
Grid administration: towards an autonomic approach

M Ubeda Garcia1, F Stagni1, A Tsaregorodtsev2, P Charpentier1, V
Bernardoff1

1PH Department, CH-1211 Geneva 23 Switzerland
2C.P.P.M - 163, avenue de Luminy - Case 902 - 13288 Marseille cedex 09

E-mail: mario.ubeda.garcia@cern.ch

On behalf of LHCb Collaboration

Abstract.
Within the DIRAC framework in the LHCb collaboration, we deployed an autonomous

policy system acting as a central status information point for grid elements.
Experts working as grid administrators have a broad and very deep knowledge about the

underlying system which makes them very precious. We have attempted to formalize this
knowledge in an autonomous system able to aggregate information, draw conclusions, validate
them, and take actions accordingly.

The DIRAC Resource Status System (RSS) is a monitoring and generic policy system that
enforces managerial and operational actions automatically. As an example, the status of a grid
entity can be evaluated using a number of policies, each making assessments relative to specific
monitoring information. Individual results of these policies can be combined to evaluate and
propose a global status for the resource. This evaluation goes through a validation step driven
by a state machine and an external validation system. Once validated, actions can be triggered
accordingly.

External monitoring and testing systems such as Nagios or Hammercloud are used by policies
for site commission and certification. This shows the flexibility of our system, and of what an
autonomous policy system can achieve.

1. Introduction
Information availability, reliability and usability are three crucial aspects for an efficient
management of the resources. In particular, a Grid infrastructure presents a wide variety
of information endpoints, which turns to be spread around the monitoring tools provided by
different projects. Moreover, each one of them provides different information perspectives about
infrastructure and/or activities. Information given by orthogonal entities can overlap, be out of
sync and/or be unrelated.

On one hand, the need of an aggregator of monitoring information is a known requirement
[1]. On the other hand, the interpretation of the information will determine our knowledge of
the environment.

This paper presents the evolution of the DIRAC RSS [1] driven by its usage within the LHCb
collaboration as follows: section 2 gives a brief explanation of the context where the RSS was
born. Section 3 formalizes the list of requirements for this project. Section 4 explains the

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032110 doi:10.1088/1742-6596/396/3/032110

Published under licence by IOP Publishing Ltd 1

underlying components within the RSS, which constitutes its heart while section 5 gives an
overview of the system and the status cycle. Finally, conclusions are given in section 6.

2. Context
DIRAC is a community Grid solution [2]. DIRAC, developed in python, offers powerful job
submission functionalities, and a developer-friendly way to create services and agents. A
DIRAC service exposes an extended Remote Process Call (RPC) and Data Transfer (DT)
implementation, whereas an agent is a stateless light-weight component (comparable to a
cron-job). DIRAC has been initially developed as a LHCb-specific project, and it is now a
generic framework, capable to serve the distributed computing needs of a number of Virtual
Organizations.

3. Requirements
The system requirements are hereafter summarized. The system must:

• collect dispersed and uncorrelated monitoring information from all the available sources;

• aggregate and expose the information in a simple way;

• use a policy system to combine information and deliver a decision. Non-trivial combinations
must be allowed, to take into account the variety of resource natures and the complexity of
the system;

• automate trivial and nontrivial tasks, by enforcing defined procedures;

• cope with scalability derived issues;

• be configurable enough to fit the needs of any other VOs using the DIRAC framework.

The purpose of the Resource Status System is to provide a system meeting these requirements.
The architecture and the functionalities exposed within this paper have been implemented within
the LHCb [3] collaboration inside the DIRAC framework.

3.1. Resources status central point of information
The RSS status database is the central point of status information for DIRAC resources. Half of
the RSS system is dedicated to host statuses and to provide all necessary helpers for managing
them as efficiently as possible. This includes a GUI integrated with the DIRAC Web portal and
scripts that can be used by operators of the system.

