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Abstract. Black holes in equilibrium and the counting of their entropy within Loop Quantum
Gravity are reviewed. In particular, we focus on the conceptual setting of the formalism, briefly
summarizing the main results of the past 12 years. We then focus in recent results for small,
Planck scale, black holes, where new structures have been shown to arise. This contribution is
based on the invited talk given at the 6th International Conference on Gravitation & Cosmology
(ICGC-07) December 17-21, 2007, IUCAA, Pune, India.

1. Introduction

Black holes (BH) became rather prominent in fundamental physics since the discovery that they
satisfy some ‘thermodynamic-like laws’, in the celebrated laws of black hole mechanics [1],

δM =
κ

8πG
δA ⇒ M ↔ E, κ ↔ T , A ↔ S ,

where the relation between geometrical variables on the left hand side can be seen as the
analogue of the first law of thermodynamics if the above association between geometric and
thermodynamical objects is made. This analogy is further justified by the fact that the surface
gravity κ of a Killing horizon is constant and the area of an event horizon always grows.
This observation, together with the proposal by Bekenstein and Hawking that BH posses a
physical entropy and temperature, as confirmed by the computation of particle creation on
black hole background, gave raise to a true identification between geometrical quantities and
thermodynamical variables as follows [2]:

E = M T =
κ ~
2π

and S =
A

4 G~
.

The standard interpretation is that black holes must behave as thermodynamic systems, and in
particular possess a non-zero temperature (that vanishes in the classical limit) and an entropy
(that blows up). Quantum theory was needed in order to identify temperature and entropy with
geometrical objects, by means of Planck’s constant ~, suggesting that these identifications are
quantum in nature. But, in order to have a full analogy, the question of what are the underlying
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degrees of freedom responsible for entropy became a pressing one. In other words, how can we
account for the (huge) entropy associated to the black hole horizons?

Is is to be expected that only with a full marriage of Gravity and the Quantum will we be able
to understand this issue. This is one of the main challenges that face any candidate quantum
theory of gravity.

During the past 20 years there have been several attempts to identify those degrees of freedom.
In particular one has to mention the success of string theory in explaining the entropy of extremal
and near-extremal BH in several dimensions [3]. There have also been some proposals based on
causal sets [4] and on the use of entanglement entropy of matter fields [5]. Within loop quantum
gravity [6, 7], a leading candidate for a quantum theory of gravity, there has been some progress
in describing black holes ‘in equilibrium’. In particular this implies that the objects to be studied
are assumed to be isolated, in such a way that an study of its properties will guaranty that one
can separate their description from that of the rest of the environment (as one normally does in
thermodynamics). The resulting quantum picture is that the interaction between ‘bulk states’ as
described by spin networks as they puncture the horizon, create horizon degrees of freedom that
can (and do) fluctuate. These degrees of freedom are, one the one hand, independent of the bulk
degrees of freedom, and on the other hand, fluctuate ‘in tandem’ with their bulk counterparts,
as dictated by specific quantum conditions warranting the existence of the ‘quantum horizon’.

The original program was developed in a series of papers [8, 9, 10] and has been further
studied in [11, 14, 13, 15, 16, 17, 18, 21, 22]. For reviews see [23] and [24]. The purpose of this
contribution is to provide a bird’s eye view into the field, briefly summarizing the progress made
in the past 12 years, including some recent results. This can also be seen as a starting point and
as a reading guide for those interested in more details.

In what follows, we shall try to answer the following questions: How do we characterize black
holes in equilibrium? That is, what are the quantum horizon states? How do we know which
states we should count? Can we learn how entropy behaves? Can we make contact, for large
black holes, with the Bekenstein-Hawking entropy? Can we extend the formalism and consider
small, Planck scale BH’s? How small is small? That is, where does the transition from the
Planck scale to the ‘large area limit’ occurs?

Unfortunately, due to space limitations, we are forced to skip several interesting developments
and shall not include topics such as the possibility of treating Hawking radiation [25, 26] or the
criteria for dealing with black holes in thermal equilibrium [27]. A summary of complementary
material not covered here can be found, for instance, in Ref. [28].

2. Preliminaries

This section has two parts. In the first one we review the motivation for the need of a notion of
horizon that is local and not teleological as is the case of the traditional event horizon. In the
second part we briefly review that main ideas behind the isolated horizons formalism.

