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1. Introduction

Despite many no-go theorems restricting the interactions among higher-spin fields (see [1]
for a review), Vasiliev was able [2] to write fully non-linear equations describing an infinite tower
of Fronsdal fields [3], with unbounded integer spins, propagating around the AdS4 spacetime and
interacting non-trivially. The interactions come via the introduction of a four-dimensional noncom-
mutative extension of spacetime, called Z-space.

Later on, the theory was conjectured to be holographically dual to different U(N) vector mod-
els on the three-dimensional conformal boundary, according to the values taken by a free dimen-
sionless parameter of the theory and to the choice of boundary conditions for the scalar field prop-
agator1. More precisely, two specific values of the parameter yield parity invariant models : on
the one hand the type A model that was conjectured [4, 5] to be dual to free and critical models of
bosons and on the other hand the type B model that was conjectured [6, 7] to be dual to free and
critical models of fermions. All the other values give a one-parameter family of parity breaking
higher-spin models that were conjectured [8, 9] to be dual to Chern-Simons matter theories.

In [10], on which this work is based, we focussed on the simplest form of this duality, first
spelled out in [4], that relates Vasiliev’s type A model, via propagators obeying the irregular con-
dition, to the free bosonic U(N) vector model. It has the particular feature of being a holographic
duality linking two weakly coupled theories. Different verifications of the duality gave some posi-
tive results at cubic and quartic order [11, 12]. However, the authors of [12] found divergences for
some couplings, which afterwards were shown [13] to be related to nonlocality of the interaction
vertices on AdS4 from Vasiliev’s equations. Although there has been a lot of progress (see e.g.
[14, 15, 16]), no completely satisfactory solution to this problem exists so far.

Instead of asking the vertices of the field equations to be defined as local quantities in AdS4, it
was proposed in [17] that locality be studied in terms of quantities possessing the property of being
pertubatively additive for two well-separated one-body solutions. The proposal of the authors of
[18] was then to study locality through the evaluation of some gauge invariant objects called zero-
form charges [19, 20], that are thought to exhibit this cluster-decomposition property, and that were
effectively shown to have it for a black-hole-like solution [21, 22, 23].

The idea of this program is to compute bulk quasi-amplitudes by evaluating zero-form charges
and in some sense to plug to it the bulk-to-boundary propagators constructed in [12]. This was
shown [24] to reproduce the boundary three-point functions at leading and first subleading order in
weak field expansion. The leading n-point quasi-amplitudes were then computed [25, 26] using a
modification of the zero-form charges which is specific to the leading order and found agreement
with the boundary results of [27], where an explicit expression was given for n-point functions in
the CFTd for d = 3.

In [10], we first showed that the zero-form charges could be obtained from a noncommutative
Yang-Mills perspective as decorated Wilson lines in Z-space. We reproduced the result of [25] with
a method amenable to the corrections induced by Z-space. We computed the n-point functions of
conserved currents in the free CFTd by explicitly using Wick theorem, and in the three-dimensional
case we found agreement with the zero-form charges, already at the level of cyclic structures.

1Though the propagators of the spin s ≥ 1 must obey the Dirichlet boundary condition, the one for the scalar field
can have either the Dirichlet (or “regular”) boundary condition or the Neumann (or “irregular”) one.
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In this note we outline the major results of [10], while referring to that paper for technical
details. The paper is organized as follows. In Section 2 the very basics of the considered model
and related notations are introduced. In Section 3, we point out the analogy with non-commutative
gauge theories, and we define zero-form charges, quasi-amplitudes and pre-amplitudes in terms of
open Wilson lines. In Section 4 we evaluate the pre-amplitudes on the bulk-to-boundary propaga-
tors on one side, the n-point correlators in the free U(N) model on the other side and we discuss
their correspondence.

