[(q+kn)2+ie]qn

[Amesn(hy

The integrals JF#1-#¢(k; ... k,_;) are called Feynman part integrals since they arise
from the g,, —part of the gluon propagator in axial gauge.

The 1/gn factor in the axial part integrals has to be regularized with ML or PV
prescription. In order to exhibit the effect of the ML respectively PV prescription on
the virtual loop integral over g, we will give the calculation of the axial part integral
JAktbs (k. k,_1) with both prescriptions in detail here.

Calculation of virtual integrals with ML and PV prescription

In this section we give the detailed calculation of the axial integral JA¥1-#s (k.. . k,_)
with both, PV and ML prescription. We evaluate the integrals in Minkowski space.
They also have been evaluated via Wick rotation, but the difference between ML and
PV prescription can be seen more directly if the calculation is done in the way given
below.
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The covariant denominator factors of JA(k; . .. k1) will be written in the exponential
parametrization, exploiting the relation

1 - _1_ * da eia(z+ie)
z+i€ 1 Jg

This parametrization is leading to

n—1

JAky . kam1) = —/ dag...dan—y /d"‘q—exp{—-ze} exp {z¢° +2Xq+§_:<zjk2
j=1
—/ dag...da,_; exp {—ze} exp{zza,kz} exp {—iX?/z}

i=1

',/qu—— exp {iz(g + X/2)*}

n—1 -1
Xy = E:‘IJ [ Z—E:aa
J=1 =0

Now substitute ¢’ = ¢+ %, then
1 00 n~1
JAky .. kamy) = z—"/ day . ..da,—; exp {~ze} exp {iZaij?} exp {—iX?%/2}
0 =
: / " ———— exp{izg?}
gn—Xn/z
1 [ =
= z—"-/ dag . ..dan—1 exp {—z€} exp {z‘Zajkf} exp {—iX%/2}

/ d™ gy exp {~izq}} / dg*dg —W exp {2i2g"q"}

(A1)
The integral Jy« over ¢+ and ¢~
1
— + o= e
Jot = /dq dg =X exp {2i2q7 ¢} (A.2)
now has to be regulated according to the ML or the PV prescription.
1 1
gt g* +insign(g) (A3)
Pv: L, T (A4)
Cogt (g +8(p)? '
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The calculation of J;z will be given below. The results are:

ML _  _ ! _ Xt X /s — -
Ja— = WX++inzsign(X‘){1 exp{2XTX"/z - 2| X |}} (A.5)
X*
PV o
Jg = -m (X+)2 + 226%(p+)? (A-6)

Inserting the result for Jé”i" into Eq. (A.1) and performing the Gaussian integration
over q

m=2

*© -2~ ) T™ "z
/ d™*qL exp{—izqi} = (—)
—o0 1z
one obtains

n n—1
2 o

JAMU (K kpe1) = T / dag...dan1 exp{iZajk? —ze} 217
0

J=1

{1 —exp{2i X+t X~ [z - 277|X—|}}

_exp{~1X?/z}
Xt +inzsign X~

Rescaling a; = z- b; (¢ =0...n — 1) and carrying out the z—integration results in

JAME (K k1)

3T (n — %)(-1)’“*1 /dbo coedbp1 6(1 = S by)

-1
j=0

1 m_n + p—1Zen
.R++insignR-{{M”]2 (M - 2R*R"] }(A’7)
n—1 n-1
R = Y bkt 5 My=R'-) bk
j=1 i=1

whereas PV regularization leads to

n—1
BV (k. k) = 78— D)2 f dbo .. dby_r 61— 3 b;)
j=0
R+ m
JME A8
Calculation of the integrals J}* and J£&
With ML prescription
Applying the ML prescription to Jg (see Eq. (A.2)) leads to
1 ‘
ML _ + 3, ..o 9
N juis /dq dg T X Timeeae —X73) exp {2izq7¢"} (A.9)
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Substituting ¢’ = ¢ — < gives

Ty

1
exp {2i1XTX " /2 /d"'d T ————— —exp{2i[z¢Tqg + XTqg" + X ¢*
p{ /2} [ dg*dq ey p{2i[2q7q q a1}
exp {2iX+X‘/z}/dq" exp {2iXTq™} - I+

1. = /d +exp {2igt[zq~ + X~}
! g+ +insign(g~)

(A.10)

The integral I+ has a pole at g+ = —insign(g~) with residue exp {2nsign(¢™)[z¢~ + X7]}.
Now two cases have to be considered:
l.zg+X">0

The contour has to be closed in the upper half plane; the pole is inside the
contour for g~ < 0.

2. 2g-+X" <0
The contour has to be closed in the lower half plane; the pole is inside the
contour for ¢~ > 0. There will be a minus sign for the opposite orientation of
the contour relative to case 1.

