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Abstract. Quantum systems described by linear, higher order spatial derivatives of the field
exhibit a new kind of phase transition as the coupling strength of the higher order terms varies.
This essentially happens because a fundamental change in the ratio of ground state energy
eigenvalues, between linear and non-linear regime, takes place which leads to excitation of
higher modes. The new phase has inverse relation with area.

Introduction: Entanglement entropy plays crucial role in understanding quantum behavior
of macroscopic (black-holes) and microscopic systems [1, 2]. The so-called area law [3, 4, 5, 2]
raises the possibility to interpret the Bekenstein-Hawking entropy as the entanglement entropy.
Entanglement is also an important factor in understanding quantum phase transitions [6, 7]. It
is an useful measure to quantify various aspects of the transitions.

In general, theory of phase-transitions assumes that free energy contains non-linear self-
interactions of the order parameter: F (φ) = a2φ

2 + a4φ
4 + · · · [8]. One can generalize the

above model by including higher spatial derivatives of the order-parameter [9]. Setting the self-
interactions terms to zero (a2 = a4 = 0), the Hamiltonian for a real scalar field (φ) is given
by [10, 11, 12, 13]:

H =
1

2

∫

d3x

[

π2(x) +

∞
∑

m=1

bm (Dmφ) (Dmφ)

]

, (1)

the entanglement entropy shows a sudden discontinuity due to the presence of the term
corresponding to m = 3. The operator Dm in the above Hamiltonian is

Dm ≡ ∇1∇2 . . .∇m , (2)

where bm ≡ ±κ−2(m−1) are the appropriate coupling coefficients and κ is the frequency across
which the dispersion relation changes from linear to non-linear or vice-versa. To extract the
physics, we will consider the following dispersion relation:

ω2 = k2 +
ǫ

κ2
k4 +

τ

κ4
k6 , (3)

keeping the terms up to m = 3 in Hamiltonian (1), where ǫ, τ are (dimensionless) constants.
The results presented below have already been submitted for publication [15].
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Simulation technique and results: The Discretised Hamiltonian (1) along the radial
direction of a spherical lattice with lattice spacing a, such that r → ri = ia; ri+1 − ri = a
is given by:

H =
∑

j

Hj =
1

2a

N
∑

i,j

δijπ
2
j + ϕj Kij ϕi (4)

where the interaction between them are contained in the off-diagonal elements of the matrix
Kij.

Total system size is denoted by a large but finite N . An intermediate point n is chosen, which
represents the boundary surface (the horizon) with radius R (= an), that separates the lattice
points between two parts.The lattice spacing a appears as an overall factor in the Hamiltonian
(4) and in the coupling factor P ≡ 1

a2κ2 . This implies that the results for a particular value of
N (say, N = 300) can be mapped to larger value of N (say, 3000) for smaller value of a. Note
that a should be greater than the cutoff scale (1/κ) implies 0 ≤ P ≤ 1.

Entanglement is computed as the von Neumann entropy for the reduced density matrix
ρ(r, r′) [1, 2]: S(P ) = Tr (ρ ln ρ). We compute the entanglement entropy for the discretized
Hamiltonian (4) for different P . The computations are done using Matlab for the lattice size
N = 300, 50 ≤ n ≤ 295 and the relative error in the computation is 10−5. Figures below show
the results for the following two different scenarios:
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Figure 1. Log-log plot of von Neumann
entropy, S, versus the scaled radius of the
sphereR/a = n, for τ = 0, ǫ = 1 and different
P . The dots represent the numerical output
and solid lines denote lines of best fit.
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Figure 2. Log-log plot of von Neumann
entropy, S, versus the scaled radius of the
sphereR/a = n, for τ = 1, ǫ = 0 and different
P . nc for P = 10−5, 10−4, 10−3, respectively,
are 139, 167 and 197.

(1) τ = 0, ǫ = 1: The best fit (solid) curves in the two asymptotic regimes, P → 0 and
P → 1, show that the entropy scales approximately as area S ∼ (R/a)2. With increasing P ,
however, the prefactor increases. For P = 10−5 and 10−4, around the transition region between
linear and non-linear, entropy increases by an order.
(2) τ = 1, ǫ = 0: (i) For small P , entropy scales as area. (ii) As we increase P , above a

critical value of P , say Pc (here Pc ∼ 10−6) a new phase appears in the log− log plots of entropy
vs n. (iii) For P > Pc, scaling of S(P ) changes across some critical value of n, say nc (e.g.
nc ∼ 137 for P = 10−5). For n > nc, S

(P ) increases with n and scales approximately to area.
However, for n < nc, S

(P ) increases with decreasing n 1 (iv) With increasing P , nc increases.

