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Thesis directed by Prof. Senarath P. de Alwis

IIB string theory represents one of the most promising realizations of string theory studied

to date because it successfully handles a variety of phenomenological issues. These issues include

mechanisms for stabilizing all relevant moduli fields, generating a small cosmological constant and

breaking supersymmetry on a low scale. In this dissertation we examine these issues and describe

the phenomenological consequences of a class of realistic IIB models that have the potential to

effect both LHC physics and cosmology. In addition, we explore ways to embed interesting physical

models, such as the QCD axion, within this class of IIB models.
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Chapter 1

Introduction

1.1 String Theory Generalities

For more than four decades, string theory has captured the imagination of a large section of

the theoretical physics community. The undeniable allure of the string theory lies in its promise to

unify the Standard Model with gravity in a UV complete theory. Over the course of these decades,

physicists’ beliefs about the ultimate meaning of string theory have been significantly altered by

several paradigm-shifting revolutions. In the wake of each of these revolutions, their presuppositions

about string theory have proven incomplete and a deeper and less obvious picture of string theory’s

ultimate interpretation has emerged.

The most important of these major revolutions came in realizing that each consistent, low

energy construction of string theory was related to all other constructions via transformations

known as dualities. No longer were there several different string theories, only several weakly

coupled limits of the same theory. These limits are related to each other via the so-called “web of

duality” (see Figure 1.1). Each corner of this web represents a different string construction that

contains different content and interactions. Accordingly, each construction has different virtues and

drawbacks. However, the web of duality enables one to focus on a specific string construction and

work out its consequences without worrying about what form the ultimate version of string theory

will take. For the time being, we are content to live on a corner of the web of duality until the day

comes when the web’s center (M Theory) can be elucidated.

In Table 1.1 we provide some basic information about each string construction. The essential
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Figure 1.1: String theory web of duality
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differences between constructions comes from how the left and right propagating string modes are

handled.

Name Comments

Type I Contains unoriented open and closed strings
Preserves N = 1 SUSY

Type IIA Left and right moving string modes have opposite chirality
Odd Dimensional D-branes and O-planes
Preserves N = 2 SUSY

Type IIB Left and right moving string modes have same chirality
Even Dimensional D-branes and O-planes
Preserves N = 2 SUSY

Heterotic E (E8 × E8) Left and right moving string modes are independent
Preserves N = 1 SUSY, gauge group is E8 × E8

Heterotic O (SO(32)) Left and right moving string modes are independent
Preserves N = 1, gauge group is SO(32)

Table 1.1: Basic information about various 10D superstring constructions.

Another major theoretical revolution came in understanding the vacuum state of string the-

ory. Naively, one might assume that there exists a single, unique vacuum state of string theory. In

this picture, most (if not all) of the free parameters of the Standard Model are direct consequences

of this vacuum state. The job of a string theorist would be to identify this state and hence uniquely

reproduce the Standard Model. However, at least two intrinsic features of string theory prevent this

from happening. One is the above mentioned web of duality. The other, as we shall see, comes from

a fundamental freedom in choosing other parameters in string theory. This freedom is irreducible

and leads to an enormous vacuum degeneracy that can be envisioned to be parameterized by an

unknown potential function known as the landscape. For some time, the landscape was thought

to be an intractable bug within string theory. However, like many persistent bugs, it eventually

became a feature. We will see why this is the case later on.

While readily accepting the elegance and simplicity of string theory, one is forced to contend

with several necessary additional features that, at first blush, seem non-obvious. The first of these

features is the fact that string theory is a ten dimensional theory. Like any higher dimensional

theory, these extra dimensions have to be compactified to a small internal volume that lives at each
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point in spacetime, as in Kaluza Klein models. In string theory, the internal space is parameterized

by scalar fields, known as moduli. The fields must be stabilized in order to recover a four dimensional

theory. This category of research is known as moduli stabilization, and it represents a significant

portion of this dissertation.

Another non-obvious feature of string theory that will play a crucial role in our discussion

is the presence of p-dimensional extended objects known as branes. In type II string theory, an

important type of brane is referred to as D-branes. These objects can be viewed as hyperplanes upon

which strings can end. Additionally branes act as sources for higher dimensional generalizations

of field strengths, known as fluxes. As we shall see, branes are essential for realizing both chiral

matter and gauge fields in certain string constructions. In addition, the fluxes sourced by these

branes will enable us to successfully stabilize some the moduli fields. As extended objects, p-branes

can wrap around homology cycles inside the compactified volume, providing a potential energy that

stabilizes some of the moduli fields.

A final feature of string theory that turns out to be enormously beneficial is the presence of

supersymmetry (SUSY). Supersymmetry enters into string theory in a fundamental way, namely

it can be viewed as a symmetry transformation on the string worldsheet exchanging bosonic coor-

dinates with fermionic coordinates. This symmetry is necessary for removing a tachyon from the

bosonic sector. Additionally, supersymmetry reduces the number of dimensions of string theory

from 26 down to 10. In fact, the need to preserve the simplest version of supersymmetry, (N = 1

SUSY in 4D), plays a crucial role in identifying the class of manifolds of which the compactified

volume is a member.

The low energy limit of string theory is a local version of supersymmetry known as supergrav-

ity (SUGRA). As the name implies, this symmetry includes the spin-3/2 supersymmetric partner of

the graviton, namely the gravitino. The mass of the gravitino is denoted m3/2 and it plays the role

of something like an order parameter for the supergravity models considered in this dissertation, in

that is sets the mass scale of all the other SUSY particles. It can be demonstrated that all generic

models of supergravity can be summarized by three specific functions. Some basic information
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about these functions is given below:

• Kähler Potential, K(Φ,Φ), This is a real function that parameterizes the kinetic terms.

It is corrected perturbatively to all orders as well as non-perturbatively.

• Superpotential,W (Φ), This is a holomorphic function that parameterizes potential terms.

It is only corrected non-perturbatively.

• Gauge Kinetic Function, f(Φ), This is a holomorphic function that parameterizes gauge

coupling. It is perturbatively corrected at 1-loop as well as non-perturbatively.

The minimum of the SUGRA scalar potential constitutes a cosmological constant, Λ, and

could explain the observed acceleration of the expansion of the universe in the form of dark energy.

The SUGRA scalar potential is given by

VSUGRA = eK
[
KNMDNWDMW − 3|W |2

]
(1.1)

Here, DNW represents the Kähler covariant-derivative of the superpotential, W , with respect to a

superfield, N , that is DNW = ∂NW + KNW . It can be shown that supersymmetry is broken if

DNW 6= 0.

The basic approach of much the following work is to first consider a string theory construction

that can be summarized by an effective supergravity action by specifying K, W and f . We then

examine the scalar potential, eq. (1.1), and search for a minimum of this potential. If the moduli

fields satisfy the equation DNW = 0 at the minimum of the potential then they preserve super-

symmetry, otherwise they break it spontaneously. The value of the scalar potential at its minimum

corresponds to the cosmological constant. So, in principle, we want this value to be extremely small

and positive, (Vmin ∼ 10−120M4
P). As one might imagine, arriving at such situation is non-trivial.

To close this section we reiterate some of the well known phenomenological consequences of

supersymmetry. The list of contemporary theoretical challenges potentially resolved by supersym-

metry include the following:

• Resolving the Hierarchy Problem by stabilizing the Higgs mass near the weak scale.
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• Driving electroweak symmetry breaking.

• Providing a dark matter candidate in the Lightest Supersymmetric Partner (LSP).

• Providing a source for dark energy and the cosmological constant in the vacuum energy

density of the SUSY fields.

• Allowing for improved gauge coupling unification around 1016GeV.

As one can see from this list, if broken supersymmetry is realized in Nature, many of the

outstanding challenges of theoretical physics have the potential to be resolved. String theory

enables an efficient study of supersymmetry breaking for several reasons. Principle among these is

the fact that it reduces the enormous parameter space that accompanies the simplest realizations

of supersymmetry breaking. For instance, if one adds supersymmetric partners to the Standard

Model and allows each one of these partners to break SUSY by aqcuiring a mass, one arrives at

the Minimal Supersymmetric Standard Model (MSSM). The most generic soft MSSM Lagrangian

is given in eq. (1.2)

LMSSM
soft = −1

2

(
M3G̃G̃+M2W̃W̃ +M1B̃B̃

)
−
(
ũAuQ̃Hu + d̃AdQ̃Hd + ẽAeL̃Hd

)
+ h.c.

−Q̃∗m2
QQ̃− L̃∗m2

LL̃− ũ
∗
m2

uũ− d̃
∗
m2

dd̃− ẽ
∗
m2

e ẽ−m2
Hu
H∗

uHu −m2
Hd
H∗

dHd

− (µHuHd + h.c.) (1.2)

This Lagrangian introduces 105 new free parameters. As we will see in the text, IIB string theory

allows us to reduce this parameter space to two continuous parameters and one sign. It turns out

that this is the fewest number of free parameters of any phenomenological model of supersymmetry.

1.2 IIB String Theory

As stated earlier, in this dissertation we are exclusively focused on examining the phenomeno-

logical consequences of a particular string construction, namely IIB string theory. Let us now review

some facts about IIB string theory. The essential ingredients of this theory are
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• Open and closed strings whose massless modes (hopefully) correspond to various bosonic

and fermionic particles in the Standard Model as well as other massless fields.

• D3/7 branes and O3/7 planes.

• Two types of fluxes, RR and NSNS.

• A Calabi Yau Orientifold representing the compactified volume.

In 10 dimensions, IIB string theory possesses an extended version of supersymmetry (N = 2).

For phenomenological reasons, namely the presence of chiral fermions, this supersymmetry needs

to be reduced to N = 1 in four dimensions. This can be achieved if the internal volume is taken

to be a so-called “Calabi Yau” manifold with an orientifold projection. This is often referred to

as Calabi Yau Orientifold (CYO). Fluxations of this manifolds metric that preserve the the Calabi

Yau nature of the manifold correspond to massless scalars in the four dimensional theory. These

fields are known as moduli. For IIB string theory, the moduli fields are

• Kähler Moduli, T , These fields determine the size of internal manifold via V = kijkt
itjtk,

(ℜT i = ∂V
∂ti

). The number of these fields is given by h11 ∼ O(1).

• Complex Structure Moduli, z, These fields determine the “shape” of internal manifold.

The number of these fields is given by h21 ∼ O(100).

• axio-Dilaton, S, This field determines gauge couplings after it is stabilized.

These massless scalars need to be stabilized, otherwise they may give rise to 5th-forces via

gravitational interactions with Standard Model particles. In addition, the moduli fields need to

break the remaining supersymmetry N = 1 down to nothing. In a seminal work Giddings et. al. [1],

it was shown that both the complex structure moduli as well as the axio-Dilaton can be stabilized

when fluxes are turned on the internal manifold. Specifically, the RR 3-form flux, F3, and the

NSNS 3-form flux, H3, have to satisfy integral cohomology conditions. These can be viewed has

higher dimensional generalizations of Dirac quantization.
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1

(2π)2α′

∫

γ
F = nF ∈ Z

1

(2π)2α′

∫

γ
H = nH ∈ Z (1.3)

Where γ is a three cycle (akin to a donut hole). In [1], it was shown that fluxes conditions, eq (1.3)

can be chosen in such a way that the complex structure moduli, zi, as well as the axio-Dilaton, S,

can be stabilized at supersymmetric points in field space. That is

DziW = DSW = 0 (1.4)

With a Minkowski minimum for the scalar potential. This leaves the remaining Kähler moduli

unfixed, and hence this model is known as “no-scale”.

The remaining Kähler moduli need to be stabilized in such a way that supersymmetry is

broken spontaneously and a near-zero cosmological constant is achieved. This first model to suc-

cessfully achieve these requirement is referred to as the Large Volume Scenario (LVS) [2]. In this

model the authors considered a Calabi Yau Orientifold with one large Kähler modulus and sev-

eral small Kähler moduli. The overall volume of this space is computed from subtracting out the

volumes of the smaller volumes from the large volume, must like piece of swiss cheese. For this

reason this class of CYO’s is referred to as a “Swiss Cheese” Manifold. A humorous yet informative

picture of this manifold is given in figure 1.2

In LVS, the presence of these smaller volumes is crucial for stabilizing the Kähler moduli and

breaking supersymmetry. It can shown that non-perturbative effects such as gaugino condensation

from a condensing gauge group on a stack of D branes or string instantons are necessary for

stabilizing the Kähler moduli. However, once they are stabilized, the resulting four dimensional

theory has many promising features. Namely, it is non-supersymmetric and it can have a nearly

zero cosmological constant in such a way that the resulting scales of the SUSY particles is not

strongly dependent upon how V ∼ 0 is achieved.
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Figure 1.2: Swiss Cheese Manifold with V = VL −∑i VSi.

1.3 Summary of Work

The work presented in this thesis can be separated into three categories, all related to exam-

ining the phenomenology of IIB string theory. These are

• inoAMSB Trilogy - Chapters 2, 3 and 4 are based on papers [3] [4] [5]. These chapters

examine the phenomenological consequences of a type of supersymmetry breaking and

mediation known as inoAMSB. This model comes directly from IIB string theory and the

Large Volume Scenario in particular. In this series of papers we discuss the theoretical and

phenomenological predictions for both LHC physics as well as modern cosmology.

• Single Kähler Modulus Stabilization - Chapter 5 is based on paper [6]. In this chapter,
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we return to the issue of moduli stabilization and examine a class of string models whose

moduli can be stabilized along the lines of the Large Volume Scenario. We work out various

phenomenological consequence for this class of models.

• QCD Axion in LVS - Chapter 6 is based on paper (to be published). In this chapter, we

analyze the potential for realizing a QCD axion with the Large Volume Scenario. We make

consistent assumptions about the types of fields and interactions that can be constructed

with IIB string theory and we examine the phenomenological constraints on a model that

reproduces the QCD axion.



Chapter 2

Gaugino Anomaly Mediated SUSY Breaking: phenomenology and prospects

for the LHC

Chapter Summary

In this chapter, examine the supersymmetry phenomenology of a novel scenario of supersymmetry

(SUSY) breaking which we call Gaugino Anomaly Mediation, or inoAMSB. This is suggested by

recent work on the phenomenology of flux compactified type IIB string theory. The essential features

of this scenario are that the gaugino masses are of the anomaly-mediated SUSY breaking (AMSB)

form, while scalar and trilinear soft SUSY breaking terms are highly suppressed. Renormalization

group effects yield an allowable sparticle mass spectrum, while at the same time avoiding charged

LSPs; the latter are common in models with negligible soft scalar masses, such as no-scale or

gaugino mediation models. Since scalar and trilinear soft terms are highly suppressed, the SUSY

induced flavor and CP -violating processes are also suppressed. The lightest SUSY particle is the

neutral wino, while the heaviest is the gluino. In this model, there should be a strong multi-jet

+Emiss
T signal from squark pair production at the LHC. We find a 100 fb−1 reach of LHC out

to m3/2 ∼ 118 TeV, corresponding to a gluino mass of ∼ 2.6 TeV. A double mass edge from the

opposite-sign/same flavor dilepton invariant mass distribution should be visible at LHC; this, along

with the presence of short– but visible– highly ionizing tracks from quasi-stable charginos, should

provide a smoking gun signature for inoAMSB.
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2.1 Introduction

String theory is very attractive in that it allows for a consistent quantum mechanical treat-

ment of gravitation, while at the same time including all the necessary ingredients for containing

the well-known gauge theories which comprise the Standard Model of particle physics. Phenomeno-

logically viable versions of string theory require the stabilization of all moduli fields as well as weak

to intermediate scale supersymmetry breaking. Models satisfying these criteria were first developed

in the context of type IIB string theory using flux compactifications and non-perturbative effects

on Calabi Yau orientifolds (CYO’s) (for reviews see [7] [8]). The low energy limit of type-IIB string

theory after compactification on a CYO is expected to be N = 1 supergravity (SUGRA).