Using the Cauchy theorem yields

Inw = 2miexp {2nsign(g7)[zq” + X"JHO(-¢7)b(2¢” + X7) — 6(¢7)8(—2¢" — X7)}
and so

2mi exp {2iX+X‘/z}{ /:0 dg~exp {2iX*tq™} exp{—2n[2¢” + X" |}0(zg~ + X7)

ML
M

- /:c dg”exp {2i1X*q} exp{2n[z¢™ + X7|}0(—2¢" — X‘)}

Substituting § = —q¢~ in the first part leads to

JHE 2miexp {2iX"’X‘/z}{ /co djexp {—2iG[X™* +in2]} exp {27 X" }0(~2d + X")
0
- [ exp {2ig™ " —inel) exp {20 X Yo(-2q” - X))
X~ /z
= 2miexp {2iX+X‘/z}{0(X') / dgexp {—2ig[X* + inz]} exp {~29 X‘}}
0
-X"/z
~0-x7) [ dgexp {2iqlX* ~ inal} exp (20 X))

(exp {—2iX~/2[X* +1in2]} — 1)
2i(X+ +1in2)

= 2miexp{2iX*X "z} exp{~2n |x-|}{e(x-) Z
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‘_0(_X_)(exp {=26X"/2]X* —in2]} - 1)}

2i(X+ —inz)
= —mexp{2iXtX~/z}

exp (=20 X1} exp (2%~ /z + 2mix - 1) - {0+ 252
1

= —7x(1- e ol L S W
= —m(l-exp{2iXTX " /z—2n|X"|}) X+ +inzsign(X-) (A.11)

With PV prescription
Applying the PV prescription to Jy= leads to

JEY = [ dgtdg ¢ - X7/ {2izgtq} A2
w = ey SR ()

Now doing the ¢*—integration, one has to evaluate

gt~ X*/z ' B
e = [0 s s o )

1 1 1

= [ dg* 2izgTq” + -

Zf 0" exp {2iag"e }((q+~§+-)—i6p+ (q+—X7+‘)+i6p+>
(A13)

Two cases have to be distinguished:

l.g>0
The contour has to be closed in the upper half plane, so the pole at g7 =
i:— + idp* contributes and the residue of the pole is exp {2ig™(X* + i2ép™)}

2.¢ <0
The contour has to be closed in the lower half plane, so the pole at gt =
{i — idp* contributes and the residue of the pole is exp {2ig~(X* — izép™)}

Then the integral (A.13) can be written as

1 1 1
= | dq*exp{2izgtq” +
2/ q" exp {2izq"g }<(q+ — Xy _gpt (¢t - X5 +ic5p+)

z

I+

im {8(q™) exp {2ig~ (X" + iz6p™)} ~ 6(—q7) exp {2ig™ (X — izdp™)}}
Now the dg~ integration will be done to obtain the final expression for the integral
JEY:

g

1
+
- Xy —ipt (¢ - &) +i6p+)

H| -

1 00
J = —/ dg~dg*t exp {2izqtq”
p 5 ) dadd p{ qq}(q+
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= im /0oo dq~ exp {2ig™ (Xt +iz0p*)} —im /0 dg~ exp {2ig™ (X* — iz0p™)}
-0
The substitution § = ~¢~ in the second integral leads to
Y =in /0 " dq~ exp {2ig~(X* + iz6p*)} — i /0 " djexp {=2iG(X* — iz6p*)}
Renaming § into ¢~ yields
J:;V = ir /ooo dg~ {exp {2iq™(X* +iz6p™)} — exp {~2iq™ (X — izép*)}}
= m/ dq” exp {—2¢"z0p*} {exp {2ig" X ¥} — exp {—2ig” X*}}
= —27r/ dg™ exp {—2¢"20p™ }sin (27 XT)
Now we use the formula (Gradshteyn/Ryzhik integral no. 3.893.1)

o0 Ay B
/0 dye~“¥sin By = TiE for A>0
The condition A > 0 is fulfilled because of 0 < ¢~ < ©; 2,4, p* > 0. Hence we obtain
—nX*

J (X+)2 + z262p"’2

A.2 Two-point integrals in the ultraviolet and in-
frared regions

In this subsection, we will show through the calculation of the integral J#(1), appear-
ing for example in the gluon selfenergy, what happens in the ML scheme when doing
the analytical continuation in € from the UV to the IR region.

From the general integral (A.7), one obtains the following expression for J3'(I) with
ML prescription:

JEMED) = —inT(e) /0 ﬁa{[—lzu(l-—uﬂ_‘—[~12u(1—u)—2uzl+1_]"‘}
(A.14)

Note that I~ = —k~; k™ < 0, such that sign(i~) = 1.
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We consider first the integral in the UV region where € < 0,12 # 0.
For 12 # 0, the u—integral is finite and thus 7 can be dropped in 1/(ul* + ), leading
to

’L7l'2

) = ~Tor@En [ dvw {1 -u) - - u -]

_ AN 2l
e

As long as we assume /2 # 0, we can expand in € and we obtain

I = "lr: (-2 T - /01 du&rﬂ + /:du Inf1- uu(1 - x:)]}
= _zzr: (=)~ T(1 + €){Liz(1) — Li(1 — x1)} (A.15)

which is an UV finite expression.

For {2 = 0, the integral (A.14) is only meaningful if ¢ < 0. But since the integral
is UV finite, expression (A.14) can be analytically continued to negative ¢ without
doing any subtraction. For negative €, {2 can be set to zero in (A.14), leading to the
following expression for J:"™Z%(l) in the infrared region:

1
AML() . m 1 o 2 g1
Jog () =im2 1“(6)/0 du ——— +in[ P (A.16)
If 12 = (p — k)2 = 0 holds, one has the relation

AT = -2k =21 —z2)pTk” = —(1 —2)k* = (1 - z)|k?| (A.17)

leading to

JEMEQ) = inF T(e) [—(1 - 2) K]~ /0 du % (A.18)

1
ult +in

Note that there is an overall factor (—1)~¢ in (A.18) which will be of importance in
connection with the imaginary part method explained in detail in Appendix C. Since
in this Appendix we treat only those virtual integrals which appear together with the
phase space constraint §(J?), we need only the real part of (—1)~¢ here:

2
(-1 =1- 3% +O(e') + Sm.

