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This paper constructs, making use of the on-shell spinor-helicity formalism, a possible ultraviolet
completion of gravity following a “bottom-up” approach. The assumptions of locality, unitarity, and
causality i) require an infinite tower of resonances with increasing spin and quantized mass, ii) introduce a
duality relation among crossed scattering channels, and iii) dress all gravitational amplitudes in the
Standard Model with a form factor that closely resembles either the Veneziano or the Virasoro-Shapiro
amplitude in string theory. As a consequence of unitarity, the theory predicts leading order deviations from
General Relativity in the coupling of gravity to fermions that could be explained if space-time has torsion in
addition to curvature.
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I. INTRODUCTION

Prior to the Large Hadron Collider turning on, our tested
theory of nature was a gauge effective field theory (EFT)
with a scale v at which unitarity was lost perturbatively.
Unitarity, however, is sacred, and its guardian—as present
data seem to indicate—is the Higgs boson. Despite all the
apparent differences, the categorization above applies word
for word to gravity when thought of as an EFT with scale
MPl ≡G−1=2

N and diffeomorphisms as gauge transforma-
tions, even though, as for who its “Higgs(es)” is (are), there
is no experimental evidence at present. Exposing the need
for an UV completion of gravity by means of its similarities
with the Standard Model (SM) is preeminently a particle
physicist “bottom-up” approach, and it is not to say that this
is the sole issue in gravity that needs addressing (open
problems range from a nonperturbative formulation to the
understanding of singularities relevant in cosmology and
astrophysics [1]). It is, nonetheless, the point of view that
rules the course of this paper.
One can further elaborate that the above formulation,

even within particle physics and EFT, is obscured by

(of course, fundamental) differences in the gauge sym-
metry, the treatment of the massless mediator, the univer-
sality of gravity, etc. In order to sidestep these differences,
the best-suited subject of study is on-shell amplitudes; they
circumvent gauge redundancies, field redefinitions, and
gauge fixing present at the Lagrangian level while making
ostensible the high-energy behavior. Furthermore, as for
practical implications, the derivation of these amplitudes
with conventional Feynman rules is greatly involved (the
three- and four-graviton vertex derived from the Einstein-
Hilbert action have, respectively, about 100 and 2500 terms
when fully expanded [2]) to finally collapse in a single-term
remarkably simple amplitude [3–5].
This is part of the evidence that supports postulating a

theory with amplitudes as the starting and building blocks.
This approach is the on-shell amplitude program; see
Refs. [6–8] for reviews. An important part of it is the
on-shell spinor-helicity formalism, which seeks to exploit
helicity (little group) transformation properties to determine
the shape of amplitudes while providing a common frame-
work to formulate scattering amplitudes for all spins and,
more recently, all masses [8]. Combined with a recursive
method to build higher-point amplitudes from lower-point
ones (the Britto–Cachazo–Feng–Witten (BCFW) and
Cachazo–Svrcek–Witten (CSW) rules [9,10]), this program
aims at a self-contained formulation of quantum field
theories. It is not without its own challenges, as determi-
nation of off-shell contributions prevents these methods from
extending to arbitrary theories.
If one is to sidestep the Lagrangian formula-

tion, however, care should be taken to ensure that the
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properties that are naturally implemented in it are
satisfied by the formulated amplitudes. Since they are
of particular importance in this work, let us briefly review
them. For locality, interactions are either pointlike or
mediated by the exchange of particles propagating
between two space-time points. This elementary principle
dictates the nonanalytic structure of scattering amplitudes;
the only singularities occur when one or more inter-
mediate particles go on shell. For unitarity and causality,
the scattering matrix is a unitary operator as a conse-
quence of probability conservation, and causality implies
that local observables must commute outside the light
cone in position space [11]. Positivity, derived from
unitarity, will play a central role in the analysis of this
paper. These principles impose, in addition, stringent
constraints on the high-energy behavior of scattering
amplitudes [12]; of relevance in this work will be the
extension of the Froissart bound [13] to a theory with a
massless graviton [14] in the forward limit and the
Cerulus-Martin bound [15,16] in the hard scattering
region. Furthermore, the property of causality results in
analyticity of the scattering amplitude, thus making it
possible to represent the latter by means of a dispersion
relation via Cauchy’s theorem [17].
In line with the bottom-up perspective mentioned

above, we shall explore in this work whether it is
possible to obtain a UV completion of gravity by adding
massive resonances and, if so, what the properties
required of them are. To this end, we shall combine
the on-shell spinor-helicity formalism with the above-
mentioned fundamental properties. In addition, the dis-
cussion will be restricted to weak coupling and tree level,
which is to say in typical EFT language that the new
resonances should lie below MPl.

II. AMPLITUDES FOR GRAVITY

In this section, we construct the elementary components
of this study; these are three- and four-point amplitudes
mediated by gravitational and massive spin J resonance
interactions (Secs. II A and II B, respectively). It will also
serve as introduction to the formalism for the unacquainted
reader.

A. Graviton mediated amplitudes

On-shell Dirac or Weyl spinors, polarization vectors, and
polarization tensors are objects that interpolate between the
Lorentz group SOð4Þ ∼ SUð2ÞL × SUð2ÞR and the little
group—that is Uð1ÞLG for massless or SUð2ÞLG for
massive particles—and, as such, transform under repre-
sentations of both. The on-shell spinor-helicity formalism
in essence seeks to use group theory in both groups to
determine the shape of amplitudes. The simplest case is that
of massless fermions; denote as αjpi ( _αjp�) an on-shell
momentum pμ left-handed (right-handed) spinor with

SUð2ÞL [SUð2ÞR] index α ( _α) and antisymmetric metric

ϵαβ (ϵ _α _β), ϵ12 ¼ −ϵ21 ¼ 1. The spinor jpi (jp�) represents a
helicity h ¼ −1=2 (h ¼ 1=2) particle and hence transforms
under Uð1ÞLG as jpi → jpie−iϕ=2ðjp�eiϕ=2Þ. Amplitudes
are Lorentz invariant quantities, but they comprise little
group representations, and so a valid amplitude for two left-
handed fermions is ϵαββjp1iαjp2i≡ hp1p2i. The massive
case is obtained upgrading the spinor to the fundamental
representation jpIi with I an SUð2ÞLG index, which again
has antisymmetric metric ϵIJ. Here, we will typically omit
the index I but use boldface jpi to separate it from the
massless case, following Ref. [8]. The reader accustomed to
Dirac spinors will find these variables demystified by the
relation uIðpÞ ¼ ðjpIi; jpI�Þ in Weyl’s basis for γμ.
One has then that higher spin is simply built out of the

fundamental representations; the familiar polarization vec-
tors read, e.g., ϵ−μ ðpÞ ¼ ½ξjσμjpi=

ffiffiffi
2

p ½ξp� with ξ an aux-
iliary spinor and ½σμ�α _α ¼ ð1; σ⃗Þ with σ⃗ the Pauli matrices.
Objects like polarization vectors or tensors, however, will
not appear in the formalism since one rather starts from
amplitudes and demands proper little group scaling; for
instance, an amplitude describing a particle with momen-
tum p1 and helicity −1, Ap−1

1
, scales as e−iϕAp−1

1
. As is

conventional in amplitude methods, we will derive ampli-
tudes with all particles coming in, and we summarize our
conventions about kinematics in Fig. 1. Given the scatter-
ing of particles 1,2 with momenta p1, p2 and helicities h1;2
into particles 3,4 with momenta p̄3;4 and helicities h̄3;4,
denoted here 1h12h2 → 3̄h̄3 4̄h̄4 , the all-incoming amplitude,
1h12h23h34h4 , is obtained by changing the sign of the
momenta (and with it the helicities) of the outgoing
particles p3;4 ¼ −p̄3;4, h3;4 ¼ −h̄3;4. Equivalently, starting
from an all-incoming amplitude and taking some of the legs
outgoing, sij ≡ ðpi þ pjÞ2 will turn into one of the three
Mandelstam variables s, t, and u as given by

A∶ s12 → s s13 → t s14 → u h3;4 → −h3;4 ð1Þ

A∶ s13 → s s12 → t s14 → u h2;4 → −h2;4 ð2Þ

A∶ s14 → s s12 → t s13 → u h2;3 → −h2;3; ð3Þ

whereas an incoming left-handed spinor jpi will turn into
j − p̄i ¼ eiφjp̄i representing an outgoing momentum p̄
helicity þ1=2 particle (our convention for the phase φ is
in Appendix). Here, we find it useful to write amplitudes in
terms of sij; jii; jj� since they make clear the connection
between different physical processes related by crossing
transformations and symmetries under particle exchange
(e.g., 1 ↔ 2) and can be viewed as a function with support
on three different disconnected regions, (r), (b), and(g) as
shown in Fig. 1. Finally, for energies close to MPl, the
approximation of massless matter (i.e., SM particles),
which we shall adopt in the following, is excellent.
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The first step in our quest for the bottom-up UV
completion of gravity with amplitude methods is to build
the on-shell three-point amplitudes describing interactions
of SM particles with gravity by means of Lorentz-invariant
combinations of appropriate powers of spinor variables.
As stated in the Introduction, we restrict to tree-level
amplitudes, and our theory of gravity is General Relativity
(GR). The three-point coupling of a graviton with helicity
hg ¼ 2 and momentum q to a particle with helicity h and
momentum p1 and a particle with helicity �h and
momentum p2 reads by little group scaling

½12�h�h−2½1q�2þh∓h½2q�2−ðh∓hÞ; ð4Þ

with the same and opposite h sign yielding, respectively, a
mass dimension of 2hþ 2 or 2 and where the short-hand
notation jp1� ¼ j1�, etc., is implied. Given that an n-point
amplitude has mass dimension 4 − n and gravity’s coupling
is κ ¼ ffiffiffiffiffiffi

8π
p

=MPl with mass dimension −1, we find that
only one of the two amplitudes is generated. Explicitly,

This on-shell amplitude has p1 þ p2 þ q ¼ 0 and is gauge
invariant, as can be checked by shifting jq� → jqþ ξ� and
projecting in terms of the j1�; j2�; jq� spinors. The absence of
a ðþh;þhÞ amplitude means that gravity conserves helicity,
which at this level coincides with any quantum number that

the particle might have. As we shall see in the rest of our
analysis, this observation plays an important role.
The four-point amplitude of order Oðκ2Þ is generated by

graviton exchange, and hence contains a pole. The residue
of this pole factorizes into the product of two local three-
point on-shell amplitudes, given above. One can, therefore,
reconstruct the on-shell-mediator part of the four-point
amplitude 1h2−h3−h

0
4h

0
as

ð5Þ

where q̄≡ −q, given that the helicity hg ¼ þ2 graviton
with momentum q enters the second vertex with momen-
tum −q and helicity hg ¼ −2. Two currents of possibly
different helicity with h0 ≥ h are considered for arbitrary
SM external states. Manipulation of the expression above
leads, using the on-shell conditions, to (for brevity, let us
denote A

1h2−h3−h
0
4h

0 ≡Ah;h0 )

AGR
h;h0 ¼

s1−h
0−r

13 s1−h
0þr

14

ð8πÞ−1M2
Pls12

ð½14�h23iÞ2hðh3jP̂12j4�Þ2h0−2h; ð6Þ

where r is an integer (semi-integer) for integer (semi-
integer) h0 and Pij ≡ ðpi − pjÞ=2, P̂ij ¼ Pμ

ijσμ. The
appearance of this parameter is related to the extension
of the amplitude off shell; whereas the dependence on
spinor variables is fully fixed by the little group, one has
that on shell (i.e., when s12 ¼ 0) s13 ¼ −s14, and so
amplitude methods alone cannot determine r.1 From the
scaling with energy of the energy-momentum tensor, we
find −1þ h0 ≤ r ≤ 1 − h0. Furthermore, when a scalar
current is present (h ¼ 0), gravity has no handle to
distinguish between particles 1 and 2, and the amplitude
must be 1 ↔ 2 symmetric. The ambiguity in r, therefore,
reduces to two cases only, h ¼ h0 ¼ 0; 1=2, each charac-
terized by one parameter a, b, as displayed explicitly in
Table I.2 In this table, we collect all tree-level SM scattering
amplitudes mediated by gravity constructed explicitly by
means of Eq. (6). We also display gravitational Compton

FIG. 1. Four-point amplitude with ingoing initial-state and
outgoing finale-state particles (top-left diagram) and with all
particles taken incoming (bottom-left diagram). On the right side,
we show the three physical scattering regions (r), (b), and (g) as a
function of the kinematic invariants sij, corresponding to the
substitutions in terms of the conventional Mandelstam variables
in Eqs. (1)–(3). For massless external particles, the inner triangle
collapses into a point.