2.1. Motivation
Physically, one is interested in describing black holes in equilibrium. That is, equilibrium of
the horizon, not the exterior. Just as in the standard analysis of physical systems subject
to thermodynamics considerations, one requires the system and not the whole universe to be
in equilibrium. The use of globally stationary solutions to Einstein’s equations to study the
thermodynamics of horizons is very restrictive since one is requiring the whole universe to be
stationary and not just the system, i.e. the horizon. Can one capture that notion via boundary
conditions? Yes! And the answer is provided by isolated horizons (IH) [9, 23].

The main idea is that the isolated horizon boundary conditions are imposed on an inner
boundary of the spacetime region under consideration. The interior region of the horizon is cut
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out, since the horizon is regarded as a boundary. In this a physical boundary? No! but one
can ask whether one can make sense of it, namely whether there is a consistent prescription
for incorporating this hypothesis, and a consistent variational principle is possible. A second
question pertains to the physical interpretation of the boundary. If ‘physics’ does not end there,
in the sense that in a realistic spacetime, matter and observers can fall into the interior region
with a well defined evolution, what is then the justification for ‘arbitrarily’ cutting this region
out?

The justification is that, being null surfaces, the exterior region (say in an asymptotic region)
will not have access to any events inside the horizon (even if the isolated horizon does not
coincide with a possible event horizon, it will lie inside it), the information of what happens
inside is not needed for describing the physical processes in the outside region. One can then
interpret the horizon, and the degrees of freedom on it, as a ‘screen’ that keeps track of those
aspects of the degrees of freedom that fell but that can still interact with the outside region. For
instance, the mass of the isolated horizon has certain information of the energy of the matter
that fell, and is responsible for the gravitational field outside the horizon. The same is true
for other quantities such as charge, angular momentum, etc. These horizon charges (multipole
moments) will carry this information, and is the input needed in formulating the theory.

Having said this, let us summarize the main features of IH and their quantum treatment:
i) The boundary ∆, the 3-D isolated horizon, provides an effective description of the degrees of
freedom of the inside region, that is cut out in the formalism.
ii) The boundary conditions are such that they capture the intuitive description of a horizon in
classical equilibrium and allow for a consistent variational principle.
iii) The quantum geometry of the horizon has independent degrees of freedom that fluctuate ‘in
tandem’ with the bulk quantum geometry.
iv) The quantum boundary degrees of freedom are then responsible for the entropy.
v) The entropy thus found can be interpreted as the entropy assigned by an ‘outside observer’
to the (2-dim) horizon S = Σ ∩∆.

Fig.1 Left: The physical situation one expects to describe. The collapse of a stellar object
creates an event horizon that settles down (rather quickly) and in the asymptotic future is non-
expanding, giving rise to an Isolated Horizon ∆. Right: even if there is more matter falling in
the future, there will be portions of the horizon that will be isolated.

Just as for other approaches to black hole entropy, the LQG treatment is not free from some
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interpretational issues. For instance, is the entropy to be regarded as the entropy contained by
the horizon? Is there some ‘holographic principle’ in action? Can the result be associated to
entanglement entropy between the interior and the exterior?, etc. Some of these questions have
been clarified but there are still some for which we have no answer yet.

2.2. Isolated Horizons

In this part we will provide the main ideas in the definition of isolated horizons. For full details
see [23]. An isolated horizon is a null, non-expanding 3D-surface ∆, equipped with some notion
of translational symmetry along its generators (it is assumed to have a congruence of null vectors
generating it). There are three main consequences of these boundary conditions:
i) The gravitational degrees of freedom induced on the horizon are captured by a U(1) connection,

Wa = − 1
2

Γi
a ri (1)

where Γi
a is the spin connection of the canonical theory on Σ. Thus, there is an effective reduction

of the gauge symmetry from SU(2) to U(1).
ii) The total symplectic structure of the theory (and this is true even when matter is present)
gets split as,

Ωtot = Ωbulk + Ωhor (2)

with
Ωhor =

a0

8π G

∮
S

dW ∧ dW ′

This is precisely the symplectic structure one would get if we were considering a Chern-Simons
theory for Wa with S as a spatial section.
iii) Finally, the ‘connection part’ and the ‘triad part’ at the horizon must satisfy the condition,

