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The chiral Schwinger Model is completely solved by bosonization. The Hilbert 

space is constructed and it is found to be of indefinite metric. The quantum 

constraints that define the physical subspace are determined and the physical 

operators (those that commute with the constraints) are found. \\‘e compute 

their correlation functions and find that there is non-trivial fermion wave func- 

tion renormalization constant (2,) and vertex renormalization constant (2,‘) 

and that 22 = 21 although the theory has lost its gauge invariance because of 

the chiral anomaly. 

The addition of a \Vess-Zumino (W-Z) term is studied and the modifications 

of the constraints introduced by this term is analyzed. The physical gauge in- 

variant correlation functions in the theory with the W-Z term are found to be the 

same as the physical correlation functions of the theory without the II’-Z terms. 



Introduction and the Questions: 

Chiral anomalies play a fundamental role in the physics of gauge theories, 

and their cancellation severely restricts the fermionic content of such theories. 

The fermions have to be in anomaly-free representations of the gauge group and 
. 

this determines the family structure.’ 

Mechanisms for anomaly cancellation that do not involve a prescribed assign- 

ment of fermions are not readily available and this leaves few roads of action. 

In a remarkable series of papers, D’Hoker and Farhi found that if in an 

anomaly free theory there is a fermionic sector that is very- heavy, the attempt 

of decoupling this heavy sector leaves behind a Wess-Zumino (1’-Z) term. This 

\V-Z term’ restores gauge invariance to the theory, since the light fermions are 

no longer in an anomaly free representation. 

In a parallel development Faddeev and Satashvili4 proposed that in a theory 

where gauge invariance is lost by the anomalies, it can be restored by adding ad 

hoc a W-Z term to the action. 

More recently Jackiw and Rajaraman5 (J.R.) studied the Chiral Schlvinger 

model in 1 + 1 dimensions, in this model only right Ed: left handed fermions 

couple to the gauge fields. These authors found that despite the fact. that gauge 

invariance is lost because of the anomaly, the theory seems to be unitary. This 

result sparked interest and some authors studied the problem further. ‘-’ In ref. 

(7) the model of right and left handed fermions coupled to the gauge fields with 

different couplings was quantized. It was found in this reference that quantizing 

in non-covariant gauges, the spectrum is not relativistic, signaling the lack of 

gauge invariance. However these authors noticed that adding a \V-Z term to the 

action, gauge invariance is restored and the spectrum is relativistic. These results 

agree with those of ref. (8), where the current commutators were evaluated. 

More recently a number of authors realized that the \V-Z term does not need 
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to be introduced by hand but that it is already contained in the path integral 

hidden in the integration over the gauge orbits.g These authors pointed out that 

the \V-Z term arises after using the Faddeev-Popov procedure for integrating over 

the gauge orbits and by the non-invariance of the fermionic measure under gauge 

transformations in a chiral theory. Therefore the results of these authors seem 

to indicate that the theory is gauge invariant and unitary when integration over 

the gauge orbits is taken into account. The collection of the results mentioned 

above raises a series of questions that we want to address in this paper. 

First of all on the theory without the W-Z fields as was studied by (J.R.). 

Since the theory has lost gauge invariance one cannot fix a gauge to quantize it, 

since in so doing degrees of freedom may be left out. Proceeding covariantly, it 

is expected that the Hilbert space will be of indefinite metric as in the covariant 

quantization of Q.E.D. If this is the case, one must understand the nature of the 

constraints at the quantum level that determine the physical subspace and the 

physical operators. 

In a recent paper Girotti et. al.” looked at the structure of the fermionic 

correlation functions as well as the constraints of the theory in Dirac’s formalism. 

These authors found that there is nontrivial fermion wave function renormaliza- 

tion, and this raises questions about the renormalizability aspects of the theory, 

for example vertex renormalization and Ward identities. This aspect is non- 

trivial since now there is an explicit mass term for the photon,5 and the theory 

is no longer superrenormalizable (see section 4). 

With regard to the W’ess-Zumino term: Does the IV-Z term change the nature 

of the constraints of the theory ? What are the physical correlation functions? 

The W-Z field seems to be a new dynamical field, however in the approach of 

references (9), it appears after using a procedure that cannot introduce new 

physics. Therefore is the W-Z field physical? The paper is organized as follows: 

in section 2 we bosonize the fermions and derive the bosonized Lagrangian. In 

section 3 the Hilbert space is constructed and the quantum constraints that define 
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the physical subspace are defined. 