1Locality bounds r to range in the interval −1þ h < r < 1 − h
in order to avoid double poles. This is because we have the
scaling ½14�h23i ∼ s14, h3jP̂12j4� ∼ ffiffiffiffiffiffiffiffiffiffiffiffi

s13s14
p

, and the condition
above ensures that no negative powers of s13;14 are present.

2Knowledge of the full amplitude in GR can be attained
through a Feynman rule computation. Here, however, we keep the
contact terms arbitrary. In this sense, note that experimentally we
have only tested the pole terms, i.e., the long range interaction.
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scattering (i.e., scattering among gravitons and SM par-
ticles) and graviton-graviton scattering. These cases have
their helicity structure dictated by the same formula of
Eq. (6), but now there are poles in all three Mandelstam
variables, and we find the denominator s12s13s14
(i.e., r ¼ 0).
What is more, one has that the formula in Eq. (6)

comprises all tree-level four-point amplitudes generated in
GR. The amplitudes can be split into matter-matter, matter-
graviton, and graviton-graviton scattering (here and in the
following, “matter” generically refers to scalars, fermions,
and vectors). The fact that gravity does not change the
helicity of matter implies that the amplitudes in Table I are
the only nonvanishing matter-matter cases; one can see this
diagrammatically and derive the helicity conservation ruleP

hi ¼ 0. This is not clear, however, for scattering with
gravity where the three-point vertex with structure

ð7Þ

produces a diagram in which the helicity −2 is exchanged,
thus leading to a situation where

P
hi ≠ 0. The result of

summing all diagrams, however, yields a vanishing ampli-
tude in this case (not only for the pole terms but also the full
amplitude as can be obtained with Feynman diagrams). The
same occurs for graviton scattering, which makes Table I
complete at tree level.

B. Massive spin J mediated amplitudes

Consider now the exchange of a massive spin J
resonance. Massive spinning particles in the spinor-helicity
formalism are represented by symmetric 2J tensors on the
spinor variables, i.e., for a particle with momentum qμ,
jqI1 � ×… × jqI2J �. The coupling of this spin J resonance
with mass M to (massless) matter with helicities h1 and h2
is given by the following three-point amplitude, completely
determined by little group scaling,

ð8Þ

where we introduced the coupling constant gJ and omitted
Lorentz indices and we note that, to avoid inverse powers of
j1�; j2�, J ≥ jh1 − h2j, since otherwise we would get a
vanishing amplitude. We now move to construct on-shell
four-point amplitudes, and we divide our analysis in
three steps.

1. Legendre polynomials

In order to isolate the differences with massive mediators
and for exposition purposes, we consider first the case with
external scalar particles. For a conventional diagrammatic
derivation of the following results, see, e.g., Refs. [18,19].
A simple manipulation of Eq. (8) in this case brings the
spinor structure into the form

h12iJjq�2Jj1�Jj2�J ¼ ð½q1�h12i½2q�ÞJ
¼ MJðhqjðp̂1 − p̂2Þ=2jq�ÞJ
¼ MJðhqjP̂12jq�ÞJ; ð9Þ

where we use matrix notation to omit Lorentz indices. We
next construct the amplitude contribution from the on-shell
exchange of the massive J particle, which decomposes into

The complication lies in performing the sum over spinor I-
indices. An example of such a configuration can be
depicted as [the minus sign in (q) can be pulled out of
the spinors to contribute a ð−1ÞJ factor]

where the solid green lines signal the summed little group
indices while the dotted lines follow the matrix multipli-
cation in Lorentz indices. Using the completion relations
jqIi½qIj ¼ q̂ and jqI�½qIj ¼ M, we can reduce any of the
above terms to a product of traces3 over slashed momenta
as

Q
tr½ðP̂12P̂34Þni � with

P
ni ¼ 2J and ni an ordered

array. For instance, with J ¼ 3, one such configuration is
tr½ðP̂12P̂34Þ2�trðP̂12P̂34Þ, and its coefficient is given by
counting the ways to accommodate a single lasso “o”
and double one “∞” in three slots, o∞,∞o, etc.; examples
for J ¼ 2, 3, 4 are given in the Appendix, Eqs. (A12)–
(A14). In a second step, we collapse the traces

3Implicit in our notation for products of P̂’s is the proper
contraction of Lorentz indices, P̂ K̂ ¼ P̂α _αϵ

_α _βK̂β _βϵ
γβ ≡ P̂σ̄μKμ

with ½σ̄μ� _αα ¼ ð1;−σ⃗Þ.
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trðP̂12 · P̂34Þn into polynomials in P12 · P34, P2
12ð34Þ, using

the relation in Eq. (A15) in the Appendix.
All in all, we get the following expression for the four-

point amplitude,

AJ
1234¼

g2Jð2JÞ!!
ð2J−1Þ!!

M2

s12−M2

×
X
m

�
J

m

��
2J−2m

J

�ð−P2
12P

2
34ÞmðP12 ·P34ÞJ−2m
2JM2J

¼ g2Jð2JÞ!!
4Jð2J−1Þ!!

M2

s12−M2
PJ½xðs13Þ�; ð10Þ

where PJ are Legendre polynomials and

xðs13Þ ¼ −
P12 · P43

M2=4
¼ P12 · P34

M2=4
¼ 1þ 2s13

M2
; ð11Þ

where we have used the on-shell condition in P2
12 ¼ P2

34 ¼
−M2=4 and −s14 ¼ M2 þ s13.
We consider next the case with equal helicity h1 ¼

h2 ≡ h in the three-point amplitude. The spinor structure
takes the form

h12iJ−2hjq�2Jj1�Jj2�J ¼ 1

h12i2h ð½q1�h12i½2q�Þ
J

¼ ½12�2h
M4h ð½q1�h12i½2q�ÞJ

¼ ½12�2h
M4h−J ðhqjP̂12jq�ÞJ: ð12Þ

This is the same structure we already found in the scalar
case, Eq. (9). This means that in the computation
of the four-point amplitude, the case with equal helicity
h1 ¼ h2 ≡ h reduces to the previous result in Eq. (10)
with Legendre polynomials, with an overall factor
½12�2h½34�2h=M4h that takes into account the helicity of
the external particles. For an important difference, however,
notice that in this type of coupling the interaction with the
massive spin J resonance changes any quantum number
that matter might have.

2. Jacobi polynomials

Consider now the case with opposite helicity
h1 ¼ −h2 ≡ h, which corresponds to a helicity and quan-
tum number conserving interaction as is the case for the
graviton coupling. The dependence on spinor variables
reads

h12iJjq�2Jj1�Jþ2hj2�J−2h
¼ h12iJ−2h½1q�J−2h½2q�J−2h½1q�4hh12i2h
¼ MJðhqjP̂12jq�ÞJ−2hðhq2i½1q�Þ2h: ð13Þ

The derivation of the four-point amplitude in this case is not
a mere rescaling of the scalar case, but one can follow the
same steps in the computation,

with q̄ ¼ −q. As in the computation that led to Eq. (10), one
can use the completion relations for the sum in little group
indices of jqi, jq� to obtain traces over SUð2ÞL;R indices.
The computational difference is that traces are not just over
chains of P̂12 and P̂34 but factors of j1�h2j and j4�h3j
might replace each one of the two factors, e.g., in
trðP̂12P̂34j1�h2jP̂34Þ. The number of possible traces grows
much more steeply now, so instead one can take a faster
approach building on the scalar result. Take Eq. (10) with J
P̂12’s contracted with J P̂34’s as obtained after working out
combinatorics and expanding traces in Lorentz scalar
products of momenta. Then, one can substitute P̂J

12 →
P̂J−2h
12 ðj1�h2jÞ2h to get the result for polarized states (note

that longitudinal pieces drop out, q · P12 ¼ h2jq̂j1� ¼
q · P34 ¼ 0). This means that we need to unfold the sum
in Eq. (10) to insert 2h factors of j1�h2j and 2h0 of j4�h3j; this
is again a combinatorics problem that results in, denoting
AJ

1h2−h3−h
0
4h

0 ≡AJ
h;h0 ,

AJ
h;h0 ¼

g2JM
2ð2JÞ!!

4Jð2J − 1Þ!!

×

�½14�h32i
M2

�
2h
�h3jP̂12j4�

M2

�
2h0−2h

×
�

J

2h

�−1� J

2h0

�−1X
l;m

cl;mðx − 1Þl−2h0xJ−2m−l

s12 −M2
;

ð14Þ

with x as in Eq. (11) and cl;m as

cl;m ¼ ð−1Þmþ2h0

2J−2h
0

�
J

m

��
2J − 2m

J

��
J − 2m

l

�

×

�
l

2h

��
2h

l − 2h0

�
; ð15Þ

where the sum runs over values of l; m with non-negative-
entry binomials. Although written in an unusual form, we
find that the polynomial in x,
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X
l;m

cl;mðx − 1Þl−2h0xJ−2m−l

¼
�
J þ 2h0

J

��
J

2

�
hPð2h0−2h;2h0þ2hÞ

J−2h0 ðxÞ; ð16Þ

is proportional to the Jacobi polynomials Pða;bÞ
n ðxÞ,

Pða;bÞ
n ¼

X
k

�
nþ a

n − k

��
nþ b

k

��
x − 1

2

�
k
�
xþ 1

2

�
n−k

:

All in all, Eq. (15) reads

AJ
h;h0 ¼

g2Jð2JÞ!!
4Jð2J− 1Þ!!

�½14�h32i
M2

�
2h
�h3jP̂12j4�

M2

�
2h0−2h

×
M2

s12−M2

�
Jþ 2h0

J

��
J

2h0

�−1
Pð2h0−2h;2h0þ2hÞ
J−2h0 ðxÞ;

ð17Þ
and it does contain the scalar and the same helicity cases as
the Jacobi polynomials reduce to Legendre polynomials
in both limits. Let us also note that the measure for Jacobi
polynomials is proportional ð1 − xÞað1þ xÞb, in our case
a ¼ 2h0 − 2h; b ¼ 2h0 þ 2h, and it is related to the helicity
scaling of the amplitude, as we shall see next. The
appearance of Legendre and Jacobi polynomials is indica-
tive of an angular analysis that is, in turn, related to unitarity,
as we shall make explicit next.

3. Wigner d-functions and unitarity

In order to touch on unitarity and angular analysis, we
turn to the red region, (r), in Fig. 1, that is the kinematic
domain where the spin J resonances are kinematically
accessible. We indicate the corresponding amplitude for the
generic process 1h2−h → 3̄h

0
4̄h

0
in red,Ah;h0 , and we use the

explicit substitutions in Fig. 1 which, in terms of the c.m.
scattering angle θ, read, cf. Appendix,

s13¼−ss2θ=2; s14¼−sc2θ=2; x¼ 1−
s
M2

ð1−cθÞ
h31i¼ sθ=2

ffiffiffi
s

p
; ½14� ¼ h32i¼ cθ=2

ffiffiffi
s

p
; ð18Þ

where cθ ≡ cos θ, sθ ≡ sin θ. We see that, on the mass shell
of the resonance, we have the identification xðs ¼ M2Þ ¼
cθ. To select the resonant contribution while being general,
we note here that, given our tree-level approximation, the
imaginary part of the amplitude comes solely from poles,
being explicit,