Fab = − 2π γ

a0
Ei

ab ri , (3)

the so called ‘horizon constraint’. Here Fab is the curvature of Wa

2.3. Constraints

It is interesting to explore the consequences of the boundary conditions in the Hamiltonian
framework. A detailed study of the canonical theory [9, 23] reveals an interesting structure. In
particular, the formalism tells us what is gauge and what not. To be precise, with respect to
the constraints we know that:
a) The relation between curvature and triad, the horizon constraint (3), is equivalent to Gauss’
law.
b) Diffeomorphisms that leave S invariant (i.e. that, when restricted to the horizon map S to
itself) are gauge (i.e. the vector fields generating infinitesimal diffeomorphisms are tangent to
S).
c) The scalar constraint must have N |hor = 0. Thus, the scalar constraint leaves the horizon
untouched. In particular, this implies that any gauge and diff-invariant observable is a full Dirac
observable. This list includes all multipole moments of the horizon.

This last point is the reason behind the fact that one can sensibly talk about the quantum
theory of black holes in LQG even when we have not solved the quantum dynamics in the bulk.
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That is, since in the quantum theory one has to implement the constraints, the fact that the
lapse vanishes at the horizon implies that, from the horizon perspective, any quantum state
that satisfies Gauss’ law and is diffeomorphism invariant will by a physical state, given that the
Hamiltonian constraint imposes no further condition. Of course, one has to make sure that the
quantum horizon states ‘interact’ properly with the bulk states for which the dynamics is still
not fully understood. This represents one of the current challenges.

3. Quantum Theory: The Bulk

Loop quantum gravity [6] is based on a canonical formulation of general relativity in terms of
connections and triads (For a brief introduction see [7]). The basic canonical variables are:

Ai
a a SU(2) connection ; Ea

i a densitized triad (4)

with Ai
a = Γi

a − γ Ki
a, and γ real the Barbero-Immirzi parameter (BI). Loop Quantum gravity

defined on a manifold without boundary is based on two fundamental observables of the basic
variables:

Holonomies, he(A) := P exp(
∫

e
A) (5)

and
Electric Fluxes, E(f, S) :=

∫
S

dSabEi
ab f i . (6)

The main assumption of Loop Quantum Gravity is that these quantities become well defined
operators in the quantum theory. Thus, the starting point for LQG is the so called Holonomy-
Flux algebraHF [29]. An important question is how many consistent representations of theHF-
algebra there are. In recent years, the LOST collaboration proved the following result: There is
a unique representation of the Holonomy-Flux algebra on a Hilbert space that is diffeomorphism
invariant [30]. This representation corresponds precisely to the construction of Ashtekar and
Lewandowski [6]. Let us now give a brief description of this resulting Hilbert space. First we
can characterize it in terms of Spin Networks:

HAL = ⊕graphsHΥ = Span of all Spin Networks |Υ,~j, ~m〉 (7)

Fig 2. A Spin network (Υ,~j, ~m) consists of a graph Υ together with labels ji for the edges and
mi for the vertices.

A Spin Network |Υ,~j, ~m〉, represents a particularly convenient basis for the theory. It is a state
labeled by a graph Υ, and some colorings (~j, ~m) associated to edges and vertices.

The spin networks have a very nice interpretation in terms of the quantum geometry they
generate. They are the eigenstates of the quantized geometry, such as the area operator,

Â[S] · |Υ,~j, ~m〉 = 8π`2
Plγ

∑
edges

√
ji(ji + 2) |Υ,~j, ~m〉 (8)
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where the sum is over all the intersection points pI of the edges eI with the surface S. The
standard interpretation is that the edges of the graph excite the quantum geometry of the
surface S at the intersection points between S and Υ. The edges eI can be seen as quantum
fluxes of area.

Fig.3. An artist impression of a black hole in LQC. The edges of the state on the bulk puncture
the horizon S = Σ∩∆ endowing it with area through the labels j’s and with intrinsic curvature
through the m’s.

4. Quantum Theory of the Horizon

Just as in the classical description of the gravitational field with an IH, the phase space could
be decomposed in a bulk part and a horizon part, a basic assumption is that the total Hilbert
Space is a tensor product of the form:

H = HV ⊗HS (9)

where HS, the surface Hilbert Space, can be built from Chern Simons Hilbert spaces for a sphere
with punctures. This represents the ‘kinematical Hilbert space’.