In section 4 we study the fermionic correlation functions and in particular 

wave function and vertex renormalizations. The equality .Zz = 21 is established 

exactly. In section 5 we analyze the physical operators of the theory i.e. those 

that commute with the constraints. 

Section 6 is devoted to studying the theory with the W-Z term, in particular 

the constraints and the physical gauge invariant operators. Their correlation 

functions are computed. 

Finally we summarize the results and conclusions. 



. . 
on 2: Rosonlz 

We will use the technique of bosonization in order to solve completely the 

chiral Schwinger model. This approach has been used several times and in par- 

ticular (JR) f ound the expression for the bosonized Lagrangian. However the 

explicit expression for the fermion fields in terms of the corresponding bosonic 

fields has been only partially given in ref (10). One of the aims of the present 

paper is to compute fermion correlation functions and for these we need to con- 

struct the fermion fields in terms of the bosonic fields appearing in the bosonized 

Lagrangian. For gauge theories the bosonization is slightly more subtle because 

the usual bosonizat,ion rules involve the canonical momentum conjugate to the 

boson field, but the interaction is given by a derivative coupling and therefore 

the canonical momentum does not coincide with the time derivative of the field. 

Therefore we will carry out the bosonization procedure in the interaction 
. . 

picture” in which all the operators are written in terms of free fields. Once 

the interaction piece of the Hamiltonian is known in the interaction picture the 

unitary transformation to the Heisenberg fields is performed by Dyson’s time evo- 

lution operator. Then the next task is to bosonize free fermions. The prescription 

for this procedure has been given in the literature and we refer the reader to ref- 

erences (11-14) f or a detailed presentation. Here we review the technicalities that 

are relevant for our purpose. 

Free massless fermions obey the Dirac equation 

\le use a representation in which 

r”-/* = -y5 = 03 

In this (chiral) representation the spinors solutions are of the form 

(2.2) 



In 1 + 1 dimensions a massless free bosonic field (solution to the massless Klein- 

Gordon equation) is written as 

d(w) = dR(X - t) + &(x + t) . (2.4) 

From 4~ and C$L we construct the dual field 

&x,t) = +R(z - t) - dL(X + t) 

4 satisfies 

34 a4 -=-- 
ax at 

For free fields the relation (2.6) can be written as 

a4 z = -= (2.7) 

with ~(5, t) being the canonical momentum conjugate to d(x,t). In terms of the 

fields 

dR(X - t> = ;(4 + 4, 
&(a: + t) = f(d - cj) 

the fermion fields are written as 
12,14 

qR(x,t) = 5 : eifibR(z,t) : 

$L(x,t) = -& : e -hEh(z,t) . . 

(2.8) 

(2.9) 

The quantization of the field theory is carried out in a one-dimensional “box” 

of length L, the factor l/a in (2.9) restores the proper dimensions to +. The 

dots in equation (2.9) represent normal ordering with respect to the quanta of 

the bose fields. We recall the relationship13 

,idG0(2,t) =: ,ida(z,t) . ,+2~[~‘-‘(z,t),s’+‘(z,t)l (2.10) 

where 4(+)($(-l) is the positive (negative) frequency part of 4. 
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Strictly speaking since the right and left going waves are independent f$R(X, t) 

and h(x, t) cOrnmu, therefore +R and $,L in (2.9) commute rather than anti- 

commute. The anticommutation of $R and $L is arranged for by introducing a 

Klein factor,‘2”5 for example by multiplying ‘$R by einQ where Q is the fermion 

number operator. l4 This is irrelevant for our purposes in the next few sections. 

The Klein factor will be omitted for the moment and it will be recovered in Sec- 

tion (4), see the discussion after equation (4.5). The free fermion number current 

is defined as 

Jqx) =: iJ(x)7%J(x) : (2.11) 

where in equation (2.11) the normal ordering is understood.with respect to the 

bose quanta in (2.9). A s usual the current Jp(x) is computed as 

J’+) = iiy+ + 4755(x)- c 013(x + E)~@$(x)/o > (2.12) 

In terms of the boson fields the definition (2.11) amounts to carrying out the 

operator product expansion (OPE) of the operators given in eq. (2.9) and sub- 

tracting the singular c-number piece proportional to l/c. 

The result for the f&e current is 

Jp(x) = -b”a,d(z) 
J?r 

(2.13) 

When the fermions are coupled to gauge fields there is an ambiguity in defin- 

ing the current. For a gauge invariant result the path ordered exponential of the 

gauge field needs to be inserted in (2.12) since this expression involves fields at 

different points. The exponential of the line integral of the gauge fields modifies 

the result (2.13) b ecause of the singularities l/c in t.he OPE. 