1

s −M2 þ iϵ
¼ PV

�
1

s −M2

�
− iπδðs −M2Þ; ð19Þ

with PV the Cauchy’s principal value and the delta
function explicitly showing that the imaginary part only

has support on shell. Therefore, we can write for the
imaginary part

Im½AJ
h;h0 � ¼ CJδðs −M2Þcμiþμf

θ=2 s
μf−μi
θ=2 P

ðμf−μi;μfþμiÞ
J−μf ðcθÞ

¼ CJδðs −M2ÞdJμi;μfðθÞ; ð20Þ

where CJ is a constant, μi ¼ 2h, μf ¼ 2h0 and dJμi;μf are the
Wigner d-functions, in full generality given by [20]

dJμi;μfðθÞ ¼ ½ðJ þ μiÞ!ðJ − μiÞ!ðJ þ μfÞ!ðJ − μfÞ!�1=2

×
X
a

ð−1Þμi−μfþaðcos θ=2Þ2Sþμf−μi−2aðsin θ=2Þμi−μfþ2a

ðJ þ μf − aÞ!a!ðμi − μf þ aÞ!ðJ − μi − aÞ! ;

with the sum taken over values such that the factorials are
non-negative.
Wigner d-functions offer a simple generalization for the

amplitude generated by the exchange of a massive particle
with spin J in the scattering process 1h12h2 → 3̄h̄3 4̄h̄4 with
μi ¼ h1 − h2, μf ¼ h̄3 − h̄4, where we recall that helicities
of outgoing particles are minus those of incoming
h̄3;4 ¼ −h3;4. Useful and physically meaningful relations
for Wigner d-functions are dJ−a;−b ¼ dJb;a (related to in-out
exchange) and dJa;−bðθÞ ¼ ð−1ÞJþadJa;bðπ − θÞ [related to
3 ↔ 4 (u, t) exchange]. Given the relations of Eq. (18), one
can then work backward to get the expression in terms of

spinor variables and Jacobi polynomials P
ðμf−μi;μfþμiÞ
MinðJ−jμi;f jÞ for

the general case. Indeed, in generality, a Wigner d-function
can be expressed as a Jacobi polynomial times an overall
factor of powers of cθ=2,sθ=2, in the present case given by
the helicity scaling factors in Eq. (17), through substitutions
in (18).
It is indeed in terms of the very same Wigner d-functions

that the general partial wave expansion is defined as [21]

ð21Þ

with partial-wave amplitudes aJifðsÞ. The crucial difference
compared to Eq. (20) is that this decomposition is general,
and it applies to both real and imaginary parts. In practice,
this means that the exchange of a massive spin J resonance
contributes to the imaginary part of the Jth partial wave only
but to the real part of partial waves with smaller or equal to J.
Finally, as anticipated, let us connect with unitarity, for

completeness and reference. By means of the optical
theorem, unitarity of the scattering matrix implies
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2Im½Ai→f� ¼
X
n

Z
dΠnA�

f→nAi→n; ð22Þ

where on the right-hand side we take the sum over all
possible intermediate states n with phase-space measure
dΠn. In the case of an elastic process i ¼ f, the right-hand
side is a sum of moduli squared, and we have the positivity
constraint 2Im½Ai→i� ≥ 0. As a simple special case, it
follows that in elastic scattering Im½aJiiðsÞ� ≥ 0, as one
can infer by taking the forward limit in which dJa;bð0Þ ¼ 1.
Given that we have built our amplitude out of three-point
amplitudes, consequences of unitarity like positivity are
implemented, but the unitarity relation does provide a way
to rewrite our amplitude in terms of more straightforwardly
observables quantities. If the initial state 12 can convert into
a single-particle state denoted J, the rhs of Eq. (22) reads

Im½A12→34� ¼ π
X
J

A�
34→JA12→Jδðs12 −M2Þ; ð23Þ

where we neglected quantum corrections. Furthermore,
when particles 1,2 and 3,4 are the same species, we have a
positive imaginary part that is related to the mediator partial
width

Im½Aðs12; θ ¼ 0Þ� ¼ 16πð2J þ 1ÞMΓJ→12δðs12 −M2Þ;

which in particular implies in our amplitude (17) for the
exchange a spin J,

16πð2J þ 1ÞΓJ→1h2−h

M
¼ g2Jð2JÞ!!

4Jð2J − 1Þ!!
�
J þ 2h

J

��
J

2h

�−1
:

ð24Þ

This is to say that the factorial factors and powers of 2 that
relate the three- and four-point amplitudes disappear when
rewriting in terms of the mediator width. Let us then define
αJ ¼ ΓJ=M and write Eq. (17) for h0 ≠ h as

AJ
h;h0 ¼ 16πð2J þ 1ÞCJ;h;h0

αJh0;hM
2

s12 −M2

�½14�h23i
M2

�
2h

×

�h3jP̂12j4�
M2

�
2h0−2h

Pð2h0−2h;2h0þ2hÞ
J−2h0 ðxÞ; ð25Þ

where we introduced a constant CJ, h; h0 for normalization,

CJ;h;h0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ − 2h0Þ!ðJ þ 2h0Þ!
ðJ − 2hÞ!ðJ þ 2hÞ!

s
; ð26Þ

and a slight abuse of notation was committed since only for
h0 ¼ h and 1h2−h ¼ 3−h4h we have that αJh;h is a positive
quantity with the interpretation of a decay rate. Aside from
the obvious simplifications, this notation encodes explicitly

the strength of the interaction in α and, therefore, its range
of validity.

III. COMPLETING GRAVITY IN THE UV

In the previous section, we computed all four-point
amplitudes generated by graviton exchange and the on-
shell contribution to the amplitude due to the exchange of a
massive spin J particle. This section aims at putting these
two results together for a consistent theory of gravity in the
UV. The goal is to tame the growth with c.m. energy by
introducing resonances while satisfying the general proper-
ties outlined in the Introduction. On this road, we start with
scalar particles and in particular consider the 2-to-2
scattering of distinct scalar particles.4

A. Toward a bottom-up UV completion

The scattering amplitude Aϕϕφφ for distinct scalar
particles ϕ and φ in GR is

Aϕϕφφ ¼ 8π

M2
Pl

�
s13s14
s12

− as12

�
ð27Þ

and describes two different scattering processes that are
related by crossing: ϕðp1Þϕðp2Þ → φðp̄3Þφðp̄4Þ [(r) in
Fig. 1)] and ϕðp1Þφðp3Þ → ϕðp̄2Þφðp̄4Þ (b), [we have
(g) = (b) from crossing symmetry]. In the rhs of
Eq. (27), the first term represents the pole contribution,
and the second term accounts for a possible contact term.
Furthermore, given that we are scattering different particles,
we assume that there is only one channel open in each one
of the three scattering processes (as it happens in GR) so
that all poles lie in the positive real s12 axis (otherwise,
resonances with ϕ − φ number would be present in the
spectrum). Finally, notice that the amplitude is symmetric
under 1 ↔ 2 exchange [equivalently, t ↔ u exchange
in (r)].
In the following, we would like to emphasize the

difficulties that one faces when trying to unitarize the
amplitude Aϕϕφφ in all the above scattering processes and
the consequences that solving these issues imply. Aword of
warning is pertinent before proceeding: the solutions that
we shall construct and present in this section are not unique,
and a number of assumptions are required to obtain them.
To be pristine, we have enumerated them as (i)–(iii).
Take the annihilation process ϕðp1Þϕðp2Þ→φðp̄3Þφðp̄4Þ

in the red region (r) of Fig. 1 where, in terms of the familiar
Mandelstam variables, we have s12 ¼ s, s13 ¼ t and
AGR

ϕϕφφ ¼ 8πðtu=s − asÞ=M2
Pl. The GR contribution is

problematic in the hard-scattering region where it grows
with energy as s=M2

Pl, eventually violating perturbative

4Similar arguments in the context of the four-graviton scatter-
ing were presented in Ref. [22].
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unitarity. To formalize this aspect, one can compute the
partial-wave amplitudes, cf. Eq. (21),

aJϕφðsÞ¼
1

32π

Z þ1

−1
dðcosθÞPJðcosθÞAϕϕφφðs;cosθÞ; ð28Þ

and impose that they must lie inside the unitarity circle in
the Argand plane. One finds two nonvanishing partial-wave
amplitudes,

a0ϕφðsÞ ¼
sð1 − 6aÞ
12M2

Pl

; a2ϕφðsÞ ¼ −
s

60M2
Pl

; ð29Þ

where the last term corresponds to J ¼ 2 exchange, while
the first corresponds to J ¼ 0. The J ¼ 0 component arises
from the coupling of the virtual graviton to the trace of the
energy-momentum tensor of the scalar field, which is
indeed nonvanishing for a minimally coupled massless
scalar field.5 In Eq. (29), we see that the presence of a
contact term could cancel the growth in energy of the J ¼ 0
partial wave amplitude but cannot change the bad high-
energy behavior of the highest partial wave a2ϕφðsÞ. To cure
this problem, a first simple guess is the introduction of a
spin J ¼ 2 resonance with mass M2 so that the amplitude
results in6

Aϕϕφφ ¼ AGR
ϕϕφφ −

gϕ;2gφ;2
s −M2

2

�
M2

2P2

�
1þ 2t

M2
2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

on-shell

þ ðs −M2
2ÞPð1;1Þ

�
s
M2

2

;
t
M2

2

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

off-shell

; ð30Þ

where the notation Pði;jÞðx; yÞ indicates a generic poly-
nomial of degree i in the variable x (j in the variable y),
while gϕ;2 and gφ;2 are the couplings of the two scalar fields
with the spin J ¼ 2 resonance. Compared with Eq. (25), the
on-shell contribution is accompanied by an off-shell term
[just as the GR amplitudes in Table I and Eq. (6)], and the
relevant remark is that the off-shell term reduces to a
polynomial of degree J − 1 in s and t for a spin J mediator.
We can now compute the partial-wave amplitudes. The
contact term does not contribute to the highest partial-wave
amplitude a2ϕφðsÞ while the inclusion of the pole term gives

a2ϕφðsÞ ¼ −
s

60M2
Pl

−
gϕ;2gφ;2s

80πM2
2

; ð31Þ

from which we see that it is possible to compensate gravity
if one takes gϕ;2gφ;2 ¼ −4πM2

2=3M
2
Pl, thus implying that

the signs of the couplings are opposite. However, this
possibility—although not a priori incorrect—does not
extend to more fields. If we introduce a third field χ from
the ϕχ scattering, we would deduce that χ has opposite-sign
charge compared to ϕ, but if both χ and φ have opposite
charge with respect to ϕ, they must have the same sign with
respect to each other, and the φχ scattering is not unitarized.
This discussion makes it clear that a massive spin J ¼ 2

TABLE I. Complete set of tree-level four-point amplitudes in GR with all particles coming in. To obtain the
desired scattering process as a function of the ordinary Mandelstam variables s, t, and u, one evaluates the amplitude
in regions (r), (b), and (g) according to the substitution in Eqs. (1)–(3) and Appendix. Whenever a cell is divided in
two, the top (bottom) row refers to scattering of distinguishable (identical) particles.

AGR
1h2−h3−h

0
4h

0 Scalar Fermion Vector Graviton

Scalar 8π
M2

Pl
ðs13s14s12

− as12Þ 8πðh3jP̂12j4�Þ
M2

Pl
ðs13−s14

2s12
Þ − 8πðh3jP̂12j4�Þ2

M2
Pls12

8πðh3jP̂12j4�Þ4
M2

Pls12s13s14
8π
M2

Pl
ðs13s14s12

þ s12s14
s13

þ s13s12
s14

Þ

Fermion � � � − 8πh23i½14�
M2

Pl
ðs13s12

þ b
2
Þ 8πh23i½14�ðh3jP̂12j4�Þ

M2
Pls12

− 8πh23i½14�ðh3jP̂12j4�Þ3
M2

Pls12s13s14

− 8πh23i½14�
M2

Pl
ðs13s12

þ s12
s13

þ bÞ

Vector � � � � � � − 8πh23i2½14�2
M2

Pls12
8πh23i2½14�2ðh3jP̂12j4�Þ2

M2
Pls12s13s14

− 8πh23i2½14�2
M2

Pl
ð 1
s12

þ 1
s13
Þ

Graviton � � � � � � � � � 8πh23i4½14�4
M2

Pls12s13s14

5The a0ϕφðsÞ partial wave vanishes if a ¼ 1=6. This special
value of a corresponds to a conformally coupled scalar field
described (in four space-time dimensions, with R the Ricci
scalar) by the action S ¼ R

d4x
ffiffiffiffiffiffi−gp ½gμν

2
ð∂μϕÞð∂νϕÞ þ R

2
aϕ2�,

which has, for a ¼ 1=6, vanishing trace Tμ
μ ¼ 0.

6The presence of the minus sign in Eq. (30) can be traced back
to the minus sign in Eq. (19).