2. Vasiliev’s bosonic model

Four-dimensional bosonic Vasiliev’s higher spin theories are formulated on a Y4 bundle over
a base manifold X4×Z4 . In the notations that we shall use, xµ are the four coordinates of the
usual spacetime X4, Zα = (zα ,−z̄α̇) are the coordinate of its four-dimensional noncommutative
extension Z4 and Y α = (yα , ȳα̇) are the coordinates of the four-dimensional fiber Y4. The twelve-
dimensional correspondence space X4×Z4×Y4 is equipped with a product, denoted by ?, ensur-
ing the following commutation relations[

Y α ,Y β

]
?
= 2iCαβ ,

[
Zα ,Zβ

]
?
=−2iCαβ ,

[
Y α ,Zβ

]
?
= 0 , (2.1)

where Cαβ is an Sp(4) invariant non-degenerate tensor. Cαβ can be expressed in terms of the Sl(2)
invariant tensors2 as

Cαβ =

(
εαβ 0

0 ε α̇β̇

)
, Cαβ =

(
εαβ 0
0 ε

α̇β̇

)
. (2.2)

In the rest of the paper we use the NW-SE convention3 and omit most of the spinorial indices.
The fields are (locally defined) horizontal differential forms on the total space X4×Z4×Y4.

By horizontal, we mean that we never use dY α , i.e. that the relevant differential calculus is based
on the following horizontal differential:

d̂ := d+q , d := dxµ
∂

x
µ , q := dZα

∂
Z
α , (2.3)

which obeys the graded Leibniz rule

d̂
(

f̂ ? ĝ
)
=
(

d̂ f̂
)
? ĝ+(−)deg f̂ deg ĝ f̂ ?

(
d̂ĝ
)
, (2.4)

where f̂ and ĝ are forms4 , deg denotes the total form degree and the exterior product ∧ is left
implicit.

Instead of treating Zα and Y α as noncommuting operators, we shall see them as ordinary
complex variables by introducing a commutative pointwise product. The ?-product is then defined

2εαβ and ε
α̇β̇

are defined by the fact that they are antisymmetric and by the convention ε12 = ε12 = ε1̇2̇ = ε 1̇2̇ = 1
3Sp(4) indices are raised as V α :=Cαβ Vβ , lowered as Vα :=V β Cβα and contracted as: UV :=UαVα .

εαβ and ε
α̇β̇

are used in the same fashion for Sl(2) indices.
4We put hats on objects that are nontrivial differential forms on Z4 , including zero-forms with nontrivial Z-

dependence.
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in terms of this pointwise product via the following twisted convolution formula

(
f̂ ? ĝ

)
(x,Z;Y ;dx,dZ) :=

∫ d4Ud4V
(2π)4 eiV αUα f̂ (x,Z +U ;Y +U ;dx,dZ) ĝ(x,Z−V ;Y +V ;dx,dZ) ,

(2.5)
for auxiliary variables Uα := (uα , ūα̇) and V α := (vα , v̄α̇) . The set of bounded functions of Y and
Z whose complex modulus is integrable is closed under ?-product and admits a trace operation,
given by

Tr f̂ (Z,Y ) :=
∫

d4Z d4Y f̂ (Z,Y ) , (2.6)

which makes cyclic the ?-products inside of it, in the following sense:

Tr f̂ ? ĝ = Tr ĝ? f̂ . (2.7)

The field variables of the theory are a zero-form field Φ̂(x,Z;Y ) and a one-form gauge con-
nection Â = dxµ Âµ(x,Z;Y )+dZα Âα(x,Z;Y ). They are associated with a transformation law given
in terms of a ?-invertible gauge function ĝ(x,Z;Y ) by

Â−→ ĝ? d̂ĝ−1 + ĝ? Â? ĝ−1 , Φ̂−→ ĝ? Φ̂?π(ĝ−1) . (2.8)

More specifically, the variables in Vasiliev’s bosonic models are Â and Φ̂ submitted to two kine-
matical constraints. Accordingly, the gauge functions will be the ones preserving them. The first
constraint is the reality condition

Â† =−Â , Φ̂
† = π(Φ̂) , ĝ† = ĝ−1 , (2.9)

where

(x,y, ȳ,z,−z̄)† = (x, ȳ,y, z̄,−z) , (2.10)

(d̂ f̂ )† = d̂ f̂ † , ( f̂ ? ĝ)† = (−)deg f̂ deg ĝ ĝ† ? f̂ † , (2.11)

for every pair of differential forms f̂ and ĝ. The second one is the bosonic projection

π(Â) = π̄(Â) , Φ̂
† = π(Φ̂) = π̄(Φ̂) , π(ĝ) = π̄(ĝ) , (2.12)

where

π(x,y, ȳ,z,−z̄) = (x,−y, ȳ,−z,−z̄) , π̄(x,y, ȳ,z,−z̄) = (x,y,−ȳ,z, z̄) , (2.13)