Two classes of the above models which yield an interesting supersymmetry breaking scenario

have been studied:

a) Those with only a single Kähler modulus (SKM models). These are essentially of the KKLT

type [9] but with uplift coming from one-loop quantum effects.

b) Large Volume Scenario (LVS) [2] models which require at least two moduli.

In both of these types of models, the moduli fields are stabilized using a combination of fluxes

and non-perturbative effects. Additionally, supersymmetry is broken by the moduli fields acquiring

non-zero F-terms and interacting gravitationally with the MSSM. For both models, the gauginos

acquire mass predominately through a Weyl anomaly effect while the classical contribution to the

scalar masses and trilinear coupling constants are naturally suppressed.

Generically in a string model there are three types of contributions to the soft SUSY breaking

terms:

(1) Terms generated by classical string theory effects.

(2) Terms generated by quantum effects (effectively string loop corrections).

(3) Weyl anomaly (AMSB) contributions [10] to the gaugino masses.
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In this class of models, the MSSM may be located on D3 branes at a singularity or on D7 branes

wrapping a collapsing four cycle in the CYO. The string theory calculations are expected to give

boundary conditions at (or near) the string scaleMstring, which may range (almost) up to the GUT

scale or as low as some intermediate scale ≪ MGUT . In both cases, the classical string theory as

well as 1-loop quantum contributions to the soft SUSY breaking terms are suppressed relative to

the weak scale. For gaugino masses, it has been shown that these will gain contributions from the

Weyl anomaly, and therefore assume the usual form as expected in models with anomaly-mediated

SUSY breaking:

Mi =
big

2
i

16π2
m3/2. (2.1)

Here i labels the gauge group, gi is the associated gauge coupling, m3/2 is the gravitino mass,

and bi is the co-efficient of the gauge group beta function: bi = (33/5, 1,−3). Meanwhile, soft

SUSY breaking scalar masses will have generically suppressed classical string masses and 1-loop

contributions, and receive no contribution from Weyl anomalies [11].

To good approximation, we can set in this class of models,

m0 = A0 = 0, (2.2)

where m0 is the common soft SUSY breaking scalar mass at Mstring and A0 is the trilinear soft

SUSY breaking (SSB) term.

In addition, the bilinear SSB mass B and the superpotential µ term would be zero at the

classical (AdS) minimum. However these can acquire non-zero values once uplift terms that correct

the value of the cosmological constant are turned on. Here, we will feign ignorance as to the origin

of these terms, and instead adopt a phenomenological approach which determines their values by

finding an appropriate minimum of the electroweak scalar potential. The minimization procedure

allows one to trade the B parameter for the ratio of Higgs field vevs, tanβ, and to require the value

of |µ| which is needed in order to specify the correct mass of the Z boson [12]. In this case, the

SKM and LVS models would both be well-described by the following parameter space

m3/2, tanβ, sign(µ), (2.3)
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where in addition we take m0 = A0 = 0. While the SSB scalar and trilinear terms are small at

Mstring, they can become large at Q =Mweak due to renormalization group (RG) running.

In fact, these sort of RG boundary conditions are similar to those of no-scale supergravity

models (NS) [13], and also gaugino-mediated SUSY breaking (inoMSB) models [14]. However, in

both NS and inoMSB models, it is expected that the gaugino masses unify to a common gaugino

mass m1/2 at the string scale. The fact that both scalar and trilinear soft SUSY breaking terms

have only small contributions at the high scale (compactification scale Mc, MP or MGUT ) is highly

desirable for solving the SUSY flavor and CP problems. In the general MSSM, unconstrained off-

diagonal terms in the scalar and trilinear sector lead to large contributions to flavor changing and

CP violating processes, for which there are tight limits [15]. Under renormalization group evolution,

the off-diagonal terms remain small, while diagonal terms receive significant contributions due to

gauge interactions and the large gaugino masses.

Using the NS or inoMSB boundary conditions, it is well known that one gains a sparticle

mass spectrum with τ sleptons as the lightest SUSY particle (LSP)1 . In models with R-parity

conservation, the τ̃1 would be absolutely stable, thus violating constraints coming from search

experiments for long lived, stable charged relics from the Big Bang. One way around this dilemma

has been suggested by Schmaltz and Skiba [16]: adopting Mstring > MGUT , so that above-the-

GUT-scale running lifts the value of m0 above zero at the GUT scale. Another possibility is to

allow for unconstrained, or a less-constrained, form of non-universal gaugino masses [17].

We find here that the m0 ∼ A0 ∼ 0 boundary conditions– along with the AMSB form for

gaugino masses– in fact leads to viable sparticle mass spectra across most of parameter space,

without the need for above-the-GUT-scale running, or a less-constrained form for gaugino masses,

or an artifically light gravitino mass. While these boundary conditions seem to emerge naturally in

type IIB string models with flux compactifications, we may also consider such boundary conditions

by themselves as being perhaps more general, and well-motivated by their desirable low energy

1 One way out is to hypothesize the gravitino as LSP. In our case, we will find that the gravitino mass is always
in the multi-TeV range.
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features. For this reason, we will hereafter refer to the class of models leading to the above boundary

conditions as gaugino anomaly mediated SUSY breaking, or inoAMSB models, since only the

gaugino masses receive contributions of the AMSB form, and the other soft parameters are similar

to those as generated in gaugino mediation.

The remainder of this chapter is organized as follows. In Sec. 2.2, we review some of the

string theoretic supergravity model details that motivate us to consider the inoAMSB form of

boundary conditions. In Sec. 2.3, we plot out the spectra of superpartners that is expected in the

inoAMSB model. While some features are similar to what is known as “minimal” AMSB (mAMSB),

some crucial differences exist that may allow one to distinguish inoAMSB from mAMSB and also

“hypercharged” anomaly-mediation (HCAMSB) [18]. We also examine what happens if the string

scale is taken to be some intermediate value, or if some small universal scalar mass is adopted. We

also plot out low energy constraints from BF (b → sγ) and (g − 2)µ. In Sec. 2.4, we examine the

sort of signatures expected from the inoAMSB model at the CERN LHC. Since squark masses are

always lighter than gluinos, we expect a large rate for q̃q̃ and q̃g̃ production, leading to a large rate

for multi-jet+Emiss
T events. Since the lightest SUSY particle is a neutral wino, as in most AMSB-

type models, we expect a nearly mass degenerate, quasi-stable chargino, which can lead to short

but observable highly ionizing tracks in a collider detector. In addition, squarks cascade decay to

neutralinos, followed by neutralino decay to lepton plus either left- or right-slepton states. The

unique cascade decay pattern leads to a distinct double mass edge in the same-flavor/opposite-sign

dilepton invariant mass distribution, which distinguishes inoAMSB from mAMSB or HCAMSB. In

Sec. 3.5, we present our conclusions.

2.2 Effective supergravity from IIB strings: Overview of Models

2.2.1 Effective Supergravity Theory

The low energy limit of IIB string theory, after compactification on a Calabi-Yao orientifold,

yields N = 1 supergravity. The (superspace) action then has the generic form (see for example



16

[19, 20])

S = −3

∫
d8zE exp[−1

3
K(Φ, Φ̄;C, C̄e2V )] +

(∫
d6z2E [W (Φ, C) +

1

4
fa(Φ)WaWa] + h.c.

)
, (2.4)

where we have set MP = (8πGN )−1/2 = 2.4 × 1018GeV = 1. Here K– the Kähler potential– is

a real superfield as is the gauge pre-potential V . W– the superpotential– is a holomorphic field,

as is the gauge coupling function fa and the (fermionic) gauge (super) field strength W(V ). Ed8z

is the full superspace measure and Ed6z is the chiral superspace measure. Ignoring the D-terms,

which are zero at the minimum of the potential in the class of models considered here, the SUGRA

potential takes the standard form (after going to the Einstein frame)

V (Φ) = FAF B̄KAB̄ − 3|m3/2(Φ)|2. (2.5)

Here FA = eK/2KAB̄DB̄W, DAW ≡ ∂AW + KAW where KA = ∂AK, KAB̄ = ∂A∂B̄K and

|m3/2|2 ≡ eK |W |2 becomes the squared gravitino mass when evaluated at the minimum of the

potential.

We separate the chiral superfields of the theory into moduli fields (which come from string

theory and describe the internal geometry of the CY manifold ) and the dilaton (which are collec-

tively called Φ) and the MSSM fields (which we have called C). Expanding K and W in powers of

the MSSM fields we have:

W = Ŵ (Φ) + µ(Φ)HdHu +
1

6
Yαβγ(Φ)C

αCβCγ + . . . , (2.6)

K = K̂(Φ, Φ̄) + K̃αβ̄(Φ, Φ̄)C
αC β̄ + [Z(Φ, Φ̄)HdHu + h.c.] + . . . (2.7)

fa = fa(Φ). (2.8)

Here we have separated the two Higgs superfield multiplets (Hd,u). The moduli fields essentially

play the role of spurion fields that break supersymmetry, once they are stabilized and acquire a

definite vacuum expectation value such that one or more of them also has a non-zero F-term.
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Also

K̂ = −2 ln

(
V +

ξ̂

2

)
− ln

(
i

∫
Ω ∧ Ω̄(U, Ū)

)
− ln(S + S̄), and (2.9)

Ŵ =

∫
G3 ∧ Ω+

∑

i

Aie
−aiT

i
. (2.10)

Here V is the volume of the CYO and is a function of the Kähler moduli superfields T i (with

i = 1, · · · , h11), and ξ̂ is a stringy (α′) correction that is an O(1) number depending on the Euler

character of the CYO and the real part of the dilaton superfield S. Ω is the holomorphic three form

on the CYO and is a function of the complex structure moduli superfields Ur (with r = 1, · · · , h21).

2.2.2 Single Kähler modulus scenario

In this construction, type IIB string theory is compactified on a CYO and the MSSM lives

on a stack of D3 branes. We take a CYO with just one Kähler modulus, T , (i.e. h11 = 1)

but with a number ∼ 102 of complex moduli, Ur. These moduli, along with the axio-dilaton, S,

are then stabilized using internal fluxes and non-perturbative effects. Classically, we can find a

minimum of this potential with the F -term of T being ∼ m3/2 with the other moduli F -terms

being suppressed. The cosmological constant would be negative but suppressed. The soft terms are

also highly suppressed. This solution of course receives quantum mechanical corrections starting at

1-loop. In terms of an effective field theory description, they would depend on a string scale cutoff

Λ. These can serve to uplift the cosmological constant and to generate the soft SUSY breaking

masses, proportional to Λ
4πm3/2. The cutoff Λ is essentially the string scale and in this class of

models may be taken as large as 10−2MP so that a GUT scenario could be accommodated. This

class of models is discussed in [21].

2.2.3 Large Volume Scenario (LVS)

In this class of models [2], we again compactify IIB string theory on a CYO. However, we

now consider more than one Kähler modulus, T i(i = 1, · · · , h11). In particular– in the simplest

such situation– we have a large modulus, τb, and small moduli, (τs, τa), controlling the overall size
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of the CYO and the volume of two small 4-cycles respectively. The total volume is then given by

V = τ
3/2
b − τ3/2s − τ3/2a . (2.11)

This is referred to as a “Swiss Cheese” model. Again the MSSM may be located on D3 branes at

a singularity. Alternatively, we could have it on a stack of D7 branes wrapping a four cycle (taken

to be the one labelled by the index a). In this case, it has been argued [22,23] that the necessity of

having chiral fermions on this brane prevents this cycle from being stabilized by non-perturbative

effects and it shrinks below the string scale. Effectively, this means that the physics is the same as

in the D3 brane case.

Extremizing the potential leads to an exponentially large volume [2] V ∼ eaτs , τs ∼ ξ̂. It

turns out that the suppression of FCNC effects lead to V >∼ 105l6P [24] (where lP is the Planck

length), so the string scale is Mstring
<∼MP /

√
V ∼ 1015.5GeV. The minimum of the potential (CC)

is given by V0 ∼ −m2

3/2
M2

P

lnm3/2V . This minimum can be uplifted to zero when S and Ur acquire (squared)

F -terms of the order
m2

3/2
M2

P

lnm3/2V . Classical contributions to the scalar and slepton masses are also of

this same order. With the above lower bound on the volume, this means that even for m3/2 ∼ 100

TeV, the classical soft terms are
<∼ 100 GeV. Of course if one wants to avoid fine-tuning of the flux

superpotential, we would need to take even larger values of V corresponding to a string scale of

1012 GeV. In this case the classical soft terms are completely negligible (for m3/2 ∼ 100 TeV) but

the (classical) µ-term is also strongly suppressed.

In the rest of this section we will call the holomorphic variable associated with the large

modulus τb, T .

2.2.4 Gaugino Masses - Weyl Anomaly Effects

For a generic version of supergravity, the gaugino masses satisfy the following relation at the

classical level:

Ma

g2a
=

1

2
FA∂Afa(Φ). (2.12)



19

For both the single Kähler modulus model and LVS cases, the leading contribution to the gauge

coupling function fa(Φ) comes from the axio-dilaton S, so at a classical minimum where the SUSY

breaking is expected to be in the T modulus direction, the string theoretic contribution to the

gaugino mass is highly suppressed.

However, there is an additional contribution to the gaugino mass due to the (super) Weyl

anomaly. This comes from the expression for the effective gauge coupling superfield that has been

derived by Kaplunovsky and Louis [26] (KL)2 . For the gaugino masses, the relevant contribution

comes from taking the F -term of

Ha(Φ, τ, τZ) = fa(Φ)−
3ca
8π2

lnφ− Ta(r)

4π2
φZ . (2.13)

Here, the first term on the RHS is the classical term; the second comes from the anomaly associated

with rotating to the Einstein-Kähler frame. ca = T (Ga)−
∑

r Ta(r) is the anomaly coefficient and

the last term comes from the anomaly associated with the transformation to canonical kinetic

terms for the MSSM fields. Also note that we have ignored the gauge kinetic term normalization

anomaly [11, 27] which is a higher order effect. The chiral superfields φ, φr that generate these

transformations are given by,

lnφ+ ln φ̄ =
1

3
K|Harm, (2.14)

φr + φ̄r = ln det K̃
(r)

αβ̄
. (2.15)

The instruction on the RHS of the first equation is to take the sum of the chiral and anti-chiral

(i.e. harmonic) part of the expression. After projecting the appropriate F terms we arrive at the

following expression:

2Ma

g2a
= FA∂Afa −

ci
8π2

FAKA −
∑

r

Ti(r)

4π2
FA∂A ln det K̃

(r)

αβ̄
. (2.16)

As pointed out earlier, the first (classical) term is greatly suppressed relative tom3/2. The dominant

contribution therefore comes from the last two (Weyl anomaly) contributions. It turns out that

2 As explained in [11], the usual formulae for AMSB [10], [25] need modification in the light of [26].
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(after using the formulae F T = −(T + T̄ )m3/2, KT = −3/(T + T̄ ) and K̃αβ̄ = kαβ/(T + T̄ ) which

are valid up to volume suppressed corrections), this yields3 ,

Ma =
bag

2
a

16π2
m3/2, (2.17)

where ba = −3T (Ga) +
∑

r Ta(r) is the beta function coefficient.