Since we expect that gauge invariance is lost in the Chiral Schwinger model, 

the definition of the current is ambiguous since there is no principle of gauge 

invariance that selects a regularization prescription for the expressions (2.12) 
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and (2.13). By Lorentz covariance this ambiguity can only be of a form of a mass 

term for the gauge fields. 

The Lagrangian density for the Chiral Schwinger Model is 

(2.14) 

Using the fact that 7p7’ = -c~“7y (CO1 = +1) in 1-t 1 dimensions, the bosonized 

Heisenberg Lagrangian is 

This is the bosonized Lagrangian proposed by Jackiw and Rajaraman. The last 

term (explicit mass term for the gauge field) represents the ambiguity in the 

regularization of the currents in the bosonization procedure and it is parametrized 

by the parameter a. 

Alternatively we can think of this term as arising from the ambiguity (of 

the form gpV) in the current-current correlation function (vacuum polarization 

tensor). 5’8’1G 

Now that we know the interaction Hamiltonian we can pass to the Heisenberg 

picture. The Heisenberg picture fermion field operators are written as in equation 

(2.9) in terms of the Heisenberg bose fields. 

In particular for example, in the Heisenberg picture 

(2.16) 

Although the reader may consider all the above steps confusing, they are 

necessary to obtain the fermion fields and eventually to construct their correlation 

functions. 



Section 3: The Hilbert Snace and the Constraints. 

The equations of motion obtained from the Lagrangian in equation (2.15) are 

ob+ -$(apAQ - cy,auAq = 0 

a 
P 

F/J”’ = J” = _ 

(3.1 - ‘2) 

(3.1 - b) 

Since we expect gauge invariance to be lost, the “longitudinal” part of the 

gauge field may acquire dynamics. To understand this we exploit the fact that 

in 1 + 1 dimensions we can write 

Aqx) = a%(x) + d?%X(X) 

a,fp = gx; p’” = -cyJx 

Under a gauge transformation 

A,(X) + 4’L(4 + ah’+) 
X(x) -+ X(x) + a(x) 

x(4 + x(x> 

In terms of X and x the Lagrangian (2.15) reads 

f = i(a,oJ2 + $1~0~ - -$ap4ayx - x) + i$a,x,l 

- i$(apx)2 
I 

(3.2) 

(3.3) 

(3-4 

To obtain the above Lagrangian several surface terms have been dropped. The 

Lagrangian density in equation (3.4) can be cast in terms of free fields by diago- 

nalizing the mixing terms by the following canonical transformations 



x1= dGTox 

x2 = 
d$kij 

ag ( 

q + g2a2 

7+2-l) x > 

The Lagrangian density written in terms of +‘, A’, x1 and x2 reads (after dropping 

surface terms) 

with 

*2 _ gZa2 - 
7r(a - 1) 

(3.10) 

The transformations (3.7) and (3.8) are typical of a higher derivative theory. 11,17 

The Lagrangian in equation (3.9) h as many interesting features. First notice 

that A’ is the field that changes under gauge transformations, hence only for 

a = 1 the theory seems to be gauge invariant, but at this particular value of a 

the mass given by (3.10) d iverges. For a < 1 the theory has tachyonic excitations 

and A’ has to be quantized with negative metric. Even for a > 1 notice that the 

field ~2 has to be quantized with negative metric and therefore the Hilbert space 

will be of indefinite metric. The field ~2 is also present in the covariant operator 

solution of the Schwinger model as given by Lowenstein and Swieca 
18 and also 

by Halpernll and Kogut and Susskind.‘g In these references it is clearly shown 

that the Hilbert space of the (vector-like) Schwinger model quantized covariantly 

is of ’ indefinite. 

The last term in equation (3.9) is further simplified by the transformation 

$GX=1, (3.11) 

where now q is a free massless canonical field quantized with positive metric. 
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The content of the original theory is now completely determined by three 

massless free bose fields: 4’ which is a gauge singlet quantized with positive 

metric, ~2, a gauge singlet quantized with negative metric and 7 that transforms 

under gauge transformations and is quantized with positive metric, and finally 

x1 a free massive bose field quantized with positive metric. 

The Hilbert space of the theory is of indefinite metric and is Fock, it is given 

by a tensor product of the Fock spaces for #, x1, ~2 and q 

Holyever as is the case in the covariant solution of the Schwinger model \ve expect 

the Hilbert space U given by (3.12) to be too large. I8 The equation of motion 

(3.1-b) written in terms of the free fields reads 

a Ffiv=JV P (3.1 - b) 

(3.13) 

Notice that the current J” is conserved by the equations of motion (4’ and q are 

massless fields). 