In order to go to the physical theory, the conditions on H that we need to impose
are: Invariance under diffeomorphisms of S and the quantum condition on Ψ, the quantum
equivalence of Eq. (3): (

Id⊗ F̂ab +
2π γ

a0
Êi

ab ri ⊗ Id
)
·Ψ = 0 . (10)

Then, the theory we are considering is a quantum gravity theory, with an isolated horizon of
fixed area a0 (and multiple-moments). A Physical state would be such that, in the bulk satisfy
the ordinary constraints and, at the horizon, the quantum horizon condition.

Entropy. We shall consider the simplest case of pure gravity with a non-rotating horizon. In
this case, from the outset, we are given a black hole of area a0. The question then is: what
entropy can we assign to it? Let us take the microcanonical viewpoint. To compute the entropy
we shall count the number of states N such that they satisfy:
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• The area eigenvalue is in the interval 〈Â〉 ∈ [a0 − δ, a0 + δ]

• The quantum horizon condition (10) is satisfied.

The entropy S will be then given by,
S = lnN . (11)

The challenge now is to identify those states that satisfy the two conditions, and count them.

Characterization of the States. There is a convenient way of characterizing the states by means
of the spin network basis. If an edge of a spin network with label ji ends at the horizon S, it
creates a puncture, with label ji. The area of the horizon will be the area that the operator on
the bulk assigns to it: A = 8πγ`2

Pl

∑
i

√
ji(ji + 1).

Is there any other quantum number associated to the punctures pi? Yes! They are given
by eigenstates of Êab that are also half integers mi, such that −|ji| ≤ mi ≤ |ji|. The quantum
horizon condition relates these eigenstates to those of the Chern-Simons theory. The requirement
that the horizon is a (topological) sphere then imposes a ‘total projection condition’ on m′s:∑

i

mi = 0 (12)

that has to be taken into account as well.
A quantum horizon state can be conveniently characterized by a set of punctures pi and

to each one a pair of half integer (ji,mi), where the three previous conditions impose some
restrictions on the possible values of the labels.

If we are given N punctures and two assignments of labels (ji,mi) and (j′i,m
′
i). Are

they physically distinguishable? or a there some ‘permutations’ of the labels that give
indistinguishable states? That is, what is the statistics of the punctures?

As usual, we should let the theory tell us. One does not postulate any statistics. If one treats
in a careful way the action of the diffeomorphisms on the punctures one learns that when one has
a pair of punctures with the same labels j’s and m’s, then the punctures are indistinguishable
and one should not count them twice. In all other cases the states are distinguishable.

The counting. We start with an isolated horizon, with area a0 and ask how many states are
there compatible with the two conditions, and taking into account the distinguishability of the
states. One can approach the problem in a two step process.
First step: Count just the different configurations and forget about

∑
i mi = 0. Thus, given

{nj}jmax

j=1/2 = (n1/2, n1, n3/2, . . . , nsmax/2), where nj means the number of punctures with label
j,we count the number of states:

N =
N !

Πj (nj !)
Πj (2j + 1)nj (13)

with N =
∑

j nj . Taking the large area approximation A >> `Pl, and using the Sterling
approximation, one gets as the dominant term:

S =
A

4`2
Pl

γ0

γ
(14)

with γ0 the solution to
∑

j(2j + 1)e2π γ0

√
ji(ji+1) = 11.

1 This counting was first done in detail in [16]. There is a slightly different counting that does not distinguish
configurations with different j’s if the m’s are the same. In that case we get a different linear dependence with∑

j 2 e2π γM

√
ji(ji+1) = 1 [14, 15].)
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As a second step one introduces the projection constraint. This has the effect of introducing
a correction to the entropy area relation as an infinite series, where the first correction is
logarithmic [13, 15, 16]:

S =
A

4`2
Pl

γ0

γ
− 1

2
ln(A) + . . . (15)

Note that one gets, in the complete counting, the asymptotic linear dependence on area. If
we want to make contact with the Bekenstein-Hawking we have to make use of the freedom
in LQG provided by the BI parameter and chose γ = γ0.2 The coefficient of the logarithmic
correction seems is universal and independent of the particular counting (for other topologies
of the horizon, it might change [31]). An important observation is that he formalism can be
generalized to more general situations, the combinatorial problem is the same and therefore
the result is that the same value of γ will yield the BH entropy. These more general horizons
include including arbitrary distortion and rotation in vacuum gravity [11] as well as coupling to
electromagnetic, dilatonic, Yang-Mills, cosmological constant [9, 10], and non-minimally coupled
scalar fields [12].