3.2. Information aggregation
The proliferation of monitoring tools gave the VO administrators the opportunity to access
a widespread set of information endpoints, which would be difficult to handle and keep track
of individually. Thus, multi purpose monitoring platforms such as GridView [4], MyOSG [5],
HappyFace [6] or Dashboard [7], among others, offer a wide set of possibilities in terms of
access to monitoring information. The importance of information aggregation is crucial, and
the mentioned projects are a proof of that. These tools represent very powerful instruments
for local resource administrators, offering views of multi-VOs activities running at a given site.
However, VO administrators require a more VO-centric view of the resources used, which RSS
wants to provide.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032110 doi:10.1088/1742-6596/396/3/032110

2

3.3. Information interpretation
Frameworks previously cited in 3.1 are using customizable algorithms to compute the status they
show. These algorithms are hosted on applications like Site Status Board (used by Dashboard
) or the Availability Computing Engine (used by both Nagios and GridView). A VO-centric
view would certainly require to overcome the natural limitations imposed by a general purpose
tool. More specifically on the algorithms used to compute the records, as they are not being
customizable enough to meet the needs for complex cases within a VO.

3.4. Automation
Once the Grid operations within a team are established with clear procedures in place, running
some of the operations of the system becomes a simple routine job for an experienced Grid
administrator. Taking a decision or applying a procedure should as much as possible be an
automatic operation. From now on we will refer to such operations as formal policies. There
is a lack of mechanism for automatically enforcing such policies. Hence a Grid administrator is
required to be available in order to react manually when changes happen in the system.

4. Underlying components
Any DIRAC System makes use of databases, services, clients and agents. These are the pillars
of the DIRAC architecture. In order to achieve its goal, the RSS, as a DIRAC system, makes
use of a few concepts which are the heart of this system:

• Grid ontology ;

• State machine;

• Policies;

• Policy system;

• Token locker.

In our ontology we define a set of classes that accurately model the Grid for RSS purposes.
These classes are a loose reflection of the DIRAC classification of resources. A common attribute
for every instance of a class is the status, which may not be unique, meaning that every instance
can have more than one status assigned. Transitions between the different values for the status
type of every resource are forced by a state machine. Policies are in charge of triggering the
status changes of the individuals. From now, we will refer to class instances as individuals.

In the figure 1 we show an abstraction of the RSS monitoring system: an ontology with
three class instances; the ExtendedPolicySystem which encompasses the PolicySystem, the State
machine and the Token Locker; finally, the policies connect the PolicySystem with the monitoring
information.

4.1. Grid ontology
The RSS provides by default a generic Grid Ontology which can be customized by the
communities to accommodate their needs. The default ontology, showed in figure 2, proposes a
schema with three main classes: Site, Resource and Node with aggregation links in between.

Each class can have a type. In the case of the Resource class we have the following default
types: Computing, Storage, Catalog, FileTransfer, Database and CommunityManagement.
In figure 3, we can see an example of how the Grid Ontology used in the RSS maps the
internal structure of the service used in DIRAC to describe the IT resources - from now,
ConfigurationService (CS). In this case there is an element of Site class (CERN.ch), which three
children nodes of class Resource with types Storage, Computing and FileTransfer respectively.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032110 doi:10.1088/1742-6596/396/3/032110

3

State
Machine

ONTOLOGY

EXTENDED
POLICY SYSTEM

POLICIES

Token
Locker Policy

System

Figure 1. The RSS system at a glance: ontology, policy system, state machine, token locker
and policies.

Site Resource Node

Figure 2. Ontology class diagram

(Channel type)
fts_channel_42

(Channel type)
fts_channel_3

(FileTransfer type)
FTS

(Computing type)
some.cream.ce

(Queue type)
cream_queue1

(A.Protocol type)
SRM

(Storage type)
disk

CERN.ch

Figure 3. Ontology example

4.2. State machine
The state machine has four default states (ordered by severity): Active, Bad, Probing and
Banned, but it can be extended to accommodate additional states and transitions according to
the VO needs. The allowed state transitions are depicted in the figure 4.