2.2.5 Scalar Masses, Trilinear Couplings, µ and Bµ terms

Here we summarize the results from this class of string theory models for the values of

the soft parameters at the UV scale, i.e. Λ ∼ Mstring ∼ MP /
√
V . These values should be the

initial conditions for the RG evolution of these parameters. In the LVS case, it was estimated [24]

that the lower bound on the CYO volume was V > 105. Also, we will choose typical values

h21 ∼ O(102) for the number of complex structure moduli. We will also take the gravitino mass

m3/2 ∼ |W |MP /V ∼ 50 TeV. Such a large value of m3/2 allows us to avoid the SUGRA gravitino

problem, which leads to a disruption of Big Bang nucleosynthesis if m3/2
<∼ 5 TeV and TR

>∼ 105

GeV [28].

Unlike the gaugino masses, scalar masses and trilinear soft terms do not acquire corrections

from the Weyl anomaly. They are essentially given at the UV scale by their classical string theory

value plus one loop string/effective field theory corrections. In the h11 = 1 case, the classical soft

terms are essentially zero while in the LVS case

m0 ∼ O

(
m3/2√
lnm3/2V

)
, µ ∼ Bµ

µ

<∼
√
h21m0, A0 ≪ m0. (2.18)

After adding quantum corrections at the UV scale both cases give similar values for the soft

terms. As an example, we illustrate for two values for the CYO volume:

• V ∼ 105,Mstring ∼ Λ ∼ 10−2.5MP ∼ 1015.5 GeV. Then,

µ ∼ Bµ

µ

<∼ 250 GeV, m0 ∼ 25 GeV, A0 ≪ m0. (2.19)

3 Note that we expect the Weyl anomaly expressions for the gaugino masses given below to be valid only because
of the particular (extended no-scale) features of this class of string theory models. It so happens that these are
exactly the same as the expressions given in what is usually called AMSB: but that is an accident due entirely to the
fact that in these extended no-scale models the relationship FAKA ≃ 3m3/2 is true.
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• V ∼ 1012, Mstring ∼ Λ ∼ 10−6MP ∼ 1012 GeV. Then,

µ ∼ Bµ

µ

<∼ 10−1 GeV, m0 ∼ 10−2 GeV, A0 ≪ m0. (2.20)

The second very large volume case can be accessed only in the LVS model.

The first case is at the lower bound for the volume. This gives the largest allowable string scale.

This is still somewhat below the apparent unification scale, but it is close enough that (allowing

for undetermined O(1) factors) we may use the GUT scale as the point at which to impose the

boundary conditions. This is useful for the purpose of comparing with other models of SUSY

mediation where it is conventional to use the GUT scale.

The second case above corresponds to choosing generic values of the flux superpotential,

while the first needs a fine tuned set of fluxes to get |W | ∼ 10−8, in order to have a gravitino mass

of ∼ 102 TeV, though in type IIB string theory general arguments show that there exist a large

number of solutions which allow this. The most significant problem with the second case (apart

from the fact that there is no hope of getting a GUT scenario) is the extremely low upper bound

on the µ term. In other words, there is a serious µ- problem. The first case also may have a µ

term problem, but again since these estimates are accurate only to O(1) numbers, it is possible to

envisage that the problem can be resolved within the context of this model.

In any case, as we discussed in the introduction, we are going to take an approach where the

string theory input is used to suggest a class of phenomenological models. Given that in both the

GUT scale model and the intermediate scale model, the soft scalar mass and A term are suppressed

well below the weak scale, we will input the value zero for these at the UV scale, while the gaugino

masses at this scale are given by (2.17).

We also discuss the case when the input scalar mass m0 is non-negligible. This would be the

case for instance in the SKM model with smaller volumes and/or larger values of h21, and also in

the case of LVS with the volume at the lower bound but with larger values of h21.
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2.3 Mass spectra, parameter space and constraints for the inoAMSB model

2.3.1 Sparticle mass spectra and parameter space

We begin our discussion by examining the sort of sparticle mass spectra that is expected

from the inoAMSB boundary conditions: m0 = A0 = 0 but with Mi =
big

2

i
16π2m3/2. We compute the

sparticle mass spectra using the Isasugra subprogram of the event generator Isajet [29], along with

the option of non-universal gaugino masses. The parameter space is that of Eq. 3.1.

After input of the above parameter set, Isasugra implements an iterative procedure of solv-

ing the MSSM RGEs for the 26 coupled renormalization group equations, taking the weak scale

measured gauge couplings and third generation Yukawa couplings as inputs, as well as the above-

listed GUT scale SSB terms. Isasugra implements full 2-loop RG running in the DR scheme, and

minimizes the RG-improved 1-loop effective potential at an optimized scale choice Q =
√
mt̃L

mt̃R

(which accounts for leading two-loop terms) [30] to determine the magnitude of µ and the value

of mA. All physical sparticle masses are computed with complete 1-loop corrections, and 1-loop

weak scale threshold corrections are implemented for the t, b and τ Yukawa couplings [31]. The

off-set of the weak scale boundary conditions due to threshold corrections (which depend on the

entire superparticle mass spectrum), necessitates an iterative up-down RG running solution. The

resulting superparticle mass spectrum is typically in close accord with other sparticle spectrum

generators [32].

We begin by examining a single point in inoAMSB parameter space, where m3/2 = 50 TeV,

and tanβ = 10, with µ > 0 as suggested by the (g − 2)µ anomaly [33, 34]. In Fig. 2.1, we plot

in frame a). the running gaugino masses, and in frame b). the running third generation and

Higgs soft SUSY breaking scalar masses. We actually plot here sign(m2
i ) ×

√
|m2

i |, in order to

show the possible running to negative squared masses, while at the same time showing the true

scale of the soft terms in GeV units. Frame a). is as expected in most AMSB masses i.e. where

M1 ≫ |M3| ≫ M2 at Q = Mstring, where here we take Mstring = MGUT . The RG running of

the gaugino masses leads to −M3 ≫ M1 at Q = Mweak, while M2 remains the lightest of gaugino



23

masses at the weak scale, leading to a wino-like lightest neutralino Z̃1, which might also be the

lightest SUSY particle (LSP). In frame b)., we see that the SSB scalar masses, beginning with

negligible GUT scale values, are initially pulled up to positive values, mainly by the influence of

the large value of M1 at the GUT scale. In fact, the right-slepton mass m2
E3

initially evolves to the

highest values, since it has the largest hypercharge quantum number Y = 2. The disparate Y values

between E3 and the doublet L3 lead ultimately to a large splitting between left- and right- slepton

SSB masses in the inoAMSB case, while these masses tend to be quite degenerate in mAMSB [35].

As the scale Q moves to values ≪MGUT , QCD effects pull the squarks to much higher masses: in

this case around the TeV scale, while sleptons, which receive no QCD contribution, remain in the

200-400 GeV range. The value of m2
Hu

is driven as usual to negative squared values, resulting in a

radiative breakdown of electroweak symmetry (REWSB). Since M2 <
√
m2

L3
, we generically find

a wino-like neutralino as the LSP, and there is no problem with a charged LSP (as in NS/inoMSB

models) or tachyonic sleptons (as in AMSB).

Once the weak scale SSB terms are computed, then the physical mass eigenstates and mixings

may be computed, and one-loop mass corrections added. The resulting physical mass spectrum is

listed schematically in Fig. 2.2a). and in Table 2.1, column 3. We adopt this inoAMSB model as a

benchmark case, labeled inoAMSB1. In Table 2.1, we also show for comparison two related cases

with m3/2 = 50 TeV and tanβ = 10: for mAMSB supersymmetry in column 1, with m0 = 300

GeV, and in HCAMSB [18], column 2, with mixing parameter α = 0.025.4 While the first three

cases listed in Table 2.1 have similar values of mg̃ and m
W̃1,Z̃1

(due to the same input value of

m3/2), we see that inoAMSB1 has the previously noted large ẽL-ẽR splitting, with mẽL < mẽR ,

while mAMSB has nearly degenerate ẽL and ẽR, with mẽR < mẽL . However, the left-right slepton

splitting in inoAMSB1 is not as severe as that shown in HCAMSB1, from Ref. [18], where an even

larger value of M1 at MGUT is expected. In the HCAMSB1 case, the Z̃4 state tends to be nearly

pure bino-like, whereas in inoAMSB1, it is instead higgsino-like.

4 In the HCAMSB model, while most of the MSSM resides on a visible brane, U(1) gauginos propagate in the
bulk. Thus, the SSB boundary conditions, taken at the GUT scale, are those of AMSB, but with an additional
contribution to the hypercharge gaugino mass, proportional to the mixing parameter α.
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parameter mAMSB HCAMSB1 inoAMSB1 inoAMSB2

α — 0.025 — —
m0 300 — — —
m3/2 50 TeV 50 TeV 50 TeV 100 TeV

tanβ 10 10 10 10
M1 460.3 997.7 465.5 956.1
M2 140.0 139.5 143.8 287.9
µ 872.8 841.8 607.8 1127.5
mg̃ 1109.2 1107.6 1151.0 2186.1
mũL 1078.2 1041.3 1011.7 1908.7
mũR 1086.2 1160.3 1045.1 1975.7
mt̃1

774.9 840.9 878.8 1691.8

mt̃2
985.3 983.3 988.4 1814.8

mb̃1
944.4 902.6 943.9 1779.5

mb̃2
1076.7 1065.7 1013.7 1908.3

mẽL 226.9 326.3 233.7 457.8
mẽR 204.6 732.3 408.6 809.5
m

W̃2

879.2 849.4 621.2 1129.8

m
W̃1

143.9 143.5 145.4 299.7

m
Z̃4

878.7 993.7 624.7 1143.2

m
Z̃3

875.3 845.5 614.4 1135.8

m
Z̃2

451.1 839.2 452.6 936.8

m
Z̃1

143.7 143.3 145.1 299.4

mA 878.1 879.6 642.9 1208.9
mh 113.8 113.4 112.0 116.0
Ω
Z̃1
h2 0.0016 0.0015 0.0016 0.007

σ [fb] 7.7× 103 7.4× 103 7.5× 103 439
g̃, q̃ pairs 15.0% 15.5% 19.1% 3%
EW − ino pairs 79.7% 81.9% 75.6% 93%
slep. pairs 3.7% 0.8% 3.1% 3%

t̃1
¯̃t1 0.4% 0.2% 0.1% 0%

Table 2.1: Masses and parameters in GeV units for four case study points mAMSB1, HCAMSB1,
inoAMSB1 and inoAMSB2 using Isajet 7.80 with mt = 172.6 GeV and µ > 0. We also list the
total tree level sparticle production cross section in fb at the LHC.
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Next, we investigate the effect of varying m3/2 on the sparticle mass spectrum. We plot in

Fig. 2.3 the mass spectra of various sparticles versus m3/2 in the inoAMSB model while taking

tanβ = 10, µ > 0 and mt = 172.6 GeV. The lowest value of m3/2 which is allowed is m3/2 = 32.96

TeV. Below this value, m
W̃1

< 91.9 GeV, which is excluded by LEP2 searches for charginos from

AMSB models [36]. We see from Fig. 2.3 that there is a characteristic mass hierarchy in the

inoAMSB model, where m
Z̃1,W̃1

< mẽL,ν̃eL < mẽR < |µ| < mq̃ < mg̃. As m3/2 increases, all these

masses grow, but the relative hierarchy is maintained. For such a spectrum with mq̃ < mg̃ and

with relatively light sleptons, we would thus expect LHC collider events which are dominated by

squark pair production, followed by squark cascade decays q̃ → qZ̃i → qℓ̃±ℓ∓, which would lead

to events with two hard jets (plus additional softer jets) and rich in isolated leptons coming from

cascade decay produced sleptons.
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Figure 2.3: Sparticle mass spectrum versusm3/2 in the inoAMSB withMstring =MGUT , tanβ = 10,
with µ > 0 and mt = 172.6 GeV.

In Fig. 2.4, we show the variation in sparticle masses against tanβ with m3/2 fixed at 50

TeV. As tanβ increases, the b and τ Yukawa couplings both increase. These act to suppress the
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sbottom and stau SSB mass terms, and also give larger left-right mixing to the mass eigenstates. In

addition, the value of m2
Hd

is pushed to negative values by the large b and τ Yukawa couplings. The

value of mA is given approximately from the EWSB minimization conditions as m2
A ∼ m2

Hd
−m2

Hu
.

Since the mass gap between m2
Hu

and m2
Hd

drops as tanβ increases, the value of mA also drops

sharply with increasing tanβ. The point at which mA drops below limits from LEP2 searches (and

shortly thereafter REWSB no longer occurs in a valid fashion) provides the high tanβ boundary

to the parameter space.
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Figure 2.4: Sparticle mass spectrum versus tanβ form3/2 = 50 TeV in the inoAMSB withMstring =
MGUT and with µ > 0.

In Fig. 2.5, we show the entire parameter space for the inoAMSB model in the m3/2 vs.

tanβ plane for µ > 0 with mt = 172.6 GeV. The gray shaded region gives allowable sparticle mass

spectra. The orange region gives chargino masses below the LEP2 limit, and so is experimentally

excluded. The brown shaded region for tanβ
>∼ 42 is excluded because REWSB no longer occurs

in an appropriate fashion. The brown shaded region at very low tanβ gives too light a value of

mh: here we require mh > 111 GeV (even though LEP2 requires mh > 114.4 GeV), due to a
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projected ∼ ±3 GeV theory error on our lightest Higgs mass calculation. We also show contours

of mg̃ ranging from 1-5 TeV. The mg̃ ∼ 5 TeV range will surely be beyond the reach of LHC.

Figure 2.5: Allowed parameter space of the inoAMSB models in the m3/2 vs. tanβ plane with
µ > 0. We plot also contours of mg̃.

As noted in Sec. 2.2, in the inoAMSB model the string scale Mstring need not be equal

to MGUT . If it is not, then it can have significant effects on the sparticle mass spectrum. The

sparticle mass spectrum versus variable Mstring is shown in Fig. 2.6 for the case where m3/2 = 50

TeV, tanβ = 10 and µ > 0. Here, we see that the sparticle mass spectrum spreads out as Mstring

varies from MGUT down to 1011 GeV. In addition, some important level crossings occur. Most

important of these is that forMs
<∼ 5×1013 GeV, the ν̃τ state becomes the lightest MSSM particle,

and for even lower Ms values, mν̃e and mν̃µ drop below m
Z̃1
. There already exist severe limits

on stable sneutrino dark matter [37], which discourage this type of scenario. If we insist upon a

neutralino as LSP, then we must take not too low a value of Ms.