This ends the review of the status of the field before 2006. In the next part we shall review
new developments that have occurred ever since.

5. Direct Countings and Entropy Quantization

In this section we will describe the results found when considering small Planck size horizons
for which the counting of states is possible. For that one tells a computer how to count
for a range of area a0 at the Planck scale [17]. With the availability of having an exact
algorithm under control, one can ask, for instance, what is the effect of considering or not
the ‘projection constraint’. In the large area approximation it is responsible for the first,
logarithmic, correction term. One could also ask when is the linear dependence with area first
observed. That is, when do we see a transition from deep quantum effects to ‘large areas’? Let
us briefly summarize the results reported in [17]. What was found is that, without the projection
constraint, the entropy approaches very fast a ‘smooth’ function of area with the slope found
in the analytical calculations. When including the constraint, the relation between entropy
and area became oscillatory, with a well identified period δAo, that on average, introduced the
expected logarithmic corrections. This was already identified for horizons that are as small as
100 `2

Pl. For details see [17].
Furthermore, it was seen that, by analysing the ‘black hole spectrum’ (i.e. the degeneracy of

states as function of area), both the oscillations found with a large value of δ as well as these
structures in the ‘spectrum’ posses the same periodicity δA0 ≈ 2.41 `2

Pl. A natural question is
whether there is any physical significance to this periodicity. It turns out that, if one chooses
the interval: 2 δ = ∆A0, the plot of the entropy vs area becomes [18]:

2 As note before, γ0 depends on the counting
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Fig. 4. The entropy as function of area shows a step-like behavior when the interval δ is chosen
to coincide with the periodicity.

What one notes is that the entropy has a completely different behavior for this particular
choice of interval: Instead of oscillations, the entropy seems to increase in discrete steps.
Furthermore, the height of the steps seems to approach a constant value as the area of the
horizon grows, thus implementing in a rather subtle way the conjecture by Bekenstein that
entropy should be equidistant for large black holes. Quite remarkably, this result is robust,
namely, it is independent of the counting.

While the constant number in which the entropy of large black holes ‘jumps’ seems to
approach [18]:

∆S 7→ 2 γ0 ln (3) (16)
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Fig. 5. The black hole spectrum shown some peaks of higher degeneracy together with some
valleys. This is the origin of the step-like behavior of entropy.

Some recent proposals have provided a heuristic understanding of the origin of these peaks and
valleys [19, 21]. To summarize this results, the model there proposed allows one to think of the
states as organized in bands, labelled by certain combination of the total number of punctures
and ‘spin’. By employing the analytic nj distribution that maximizes degeneracy, as originally
introduced in [16], one can find the ‘average area’, for each band associated with this maximum
degeneracy configuration, from which one can compute the change in area from peak to peak
as,

∆A =
8πγ

∑
s

√
s(s + 2)(s + 1)e−2πγ0

√
s(s+2)

3(
∑

s s(s + 1)e−2πγ0

√
s(s+2)) + 2

(17)

As interesting observation is that if one parametrizes this number as ∆A = χγ, one can see that
χ must be a constant, independent of the counting (since it only depends on the degeneracy of
the states as functions of j’s and m’s). From the observed periodicity in the direct counting, it
was conjectured in [18] that the value of χ is 8 ln 3. Interestingly, the approximate formula found
in [19, 21] for both countings, yield a slightly different approximate values χ for the parameter χ,
with χDLM < 8 ln 3 < χGM, and the relative difference of the order of 10−4. This shows that the
approximation is not exact and one needs a better analytical understanding of the combinatorial
problem. Recent progress using number theoretical considerations might turn out to be useful
for that purpose [22]. In this study, a reformulation of the counting in terms of solutions of
Pell and diophantine equations is achieved and the use of techniques from CFT allow to have
exact expressions for the degeneracy of states. These represent a starting point for more refined
asymptotic analysis that will shed more light on the behavior of macroscopic black holes.
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6. Conclusions and outlook

Let us summarize what we have learned from the merger of isolated horizons and loop quantum
gravity. First, as we have shown, isolated horizons provide a consistent framework to incorporate
black holes that are physically in equilibrium, as classical objects. As we have argued, one can
consistently quantize the theory, as described by the IH phase space, employing both the methods
of quantum geometry that are useful in the bulk, together with techniques from U(1) Chern-
Simons theory on a sphere. A detailed study of the action of the constraints allows us to give a
full characterization of the quantum horizon degrees of freedom that contribute to the entropy.
It is found that the entropy is finite, without the need of a regulator nor a cut-off, and that its
dominant term is linear in area for large horizons in Planck units. Furthermore, the formalism
allows us to translate the entropy counting into a purely combinatorial problem for which one
can attempt algorithmic brute force computations [17], as well as number-theoretic treatments
[22].