π(d̂ f̂ ) = d̂π( f̂ ) , π( f̂ ? ĝ) = π( f̂ )?π(ĝ) , π̄(d̂ f̂ ) = d̂ π̄( f̂ ) , π̄( f̂ ? ĝ) = π̄( f̂ )? π̄(ĝ) . (2.14)

The purpose of the latter is to select, among the fields living on X4, the ones that have integer
spin. It is possible to further constrain them and select only the even spin part, thereby defining the
minimal bosonic models, in the following way:

τ(Â) =−Â , τ(Φ̂) = π(Φ̂) , τ(ĝ) = ĝ−1 , (2.15)

3
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where

τ(x,y, ȳ,z,−z̄) = (x, iy, iȳ,−iz, iz̄) , (2.16)

τ(d̂ f̂ ) = d̂τ( f̂ ) , τ( f̂ ? ĝ) = (−)deg f̂ deg ĝ
τ(ĝ)? τ( f̂ ) . (2.17)

For the purpose of computing observables, we are interested in mapping the master fields
Â and Φ̂ to operators f̂ (x,Z;Y ;dx,dZ) transforming in the adjoint representation of the higher-
spin algebra, i.e. transforming under (2.8) as f̂ −→ ĝ ? f̂ ? ĝ−1. Since Û := dxµ Âµ is a gauge
connexion on a commutative space5, it is known that its gauge covariant information is contained
in its curvature d̂Û + Û ? Û . Conversely, its noncommutative counterpart Âα can be univoquely
associated with the following adjoint quantity:

Ŝα := Zα −2i Âα , (2.18)

usually called deformed oscillator6. In the case of Φ̂, the twisted adjoint representation can be
“untwisted” by means of the following remarkable representation of the automorphisms π and π̄

on a zero-form f̂[0]:
π( f̂[0]) = κ̂ ? f̂[0] ? κ̂ , π̄( f̂[0]) = ˆ̄κ ? f̂[0] ? ˆ̄κ , (2.19)

in terms of the so-called Klein operators

κ̂ := eiyα zα , ˆ̄κ := e−iȳα̇ z̄α̇ , (2.20)

that enjoy the additional properties

κ̂
† = ˆ̄κ , κ̂ ? κ̂ = 1 = ˆ̄κ ? ˆ̄κ , κ̂ ? ˆ̄κ = ˆ̄κ ? κ̂ . (2.21)

This allows to define two adjoint quantities

Ψ̂ := Φ̂? κ̂ , ̂̄
Ψ := Φ̂? ˆ̄κ . (2.22)

The field equations, called Vasiliev’s equations, can be written [2] in terms of these adjoint
variables as

dÛ +Û ?Û = 0 ,
[
Ŝα , Ŝα̇

]
?
= 0 , (2.23)

dŜα +
[
Û , Ŝα

]
?
= 0 , dŜα̇ +

[
Û , Ŝα̇

]
?
= 0 , (2.24)

dΨ̂+
[
Û ,Ψ̂

]
?
= 0 , d ̂̄Ψ+

[
Û , ̂̄Ψ]

?
= 0 , (2.25){

Ŝα ,Ψ̂
}
?
=
[
Ŝα ,
̂̄
Ψ

]
?
= 0 ,

[
Ŝα̇ ,Ψ̂

]
?
=
{

Ŝα̇ ,
̂̄
Ψ

}
?
= 0 , (2.26)[

Ŝα , Ŝβ

]
?
+2iεαβ (1− eiθ

Ψ̂) = 0 ,
[
Ŝα̇ , Ŝβ̇

]
?
+2iε

α̇β̇
(1− e−iθ ̂̄

Ψ) = 0 , (2.27)

5This can be understood if, for a moment, the total space is interpreted as a Z4×Y4 bundle over X4 and the index
α in Âα is seen as internal.

6Indeed, (2.27) can be viewed [28] as a generalized version of Wigner’s deformation [29, 30] of the Heisenberg
algebra.
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in terms of a real constant θ ∈ [0,2π] whose value determines the model. We are interested in two
specific values yielding the parity-invariant models [7]: θ = 0 for the Type A model and θ = π

2 for
the Type B model. The equations are compatible with the gauge transformation (2.8) and with the
constraints (2.9 , 2.12 , 2.15).

