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Abstract—Many algorithms have been proposed in the last
decade to detect traffic anomalies in enterprise networks. How-
ever, most of these algorithms cannot detect anomalies that
occur beyond enterprise boundaries. Performance monitoring
and anomaly detection on end-to-end Internet paths, although
important for network operations, is challenging due to lack of
access and control over intermediate network devices. In this
paper, we propose an algorithm that detects anomalies or signif-
icant events on an end-to-end Internet path by monitoring the
path’s available bandwidth. We first evaluate existing algorithms
on a comprehensive dataset of more than a million bandwidth
measurements spanning three years. We show that incorporating
the typical behaviour of a path in the process of anomaly
detection improves accuracy. We therefore propose to filter
noisy bandwidth measurements to extract the typical behaviour
or baseline statistical distribution of a path’s bandwidth. This
baseline model is in turn leveraged in a generic decision-theoretic
framework to provide timely detection of significant path events.
We show that the proposed detector provides high accuracy and
surpasses the accuracy of existing techniques.

I. INTRODUCTION

WHILE designing the LHC Computing Grid (LCG) [1],
the SLAC National Accelerator Laboratory (SLAC)

undertook a project to measure and evaluate the end-to-end
performance of Internet paths. This evaluation was designed
to facilitate operational concerns of critical grid/network appli-
cations, such as those exchanging massive amounts of high-
energy physics experiments’ data over the Internet. SLAC’s
intention was to adapt existing or develop new algorithms to
detect anomalies on high-speed end-to-end paths for LCG.
Similarly, in the last few years, large enterprises as well as
academic and research networks have scaled dramatically in
terms of capacities, sizes, supported applications and services,
and thus automated end-to-end anomaly1 detection has become
one of the primary concerns of network operators. While
anomaly detection in aggregate enterprise-level network traffic
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The labeled data set used in this paper is available online at
http://confluence.slac.stanford.edu/display/IEPM/
Decision+Theoretic+Approach. Please consider this paper for the
best paper award.

1We use the words anomaly and event interchangeably in this paper.

has received significant research attention in the last decade
[2]–[6], detection of anomalous events occurring beyond en-
terprise boundaries is largely unexplored.

We realize that end-to-end anomaly detection also: 1) facil-
itates network operations [7] as it helps identify and quantify
network path changes and provides alerts and diagnosis about
whether the faults lie with the path or the applications; 2)
allows network and capacity planning [8] by providing achiev-
able performance and by maintaining historical information
on network and economic growth2; 3) provides better insight
into the impact of network performance on applications and
protocols3; and 4) can facilitate higher network throughput
by acting as a feedback mechanism for congestion control
algorithms.

In this paper, we concern ourselves with timely and accurate
detection of anomalous events beyond enterprise boundaries.
These events may be caused by equipment failures (end-host or
router failure, link outage,) unusual–possibly malicious usage
(flash crowds, high volume flows, etc.,) and uncharacteristic
behavior (misconfigurations, fluttering in traffic routes, etc.)
We observe that most existing network anomaly detectors,
aimed at detecting anomalous traffic within enterprise net-
works, cannot be used as such for end-to-end Internet paths.
This is because the parameters used by these detectors (e.g.,
traffic volume, port frequencies, connection success rate, etc.)
are typically unavailable beyond enterprise boundaries. We
argue that the challenge presented by these circumstances can
be addressed by employing end-to-end bandwidth estimates
as a representative measure of the change of the state of an
Internet path. We then present a comparative analysis of the
accuracy and detection delay of four existing algorithms which
can be adapted to detect end-to-end anomalies by monitoring
bandwidth fluctuations, namely: 1) the Plateau algorithm [13];
2) the Adaptive Fault Detector [14]; 3) the Kalman filter based
detector [15]; and 4) the Holt-Winters detector [16], [17].

In this context, SLAC undertook the Internet End-to-End

2For instance, the annual ICFA-SCIC reports [http://www.slac.stanford.edu/xorg/icfa/
scic-netmon/] use end-to-end anomaly detection as a metric to measure the digital
divide; these measurements show a strong correlation with a variety of economic and
development indices defined by the UN.

3Services that can benefit from end-to-end anomaly detection vary from sophisticated
software providing remote access to scientific instrumentation [9], [10] to adaptive
protocols [11] and applications [12].
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Fig. 1. World map of the IEPM monitoring sites. Typically each site performs
performance evaluation tests to all the other sites. Here we label the site at
SLAC which monitors all the other sites.

Performance Monitoring Bandwidth (IEPM-BW) [7] project
in which end-to-end bandwidth estimates were collected. This
dataset has more than a million bandwidth measurements
collected over seventeen geographically diverse paths using
different tools (iperf [18], pathChirp [19], and thrulay [20])
for a period of up to three years [7]. To establish the ground-
truth for the IEPM-BW dataset, we develop an unbiased
information-theoretic labeling algorithm using conditional en-
tropy [21] based Markov chain analysis and verify the labeled
anomalies against the available case studies.4 We use this
dataset for accuracy and delay evaluation of contemporary al-
gorithms. We show that the performances of existing anomaly
detectors (in terms of accuracy and detection delay) have
a significant room for improvement. From the performance
results of existing detectors, we note that an accurate path
anomaly detector should incorporate and leverage the inherent
statistical characteristics of typical bandwidth measurements
observed on Internet paths.

To extract typical path characteristics from aggregate real-
time data, we remove the noisy measurements by applying
a low-pass median filter to the estimates. We then analyze
the best-fit baseline distribution of the observed path. Since,
in our study, we observed that a significant majority of the
paths with bandwidth estimates in this dataset have either
a Gaussian or a Weibull bandwidth distribution we leverage
this baseline model of typical bandwidth measurements in a
decision-theoretic likelihood ratio testing framework to detect
anomalous events on an end-to-end Internet path.