Finally, we note that in the inoAMSB model, scalar masses and A-parameters are expected

to be suppressed, but they are not expected to be exactly zero. In Fig. 2.7, we show the mass
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spectra from inoAMSB models where we add an additional universal mass contribution m0 to all

scalars. We adopt values m3/2 = 50 TeV and tanβ = 10 for this plot. As m0 increases beyond

zero, it is seen that the spectra change little so long as m0
<∼ 100 GeV, and also the mass orderings

remain intact. For larger values of m0, the left- and right- slepton masses begin to increase, with

first mẽR surpassing m
Z̃2
, and later even mẽL surpasses m

Z̃2
. At these high values of m0, decay

modes such as Z̃2 → ℓ±ℓ̃∓ would become kinematically closed, thus greatly altering the collider

signatures. However, generically in this class of models, we would not expect such large additional

contributions to scalar masses.
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Figure 2.7: Plot of sparticle masses for the inoAMSB with m3/2 = 50 TeV, tanβ = 10 and µ > 0,
but with an additional universal contribution m0 added to all scalar masses.

2.3.2 BF (b→ sγ) and (g − 2)µ in inoAMSB

Along with experimental constraints on the inoAMSB models from LEP2 limits on mh and

m
W̃1

, there also exist indirect limits on model parameter space from comparing measured values of

BF (b→ sγ) and ∆aµ ≡ (g − 2)µ/2 against SUSY model predictions.
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2.3.2.1 BF (b→ sγ)

As an example, we show in Fig. 2.8 regions of the branching fraction for BF (b→ sγ) in the

inoAMSB model versus m3/2 and tanβ variation, calculated using the Isatools subroutine ISABSG

[38]. The red-shaded region corresponds to branching fraction values within the SM theoretically

predicted region BF (b → sγ)SM = (3.15 ± 0.23) × 10−4, by a recent evaluation by Misiak [39]).

The blue-shaded region corresponds to branching fraction values within the experimentally allowed

region [40]: here, the branching fraction BF (b → sγ) has been measured by the CLEO, Belle and

BABAR collaborations; a combined analysis [40] finds the branching fraction to be BF (b→ sγ) =

(3.55 ± 0.26) × 10−4. The gray shaded region gives too large a value of BF (b → sγ). This region

occurs for low m3/2, where rather light t̃1 and W̃1 lead to large branching fractions, or large tanβ,

where also the SUSY loop contributions are enhanced [41].

2.3.2.2 (g − 2)µ/2

In Fig. 2.9, we plot the SUSY contribution to ∆aµ: ∆a
SUSY
µ (using ISAAMU from Isatools

[34]). The contribution is large when m3/2 is small; in this case, rather light µ̃L and ν̃µL masses

lead to large deviations from the SM prediction. The SUSY contributions to ∆aSUSY
µ also increase

with tanβ. It is well-known that there is a discrepancy between the SM predictions for ∆aµ, where

τ decay data, used to estimate the hadronic vacuum polarization contribution to ∆aµ, gives rough

accord with the SM, while use of e+e− → hadrons data at very low energy leads to a roughly

3σ discrepancy. The measured ∆aµ anomaly, given as (4.3 ± 1.6) × 10−9 by the Muon g − 2

Collaboration [33], is shown by the black dotted region.

2.3.2.3 Dark matter in inoAMSB

Finally, we remark upon the relic density of dark matter in the inoAMSB model. If thermal

production of the lightest neutralino is assumed to give the dominant DM in the universe, then all

over parameter space, the predicted neutralino abundance Ω
Z̃1
h2 is far below the WMAP measured

value of ΩCDMh
2 = 0.1126 ± 0.0036 [42]. Some sample calculated values are listed in Table 2.1.
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Figure 2.8: Branching fraction for b→ sγ versus m3/2 and tanβ variation in the inoAMSB model
with Mstring =MGUT .
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Figure 2.9: SUSY contribution to ∆aµ versus m3/2 and tanβ variation in the inoAMSB model with
Mstring =MGUT . We also take µ > 0 and mt = 172.6 GeV.
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It has been suggested in Ref. [43] that production and decay of moduli fields or other processes

can also contribute to the DM abundance. Decay of moduli fields in the early universe could

then account for the discrepancy between the measured DM abundance and the predicted thermal

abundance in inoAMSB models.

As an alternative, if the strong CP problem is solved via the Peccei-Quinn mechanism, then a

superfield containing the axion/axino multiplet should occur. In this case, a mixture of axions [44]

and axinos [45], rather than wino-like neutralinos, could constitute the DM abundance [46]. The

exact abundance will depend on the axino mass mã, the Peccei-Quinn breaking scale fa, and the

re-heat temperature TR after inflation.

In light of these two alternative DM mechanisms, we regard the inoAMSB parameter space

as essentially unconstrained by the measured abundance of DM in the universe.

2.4 The inoAMSB model and the LHC

2.4.1 Sparticle production at LHC

In the inoAMSB model, for benchmark point inoAMSB1, we list several sparticle production

cross sections in Table 2.1. We see that for this case, the dominant sparticle production consists of

electroweak-ino pair production: mainly pp→ W̃+
1 W̃

−
1 and W̃±

1 Z̃1 reactions. Since Z̃1 is stable (or

quasi-stable in the event of light axino dark matter), and mainly W̃±
1 → π±Z̃1 (where the π

± is very

soft), these reactions do not provide enough visible energy to meet detector trigger requirements

(unless there is substantial initial state radiation).

The major visible production reactions consist of pp → g̃g̃, g̃q̃ and q̃q̃ production (here, we

take q̃ to represent generic species of both squarks and anti-squarks). In the case of inoAMSB

models, we expect mq̃ ∼ 0.9mg̃. Strongly interacting sparticle production cross sections (at NLO

using Prospino [71]) are shown versus m3/2 in Fig. 3.2 for tanβ = 10, µ > 0 and Ms = MGUT .

We see that the reactions pp→ q̃q̃ and q̃g̃ are roughly comparable, with q̃g̃ production dominating

for m3/2
<∼ 65 TeV, and q̃q̃ pair production dominating for higher m3/2 values. The pp → g̃g̃
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production cross section always occurs at much lower rates. For mg̃ ∼ 3 TeV, corresponding to

m3/2 ∼ 150 TeV, the total hadronic SUSY cross section is around 0.1 fb, which should be around

the upper limit of LHC reach given 100 fb−1 of integrated luminosity.

Since sleptons are much lighter than squarks in inoAMSB models, we also expect possibly

observable rates for slepton pair production. Pair production rates for pp→ ẽ+L ẽ
−
L , ẽ

+
Rẽ

−
R and ν̃eLẽL

are also shown in Fig. 3.2. Typically, the LHC reach for direct slepton pair production ranges up

to mℓ̃ ∼ 350 GeV for 10 fb−1 [48], corresponding to a m3/2 value of ∼ 75 TeV. Thus, LHC reach

should be much higher in the hadronic SUSY production channels.

2.4.2 Sparticle decays in inoAMSB models

Since mg̃ > mq̃ in inoAMSB models, we will have g̃ → qq̃, nearly democratically to all squark

species. The left-squarks will dominantly decay to wino + q, and we find q̃L → qW̃1 at ∼ 67%,

while q̃L → qZ̃1 at ∼ 33%, all over parameter space. The right-squark decays are simpler. The q̃R

decays mainly to bino+ q, so that in the inoAMSB model line, we obtain q̃R → Z̃2q at ∼ 97% over

almost all parameter space, since in this case Z̃2 is nearly pure bino-like.

For the sleptons, the left-sleptons dominantly decay to wino + lepton, so we find ℓ̃L → ℓZ̃1

at ∼ 33%, and ℓ̃L → W̃1νℓL at ∼ 67% all over parameter space. The latter decay mode should

be nearly invisible, unless the highly ionizing W̃1 track is found in the micro-vertex detector. The

sneutrino decays as ν̃ℓL → Z̃1νℓ at ∼ 33%, which is again nearly invisible. However, it also decays

via ν̃ℓL → ℓW̃1 at ∼ 66%, which provides a detectable decay mode for the sneutrinos. The ẽR

would like to decay to bino+ lepton, but in the case of inoAMSB models, the bino-like neutralino

is too heavy for this decay to occur. In the case of inoAMSB1 benchmark point, we instead get

ℓ̃R → eZ̃1 at ∼ 78%. Since this decay mode is suppressed, some three body decay modes can

become comparable. In his case, we find ℓ̃−R → ℓ−τ+τ̃−1 at ∼ 13%, and ℓ̃−R → ℓ−τ−τ̃+1 at ∼ 7%.
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2.4.3 LHC collider events for the inoAMSB models

We use Isajet 7.80 [29] for the simulation of signal and background events at the LHC. A toy

detector simulation is employed with calorimeter cell size ∆η ×∆φ = 0.05× 0.05 and −5 < η < 5.

The hadronic calorimeter (HCAL) energy resolution is taken to be 80%/
√
E+3% for |η| < 2.6 and

forward calorimeter (FCAL) is 100%/
√
E + 5% for |η| > 2.6. The electromagnetic (ECAL) energy

resolution is assumed to be 3%/
√
E + 0.5%. We use the UA1-like jet finding algorithm GETJET

with jet cone size R = 0.4 and require that ET (jet) > 50 GeV and |η(jet)| < 3.0. Leptons are

considered isolated if they have pT (e or µ) > 20 GeV and |η| < 2.5 with visible activity within

a cone of ∆R < 0.2 of ΣEcells
T < 5 GeV. The strict isolation criterion helps reduce multi-lepton

backgrounds from heavy quark (cc̄ and bb̄) production.

We identify a hadronic cluster with ET > 50 GeV and |η(j)| < 1.5 as a b-jet if it contains

a B hadron with pT (B) > 15 GeV and |η(B)| < 3 within a cone of ∆R < 0.5 about the jet axis.

We adopt a b-jet tagging efficiency of 60%, and assume that light quark and gluon jets can be

mis-tagged as b-jets with a probability 1/150 for ET < 100 GeV, 1/50 for ET > 250 GeV, with a

linear interpolation for 100 GeV< ET < 250 GeV [49].

We have generated 2M events for case inoAMSB1 from Table 2.1. In addition, we have

generated background events using Isajet for QCD jet production (jet-types include g, u, d, s, c

and b quarks) over five pT ranges as shown in Table 2.2. Additional jets are generated via parton

showering from the initial and final state hard scattering subprocesses. We have also generated

backgrounds in the W + jets, Z + jets, tt̄(172.6) and WW, WZ, ZZ channels at the rates shown

in the same Table. The W + jets and Z + jets backgrounds use exact matrix elements for one

parton emission, but rely on the parton shower for subsequent emissions.

For our initial selection of signal events, we first require the following minimal set of cuts

labeled C1:

• n(jets) ≥ 2,

• Emiss
T > max (100 GeV, 0.2Meff )
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• ET (j1, j2) > 100, 50 GeV,

• transverse sphericity ST > 0.2,

where Meff = Emiss
T + ET (j1) + ET (j2) + ET (j3) + ET (j4).

Since sparticle production in inoAMSB models is dominated by q̃g̃ and q̃q̃ reactions, followed

by q̃ → qZ̃i or q
′W̃j , we expect at least two very hard jets in each signal event. In Fig. 2.11, we plot

out the distribution in a). hardest and b). second hardest jet pT for the signal case inoAMSB1 along

with the summed SM background (denoted by gray histograms). In the case of pT (j1), background

is dominant for lower pT values
<∼ 400 GeV, while signal emerges from background for higher pT

values. In the case of pT (j2), signal emerges from background already around 250-300 GeV. The

rather hard jet pT distributions are characteristic of squark pair production, followed by 2-body

squark decay into a hard jet.
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Figure 2.11: Distribution in pT of a). the hardest and b). second hardest jets from the inoAMSB1
model, and summed SM background (gray histogram), for LHC collisions at

√
s = 14 TeV.

In Fig. 2.12, we show the distributions in a). Emiss
T and b). AT =

∑
ET (where the sum

extends over all jets and isolated leptons) expected from inoAMSB1 along with SM background.

In this case, the Emiss
T distribution from SUSY emerges from background at around 400-500 GeV,

illustrating the rather hard Emiss
T distribution expected from g̃q̃ and q̃q̃ pair production, followed by

2-body decays. The AT signal distribution actually exhibits two components: a soft peak around

400 GeV which comes from chargino, neutralino and slepton pair production, and a hard peak at
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much higher values coming from gluino and squark pair production. The low peak is buried under

background, while the higher peak emerges from background at around 1400 GeV.
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Figure 2.12: Distribution in a). Emiss
T and b). AT from the inoAMSB1 model, and summed SM

background (gray histogram), for LHC collisions at
√
s = 14 TeV.

Fig. 2.13 shows the distribution in a). jet multiplicity nj and b). isolated lepton (both es and

µs) multiplicity nℓ from the inoAMSB1 benchmark, compared to SM background after C1 cuts.

While the signal is dominated by q̃q̃ and q̃g̃ pair production, the jet multiplicity actually exhibits

a broad peak around nj ∼ 2 − 5. Nominally, we would expect dijet dominance from squark pair

production. But additional jets from cascade decays and initial state radiation help broaden the

distribution. The broadness of the distribution also depends on our jet ET cut, which requires

only that ET (jet) > 50 GeV. In the case of isolated lepton multiplicity, we see that background

dominates signal for nℓ = 0, 1 and 2. However, BG drops more precipitously as nℓ increases, so

that for nℓ = 3 or 4, signal now dominates background [50]. In these cases, even with minimal cuts,

an isolated 3ℓ+ ≥ 2 jets+Emiss
T signal should stand out well above background.

2.4.3.1 LHC cascade decay events including HITs: a smoking gun for models with

wino-like neutralinos

Of course, a distinctive property of models like inoAMSB (and also mAMSB and HCAMSB)

with a wino-like Z̃1 state is that the chargino is very long lived [51]: of order ∼ 10−10 sec. Thus,
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Figure 2.13: Distribution in a). n(jets) and b). n(leptons) from the inoAMSB1 model, and summed
SM background (gray histogram), for LHC collisions at

√
s = 14 TeV.
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once we have obtained cascade decay signal events in any of the multi-jet plus multi-lepton plus

Emiss
T channels, we may in addition look for the presence of a highly-ionizing track (HIT) from

the long-lived chargino. The presence of HITs in the SUSY collider events would be indictative of

models such as inoAMSB, mAMSB or HCAMSB, where M2 ≪ M1 and M3, so that the lightest

neutralino is a nearly pure wino state and where m
W̃1

≃ m
Z̃1
.

2.4.4 The reach of LHC in the inoAMSB model line

We would next like to investigate the reach of the CERN LHC for SUSY in the inoAMSB

context. To this end, we will adopt the inoAMSB model line with variablem3/2 but fixed tanβ = 10

and µ > 0. The sparticle mass spectra versus m3/2 was shown previously in Fig. 2.3

Motivated by the previous signal and background distributions, we will require the following

cuts C2 [52]:

• n(jets) ≥ 2

• ST > 0.2

• ET (j1), ET (j2), E
miss
T > Ec

T ,

where Ec
T can be variable. Parameter space points with lower sparticle masses will benefit from

lower choices of Ec
T , while points with heavier sparticle masses– with lower cross sections but higher

energy release per event– will benefit from higher choices of Ec
T . In addition, in the zero-leptons

channel we require 30◦ < ∆φ( ~Emiss
T , ~ET (jc)) < 90◦ between the ~Emiss

T and the nearest jet in

transverse opening angle. For all isolated leptons ℓ, we require pT (ℓ) > 20 GeV. We separate the

signal event channels according to the multiplicity of isolated leptons: we exhibit the 0ℓ, opposite-

sign (OS) dilepton, 3ℓ and 4ℓ channels. Here, we do not here require “same flavor” on the OS

dilepton events. We suppress the 1ℓ and same-sign dilepton SS channels for brevity, and because

the reach is better in the channels shown.