Now we have to choose whether we regulate the spurious infrared pole z — 0 in (A.18)
with the PVI- or with the ¢—regularization method.
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e—regularization method
If we use the e—regularization method, we simply drop # in 1/(ul* + in), using the
dimensional ¢ to regulate also the spurious pole « — 0. Then we obtain

1 1
AML . 21—
IR =7 ¥ T -1 - W] (=) (a19)
Therefore, using the general definition

k

By = -%o
QF = irTr(1+e)k™
we obtain with ML prescription and e—regularization
ML, 1 1 1 5 m?
FT=—"——-—In(l- - l-z)— — .
Coe 52 " n(l-z)+ 4ln (1-=z) 1 (A.20)

PVI regularization method

The PVI regularization method suggests to do the replacement

1 5 ult
ult +ip  (ult)? + 62

(A.21)

This allows to distinguish the spurious poles from the “usual” ones, since the spurious
poles will now appear in terms of Iy and I; defined in Egs. (3.61) and (3.62), while
the usual soft and collinear poles will still appear as poles in e. Hence doing the
replacement (A.21), we obtain

CMEE _ —%[10 +In(l~2)]+2h - Lla(l—-z) (A.22)

A.3 Results for virtual integrals in terms of form
factors

In our calculation we need two-point integrals and three-point integrals, which, de-

pending on their number of Lorentz indices, can be classified as scalar, vector or rank

two tensor integrals. Higher rank tensor integrals have been reduced within the pro-

grams to the ones given below by using Passarino-Veltman reduction [63].
The ubiquitous factor Q7 which can be extracted from each integral is defined as

Qr =i 301+ €)(—r)~c.
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A.3.1 Feynman part integrals

@) = T To=—+2
uv
F, . 1
J2 u(T‘) = —Qe Tl?”“ 3 T1 = ‘2-' To
Jf""’(r) = Qt(Torury + Tsr* g)
1 13 1 2
T ] — — M s —_——
2 = 3 Tm 0 BT The s

Jf(k,p) = —QF(~K)Ry

JsH(k,p) = QF(—K*)T'(Rup” + Rok¥)

T (k,p) = —Q¥(—k*)"M(Rap"p” + Rk K" + Rs{kp}* + k*Reg")
{kp} = k'p"+kp*.

The following table gives the parameters R; for the special kinematics p? = 0 and
(p—k)? = 0 which is the kinematics for all one-loop insertions into the virtual diagrams
if we do not consider the contributions at £ = 1, which arise when the cut gluon line
in the virtual diagrams has axial ghost kinematics. Those integrals which are needed
to calculate real diagrams via the imaginary part of the full two-loop diagrams also
require (p — k)? # 0; they will be treated separately in Appendix C.

Ry By Ry Ry Ry Rs Ry
1 21 2 2 1 1 1 1 3 1 3
g |atitd-F | 2| Bt o+ |l mn g | nn T

A.3.2 Axial part integrals

The axial part two-point integrals J3(r) and J4,(r) will first be given in both schemes
for an arbitrary off-shell external momentum r. Then we will list the result for all
axial integrals needed in our calculation, using the special kinematics given there. As
explained in Section A.2, we have to distinguish in the two-point integrals between
on-shell and off-shell external momenta. For an arbitrary off-shell external momentum
T, we have:

3e) = -ZRE

Jz‘t(r) = r—rzz {Pi(r) 1y + Po(r) m}, + Ps(r) n,.} .

The results for the form factors Py, P, P» and P; depend on the regularization of the
axial denominator 1/gn.
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Form factors for the ML scheme

If we use ML prescription we get

PME(r) = Lig(1) ~ Lig(1 - x») (A.23)
PML(y) = _%}%ﬁ: (A.24)
PML(r) = ;gli <Zl,:+2+ )i'i—nxxr’) (A.25)
Py = 2 (e 2 g - s o) (a9

v = Z_n’:_:’;_ (A.27)

Form factors for the PV scheme

Using PV prescription we obtain

PPV = 2.1_ L+hEh) - L+ Lin(r*) + %m? (r*) + Lix(1) (A.28)

PPV(r) = EL +2 (A.29)

PFY(r) = 0 (A.30)
2

PFY(r) = 2_’”;; {ei Io+In(r") -2]- L+ (") + %m? (r*y—4+ Lig(l)}

(A.31)
We used the definitions (3.61) and (3.62) for I, and I, as well as r* = rn/pn. Note
that n* is not present in the PV case.
Two-point and three-point integrals for special momenta k and p

The special kinematics used in the calculation of the virtual diagrams for z < 1 after
UV renormalization is given by

p=n ; (@)P=0
2

P=(p-k? =0 = pk:k2 ; ki:—k2(1—x) ; k<0
Y=z pt=1
2kn kn*
Xe = — = (A-32)

Before having subtracted the UV poles, we obviously have to keep p* and I2 off-shell.
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Two-point integrals

The space-like momentum &2 in our calculation is always different from zero, therefore
we can read off the form factors for J5'(k) and J,(k) directly from relations (A.23)
to (A.31). The integrals J#*(p) and J,(p) only contribute to the UV counterterm, so
p? has to be off-shell in this case and x, = 2p*p~/p* =1 for p* #0, 5 = 0. In the
infrared region, where ¢ < 0 and p? = 0, the integrals J¢'(p) and J£,(p) vanish due to
the overall factor (—p?)~¢.