RODRIGO ALONSO and ALFREDO URBANO PHYS. REV. D 100, 095013 (2019)

095013-8



resonance alone cannot provide a viable UV completion of
gravity. We turn then to introduce a spin J ¼ 3 resonance
with massM3. Similarly to Eq. (30), it will contribute to the
scattering amplitude with both an on-shell and an off-shell
piece, the latter being a polynomial of order 2 in s and t,

AJ¼3
ϕϕφφ ¼ −

gϕ;3gφ;3M2
3

s −M2
3

P3

�
1þ 2t

M2
3

�

þ gϕ;3gφ;3Pð2;2Þ

�
s
M2

3

;
t
M2

3

�
: ð32Þ

The contribution to the partial-wave amplitude a2ϕφðsÞ from
the pole term has the form gϕ;3gφ;3s2=16πM4

3. It means that
one can compensate the graviton contribution with same
sign couplings gϕ;3, gφ;3 and in particular universal
gϕ ¼ gφ, in line with the coupling of the graviton to matter
and as opposed to the J ¼ 2 case. However, it is clear that a
massive spin J ¼ 3 resonance cannot suffice since its
contribution to a2ϕφðsÞ has a different scaling in s compared
to gravity and, more worrisome, because it introduces an
unbalanced contribution to the partial-wave amplitude
a3ϕφðsÞ that grows with energy as s2. One then faces the
same problematic growth in a3ϕφðsÞ and iterates the pro-
cedure with a massive spin J ¼ 4 resonance, which, in
turn, would require a massive spin J ¼ 5 state in a domino
effect that yields an infinite tower of increasing massive
higher spins.
This is a sketch of the well-known result that gravity

requires an infinite set of resonances, and here we would
like to underline that the argument was elaborated for the
process in region (r) ϕϕ → φφ, but region (b) for ϕφ → ϕφ
presents separate problems. Indeed, the balance of con-
secutive spins with opposite sign contributions in (r) does
not immediately translate to the region (b) since one has
s ↔ t and all Legendre polynomials, PLð1þ 2s=M2Þ, and
poles, 1=ðt −M2Þ, have the same sign in the physical
region s > 0;−s < t < 0. One could try to address this
issue by adjusting the contact terms, but here instead we
attempt a summed expression for the amplitude, which we
write in the form

Aϕϕφφ ¼ 8π

M2
Pl

�
tu
s
− as

�
Nðs; tÞQ∞
k ðs −M2

kÞ
; ð33Þ

where the numerator of the highest common denominator
is, at this stage, a polynomial Nðs; tÞ of arbitrary high
degree in s and t. Notice that, without loss of generality, we
defined it by factoring out the GR amplitude. Let us write
Nðs; tÞ as the product of its zeros in t,

Aϕϕφφ ¼ 8π

M2
Pl

�
tu
s
− as

�Q∞
n ½t − fnðsÞ�Q∞
k ðs −M2

kÞ
: ð34Þ

We can now use unitarity and locality as a guideline.
Unitarity and locality, as explicitly shown in the previous
section, imply that on a pole in s the residue of the
amplitude must be a polynomial of finite degree in t
corresponding to particle exchange. This is not the case
if (i) the functions fnðsÞ in Eq. (34) are assumed analytic
around s ¼ M2

l, and one is forced to introduce inverse
powers of t,

Aϕϕφφ ¼ 8π

M2
Pl

�
tu
s
− as

� Q∞
n ½t − fnðsÞ�Q∞

k ðs −M2
kÞ
Q∞

m ðt − M̂2
mÞ

;

ð35Þ

such that the poles in t cancel against the zeros when
evaluating at s ¼ M2

l, explicitly

fM̂2
ng ⊂ ffnðM2

lÞg; ∀l; ð36Þ

where both sets (poles and zeros) are infinite. Remarkably,
even if the starting point of our construction only required
s-channel resonances, unitarity and our assumption (i) led
us to resonances in the dual t channel. The same analysis
therefore applies to residues when evaluating in t ¼ M̂2

l,
which should be polynomials in s; in particular, to avoid
double poles, we have now that

fM2
ng ⊂ ff−1n ðM̂2

lÞg; ∀l; ð37Þ

with f−1n the inverse function and which, as Eq. (36), means
that the set of zeros contains the set of poles. The
complication in satisfying Eq. (36) is that it must hold
for all l ¼ 0;…;∞. Here, Eq. (36) will be satisfied by
simply assuming that (ii) the set of elements given by fn
evaluated in the lth mass M2

l, i.e., ffnðM2
lÞg, contains the

set fM̂2
ng and l more elements that is

fnðM2
lÞ≡ M̂2

n−l; ð38Þ

which, it is worth pointing out, means that also Eq. (37) is
automatically satisfied as

f−1n ðM̂2
lÞ≡M2

n−l; ð39Þ

while the spectrum inM2
n; M̂

2
n is still arbitrary.

7 Complying
with Eqs. (36) and (37) nevertheless only ensures
the absence of double poles; one should also demand
finite-degree polynomials to respect unitarity and
locality. Given (i), fn have a Taylor expansion fnðsÞ ¼
fnðslÞ þ f0nðslÞðs − slÞ þOðf00nÞ. If there are second
derivatives, each function fn will contribute with one
power of s, and one has n ¼ 0;…;∞. One, therefore, is

7The function can be constructed explicitly given G; Ĝ such
that GðM2

nÞ ¼ n; ĜðM̂2
nÞ ¼ n, as fnðxÞ ¼ Ĝ−1ðn − GðxÞÞ.
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led to impose then that only a finite number of fnðsÞ have
second derivatives (of course, the same argument applies to
higher derivatives). The simplest way to address this
is to (iii) assume that all fnðsÞ are linear functions,
fnðsÞ ¼ f1nsþ f0n. This reduces the problem, and in par-
ticular Eqs. (38) and (39), to a linear system of which the
solution is strongly overconstrained since we have

f1n ¼ −
M̂2

n−l − M̂2
l

M2
n−l −M2

l
; f0n ¼

M̂2
n−lM

2
n−l − M̂2

lM
2
l

M2
n−l −M2

l
; ð40Þ

where the rhs should be the same for all l. This clearly is
not true for a general spectrum. It is true, however, for the
linear spectrum in both s, t,

M2
n ¼ nM2; M̂2

n ¼ nM̂2 þ M̂2
0; n ¼ 1; 2;… ∈ N;

ð41Þ

where the spectrum in s has noM2
0 due to the pole in s ¼ 0,

as we shall see shortly. In this case, f1n in Eq. (40) reduces
to the ratio f1n ¼ −M̂2=M2 (independent from n), while
f0n ¼ nM̂2 þ M̂2

0, and the amplitude now reads

Aϕϕφφ ¼ 8π

M2
Pl

�
tu
s
− as

�
C

×

Q∞
n ½M2tþ M̂2s −M2ðnM̂2 þ M̂2

0Þ�Q∞
k ðs − kM2ÞQ∞

m ðt −mM̂2 − M̂2
0Þ

; ð42Þ

where C is a normalization constant. The above solution
presents an interplay between resonances in the two
channels with the t-channel spectrum that determines the
s-channel couplings and vice versa. Let us make this
explicit and evaluate the second line at t ¼ lM̂2 þ M̂2

0

to obtain the couplings of the lth t-channel resonance,

Q∞
n M̂2½s −M2ðn − lÞ�Q∞

k ðs − kM2ÞQ∞
m ðm − lÞM̂2

∝
Yl
r¼0

ðsþ rM2Þ; ð43Þ

which depends on the s-channel spectrum by means of a
finite-degree polynomial in s, as dictated by unitarity and
locality. Note in particular that there is always a power of s
to cancel against the pole in s ¼ 0 from graviton exchange
in the first line of Eq. (42), and this is the reason for the
absence of the M2

0 term that we anticipated before. If we
evaluate Eq. (42) at s ¼ lM2, the product above would be
on a finite number of terms of the form ðtþ rM̂2 − M̂2

0Þ,
with no zero at t ¼ 0 since, in this case, there is no GR pole
to cancel. As for the normalization factor C, we can address
this if we use the Euler definition of the Γ function,

ΓðzÞ ¼ 1

z

Y∞
n¼1

ð1þ 1=nÞz
1þ z=n

; ð44Þ

to write

Γð1− s̃ÞΓð1− t̂Þ
Γð1− t̂− s̃Þ ¼ C

Q∞
n ½M2tþ M̂2s−M2ðnM̂2 þ M̂2

0Þ�Q∞
k ðs− kM2ÞQ∞

m ðt−mM̂2 − M̂2
0Þ

;

ð45Þ

with

s̃ ¼ s
M2

; t̂ ¼ t − M̂2
0

M̂2
: ð46Þ

This is the Veneziano amplitude with a linear homogeneous
transformation in s and a linear inhomogeneous trans-
formation in t. It is good to pause at this point and define

Aη;γ0
VZ ðs; tÞ≡ Γð1 − s̃ÞΓð1þ ηγ0 − ηt̃Þ

Γð1þ ηγ0 − ηt̃ − s̃Þ ; ð47Þ

η≡M2

M̂2
; ð48Þ

γ0 ≡ M̂2
0

M2
; ð49Þ

where t̃ ¼ t=M2, and we see the expression is not sym-
metric in s, t but is compatible with locality. Let us now
validate this amplitude by checking the high-energy behav-
ior in the hard-scattering limit. Stirling’s approximation for
large s yields

Aη;γ0
VZ ∼ eRs̃; R ¼ log ½ð1 − ηs2θ=2Þ1−ηs

2
θ=2ðηs2θ=2Þηs

2
θ=2 �;
ð50Þ

so provided η ≤ 1, there is an exponential decrease for large
s which makes up for the growth with s of GR. One has,
therefore, that the factor in Eq. (47) does yield a valid UV
behavior; what is more, the exponential falloff is a faster
decrease with s than one can obtain with any finite number
of resonances in quantum field theory (QFT).
The nonsymmetric behavior in s ↔ t (or t ↔ u) of

Eq. (47) makes it suitable for the UV completion of
distinguishable particle scattering. This is the case, for
instance, of the fermion-vector scattering that we write as

A1=2;1 ¼
8πh23i½14�h3jP̂12j4�

M2
Pls

Aη;γ0
VZ ðs; tÞ; ð51Þ

whereas if we have s − t symmetry enforced by the external
states as in the same-fermion scattering, we simply set
η ¼ 1; γ0 ¼ 0 in order to get a s, t symmetric result,

A1=2;1=2 ¼
8πh23i½14�

M2
Pl

�
s
t
þ t
s
þ b

�
Aη¼1;γ0¼0

VZ ðs; tÞ: ð52Þ
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For simplicity of notation, let us denoteAη¼1;γ0¼0
VZ ≡AVZ in

what follows.
The scalar amplitude Aϕϕφφ, on the contrary, is t ↔ u

symmetric (this is a property of the external states, and, as
such, it must be respected by the full amplitude); in
particular, this means that there will be u-poles and zeros
as well. The previous amplitude, therefore, must be
modified to account for this property. Let us start again
from the Veneziano factor in Eq. (45),

Y∞
n

ðs̃þ t̂ − nÞðs̃þ û − nÞ
ðs̃ − nÞðt̂ − nÞðû − nÞ ; ð53Þ

naively augmented by extra factors to guarantee the
t ↔ u symmetry. To check the validity of this expression,
we can use again unitarity and locality as a guideline.
When evaluating at û ¼ l, the zeros (s̃þ l − n) cancel
against the poles ðs̃ − kÞ, but those in (s̃þ t̂ − n) =
ð1 − η−1Þt̂ − γ0 − l − n do not contain the poles ðt̂ −mÞ,
so we are forced to introduce extra terms in the numerator.
Furthermore, given that the factors s̃þ t̂ − n ¼
ð1 − η−1Þt̂ − γ0 − l − n do not cancel against terms in
the denominator, they will yield an infinite-degree poly-
nomial in t when taking all terms in the product unless
η ¼ 1 (M2 ¼ M̂2) when they reduce to a constant.
Therefore, we set η ¼ 1 in the following. The extra factors
in the numerator can be found by noting that poles in s are
all simple, and hence we can extend this to t, u by
symmetrizing

Y∞
n

ðs̃þ t̂ − nÞðs̃þ û − nÞðt̂þ û − nÞ
ðs̃ − nÞðt̂ − nÞðû − nÞ : ð54Þ

Although the condition M2 ¼ M̂2 was enforced, there is
still the M̂2

0 parameter, which is unconstrained so far; let us
make it explicit by writing [this will also serve as a
definition for the constant C in front of the amplitude in
Eq. (54)]

C
Y∞
n

ðs̃þ t̂ − nÞðs̃þ û − nÞðt̂þ û − nÞ
ðs̃ − nÞðt̂ − nÞðû − nÞ

¼ Γð1þ 2γ0ÞΓð1þ γ0 − ũÞΓð1þ γ0 − t̃ÞΓð1 − s̃Þ
Γð1þ ũþ γ0ÞΓð1þ t̃þ γ0ÞΓð1þ s̃þ 2γ0Þ