The resultant cross sections after cuts C2 for SM backgrounds along with signal point

inoAMSB1 are listed in Table 2.2 for Ec
T = 100 GeV. For each BG channel, we have generated
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process 0ℓ OS SS 3ℓ 4ℓ

QCD(pT : 0.05-0.10 TeV) – – – – –
QCD(pT : 0.10-0.20 TeV) 755.1 – – – –
QCD(pT : 0.20-0.40 TeV) 803.8 621.1 109.6 36.5 –
QCD(pT : 0.40-1.00 TeV) 209.8 304.7 72.6 29.0 2.6
QCD(pT : 1.00-2.40 TeV) 2.2 5.3 1.7 1.5 0.2
tt̄ 1721.4 732.6 273.8 113.3 6.6
W + jets;W → e, µ, τ 527.4 22.6 8.4 1.3 −−
Z + jets;Z → τ τ̄ , νs 752.9 11.1 1.3 0.2 −−
WW,ZZ,WZ 3.4 0.3 0.25 −− −−
summed SM BG 4776.1 1697.8 467.7 181.9 9.4

inoAMSB1 112.7 85.7 27.6 36.0 7.5

Table 2.2: Estimated SM background cross sections (plus the inoAMSB1 benchmark point) in fb
for various multi-lepton plus jets +Emiss

T topologies after cuts C2 with Ec
T = 100 GeV.

∼ 2 million simulated events. With the hard cuts C2, we are unable to pick up BG cross sections

in some of the multi-lepton channels. We will consider a signal to be observable at an assumed

value of integrated luminosity if i) the signal to background ratio, S/BG ≥ 0.1, ii) the signal has a

minimum of five events, and iii) the signal satifies a statistical criterion S ≥ 5
√
BG (a 5σ effect).

Using the above criteria, the 100 fb−1 reach of the LHC can be computed for each signal

channel. In Fig. 2.14, we show the signal rates versus m3/2 for the inoAMSB model line for

Ec
T = 100 (solid blue), 300 (dot-dash red) and 500 GeV (dashed purple). The 100 fb−1 LHC reach is

denoted by the horizontal lines for each Ec
T value. From frame a)., for the multi-jet+Emiss

T +0ℓ signal,

we see the LHC reach in the 0ℓ channel extends to m3/2 ∼ 40, 93 and 110 TeV for Ec
T = 100, 300

and 500 GeV, respectively, for the inoAMSB model line. This corresponds to a reach in mg̃ of 1.1,

2.0 and 2.4 TeV.

Frames b)., c). and d). show the reach in the multi-jet+Emiss
T + OS, 3ℓ and 4ℓ channels,

respectively. While the reach is qualitatively similar in all channels, the best reach comes from

the 3ℓ channel, where the 100 fb−1 LHC can detect inoAMSB models up to m3/2 ∼ 118 TeV

(corresponding to a reach in mg̃ of 2.6 TeV), using Ec
T = 500 GeV. The 100 fb−1 LHC reach for all

cases is summarized in Table 2.3.
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Figure 2.14: Cross section for multi-jet plus Emiss
T events with a). n(ℓ) = 0, b). OS isolated

dileptons c). isolated 3ℓs and d). isolated 4ℓs at the LHC after cuts C2 listed in the text with
Ec

T = 100 GeV (blue solid), Ec
T = 300 GeV (red dot-dashed) and Ec

T = 500 GeV (purple dashes),
versus m3/2, from the inoAMSB model line points with tanβ = 10 and µ > 0. We also list the 100
fb−1 5σ, 5 event, S > 0.1 BG limit with the horizontal lines.

Ec
T (GeV) 0ℓ OS 3ℓ 4ℓ

100 40 57 60 75
300 93 95 98 80
500 110 115 118 110

Table 2.3: Estimated reach of 100 fb−1 LHC for m3/2 (TeV) in the inoAMSB model line in various
signal channels.
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2.4.4.1 Cascade decays including HITs plus a multi-bump m(ℓ+ℓ−) distribution: a

smoking gun for inoAMSB models

Next, we examine the distribution in m(ℓ+ℓ−) for cascade decay events containing: ≥ 2 high

pT jets, large Emiss
T and a pair of same flavor/opposite-sign (SF/OS) dileptons. This distribution

has for long been touted as being very useful as a starting point for reconstructing sparticle masses

in SUSY cascade decay events, because it may contain a kinematic mass edge from Z̃2 → ℓ̃±ℓ∓ or

Z̃2 → ℓ+ℓ−Z̃1 decays. In the case of the inoAMSB1 benchmark model, where mℓ̃L,R
< m

Z̃2
– and a

substantial mass gap betweenmℓ̃L
andmℓ̃R

is featured– we expect two distinct, well-separated mass

edges: one from Z̃2 → ℓ̃Lℓ and one from Z̃2 → ℓ̃Rℓ decays. In addition, a peak at m(ℓ+ℓ−) ∼MZ is

expected, since real Z bosons can be emitted from cascade decays including Z̃3 → ZZ̃1, Z̃4 → ZZ̃1

and W̃2 → ZW̃1 (in the case of benchmark model inoAMSB1, these decays occur with branching

fractions 25%, 6% and 29%, respectively).

In Fig. 2.15, we show the m(ℓ+ℓ−) distribution from inoAMSB1 (red histogram) in frame

a). Here, we require cuts C1, along with Emiss
T > 300 GeV and AT > 900 GeV, which completely

suppresses SM backgrounds. Indeed, we see clearly a Z boson peak at MZ , along with two distinct

mass edges occuring at m(ℓ+ℓ−) = m
Z̃2

√
1− m2

ℓ̃

m2

Z̃2

√
1−

m2

Z̃1

m2

ℓ̃

= 182 GeV, and 304 GeV. The 182

GeV edge comes from Z̃2 decays through ℓ̃R, while the 304 GeV edge comes from Z̃2 decays through

ℓ̃L. We also show the same distribution for the mAMSB1 (green) and HCAMSB1 (blue) cases from

Table 2.1. The mAMSB plot contains two mass edges as well. However, since in mAMSB we

expect mℓ̃L
≃ mℓ̃R

, these edges nearly overlap, and are essentially indistinguishable. In the case

of HCAMSB models, the bino-like neutralino is the Z̃4 and is quite heavy, while Z̃2 and Z̃3 are

mainly higgsino-like. The higgsino-like states decay strongly to vector bosons, as does W̃2, giving

rise to a continuum m(ℓ+ℓ−) distribution which contains a Z peak [18]. Thus, while the presence

of SUSY cascade decay events at LHC containing HITs would point to AMSB-like models, the

different m(ℓ+ℓ−) distributions which are expected would allow one to differentiate between the

mAMSB, HCAMSB and inoAMSB cases!
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Figure 2.15: Invariant mass distribution for SF/OS dileptons from a). mAMSB1, HCAMSB1 and
inoAMSB1 after requiring cut set C1 plus Emiss

T > 300 GeV and AT > 900 GeV. In frame b), we
show the same distribution, except taking inoAMSB with m3/2 = 70 and 80 TeV.
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In frame b)., we show inoAMSB models with m3/2 = 70 and 80 GeV. These distributions

also show the expected double edge plus Z peak structure that was found for inoAMSB1, although

now the mass edges have migrated to higher m(ℓ+ℓ−) values.

2.5 Discussion and conclusions

In this paper, we have examined the phenomenology of supersymmetric models with the

boundary conditions m0 ∼ A0 ∼ 0 at MGUT , while gaugino masses assume the form as given

in AMSB. We call this model gaugino-AMSB, or inoAMSB or short. Such boundary conditions

can arise in type IIB string models with flux compactifications. They are very compelling in that

off-diagonal flavor violating and also CP violating terms are highly suppressed, as in the case of

no-scale supergravity or gaugino-mediated SUSY breaking models. However, since gaugino masses

assume the AMSB form at MGUT , the large U(1)Y gaugino mass M1 pulls slepton masses to large

enough values through renormalization group evolution that one avoids charged LSPs (as in NS or

inoMSB model) or tachyonic sleptons (as in pure AMSB models).

The expected sparticle mass spectrum is very distinctive. Like mAMSB and HCAMSB,

we expect a wino-like lightest neutralino Z̃1, and a quasi-stable chargino W̃1 which could leave

observable highly ionizing tracks in a collider detector. The spectrum is unlike mAMSB in that

a large mass splitting is expected between left- and right- sleptons. We also investigated what

happens if the string scale Ms is much lower than MGUT . In this case, the entire spectrum become

somewhat expanded, and if Ms
<∼ 1014 GeV, then the left-sneutrino becomes the LSP, which is

excluded by double beta decay experiments.

We also investigated in detail some aspects of LHC collider signatures. Since mq̃ < mg̃ in

inoAMSB models, we expect dominant q̃q̃ and q̃g̃ production at LHC, followed by 2-body q̃ and

g̃ decays. This leads to collider events containing at least two very high pT jets plus Emiss
T as is

indicative from squark pair production.

While squark and gluino cascade decay events should be easily seen at LHC (providedm3/2
<∼

110 TeV), the signal events should all contain visible HITs, which would point to a model with
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m
W̃1

≃ m
Z̃1
, as occurs in anomaly-mediation where M2 < M1, M3 at the weak scale. We find an

LHC reach for 100 fb−1 of integrated luminosity out to m3/2 ∼ 118 TeV, corresponding to a reach

in mg̃ of about 2.6 TeV.

We also find that the invariant mass distribution of SF/OS dilepton pairs should have a dis-

tinctive two-bump structure that is indicative of neutralino decays through both left- and right- slep-

tons with a large slepton mass splitting. This distribution would help distinguish inoAMSB models

from HCAMSB, where a continuum plus a Z-bump distribution is expected, or from mAMSB,

where the two mass edges (present only if m0 is small enough that mℓ̃L
and mℓ̃R

are lighter than

m
Z̃2
) would be very close together, and probably not resolvable.



Chapter 3

Testing the gaugino AMSB model

at the Tevatron via slepton pair production

Chapter Summary

Gaugino AMSBmodels– wherein scalar and trilinear soft SUSY breaking terms are suppressed

at the GUT scale while gaugino masses adopt the AMSB form– yield a characteristic SUSY particle

mass spectrum with light sleptons along with a nearly degenerate wino-like lightest neutralino and

quasi-stable chargino. The left- sleptons and sneutrinos can be pair produced at sufficiently high

rates to yield observable signals at the Fermilab Tevatron. We calculate the rate for isolated single

and dilepton plus missing energy signals, along with the presence of one or two highly ionizing

chargino tracks. We find that Tevatron experiments should be able to probe gravitino masses into

the ∼ 55 TeV range for inoAMSB models, which corresponds to a reach in gluino mass of over 1100

GeV.

3.1 Introduction

Searches for supersymmetry (SUSY) at the Fermilab Tevatron collider usually focus on gluino

and squark pair production reactions, due to their large strong interaction production rates [53–55],

or on observation of chargino-neutralino production and decay to isolated trileptons, due to their

low background rates [56–58]. The possibility of observation of slepton pair production at the
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Tevatron was examined in Ref. [59] in the context of the MSSM with gaugino mass unification and

found to be difficult: the dilepton signature from pp̄ → ℓ̃+ℓ̃− → ℓ+ℓ− + Emiss
T (here, ℓ = e or µ) is

beset with large backgrounds from W+W− and Z → τ+τ− production, while the ℓ̃ν̃L → ℓ±+Emiss
T

signal is beset by even larger backgrounds from direct W± → ℓ±νℓ production. However, these

past works did not anticipate the Tevatron reaching integrated luminosities in the vicinity of 8-16

fb−1.

In this chapter, we investigate the recently introduced gaugino AMSB model (inoAMSB) [3],

which arises naturally from some highly motivated string theory constructions. The inoAMSB

model gives rise to a characteristic SUSY particle mass spectrum which features 1. a wino-like

lightest neutralino Z̃1, 2. a nearly mass degenerate quasi-stable chargino W̃1, (points 1 and 2 also

occur in previous AMSB constructs [10,60,61]), 3. a rather light spectrum of sleptons, arranged in

a mass hierarchy mν̃L < mℓ̃L
< mℓ̃R

and 4. a rather heavy spectrum of squarks and gluinos, where

mg̃ ∼ mq̃ ∼ 7.5m
W̃1

. Given the LEP2 limit on quasi-stable charginos from AMSB models, where

m
W̃1

> 91.9 GeV [62], this implies mg̃
>∼ 700 GeV: quite beyond the reach of Tevatron. However,

in inoAMSB models the sleptons can exist with masses as low as ∼ 130 GeV. Pair production of

inoAMSB sleptons, followed by decays into quasi-stable charginos, should give rise to characteristic

isolated single or dilepton plus Emiss
T signatures, accompanied by the presence of one or two highly

ionizing chargino tracks (HITs) [60].

In a previous work [3], we presented the spectrum of SUSY particle masses which are expected

from inoAMSB models, and evaluated prospects for detection at the LHC with
√
s = 14 TeV. A 100

fb−1 LHC reach tomg̃ ∼ 2.3 TeV was found. The gluino and squark cascade decay [63] events would

often contain the presence of highly ionizing chargino tracks that could range up to a few cm in

length. The unique inoAMSB mass spectrum m
Z̃2
> mℓ̃R

> mℓ̃L
> m

W̃1,Z̃1

leads to a characteristic

double bump (mass edge) structure in the opposite-sign dilepton invariant mass distribution which

could serve to distinguish the inoAMSB model from minimal AMSB (mAMSB) or hypercharged

AMSB [18] (HCAMSB).

In Ref. [64],the relic density of dark matter in inoAMSB (and also in mAMSB and HCAMSB)
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was considered. In all AMSB models with sub-TeV scale Z̃1, the thermal abundance of neutralino

cold dark matter is well below the WMAP-measured value of ΩCDMh
2 = 0.1126 ± 0.0036 [42].

However, the possibility of additional neutralino production via moduli [65], gravitino [66] or axino

[67] decay can augment the thermal abundance, bringing the expected neutralino abundance into

accord with measured values.

In this paper, we calculate signal rates for slepton pair production in inoAMSB models at the

Fermilab Tevatron collider. We find a considerable reach for the nearly background free signature

of single or OS dilepton plus Emiss
T plus one or two HITs [60]; these signal rates ought to allow

Tevatron experiments to explore slepton masses from the inoAMSB model into the 200 GeV range

for ∼ 10 fb−1 of integrated luminosity, corresponding to a reach in m3/2 of over 50 TeV.

3.2 The gaugino AMSB model

Gaugino Anomaly Mediated Supersymmetry Breaking [3] is a very simple scenario for gen-

erating SUSY breaking soft terms in low energy supersymmetric theories. The main assumption

is that the high energy theory which generates SUSY breaking is of the sequestered type [10],

which effectively means that the classical gaugino and scalar masses and A-terms are highly sup-

pressed relative to the gravitino mass scale. This is in contrast to the situation in usual supergravity

(SUGRA) models, where these soft parameters are classically generated at the gravitino mass scale.