However combining (3.1-b) with (3.13) and (3.14) we find 

(3.15) 

(3.16) 

Therefore the equations of motion that define the physical theory are not sat- 

isfied, much in the same way as in the Schwinger model, as shown by Lowenstein 

and Swieca. 
18 
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We would be tempted to set JF = 0 to define the physical subspace, however 

this would rule out the existence of a vacuum state of the theory, and furthermore 

it does not commute with other operators of the theory (#, v, x2). Therefore 

since JF is a linear combination of derivatives of free fiel&, the corresponding 

constraint is of the Gupta-Bleuler type 

J;(+)IP >E 0 (3.17) 

4-t) - Lj’here IP > is any physical state and JF IS the positive frequency (annihi- 

lation) part of JF. The quantum condition (3.17) defines the physical subspace 

u phys of the total Hilbert space given by equation (3.12). 

The equation of motion (3.1-a) is satisfied by the canonical transformation 

(3.5). 

The physical operators are those that commute with J$+) in (3.17), they 

create physical excitations out of the vacuum. These operators will be studied 

in section (5). 

The current Ji given by equation (3.16) creates zero norm states out of the 

vacuum since 

< 0 1 J;(s)J;(y) IO >=O Vx,y (3.18) 

Again this fact should be compared with the covariant solution of the Schwinger 

model. l8 
. . 

ectlon 4. The Fermion Fields: Wa . . . . ve Function and Vertex RenormabatlorL 

In order to compute correlation functions of Fermi fields, these have to be 

written in terms of the bosonic free fields &, x1, x2 and 7” in the Heisenberg 

picture. The canonical momentum conjugate to 4 is given by equation (2.16) 

(see eq. 2.15) 

(2.16) 

In terms of the “longitudinal” and “transverse” components of A, given by 
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equation (3.2) and the transformation given by (3.5) we find 

All the fields are in the Heisenberg picture. Since 4’ is a free massless field it can 

be written as 

c#” = &(x - t) + c&(x - t) 

therefore as it was discussed in section 2 for free fields, we can define the dual 

field 4’ by 

aJ’ - = -(j’ 
dX 

The canonical momenta in equation (4.1) is thus written as 

a$ g a 
=4=-- ax +-J&x - 4 I (4.2) 

But -7r4 is the space derivative of the dual field d, in the Heisenberg picture, (see 

eq. 2.7) hence 

a4 a$ --=-- 
8X ax + &Fax 

LE(x - A) (4.3) 

Therefore in the Heisenberg picture, and using (3.5) 

C$R = f((f’+ 4) = d)‘ncx - t, 

4L = ;(s - 6) = c&(x + t) + $(x - 4 (4.5) 

Therefore equations (2.9) and (4.4) imply that the right handed component 

of the Fermi field is free, this is of course a consequence of the fact that only 

the lft handed component is coupled to the gauge field in the Chiral Schwinger 

model. 
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Therefore we write the Heisenberg fermion fields as 

$J~ = 5 e-ik’4n 

P = s(x - 4 

The constant C is related to normal ordering, see equation (2.10). The above 

expressions can be written in a compact form as 

with P- = (1 - 7s) and t,!~, a k massless spinor by equation (2.9), and (2.10). 

At this stage we can recover the Klein factor. It is the same that ensures the 

anticommutation of ?,!JR, $L in equation (2.9), since $0 is a free massless spinor, 

and anticommutation of $J, will ensure anticommutation of T$ since (x - X) does 

not involve time derivatives. 

In terms of the canonical free fields $L, 7, x1 and ~2, the component 0~ of 

the Heisenberg field 4 reads 

4L = & - J-&V + J-&2 - Xl) (4.6) 

However the normal ordering definition in equation (2.9) is with respect to 

the quanta of the field r$ in the interact.ion picture, i.e., 4 is a free mssless field 

in equation (2.9) ., 

Using the relation given by equation (2.10) we can write in the Heisenberg 

picture 
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with 4~ given by equation (4.6) and 

c = ,-2n[a2-‘(zt),clZf’(=,~)] 
(4.8) 

In equation (4.8) ok is the left handed component of a free massless field (see 

equation 2.10). Therefore 

(4-g) 

and since #i is the left component of a free massless field and ~2 and q are free 

massless fields quantized with opposite metric, we see by using (2.10), (4.7) and 

(4.8) that 

e -i&gxz-d . J-x’ . (4.10) 