≡Aγ0
VSðs; t; uÞ; ð55Þ

which is a solution symmetric in t ↔ u but asymmetric in
s ↔ t for γ0 ≠ 0. Consequently, it is well suited for the UV
completion of the scalar-fermion scattering amplitude
where we have a general Aγ0

VS factor, while for scattering
of identical scalars, we expect

Aϕϕϕϕ ¼ 8π

M2
Pl

�
tu
s
þ su

t
þ ts

u

�
Aγ0¼0

VS ðs; t; uÞ: ð56Þ

Let us denote Aγ0¼0
VS ≡AVS in what follows. If one is to

reconstruct the scattering of indistinguishable scalars by
symmetrizing the amplitude for distinct scalars as

Aϕϕϕϕ ¼ Aϕϕφφ þAϕϕφφðs ↔ tÞ þAϕϕφφðs ↔ uÞ; ð57Þ

then the same factorAγ0¼0
VS should also appear in the case of

distinct scalar, and we get to our final result for the ϕφ
amplitude,

Aϕϕφφ ¼ 8π

M2
Pl

�
tu
s
− as

�
AVSðs; t; uÞ: ð58Þ

The same factor is needed for gravitational Compton
scattering this time, given that there are poles in all s, t,
u ¼ 0 which—as shown after Eq. (43)—requires γ0 ¼ 0.
Graviton-graviton scattering does also have infrared poles
in all three channels, and it reads then

Agþ2g−2g−2gþ2 ¼ 8πðh23i½14�Þ4
M2

Plstu
AVSðs; t; uÞ: ð59Þ

Notice that, once the helicity structure of the scattering
amplitude ðh23i½14�Þ4 is factorized, the rest of the four-
graviton amplitude—stripped of any knowledge about the
helicity of the external particles—is completely symmetric
in the three Mandelstam variables s, t, u.
The construction carried out in these examples can be

repeated for all the SM scattering amplitudes studied in
Sec. II. Before analyzing in detail the properties of our UV
completion and its actual validity, therefore, let us sum-
marize our results.

B. Generalization and emergent properties

In the previous section, we derived what are in practice
deformations of Veneziano and Virasoro-Shapiro ampli-
tudes (which reduce to these in a certain limit
η ¼ 1; γ0 ¼ 0) and used them to unitarize GR amplitudes
by multiplication. We also provided a number of examples
to illustrate which type of factor is adequate for a given
scattering process. In the sij notation, our bottom-up UV
completion of gravity can then be summarized as

A1h1 2h2 3h3 4h4 ¼ AGR
1h1 2h2 3h3 4h4

×

�
Aη;γ0

VZ ðs12; s13Þ
Aγ0

VSðs12; s13; s14Þ:
ð60Þ

As for the assignment of AVZ or AVS, we have noted that
invariance under particle exchange (i.e., crossing sym-
metry) for certain processes determines which one of the
two possibilities is best-suited. For identical fermion-
fermion and vector-vector scattering Aη¼1;γ0¼0

VZ whereas
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for identical scalar-scalar and graviton-graviton we have
Aγ0¼0
VS . Gravitational Compton scattering has IR poles in all

s, t, u channels, and this led us to chooseAγ0¼0
VS . The scalar-

fermion and scalar-vector, on the contrary, only have an IR
pole in s12 and must be symmetric in 1 ↔ 2 (s13 ↔ s14),
and Aγ0

VSðs12; s13; s14Þ provides a valid UV completion.
Equivalently, the fermion-vector has a factorAη;γ0

VZ ðs12; s13Þ.
Finally, same-spin matter scattering of distinct particles
need not be symmetric under 2 ↔ 3; however, if we expect
to obtain undistinguishable same-particle scattering
by symmetrization of distinguishable, we also need
Aη¼1;γ0¼0

VZ for the distinguishable fermion-fermion and
vector-vector and Aγ0¼0

VS for the distinguishable scalar-
scalar. All this is summarized in Table II.
The main properties that emerge from our bottom-up

construction are the following:
(i) Infinite resonances with quantized mass.—In the

bottom-up approach, these properties follow directly
from unitarity and locality. We find that the spectrum
in Eq. (41) provides a consistent solution.

(ii) Veneziano or Virasoro-Shapiro form factor.—The
UV completion of gravity is realized by dressing
the GR amplitude with either the Veneziano or
the Virasoro-Shapiro form factor, as discussed in
Eq. (60). These factors change the UV growth with s
of GR into an exponential falloff.

(iii) Resonance duality.—As a consequence of unitarity,
massive higher-spin resonances are always present
at least in two of the three scattering regions in
Fig. 1, and they are therefore related by the corre-
sponding crossing transformation. This remains true
even for the processes in which the GR scattering
proceeds via the exchange of gravitons in one single
channel, and hence dual channel resonances will
carry SM charge. One also has that an expansion in
terms of resonances in a given process, e.g., (r), is
not a good expansion in the dual crossing related
process, which has its own expansion in pole
terms, (b).

Some of these properties may be familiar for readers
expert in string theory. For instance, it is well known that in
type-II superstring theory the scattering of four massless
bosons is described by an amplitude with a Γ-structure that
matches the factorAVS in Eq. (60) [23]. Nonetheless, let us

stress that our results here are a mere consequence of the
bottom-up approach that only obeys to the fundamental
properties of unitarity, locality, and causality and is not
committed to any particular model. It is, therefore, impor-
tant to understand what can be learned from this comple-
mentary point of view. To this end, after outlining in this
section the general structure of our result, we shall now
move to analyze it in more detail.

IV. ANALYSIS AND RESULTS

We start our analysis by investigating the high-energy
behavior of the amplitudes in Eq. (60) that are UV
completed by the Veneziano and Virasoro-Shapiro form
factors AVZ and AVS. The asymmetric factors Aη;γ0

VZ and
Aγ0

VS are discussed in Sec. IV B. These amplitudes have one
or at most two parameters, whereas the set of constraints
from unitarity are infinitely many, so it is a nontrivial step to
satisfy them.
We consider two bounds in different kinematic regimes.

For a generic elastic amplitude Aðs; tÞ, at large s and fixed
t, the Froissart bound [13] does not apply in gravitational
theories with a massless graviton since there is no mass
gap. However, in this limit, causality still implies poly-
nomial boundedness with the amplitude that can grow with
s but more slowly than s2 [14]. At large s and fixed
scattering angle, causality implies that the amplitude cannot
fall faster than e−

ffiffi
s

p
ln s (the Cerulus-Martin bound [15]),

which recently was extended to the more general case [16].
We shall start with causality examining the Regge limit
s → ∞ with t fixed (and hence forward scattering θ → 0);
we find the high-energy behavior

AGR
1h2−h3−h

0
4h

0 ×

(
AVZ ∼ s̃2þt̃

t̃

AVS ∼ s̃2þ2t̃

t̃

∀ h; h0: ð61Þ

In the physical region s > 0, t < 0, one has a power law
milder than s2 and hence compatible with causality as
phrased in Ref. [14]. In the hard-scattering limit s → ∞
with t=s fixed (and hence θ fixed), we find

AGR
1h2−h3−h

0
4h

0 ×

8<
:AVZ ∼ s

2s2
θ=2 s̃

θ=2 c
2c2

θ=2 s̃

θ=2

AVS ∼ s
4s2

θ=2 s̃

θ=2 c
4c2

θ=2 s̃

θ=2

∀ h; h0; ð62Þ

with an exponential falloff controlled by s2θ=2 lnðs2θ=2Þ þ
c2θ=2 lnðc2θ=2Þ < 0 [24]. This is a falloff that is much faster
than in any QFT, and the amplitude indeed violates the
Cerulus-Martin bound. This is due to the presence of an
infinite number of resonances, and indeed the lower bound
applicable in this case was extended recently [16] in
agreement with the scaling above.
Next, we turn to inspecting the properties of the

resonances. This is a process that, given the results and
conventions of Sec. II, can be made automatic. Let us

TABLE II. UV completion of the GR amplitudesAGR collected
in Table I. The UV-completed amplitude is given schematically
by A ¼ AGR ×AUV, with the AUV factor listed in this table.

AUV Scalar Fermion Vector Graviton

Scalar AVS Aγ0
VS Aγ0

VS AVS

Fermion � � � AVZ Aη;γ0
VZ AVS

Vector � � � � � � AVZ AVS
Graviton � � � � � � � � � AVS
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sketch the generic procedure. There can be resonances in all
three channels s12, s13, s14; in order to identify them, we
first turn to the domain of the amplitude where they are
kinematically accessible (r), (b), and (g) via the respective
substitutions in Eqs. (1)–(3) and make explicit the c.m.
scattering angle dependence in t ¼ −ss2θ=2 and the spinor
brackets. One then identifies the poles and evaluates the
residue as a function of θ only. Finally, the different
resonances can be extracted via a projection in the
orthogonal set of Wigner d-functions. This is to say, when
condensed in equations

αn;J
2h;2h0 ¼

1

32π

Z þ1

−1
Res
s¼M2

n

½Ah;h0 �dJ2h;2h0 ðθÞdcθ;

αn;Jhþh0;hþh0 ¼
1

32π

Z þ1

−1
Res
s¼M2

n

½Ah;h0 �dJhþh0;hþh0 ðθÞdcθ;

αn;Jh−h0;h−h0 ¼
1

32π

Z þ1

−1
Res
s¼M2

n

½Ah;h0 �dJh−h0;h−h0 ðθÞdcθ;

where the residue Res rescaled as

Res
s¼M2

n

½Ah;h0 �

Res
s¼M2

n

½Ah;h0 �

Res
s¼M2

n

½Ah;h0 �

9>>>>>=
>>>>>;

≡ lim
s→M2

n

M2
n − s
M2

n

8>><
>>:

A
1h2−h3−h

0
4h

0

A
1h3−h

0
2−h4h

0

A
1h4h

0
2−h3−h

0

ð63Þ

is a function of (s; θ), and with α given in Eq. (25) and
generalized to the h0 � h case. Let us note that regions (b)
and (g) correspond to elastic scattering and as such the
resonances in s13, s14 variables have couplings subject to
positivity; explicitly, one has

αJ2h;2h; αJhþh0;hþh0 ; αJh−h0;h−h0 ≥ 0: ð64Þ

Wigner d-functions dJa;b are defined only for J≥Maxða;bÞ,
which implies in particular that the lowest spin resonance
will have Jmin ¼ h0 − h if resonances are present in the
s14 channel. Therefore, gravitational Compton scattering,
scattering with scalars, and graviton scattering have
resonances of spin h0 − h; scalar resonances are to be
found only for scalar scattering and graviton scattering,
whereas fermion resonances are to be found only for
scalar-fermion scattering. The rest of the amplitudes have
Venenziano-like factors and a minimum spin h0 þ h ¼
1; 3=2; 2 for the fermion-fermion, fermion-vector, and
vector-vector.
Let us be explicit about the angle dependence of the

minimum spin Wigner d-function,

ð65Þ

This angular dependence has to be compared with that of
the amplitudes in Eq. (60), which we separate into two
factors, namely the GR part containing the overall sij and
the helicity factor [cf. Eq. (6) and Appendix],

ð66Þ

and the residue of either the Veneziano form factor AVZ or
the Virasoro-Shapiro form factor AVS. For both AVZ and
AVS, the physically accessible resonances are located at the
poles of the factor Γð1 − s̃Þ, that are s̃n ¼ 1þ n, i.e.,M2

n ¼
ð1þ nÞM2 with n ¼ 0; 1;… ∈ N. For brevity, we denote
s ¼ ð1þ nÞM2 as 1þ n in the subscript of Res, and we get
for the Veneziano form factor

Res
1þn

½AVZ� ¼
−1

ð1þ nÞ!
Yn
k¼0

ðkþ t̃Þ ð67Þ

¼ −1
ð1þ nÞ!

