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Abs t r ac t  

Using a generalization of the usual Fourier transform on Minkowski space we 
demonstrate an SO0(l, 4) (SO0(3, 2)) equivalence between a massless spin 0 or spin 
1/2 particle on de Sitter space (anti-de Sitter space) and corresponding particles of 

1 1 2 2 mass - 4#~(4n,) or - ~ ( ~ ) ,  respectively.. Using these results we consider an in- 
terpretation of Feynman's theory of relativistic cut-off as a theory of interaction of 
matter with rnassless virtual bosons in de Sitter or anti-de Sitter space. This inter- 
pretation leads to some interesting results about the electromagnetic mass differences 
of hadrons. 

1 I n t r o d u c t i o n  

( 'onformal  invariance of the laws of physics places four space-time manifolds, Minkowski 
space, de Sitter space, anti-de Sitter space and the universal cosmos, on a certain equal 
footing, in that  the actions of the conformal group on them are projective ones, and in this 
sense they share a certain uniqueness Ill. These manifolds and the corresponding actions 
of the conformal group occur naturally in various decompositions of the conformal group 
and in various associated parallelizations, respectively [2]. Although additional physical 
principles such as causality and positivity of energy eliminate some of these space-time 
models as plausible ones [3], we wish to consider only conformal invariance plus as few 
as possible additional postulates,  which are physically necessary, in describing virtual 
particles and perhaps short-lived resonances. If we only demand conformal invariance 
there is nothing which prevents us from taking the view that  such particles have their 
existences in any of the space-time models mentioned above. However, it is necessary to 
postulate that  the usual definition of an elementary particle applies to these particles, 
namely, that  an elementary particle is given by a ray in an irreducible projective ray 
representation of the Poincar6 group. Now we have shown that  a free particle in de Sitter 
space (V 4) or anti-de Sitter space (ADS) fulfills this definition of an elementary particle 
[4]. Thus virtual particles can be considered as particles in Minkowski space, (M4), or 
V 4 or AdS. (We can also view them as particles in the universal cosmos, analogously; 
however the essential ingredient, as we shall see, is the introduction of a radius, and this 
information is already obtained by considering V 4 or ADS.) 

In order to describe interactions of such virtual particles with real particles in the 
Minkowski space of our objective reality, we introduce a generalized Fourier transforrO, 
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which transfers quant ized fields on V 4 or AdS to corresponding fields on Minkowski space. 
Massless fields on V 4 are associated to tachyons in M 4, and those on AdS are associated to 
real (positive) mass particles in M 4. Our main  results are summar ized  in the table. Using 
these results we consider the theory  of  the in teract ion of ma t t e r  with the corresponding 
massive virtual  part icles ( tachyons in the V 4 case and real mass part icles in the AdS case) 
as describing the interact ion of  ma t t e r  in M 4 with massless virtual  part icles in V 4 or AdS. 
We conclude with some applicat ions to  the e lect romagnet ic  s t ruc ture  of  hadrons .  

2 T h e  G e n e r a l i z e d  F o u r i e r  T r a n s f o r m  

We refer to reference I21 for the s tandard  definitions of  V 4 and AdS and  also for the 
description of the representat ions of  the conformal  group and its SO0(3, 1) and SO0(4, 1) 
subgroups on V 4 and AdS. The  space of solutions of  the "mass"  zero wave equat ion on 
V 4 (ADS), 

, ( 1 )  

(~ E V 4 (ADS} and f :  V 4 --+ C ( f :  AdS -+ C) ,  ~ is the Laplace Bel t rami opera to r  on V 4 
(ADS)) defines an invariant subspace of  the representat ion space of  the conformal  group,  
whose complement  is not. invariant for p := 0 ( indecomposable  representat ion) .  Note tha t  
the restr ict ion of the representat ion of the conformal group to SOo(1,4) (SO0(3,  2) ) is  just  
a linear representat ion of  the subgroup.  Vt% may also construct  a multiplier  representa t ion 
of SOo(1, 4) (SO0(3, 1 )) on T 3, the unit mass hyperbolo id  [4]; and the equivalence between 
this SOo(1,4) (SO0(3~ l))  representat ion on T 3 with the corresponding one on the space 
of  solutions of  the zero mass wave equation on V 4 (ADS) is established with the help of  
the generalized Fourier t ransform: 