Nevertheless, in contrast to what is usually advocated in AMSB [10], it has been argued [114] that

only gaugino masses are generated by Weyl anomalies. In inoAMSB [3] [?], the scalar masses are

then generated by renormalization group (RG) running as in what is often called gaugino medi-

ation [14] or simple no-scale SUSY breaking models [13]. The inoAMSB model then avoids both

the generic FCNC problems of gravity mediated scenarios and also the tachyonic slepton problem

of the traditional AMSB construct. It also avoids the presence of tau slepton LSPs which occur in

gaugino mediation/no-scale models with gaugino masses unified at a high scale.

This very simple phenomenological model depends on just two parameters: the gravitino mass

m3/2 which sets the scale for all sparticle masses, and tanβ, the ratio of the the Higgs vacuum
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expectation values in the MSSM. In fact, it appears to be the simplest SUSY mediation model that

one can conceive of which satisfies all phenomenological constraints.

Furthermore, inoAMSB can be realized within a highly motivated class of string theories [?].

The models in question are called the large volume compactification scenario (LVS) of type IIB

string theory and were introduced in [2]. The moduli (and the dilaton) of string theory, which

appear as 4D fields in the effective action, are stabilized using a combination of fluxes and non-

perturbative effects (for reviews see [7]). The Calabi-Yau (CY) manifolds on which the theory is

compactified to 4D is of the so-called “Swiss Cheese” type with one large four cycle (which controls

the overall size of the internal space) and one or more small cycle. An analysis of the potential

for the moduli shows that the volume is exponentially large in the small cycle(s) whose size in

turn is stabilized at values larger than the string scale. The effective parameter which controls this

is determined by the Euler character of the CY manifold and the (flux dependent) value of the

dilaton.

It was shown in [?] that in these models, for large enough volume (greater than 105 Planck

units), FCNC effects are suppressed. Indeed, all classically generated soft SUSY breaking parame-

ters are volume suppressed compared to the gaugino mass soft terms that are generated by anomaly

mediation. The latter effect is actually a consequence of the generation of gaugino masses by the

Weyl anomaly effect as discussed in [114].

The phenomenology of this class of string theoretic models is effectively controlled by the

gravitino mass. But the theory at this point only allows us to estimate an upper bound to the

possible size of µ and B terms. So we use the latter after trading it for (as is usual) tanβ, and

regard the former as an output from the experimental value of the Z mass. The parameters of the

phenomenological model which comes from these string theory considerations are thus

m3/2, tanβ, sign(µ). (3.1)

The gravitino mass determines the values of the gaugino masses at the high scale (which will

be chosen to be the GUT scale) by the Weyl anomaly formula given in [114]. It turns out that for
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the scenario in [?], this is exactly the same as what is often given as the AMSB formula for these

masses i.e.

Mi =
big

2
i

16π2
m3/2, (3.2)

with bi = (33/5, 1, −3). The initial (high scale) values of the other soft parameters are then taken

to be

m0 = A0 = 0, (3.3)

where m0 is the common soft SUSY breaking scalar mass evaluated at the high scale ∼Mstring or

MGUT , and A0 is the trilinear soft SUSY breaking (SSB) term.

3.3 Production and decay of inoAMSB sleptons at the Tevatron

We begin by examining the sort of sparticle mass spectra that is expected from the inoAMSB

boundary conditions: m0 = A0 = 0 but with Mi =
big

2

i
16π2m3/2. We adopt a unified value of the

gauge coupling gGUT = 0.714 and then for a given value of m3/2 compute the GUT scale values

of the three gaugino masses Mi for i = 1 − 3. We compute the sparticle mass spectra using the

Isasugra subprogram of the event generator Isajet [29], along with the option of non-universal

gaugino masses. The parameter space is that of Eq. 3.1.

After input of the above parameter set, Isasugra implements an iterative procedure of solv-

ing the MSSM RGEs for the 26 coupled renormalization group equations, taking the weak scale

measured gauge couplings and third generation Yukawa couplings as inputs, as well as the above-

listed GUT scale SSB terms. Isasugra implements full 2-loop RG running in the DR scheme, and

minimizes the RG-improved 1-loop effective potential at an optimized scale choice Q =
√
mt̃L

mt̃R

(which accounts for leading two-loop terms) [30] to determine the magnitude of µ and the value

of mA. All physical sparticle masses are computed with complete 1-loop corrections, and 1-loop

weak scale threshold corrections are implemented for the t, b and τ Yukawa couplings [31]. The

off-set of the weak scale boundary conditions due to threshold corrections (which depend on the

entire superparticle mass spectrum), necessitates an iterative up-down RG running solution. The
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resulting superparticle mass spectrum is typically in close accord with other sparticle spectrum

generators [32].

In Fig. 3.1, we show the mass spectrum of various sleptons and light gauginos of interest to

Tevatron experiments versus m3/2 for tanβ = 10 and µ > 0. Results hardly change if we flip the

sign of µ. If tanβ is increased, then third generation squark and slepton and heavy Higgs masses

decrease, while first/second generation slepton masses of interest here remain nearly the same. We

see from Fig. 3.1 that while charginos and neutralinos are predicted to be the lightest MSSM

particles, ℓ̃L and ν̃L are also quite light– as low as ∼ 130 GeV– with mν̃L < mℓ̃L
. Unlike mSUGRA

or mAMSB, the ℓ̃R mass is split from ℓ̃L and quite a bit heavier: at least 280 GeV in inoAMSB.

The Z̃2 is bino-like, with m
Z̃2
> mℓ̃R

.

In Fig. 3.2, we show various slepton pair production cross sections as calculated at NLO

[69] using the Prospino program [70, 71].1 The results are calculated versus m3/2 for the same

parameters as in Fig. 3.1. We do not present W̃1W̃1 or W̃1Z̃1 cross sections, since the visible energy

from quasi-stable W̃1 → πZ̃1 decay is insufficient to trigger on.

From Fig. 3.2, we see that the reactions pp̄ → ẽ±L ν̃eL, pp̄ → ν̃eL ¯̃νeL and pp̄ → ẽL ¯̃eL are

comparable and can exceed the 1 fb level for m3/2
<∼ 45 GeV. They reach a maximum value of ∼ 10

fb for m3/2 ∼ 33 TeV. When we sum over ℓ = e, µ and τ , then the total slepton pair production

is even larger. The ẽR ¯̃eR pair production is much lower in rate, and unobservable at projected

Tevatron luminosities. Also, we see that cross sections involving Z̃2 production are much smaller,

and won’t contribute to the observable rates. For m3/2
>∼ 60 TeV, the slepton pair production cross

sections drop below the 0.1 fb level, and are likely unobservable at Tevatron.

To determine the slepton pair producton signatures, we must next calculate their branching

fractions [73]. Using Isajet, we find the following values:

• ν̃ℓL → Z̃1νℓ 33%,

• ν̃ℓL → W̃1ℓ 67%,

1 Recent works on slepton pair production at hadron colliders including resummation effects are included in
Ref. [72].



55

while

• ℓ̃L → Z̃1ℓ 33%,

• ℓ̃L → W̃1νℓ 67% .

Each quasi-stable chargino gives rise to a HIT, which may be visible in the microvertex

tracker. By combining branching fractions with slepton pair production, we find the following

event topologies.

(1) ℓ̃Lν̃ℓL → ℓ+ 2 HITs+ Emiss
T 45%,

(2) ℓ̃Lν̃ℓL → ℓ+ℓ− + HIT + Emiss
T , 22%,

(3) ℓ̃Lν̃ℓL → ℓ+ Emiss
T , 10%,

(4) ν̃ℓL ¯̃νℓL → ℓ+ℓ− + 2 HITs+ Emiss
T , 45%,

(5) ν̃ℓL ¯̃νℓL → ℓ+ HIT + Emiss
T , 44%,

(6) ℓ̃L
¯̃
ℓL → ℓ+ HIT + Emiss

T , 44%,

(7) ℓ̃L
¯̃
ℓL → ℓ+ℓ− + Emiss

T , 10% .

The ℓ+ℓ− + Emiss
T topology from reaction 7 will likely be swamped by WW and Z → τ+τ− back-

grounds, while the ℓ± +Emiss
T topology from reaction 3 will be buried under W → ℓνℓ background.

However, the event topologies including HITs should stand out from SM background, and further-

more, should signal the presence of the quasi-stable chargino. We note here that topologies 1 and

2 are unique to ℓ̃Lν̃L production, while topology 4 is unique to ν̃ℓL ¯̃νℓL production. If a two HIT

topology has one of the HITs missed for some reason, it will look like a single HIT event. But the

2 HIT topologies 1 and 4 are unique in that they each contain two quasi-stable chargino tracks.

Thus, these topologies will pinpoint the particular superparticle production mechanism. Topologies

5 and 6 arise from both ν̃L ¯̃νL and ℓ̃L
¯̃
ℓL production.
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The first/second generation slepton masses and branching fractions listed above are largely

immune to variations in tanβ, so even if tanβ changes over the range ∼ 5 − 40 (parameter space

maxes out at tanβ ∼ 42; see Fig. 5 of Ref. [3]), the expected signatures are expected to be nearly

tanβ invariant. As tanβ increases, the τ̃1 and ν̃τL masses decrease, leading to a somewhat increased

rate for production of one of two tau leptons plus HITs plus Emiss
T relative to production of one or

two isolated ℓs plus HITs plus Emiss
T .

3.4 Signal and background after cuts

Once the superparticle mass spectrum and decay branching fractions have been calculated

using Isasugra, the output is fed into Herwig [74] for event generation using pp̄ collisions at
√
s =

1.96 TeV. We adopt the AcerDet toy detector simulation program as well [75]. We then generate all

superparticle production events. A large component from W̃1Z̃1 and W̃+
1 W̃

−
1 production will not

provide enough visible energy for triggers, so we focus instead on slepton pair production, where

the signal is an opposite-sign/same flavor (OSSF) dilepton pair (e+e− or µ+µ−) plus missing ET

(MET).

To gain perspective on the energy scales from slepton pair production, we plot first in Fig.

3.3 the pT distribution of the hardest (ℓ1) and softest (ℓ2) leptons from slepton pair production in

inoAMSB with m3/2 = 35 TeV, tanβ = 10 and µ > 0. So far, we have imposed no cuts, so the

events come from pure slepton pair production with either one or two isolated leptons in the final

state. The pT (ℓ1) distribution spans an approximate range ∼ 30 − 120 GeV, with a peak at ∼ 65

GeV. The second lepton pT distribution spans ∼ 10− 80 GeV, with a peak at ∼ 20 GeV. We also

show the expected MET distribution, which peaks around 60 GeV.

In Fig. 3.4, we show the OSSF dilepton opening angle in the transverse plane. The distribu-

tion peaks around ∆φ(ℓ+ℓ−) ∼ π, reflecting the fact that the sleptons are produced back-to-back in

the transverse direction. However, when the lepton momentum from slepton decay is boosted to the

LAB frame, the distribution smears out considerably: while most events occur at large transverse

opening angle, there is a significant probability for both detected leptons to appear on the same
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side of the detector, i.e. with ∆φ(ℓ+ℓ−) < π/2.

Following recent CDF/D0 analyses ofW and Z production [76,77], we next impose a minimal

set of cuts:

• Emiss
T > 25 GeV,

• at least one isolated lepton (e or µ) with pT (ℓ) > 25 GeV and |η(ℓ)| < 1,

• for two lepton events, pT (ℓ2) > 25 GeV and |η(ℓ2)| < 2,

• for events containing HITs, we require |η(HIT )| < 2.

Next, keeping tanβ = 10 and µ > 0, we scan over m3/2 values from 30-80 TeV. The rates

for various single and OSSF dilepton events, with 0,1, or 2 HITs, are shown in Fig. 3.5. We

also compute single and OSSF dilepton background rates from pp̄ → W± → ℓνℓ production, and

W+W− and Z → τ+τ− production, respectively. The single lepton background fromW production

is about six orders of magnitude above signal, making a search in this channel hopeless. The WW

and τ+τ− backgrounds are somewhat above the largest OSSF dilepton signal levels.

At this stage, it is important to note that most signal events will contain at least one HIT,

which should be well separated in angle from the isolated leptons. The presence of HITs should

allow distinguishability of signal from background. The efficiency for HIT identification is detector

dependent, and beyond the scope of our theory analysis: here we will assume a HIT identification

efficiency of 100%. Long-lived tracks from hyperon production with Ξ → Λπ decay have been

identified by the CDF collaboration in the SVX detector and used to great effect in their analysis

of Ξb production and decay [78]. If we require the presence of one or more HITs from quasi-stable

charginos, then SM background should be largely negligible. In particular, the ℓ+ℓ− + 2 HITs +

Emiss
T signal from sneutrino pair production followed by ν̃ℓ → ℓW̃1 decay should provide a smoking

gun signature for inoAMSB at the Tevatron. From Fig. 3.5, we see that this cross section ranges up

to 2 fb after cuts. With ∼ 10 fb−1 of integrated luminosity, Tevatron experiments may have a reach

for the inoAMSB model in this channel to m3/2 ∼ 40− 50 TeV. The 1ℓ+2 HITs+Emiss
T channel,
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coming from ẽLν̃ℓL production, is generically about a factor 3 higher than the ℓ+ℓ−+2HITs+Emiss
T

channel, and should provide corroborating evidence. There are also comparable contributions to

the ℓ + HIT + Emiss
T and ℓ+ℓ− + HIT + Emiss

T channels. By combining all channels, the 10 fb−1

reach of Tevatron for slepton pair production in inoAMSB models should extend tom3/2 ∼ 55 GeV.

Augmenting the signal with single tau-jet and ditau-jets plus HITs+Emiss
T events will increase the

reach even further.

Once an inoAMSB signal for slepton pair production is established, then the next step will

be to try to extract sparticle masses from the event kinematics. We will first look at the sneutrino

pair production reaction pp̄ → ν̃ℓL ¯̃νℓL → ℓ+ℓ− + 2 HITs + Emiss
T , which arises when ν̃ℓL → ℓW̃1

decay. Since the W̃1 gives essentially all Emiss
T – aside from the HIT– it would be useful to construct

the transverse mass [79] from the ν̃ℓL decay:

m2
T (ℓ,

~6ET ) = (|~pℓT |+ |~6ET |)2 − (~pℓT + ~6ET )
2 (3.4)

from each signal event, since this quantity is bounded by mT (max) = mν̃ℓL

(
1−m2

W̃1

/m2
ν̃ℓL

)
.

However, since we do not a priori know the value of pT (W̃1), but only know ~6ET ≃ ~pT (W̃1)+~pT (W̃
′
1),

we must instead use the Cambridge mT2 variable [80]:

mT2 =
min

~pT (W̃1) = ~6ET − ~pT (W̃ ′
1)

[
max

(
mT (ℓ1, ~pT (W̃1)),mT (ℓ2, ~pT (W̃

′
1))
)]

(3.5)

which by construction must be bounded by the mT value which is constructed with the correct

lepton and missing ET vectors.

The distribution in mT2 for ℓ
+ℓ−+2 HITs+Emiss

T is shown as the blue histogram in Fig. 3.6.

We see as expected a continuum distribution followed by a visible cut-off around mT (max) ≃ 73.4

GeV.

