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Abstract

Using a generalization of the usual Fourier transform on Minkowski space we
demonstrate an SOq(1,4) (SOo{3, 2)) equivalence between a massless spin 0 or spin
1/2 particle on de Sitter space {anti-de Sitter space} and corresponding particles of
mass - :1i{ k) of — 2 (%), respectively. Using these results we consider an in-
terpretation of Feynman’s theory of relativistic cut-off as a theory of interaction of
matiter with massless virtual bosons in de Sitter or anti-de Sitter space. This inter-
pretation leads to some interesting results about the electromagnetic mass differences
of hadrons.

1 Introduction

(‘onformal invariance of the laws of physics places four space-time manifolds, Minkowski
space, de Sitter space, anti-de Sitter space and the universal cosmos, on a certain equal
footing, in that the actions of the conformal group on them are projective ones, and in this
sense they share a certain uniqueness [1]. These manifolds and the corresponding actions
of the conformal group occur naturally in various decompositions of the conformal group
and in various associated parallelizations, respectively [2]. Although additional physical
principles such as causality and positivity of energy eliminate some of these space-time
models as plausible ones [3], we wish to consider only conformal invariance plus as few
as possible additional postulates, which are physically necessary, in describing virtual
particles and perhaps short-lived resonances. If we only demand conformal invariancé
there is nothing which prevents us from taking the view that such particles have their
existences in any of the space-time models mentioned above. However, it is necessary t¢
postulate that the usual definition of an elementary particle applies to these particless
namely, that an elementary particle is given by a ray in an irreducible projective ray
representation of the Poincaré group. Now we have shown that a free particle in de Sittef
space (V*) or anti-de Sitter space (AdS) fulfills this definition of an elementary partide
[4]. Thus virtual particles can be considered as particles in Minkowski space, {M*),
V4 or AdS. (We can also view them as particles in the universal cosmos, analogoﬂs}ff;
however the essential ingredient, as we shall see, is the introduction of a radius, and this
information is already obtained by considering V* or AdS.)

In order to describe interactions of such virtual particles with real particles in the
Minkowski space of our objective reality, we introduce a generalized Fourier transfor™



545

which transfers quantized fields on V4 or AdS to corresponding fields on Minkowski space.
Massless fields on V* are associated to tachyons in M*, and those on AdS are associated to
real (positive) mass particles in M*. Qur main results are summarized in the table. Using
these results we consider the theory of the interaction of matter with the corresponding
massive virtual particles (tachyons in the V4 case and real mass particles in the AdS case)
as describing the interaction of matter in M* with massless virtual particles in V4 or AdS.
We conclude with some applications to the electromagnetic structure of hadrons.

2 The Generalized Fourier Transform

We refer to reference [2] for the standard definitions of V4 and AdS and also for the
description of the representations of the conformal group and its §0¢(3,1) and 504(4,1)
subgroups on V* and AdS. The space of solutions of the “mass” zero wave equation on
V4 (AdS),
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(€ £ V4 (AdS) and f:V* = C (f: AdS - C), O is the Laplace Beltrami operator on V*
{AdS)) defines an invariant subspace of the representation space of the conformal group,
whose complement is not invariant for 4 = 0 (indecomposable representation). Note that
the restriction of the representation of the conformal group to 50(1,4) (500(3, 2)) is just
a linear representation of the subgroup. We may also construct a multiplier representation
of §00(1,4) (§00(3,1)) on T3, the unit mass hyperboloid [4); and the equivalence between
this §0g(1,4) (50¢(3,1)) representation on T° with the corresponding one on the space
of solutions of the zero mass wave equation on V* (AdS) is established with the help of
the generalized Fourier transform:
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Here y: T3 — C, £ c T? and ¢*(v) is a constant which is the Plancherel measure on V4
or AdS. We have the following key result [6]:
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Bg = P,u,*f' §T;l {P 91/9;,;}» L;w: M;zv+5;zv- (4}
This defines an equivalence at least for s = 0 and s = }: for s = 0, 0, = O and
0 2 = 5'};7711(16[/@ with Loy = Mgy + Sas- Using this one readily establishes the results

tompiled in the table.
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Table: Some Quantities for Massless Spin Zero and Spin % Fields on V4 and AdS.

V4 or AdS associated Minkowski space
Momentum space

0 (B+Z)f(6)=0 (P+ 5)d(p)=0 (O - gfm)d(z)=0

ta
1t

wave equation

s=} DV(&)=0 (P24 F)6(p)=0 (O- f)e(z) =0

_ ~n 2 _ =2 _ 1 2 =2 1

s=0 m* = 0 m°=m yzd mé=m ifz
mass

_1 X 2 __ =2 _ 2 2 =2 2

$=3 m* =0 m°=m Yl m* = m BT

(DY? = L LLo® — 2Ly DY2f(£) = 0 is the conformal invariant wave equation.
2R 2R

3 Applications to Quantum Field Theory

We may sumiunarize our results as follows: a massless spin zero or spin 1/2 field in
de Sitter (anti-de Sitter) space is associated with a massive spin zero or spin 1/2 field of
mass? — &z (+ 7k ) or — 7 (+ 557 ), respectively. Denote a free scalar field of mass® — ;7
by #(z; R), where now R may also be imaginary, in order to include the AdS case. Add
to the usual interaction Lagrangian, which describes the interaction of a charged spin 1/2
particle and a pseudo-scalar photon [5], the following additional term:

£'(z) = ke/z/j(z)ysw(z)-q&(:c;R)p(Rz)dRz (k2 = -1) (5)

We may interpret this additional term as describing the contribution from virtual photons,
which have imaginary mass ( R? > 0) or real mass (R? < 0), or equivalently, as describing
the contribution from massless scalar de Sitter or andti-de Sitter fields. The choice of
p*(R?) = 6(R® + R}) leads to Feynman’s result for the self energy of the electron [5]:

am Ag? 1 5 1
I e o -_— - = - 6
BT = 4 g [l‘)g (mZ) 2} (Ao” = ~ {72 ©)
Classically, we find by a standard calculation 6],
class _ '_L/w 00 00/ ., RO 3 — S (ﬁg
amig = o [ [1%(2) + T®(z: B)| &’z = 5 (2 ) m (7

(T*¥(z) is the usual energy-momentum tensor for the massless scalar field, and T#"(«z; R°)
is the energy-momentum tensor for the massive scalar fiedl.) Thus we may view Kl? as an
effective radius for a point charge.

Now we give some applications to the electromagnetic structure of hadrons. For the
masses of the 7* or K¥ we take the formula

2
m* = mo 4 2T (8)
27?14)
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where myg is the mass of the corresponding natural particle i.e. 7y or Kq. This formula is
better suited for describing electromagnetic mass differences of bosons than the formula
m = my + AAm, since bosons obey the Klein-Gordon equation [6]. Next substitute {7) into
(8). For Ag real we obtain the correct sign difference for the m* — mg of the pion system,
and for Ay pure imaginary we obtain the correct sign difference for the m* — myq of the
kaon system. We also obtain reasonable quantitative agreement from these simple classical
arguments [6]. The quantum mechanical treatment is complicated by the fact that we must
consider the quantum theory of interaction of matter with tachyons [7]. However we have
been able to obtain the 7% — 7 mass difference from a quantum mechanical treatment {6).
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