The form of the integrals J;"**(1) and J5;** (1) in the UV region (1% # 0, ¢ > 0) is dif-
ferent from the one in the IR region where I = 0, ¢ < 0, as has been explained in Sec-
tion A.2. Therefore we distinguish form factors C}V and C¥ in this case. In addition,
we have to decide how to regulate the spurious infrared poles present in J{"M L ). PV1
regularization leads to a result containing /o and I; whereas e—regularization leads
to a 1/€* pole in J;"M%(1). The form factors obtained with the two regularization

methods of the spurious infrared poles are denoted by c;f{,ﬁ;‘; and Céf?“i’ respectively.

Two-point integrals in parameter form:

Jk) = b

k) = k—S{P1 ki,+ Pyn), + Pin,}

7 = -2 B,

4 @ .

) = E{Blpu-i-anu-kBgn,,}

BO) = -1

I) = %(Cllwcznﬁcsnﬂ) (A.33)
Bikp) = -2 Ky
M=k = —%Do

Note that in the PV scheme, the parameters CFV'F (i = 0,...,3), KZ'¥"* and D{V'"
are not needed since they have an overall factor (—I%)~¢ or (—p?)~¢. In the ML
scheme, the situation is different: Due to the presence of n*, (—I2)~¢ is not the only
invariant scale, so the integral in the IR region can be nonvanishing, ¢.g. proportional
to (2inlIn*/nn*)~¢ ~ [—=(1 — 2)k?]™¢, as can be seen from the example in Section A.2.
That is why we extract only the overall factor

R =13D(1+¢)
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in integrals depending on !, whereas the factor (—{%)=¢ or (—k?)™¢ is shown in this
case explicitly together with the corresponding form factor.

Form factors for two-point integrals in the ML scheme

Ltg(l) - LZQ(l - 32)
zlnz
l1—-2

{1 zlnw}
z{-+2+
€ 1-z

k? Inz 1., .
m {—1 + =2 + o [Lag(1) — Lis(1 — x)]}

1
Liy(1) ; BMr=1 ;, BMi=— 41

uv

P .
2o {=2+ Lip(1)}

2lnin*
_J%\ € . - L _ s =
(=B (Lia() - Lis(1-x)) ;5 x i
- Inx;
_12 € (_ Xi )
(=) Tox
(i (Lo %)
N\ €uv 1-xi
(=)< ln* (_1+ Inx, + Iny;In(1—-x,) + Lzz(x,))
nn 1-x Xt Xt

finite

(_kZ)—e (“l [ln (1 - 1‘) + Io] + 2[1 bt Io In (1 ol l‘))

€
1 1 1 72
(—k%) (252 26111(1 z)+4ln (1-2) 4)

(—k%)~ (——% ~2+4+In(l - z))

(—k)(1 - z) (% +2-In(l- x))

1%
et
(=k°) 5
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ML,ir
KO

ML
Do it

e 1 Inz . 1
= (—k‘z) —i_——_z (T - L’Lz(l - 12) - 51!12-’15)

(=K% (-le-[ln:c —In(l1-2)]- %lnzx + %In2 1-z)- %2>

Form factors for two-point integrals in the PV scheme

PV
By

PV
A

PV
P,

PV
P, 3

PV
By

PV
B 3
PV,uv

&

PV,
Cl Juv

C2P V,uv

PV,
C3 Suv

PV,
Do ,uv

M_Jl+folnx+%ln2z+lzig(l)
Lio
€
0
K ([Io+Ilnz-2] 1,4 ;
2_k;{-—‘E__——1‘1+Iolnz+§ln x—4+L12(1)}
b hera@) o B =425 BV =0
6uv euv
2
[l -2 :
KAy § oA S A
2pn { o 1 4+L12(1)
(~l2)—e ([IU + ln-é——_._(l — .Z)] - I1 + IO In (1 - .’L') + %]Ilz (1 - $) + LZZ(I))
_]2\~€ L )
(e (242

0
(_lz)_e;l_n{[Io +In{l—1z)~2)

1 .
+500’ (1-2) -4+ Lzz(l)}

-hL+Lln(l-1)

€uv

(—pz)"(L In(l1-z)-Inz]+ % In’z — -;- In? (1 = z) + Lip(1)

€uy

—2Lis(1 —2) ~In(1 — ) lnz)

Three-point integrals

The three-point integrals needed for the virtual part are given by Ji'(p, k), J&,(p, k)
and Ji'(—k,!). They are calculated only in the IR region since they are UV finite.
The integral J{*(—k,{), like J3:(I), in the ML scheme contains spurious infrared poles
which can be regulated either by PVI- or by e~regularization, therefore we distinguish
between the form factors U4k, and UME.
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" QF
Bk = SRS
Qk
Tiulkp) = =R (S1p + Sohu+ Samy + Sum)
k
Rk = R

Form factors in the ML scheme

St
St
Syt
s

ML
S

UO,PVI

UML

11 1
= 5+-lz —2Lis(1) = 2Lip(1 — z) — = 1n2z

1 1 lzlhz zlnz

z*rzr:‘;‘r_—x‘ B0+
1 Inz 11’z
eT-s 1 Pl -e) -3

1k (. Liy(1 — z)
1k (L’2(1> -=2Y)