Yn
k¼0

½k − ð1þ nÞs2θ=2�; ð68Þ

while in the Virasoro-Shapiro case,

Res
1þn

½AVS� ¼
ð−1Þn

ð1þ nÞ!2
Yn
k¼0

ðkþ t̃Þðkþ ũÞ

¼ s2θ=2c
2
θ=2

ðn!Þ2
Yn
k¼1

½k − ð1þ nÞs2θ=2�: ð69Þ

This means that, on top of the angular powers coming from
the helicity factor in Eq. (66), we expect at least another
factor of s2θ=2c

2
θ=2 or s

2
θ=2 depending on whether we have the

Virasoro-Shapiro or Veneziano. Take, e.g., the former and
restrict to (b) and n ¼ 0 where we have AVS ∼ c4þ2h

θ=2 ; for
this amplitude to admit a decomposition in terms of Wigner
d-functions dJh0þh which themselves scale with at least 2hþ
2h0 powers of cθ=2 [cf. Eq. (65)], one has that h0 ≤ 2. In the
same fashion for Veneziano, comparing Eq. (65) and
Eq. (66), we obtain h0 ≤ 1. Consequently, we have that
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this procedure does not apply to higher spin as external
states.
Finally and before moving on, it is pertinent to discuss

the quantum numbers of the resonances. This can be done
by simply combining the representation of the two external
states that annihilate into a resonance. It seems one would
have all possible combinations of two particles, but it is not
always the case that we have all s, t, u channels open (this is
the case for all the GR amplitudes UV completed by means
of the Veneziano form factor). Is there a rule to tell when is
a channel open? If we assign helicity charge h ¼ þ1 to all
positive helicity matter particles and h ¼ −1 to all negative
ones, then we find that an inherited consequence of
helicity conservation in our scenario is that there are no
resonances with helicity charge h ¼ �2. This selection
rule, for instance, is responsible for the absence of massive
higher spin resonances in the u channel for the process
qþ1=2q̄−1=2 → Vþ1V−1.

A. Resonance analysis

After having laid out the tools to extract a resonance spin
and couplings, the following subsection explores the spec-
trum within amplitudes in all three classes of matter-matter,
matter-graviton, and graviton-graviton scattering. Within
each category, rather than covering all possibilities, we focus
on representative cases, the emphasis being on positivity.

1. Graviton-graviton scattering

After the generalities, let us turn to a few cases to
illustrate the analysis. Consider pure gravity and the
process in region (r) gþ2g−2 → gþ2g−2, which we note is
the same process as in (b) due to crossing symmetry;
one has

Res
1þn

½A2;2� ¼
8πM2ð1þnÞc8θ=2

M2
Plðn!Þ2

Yn
k¼1

½k− ð1þnÞs2θ=2�2: ð70Þ

We note that resonances start at Jmin ¼ 4. Our definition
of α reads now

αn;J4;4 ≡ M2

M2
Pl

Nn;J
4;4 ≡ αPlN

n;J
4;4 ; ð71Þ

where

Nn;J
4;4 ¼ ð1þ nÞ

4n!

Z þ1

−1
c8θ=2d

J
4;4ðθÞ

Yn
k¼1

½k − ð1þ nÞs2θ=2�2dcθ:

ð72Þ

With this rewriting of the pseudowidths α, we have
separated a universal coupling αPl ≡M2=M2

Pl related to
the first new resonance mass and a rational number N,
which is tabulated in Rable III.

Consider next the other channel; gþ2gþ2 → gþ2gþ2, with
resonances now starting at Jmin ¼ 0 and therefore our basis
for the projection being Legendre polynomials. The very
same steps lead now to

Res
1þn

½A2;2� ¼
8πM2ð1þ nÞ
M2

Plðn!Þ2
Yn
k¼1

½k − ð1þ nÞs2θ=2�2 ð73Þ

and couplings

αn;J0;0 ≡ αPlN
n;J
0;0 ; ð74Þ

where

Nn;J
0;0 ¼ ð1þ nÞ

4ðn!Þ2
Z þ1

−1
PJðcθÞ

Yn
k¼1

½k − ð1þ nÞs2θ=2�2dcθ;

ð75Þ

with the corresponding numerical values tabulated in
Table IV. The lack of odd spins can be traced to the
amplitude being even under θ → π − θ. The positivity of all
entries in this table is in accordance with unitarity, and
indeed the α0s correspond to tree-level decay widths.
For illustrative purposes, we show in Fig. 2 the Chew-

Frautschi plot yielding the spin of the resonances (on the y
axes) vs the square of their quantized mass (on the x axes,
labeled with the integer n) for the two channels gþ2gþ2 →
gþ2gþ2 (left panel) and gþ2g−2 → gþ2g−2 (right panel).
Each resonance is colored according to the corresponding
value of the tree-level decay width (αn;J0;0 and αn;J4;4 , respec-
tively) as indicated in the legend. Resonances are more and
more weakly coupled for increasing values of spin.

TABLE III. Coefficients of the decomposition in Eq. (72).

Nn;J
4;4 J ≤ 3 4 5 6 7 8 …

n ¼ 0 ✗ 1
18

� � � � � � � � � � � � � � �
1 ✗ 37

495
4

165
2

429
� � � � � � � � �

2 ✗ 2723
34320

207
5005

711
40040

81
14560

243
247520

� � �
… ✗ � � � � � � � � � � � � � � � � � �

TABLE IV. Coefficients of the decomposition in Eq. (75).

Nn;J
0;0 J ¼ 0 1 2 3 4 5 6 …

n ¼ 0 1
2

� � � � � � � � � � � � � � � � � � � � �
1 1

3
✗ 2

15
� � � � � � � � � � � � � � �

2 21
80

✗ 9
56

✗ 27
560

� � � � � � � � �
… � � � ✗ � � � ✗ � � � ✗ � � � ✗
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2. Matter-matter scattering

The analysis carried out in the previous section presents no
differencewhen applied to matter as external states. There is,
however, a difference in the amplitudes themselves since
some of them present an independent parameter other than
αPl. These are fermion-fermion and distinguishable scalar
scattering (see Table I). In the following, we shall focus on
these cases to show what the analysis can reveal about these
parameters:

(i) Consider first the distinct scalar in the elastic
channel so that

Res
1þn

½A0;0� ¼
8πM2ð1þ nÞ
M2

Plðn!Þ2
�
c2θ=2
s2θ=2

þ as2θ=2

�
s2θ=2c

2
θ=2

×
Yn
k¼1

½k − ð1þ nÞs2θ=2�2; ð76Þ

and again

Nn;J
0;0 ¼ ð1þ nÞ

4ðn!Þ2
Z þ1

−1

�
c2θ=2
s2θ=2

þ as2θ=2

�
s2θ=2c

2
θ=2PJðcθÞ

×
Yn
k¼1

½k − ð1þ nÞs2θ=2�dcθ: ð77Þ

Positivity demands αn;J0;0 ;N
n;J
0;0 ≥ 0, and as Table V

shows, this is not the case for all values of a but only
those in the interval

0 ≤ a ≤ 2; ð78Þ

which is compatible with 0 (that is with the case of a
scalar field minimally coupled to Einstein-Hilbert
gravity) and 1=6 for the conformal case. It is
interesting to remark that the parameter a does
not appear in same-scalar scattering since we sym-
metrize to find aðs12 þ s13 þ s14Þ ¼ 0.

(ii) We now move to consider the 2-to-2 fermion
scattering. Consider first the distinguishable case,
e.g., a fermion and a lepton q1=2l−1=2 → q1=2l−1=2.
Residues in the s channel have quantum number
under the SM gauge group ð3; 2; 1=6Þ, ð3; 1; 5=3Þ,
ð3̄; 2; 5=6Þ, etc., or consider q1=2R q−1=2L → q1=2R q−1=2L
with more elaborate color ð3 ⊕ 6; 2; 5=6Þ, ð3 ⊕
6; 2;−1=6Þ and baryon number 2=3. Each of these
will have a residue at M2ð1þ nÞ as

Res
1þn

½Ã1=2;1=2� ¼
8πM2

M2
Pln!

�
−
c2θ=2
s2θ=2

þ bc2θ=2
2

�

×
Yn
k¼0

½k − ð1þ nÞs2θ=2�; ð79Þ

with minimum spin Jmin ¼ 1 and coefficients

FIG. 2. Chew-Frautschi spin/mass plot of the spectrum of exchanged resonances in the four-graviton scattering g�2g�2 → g�2g�2 (left
panel) and g�2g∓2 → g�2g∓2 (right panel). The mass is quantized according to the relation M2

n ¼ ð1þ nÞM2 with n ¼ 0; 1;… ∈ N on
the x axes. The rainbow colors in the legend mark, for each resonance, the value of Γ=M in units of αPl ≡M2=M2

Pl [see Eqs. (71)
and (74)].

TABLE V. Coefficients of the decomposition in Eq. (77).

Nn;J
0;0 J ¼ 0 1 2 3 4 5 …

n ¼ 0 4þa
24

10−a
120

2−a
120

a
280

� � � � � � � � �
1 8þa

60
14−a
140

26þa
420

36þa
1260

2−a
315

a
693

� � �
2 256þ19a

2240
218−11a
2240

166þ7a
2240

1188−21a
24640

636−21a
24640

702þ69a
64064

� � �
… � � � � � � � � � � � � � � � � � � � � �
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Ñn;J
1;1 ¼ 1

4n!

Z þ1

−1

�
−
c2θ=2
s2θ=2

þ bc2θ=2
2

�
dJ1;1ðθÞ

×
Yn
k¼0

½k − ð1þ nÞs2θ=2�dcθ; ð80Þ

that are listed in Table VI.
The residue for same fermion species scattering is

instead

Res
1þn

½A1=2;1=2� ¼
8πM2

M2
Pln!

c2θ=2

�
−

1

s2θ=2
− s2θ=2 þ b

�

×
Yn
k¼0

½k − ð1þ nÞs2θ=2�; ð81Þ

with minimum spin Jmin ¼ 1 and coefficients

Nn;J
1;1 ¼ 1

4n!

Z þ1

−1
c2θ=2

�
−

1

s2θ=2
− s2θ=2 þ b

�
dJ1;1ðθÞ

×
Yn
k¼0

½k − ð1þ nÞs2θ=2�dcθ; ð82Þ

that are listed in Table VII.
We remark that the coefficient b affects the residues of

the massive resonances, whereas it does not alter the
graviton pole where it enters as a free parameter. All the
coefficients Nn;J

1;1 (as well as the coefficients Ñn;J
1;1) are

subject to positivity. We show the first few values of the
decomposition in Table VII. Clearly, unitarity provides a
nontrivial condition since not all coefficients are positive
for any value of b. Numerically, we find the situation
illustrated in Fig. 3. For each value of n on the y axis, we
find an allowed range of values for b (dotted green lines,

while solid red lines indicate intervals excluded by unitar-
ity). What is nontrivial is that all these constraints must be
satisfied simultaneously, all the way up to n → ∞. This is
true in the region shaded in green, that is set by the first
resonance of the spectrum with n ¼ 0. We note, in
particular, that the value b ¼ 0 is not compatible with
unitarity. Hence, unitarity bounds the a priori free param-
eter to lie in the range

2

3
≤ b ≤

22

5
: ð83Þ

The bound that we get from the positivity of the coefficients
Ñn;J

1;1 is milder, 0 ≤ b ≤ 8. This very simple result, despite
being a trivial consequence of unitarity, has profound
implications for the structure of the theory. We shall discuss
this important issue in Sec. IV C.

3. Matter-graviton scattering

For completeness, let us treat the mixed gravity-matter
case here. This case is different in the sense that only in
gravitational Compton scattering the intermediate state can
be classified as “matter” in the following sense. In all
previous processes, resonances had helicity charge h ¼ 0.
Furthermore, as already discussed, channels with charge
h ¼ �2 are closed since no resonance has such charge. The
case that is left is the one in which the exchanged
resonances have charge h ¼ �1. This situation is realized
in gravitational Compton scattering, where resonances have
the charge of the matter we scatter.
Let us select fermion-graviton scattering to discuss semi-

integer resonances and focus on region (g) to obtain the
lowest spin resonance at Jmin ¼ 3=2. We have

Res
1þn

½A1=2;2� ¼
8πM2ð1þ nÞ
M2

Plðn!Þ2
c3θ=2

Yn
k¼1

½k − ð1þ nÞs2θ=2�2:

ð84Þ

TABLE VII. Coefficients of the decomposition in Eq. (82).