The proposed decision-theoretic framework is generic and
can be applied to data sets exhibiting any frequency distri-
bution. Since the paths used in this study are Gaussian and
Weibull, we provide mathematical formulations for these two
distributions however models of other distributions may also
be developed and applied in a similar manner. We use the
Receiver operating characteristic (ROC) curves and detection
delay to evaluate the accuracy and timeliness of the proposed
detector. We show that the proposed detector provides high
accuracy with low detection delay and surpasses the perfor-
mance of existing techniques.

4Case studies are available at https://confluence.slac.stanford.edu/display/
IEPM/Anomaly+Case+Studies.

TABLE I
PERFORMANCE MEASUREMENT TOOLS.

Tool Metric(s)
Ping Delay and loss
OWAMP [22] One-way delay and loss
IPerf [18] Achievable throughput
Thrulay [20] Achievable throughput
Traceroute Path
pathChirp [19] Available bandwidth
Pathload [23] Available bandwidth

TABLE II
BANDWIDTH MEASUREMENTS FROM SLAC TO THE MONITORED SITES,

MARCH 2005 TO MARCH 2008

Total Anomalous Duration of
Measurements Events Events

(pathChirp) (Avg no. of
measurements)

µ

utoronto.ca 40,614 38 41
desy.de 32,247 31 38
fzk.de 65,536 17 168
cern.ch 48,647 8 23
sdsc.edu 21,176 6 13
switch.ch 19,668 5 69
nslabs.ufl.edu 41,206 4 1035
triumf.ca 26,425 3 20
ornl.gov 35,339 2 32
nsk.su 20,117 1 8
dl.ac.uk 27,806 1 30
cacr.caltech.edu 61,871 1 59
infn.it 30,372 0 0
cesnet.cz 23,618 0 0
bnl.gov 23,580 0 0
anl.gov 17,968 0 0
ultralight.caltech 3,739 0 0

II. DATASET

Development of end-to-end event detection requires a com-
prehensive dataset of different measurements over an Internet
path. Such a dataset requires an extensive monitoring system
and SLAC started monitoring selected Internet paths since
1995 [24] (as part of the IEPM-BW [7] and the PingER project
[8].) The purpose of the IEPM-BW project is to develop
an infrastructure based on standard open technologies to
make active end-to-end application and network performance
measurements and predictions. The PingER project on the
other hand now involves measurement to over 700 sites in
over 160 countries and among them 50 are active monitoring
nodes [25]. Since 2002, IEPM-BW has been providing an open
repository of low impact network performance measurements
– including delay, loss and connectivity information – to most
of the Internet-connected world.

For the purpose of this study, we selected seventeen Internet
paths shown in Fig. 1. These test sites of the IEPM-BW
project include geographically diverse Academic and Research
(A&R) institutes situated in Canada, Czech Republic, United
Kingdom, France, Germany, Italy, Japan, Netherlands, Pak-
istan, Russia, Switzerland, Taiwan and USA; details of the
network topology can be obtained from [7]. The reasons
behind selecting these are: a) A variety of measurement tools
are deployed at monitoring sites on either end of the paths; b)
These paths feature minimum downtime and hence missing
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Fig. 2. Snapshot of approximately 2000 consecutive measurements spanning
three hours and encompassing an anomaly. The observations tend to sustain
themselves in the context. Note that the difference between the two subsets
(anomalous and typical) lies in the mean and while the variance and the mean
of one subset is approximately half of the other subset’s mean.

data is not an impediment; c) They are spread over large
geographical distances and represent important sections of the
data grids; d) They feature diverse traffic content; and e) These
paths form a feasible representation of typical Internet paths.
Table I lists the performance metrics observed and the tools
used by the IEPM-BW project. Some pertinent statistics about
one of the tools, pathChirp, are shown in Table II5. Discussion
of the last 3 columns of Table II is in the next section.

A. Available Bandwidth; Candidate Performance Metric

Any performance metric which exhibits sustained perturba-
tions to reflect an anomaly can be considered as a good
candidate for an anomaly detection algorithm. Parameters such
as origin-destination (OD) flows, transport ports, frequency
of connections between hosts, fields of the Ethernet, IP,
TCP/UDP headers etc, although quite effective in detection of
malicious traffic, are not available beyond enterprise bound-
aries. We thus turn to IEPM which provides us with end-to-
end performance metrics i.e. round trip time (ms), one way
delay (ms), packet loss (%), network path, available bandwidth
(Mbps) and achievable throughput (Mbps). Network paths do
not reflect state of the path. The possibility of ICMP traffic
being classified as low priority traffic makes its estimates
– round trip times and loss – unreliable. OWAMP, which
measures one way delay, is not widely deployed at IEPM sites.
However, available bandwidth is the metric which not only
meets the assumptions for an anomaly detection algorithm, but
also, IEPM has a wide deployment of reliable tools collecting
measurements. Thus after extensive empirical studies6 we
selected average available bandwidth as the metric for our
study because: a) available bandwidth estimation algorithms
are mature and accurate [26]–[28]; b) bandwidth measure-
ments remain stable during normal operations; c) they are
perturbed throughout the course of an anomaly; and d) as ob-
served by us and prior studies [26]–[28] achievable throughput
measurements made by tools such as thrulay or iperf were

5Approximately the same number of thrulay and iperf bandwidth
estimates were analyzed for each path; total number of analyzed
(pathChirp+iperf+thrulay) measurements are approximately 1.1 million.

6Details are available on the project website.

highly inconsistent due to their inherent pipe filling nature.
Alternatively, features of available bandwidth are outlined in
Fig. 2 which shows that variations in available bandwidth are
either significantly different from the typical behavior and/or
persist for a noticeable duration. We also note that state of the
art techniques [13], [14] also advocate the use of this metric.

The study [28], agrees with our understanding, and con-
cludes that Pathchirp is an accurate tool for obtaining available
bandwidth estimates without being intrusive. The alternative,
pathload, influences the ongoing TCP sessions and makes them
change their behaviour to accommodate the new flow – this is
because of the inherent nature of TCP. This makes pathload
inappropriate for our study.