The vacuum solution describing the AdS4 background is obtained by setting Φ̂(0) = 0, Ŝ(0)α =

Zα and taking Û (0) as the Cartan connection of AdS4 , given by

Ω(Y |x) = 1
4i

(
yαyβ

ωαβ + ȳα̇ ȳβ̇
ω̄

α̇β̇
+2yα ȳα̇ hαα̇

)
. (2.28)

One may then perform a perturbative expansion around this background and find, at the linearised
level the free propagation of an infinite tower of Fronsdal fields around AdS4 . In particular, Ψ̂(1) is
given by Φ? κ̂ , where Φ(x,Y ) is a covariantly constant Z-independent zero-form.

3. Observables in Vasiliev’s theory

The purpose of this section is to use analogies that exist between Vasiliev’s theory and non-
commutative Yang-Mills theory (for the latter formalism, see e.g. [31, 32, 33]) to build functionals
that are higher spin gauge as well as diffeomorphism invariant, hence serving as candidates for
observables. Indeed, since Â transforms like a Yang-Mills connection, one can construct gauge
invariants from Wilson lines associated with curves

C : [0,1]→X4×Z4 : σ → (ξ µ(σ),ξ α(σ)) (3.1)

that are closed in X4 and open in Z4, i.e.

ξ
µ(0) = ξ

µ(1) = 0 , ξ
α(0) = 0 , ξ

α(1) = 2Mα = 2Cαβ Mβ . (3.2)

The associated Wilson line is defined as

WC (x,Z;Y ) : = Pexp?

(∫ 1

0
dσ

(
ξ̇

µ(σ)Âµ(σ)+ ξ̇
α(σ)Âα(σ)

))
=

∞

∑
n=0

∫ 1

0
dσn ...

∫
σ2

0
dσ1

n
F
i=1

(
ξ̇

µ(σi)Âµ(σi)+ ξ̇
α(σi)Âα(σi)

)
, (3.3)

where Â(σ) := Â(xµ + ξ µ(σ),Zα + ξ α(σ);Y α) and for any set of n functions
{

f̂1, ..., f̂n
}

, the
symbol Fn

i=1 f̂i is defined as f̂1 ? ... ? f̂n in that order. The gauge transformation (2.8) acts on it as

WC (x,Z;Y )−→ ĝ(x,Z;Y )?WC (x,Z;Y )? ĝ−1(x,Z +2M;Y ) . (3.4)

Unlike the traces of open Wilson lines in commutative spaces, their counterparts in a noncommu-
tative space7 can be made gauge invariant by inserting the translation operator eiMZ , characterized
by the following property :

f̂ (x,Z +2M;Y )? eiMZ = eiMZ ? f̂ (x,Z;Y ) , (3.5)

7Although in that case the trace includes an integration over the non-commutative space.
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at the end of the Wilson line. Thus, for any curve C satisfying (3.2) and for any operator Ô(x,Z;Y )
transforming as Ô−→ ĝ? Ô? ĝ−1, the quantity

ÕC (M|x) := Tr
[
Ô(x,Z;Y )?WC (x,Z;Y )? eiMZ] , (3.6)

is gauge invariant. As argued in [31], the consideration of a generic adjoint impurity Ô allows one
to only study observables associated with the straight line

L2M : [0,1]→X4×Z4 : σ → (0,2σMα) . (3.7)

In that case, we showed the following identity

exp?
(

iMŜ
)
=WL2M(x,Z;Y )? exp(iMZ) , (3.8)

allowing to rewrite the observables as a deformed Fourier transform, viz.

ÕL2M (M|x) =
∫

d4Z d4Y Ô(x,Z;Y )? exp?
(

iMŜ
)
, (3.9)

which exhibits the role of Mα as a twistor space momentum variable.
From the field equations (2.23 - 2.27), it follows that the space of adjoint operators that can be

built out of the master fields on-shell is spanned by

Ôn0,t;α1,··· ,αK
:= Ψ̂

?n0 ?
(
κ̂ ˆ̄κ
)?t

? Ŝ(α1
? · · ·? ŜαK)

. (3.10)

As a consequence, the space of twisted open Wilson lines, thought of as a linear space of observ-
ables, admits the following basis

In0,t (M) =
∫

d4Z d4Y Ψ̂
?n0 ?