Writing 

with 

[xj% t), xl+)(Gt)l = - 
/ 

-iAF(o, m) 

We find2’ 

(4.11) 

(4.12) 

(4.13) 

with 4~ given by (4.6). The normal ordering in (4.13) is now with respect to the 

quanta of the free Heisenberg fields #, q, x1 and ~2. 
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. . Equation (4.13) suggests that we introduce a wave fun- 

constant (see footnote page 19 and reference 20) 

(4.14) 

such that Z~IJ’JL has finite matrix elements, in equation (4.14) 6 is an ultraviolet 

cut-off. In particular 

Z-2 < 0 1 T$!J2(Z)$JL(Y) 10 >= + < 0 1 T : eifi4L(‘) :: eeiVGdL(Y) :I 0 > (4.15) 

The right hand side of equation (4.15) can be computed easily by using I’ick’s 

theorem and by recalling the x2 and 7 are quantized with opposite metric and 

that the term 

-i&4; . 
-&:e . 

is a bosonized free left handed fermion. Therefore we find 

Z2 < 0 1 T$J~(z)$L(IJ) ) 0 >= iSF,L(z - t~)e~~~(“-~‘~) (4.16) 

with SF,L the free propagator for left handed fermions and AF the free propagator 

for massive bosons. This result agrees with that of reference 10. 

. . The Vertex Renormalrzat,ron Con stc&& 

Following the procedure used for the wave function renormalization constant 

we can compute the vertex renormalization correction. For this purpose we notice 

that the current coupled to the gauge field only involves the operator 

PL(Z) = JQWL(4 (4.17) 

This operator has two sources of singularities. The first being the fact that the 

unrenormalized operator $L has singular matrix elements by the second term on 
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the right hand side of (4.17) ( wave function renormalization). The second source 

of singularities is the fact that (4.17) is a product of operators at the same point. 

The first problem is handled by using the renormalized fields (or multiplying 

PL(~ by 22) 

z2pL(s) “- Jj : ,idG3L(z) :: ,--ifiS~(z) : (4.18) 

The second problem is handled by using Mandelstam’sr3 approach and defining 

(4.19) 

The function F(z - y) and the constant CT are chosen such that the limit z + y 

is finite. 

Using the formula 

A . . :e ..e B := e[A’f’,B’-‘] . ,A+B . 

and the fact that x2 and 7 have opposite metric we find 13,20 

Z2$34?;'~b) zsy:e 
il/G&bL(z)-~L(y)) : (c2m2 Ix - Y I21 * 

27ri(z - y) 
(4.20) 

with c a numerical constant (related to Euler’s constant). 

Therefore we see that if we choose o = 2/(a - 1) and F(z - y) = 1/2rri(z - y) 

then 

(4.21) 

The term Icm(z - y)l“ in equation (4.19) plays the role of the vertex renormal- 

ization constant 2,‘. Introducing an ultraviolet cut-off in the limit z ---) y as 
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)z - yl = (CA)-‘, we find that’ 

(4.22) 

or that 

z, = z2 (4.23) 

this is one of the main results of this paper. In vector-like electrodynamics the re- 

lation (4.23) is a consequence of the Ward identities, a result of gauge invariance. 

Despite the fact that there is fermion wave function and vertex renormalization, 

there is I~Q coupling constant renormalization in this theory. This is understood 

from the fact that there is I~Q wave function renormalization for the “photon”, 

and from equation (4.23) (th ere is only “mass” renormalization parametrized by 

a). This can be seen to be the same reason by which the coupling constant in 

the Thirring model is Mf, renormalized. 

An obvious question that arises is why is there a wave function and vertex 

renormalization constant? 

In fact this question can be answered in perturbation theory. Let us first 

consider the fermion self energy. The full photon propagator can be found by 

integrating out the field 4 in the Lagrangian (2.15), it is found to be given by5 

G,.&) = k2 I ,2 
1 - -gw + a _ 1 

with m given by equation (3.10). 