III. LABELLED DATASET

The process of evaluation of path anomaly detectors demands
a labelled dataset with clearly demarcated anomalous bound-
aries/windows. Unfortunately such a labelling is not available
for known end-to-end performance measurement datasets.
Therefore here we present an unbiased, information theoretic
labelling algorithm to annotate the IEPM-BW dataset.

1) Definition of a Path Anomaly: An accurate labelling
algorithm caters for the baseline or typical behaviour of the
bandwidth measurements which tends to sustain itself over a
defined duration. The duration may be defined in terms of
number of consecutive measurements. Thus, we define a path
anomaly as:

Definition 1: A set of observations is called an anomaly
if these (deviant) observations are statistically significantly
different – in magnitude – from the typical observations of
the Internet path and persist for a minimum duration.

To quantify this minimum duration we studied the temporal
dependence of bandwidth measurements. Our intention was to
identify the number of bandwidth measurements that the most
recent observation depends upon. A well-known measure of
dependence is conditional entropy [21]. Interestingly, as will
be shown subsequently, evaluation of the conditional entropy
of bandwidth measurements also yields a quantification of
the magnitude of bandwidth perturbations that can be used
to qualify a sequence of measurements as anomalous.

To identify the order of correlation present in the available
bandwidth estimation random process, we define a Markov
chain based stochastic model as follows. Let Xn be a time
series of available bandwidth estimates. Let γ and κ be two
parameters providing a confidence interval around the mean:

[γ × E (Xn) , κ× E (Xn)], (1)

where E (Xn) is the expected value of Xn. Thus bandwidth
values smaller than γE (Xn) or larger than κE (Xn) are
classified as anomalous, while values falling in the above
range are treated as typical values. Thus, to remove potentially
anomalous bandwidth values, we increase γ and decrease κ
(i.e., dilate the confidence interval) and apply a decimation
filter by removing values from Xn that lie outside the confi-
dence interval. This results in a decimated time series X(γ,κ)

n

stochastic process. As mentioned earlier, X(γ,κ)
n with small γ
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Fig. 3. Sample of available bandwidth measurements as seen from SLAC with annotated anomalies.

and large κ will include more anomalous observations. For
ease of notation, we denote X

(γ,κ)
n as Xn in the following

text.
The Markov chain model Xn is trained by first dividing

all possible bandwidth values in multiple bins. Each bin then
represents a state of the Markov chain, while the set of all bins
ψ(1) is its state space. Based on this state representation we
can define a first order Markov chain X(1)

n in which each bin
represents a state of the random process. Conditional entropy
of X(1)

n is:

H(1) = −
n∑

i∈ψ(1)

π
(1)
i

n∑
j∈ψ(1)

(
p

(1)
Xn=j |Xn−1=i

)
log2

(
p

(1)
Xn=j |Xi−1=i

)
,

(2)

where π(1)
i is the average probability of being in state i. The

measure H(1) defines to what extent average information is
available in Xn when is it predicted using Xn−1. If the random
variable is correlated with states before Xn−1, E(1) will be
relatively large, implying that information about Xn not pro-
vided by Xn−1 is high. In such a case, generalizing the above
discussion, we can define a higher lth order Markov chain,
X

(1)
n , in which each state is an l-tuple < i0, i1, ..., il−1 >

representing the values taken by the random process in the
last l instances. Aggregating multiple instances in a single
state allows us to satisfy the Markov property and hence a
transition probability matrix P (l) can be computed by counting
the number of times < i0, i1, ..., il−1 > is followed by
< i0, i1, ..., il−1, il >. The conditional entropy of X(l)

n defined
on ψl can then be computed using the same method as H(1).

It is easy to observe that H(1) < H(2) < ... < H(l) as for
each random variable the previous can either be independent or
provide some information about the current variable. Similarly
the expected behaviour of conditional entropy for decimated
time series X(γ,κ)

n would be:

E(γk,κk) ≤ E(γk−1,κk−1) ≤ ... ≤ E(γ1,κ1),

γk < γk−1 and κk > κk−1.
(3)

For small γ and large κ, the stochastic process will include
both typical and anomalous observations. Hence, the order of
correlation in Xn for such a decimated process can quantify
the extent of temporal dependence in the bandwidth estimates
during anomalous activity.

This can be observed in Fig. 4 for decimated measurements
with large confidence intervals; i.e., small γ and large κ.
It can be observed that for both the links analysed in this
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Fig. 4. Conditional entropies of bandwidth time series decimated using
different confidence intervals.

figure, values in high confidence intervals exhibit a consistent
correlation trend up to 6 observations followed by a steep
decaying trend. Thus, for a dataset with anomalous and
typical measurements, consistent correlation is present up to
6 bandwidth measurements.

Interestingly, Fig. 4 also gives us an indication about the
magnitude of a bandwidth fluctuation that should be classified
as an event. Note the two distinct patterns around γ ≈ 0.5
and κ ≈ 1.5. For γ ≤ 0.5 and κ ≥ 1.5 dependence
delay shows less steepness. Comparatively a steep decay
structure is observed for γ ≥ 0.5 and κ ≤ 1.5. This can be
explained as the degree of dependence is larger for a decimated
time series X

(γm,κm)
n having a combination of anomalous

and typical values where γk > γm and κk < κm. These
two decay patterns show that bandwidth values outside the
[0.5×E (M (Xn)) , 1.5×E (M (Xn))] range can be classified
as anomalous. So, now we can define the significantly different
and minimum duration terms in Definition 1.

Definition 2: A subset of consecutive measurements A of
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Algorithm 1: Labeling data with anomalies.
Data: a) Array of performance measurements ∆ of length N ,

length τ of sliding window A and the duration τ for
which an abnormal activity needs to persist before it is
considered an event

Result: Ψ: Array of time brackets defining all independent
events

for {δi ∈ ∆|1 ≤ i ≤ N} do1
Compute µA ;2

if
(

0.5 ≤ µA

µ∆
≤ 1.5

)
then

3
Mark as typical observation;4

else Mark as an anomalous window and add to Ψ;5
end6
for {all alerts in Ψ}; do7

If required, coalesce alert-windows considering τ to8
identify unique observations with adjusted boundaries;

end9

the dataset ∆ is said to be significantly different if:
µA
µ∆

< 0.5 or
µA
µ∆

> 1.5, (4)

where µA and µ∆ represent the sample means of A and ∆,
respectively.