If instead we examine the mT2 distribution for ℓ+ℓ− + 1 HIT + Emiss
T , then we will mainly

pick up ℓ̃+L ℓ̃
−
L production, plus some fraction of ν̃ℓL ¯̃νℓL events where one of the HITs is missed,

perhaps due to having too high |η| > 2 value. In this case, mT2 is bounded by 105.9 GeV, as is

illustrated in Fig. 3.6.
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3.4.1 Slepton pair production in mAMSB

We note here that Tevatron experiments can be sensitive to slepton pair production in the

mAMSB model as well [60]. Light sleptons occur in mAMSB for very low values of the m0 pa-

rameter. We have examined a case in the mAMSB model with m0 = 220 GeV, m3/2 = 35 TeV,

tanβ = 10 and µ > 0. This mAMSB benchmark gives rise to a spectrum with mτ̃1 = 124 GeV,

mν̃ℓL = 150 GeV, mℓ̃R
= 160.3 GeV, mℓ̃L

= 174 GeV and m
W̃1,Z̃1

≃ 99.3 GeV. The event rates and

distributions are rather similar to the inoAMSB model with m3/2 = 35 TeV. Naively, one might

expect τ+τ− + HITs + Emiss
T production to occur at higher rates in mAMSB than in inoAMSB,

since in mAMSB, the τ̃1 is NLSP, while in inoAMSB, the ν̃ℓL is NLSP. However, since mℓ̃R
is quite

a bit lighter in mAMSB than in inoAMSB, production of ℓ+ℓ− +HITs + Emiss
T is augmented by

ℓ̃+R ℓ̃
−
R production. Detailed simulations find a ratio

R =
N(τ+τ− + 2 HITs+ Emiss

T )

N(ℓ+ℓ− + 2 HITs+ Emiss
T )

(3.6)

to be 0.16 for inoAMSB while R = 0.18 for mAMSB (here, we require pT (τ − jet) > 20 GeV and

|η(τ − jet)| < 2). Thus, it looks difficult to distinguish the two models at the Tevatron based on

slepton pair production. Distinguishing the two models is straightforward once enough integrated

luminosity is accumulated at LHC, since then Z̃2s that are produced in gluino and squark cascade

decays lead to a double edge structure in the m(ℓ+ℓ−) distribution (reflecting the large mℓ̃L
, mℓ̃R

mass gap) while the mAMSB model with light sleptons gives only a single mass edge, owing to the

near degeneracy of ℓ̃R and ℓ̃L [3]. We also emphasize here that slepton pair production only occurs

in mAMSB for very low m0 and m3/2 values, and the mℓ̃L,R
−m

Z̃1
mass gap is quite variable for

different m0 values, while in inoAMSB, this mass gap is essentially a fixed prediction depending

only on m3/2.

3.5 Conclusions

In this paper, we have examined the possibility of detecting slepton pair production from the

gaugino AMSB model at the Fermilab Tevatron, with 10-16 fb−1 of integrated luminosity. This
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model is characterized by a spectrum of very light sleptons, along with a wino-like neutralino and

a nearly mass degenerate, quasi-stable chargino; the latter occur in most AMSB-type models. In

inoAMSB, the sneutrinos are the lightest sleptons, but they can decay visibly into modes such as

ν̃ℓL → ℓW̃1. If the highly ionizing chargino tracks (HITs) can be identified, then the ℓ+HITs+Emiss
T

and ℓ+ℓ−+HITs+Emiss
T signatures should be nearly background free. Summing over all production

reactions and final states containing HITs should give the Fermilab Tevatron a reach in m3/2 to

∼ 55 TeV, which corresponds to a gluino mass of ∼ 1200 GeV. This should be somewhat beyond

what LHC can explore with
√
s = 7 TeV and ∼ 1fb−1 of integrated luminosity [81]. If a sizable

signal is established, then the distribution in mT2 should provide some information on the masses of

the sparticles being produced. In particular, the max of the mT2 distribution should be somewhat

higher for dilepton events with one HIT, as opposed to dilepton events containing two HITs. This

reflects the mℓ̃L
> mν̃ℓL mass hierarchy which is expected from inoAMSB models.



61

40 50 60 70 80
m

3/2
 [TeV]

0

100

200

300

400

500

600

700

800

M
as

s 
[G

eV
]

e~
L

e~
R

ν~
L

Z
~

1
, W

~
1

Z
~

2

inoAMSB,   tanβ=10,  sgn{µ}>0
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pair production events with OSSF dileptons at the Fermilab Tevatron for the inoAMSB model. We
adopt m3/2 = 35 TeV, tanβ = 10 and µ > 0.
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Figure 3.4: Distribution in OSSF dilepton transverse opening angle at the Fermilab Tevatron for
the inoAMSB model. We adopt m3/2 = 35 TeV, tanβ = 10 and µ > 0.
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Chapter 4

Dark Matter density and the Higgs mass in LVS String Phenomenology

Chapter Summary

The Large Volume Scenario for getting a non-supersymmetric vacuum in type IIB string theory

leads, through the Weyl anomaly and renormalization group running, to an interesting phenomenol-

ogy. However, for gravitino masses below 500 TeV there are cosmological problems and the resulting

Higgs mass is well below 124 GeV. Here we discuss the phenomenology and cosmology for gravitino

masses which are & 500 TeV. We find that not only is the cosmological modulus problem alleviated

and the right value for dark matter density obtained, but also the Higgs mass is in the 122-125

GeV range. However the spectrum of SUSY particles will be too heavy to be observed at the LHC.

4.1 Introduction

Currently the Large Volume Scenario (LVS) [87] of type IIB string theory compactified on a

Calabi-Yau orientifold (CYO) with fluxes1 is the only viable framework for discussing phenomenol-

ogy in a top down approach. This is because, apart from the LVS argument (which of course works

only in type IIB theory), so far there is no compactification of any string theory that gives a su-

persymmetry breaking minimum with all moduli stabilized. On the other hand, the problem of

getting the MSSM in such constructions has not yet been solved. However, in this class of models,

the MSSM is localized in the CYO, so the stabilization problem is essentially decoupled from the

problem of finding the MSSM.

1 For reviews see [7] [8]
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By contrast, heterotic string theory models which are MSSM like have been constructed,

but the moduli stabilization problem with supersymmetry breaking and a tunable cosmological

constant is far from being solved. In fact a major problem in these constructions is that the two

issues are not decoupled. Given that in this case there is only one type of flux, it is not at all clear

that with current technology a solution can be found.

The case of type IIA strings is somewhere in between the above two cases. While models

close to the MSSM have been found (with intersecting D6 branes for instance) and some progress

on moduli stabilization in certain special cases has been made (with supersymmetric minima), a

viable model whose SUSY breaking phenomenology can be determined is far from being realized.

Thus we are led to the conclusion that, at least for the time being, the only string construction

that can yield a viable SUSY breaking phenomenology is LVS. Within LVS, there have been several

different versions which in principle could have resulted in a meaningful phenomenology. However,

as has been argued by one of us in a recent paper [105], all of these bar one have either theoretical

or phenomenological problems. The only model which appears to survive all constraints is that

discussed in [24] and [83] and has been named inoAMSB.

In the following we will show that once all the phenomenological (i.e. FCNC) and standard

cosmological constraints are imposed, inoAMSB leads to a unique set of predictions. Our basic

assumption is the following:

• The MSSM is located on D3 branes at a singularity of a CYO which is of the “Swiss Cheese”

type.

Given this assumption, we need to ensure the following theoretical constraints in order to

proceed with the LVS argument, which really applies only to the compactified string theory in the

four dimensional low energy regime. In other words, we need to justify a 4D N = 1 supergravity

(SUGRA) description. Flux compactifications necessarily proceed via the ten dimensional low

energy limit of string theory, which in turn needs to result in a four dimensional theory. The

constraints follow from the requirement that the superderivative expansion is valid at each stage.
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Thus we need:

• The energy scales of the theory E ≪MKK ≪Mstring.

• After SUSY breaking
√
F/MKK ≪ 1.

These are the principle theoretical constraints on the LVS construction. In addition there are

phenomenological and cosmological constraints apart from the obvious ones, like the necessity for

having a highly suppressed cosmological constant (CC). These constraints include:

• Flavor changing neutral currents (FCNC) must be suppressed.

• The gravitino and the lightest modulus of the string theory compactification must be heavy

enough so as not to interfere with Big Bang Nucleosynthesis (BBN) in standard cosmology.

In the context of these string constructions the FCNC constraint translates into a lower bound on

the internal volume V [24]. The classical contribution to the soft terms at the UV scale (taken

close to the string scale) is highly suppressed (relative to the gravitino mass) by a factor of the

volume. However, the gaugino gets a contribution which is only suppressed by a factor of
(

α
4π

)
, the

perturbation expansion parameter of the relevant gauge group. The soft terms at the TeV scale are

then generated by RG running essentially by the mechanism of gaugino mediation [?] [?] and are

flavor neutral as usual. So the FCNC constraint comes from comparing the classical off diagonal

contribution to the RG generated soft term, giving the relevant lower bound.

For low values of the gravitino mass (m3/2 . 200TeV) this lower bound is V & 105 in

string units. The relevant phenomenology is discussed in [83]. However, in this case, we have a

cosmological modulus problem since for the lightest modulus we have mmodulus = m3/2/
√
V ≪

10TeV. Also the neutralino contribution to dark matter density is about an order of magnitude

too low and the Higgs mass is well below 120GeV! In this note we look at the same class of models

with very high (& 500TeV) gravitino mass. In this case the FCNC constraints are somewhat

ameliorated and the CYO volume lower bound becomes V & 104. Up to an O(1) factor, this puts

us around the lower bound for the light modulus mass but, importantly, gives the right value for
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neutralino dark matter. It also gives a Higgs mass in the 122-125 GeV range in agreement with

the recent hints from CERN.

At the string scale (assumed to be close to the GUT scale) the SUSY parameters take their

values from the convential inoAMSB arguments. The gauginos gain mass through the super-Weyl

anomaly and take the following form:

Mi =
big

2
i

16π2
m3/2 bi = (33/5, 1,−3) (4.1)

The scalars are suppressed relative to m3/2 and are given by

m2 = +
3

16

ξ̂

| lnm3/2|
m2

3/2

V (4.2)

where ξ̂ ∼ O(1) is related to the Euler character of the CYO. Form3/2 = 500TeV = 5×10−13 (MP =

1) and V = 104 this gives

m =

√
3

16

1

| ln(5×10−13)| × 104
500 TeV ≈ 407 GeV (4.3)

The A term is also highly suppressed at the GUT scale while the absolute value of the µ term is

an output determined by the mass of the Z boson.

In what follows, we compute 2-loop RGE evolution for various soft masses using ISAJET [118].

We observe that the SUSY particle masses are generically lifted to the TeV scale. Consequently,

this diminishes the likelihood of direct production at the LHC. In Table 4.1, we present the SUSY

particle masses (physical mass eigenstates) for this model with various values of m3/2 and tan(β).

In Figure 4.1, we plot the (1-loop) SUSY sparticle mass RGE evolution.

In Figure 4.1, we call attention to the fact that M2
Hd

becomes large and negative near the

Weak scale. This may seem contrary to the traditional expectation of a small and positive M2
Hd

.

However, as noted in [82] (page 204), for large values of tan(β), the bottom and tau Yukawa

couplings make large contributions to the M2
Hd

RGE, driving it negative. For tan(β) ≈ 10, this

effect vanishes.
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parameter inoAMSB1 inoAMSB2 inoAMSB3 inoAMSB4

m0 0 GeV 407 GeV 407 GeV 615 GeV
m3/2 100, 000 500, 000 500, 000 750, 000

A0 0 50 50 75
tanβ 10 10 40 20
M1 956.1 4910.1 4918.4 7481.3
M2 287.9 1400.0 1399.9 2103.7
µ 1127.5 6465.4 6453.9 6500.3
mg̃ 2186.1 9501.9 9502.0 13907.0
mũL 1908.7 8137.9 8139.2 11824.6
mũR 1975.7 8485.5 8492.0 12366.6
mt̃1

1691.8 7411.1 7135.4 10833.6

mt̃2
1814.8 7633.6 7488.6 11004.0

mb̃1
1779.5 7602.0 7154.6 10973.1

mb̃2
1908.3 8134.8 7332.0 11665.5

mẽL 457.8 2202.3 2197.5 3286.8
mẽR 809.5 3875.2 3875.2 5789.6
m

W̃2

1129.8 4599.8 4507.2 6550.3

m
W̃1

299.7 1474.3 1474.1 2217.1

m
Z̃4

1143.2 4841.0 4846.4 7372.5

m
Z̃3

1135.8 4597.8 4508.3 6549.3

m
Z̃2

936.8 4594.6 4506.2 6548.5

m
Z̃1

299.4 1472.9 1471.9 2214.0

mA 1208.9 5050.9 2100.4 6799.9
mh 116.0 122.1 123.9 124.2
Ω
Z̃1
h2 0.007 0.111 0.110 0.111

σ [fb] 439 6.7× 10−2 7.1× 10−2 2.6× 10−3

g̃, q̃ pairs 3% 0% 0% 0%
EW − ino pairs 93% 93% 95% 96%
slep. pairs 3% 0.5% 0.4% 0.09%

t̃1
¯̃t1 0% 0% 0% 0%

Table 4.1: Masses and parameters in GeV units for four case study points inoAMSB1,2,3,4 using
ISAJET 7.79 with mt = 172.6 GeV and µ > 0. We also list the total tree level sparticle production
cross section in fb at the LHC with 14 TeV center of mass energy.
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Figure 4.1: SUSY particle mass evolution using 1-loop RGE’s, V = 104, m3/2 = 500 TeV, tanβ =
40, m0 = 407 GeV, A0 = 50 GeV

4.2 Cosmological Issues

4.2.1 Cosmological Modulus Problem

Within inoAMSB models, there exists the potential for conflict with the Cosmological Mod-

ulus Problem [106] [89]. Essentially, the sGoldstino, which is a light scalar modulus, can dominate

the energy density of the universe and decay during the era of Big Bang Nucleosynthesis, disrupting

the consistency of the BBN model. In LVS, the light scalar modulus has a mass given by

mmod ∼
m3/2√

V
(4.4)

For m3/2 = 500TeV and V = 104, this gives a modulus mass of mmod ∼ 5TeV, somewhat be-

low the phenomenological bound of 10TeV. We can satisfy this bound by raising m3/2 to 1000TeV

or 1PeV. This will lift the sparticle spectrum into the 10′s of TeV’s. One might naively assume

that the dark matter relic abundance, ΩDMh
2, would violate known bounds. However, as we shall
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see, this bound is still satisfied.

4.2.2 Dark Matter Relic Abundance

It is a well known problem [84] that AMSB type models generically produce a dark matter

relic abundance that is several orders of magnitude lower than the current experimental value

(ΩDMh
2 ∼ 0.11 [42]). This is attributable to the near degeneracy between the lightest wino and

the lightest zino. Their mass difference is typically ∼ O(100MeV). This leads to an overabundance

of W̃ at freeze-out and efficient W̃ , Z̃ co-annihilation. However, when m3/2 = 500TeV, the mass

difference between W̃ and Z̃ is ∼ O(2 GeV). This suppresses the abundance of W̃ at freeze-out

and hence raises the SUSY contribution to dark matter relic abundance. For m3/2 = 500 TeV, the

value calculated from ISAJET is ΩDMh
2 ≈ 0.11.

In Figure 4.2, we plot the dark matter relic abundance as a function of m3/2 (with tan(β) =

10). We see that the experimental bound is roughly saturated for m3/2 = 500TeV and m3/2 =

750TeV. In particular, for m3/2 ∼ 1000TeV, the experimental bound on dark matter relic abun-

dance is not violated but some other mechanism must account for it.