2 kak, kQk, 
3 

)I 
-- - 

k- - ‘pa k2 fVl2 k2 
(4.24) 

* Instead of writing 12 - yl = (CA)-’ we can use Coleman’s regularization (see equation 2.9 
in reference 20) A( z, m) - A(z, A) = A( z,m, A) such that as Iz - yj * 0, A(o, m, A) = 
-A In($). This yields the same result as given in equation (4.22). 
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The high momentum behavior of the above propagator is similar to the one 

in a Proca theory (massive vector field) 

lim Gpv(k) - irk’kv 
Iki*m k2g2(a - 1) 

(4.25) 

Now consider the second order fermion self energy correction with the full 

photon propagator (4.24) 

/ 
2 

VP) “g2 - GPV (k) 
(;n;47r~- fi + p rz- 

P- = (1 - 75) 

(4.26) 

Because of (4.25), C(p) seems to be linearly divergent, however by chiral symme- 

try it has to be of the form 

VP) = b(P) (4.27) 

and in fact c(p) is logarithmically divergent. The divergence arises from the term 

in equation (4.25), notice that the g2 in the denominator of equation 4.25, and 

in the numerator of equation 4.26 cancel. Therefore we find 

62 
Z2 = l+-&ln;;;i+...- 

A2 A 
( > 

z=x 

2 
(4.28) 

where A is a numerical constant arising from the Feynman integral. These ar- 

guments explain clearly the power (A) and the absence of coupling constants 

in Z2. A similar. analysis can be carried out for the vertex function with G,, 

given above, and in fact it is very easy to see to this order that Zr = Zz by the 

usual analysis since Z2 ‘= (aII(p)/aj)+o corresponds to the insertion of a zero 

momentum photon, therefore the logarithmic singularities are the same for the 

vertex and self-energy corrections. 
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Before closing this section we want to remark that the correlation function 

given by (4.16), Zl and Z2 and the relation (4.23) are gxact. In a gauge invariant 

theory the fermion correlation function can only be computed by specifying the 

choice of gauge, if no gauge is chosen the fermion correlation function must 

vanish by gauge invariance. Therefore equation (4.16) reflects once again the 

lack of gauge invariance in the theory. 

Section 5: The Physical Operators: 

M’e have seen in section 3 that the full Hilbert space of the theory is of 

indefinite metric, but there exists a quantum constraint that restricts the full 

Hilbert space to a physical subspace in which the equations of motion (3.la,b) 

are satisfied. 

The constraint is given by equations (3.17) with .Ji given by (3.16). 

A physical operator @(y) is defined such that 

J;‘+‘(x), B(y)] = 0 Q x,y v=O,l (5.1) 

Condition (5.1) ensures that the states obtained by applying 3 onto the 

vacuum are annihilated by JF v(+), therefore satisfying the constraint (3.17). 

For a massless field d(x,t) = ~R(X - t) + ~L(X + t) 

Hence JF can be written as 

Since Ji does not depend on & and x1 and 

[&(x), &(Y)l = 0 Q X,Y 
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then 

[J;‘+‘(x), d&(y)] = [J;‘+‘(x), XI(Y)] = 0 ‘if TY (5.5) 

Therefore c& and x1 are physical operators. Consequently $JR and Fpv (see 

equations (3.2) and (3.7)) are physical operators. 

It is a matter of straightforward algebra to show that because VL and f7R 

commute and because xz and q are quantized with opposite metrics then (4~ is 

defined in equation 4.6) 

[Jy(+)(x) F , AL] = 0 Q x Y , (5.4) 

Consequently $L is a physical operator. This should again be contrasted to the 

case of the gauge-invariant Schwinger model quantized in a covariant gauge where 

the fermion field is JU& a physical operator. 18 

Physical states are obtained by applying polynomials of &, Fpv, xl and C$L 

onto the vacuum of the full Hilbert space X given by (3.12). 

However neither di, v or ~2 create physical excitations. We see that since 

77 and x2 appear in the combination 77 - x2 in q5~, the physical Hilbert space is 

of positive metric. Therefore in S-matrix elements of physical operators Q and 

x2 only enter as intermediate states in the combination 17 - ~2, cancelling each 

other because of the opposite metrics. 19 

Section 6: The Physics of the Wess-Zumino Term 

As was mentioned in the introduction a different mechanism that is proposed 

to cancel the anomaly and to render the theory gauge invariant is the addition of 

a Wess-Zumino (W-Z) term to the action. In references (7-9) it was shown that 

incorporating this Wess Zumino (W-Z) term in fact restores the gauge symmetry 

in the Chiral Schwingei model. More recently several authors9 suggested the 

possibility that in fact the W-Z term does not have to be put in the theory 

by hand, but that it naturally emerges from the path-integration over all gauge 
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orbits. In particular the W-Z (pseudo) scalar field arises after using the Fadeev- 

Popov trick to take into account the integration over the gauge orbits. 