Definition 3: The minimum number of values τ over which
an anomaly should sustain itself are τ > 6 values.

In an attempt to obtain empirical results and further consol-
idate our findings we plot the data sets as time series, Fig.
3. These plots substantiate the aforementioned results and
led us to confirm the following observations: a) Anomalous
events tend to exhibit sustained behaviour; b) These anomalous
observations are typically 0.5µ or 1.5µ in magnitude; and c)
A significant difference is observed in the mean of the typical
and anomalous observations and not in their variance. This
last observation is also illustrated in Fig. 2.

2) Labelling Algorithm: To label a dataset ∆, we first
compute the mean µ∆ of the dataset. We then analyse the
measurements with a sliding window A of length τ values. The
mean µA of the window is computed and a test is performed
as per definition 2. Once all observations are scrutinized,
windows marked as anomalous are analysed and coalesced7 to
identify the demarcations of unique anomalies. The detailed
data labelling procedure is described in Algorithm 1 and
number of events detected on each path are listed in Table II
and last column presents the average number of measurements
in the events. We have also analyzed the number of events
detected in different datasets by varying the minimum number
of values but beyond 6 values does not introduce a change in
the number of identified events.

The events labelled using Algorithm 1 are verified against
available anomalies case studies8 to ensure correctness. Note
that while the above data labelling algorithm is accurate, it

7Note that each unique anomaly must be of a duration greater than τ . Also the
separation between anomalies must be greater than τ to classify the anomaly as unique.

8Case studies are available at https://confluence.slac.stanford.edu/display/IEPM/
Anomaly+Case+Studies.

cannot be used as an effective anomaly detector because it
requires all bandwidth measurements to be available before
the algorithm can start event classification. Consequently, this
algorithm can only be used for offline data processing rather
than real-time event detection.

3) Brief Discussion of Events: Table II clearly shows the
diversity of paths used in this study. It can be seen that 4
out of the top 5 paths having the most number of events
are situated outside the USA. Since these paths traverse
international boundaries, changes in the capacity, configuration
and/or policies of intermediate routers directly impact their
bandwidth and delay characteristics. On the other hand, paths
to government-owned sites inside the US generally have few,
if any, anomalous events because these sites are generally
available through rich and robust connectivity paths. It should
also be highlighted that the average duration of anomalies
varies considerably across different paths—ranging from 8
measurement long events to events that last more than a
1000 measurements. Due to this variation, timely detection
becomes critical; otherwise, as will be elaborated in the next
section, transient (short) anomalies can go undetected while
late detection of persistent (long) anomalies will lead to
undesirable detection delays. Furthermore, note that variations
in anomaly durations on the same path are also quite high. The
time- and space-dependent natures of end-to-end anomalies
pose a significant challenge for a generic anomaly detection
algorithm which is expected to detect events on any Internet
path.

IV. EVALUATION OF EXISTING INTERNET PATH ANOMALY
DETECTORS

Performance of an Internet path anomaly detector, which
attempts to detect anomalies beyond enterprise boundaries, is
defined by its accuracy (detection and false alarm rates) and
the speed of event detection. More specifically, network traffic
typically shows three types of variations [29]: 1) daily periodic
behavior or diurnal patterns, 2) random and sporadic fluctua-
tions, and 3) occasional bursts of high or low network activity.
Since the first two types of variations do not warrant remedial
measures, they are not interesting for network operators. The
third type of traffic variation satisfies our definition of an event
as it causes prolonged perturbations in an end-to-end path
and therefore requires immediate attention [30]. The problem
then is: When does an event being treated as uninteresting
(diurnal or sporadic) become interesting? An inherent tradeoff
between accuracy and delay can be observed here. If we
wait long enough for more measurements to arrive before
flagging the current measurements as anomalous, the accuracy
in detecting interesting events will improve. However, such a
procedure will lead to significant detection delays which are
highly undesirable in the present problem. A good end-to-end
anomaly detector should balance this accuracy-delay tradeoff.

In this section, we first evaluate the suitability of contem-
porary anomaly detection algorithms for end-to-end anomaly
detection. We then use the IEPM dataset to evaluate the
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(d) DESY
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(e) NSLABS
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Fig. 5. ROC curves of the Plateau Algorithm (PL), Adaptive Fault Detection (AFD), Kalman Filter method (KF) and Holt-Winters (HW) method
for pathChirp measurements as seen from SLAC; for clarity, we truncate the x-axis at 1 false positive/day as the [0,1] range is reasonable for
accuracy comparison. Note that due to lack of space we present six ROC curves here; ROC curves of all eight Internet paths are available at
https://confluence.slac.stanford.edu/display/IEPM/Decision+Theoretic+Approach.

accuracy and timeliness of anomaly detection algorithms that
can be adapted to use these end-to-end parameters.

A. Existing Anomaly Detectors

We investigated the suitability of several existing anomaly
detectors [13]–[16], [31]–[37] for the present problem of
anomaly detection beyond enterprise boundaries. From the
study of these methods, we observed that most of these
algorithms are designed to detect malicious anomalies in
aggregate traffic and cannot be adapted to the present problem
of event detection on end-to-end paths because: a) they rely
on detection features and parameters that are not available
beyond enterprise boundaries; b) they do not cater for non-
malicious anomalies; and c) they cannot be modified to use
parameters that are available on an end-to-end link–such as
available bandwidth. For example, the maximum entropy and
subspace detectors [31], [32] use the distributions of origin-
destination (OD) flows and transport ports to mine anomalies.
Rate-limiting and threshold random walk (TRW) algorithms
[33]–[35] detect anomalies by measuring the frequency of
connections between hosts. PHAD and NETAD [37] uses all
33 fields of the Ethernet, IP, TCP/UDP headers to calculate
an anomaly score before raising an alarm. The parameters
described above, although quite effective in detection of ma-
licious traffic in aggregate enterprise traffic, are not available
on end-to-end links due to lack of access and control over

intermediate network devices.