1 Note that as n → 0, the entropy becomes zero as the number of degrees of freedom gradually vanishes.
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The above results indicate that higher derivative term for m = 3 modifies the vacuum such
that the entropy jumps by few orders of magnitude close to the critical point.

Fig. (3) shows the entropy distribution per partial wave for two values of n— n = 200 (which
falls in the area-law region in Fig. 2) and n = 137 (from the transition region in Fig. 2) for
ǫ = 0, τ = 1 and P = 10−5. For n = 200, the contribution of large ℓ falls off rapidly implying
that only low ℓ-modes contribute to the entropy. However, for n = 137, higher partial waves
contribute significantly to the entropy compared to low ℓ.

ln(l)

ln
((

2l
+

1)
S

l)

0 2 4 6 8 10 12
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

 

 

n = 200
n = 137

Figure 3. Log-Log plot of the
entropy distribution per partial
wave (2ℓ + 1)Sℓ vs ℓ for n = 200
and 137 for P = 10−5. For a
specific n and P , the asymptotic
analysis shows that modes higher
than a critical value ℓc ∼ P−1/2n
contribute more than the ones lower
than ℓc. Which also implies that
for a fixed mode ℓc, this cross-over
appear at higher n with increasing
P as found in Fig. (2).

Undestanding the results: The higher derivative terms dominate with decreasing length and
hence, for a fixed P the inverse scaling phase appears below certain nc. To understand the cause
of excitation of high ℓ-modes (for P > Pc), let us consider a simple quantum mechanical model
of a particle in a box. The Schrödinger equation for a non-relativistic particle in 1-dimensional
infinite square well with a general dispersion relation, F (k) ∝ km, is given by

1

κ2(m−1)

d2mψ

dx2m
+ Eψ = 0, (5)

Eq. (5) can be solved for all m with appropriate boundary conditions at x = 0 and x = L. Let
us consider that this system obeys the linear dispersion relation (F (k) = k) at low-energies and
non-linear dispersion relation (F (k) = km) at high energies. Then Eq. (5) implies that the ratio
of ground state energy eigenvalues in these two regimes is:

linear dispersion ground state energy

non-linear dispersion ground state energy
=

[

Lκ

π

]2(m−1)

(6)

Eq. (6) implies that, for κ < π/L, the ground state energy eigenvalue of the system satisfying
linear dispersion relation is lower compared to that of non-linear dispersion relations. As in
the field theory model, where there is a cross-over from the linear to non-linear regime, with
increasing P (the condition κ < π/L implies that the cross-over occurs for P > Pc), the system
needs to readjust in such a way that the ground state energy of the system increases. In other
words, the cross-over of the dispersion relation catalyses larger population of higher energy
quantum states compared to low-energy states.

We also argue that the change in the ground state is related to a quantum phase transition

based on the following fact. The two point correlation (Wightman) Function G+(xµ, yµ) for
m = 1 andm = 2, respectively, are 1

4π2r2
and κ

8πr where r = |~x−~y|. Note that in linear dispersion
regime the interaction is localised which explains the area-law behavior of the entropy. When
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the second order correction dominates, correlation decays slowly (w.r.t. the linear dispersion
scenario) with increasing distance which is approximately same as having nearest neighbour
interaction. This implies that including the 3rd order derivative term will further increase the
correlation length.
Discussions: We have shown that linear, higher spatial derivative theories give rise to a new
kind of quantum phase transition. The new phase, with inverse scaling, appears due to excitation
of higher modes which can be understood by considering a toy model of particle in a box where
a cross-over beween linear and non-linear dispersion happens.

As the size of a black-hole decreases, due to Hawking radiation, the curvature of the event-
horizon increases and hence one needs to include higher curvature terms [14, 16, 17, 18]. Our
analysis shows that as the size of the black-hole decreases, below a critical radius, the scaling of
entropy changes from area to an inverse-scaling wrt size of the horizon.

Currently we are investigating how nc/N varies with N → ∞ (the thermodynamic limit).
We hope to report on more detailed understanding of this phenomenon elsewhere [15].
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