Here g,: T 3 --+ C,  ~ E T 3 and c~(t,) is a constant  which is the Plancherel  measure on V 4 
or AdS. We have the following key result [6]: 

(p2 = p .p~ = M2) where 

A 
B. = e .  + { P ° ' G " } '  

qA 2- ),2s(s ÷ 1)}¢](() 
(3) 

L , ,  =Mi,  v + Su,. (4) 

This defines an equivalence at least for s = 0 and  s = ½: for s = 0, ~ s  = ~ and 

?,/2 ---- ~~'~ab L ' I  r c a b  with Lab = Mas + S~s. Using this one readily establishes the results 

¢orapiled in the table. 
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Table: Some Quantities for Massless Spin Zero and Spin ½ Fields on V 4 and AdS. 

V 4 or A d S  associated Minkowski space 
Momentum space 

s = O  ( 5 + ~ - ~ ) f ( ~ ) = O  ( p 2 +  4_~)~b(V)= 0 
wave equation 

1 D1/2I (~)  = 0 (p2  + _~)¢(p)  = 0 

s = 0 ~n ~ = 0 m 2 ~n2 1 
mass 

1 ~2 0 m 2 =- rn 2 

(D - ¥ ~ ) ¢ ( ~ )  = 0 

(D - ~ ) ¢ ( ~ )  = 0 

m ~ r~2 1 

rn 2 = ~n 2 - ~r  

( D1/2 = h~=b~l r .~b _ ~-R~'I D a / 2 f ( ~ )  = 0 is the conformal invariant wave equation.) 

3 A p p l i c a t i o n s  t o  Q u a n t u m  F i e l d  T h e o r y  

We may surmnarize our results as follows: a massless spin zero or spin 1/2 field in 
de Sitter (anti-de Sitter) space is associated with a massive spin zero or spin 1/2 field of 
mass2 - 4 ~ ( +  4---~R ) 1  1 or - R-r2 (+ ~-R~2 ), respectively. Denote a free scalar field of mass ~ - 4-~1 
by ¢(x; R), where now R may also be imaginary, in order to include the AdS case. Add 
to the usual interaction Lagrangian, which describes the interaction of a charged spin 1/2 
particle and a pseudo-scalar photon [51, the following additional term: 

f_.'(x) = ke / ¢(z )75¢(z  ) • ¢(x; R ) p ( R 2 ) d R  2 (k s = - 1 )  (5) 

We may interpret this additional term as describing the contribution from virtual photons, 
which have imaginary mass (R 2 > 0) or real mass (R 2 < 0), or equivalently, as describing 
the contribution from massless scalar de Sitter or andti-de Sitter fields. The choice of 
p2(R2)  = ~ (R  2 + Rg)  leads to Feynman's  result for the self energy of the electron [5]: 

4 r  87r log \ ~ - ]  (Ao 2 - ) (6) 
. . . .  4R02 

Classically, we find by a s tandard calculation [6], 

rose :- ~ T°°(x) + T°°(s;  R °) dS~ = ~ m 

( T V " ( x )  is the usual energy-momentum tensor for the massless scalar field, and T~'V(x; R °) 
is the energy-momentum tensor for the massive scalar fiedl.) Thus we may view ~0 as an 
effective radius for a poin( charge. 

Now we give some applications to the electromagnetic s tructure of hadrons. For the 
masses of the ~r ± or K ~= we take the formula 

(&,m) 2 
m ± = m 0  + - ( 8 )  

2too 
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where mo is the mass of the corresponding natural particle i.e. ¢co or Ko. This formula is 
better suited for describing electromagnetic mass differences of bosons than the formula 
m = m o  + Am, since bosons obey the Klein-Gordon equation [6]. Next substitute (7) into 
(8). For A0 real we obtain the correct sign difference for the m ± - m o  of the pion system, 
and for A0 pure imaginary we obtain the correct sign difference for the m ± - m0 of the 
kaon system. We also obtain reasonable quantitative agreement from these simple classical 
arguments [6]. The quantum mechanical treatment is complicated by the fact that we must 
consider the quantum theory of interaction of matter  with t achyons [7]. However we have 
been able to obtain the 7r ± - 7r0 mass difference from a quantum mechanical treatment [6}. 
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