1

6—2—+§-[-—Io+ln$—21n(1 —z)]+2I
3
2e2

12 .32
21n I+Zln (1-1)

Form factors in the PV scheme

SEV
SPv
sPv
sPv
SFV

PV
UO

1

1 lzlnz

1_ ___+1_f_xu2(1-z) - Lix(1)

e ¢l—z
1 Inz  Liy(1-2)

+ % lnz - %In(l —z)]+ Lip(1 —z) - 12—3Li2(1)

el-z i—-z

1% (I 1Inz Iylnz . zLiy(1 —
2kn< P pe O S gy
0

1 1

—2+E[—Io+lnx—2ln(1—x)]+I1—-Iolnz

+2Lip(1 - z) — %lnzx +1n? (1 - z) — 6Li(1)
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A.4 Two-loop integrals
For the calculation of the CrTy part of the two-loop quark selfenergy we need some

integrals with an extra non-integer power of (—7?) in the integrand, where r is the
loop momentum. Making use of the identities

1 1 o= 1
— = —
a®b / [az +b(1 — )]**

1 = %71
— = +1 dz/ , A34
a%be ala+1) / “laz + by + c(1 — = — y)]°*? (A.34)

one obtains rather easily:

/ dmr (—r?)" _1'_(471’)5 (_ 2)1_26 el'(2¢) T(1 - ¢)T(1 — 2¢)
( 1672

(2m)™ (p—r)? T(1+e T(3-3¢
(A.35)
drr (—=r?)™ ey -2 ['(2¢) T(1—€)l(1 - 2¢)
/('7r)_mr2(p—r)2 T 16n 2( ) (=) T(1+e¢ TL(2-3¢
dmr (_TZ)_€ - 2\ —€ 2 d"r 1
e e = P 0 | s e T
(A.36)

where the integral on the right-hand side of (A.36) has been determined in Ap-
pendix A.3. Note that the integral in (A.35) vanishes if the factor (—r%)™° is not
present.

Finally, with PV prescription one obtains for the integral in (A.36):

dmr (=r?)"¢

2m)m r2(p — r)[nrlev 167r2(4 ) (- )_26

1
2epm Lo + €€(2) — 2eI1] + O(e) ,

y (A.37)
winile
/ (;i:)r"‘ r2(p - Tl)z[nr]pv 167r2 (4” (-2*) oo o+ eC(2) - eli] + O(e) '~
(A.38)
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Appendix B

Phase spaces

The momenta are parametrized as

(P0,P) (P>0) ; n=(20 -2

p= 2P’ 2P
2 g2 24 12

k = (zP+k4:;L,kL,xP—k4:§L
] B ep

L = (zlP+E};,t1,zlP 21P) i =0;2#0
2 2

Ih = (z2P+4 P,t2,z2P—E22P-) HfE=0;2#0

Tz = k_n;h:ll_n;h:gﬁ

m m

In light-cone parametrization, the momenta are written as r = (ry, r_, 7. ), where

1

ry = —=(rg*rs) andthus
V2

r? = 2r+'r_—rf_

It is convenient to set pn =p, = 1.
The Feynman rule for a cut gluon line is given by
l

! 2\ (79
am 218 (12) 0(1°) dyo (1) dap

whereas for a cut axial ghost line we have
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hbeees 2m8(in) B(1%) DE(L) 8 D) = ~(bamu + L)
ap ' by

So for the cut lines one has to distinguish between “physical” gluon lines and axial
ghost lines. The case that all cut lines of a given diagram are ghost lines only gives a
contribution at r = 1.

B.1 Phase space integral for virtual contributions

The phase space integral needed for the virtual diagrams, where only one physical
gluon line is cut, is given by

. am
PSUrt = or / (2—”)’% 6z —2)6((p —k)?) where (B.1)
2 -
-k =~ Q-Z—")kz = 5{(p—K)) = 25(k + (1 - 2)k?)
Since the integrand has no angular dependence, the angular integral is trivial here, so

/ &k = Ky / d/c?—aqk (R = Kpns / dk?i”fldkL(ki)"'T"‘

Kpes =277 / I‘("“ ) is the surface of a (m — 2) dimensional hypersphere. Thus in
m = 4 — 2¢ dimensions, the phase space for the virtual diagrams is given by

PSUrt = 2rz / (2 2)8((p — k)?)
- (%)4 _ 4K2 " / dk? dR2 (k2) ™ 28(K2 + (1 - 2)k?)
1 (41r)‘

e A G

The upper limit of the djk?| integral (k* < 0) is denoted by a large momentum scale
Q? whose actual value is irrelevant since only the pole part of the k2 —integration is
needed.