B. End to End Anomaly Detectors

Most of the existing anomaly algorithms are designed to
leverage a specific set of traffic features and, consequently,
cannot be adapted to use the available bandwidth metric. We
have identified the following anomaly detection algorithms
which are generic enough to be adapted to the problem
of end-to-end Internet path event detection: 1) the Plateau
algorithm (PL) by Logg et al. [13]; 2) the Kalman filter (KF)
based detector by Augustin et al. [15]; 3) the Adaptive Fault
Detector (AFD) by Hajji [14]; and 4) the Holt Winters (HW)
detector by Brutlag [16]. The rest of this section compares the
accuracy and detection delays of these detectors; details of
these detectors are skipped for brevity and interested readers
are referred to the original papers for these details.

C. Accuracy and Delay Comparison

1) Accuracy Comparison using ROC Curves: We compare
the accuracies of existing detectors using ROC curves [38].
The main performance evaluation metrics used in ROC curves
of the present problem are defined below:
• A true-positive (TP) is the correct classification of an

anomalous bandwidth event;
• A false-positive (FP) is the incorrect classification of a

typical bandwidth measurement as anomalous;
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• TP rate is the ratio of the correctly classified events to
the total number of events present in a dataset;

• FP rate is the ratio of the incorrectly classified typical
values to the total number of days observed.

ROC curves are drawn with the true-positive rate on the
y-axis and the false-positive rate on the x-axis. Each point
on the ROC curve represents performance results for one
configuration (or threshold value) whereas the curve represents
the behavior for the complete set of configurations. When
compared, the steepest and highest curve is considered the
best as it approaches the highest true-positive rate with the
lowest false-positive rate.

To generate ROC curves, we varied the buffer lengths and
the threshold values9 of the algorithms. The ROC curves of
the PL, AFD, KF, and HW algorithms are shown in Fig.
5. We observe that both the AFD and KF perform poorly
with unacceptable FP rates. For instance, when applied to the
Internet path SLAC-UTORONTO, the AFD method eventually
achieves a TP rate of 1 (not shown in the figure,) but at the cost
of 5.3 FPs per day. While the Holt-Winters method provides
better accuracy than AFD and KF, its detection rate saturates
at a particular point. The Plateau algorithm provides the best
accuracy with high TP rates against relatively low FP rates.
However, its FP rate at its highest detection point is quite high;
ranging between 0.2 and 0.6 false positive per days (1 to 3
incorrect alarm in a five day period). Also, as shown in Fig.
5(c), in some cases the Plateau algorithm failed to achieve
100% detection rate within the 1 false positive/day constraint.

AFD has poor accuracy because it relies on the assumption
that the difference between consecutive typical measurements
is small. While this assumption holds for frequent bandwidth
measurements, in case of measurements that are spread out in
time (e.g., the IEPM-BW measurements every 30-45 mins,)
large variations between consecutive measurements enhance
the sensitivity and the FP rate of the AFD algorithm. Also,
AFD assumes that the observed data has a k-variate Gaussian
distributions which is not the case in present problem—as
will be shown subsequently [Section V-B]. Kalman filter fails
primarily because it assumes that bandwidth measurements are
corrupted by an additive Gaussian noise process, an assump-
tion that does not hold in the present context. The Holt-Winters
based method performs poorly because it uses exponential
smoothing while assuming that the input data exhibits explicit
seasonal patterns which are not observed in the IEPM data set.
Consequently, the HW detector considers noise as seasonality
and therefore tries to fit seasonal patterns to the data set
where none exists. Plateau provides better accuracy because,
instead of making assumptions about the bandwidth or noise
processes, it leverages the mean and standard deviation of the
real-time bandwidth measurements for anomaly detection.

2) Delay Comparison: Detection delay is generally defined
as the time taken by an anomaly detector in identifying an

9The range of values used to analyze the dataset and compile results
presented in Section VI are posted at https://confluence.slac.stanford.edu/
display/IEPM/Decision+Theoretic+Approach

anomalous event. Since IEPM’s measurements are made with
regular intervals, we define detection delay as the difference
between the first observation flagged as anomalous by an
algorithm and the first actual anomalous observation of the
event.

Fair comparison of detection delays is difficult because
different detectors feature different FP and TP rates. Consider,
for instance, an anomaly detector that classifies all band-
width measurements as anomalous. Now while this detector
is completely inaccurate, its detection delay will be zero.
Therefore, fair comparison of detection delays requires that
delay is computed for a practical point on the ROC curve. To
this end, for each detector we select the ROC point of the
detector having the maximum possible detection rate; PL in
the present case. For the highest TP rate of the PL detector,
the detection delays of all detected events are computed. For
the remaining detectors, we compute detection delays at ROC
points having similar FP rate as the PL detector. Average
detection delays of all detectors are computed in terms of
number of observations required before an event is detected.
Also we define the detection delays of events not detected by
an anomaly detector as ∞.

Delay results for the Internet paths between SLAC and
UTORONTO, CERN, DESY, SDSC, TRIUMF, NSLABS,
SWITCH and FZK are listed in Table III. PL, KF and the
HW method provide similar detection delays, while the AFD
method requires a significantly larger number of observations
before an event is detected. We also observed with Plateau
that reducing the size of the buffers results in a decrease in the
detection delay but this has an adverse effect of making the
algorithm sensitive to spurious changes which subsequently
increase the algorithm’s FP rate.

D. Discussion
Based on the results of this section, the accuracies of existing
anomaly detectors leave significant room for improvement.
Overall, we observed that all of the existing anomaly detectors
are general-purpose anomaly detectors which are designed to
flag changes in any underlying observation metric. We show in
the following section that bandwidth measurements on Internet
paths exhibit some very specific statistical characteristics that
can facilitate classification. However, existing algorithms do
not take these inherent bandwidth characteristics into account
and are therefore unable to provide the required performance.