Nn;J
1;1 J ¼ 0 1 2 3 4 5 …

n ¼ 0 ✗ 22−5b
120

3b−2
120

1
210

� � � � � � � � �
1 ✗ 1

6
− b

60
46−7b
420

8b−5
420

1
252

� � � � � �
2 ✗ 92−7b

560
62−3b
560

79−9b
1120

15b−9
1120

9
3080

� � �
… ✗ � � � � � � � � � � � � � � � � � �

FIG. 3. Unitarity bound (allowed region shaded in green) on
the parameter b in Table I obtained from the positivity of the
coefficients in the expansion in Eq. (82). The left side of the
bound is described by the simple analytical formula
b ≥ ð4þ nÞ=2ð3þ nÞ, which asymptotes to 1=2 for n → ∞.

TABLE VI. Coefficients of the decomposition in Eq. (80).

Ñn;J
1;1 J ¼ 0 1 2 3 4 5 …

n ¼ 0 ✗ 8−b
48

b
80

� � � � � � � � � � � �
1 ✗ 1

6
− b

120
12−b
120

b
105

� � � � � � � � �
2 ✗ 26−b

160
3ð42−bÞ
1120

9ð16−bÞ
2240

3b
448

� � � � � �
… ✗ � � � � � � � � � � � � � � � � � �
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The couplings are given by

Nn;J
−3=2;−3=2 ¼

ð1þ nÞ
4ðn!Þ2

Z þ1

−1
c3θ=2d

J
−3=2;−3=2ðθÞ

×
Yn
k¼1

½k − ð1þ nÞs2θ=2�2dcθ; ð85Þ

and the first few of them are listed in Table VIII. We find all
positive coefficients, as demanded by unitarity, and we
have a tower of infinite resonances with increasing half-
integer spin.

B. Asymmetric Veneziano and
Virasoro-Shapiro form factor

We now move to investigate the special cases of the
scattering amplitudes that are completed by the form
factors Aη;γ0

VZ and Aγ0
VS. The goal is to check whether the

positivity constraint coming from unitarity provides non-
trivial input on the free parameters η and γ0. To this end,
let us consider first fermion-vector scattering in the
elastic channel, q1=2V−1 → q1=2V−1 in region (b), that is
UV completed by the form factor [notice the exchange
s ↔ t with respect to Eq. (47)]

Aη;γ0
VZ ¼ Γð1 − t̃ÞΓð1þ ηγ0 − ηs̃Þ

Γð1þ ηγ0 − ηs̃ − t̃Þ : ð86Þ

The values in s for which the Γ hits the pole Γð−nÞ read

s̃n ¼ η−1ðnþ 1þ ηγ0Þ ¼ ðnþ 1Þη−1 þ γ0: ð87Þ

We can compute the residues

Res
s̃n

½Aη;γ0
1=2;1� ¼

8πM2s̃n
M2

Pln!η
c3θ=2

Yn
k¼1

ðk − s̃ns2θ=2Þ ð88Þ

and couplings

Nn;J
3=2;3=2

				
η;γ0

¼ s̃n
4n!η

Z þ1

−1
c3θ=2

Yn
k¼1

ðk − s̃ns2θ=2Þdcθ; ð89Þ

with minimal spin given in this case by Jmin ¼ 3=2. The
first few values are listed in Table IX. As is clear from
Eqs. (87) and (89), the parameters η; γ0 only enter the

decomposition thorough the combination η−1ðnþ 1Þ þ γ0,
which we define to be γ̃0. It is easy to see that the first
Regge trajectory automatically satisfies positivity since it
has the form γ̃n0 . The subleading trajectory, however,
requires for positive entries that η; γ0 satisfy

ðη−1 − 1Þ þ γ0
nþ 1

≤
3

2n
; ð90Þ

where one can see that, whereas the bound on γ0 converges
onto 3=2, the value of η has to be ever closer to 1. Hence,
one has that positivity not only restricts deformations from
Veneziano in the “η -direction,” but it also forces η onto the
value of Veneziano amplitude, i.e.,

Unitarity enforces η ¼ 1; γ0 < 3=2: ð91Þ

The analysis can be now repeated for Aγ0
VS again in region

(b) for the scalar-fermion and scalar-vector scattering. We
have the Veneziano-Shapiro form factor

Aγ0
VS ¼

Γð1þ 2γ0ÞΓð1 − t̃ÞΓð1þ γ0 − s̃ÞΓð1þ γ0 − ũÞ
Γð1þ t̃þ 2γ0ÞΓð1þ γ0 þ s̃ÞΓð1þ γ0 þ ũÞ :

ð92Þ

The residues at s̃n ¼ γ0 þ 1þ n read

Res
s̃n

½Aγ0
VS� ¼

Γð1þ 2γ0Þs2θ=2ðs̃nc2θ=2 þ γ0Þ
Γð2þ nþ 2γ0Þn!

×
Yn
k¼1

ðk − s̃ns2θ=2Þðkþ 2γ0 − s̃ns2θ=2Þ; ð93Þ

to be supplemented by the GR amplitudes for ðh; h0Þ ¼
ð0; 1=2Þ; ð0; 1Þ evaluated at s̃n,

AGR
0;1=2 ¼

8πM2s̃n
M2

Pl

�
cθ=2 þ c3θ=2

2s2θ=2

�
; ð94Þ

AGR
0;1 ¼ 8πM2s̃nc2θ=2

M2
Pls

2
θ=2

: ð95Þ

TABLE VIII. Coefficients of the decomposition in Eq. (85).

Nn;J
3=2;3=2 J ¼ 1=2 3=2 5=2 7=2 9=2 11=2 …

n ¼ 0 ✗ 1
8

� � � � � � � � � � � � � � �
1 ✗ 7

60
2
35

1
42

� � � � � � � � �
2 ✗ 237

2240
81
1120

99
2240

243
12320

27
3520

� � �
… ✗ � � � � � � � � � � � � � � � � � �

TABLE IX. Coefficients of the decomposition in Eq. (89). We
use the short-hand notation γ̃0 ≡ γ0 þ η−1ðnþ 1Þ.

Nn;J
3=2;3=2jη;γ0 J ¼ 1=2 3=2 5=2 7=2 …

n ¼ 0 ✗ 1
8
γ̃0 � � � � � � � � �

1 ✗ 1
40
ð5γ̃0 − γ̃20Þ 1

60
γ̃20 � � � � � �

2 ✗ γ̃0
240

ð30 − 9γ̃0 þ γ̃20Þ γ̃2
0

840
ð21 − 4γ̃0Þ γ̃3

0

672
� � �

… ✗ � � � � � � � � � � � �
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The product of Eqs. (93) and (94) is projected onto Wigner
d-functions dJ1=2;1=2 (with Jmin ¼ 1=2) and dJ1;1 (with

Jmin ¼ 1), respectively, for the coefficients Nn;J
h0;h0 . One

again has that the subleading Regge trajectory is not
guaranteed positive, and it sets upper limits on γ0, the
most stringent of which comes from the first term and
yields, respectively,

scalar‐fermion;N1;1=2
1=2;1=2 γ0 < 2.5215; ð96Þ

scalar‐vector;N1;1
1;1 γ0 < 3.1169; ð97Þ

where the values are the positive solution to a third-degree
polynomial approximated here, but with exact values as
given in the Appendix [cf. Eqs. (A16) and (A17)], and they
imply a squared mass for the first (n ¼ 0) state lighter than
3.5215M2 and 4.1169M2, respectively.

C. Low-energy limit and matching to GR

In the low-energy limit, sij ≪ M2, the expansion in
energy yields an EFT that should naively reproduce the
results of GR at the leading order. This limit for the
amplitudes in Eq. (60) is straightforward to take, and
one finds that the corrections enter at orderM−2 ¼ α−1Pl M

−2
Pl ,

Aγ0
VZ ¼ 1þ

�
Γ0ð1þ γ0Þ
Γ0ð1þ γ0Þ

−
Γ0ð1Þ
Γð1Þ

�
s12

αPlM2
Pl

;

Aγ0
VS ¼ 1þ

�
2Γ0ð1þ γ0Þ
Γð1þ γ0Þ

−
Γ0ð1Þ
Γð1Þ −

Γ0ð1þ 2γ0Þ
Γð1þ 2γ0Þ

�
s12

αPlM2
Pl

:

ð98Þ

This in particular means that the entries in Table I should
match the tree-level computation of Einstein-Hilbert grav-
ity coupled to matter to order s=M2. This is the case for
most of the amplitudes but crucially not all. All the
amplitudes do reproduce the on-shell contribution of the
graviton pole (which is after all the only way we have tested
gravity), but we recall that there are unspecified off-shell
pieces in the scalar-scalar and fermion-fermion scattering,
cf. Table I. Let us compare these amplitudes with the result
in GR minimally coupled to matter obtained by means of
Feynman rules. For the scattering of distinguishable scalars
and identical fermions, we find

8π

M2
Pl

�
s13s14
s12

�
; ð99Þ

8πh23i½14�
M2

Pl

�
s13
s12

þ s12
s13

þ 1

2

�
; ð100Þ

and so a ¼ 0, b ¼ 1=2. The rather unexpected finding is
that, whereas a is compatible with the positivity bounds,
(78), (83), b in the fermion case is not. This means that the

current UV completion differs from Einstein-Hilbert GR at
the tree level in the infrared s=M2 → 0.
The difference is, however, in b, a contact term, which

does not modify gravity at long distance; it does never-
theless require modifying Hilbert-Einstein gravity as our IR
theory. Let us put forward a possible modification.
The value b ¼ 1=2 in Eq. (100) arises from the

Lagrangian density of a right-handed fermion minimally
coupled to gravity of the form

L ¼ i
ffiffiffiffiffiffi−gp
2

½ψ̄σaeμað∇μψÞ − ð∇μψÞσaeμaψ �; ð101Þ

where the vierbein eμa links global coordinates with those in
a locally flat space, gμν ¼ eμaeνbη

ab. The torsion-free spin
connection ωab

μ enters via the covariant derivative
∇μψ ¼ ∂μψ þ ωab

μ σabψ=4, with σab ≡ ðσ̄aσb − σ̄bσaÞ=2,
and it can be derived in terms of vierbein eμa and the
Christoffel symbols as ωab

μ ¼ eaνΓν
σμgσρebρ − gνρebρð∂μeaνÞ.

Similarly to the scalar case (in which a minimally
coupled scalar field has a ¼ 0 but a nonzero value can
be obtained by adding a nonminimal coupling), modifying
the value b ¼ 1=2 requires going beyond this minimal
picture. A nonminimal coupling can be obtained by
generalizing Eq. (101) to

L ¼ i
ffiffiffiffiffiffi−gp
2

½ð1 − iαÞψ̄σaeμað∇̃μψÞ − H:c:�; ð102Þ

where α is a real parameter (note that choosing a left-
handed fermion makes α → −α) and the covariant deriva-
tive ∇̃μψ ¼ ∂μψ þ ω̃ab

μ σabψ=4 is now written in terms of a
modified spin connection that takes into account the
presence of a nonzero torsion by means of the definition
ω̃ab
μ ≡ ωab

μ þKab
μ , where ωab

μ is the torsion-free spin
connection defined above and Kab

μ is the so-called con-
torsion tensor [25]. The effect of the real constant α
introduced in Eq. (102) reduces to a total derivative if
the theory is torsion free, but it becomes nontrivial in the
presence of nonzero torsion. Torsion is encoded in the term

Sγ ¼
M2

Pl

16πγ

Z
ðdω̃ab þ ω̃ac ∧ ω̃c

bÞ ∧ ea ∧ eb; ð103Þ

where d and ∧ are, respectively, the external derivative
(dxμ∂μ ∧) and product γ is the Immirzi parameter (that is, in
full generality, a complex number) and ω̃ab ¼ ω̃ab

μ dxμ,
ea ¼ eaμdxμ. The relevant property about Eq. (103) is that in
the limit γ → 0 the torsion vanishes. To obtain the con-
tribution of torsion to fermion scattering, we integrate out
the contorsion8 tensor (by means of the equation of motion

8It is indeed only in the case of fermions coupled to gravity that
the effects of torsions become manifest, as all other scattering
processes with fermions (fermion-scalar, fermion-vector, and
gravitational Compton scattering with fermions) do not leave
any room for contact terms, as explained in Sec. II.
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of the connection ω̃ab
μ ). This procedure generates the four-

fermion effective operators [25–28]

L ¼ 3πGN

8

�
γ2

γ2 þ 1

��
1 − α2 þ 2

α

γ

�
ðψ†σμψÞ2; ð104Þ

and the parameter b becomes

b ¼ 1

2
þ 3γ

8ð1þ γ2Þ ½γ − αð2þ αγÞ�; ð105Þ

and the bound in Eq. (83) can be now satisfied. For
instance, if one takes α ¼ 0 and restricts the analysis to
real and positive values of the Immirzi parameter, the bound
on b is satisfied if γ ≥ 2=

ffiffiffi
5

p
.