B.2 Phase space integrals for real contributions

The real contributions are the ones where two internal lines are cut. If the cut lines
are gluon lines, we will distinguish between “usual” real diagrams where both gluon
lines are physical on-shell gluons and “ghost diagrams” where one cut line, say I3, is
an axial ghost line. The case that both cut gluon lines are ghost lines only gives a
contribution at z = 1. The following table summarizes the different kinematics:
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l being a physical gluon

l; being an axial ghost

=0 =t

Iy = zp* =

Iy =6/ (2zp*) 2ptl; = ¢
=(1-z-2)p* =0-z)p*

pla = £3/(222) pl2 =3¢

hiy =8+ 28 -1,

hly = 36z ~ ity

B.2.1 Phase space for physical real part

Using the parametrization of momenta given above, the two-body phase space for [;
and [, being on-shell physical momenta is given by

dd(l, 1)

If

(2 )m / dif dif diy diy d™25d™28, 6(p* ~ kY ~ I — 1)

-6(""2 (ky + 8 +5) 6k~ + 17 +17)6(1%) 6(3)

Now we use (%)

i

2
l 5F iy - —ZF) and the analogous relation for [,

then

it dig
dd(ly, 1) diy’ dty

55 o 3 -

&
O (ky+ 5 +b2) 6k + o +

2m? d21 dlz
= W / P dtldt26(1—$
k2 k2 52 ‘2

'5(E¢+{1+{2)5(; =+2 -+ )

- -5)

i

&
z+)

-z —2)

Including also the k. —part from the d™k—~integration into the phase space leads to

22 dz1 dzy dz 4

phys  _ i I b)) = —— -
P& /dkldq)( 1,2) o] 7o (1-z

-2 - 22)
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2 2 2
/ drdf 6( (t‘+t2) ST A + 5 (B.2)

21 22

Now new momenta I-il and E; will be introduced such that the §—function becomes
diagonal in h; and h; and the angular dependence of the denominators gets as simple
as possible. The angular integration will be carried out in the following way: In
all diagrams where no axial ghost is present, hl and h2 can be chosen such that
one denominator factor is only proportional to h2 or A2 and the other denominator
factor is proportional to (EI + 52)2 or has no angular dependence at all. Then the
arguments of the matrix element M(k?, h2, hZ, hyhs, , 21, 22, €) will be changed to
M(k? h2,),0,x, 21, z5,€) where ) is defined by the ratio

N = hi/h;

and € is the angle between 51 and h,.
The transformation of integration variables is given by

/ dty dfy — / dhy dhy |DJ|
where the dﬁi integrals can, for m = 4 — 2¢, be written as

F(l — 6) i . ~2¢
_—_\/7?1"(% m— /0 df(sinf)

So in terms of the new variables, the phase space PSPYs is given by

omd=2e 1 / dz, dzz
@mmr2(l-¢J o 2z

: / dhf(hi)“dhﬁ(hé)‘f S(FOR?, B2, 3, 7,20, 22)

\/_1"( — )/ db(sin §) 2 (B.3)

The functions £ (k?, k2, hi, z, z1, 2,) depend on the topologies (a), since for different
denominators the new variables h; are defined differently. They are given in Table
B.1.

dhidhy, = T dr2(R2)~¢dR2(h2)~¢ -
162 = T2l —¢) 1(h1) 2(h2)

PgPys = —25(1 -z — 2 — 2)|DJ)
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Angular integration

The angular dependence of the numerator of the matrix elements is of the structure
M(cos8) = A+ B -cos + C - cos’§

The denominators of the matrix elements contain an angular dependence (if at all)
only in the term

(hy + hy)? = B2(1 + A2 + 2X cos )

so the angular integrals to perform are

_ PA—¢ [T i 2 _
I, = =9 / df (sinf)™* =1 (B.4)
Ig = \/_I‘l(;j)e / d6 (sin)"* cosf = 0 (B.5)
_ Tl-¢ [ (sin §)~2
o = \Fr(l )/ BTN T oncosh (B5)
I / df (sin )% cos? 6 = 1.1
P fl"(z S 2 1-e

I¢ leads to a hypergeometric function depending on A? and e

I F(l,1+6l—¢2%) for A2 < 1 (B.7)
CT AFQ1+6l—e5) forA>1 :
So if there is an angular dependence in the denominator, the integration range for the
transverse momenta has to be split into a region where A> < 1 and into one where
AT > 1.

Combining the results for the angular integrals we finally obtain for the matrix element
after angular integration

—2¢
MR 5,21, 2) I‘(l / de(sm@) (A+ B cos+ C cos? )

(1+ A2+ 2Acos8)
= Ic-Uy+U; (B.8)
1+ X (1+22)?
U = A-B——+C-—(3
u, = B_o0+X)
)Y 4)?
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Transverse momentum integration

After having integrated out k2 using the ¢—functions given in Table B.1, the inte-
gration over h? can be transformed into an integral from zero to one, in the case of
topology (d)i%,, for example by defining

2
T

h2 au z

2 = —1-= ==

Then A B l-w ' zz

and
27I’4 —2¢ (Ikz 1-2¢

(2m)m I2(1
da [ duu {1-u)y*+a 1 dun™{l1—u)"*
e J

P .SPhys:(d)

/dzleQ(;(l" r—2y— 22) Zl

1

14a

After insertion of the matrix element
M, z, 21, 29) = Ig(a,u) - Uy (u, 2, 21, 23) + Ua(u, z, 21, 2) and the substitution

v = for u <
—u l+a
l-u 1
= foru > —
l1+a

we arrive (besides trivial integrals) at integrals of the type
i v
Jo = / dvvt T (1 + 5)2‘ ‘F1,1+6l-¢v)
0

1
+/ dvv™* (v+%)2‘-F(1,1+e;1 —€,v)
0

1
Jp o= a'1/ dvv“(1+3)'“’2‘-F(1,1+e;1-—e,v)
0 a
1
+a’1/ dvv“(v—+—l)'l+2‘-F(1,1+e;1—e,v)
0 a
1
Jo = a'z/ dvvl“(1+§)‘2+h-F(1,1+e;1—e,'u)
i