(
κ̂ ˆ̄κ
)?t

? exp?
(

iMŜ
)
, (3.11)

indicized by (n0, t;M). In particular, the insertions of Ŝα are reproduced by taking derivatives with
respect to Mα . The observables (3.11) have been considered and evaluated in some special cases
in [18, 34, 24], where they were referred to as zero-form charges.

In the weak field expansion scheme, we can write their leading order contribution as

I
(n0)

n0,t (M) =
∫

d4Z d4Y
(

n0
F
i=1

Φ(x;(−)i+1y, ȳ)
)
? eieyz ? e−itȳz̄ ? eiµz ? e−iµ̄ z̄ , (3.12)

upon decomposing Mα = (µα , µ̄α̇), using (2.19) and defining

e := n0 + t mod 2 , t ∈ {0,1} . (3.13)

Thinking of the zero-form charges as contributions to a free-energy functional8, we are interested
in pre-amplitudes

An0,t (Φi|M) :=
∫

d4Z d4Y
(

n0
F
i=1

Φi(x;(−)i+1y, ȳ)
)
? eieyz ? e−itȳz̄ ? eiµz ? e−iµ̄ z̄ , (3.14)

8One can argue that the zero-form charges are extensive observables in the sense that they are additive for systems
in asymptoticaly anti-de Sitter geometries consisting of spatially separated sub-systems [21].
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where the quantities Φi , i = 1, . . . ,n are n different fields transforming as Φ, all with the same
gauge parameter. As the pre-amplitudes are distributions, the actual finite observables are given by

A V
n0,t (Φi) :=

∫
d4M Ṽ (M)An0,t (Φi|M) , (3.15)

for bounded and integrable smearing functions Ṽ (M). Thus, the information contained in the M-
dependence of the pre-amplitudes can be obtained by using derivatives of a basic smearing function
that is real-analytic at M = 0 and that has finite moments in M-space. To this end, one can show
that the dependence on Ṽ (M) only appears through an overall normalization, viz.

A V
n0,t (Φi) = Ṽt,e A V

n0,t (Φi) , (3.16)

where Ṽt,e (t,e ∈ {0,1}) are given in terms of the value of the smearing function at M = 0 and its
first moment.

The complete symmetrization of the pre-amplitudes under the exchange of the different legs
Φi give the quasi-amplitudes studied in [24]. As shown in [24, 25], at the leading order, i.e. n = n0,
these reproduce the correlation functions of bilinear operators in the free conformal field theory in
three dimensions for n = 2,3 and 4.

One can show that the pre-amplitudes are invariant under cyclic permutations of the Φi, raising
the question of whether there exists some corresponding cyclic structure in the dual CFT.

4. Zero-form charges and holography

In this section, we review the evaluation of the pre-amplitudes (3.14) with Φi given by the
Weyl zero-form Ki of a tower of Fronsdal fields propagated from a point xi on the conformal
boundary to a common bulk point x0 [11, 12], including a bulk scalar field obeying the Neumann
boundary condition. We then spell out the computation of the cyclic building blocks for the n-point
correlation functions of conserved currents in the free U(N) vector model in any dimension d, and
find agreement with the pre-amplitudes of Vasiliev’s non-minimal Type A model in the case of
d = 3. Finally, we discuss the case of the analogous correspondence between the minimal bosonic
Type A model and the free O(N) vector model in d = 3.

In terms of a boundary polarization spinor 9 χi the aforementioned Weyl zero-form reads [24]

Ki(x0,xi,χi|Y ) := KieiyΣiȳ ∑
σi=±1

(
eiθ eiσiν̄ iΣ̄iy + e−iθ eiσiνiΣiȳ

)
. (4.1)

Using Poincaré coordinates xµ = (r,~x), where r vanishes at the conformal boundary10, for AdS4

9A spinor on the conformal boundary of AdS4, which has 2 independent components, can be written as a 4-
dimensional Dirac spinor submitted to a reality condition. For the polarization spinor, the condition is (χi)

† = χ̄i = σ̄ rχi,
in terms of the coordinate r that vanishes at the boundary.