To the present author this result has to be taken with care for at least two 

reasons. The first is that since the theory has quantum constraints, it is not. 

clear whether integration over the full gauge orbits respects the constraints. The 

second reason is perhaps more disturbing. The Fadeev-Popov trick is a way of 

writing 1 in an adequate way, but it should not introduce new physics in the 

theory. However there is a new field, the W-Z field, that seems to have acquired 

the status of a physical field, therefore it is legitimate to ask is the \V-Z field 

physical? Furthermore, we have learned that the full Hilbert space of the theory 

is of indefinite metric, how does the W-Z field modify the constraints? And last 

but not least which are the physical correlation functions in the theory with the 

W-Z terms? 

To answer these questions we adopt the attitude of just adding the \I’-Z form 

to the action (2.15) ad h oc to study its consequences. The W-Z term for the 

Chiral Schwinger model was given several times in the literature,8’g it is given 

bY 

fw-z = ;(a - l)(a,s)2 - -%[(a - l)d,Ap + cpv~pAv] 
fi 

(6J) 

and the total Lagrangian density is 

f = fc, + &v-z 

with lo given by equation (2.15). Notice that L: is explicitly invariant under the 

transformation 

A, + A, + +(x) 

t3+e- -L(x) 
6 

therefore lw-z has restored the gauge invariance of the theory. The equation 
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of motion for 0 is 

(a - 1,118 = -$[(a - l)c3,Ap + P&Av] P-3) 

Using equations (3.2), and (3.6) we see that there is a canonical transformation 

that diagonalizes the mixing term in (6.1). Defining 

with c a free massless field. In terms of 5, d’, x1, and x2 

Comparing (6.5) with (3.9) we see that the field < replaces the field 17 (or X’ 

by (3.11)). H owever by the transformation laws (6.2) and by (3.3) and (3.6) we 

see that the field < is a singlet under gauge transformations as are $‘, x1 and ~2. 

So that the field X’ (or 7) which is the only field that transforms under gauge 

transformation does not appear in L: in (6.5). Of course this is a consequence of 

the gauge invariance of L. The contribution of the W-Z field to the current in 

(3.lb) is given by 

J; = -+z - lpve - cW,8] (6.6) 

And since (6.6) d oes not depend on x1, this term contributes to Ji in equation 

(3.16) by just. adding J[ to J$, therefore t.he right hand side of equation (3.15) 

is now given by 

J; = J; + J; (6.7) 

with Ji given by equation (3.16) and J[ by (6.6). In terms of the fields in (6.5) 

we find 
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Notice again that the only change that the W-Z term introduces is the replace- 

ment of the field q that transforms under gauge transformations by the field < 

which is a gauge singlet. Now Ji is gauge invariant. 

Now for the theory with the Wess-Zumino field given by the Lagrangian 

density L3, + lw-z the quantum constraint that defines the physical subspace of 

the full Hilbert space is analogous to (3.17) with,JFV replacing JF 

J;(+)lP >= 0 

The physical operators are x1, c$‘,, FPy and 

dL = 4lr, - p& + p-&(x2 - Xl) 

(6-g) 

(6.10) 

Since the field < is a gauge singlet, now the physical operators are gauge invariant. 

However notice that < is xx& a physical operator, in the same way as Y.I (X’) was 

not a physical operator in the theory without the Wess-Zumino term. 

Therefore we conclude that the Wess-Zumino field 6 in f?,r,r-z (eq. 6.1) is not 

associated to a physical operator in the quantum theory. And as in the theory 

without fw-z the physical Hilbert space contains only positive metric states, 

since < and x2 are quantized with opposite metrics. 

Since the theory is now gauge invariant, the only meaningful correlation func- 

tions are those of gauge invariant objects. Let us define the following gauge 
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invariant quantity 

(6.11) 

where 8 is the W-Z field and 4~ is given by equation (4.6). Normal ordering is 

understood with respect to the respective quanta. By using (6.4) and (3.11) the 

expression (6.11) can be written as 

(6.12) 

with C$L given by (6.10). It is now evident that $L is gauge invariant, and that 

since < and x2 have opposite metric the wave function renormalization Z;! in 

(6.11-6.12) g is iven by (4.14). It is now clear that the correlation function 

22 < vl4L+(4~L(Y)Io > (6.13) 

is exactly given by the right hand side of equation (4.16). This is obvious since 

the only change that the Wess-Zumino term has introduced is the replacement 

of the free massless field r,~ by the gauge singlet free massless field 5 everywhere, 

and 7 and c are quantized with positive metric. 

Therefore we find that in the theory with the W-Z term, the physical op- 

erators are gauge invariant and that the correlation functions of these gauge 

invariant physical operators are exactly the same as the correlation functions of 

the physical operators in the theory without the W-Z term. Hence in this sense 

we can think of the theory without the W-Z term, as the theory with this term 

but quantized in the “unitary” gauge 8 = 0, as proposed in ref. (7). 