1
+a72 / dvv™ (v + %)’2"'2‘ -F(1L,1+¢1—¢,v)
0

Using
F(1,14€ 1~ v) = (1-0) "% F (=€, —2¢, 1-¢; v) = (1=v) 717 %{1+2¢® Liz(v)+O(¢*)}
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we obtain the results

. 2T%*1-¢) 1+a
JO = —;F-(-l——Te)(l-FEln 2 +E _"+O(f zl)) (Bg)
1 1 Ina
ho= -7 T+a) 30 +0(ez) (B.10)
1 1 Ina a-1
P s e Rl e (B1U

The remaining integrals over z; are straightforward, containing in the PV scheme and
in the ML scheme with PVI regularization terms like 2}~/ (22 + 62) which lead to the
spurious poles Iy and I; defined in Egs. (3.61) and (3.62).

B.2.2 Phase space for axial ghost contributions

We fix our notation such that I; is always the usual gluon momentum, and [, is the
axial ghost momentum. The phase space PS® then is governed by the condition
IF=0:

pgst =

Tdls dbdiz dik) 6(p* — kT — I - 1F)
S(EL+6 +5)6(k™ + 17 +15) 8(1) 6(13) 601)

)
Now we use 46(I%) = 2—;1:(5(11‘ - Ztl—}) to eliminate /[ and substitute I by
¢
= 9pt- -
€= whedy=gx

Note that £ > 0 because of the theta function 6(13): 8(I3) = 6(if + i) = 6(l7) for
I = 0. Hence

2 - - - - -
z% / dZI de(s(Zz)é(l —-—Tr—2z2 - Zg)/dkl dt]_dtz(s (kJ_ + t]_ +t2)

2
/d§5(k2 ’“i+§+t‘)

pse

- (22,7:)", - / dF, df,dEy 6 (FL + 1, +£)
72
/dg& L+§+t ) (B.12)

The condition (1) = (1 — z + 5(—117)) is trivially fulfilled.
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Now there are two different ways to proceed, depending on whether the spurious poles
are regulated with & or with ¢. If all poles are regulated with ¢, parametrization 1,
which shifts the angular dependence into ¢3, is the most convenient one, since then
the é—function containing & is naturally diagonal. On the other hand, the spurious
poles correspond to the limit t3 — 0, so if we choose to regulate the spurious poles
with &, we should avoid an angular dependence in addition to the d—dependence in
t2 by using parametrization 2.

Parametrization 1

In parametrization 1, we define the angle 6 and the parameter 8 by

.l K2
kify =kitycosf ; = t_"-’L , (B.13)
1

leading to
2= (f + k)% = (1 + 6% + 28 cosb) (B.14)

Hence we obtain

P = R [L50-0-) [an@E e
KR 1 o
/d.fzS r2aer D). \/_;(1 9 /de(sme) % (B.15)
4-26 1
F. =

(27r)”‘ a-¢

Now we substitute

-z
Bo= W B= 20wy
then

k2 zu bu
CO e il gy (819)

- m (B.17)

This is leading to

pssh — F, lk2]2—-2£ $—1+e(1 _m)-—e /‘l duu‘e(l _u)l—e /1 dyy-e
/ dga( 1w (—y)+6)- fr 2 / d8(sin6)~% (B.18)
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Finally the integral over 6 can, by substituting w = %(1 + cos 8), be written as

1 1
PS® = F k2o (1 — ) / duu™(1 - w)™ / dyy™
0 0

1 ! L
-] d 1—w)] 2~ B.
e I (B.19
The momenta occurring in the matrix elements in this parametrization are of the form
2
rby = Elaozoy
2 &3
)2 = ——2 _ —_Pla_w.
(p-b? = —;2==-1-u-y (B.20)
l1—-z
= |k2|(—?—)(1—u)'3!

8 = (h+k)?=£01+p*+2Bcosh)
= |k2'( )(1" ujy (1“5)2[1-—zw];z=—:iﬁ—

(1-p?
p-0)? = —[f+t§]=-“;—\(1—U)[1—y+(l—w)y(1+ﬂ2+2ﬁcosa)]
= Bl wp-y+0-2y0- 20 - 2ul) (B21)

Parametrization 2

A parametrization where 2 contains no angular dependence and the §—function in
(B.12) is diagonal shifts the angular dependence into £ and k3. Substituting

B = hy ; h=thi—(1-12)h
E_j_ = —'13(71,1-("}-1:2)

leads to

PS® = F,(1-z)7'2*> / dh3(h?)*dh3(R3) ¢
k? ch? = Dl-¢ ([T
§(=- [kl SRR _____/ in @)%
/Odé (z Her—o+ 2) 7T =0 Jo df(sin §)
Now we substitute

1% o op2 o )
=l l1-z)-u ; hz—";’(l‘u)'y )

to obtain again expression (B.19) for the phase space P.S8h.