V. BANDWIDTH STATISTICS AND THE
DECISION-THEORETIC ANOMALY DETECTOR

In this section, we first show that the baseline behavior of
an Internet path’s available bandwidth measurements exhibit
a unique baseline distribution. Observations that deviate from
this baseline distribution can thus be classified as anomalous.
We then use the baseline model in a decision-theoretic frame-
work for real-time anomaly detection.

A. Extracting Baseline Behavior of Bandwidth Measurements
Given a set of bandwidth measurements, extraction of the
baseline behavior essentially entails removing all anomalous
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TABLE III
AVERAGE DETECTION DELAY t̄ (NUMBER OF OBSERVATIONS REQUIRED BEFORE AN EVENT IS DETECTED)

Plateau Algorithm Adaptive Fault Detection Kalman Filter Method Holt Winters Method
Detected Undetected Detected Undetected Detected Undetected Detected Undetected Total

# t̄ # t̄ # t̄ # t̄ # t̄ # t̄ # t̄ # t̄
UTOR 23 4.98 15 ∞ 4 53.25 34 ∞ 4 4.75 34 ∞ 12 10.33 26 ∞ 38
CERN 1 2.00 7 ∞ 0 - 8 ∞ 0 - 8 ∞ 3 9.33 5 ∞ 8
DESY 14 12.60 17 ∞ 1 47.43 30 ∞ 0 - 31 ∞ 0 - 31 ∞ 31
SDSC 1 0.0 5 ∞ 0 - 6 ∞ 0 - 6 ∞ 4 7.07 2 ∞ 6
FZK 7 14.27 10 ∞ 3 55.27 14 ∞ 0 - 17 ∞ 11 22.13 6 ∞ 17
TRIUMF 3 2.33 0 - 0 - 3 ∞ 0 - 3 ∞ 3 0.67 0 - 3
NSLABS 2 2.33 2 ∞ 2 45.67 2 ∞ 0 - 4 ∞ 3 1.57 1 ∞ 4
SWITCH 1 26.67 4 ∞ 3 7.63 2 ∞ 5 16.67 0 - 3 13.33 2 ∞ 5

0 2000 4000 6000 8000 10000
200
400
600
800

1000
1200

A
va

ila
bl

e 
B

an
dw

id
th

 (
M

bp
s)

SLAC − ORNL

 

 

0 2000 4000 6000 8000 10000
200
400
600
800

1000
1200

Time series (µ = 784.7)

 

 

pathchirp (filtered)

pathchirp

Fig. 6. Low-pass median filtering of bandwidth measurements to extract
baseline behavior; the time series is annotated to show how median filtering
results in removal of sustained anomalies and spurious measurements.

observations (and the corresponding bandwidth values) from
the set. The remaining measurements can then be used to
characterize the baseline behavior. Anomalous bandwidth val-
ues always cause significant fluctuations in the measurements,
albeit these fluctuations may be sustained and spurious in
nature. These two types of anomalies are shown in Fig. 3.
Both of these anomalies should be removed from the dataset
before baseline behavior is characterized.

To remove the anomalous bandwidth measurements from
the dataset, we apply an n-tap median filter to the dataset. A
median filter is a sliding window low-pass filter that stores
n previous values of the input and at each step outputs the
median of the stored values. Consequently, high frequency
spikes are removed from the input data. Note that the value
of n is a crude upper bound on the maximum duration of
an anomaly. If a bandwidth change sustains itself beyond n
observations then it is treated as a change in the baseline
behavior. We define an empirical lower bound on n as:

n ≥ 2τυ,

where υ is the average number of IEPM performance mea-
surements made in one hour and τ is the minimum duration
over which an event should sustain itself which in this case
is τ > 3 hours. Through empirical evaluation, we observed
that a value of n = 15 is sufficient to remove sustained
and spurious bandwidth fluctuations from the present dataset
without affecting the baseline characteristics. An example
of the baseline bandwidth values extracted through median
filtering is shown in Fig. 6.

B. Statistical Behavior of Available Bandwidth Measurements

We randomly selected sample subsets from the IEPM data to
identify the baseline characteristics of the observed Internet
paths. These sample subsets included observations made over
three or more consecutive days. A window of three days
was selected because we observed that anomalies in the
IEPM dataset generally persisted for less than three days and
conversely any change persisting beyond three days appeared
to be permanent.

In more than two-thirds of the pathChirp subsets, we ob-
served that the measurements follow either a Gaussian or a
Weibull distribution. Examples of these subsets—with Gaus-
sian and Weibull distributions—are shown in Table IV. This is
an important statistical characteristic of the underlying typical
(i.e., devoid of anomalies) bandwidth behavior which can
and should be leveraged for baseline behavior characterization
and subsequently for anomaly detection. We use this baseline
behavior of available bandwidth measurements in a decision-
theoretic anomaly detection framework in the next section.

Two important points should be emphasized here: 1)
While the decision-theoretic framework presented henceforth
is generic and can be applied to any bandwidth distribution,
we only derive analytical expressions of and report results for
Gaussian and Weibull distributions because they characterize
the majority of the links being evaluated in this study; 2)
Considering the data set and labeled anomalies, we only
present results10 for eight Internet paths which feature notable
number of anomalies; results on the remaining paths are
qualitatively similar and are therefore skipped for brevity.

C. Decision-Theoretic Model of Bandwidth Measurements

Let Ri denote the i-th available bandwidth measurement.
These measurements are either the baseline behavior of the
path (i.e., the internal response [39]) or comprise anomalous
observations (i.e., the internal response modified by noise).
We define two hypotheses: H0, the null hypothesis where Ri
represents the internal response (i.e., the baseline characteris-
tics); and H1, the alternate hypothesis where Ri represents the
internal response modified by noise (i.e., anomalous activity).