10The AdS4 metric is ds2 = 1
r2 ηµν dxµ dxν , where ηµν is the Minkwoski metric, which we use to raise, lower and

contract four-vector indices.
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and van der Waerden symbols11, the different objects entering this expression can be defined as

xµ

0,i := xµ

0 − xµ

i , Ki :=
r0

(x0,i)2 , Σi := σ
r− 2r0

(x0,i)2 x0,i , (4.2)

νi :=
√

2r0

(x0,i)2 Σi x̄0,i χi , (νi)
† = ν̄ i =−Σ̄iνi . (4.3)

In the parity-invariant models, the resulting pre-amplitudes read

A A−model
n0,t (Ki) = βn0,t exp

(
− i

4

n0

∑
i=1

Qi

)(
n0

∏
i=1

cos
(1

2 Pi,i+1
)

|xi,i+1|

)
, (4.4)

A B−model
n0,t (Ki) =−(−1)t

βn0,t exp

(
− i

4

n0

∑
i=1

Qi

)(
n0

∏
i=1

sin
(1

2 Pi,i+1
)

|xi,i+1|

)
, (4.5)

βn0,t : = 4(i)2n0−2+e+t(2π)2+e+t
n0

∏
j=1

sgn(x2
j, j+1) , (4.6)

where sgn(x) is the sign function, xi, j := xi− x j, |x| :=
√

x2 and where

Pi,i+1 :=
1

(xi,i+1)2 χi σ
r x̄i,i+1 χi+1 , (4.7)

Qi := χi σ
r
(

x̄i,i+1

(xi,i+1)2 −
x̄i,i−1

(xi,i−1)2

)
χi , (4.8)

are real conformally invariant variables [24].
Once bose-symmetrized, this expression reproduces, up to constant coefficients, the result

obtained by combining the equations (6.19) and (6.20) of [25] and generalises it to the case t = 1,
where the only difference at this order is a global sign in the Type B model.

Turning to the free U(N) vector model in d-dimensions, it is constructed from a complex
Lorentz scalar (φ i,φ ∗i ), where i = 1, . . . ,N, with two-point functions

〈φ i(x)φ j(y)〉= 0 = 〈φ ∗i (x)φ ∗j (y)〉 , 〈φ i(x)φ ∗j (y)〉=
δ i

j

|x− y|d−2 . (4.9)

The conserved current Jµ(s) of spin s is a bilinear operator that is a U(N) singlet traceless tensor
containing s spacetime-derivatives. Using a polarisation vector εµ and some weights as, one can
gather all the conserved currents into a generating function12:

J(x,ε) =
∞

∑
s=0

asJµ(s)(x)(ε
µ)s = φ

∗
i (x) f

(
ε,
←−
∂ ,
−→
∂

)
φ

i(x) . (4.10)

The function f is determined by the condition that Jµ(s) be conserved on-shell, Lorentz-covariant
and traceless. After requiring ε to be null13 and choosing a normalization of the currents, it can be
written

f (ε,u,v) = ∑
s,k

(
i
4

)s
Γ(d−2

2 )

k!s!Γ(k+ d−2
2 )Γ(s− k+ d−2

2 )
(−ε ·u)k(ε · v)s−k . (4.11)

11A vector vµ is implicitly associated with two matrices v
αβ̇

:= vµ σ
µαβ̇

and v̄α̇β := vµ σ̄
α̇β

µ .
12See e.g. [35, 11, 36] and references therein.
13This is done in order to eliminate the ambiguity caused by the possibility of making trivial transformations of the

form (εµ )s→ (εµ )s +(ηµ(2))`(ε2)`(εµ )s−2`.
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The connected correlation functions 〈J1 · · ·Jn0〉conn. are given in terms of cyclically-symmetric
building blocks

〈J1, ...,Jn0〉cyclic :=
1
N

n0

∏
i=1

f
(

εi,∂x′i ,∂xi

) n0

∏
j=1
〈φ i j(x j)φ

∗
i j+1

(x′j+1)〉

∣∣∣∣∣
x′k=xk∀k , xn0+1=x1

. (4.12)

After some algebraic manipulations, they can be given the form

〈J1, ...,Jn0〉cyclic =
n0

∏
i=1

exp
(
− i

4
Qi

)
∑
ci

1
ci!Γ(ci +

d−2
2 )