R = (1+cos8) (B.22)

mlt—‘
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The momenta occurring in the denominators of the matrix elements are in this
parametrization given by

2 = 'i;—‘(l-u).y (B.23)
2 = w822 (1142 = 2rc0s6)

(b = —(s+t21=—'—’f—‘(1—u)

p-0h)? = —%=—I—kg-l(l—z)(l—u)y(1+/\2—-2/\cos0) (B.24)

(h+h)? = ”f' 1=z = 2y(1 - u)(1+ 5 + 2B cos )] (B.25)
R R T,

(B.26)

The §—regulator for the spurious poles then regulates the spurious pole at 2 — 0 as
follows:

L. B
] (£3)2 + 62(2ptiy )
- k?
w = e=Ela_ua-y
k2
: - Fa,
Hence t;2 — ,k2, —(l-u )—1-——y—— (B.27)
? z Y2+ 62(1 ~ y)? '
N L PPN I T
= [z (t-v)| i (B.28)

where §%(1 —y)? has been set equal to 62 since only the limit y = 0 has to be regulated
by 4, so the difference between (B.27) and (B.28} will be of order §.
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Appendix C

Imaginary parts of two-loop
integrals

In this Appendix, we will show explicitly how to obtain the imaginary part of a
nontrivial loop integral done with ML prescription. As an example we will choose
the two-point integral Jf'ML(l) where we did already the integration over the loop
momentum, ending up at expression (A.14). The next integration we have to do is
the one over d™k, given by Eq. (B.1), but without the 6—function §((p — k)) = 6(1)
since we want to evaluate the full two-loop diagram without any cut and only then
take the discontinuity. How the different discontinuities are related to the cuts of a
certain diagram has been explained in Section 3.5.1. Here we show how to extract
the imaginary part of a given two-loop integral, the latter consisting of a one-loop
integral as defined in Appendix A, but with /2 # 0, and the following integration over
{2. The tranverse momentum integration over k3 contained in [ d™k is related to the
{2 integration by
B=(p-k)? 20tk + K = —-i—(kz +E)+K = %(Ikzli ~ k%)

zZ =1-z

Now we substitute _

k2 = |k*|Z % to obtain I2 = |k?| g 1-x) (€.1)
Furthermore, we will use

A =P+ 12 =2+ k2 = kP g- (1-k%)

Thus we have, combining the phase space for the d™k integration with the virtual
integral g J; """ (1) given in (A.14):

. / (Td:)—’:;a(x-z) JAME()
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1 2 e M
327r3F(1 e)/ d'“/ AL (kD)™ (2 B

_ i (4m* T(1+e) / 21 .2[1=¢ 5 l—e/ i —
= —_—(16'”2)2]?‘ s i d|k*(|k? | dr K

/Oldu-—if{[ #2200 - W)L ) f-(-(k?(gu(l-mm)]-f}

ul* 4+ in

_ 4 (dm* F(1+f) ~1-—e/ 215.2(1-2¢  pJ{ML
= 5 Wer2 2T —e) SLRLE S
JAME i _el Fmax e 1 1 _ U
I = (:c) 6/0 dk K /0 du———ul++z.n{[(n (1 - )]
k=1- /sxu]"‘}
= Lg—ILn
FNTEL e T 1 —e
[,d = - (-x-) E‘/O dK,K} ‘/0 du m[— (1 - N)(l - U)]

IKII

=\ € Kmax 1
-(% 1/ dnn"[ du——l——,~[n—- 1 - kzu]™*
T € Jo 0 ult + m

AML
Now we have to extract the imaginary parts of IP". We see that I;; develops an
imaginary part for k < 1, leading to

Iu———( 1) ( ) /dnn"(l—n /duul++ n(l-—u)‘ (C.2)

whereas I.;; has an imaginary part for « > 221, From the condition 0 < u < 1 we
therefore deduce Kpax = 1/Z in the case of Iy, lea.dmg to

1, B\ e [ u KTU ¢
I = =1(-1) (;) /0 drk—(x — 1) /%dum{l—n_] (C.3)

Using now!

2
(=1)~¢ = ein(1 - 52%) +real + O(%)

and extracting the coeflicients of 7 we obtain the imaginary parts of the integrals I,.;
and I after having carried out the parameter integrations over u and k.
Note that in the same way as for the one-loop integrals treated in Appendix A, we

!The sign of the eir term actually is determined by the i7 term accompanying the term 12 + i7;
see Eq. (3.121).
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still have the choice to use PVI or e—regularization for the spurious infrared poles, as
has been explained in Sections 3.3 and A.2: .

ue ul™
PVI: ¢
v Y e e
€ —reg. Y —l-e

_—
ult +in Y

The imaginary parts of the integrals given in Table C.1 are the values obtained by
using e—regularization.

The full matrix element of the diagrams calculated with this “imaginary part method”
contains additional factors (1 — x)~! from the 1/(I%> + in) denominator of the gluon
propagator D;’Z,(l) Additional factors (1 — ) from the numerator also appear. We
therefore need three types of integrals:

/0 T (1= 1) J(k), /0 "™ Gkt J(k) and /0 ™ ke (1 = K) J(x)

where J(k) stands for any one-loop integral needed during the calculation and having
an imaginary part. The definitions of the one-loop integrals are given in Appendix
A. The vector and higher rank tensor integrals have been reduced to scalar ones by
Passarino-Veltman reduction [63]. There is only one parameter of a vector integral
containing an imaginary part which cannot be fully expressed by scalar ones due to the
presence of n*, which is the parameter C,(x) of the integral JZA,;M L) (see Eq. (A.33)).
Since we do not need the imaginary part of the full vector integral, we only give the
result for this parameter in Table C.1.
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