Each of the RSS states is a result of the computation of the policies evaluated by the RSS.
The authors believe that 4 states are enough for representing all the possible states of Grid
resources. These states are mapped to DIRAC internal states, that determine if a resource can
be used or not: Allowed or Banned

Active and Banned are self explanatory. The first one implies that the individual is in good
shape and no problem/quality degradation has been reported. The second one implies the

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032110 doi:10.1088/1742-6596/396/3/032110

4

Active

A
LLO

W
ED

B
A
N
N
ED

Bad

Banned

Probing

Figure 4. State machine

PEP

PDP

PIP

CS

Policy
system

Figure 5. Policy system

individual is basically, out of order. Bad and Probing are slightly more complex states. Bad is a
state that an individual gets when problems are observed but not so important to rush directly
to ban. The individual in DIRAC is still Allowed, which means it does not work at 100%, but
we can still get a reasonable performance out of it. Finally Probing is a state where we know
there were problems with the resource serious enough to have it banned. The original problems
went away but we want to test one more time the individual before unbanning it for real. The
individual in DIRAC is still Banned.

Last remark, transitions to Probing are allowed from any other state. However, in the
LHCbDIRAC use case, it only makes sense from the Banned state. By design, the State Machine
allows such transitions, but in real life we will never reach that situation unless the policies would
have been badly implemented or configured.

4.3. Policies
Without any doubt, policies are the most important part of RSS. There are many components
that make RSS work, but the knowledge, the interpretation of the monitoring information spread
around the different third party systems is done here. Understand them as a mapping between
information from monitoring sources and the RSS states. A good setup of every single policy is
crucial for RSS.

A policy can be divided into two parts, metadata and the policy itself. The policy is a set of
rules which given an input, return a status.

Typically, the input is the output of a command, where command is the name given in RSS
for a client that connects to a particular monitoring system and returns whatever information
is stored there. Moreover, a policy does not necessarily work with only a single command, they
can use different commands if needed (one at a time). So, each policy, given an input, returns
a status for the given conditions.

Policy configurations are used to match policies with commands based on the metadata of the
resources to be monitored. Every individual has a set of attributes. In the case of a Resource,
its type is one of the attributes. One can specify which policies apply to Resources of type
Computing or Storage. Taking it a little bit further, one for example can apply policies to those
individuals that are Computing resources with status Banned.

4.4. Policy system
The Policy system is in charge of getting all applicable policies, running them, evaluating all the
statuses proposed by the policies and select the most reasonable one. Having taken a decision,
the last step is to take actions accordingly. Below there we show a simplified version of the
Policy system components diagram.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032110 doi:10.1088/1742-6596/396/3/032110

5

Note that the terminology used follows the XACML [8] specification, where a Policy Decision
Point (PDP), a Policy Enforcement Point (PEP) and a Policy Information Point (PIP) are
specified and used, as shown in figure 5.

getInfoToApplytakeDecision

setup

initinit

policyCombination

enforce

gConfig.getOptionsDict

getPolToEval

invoke(Pol1)

(Pol1, Pol2)

Pol1.command.doCommand

invoke(Pol2) Pol2.command.doCommand
Banned

enforceStatus
Banned

Banned

takeActions
banResource

notifyCollaboration

:PEP :PDP

:PIP :CS

:PolicyCaller :Cache/Info.Sources

:StateMachine

Active

Figure 6. Policy system sequence diagram

The cycle followed by the Policy System begins and finishes on the PEP, as described in
figure 6. A PEP object interrogates a PDP instance about the status of an individual. The
PDP contacts the PIP, which is in charge of knowing which set of policies apply in this case and
must be evaluated. Policies are evaluated, with information either from the remote source or a
local cache used to reduce the network traffic.

Policies use a limited number of parameters and thresholds to evaluate a status. Together,
they build the Quality of Service (QoS) requested. A formalization of such QoS, persisted in
Service Level Agreement DB, is envisaged and will complement the Resource Status System.

Once all policies have been evaluated, their results go back to the PDP. When multiple
policies are evaluated, the PDP combines the results of the policies, and returns a single status
to the PEP.