10Note that comprehensive results of all eight Internet paths are available
at https://confluence.slac.stanford.edu/display/IEPM/Decision+Theoretic+
Approach.
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TABLE IV
GOODNESS-OF-FIT RESULTS (MEASUREMENTS FROM SLAC)

(a) Gaussian distribution
Site χ2 p-value C.Val@0.05
UTOR 14.18 0.2892 21.026
CERN 15.46 0.217 21.026
ORNL 18.22 0.1089 21.026
FZK 19.09 0.0864 21.026
SDSC 21.02 0.1009 23.685

(b) Weibull distribution
Site χ2 p-value C.Val@0.05
DESY 17.30 0.1385 21.026
SWITCH 8.8 0.71 21.026
NSLABS 13.45 0.337 21.026

This can be summarized as follows:

H0 : Ri = n (5)
H1 : Ri = n+mi, (6)

where n represents the random variable characterizing the
baseline distribution of bandwidth estimates. As discussed
earlier, the datasets under consideration are either Gaussian
or Weibull distributed. Therefore, in the following sections
we devise a model for datasets featuring Gaussian or Weibull
distributions.

1) Decision-Theoretic Model for Gaussian Paths: For
Gaussian distributed typical bandwidth measurements, let n in
(5) and (6) represents a Gaussian random variable. For ease
of exposition, we remove the first moment bias from n to
make it a zero-mean normal distribution n = N (0, σ2). We
can represent mi as: mi = Ri − n.

When a new bandwidth estimate arrives, it is mapped to
one of the two hypotheses using the following conditional
probability distributions:

Pr(Ri|H0) =
1

σ
√

2π
exp

(
−R2

i

2σ2

)
; and

Pr(Ri|H1) =
1

σ
√

2π
exp

(
−(Ri −mi)

2

2σ2

)
.

(7)

A likelihood ratio test [40] to choose between the two hy-
potheses can then be defined as:

Λ(Ri) =
Pr(Ri|H1)

Pr(Ri|H0)
. (8)

Assuming independence between real-time bandwidth mea-
surement, an aggregate likelihood for a set of measurements
R = {R1,R2, . . . ,RN} can be formulated as:

Λ(R) =

N∏
i=1

1

σ
√

2π
exp

(
−(Ri −mi)

2

2σ2

)
1

σ
√

2π
exp

(
−R2

i

2σ2

) . (9)

Solving (9) using (5) and (6), we get:

ln η
H1

≶
H0

1

2σ2

N∑
i=1

(
R2
i − n2

)
, (10)

where η is a tunable threshold parameter.

2) Decision-Theoretic Model for Weibull Paths: Similarly,
if we let n represent a Weibull random variable and remove
the mean bias, the two hypotheses can be written as:

Pr(Ri|H0) =
(
k
λ

) (Ri

λ

)(k−1)
exp

(
−
(Ri

λ

)k)
; and

Pr(Ri|H1) =
(
k
λ

) (Ri−mi

λ

)(k−1)
exp

(
−
(Ri−mi

λ

)k)
,

(11)
where k, λ > 0 represent the distribution’s shape and scale
parameters.

The likelihood ratio test to choose between the two hypothe-
ses can then be defined as:

Λ(Ri) =

N∏
i=1

(
k
λ

) (Ri−mi

λ

)(k−1)
exp

(
−
(Ri−mi

λ

)k)
(
k
λ

) (Ri

λ

)(k−1)
exp

(
−
(Ri

λ

)k) . (12)

Solving (12) using (5) and (6) yields:

ln η
H1

≶
H0

N∑
i=1

(
(k − 1) ln

(
n

Ri

)
+

(
Ri − n
λ

)k)
. (13)

For both Weibull and Gaussian distributions, n is the
distribution of median-filtered baseline bandwidth values. As
new bandwidth estimates arrive, they are plugged into the
likelihood ratio defined in (10) or (13). The output of the
test is then compared to an upper threshold η1 and a lower
threshold η0. If Λ(Ri) ≤ η0, we accept the null hypothesis
H0. Alternatively, if Λ(Ri) ≥ η1, we accept the alternate
hypothesis H1. If neither case is true, we conclude that we
do not have enough information to make a decision and wait
for the next measurement to recalculate Λ(Ri).

D. Threshold Optimization

Wald showed [41] that we can define the thresholds η0 and
η1 in terms of the rate of true-positive (or detection) rate pD
and the false-positive ratio pF ; note that the FP ratio here is
different from our previous (/day) definition of FP rate; Wald
defined pF as the ratio of the false alarms and the total number
of typical observations and henceforth we will refer to it as the
FP ratio. It was shown that these rates may be approximated
by user-defined values α and β such that:

pF ≤ α and pD ≥ β. (14)

Through empirical evaluation, we conclude that TP rate pD
and FP ratio pF defined in terms of α = 0.2 and β = 0.99
yields acceptable results11.

As an example, consider that the alternate hypothesis is
accepted when it is in fact true; i.e. (10) met the threshold:
η1 ≤ Pr(R|H1)

Pr(R|H0) . This means that the detection rate pD is at
least η1 times the FP ratio pF when H1 is true. Consequently,
we can define η1 and η0 as:

η1 ≤
pD
pF

and
1− pD
1− pF

≤ η0. (15)

11The range of values used to analyze the dataset and compile results
presented in Section VI are posted at https://confluence.slac.stanford.edu/
display/IEPM/Decision+Theoretic+Approach
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Fig. 7. Accuracy comparison of the proposed Decision-Theoretic Approach (DTA) with Plateau Algorithm (PL), Adaptive Fault Detection (AFD), Kalman
Filters (KF) method and the Holt-Winters (HW) method for pathChirp measurements; Figs. 7(a)–7(c) present results for Gaussian-distributed data sets while
Figs. 7(d)–7(f) present results for Weibull-distributed data sets. Note that due to lack of space we present six ROC curves here; ROC curves of all eight
Internet paths are available at https://confluence.slac.stanford.edu/display/IEPM/Decision+Theoretic+Approach.

Using the bounds defined in (14), we get:

η1 =
β

α
and η0 =

1− β
1− α

. (16)

While the above upper and lower thresholds satisfy the user-
defined detection and false-positive constraints, from experi-
ments we observed that the upper threshold of η1 renders the
algorithm too sensitive to data sets with large variances. In
order to allow the algorithm to adapt itself to data sets in
which the variance of the bandwidth measurements changes
over time, we redefine the upper threshold η1 as:

η1 =
βσ2

α
, (17)

where σ2 is the variance of the median-filtered data being
analyzed for anomalies.