A very important feature of this formalism is that one can incorporate and count the entropy
of a whole class of different black holes, where one can include arbitrary distortion and rotation
in vacuum gravity [11] as well as coupling to electromagnetic, dilatonic, Yang-Mills [9, 10] and
non-minimally coupled scalar fields [12]. In all these cases the combinatorial problem to be
solved is the same (even when its translation into physically relevant quantities might vary) and
therefore, entropy is always proportional to area in the large area limit (or with the expected
contribution from the scalar field in the non-minimally coupled case).

As we have explored, when one considers the problem of a direct counting of the number of
states, and thus being forced to consider small Planck scale horizons, several unexpected features
appear for these Planck size horizons. While one recovers the asymptotic linear dependence on
area and the logarithmic correction (with the right coefficient), from which we can say something
about BI parameter, a new behavior is observed for small horizons. It is found that there are
oscillations in entropy with a constant periodicity. Furthermore, when properly interpreted, this
points out to an effective quantization of the entropy in equidistant steps [18]. This observed
behavior suggests that loop quantum gravity can make contact, in a rather subtle manner, with
both Bekenstein’s heuristic model [18], and the Mukhanov-Bekenstein effect [20]. Whether this
scenario is realized or not remains an intriguing possibility.

Recently, attempts to understand the origin of the ‘black hole spectrum’ responsible for the
entropy quantization have been put forward [19, 21, 22], which have been able to give some
intuitive understanding of the effect. In particular, there has been some progress to understand,
from a heuristic perspective, the origin of the ‘bands’ in the spectrum and their equidistant
nature. A pressing question here is whether the discrete structures found at the Planck scale are
still present for macroscopic black holes. One would also like to understand whether the constant
χ actually is equal to 8 ln 3 as the numerical computations and the heuristic considerations seem
to suggest. If this were the case, one would need to understand its origin.

Let us now discuss some open question regarding quantum black holes and the progress that
has been made within LQG. By the mere fact that in the isolated horizon one is considering
only the outside region of back holes, one is not addressing the issue of the singularity. The
possible singularity resolution has been analysed in a series of papers using loop quantization
techniques [32] (that have proved to be useful in cosmology [33]). Those treatments suggest
that the classical singularity inside the horizon is avoided, and the quantum evolution crosses
it, but more work is needed to reach a definite conclusion. If this were the case and there exists
a spacetime interpretation beyond the bounce, one is lead to the Ashtekar-Bojowald paradigm
for evaporation and (lack of) information loss [34]. This picture includes the description of
dynamical processes that are no longer described by the IH. One need then to consider the more
general framework of dynamical horizons [23]. If this picture is physically correct, there is no
classical singularity end no event horizon ever forms. Still, there is a horizon that forms, grows
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and then shrinks due to Hawking radiation. Information is not lost, even when, for certain
observers, Hawking radiation appears to be thermal (for more details within a simple model
see [35]). Another important open issue is how to specify black hole/horizon states from the
full theory. That is, without assuming that there was a classical horizon to begin with. Some
progress in this direction has been made in two fronts, but still at some preliminary stage.
Coherent states have been used to propose black hole states [36], and a proposal for identifying
black holes states from the full set of states was made within the context of symmetry reduced
models in Ref. [37].

As we have tried to argue, there has been exciting progress in our understanding of quantum
black holes in LQG during the past couple of years, but there are still important question that
remain open regarding the detailed relation between gravity, entropy and the quantum.

Acknowledgments

I am grateful to the organizers of ICGC-07 for the invitation to the Conference and the
hospitality, and in particular to N. Dadhich, G. Date and T. Souradeep. My understanding
of black holes in loop quantum gravity grew from the interaction with numerous colleagues
to whom I am grateful, including A. Ashtekar, J. Baez, J. Dı́az-Polo, J. Engle, E. Fernández-
Borja, K. Krasnov, J. Lewandowski, C. Rovelli and H. Sahlmann. I would like to thank J.P.
Ruiz-Dı́az for Fig.3. This work was in part supported by CONACyT U47857-F grant, by NSF
PHY04-56913 and by the Eberly Research Funds of Penn State.