4.5. Token locker
The token locker is a small lock owned by every individual in the grid ontology. This token
locks/unlocks the access of the Policy System to the individuals. Each token has an expiration
date, after which whatever value it had will be changed to the default one. The tokens are mostly
used by operators when they need to perform a manual operation which was not foreseen and
to keep the control of the resource out of the PolicySystem.

5. System overview
The complete RSS system makes use of a few more pieces for inspection and persistence,
respectively. The first components are the agents, namely InspectorAgents and CacheAgents.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032110 doi:10.1088/1742-6596/396/3/032110

6

The second ones, are the databases, that store the statuses and also the cached information used
by the policies. Figure 7 represents the RSS system overview.

PIP

PDP

PEP

RSS CacheToken
Locker

S
ources of m

onitoring inform
ation

RSS DB

CS

Inspector Agents Cache Agents

Policies

State
Machine

Token
Agent

Figure 7. System overview

CacheAgents periodically query the external monitoring sources and populate the cache with
up-to-date information. InspectorAgents run at a very high frequency and examine all resources
registered in the system. Depending on the polling frequency and the number of resources
registered in the system there can be any number of InspectorAgents running in parallel. In the
LHCb case, there are three, one per resource type: Site, Resource and Node. The token agent
periodically polls the Token Locker, and releases any expired user lock.

Inspector agents will read from the Resource Status Database (RSS DB in the image) which
resources have not been checked lately and query the PolicySystem for a new status.

The PolicySystem will go through the PIP to find the policies to be evaluated, they then will
contact the Configuration Service for the necessary information. The PDP will choose a new
status if applicable and enforced to be correct according the the state machine. Back to the
PEP, it will record the new status in the database along with the reasons for the status change.
If needed, it will notify via email, web interface, sms, etc.. whoever may be concerned.

6. Conclusions
In this paper we presented the Resource Status System as it is used within the LHCb Computing
system. It is as an information aggregation and monitoring tool which can be used by any VO
using the DIRAC framework. The RSS has proven its value in a prototype developed and used
by LHCbDIRAC during several months. RSS is going to be the new resource status information
point for all DIRAC resources: this is major change in the DIRAC framework. RSS is also
a monitoring information tool that has demonstrated the advantages of an automated policy
system. The autors believe that the RSS is a step towards an autonomic resource management

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032110 doi:10.1088/1742-6596/396/3/032110

7

tool. As it is developed as a VO independen tool, any community using the DIRAC framework
can take advantage of its capabilities.

References
[1] Stagni F, Santinelli R and LHCbCollaboration 2011 Journal of Physics: Conference Series 331 072067
[2] Tsaregorodtsev A, Bargiotti M, Brook N, Ramo A C, Castellani G, Charpentier P, Cioffi C, Closier

J, Diaz R G, Kuznetsov G, Li Y Y, Nandakumar R, Paterson S, Santinelli R, Smith A C,
Miguelez M S and Jimenez S G 2008 Journal of Physics: Conference Series 119 062048 URL
http://stacks.iop.org/1742-6596/119/i=6/a=062048

[3] LHCbCollaboration CERN-LHCC-2005-019 ; LHCb-TDR-11 - Geneva : CERN, 2005 - 117 p Lhcb computing
: Technical design report

[4] Kalmady R, Sonvane D, Bhatt K and Chand P 2006 Journal of Physics: Conference Series 1 689
[5] Gopu A, Hayashi S and Quick R Myosg: a user-centric information resource for osg infrastructure data sources.
[6] Buge V, Mauch V, Quast G, Scheurer A and Trunov A 2010 Journal of Physics: Conference Series 219

062057
[7] Andreeva J, Gaidioz B, Herrala J, Maier G, Rocha R, Saiz P and Sidorova I 2009 131–139 10.1007/978-0-387-

78417-5 12 URL http://dx.doi.org/10.1007/978-0-387-78417-5 12

[8] OASIS 2005 Oasis extensible access control markup language (xacml) tc http://www.oasis-
open.org/committees/xacml

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 032110 doi:10.1088/1742-6596/396/3/032110

8