Therefore we see that the W-Z term restores gauge invariance in the theory, 

but does not simplify the constraints that define the physical Hilbert space. And 

in particular the W-Z field f that is a gauge singlet is not a physical quantum 

field. 
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Perhaps the only advantage of introducing the W-Z term is to restore gauge 

invariance, ensuring the Ward identity 22 = 21 in equation (4.23) (although it is 

not clear to the present author how the gauge invariance brought about by the 

\V-Z field is responsible for this Ward identity). 

However, although gauge invariance is restored, this does not relieve the 

theory from the severe constraints that determine the physical Hilbert space and 

the physical operators. The constraints are given by equations (6.8) and (6.9) (in 

the theory with the W’-Z field), the physical Hilbert space is of positive metric, 

hence unitarity is obeyed in this subspace. 

Summary of the Results, Conclusions and a Glimpse at Four Dimensions. 

In this paper, the Chiral Schwinger model (chiral QED) is completely solved 

in 1 + 1 dimensions. The theory is not gauge invariant because of the anomaly 

and there is a renormalized mass for the vector field parametrized by a constant 

8 (and the coupling constant). This mass is a parameter of the theory that has 

to be specified. However only for a > 1 are the massive excitations physical. 

The full Hilbert space is constructed and it is a tensor product of Fock spaces 

for free bosons. This Hilbert space is of indefinite metric, however, there is a 

quantum constraint that defines the physical states and physical operators. This 

constraint not only involves the gauge fields but also the fermion fields. 

The fermionic fields are written in terms of physical operators and their 

correlation functions calculated exactly. We find that (for a > 1) there is an 

ultraviolet divergent wave function renormalization constant for the (left handed) 

fermions 22 and a vertex renormalization constant 2,’ and that the identity 

22 = 21 is fulfilled exactly despite the lack of gauge invariance. The right handed 

component of the fermions is a free field. 

These non-trivial renormalizations can be seen to arise in perturbation the- 

ory from the poor high energy behavior of the full photon propagator, which is 

the same as in a Proca theory. For the gauge fields, there is only mass renor- 
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malization, absorbed in the parameter a and no wave function renormalization, 

hence m coupling constant renormalization. 

A Wess-Zumino term was added ad hoc into the theory to study its conse- 

quences. These W-Z terms restore gauge invariance to the theory by replacing 

the gauge non-singlet part of the gauge field by a massless gauge-singlet field. 

However the constraints of the theory remain slightly modified and they define 

the physical Hilbert space of the theory with the W-Z field. In particular we find 

that the W-Z field itself is not-physical (does not commute with the constraints). 

The gauge invariant fermionic correlation functions (see eqs. (6.11), (6.12) 

and (6.13)) computed in the theory with the W-Z term, are exactly equal to the 

fermionic correlation functions of the original theory without.the W-Z term (not 

gauge invariant). 

In fact we conclude that correlation functions of physical operators (deter- 

mined by the constraint) are the same in both theories, with and without the 

W’ess-Zumino terms. However the physical operators are not determined by the 

gauge invariance of the theory with the W-Z term, but by a set of constraints 

that are equivalent in both theories. 

We conjecture that many of these features may survive in chiral theories 

in four dimensions. In particular a mass for the “photon” will be a physical 

parameter of the theory. 

Since the gauge invariance would be lost, the physical degrees of freedom 

cannot be exposed by fixing a noncovariant gauge since this would break Lorentz 

covariance. Hence the theory would have to be quantized covariantly, and we 

expect the Hilbert space to be of indefinite metric, with an ensuing constraint 

that would define the physical subspace of the full Hilbert space. In this physical 

subspace unitarity is expected to hold. 

Recently Rajaraman” and Rajeev22 have partially studied the question of 

unitarity and Lorentz invariance in four dimensional chiral theories. These au- 

thors have modified the theory by introducing W-Z-type terms. Although the 
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nature of the Hilbert space and physical operators have not been completely 

elucidated, their results seem to confirm (partially) our expectations. 

Regarding renormalizability, the 1 + 1 dimensional theory strongly suggests 

that the gauge-invariant Ward identities may be maintained. And although the 

divergence structure of the theory is expected to be different (worse) from that 

of a gauge theory, if the Ward identities are still satisfied, the theory may still 

be renormalizable. 

Of course this has to be studied further, the main worry would be overlap- 

ping divergences. The next question would be to understand the nature of the 

constraints, and this may constitute a considerable task. 
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