References

[1] Bardeen J M, Carter B and Hawking S W 1973 The Four laws of black hole mechanics Commun. Math.
Phys. 31 161

[2] Bekenstein J D 1973 Black Holes and Entropy Phys. Rev. D 7 2333; Hawking S W 1975 Particle Creation
by Black Holes Commun. Math. Phys. 43 199

[3] Strominger A and Vafa C 1996 Microscopic Origin of the Bekenstein-Hawking Entropy Phys. Lett. B 379
99 [hep-th/9601029]

[4] Bombelli L, Koul R K, Lee J H and Sorkin R D 1986 A Quantum Source of Entropy for Black Holes Phys.
Rev. D 34 373

[5] Srednicki M 1993 Entropy and area Phys. Rev. Lett. 71 666 [arXiv:hep-th/9303048].
[6] Rovelli C 2004 Quantum gravity (Cambridge, UK: Cambridge University Press); Thiemann T 2001

Introduction to modern canonical quantum general relativity [gr-qc/0110034] Ashtekar A and
Lewandowski J 2004 Background independent quantum gravity: A status report Class. Quant. Grav.
21 R53 [gr-qc/0404018]

[7] For gentler introductions to LQG see for instance: Perez A 2004 Introduction to loop quantum gravity and
spin foams [gr-qc/0409061]; Corichi A 2005 Loop quantum geometry: A primer, J. Phys. Conf. Ser. 24
1 [gr-qc/0507038].

[8] Ashtekar A, Baez J, Corichi A and Krasnov K 1998 Quantum Geometry and Black Hole Entropy Phys. Rev.
Lett. 80 904 [gr-qc/9710007];

[9] Ashtekar A, Corichi A and Krasnov K 2000 Isolated horizons: The classical phase space Adv. Theor. Math.
Phys. 3 419 [arXiv:gr-qc/9905089].

[10] Ashtekar A, Baez J C and Krasnov K 2000 Quantum Geometry of Isolated Horizons and Black Hole Entropy
Adv. Theor. Math. Phys. 4 1 [gr-qc/0005126]

[11] Ashtekar A, Engle J and Van Den Broeck C 2005 Quantum horizons and black hole entropy: Inclusion of
distortion and rotation Class. Quant. Grav. 22 L27 [arXiv:gr-qc/0412003].

[12] Ashtekar A and Corichi A 2003 Non-minimal couplings, quantum geometry and black hole entropy Class.
Quant. Grav. 20 4473 [arXiv:gr-qc/0305082].

[13] Kaul R K and Majumdar P 2000 Logarithmic correction to the Bekenstein-Hawking entropy Phys. Rev. Lett.
84 5255

[14] Domagala M and Lewandowski J 2004 Black hole entropy from Quantum Geometry Class. Quant. Grav. 21
5233 [gr-qc/0407051];

[15] Meissner K A 2004 Black hole entropy in Loop Quantum Gravity Class. Quant. Grav. 21 5245
[gr-qc/0407052].

Sixth International Conference on Gravitation and Cosmology IOP Publishing
Journal of Physics: Conference Series 140 (2008) 012006 doi:10.1088/1742-6596/140/1/012006

12



[16] Ghosh A and Mitra P 2005 An improved lower bound on black hole entropy in the quantum geometry
approach Phys. Lett. B 616 114 [gr-qc/0411035].

[17] Corichi A, Dı́az-Polo J and Fernández-Borja E 2007 Quantum geometry and microscopic black hole entropy,
Class. Quantum Grav. 24 1495 [gr-qc/0605014]

[18] Corichi A, Dı́az-Polo J and Fernández-Borja E 2007 Black hole entropy quantization Phys. Rev. Lett. 98
181301 [gr-qc/0609122]

[19] Sahlmann H 2007 Toward explaining black hole entropy quantization in loop quantum gravity Phys. Rev. D
76, 104050 (2007) [arXiv:0709.2433 [gr-qc]].

[20] Diaz-Polo J and Fernandez-Borja E 2007 Black hole radiation spectrum in LQG: Isolated Horizon framework
Class. Quantum Grav. (at press) [arXiv:0706.1979 [gr-qc]].