An equivalent way to obtain a modification of b slightly
more familiar to the working class particle theorist is
through the introduction of a Kalb-Ramond field, a
three-form H ≡ 3dB with B ¼ Bμνdxμ ∧ dxν. This field
occurs in string theory, and its presence is associated with
gravitational torsion [29–31]. Let it couple to a fermion as

Sint ¼ −
g
M

Z
H ∧ ðψ†σμψdxμÞ; ð106Þ

where we can identify M as the mass scale in our UV
completion and the coupling g is real and dimensionless.
One expects in string theory g ∼M=MPl, but the precise
value of g depends on the expectation values of the moduli
fields and, therefore, on the details of the compactification
procedure. Consequently, it is important to remark that the
coupling g in the low-energy limit of string theory is in
principle computable but, on balance, a free parameter.
Integrating out the two-form B, one obtains a contact

interaction (the equation of motion for H is algebraic, or,
alternatively, the propagator pole of B cancels against the
derivative coupling), which reads

bKR ¼ 18g2M2
Pl

πM2
; ð107Þ

and translates through Eq. (105) the Immirzi parameter into
a ratio of scales. In order to satisfy the unitarity bound in
Eq. (83), we obtain an upper and lower bound on the mass
ratio gMPl=M,

1

108
≤
g2M2

Pl

πM2
≤
13

60
: ð108Þ

This simple discussion teaches us an important preroga-
tive of the bottom-up approach to the UV completion of
gravity pursued in this paper. From a typical “top-down”
perspective like that of string theory, it is difficult to make
firm statements about what we expect in our phenomeno-
logical four-dimensional world. In this sense, the possible

presence of space-time torsion is a prototypical example,
with deviations from GR well motivated theoretically but
difficult to compute without introducing free parameters
encompassing the complicated step of compactification.
Our bottom-up perspective, on the contrary, predicts a
deviation from GR and gives a precise indication about
what we should expect for it. The above analysis exposes in
plain sight the true complementarity of the two approaches.

V. CONCLUSIONS

The on-shell amplitude program has paved the road for
the formulation and analysis of amplitudes featuring
resonances of arbitrary spin and mass, clearing the
computational obstacles of the conventional Lagrangian
approach.
In this paper, this formalism was applied to study the UV

completion of gravity following a bottom-up approach. The
derivation of a viable UV completion started from the need
to tame the growth with energy of the scattering amplitudes
mediated by gravity, which at energies comparable to the
Planck scale grow above the unitarity bound. With a typical
particle physicist demeanor, we approached the problem by
introducing massive resonances, and the solution obtained
was validated against unitarity, locality, and causality. In
this regard, we do not put forth in this work a full quantum
theory of gravity but rather a UV-complete formulation of
tree-level amplitudes. These amplitudes nonetheless yield a
great deal of information on the full theory and have
nontrivial implications in the infrared.
In more depth, the main results of our analysis are:
(i) After enumerating our working assumptions—local-

ity, unitarity, and causality and the weak coupling
limit—in Sec. I, in Sec. II Awe constructed the most
general tree-level scattering amplitude mediated by
gravitational interactions in the context of GR with
SM particles (including gravitons) on the external
states, Eq. (6). We considered not only the contri-
butions to the scattering amplitudes coming from the
poles but also, in full generality, the possible
presence of contact (polynomial) terms compatible
with our working assumptions.

(ii) In Sec. II B, we computed the contribution due to the
exchange of a massive resonance with arbitrary spin
J, Eq. (25). The result of this computation was
already quoted in Ref. [8] in terms of “spinning
Gegenbauer polynomials.” Here, we derived an
equivalent expression in terms of Jacobi polyno-
mials that makes more transparent the helicity
structure of the amplitude. Furthermore, by combin-
ing the Jacobi polynomials with the helicity factor,
we related the scattering amplitudes to Wigner d-
functions. Finally, the study puts in the foreground
the role of unitarity that, in the case of elastic
processes, relates the residue of the amplitude to
the decay width of resonances.
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(iii) In Sec. III, we combined the results of (i) and (ii) to
obtain a valid UV completion of GR amplitudes. To
this end, we only used as guidelines unitarity,
locality, and causality. A number of properties—
i.e., quantization of the mass spectrum and duality
relations among resonances exchanged in channels
related by crossing transformations—elegantly arise
from the mathematical consistency dictated by these
three fundamental principles. The obtained solutions
follow from three Ansätze, clearly displayed in
Sec. III A, put forward to solve the mathematical
consistency conditions that follow from locality and
unitarity. The UV completion dresses the GR am-
plitudes with form factors that are product of Euler Γ
functions, thus closely resembling the Veneziano
and Virasoro-Shapiro amplitudes as summarized in
Sec. III B.

(iv) Section IV is devoted to the analysis of the physical
properties of the resonances. By performing an angu-
lar decomposition in terms ofWigner d-functions, we
extracted couplings and spin of the resonances.
Unitarity enforces positivity constraints on the cou-
plings of resonances kinematically accessible in
elastic scattering processes. The bottom-up approach
showcases the power of this basic principle. As a
consequence of unitarity, for instance, we find that the
proposed UV completion predicts leading order
deviations from GR minimally coupled to fermions.
These deviations needed to restore unitarity are
present if space-time has torsion in addition to
curvature. Unitarity also imposes nontrivial con-
straints on the contact terms introduced in point (ii)
as well as on possible deformations of the Veneziano
and Virasoro-Shapiro amplitudes found in point (iii).

The ambitious and overarching question lurking in the
background is uniqueness: are fundamental principles like
unitarity and locality so demanding as to select one theory
of gravity only? We believe that the bottom-up approach
may help in shedding light on this question, see Ref. [22]
for a related discussion. In this regard, our findings have
glaring similarities with string theory, tantalizingly yet
inconclusively in line with the belief that string theory is
the only consistent quantum theory of gravity. A more
detailed exploration of this connection is left for future
work since it would have diluted the main aim of this paper.
The main aim is the model-independent bottom-up and
unbiased approach to the UV completion of gravity with
fundamental principles like unitarity and locality as the sole
reference. This road has been shown here to lead to relevant
results in complementarity to the top-down prevailing
trend, an outstanding example being the constraints
obtained from unitarity in (iv), given that studying the
same subject in the top-down perspective of string theory
requires overcoming the obstacle of compactification to
make contact with our observable four-dimensional
Universe, losing predictivity along the way.
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APPENDIX: BASICS OF MASSLESS KINEMATICS AND SPINOR-HELICITY FORMALISM

We consider the massless 2-to-2 scattering 1ðp1Þ þ 2ðp2Þ → 3̄ðp̄3Þ þ 4̄ðp̄4Þ in the c.m. frame with four-momenta

p1 ¼ ðE; 0; 0; EÞ; p2 ¼ ðE; 0; 0;−EÞ; p̄3 ¼ ðE;E sin θ; 0; E cos θÞ; p̄4 ¼ ðE;−E sin θ; 0;−E cos θÞ; ðA1Þ

where θ is the scattering angle. The physical region for this process is the red region (r) in Fig. 1. The four-momenta in
Eq. (A1) describe ingoing initial-state and outgoing finale-state particles. The Mandelstam variables are given by

s≡ ðp1 þ p2Þ2 ¼ ðp̄3 þ p̄4Þ2 ¼ 4E2; ðA2Þ

t≡ ðp1 − p̄3Þ2 ¼ ðp2 − p̄4Þ2 ¼ −
4E2

2
ð1 − cos θÞ ¼ −

s
2
ð1 − cos θÞ ¼ −ssin2

θ

2
; ðA3Þ

u≡ ðp1 − p̄4Þ2 ¼ ðp2 − p̄3Þ2 ¼ −
4E2

2
ð1þ cos θÞ ¼ −

s
2
ð1þ cos θÞ ¼ −s cos2

θ

2
¼ −s − t; ðA4Þ

and, consequently, we have for the scattering angle cos θ ¼ 1þ 2t=s. For the on-shell production of a resonance with mass
M, we have s ¼ 4E2 ¼ M2.
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For a massless particle of momentum pμ ≡ ðp0; p1; p2; p3Þ, p2 ¼ 0, the map into a ð1=2; 1=2Þ representation of the
Lorentz group of the momentum can be written as the outer product of two two-component spinors (we use the mostly
minus flat Minkowski metric)

p̂α _α ≡ pμðσμÞα _α ¼
�

p0 − p3 −p1 þ ip2

−p1 − ip2 p0 þ p3

�
¼ αjpi½pj _β; ðA5Þ

given that detðp̂Þ ¼ p2 ¼ 0. For real momenta, pα _α is Hermitian, and we have the reality condition ½pj _α ¼ �ðαjpiÞ�.
Indices are raised and lowered as εαββjpi ¼ hpjα and ½pj _α ¼ ε _α _β

_βjp�, with the Levi-Civita symbol in two dimen-

sions εαβ ¼ ε _α _β ¼ ðð0; 1Þ; ð−1; 0ÞÞ ¼ −εαβ ¼ −ε _α _β.
In the main text, we used explicitly the spinor-helicity formalism, following the convention according to which all

momenta are ingoing. This means that, compared to Eq. (A1), we have p̄3;4 → p3;4 ¼ −p̄3;4 (notice that these flipped
momenta enter in Fig. 1 in the definition of sij). In this case, we find that one possible explicit choice of spinors is

ðp̂1Þα _α ¼
�
0 0

0 2E

�
¼ αjp1i½p1j _β ⇒ jp1i ¼ ½p1j ¼

�
0ffiffiffiffiffiffi
2E

p
�
; ðA6Þ

ðp̂2Þα _α ¼
�
2E 0

0 0

�
¼ αjp2i½p2j _β ⇒ jp2i ¼ ½p2j ¼

� ffiffiffiffiffiffi
2E

p

0

�
; ðA7Þ

and

ðp̂3Þα _α ¼
�−2Esin2 θ

2
E sin θ

E sin θ −2Ecos2 θ
2

�
¼ αjp3i½p3j _β ⇒ jp3i ¼ −½p3j ¼

ffiffiffiffiffiffi
2E

p �− sin θ
2

cos θ
2

�
; ðA8Þ

ðp̂4Þα _α ¼
�−2Ecos2 θ

2
−E sin θ

−E sin θ −2Esin2 θ
2

�
¼ αjp4i½p4j _β ⇒ jp4i ¼ −½p4j ¼

ffiffiffiffiffiffi
2E

p �
cos θ

2

sin θ
2

�
: ðA9Þ

One can now compute explicitly the angle/square brackets that enter in the helicity structure of the scattering amplitudes
studied in the main text (see Table I) for region (r), whereas the case for regions (b) and (g) is obtained by a reshuffling of the
1-2-3-4 indices. In summary, we have, in each of the regions,

ðA10Þ

and

ðA11Þ

from which it is possible to write explicitly all amplitudes in terms of conventional Mandelstam variables.
Finally, useful formulas used but not quoted in the text are the following:
(i) In Sec. II B 1, an example of the contractions that give rise to the spin J mediated four-point amplitude with external

scalars is given by (for J ¼ 2, 3, 4)
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ðA12Þ

ðA13Þ

ðA14Þ

Each term schematically represents a product of traces over slashed momenta, which itself one writes in terms of Lorentz
scalar products as

trðσ̄μpμσ
μkμÞn ¼ 2n

X
m

�
n

2m

�
ðp · kÞn−2m½ðp · kÞ2 − p2k2�m: ðA15Þ

(ii) In Sec. IV B, we extracted in Eqs. (96) and (97) an upper bound on the coefficient γ0 of the modified Virasoro-
Shapiro form factor Aγ0

VS as a consequence of unitarity applied to the scalar-fermion and scalar-vector scattering
processes. In more detail, in the scalar-fermion case, the bound follows from the positivity condition imposed on the
coefficient N1;1=2

1=2;1=2, while in the scalar-vector, the same happens for N1;1
1;1. We find

scalar-fermion∶ N1;1=2
1=2;1=2 > 0 30þ γ0ð101þ 46γ0 − 36γ20Þ > 0 ⇒ γ0 < 2.5215; ðA16Þ

scalar-vector : N1;1
1;1 > 0 14þ γ0½47 − γ0ð−24þ 13γ0Þ� > 0 ⇒ γ0 < 3.1169: ðA17Þ
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