Step-wise execution of this decision-theoretic approach to
real-time path event detection is outlined in Algorithm 2.

VI. ACCURACY AND DETECTION DELAY
OF THE PROPOSED APPROACH

A comparison of the proposed Decision-Theoretic Approach
(DTA) with the AFD, KF, HW and PL algorithms is shown
in Fig. 7. It is clear that the proposed approach provides
consistently and considerably higher accuracy than all the
existing methods. AFD and KF methods provide significantly
lower detection accuracy than the proposed DTA because of
the reasons enumerated in Section IV-C1. The only exception

is Fig. 7(f) where KF performs better than the proposed
DTA algorithm. This is because the events on this path are
consecutive (i.e., anomalous bandwidth measurements occur
in a burst) and KF, which is designed to capture recent
measurements, finds it easy to detect these bursty events.
Plateau algorithm has a much higher FP rate than DTA because
it operates on rigid thresholds given as input to the algorithm.
Consequently, if an Internet path changes its characteristics
even slightly (e.g., increases its variance due to changes in
cross-traffic,) Plateau is unable to adapt its parameters in
accordance with the slightly modified baseline behavior. Holt-
Winters also performs relatively poorly since it tries to model
noise as seasonal trends.

In case of Fig. 7(b), 7(c) and 7(e) we observe that, while
having considerably higher accuracy than existing algorithms,
the proposed DTA algorithm does not achieve 100% detection
rate. This is because the median filter length was chosen to
be 15. The selection of this length implies that any anomaly
existing for less than 4 hours (i.e., 8 measurements) will be
filtered and thus will not be detected. This limitation can
be addressed by reducing the median filter length. A direct
consequences of this selection will be an increase in sensitivity
and the FP rate. We see in Table V that in case of SDSC
one event was not detected; upon further investigation we
observed that the duration of this undetected event was three
hours due to which it was removed by the median filter
and not considered as an anomaly. We therefore conclude
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Algorithm 2: Event detection.
Data: Array of performance measurements ∆, false positive

rate α, detection rate β, window size ρ, initial duration
for training dataset τ and width of median filter ν.

Result: Array of timestamp-brackets Ψ classifying windows as
containing events.

Apply low-pass median filter of width ν to obtain ∆tr;1
Compute µtr and σtr for {δt ∈ ∆tr|t0 < t < t0 + τ};2

Let threshold η1 =
βσ2

α
, η0 =

1− β
1− α and t0 = 0;3

/* determine the baseline */
Apply χ2 test on ∆tr to determine baseline distribution;4
/* initialize the observation window */
Let τs = t0 + τ − ν and τe = t0 + τ ;5
for {ω ∈ Ω} do6

Let x1 = rand(), x2 = rand() and7

n =
√
−2 ln(x1) · sin(2πx2) · σ;

R = median{ωi|τs ≤ i ≤ τe};8
Compute η ;9
if η1 < η then10

Observation δ is anomalous, add δ′s timestamp to the11
array of events Ψ;

else if η < η0 then12
Observation δ is not anomalous;13
Update the training dataset with δ, discard the oldest14
entry, recalculate σtr and η1;

else Not enough information to make a decision;15
Increment τs and τe;16

end17
Analyze Ψ and combine consecutive anomalous windows18
defining unique events;

that selecting a median filter of lesser length increases the
detector’s sensitivity at the cost of slightly higher FP rates.

In summary, KF, HW and AFD achieve 100% detection
rates at very high false-positive rates. PL which performs better
than KF, HW and AFD with acceptable levels of detection-
rates and false-positive rates is superseded by DTA with higher
detection-rates for acceptable levels of false-positive rates.
Detection delays of DTA are provided in Table V. Comparison
with Table III shows that DTA incurs nearly the same detection
delays as that of PL, HW and KF. DTA performs slightly better
than PL on four links, but slightly worse on the other four.
Same is the case with HW. On the other hand, the KF method
features lower delays, but it does so with poor TP rates. The
AFD method presents the worst results in comparison to other
methods. We therefore conclude that DTA, while providing
considerably higher accuracy, does not introduce a significant
increase in detection delays.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we first evaluated the accuracies and detection
delays of existing anomaly detectors for event detection over
end-to-end Internet paths. We observed that most existing
anomaly detectors and network metrics are unsuitable for
anomaly detection beyond enterprise boundaries. Existing al-
gorithms that can be adapted for the present problem provide
acceptable detection delays, but their accuracies are quite
low. We then revealed statistical characteristics of Internet

TABLE V
AVERAGE DETECTION DELAY t̄ OF THE PROPOSED DTA APPROACH (IN

TERMS OF NUMBER OF ADDITIONAL OBSERVATIONS REQUIRED BEFORE
AN EVENT IS DETECTED)

Decision Theoretic Approach
Detected Undetected Total

# t̄ # t̄
UTOR 35 11.29 3 ∞ 38
CERN 8 13.53 0 - 8
DESY 30 5.29 1 ∞ 31
SDSC 5 6.60 1 ∞ 6
FZK 17 8.60 0 - 17
TRIUMF 2 3.70 1 ∞ 3
NSLABS 4 0.00 0 - 4
SWITCH 5 0.60 0 - 5

bandwidth measurements that can facilitate detection. Based
on these characteristics, we proposed a decision-theoretic
anomaly detector (DTA). We demonstrated the application
of the DTA approach to Gaussian and Weibull distributed
Internet bandwidth measurement and showed that DTA can
achieve considerably higher accuracy than existing detectors
while having similar detection delays.

As part of our ongoing work, we are developing a tool based
on the proposed DTA approach. This tool and a wrapper for
the RRDtool will be released as open-source and will re-
place the Plateau algorithm at the SLAC National Accelerator
Laboratory’s Internet measurement infrastructure.
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