(
i
4

Pi,i+1

)2ci

|xi,i+1|2−d , (4.13)

where

Qi : = 2εi ·
(

xi−1,i

(xi−1,i)2 +
xi,i+1

(xi,i+1)2

)
, (4.14)

P2
i,i+1 : =

4
(xi,i+1)4

(
(εi · xi,i+1)(εi+1 · xi,i+1)−

1
2
(εi · εi+1)(xi,i+1)

2
)

, (4.15)

are (real) conformally invariant variables. This result confirms the conjecture of [37].
In the case of the three-dimensional U(N) model, the result can further be rewritten as

〈J1, ...,Jn0〉cyclic =
n0

∏
i=1

1√
π

exp
(
−1

4
Qi

)
cos
(

1
2

Pi,i+1

)
|xi,i+1|2−d . (4.16)

Upon identifying
εi =−1

2 σ
αα̇(χi)α(χ̄i)α̇ , (4.17)

the conformally invariant variables agree, and one has

〈J1, ...,Jn0〉cyclic = A A−model
n0,t (Ki) (4.18)

at the level of cyclic structures, thus strengthening the previously obtained correspondence [25, 26],
which was obtained at the level of completely symmetric structures. We also note that after bose-
symmetrization, the form of the correlation functions agrees with that obtained in [27].

The cyclic structures of the free O(N) vector model can be obtained from those of U(N) ditto
by projecting onto the part that is even with respect to all of the εi. Indeed, in the O(N) model, the
free field two-point functions

〈φ i(x)φ j(y)〉= δ i j

|x− y|d−2 . (4.19)

Thus, while there are two ways to contract two currents in the U(N) model, there are four ways
to perform this operation in the O(N) model, which leads to the aforementioned symmetrization
of the dependence on the polarization vectors. On the bulk side, this operation is equivalent to
imposing the minimal bosonic projection condition on the Weyl zero-form, viz.

˜K MB
i (x0,xi,χi|Λi) : =

1
2
(1+πτ)Ki(x0,xi,χi|Y ) (4.20)

=
1
2
( ˜Ki(x0,xi,χi|Y )+ ˜Ki(x0,xi, iχi|Y )

)
, (4.21)

which is indeed equivalent to symmetrization on εi, which is bilinear in χi, thereby confirming the
statement.

9



P
o
S
(
C
O
R
F
U
2
0
1
7
)
1
3
7

Noncommutative Wilson lines in higher-spin theory David De Filippi

5. Conclusions and Outlook

We have shown that instead of seeking an effective formulation of Vasiliev theory on X4,
studying the full theory on X4×Z4 is interesting on its own. Indeed the parallel with noncom-
mutative Yang-Mills theories allows to get results sensible to holography through the evaluation
of Wilson lines that are open along the noncommutative directions. In order to push further this
analogy, it would be interesting to start by looking at the three-dimensional version of Vasiliev’s
model [38] which is known [39] to admit a noncommutative Yang-Mills action in Z-space.

We also have shown that the evaluation at the leading order of the Wilson lines in type A
model on n boundary-to-bulk propagators (with the scalar one obeying Neumann b.c.) connecting
n separated points on the boundary to a given base point in the bulk, reproduces corresponding
correlators of conserved currents in the free U(N) vector model. However, since both bulk fields
and gauge transformations receive corrections in classical perturbation theory, the leading order is
not the end of the story, and all orders need to be included into the Wilson lines for these to capture
Vasiliev’s theory more fully. The door is still open for non-trivial subleading corrections that could
correspond to contact terms on the CFT -side, whereby in particular Vasiliev’s type A model in
AdS4 would be a dual of a genuinely interacting bosonic CFT3.

This setting can in principle be used to probe other dualities than the simplest AdS4/CFT3

one. It would be interesting to study the perturbative expansions around asymptotically AdS4

backgrounds, where possible contact terms become active as part of the boundary field theory
Lagrangian. One may also push the results on the other boundary condition [26] beyond the lead-
ing order and adapt the method to the parity breaking models. Eventually, the new result on n-point
functions on the CFTd makes possible to repeat the bulk analysis in Vasiliev’s (d+1)-dimensional
type A model [40] where all the ingredients can be reconstructed.
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