[21] Agullo I, Diaz-Polo J and Fernandez-Borja E Black hole state degeneracy in Loop Quantum Gravity
[arXiv:0802.3188 [gr-qc]].

[22] Agullo I, Barbero J F, Diaz-Polo J, Fernandez-Borja E and Villasenor EJS 2008 Black hole state counting in
LQG: A number theoretical approach [arXiv:0802.4077 [gr-qc]]; Barbero JF and Villasenor EJS 2008
Generating functions for black hole entropy in Loop Quantum Gravity [arXiv:0804.4784 [gr-qc]]

[23] Ashtekar A and Krishnan B 2004 Isolated and Dynamical Horizons and Their Aplications Living Rev. Rel.
7 10 [gr-qc/0407042].

[24] Corichi A, Diaz-Polo J and Fernandez-Borja E 2007 Loop quantum gravity and Planck-size black hole entropy,
J. Phys. Conf. Ser. 68 012031 [arXiv:gr-qc/0703116]; Corichi A 2008 Black hole entropy in LQG: A Review,
to be published.

[25] Barreira M, Carfora M and Rovelli C 1999 Physics with nonperturbative quantum gravity: Radiation from
a quantum black hole Gen. Rel. Grav. 28 1293 [arXiv:gr-qc/9603064].

[26] Krasnov K V 1999 Quantum geometry and thermal radiation from black holes Class. Quant. Grav. 16 563
[arXiv:gr-qc/9710006].

[27] Chatterjee A and Majumdar P 2005 Universal criterion for black hole stability Phys. Rev. D 72 044005
[arXiv:gr-qc/0504064].

[28] Majumdar P 2008 Holography, CFT and Black Hole Entropy arXiv:0802.1398 [gr-qc].
[29] Ashtekar A, Corichi A and Zapata J A 1998 Quantum theory of geometry. III: Non-commutativity of

Riemannian structures Class. Quant. Grav. 15 2955 [gr-qc/9806041]
[30] Lewandowski J, Okolow A, Sahlmann H and Thiemann T 2006 Uniqueness of diffeomorphism invariant states

on holonomy-flux algebras Commun. Math. Phys. 267 703 [arXiv:gr-qc/0504147]
[31] Kloster K, Brannlund J and DeBenedictis A 2008 Phase-space and Black Hole Entropy of Higher Genus

Horizons in Loop Quantum Gravity Class. Quantum Grav. 25 165008 [arXiv:gr-qc/0702036].
[32] Ashtekar A and Bojowald M 2006 Quantum geometry and the Schwarzschild singularity Class. Quant. Grav.

23 391 [arXiv:gr-qc/0509075]; Modesto L 2006 Loop quantum black hole,” Class. Quant. Grav. 23
5587 [arXiv:gr-qc/0509078]; Boehmer C G and Vandersloot K 2007 Loop Quantum Dynamics of the
Schwarzschild Interior Phys. Rev. D 76 104030 [arXiv:0709.2129[gr-qc]]; Corichi A and Singh P, “Loop
quantization of the Schwarzschild interior”, Preprint (2008).

[33] Corichi A and Singh P 2008 Is loop quantization in cosmology unique? Phys. Rev. D 78, 024034 (2008)
[arXiv:0805.0136 [gr-qc]]

[34] Ashtekar A and Bojowald M 2005 Black hole evaporation: A paradigm Class. Quant. Grav. 22 3349
[arXiv:gr-qc/0504029].

[35] Ashtekar A, Taveras V, Varadarajan M 2008 Information is Not Lost in the Evaporation of 2-dimensional
Black Holes arXiv:0801.1811[gr-qc]

[36] Dasgupta A 2007 Semiclassical Horizons arXiv:0711.0714 [gr-qc]; Dasgupta A 2006 Semi-classical
quantisation of space-times with apparent horizons Class. Quant. Grav. 23 635 [arXiv:gr-qc/0505017].

[37] Husain V and Winkler O 2005 Quantum black holes from null expansion operators Class. Quant. Grav. 22
L135 [arXiv:gr-qc/0412039]

Sixth International Conference on Gravitation and Cosmology IOP Publishing
Journal of Physics: Conference Series 140 (2008) 012006 doi:10.1088/1742-6596/140/1/012006

13