4.3 Phenomenological Issues

4.3.1 FCNC and Anomalous Magnetic Moment of the Muon

The SUSY particle spectrum determined by this model is also subject to constraints on known

Standard Model processes. In particular, the flavor changing neutral current process b→sγ as well

as the anomalous magnetic moment of the muon, δaµ ≡ (g− 2)µ, are influenced by the presence of

SUSY particles in their respective loop diagrams. For our model, the calculated values from ISAJET

for these quantities are presented in Table 2 along with the corresponding experimental values [90]

[97]. From these results we conclude that our model does not violate these phenomenological

constraints.
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Figure 4.2: Dark matter relic abundance as a function of m3/2

Experimental Value Estimated Value

(g − 2)µ 29.5± 8.8×10−10 0.73×10−10

BR(b→ sγ) 3.11± 0.8×10−4 3.16×10−4

Table 4.2: Phenomenological constraints for inoAMSB with m3/2 = 500 TeV, m0 = 407 GeV,
A0 = 50 GeV, tanβ = 40 using ISAJET 7.79 with mt = 172.6 GeV and µ > 0.

Note that in Table 4.1 the value of the µ-term is an output determined by the experimentally

measured value of the Z mass. In these string theory constructions the value of this term is

dependent of the mechanism which is responsible for lifting the LVS minimum to a positive value

at the 10−3 eV scale. As discussed in [24], one needs to turn on F-terms in either the dilaton or

the complex structure directions in order to achieve this.2 Thus this term will be dependent in a

complicated way on the fluxes and in general can be fine tuned to satisfy the Z mass constraint.

This fine tuning is of course the little hierarchy problem appearing as a landscape flux choice

problem and corresponds to a fine tuning (with m3/2 ∼ 500TeV−800TeV) of 1 part in 3−4×103.

Of course this is still much better than the original standard model fine tuning of 1 part in 1030!

2 For an explicit example see the recent paper [100].
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4.4 Prospects for the LHC

The fact that the SUSY particle masses are on the TeV scale will, roughly speaking, suppress

the likelihood of their direct detection at the LHC. However, there is one principle difference between

this model and the case when m3/2 < 100TeV. Namely, the near degeneracy between W̃1 and Z̃1

is noticeably lifted, with M(W̃1) −M(Z̃1) ≈ 2 GeV. This means that W̃+
1 can decay to Z̃1 plus

quarks. These quarks may be energetic enough to produce jets that meet LHC trigger requirements.

However, the likelihood of their production is very small. One can see from the production cross

section calculations (given in the bottom rows of Table 4.1), that even for an integrated luminosity

of 100 fb−1, the LHC will produce fewer than 10 events. This clearly limits any hope of direct

production of SUSY particles at the LHC.

4.5 Conclusion

As we discussed in the introduction, with a rather minimal set of string theory inputs,

phenomenological constraints (chiefly the absence of FCNC) and cosmological constraints, we have

obtained a very predictive phenomenology. The main output is the correlation between satisfying

the light modulus and neutralino dark matter constraint on the one hand (which essentially limits

the value of the gravitino mass to a range between 500 TeV and 800 TeV) and the value of the

mass of the light Higgs, giving the latter in the range where it may have been observed at the LHC.

Unfortunately even the LSP in this scenario is at 1.4 TeV, so that it is unlikely to be observed

there. On the other hand, if sub TeV scale superparticles (for instance a light stop) is observed

this version of string phenomenology will be ruled out.

It is useful to deconstruct the arguments made here to understand precisely what input or set

of inputs would need to be changed, and indeed if one has any room to maneuver whatsoever to get

a low mass spectrum. Firstly, let us take a purely phenomenological supergravity approach. From

this perspective the essential features of the scenario are a) sequestering i.e. the classical soft masses

are highly suppressed compared to the gravitino mass b) the gaugino masses are generated at some
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high scale close to the GUT scale by the Weyl anomaly [26], i.e. eqn. (4.1). Since the actual value

of the classical mass in Table 1 is essentially irrelevant as long as it is highly suppressed compared

to the gravitino mass (i.e. ≪ ( α
4π )m3/2) the rest of the phenomenology and in particular the Higgs

mass and the dark matter density follows.

How generic is this phenomenology? Obviously the first requirement is that we start with a

sequestered situation, i.e. one in which the classical soft parameters are highly suppressed relative

to the gravitino mass. The second requirement is the validity of the Weyl anomaly formulae (4.1).

This follows quite generally from the Kaplunovsky-Louis formula for the gaugino mass [26] [114]

when, as in a sequestered model, the classical term can be ignored. Then the anomaly term

(bi/16π
2)F iKi

3 gives the formula (4.1) since F iKi ∼ m3/2 once the CC is tuned to leading order.

The string theory input, i.e. type IIB with LVS compactification, is simply a concrete realization

of this inoAMSB framework.

The latter is much more general than the type IIB LVS case. Firstly, the no-scale like su-

pergravity action seems to be quite generic in string theory. In the heterotic string for instance,

although there is no construction yet with all the moduli stabilized, to the extent that supersym-

metry breaking has been investigated, it is clearly of the no-scale type to leading order in the α′

and the string loop expansion. The supersymmetry breaking is dominantly in the Kähler mod-

ulus direction with the superpotential being independent of this modulus up to non-perturbative

terms. Also the gauge coupling function is proportional to the dilaton. Thus as is well-known

(see for example [95]), the leading contribution to the soft masses is zero - in other words we have

a sequestered situation. Therefore it is likely that once the moduli stabilization problem in the

heterotic case is understood, its phenomenology will again be of the inoAMSB type.

3 Ki and F i are the derivative of the Kähler potential and the supersymmetry breaking F-term respectively.



Chapter 5

Physical Vacua in IIB Compactifications with a Single Kähler Modulus

Chapter Summary

We search for phenomenologically viable vacua of IIB string flux compactifications on Calabi-

Yau orientifolds with a single Kähler modulus. We perform both analytic studies and numerical

searches in order to find models with de Sitter vacua and TeV-scale SUSY particle phenomenology.

5.1 Introduction

The search for physically plausible four dimensional vacua represents a preeminent goal of

contemporary research in string theory. The challenges endemic to this search originate principally

from the fact that string theory is a ten dimensional theory that must be compactified to four

dimensions. The process of compactification necessarily introduces moduli fields that, from the

standpoint of 4D effective field theory, must be stabilized with acceptable masses and vacuum

expectation values. For the case of IIB string theory, the general procedure for addressing these

questions by using internal fluxes and non-perturbative terms has recently been developed. For

reviews see [7] and [8].

One of the principal drawbacks of an early model, the KKLT scenario [9], is that the moduli

are a priori stabilized at values producing a negative cosmological constant and that supersymmetry

(SUSY) remains unbroken. In order to achieve a de Sitter minimum the authors introduce D3

branes into the compactified volume. This uplifts the scalar potential to a positive value and

breaks supersymmetry. However, from a four dimensional supergravity (SUGRA) perspective, this
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construction breaks supersymmetry explicitly rather than spontaneously. Furthermore as argued

in [98], the logic of incorporating the non-perturbative effects implies that one should first find

a classically stable string compactification (with at worst flat directions). The addition of D-bar

branes vitiate this requirement, since they lead to a run-away potential for the Kähler modulus,

decompactifying the internal manifold. Any phenomenology based on this model then is basically

a test of this rather ad hoc uplift term, and so will have little to do with the underlying string

theory.

A subsequent model of IIB flux compactification, known as the Large Volume Scenario (LVS)

[87], overcomes some of the problems of the KKLT model. In particular while the explicit minimum

obtained there still has a negative CC, it breaks SUSY. Furthermore it can be argued that the

phenomenological consequences (soft masses, etc.) are not strongly affected by the mechanism by

which the CC is ultimately uplifted to positive values [101] [23] [24] [83] [4]. In LVS, the compact

volume is a so called Swiss Cheese manifold, with one large Kähler modulus and one (or more)

smaller Kähler moduli1 . All of the moduli fields are again stabilized with a combination of fluxes

and non-perturbative effects. However, this model is, in principle, susceptible to violations of

constraints on flavor changing neutral currents (FCNC) [24]. This potential violation can be traced

back to fact that the model uses more than one Kähler modulus.

Essentially, the general expression for the soft masses in this model contains two terms, one

flavor diagonal term coming from the large Kähler modulus, (Tl, ℜ(Tl) ≡ tl), and one flavor non-

diagonal term coming from the small Kähler modulus, (Ts, ℜ(Ts) ≡ ts). The ratio of these two

terms is proportional to the ratio of their associated harmonic (1, 1) forms ωl, ωs (ωl dual to tl,

ωs dual to ts). FCNC suppression then demands that ωs . 10−3 1
ln(m3/2)tb

ωl. This can be achieved

if the small Kähler modulus is chosen to be a blow up of a singularity some distance R from the

stack of D3 branes and with R being larger than a certain lower bound (for details see [24]).

1 The standard model fields are located on a stack of D7-branes wrapping an additional cycle which in some
models tends to shrink below the string scale, or on a stack of D3 branes located at a singularity. We will assume
for the purposes of this paper that the latter is the case here and will ignore this additional cycle and questions
associated with its stabilization.
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While, in principle, there is no problem achieving this within the LVS construction it is still

worthwhile examining whether this additional input discussed above can be avoided. This leads

us to examine models that use a single Kähler modulus. We may follow the procedure of [87] and

look for minima of the scalar potential in which the complex structure moduli are stabilized at

points which are such that the SUSY breaking direction is orthogonal to these moduli. From here,

we have the choice of assuming that the axio-dilaton is also stabilized at such a point or that it

contributes to the breaking of supersymmetry. 2

Our strategy is to consider various SUGRA models coming from IIB flux compactification.

These models are defined by their Kähler potentials and superpotentials. We stabilize the mod-

uli fields in these models either analytically or numerically and we examine the relevant particle

phenomenology in each case. For the numerical results, we use standard minimization functions

in Mathematica to locate minima and to evaluate the scalar potential and other quantities. In

addition, we use the program STRINGVACUA [113] in order to simplify these calculations but we

do not make use of this program’s algebraic geometry-based algorithms. We find that it is possible

to find minima where supersymmetry is broken and with the scale of the cosmological constant

being close to zero. In the simplest case the gravitino and hence soft mass scale is far above the

TeV scale. Hence these models, while appearing to be consistent outcomes of type IIB string the-

ory compactified on CY orientifolds with just one Kähler modulus, do not address the hierarchy

problem and hence are not relevant for physics at the LHC. Nevertheless these are simple examples

of SUSY breaking models with nearly zero cosmological constant coming from string theory. To

get models with TeV scale gravitino mass on the other hand requires rather complicated models

with several non-perturbative terms. These we analyze numerically and we present an example

with 10TeV gravitino mass.

This paper is outlined as follows. In section 2, we investigate a simple SUGRA model in which

2 It should be noted that this procedure is just a slight extension of that followed in the original LVS paper [87].
Also we would like to stress that this LVS procedure is not the same as the so-called two stage procedure in which
the dilaton and complex structure moduli are first integrated out (assuming that the relevant masses are high, and
then studying the resulting theory for the light moduli). For some discussion on the validity of the latter see for
instance [104] [109] [110] [108] [96].
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supersymmetry is broken by the Kähler modulus using non-perturbative and α′ corrections. We

derive both analytic and numerical results for this model. In addition, we discuss its phenomenology.

In section 3, we derive similar results for a model in which supersymmetry is broken by both the

Kähler modulus as well as the axio-dilaton. In section 4, we summarize our results. We conclude

by examining a natural extension of our first model in the appendix.

5.2 Single Kähler Modulus + α
′ + Non-Perturbative Term

We begin by examining a model of supergravity coming from IIB string compactifications

on Calabi Yau orientifolds with D branes and fluxes3 . We assume that the MSSM lives on a

stack of D3 branes at a singularity. We consider a model with a single Kähler modulus, T , and

an axio-dilaton, S, but with many complex structure moduli, U i, (i = 1, . . . , h21; h21 > 1). In

addition, we include an α′ correction [91] and a non-perturbative term coming from either gaugino

condensation or instantons. This model is defined by its Kähler and superpotentials given below

K = −2 ln
((1

2
(T + T )

)3/2
+
ξ̂

2

(1
2
(S + S)

)3/2)− ln(S + S)− ln(k(U,U)), (5.1)

W =Wflux(S,U) +Ae−aT . (5.2)

Here4 ξ̂ = −χζ(3)
2(2π)3

, χ = 2(h11−h21), U represents all of the U i and a = 2π
N , where N is the rank

of the hidden sector gauge group. Note that since the compactifications that we consider all have

h21 > h11 the parameter ξ̂ is positive. We define the complex moduli fields as T = t + iτ and

S = s + iσ. We will search for minima of this model’s scalar potential that break supersymmetry

along the T direction.

3 This particular model was first studied in [86] and [122]. We extend the study of this model by including various
analytic and numerical results.

4 Our notation differs slightly from [87], ξ̂ and ξ are interchanged.
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5.2.1 Analytic Results

We begin by examining this model (eqns. (5.1),(5.2)) analytically. The scalar potential can

be written as

V = eK
[
KTTDTWDTW + 2ℜ

(
KSTDSWDTW

)
− 3|W |2

]
+ |FS |2 + |FU |2 (5.3)

We follow the approach of the LVS model and look for minima that break supersymmetry in a

self-consistent large volume approximation

V|min = t3/2|min ≫ ξ ≡ ξ̂ s3/2|min (5.4)

This allows us to approximate the Kähler potential and its derivative as

KT = KT ≈ −3

2t

(
1− ξ

2t3/2

)
KTT ≈ 4t2

3

(
1 +

ξ

2t3/2

)
(5.5)

eK =
1

(
t3/2 + ξ

2

)2
k(U,U)(2s)

≈ 1

t3k(U,U)(2s)

(
1− ξ

t3/2

)
(5.6)

Combining these terms together we get for the scalar potential

V ∼ 1

t3k(U,U)(2s)

[
4t2

3

(
a2|A|2e−2at

)
+ 2ℜ

(
(−aAe−aT )(−2t)W

)
+

3ξ

4t3/2
|W |2

]

+O
(
e−2at

t5/2
,
e−at

t7/2
,

1

t9/2

)
+ 2ℜ(KSTF

SF T ) + |FS |2 + |FU |2 (5.7)

By extremizing the scalar potential only in the T direction, we will find that V |min ∼ O( 1
V3 ).

The terms in eqn. (5.7) that involve FS and FU can be approximated as

|FS |2 ∼ O
(

1

V2

)
|FU |2 ∼ O

(
1

V2

)

2ℜ
(
KSTF

SF T
)
∼ O

(
1

t5/2
1

t3/2
1

t1/2

)
∼ O

(
1

V3

)
(5.8)

Since |FS | and |F T | are both positive definite, we see that a large volume minimum with FS |min =

FU |min = 0 obtained by looking at the T minimization conditions will in fact be a minimum of the

full potential V (S, T, U) because motion along any of the moduli fields away from the minimum

necessarily increases V (S, T, U).
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We now proceed to look at the conditions for a minimum with respect to T of V 5 . From

eqn. (5.7) we may extract the axion dependence of the scalar potential

V (τ) ∼ 1

t3k(U,U)(2s)

(
2ℜ
(
−aAe−aTW 0(−2t))

))
(5.9)

We define the complex quantities as follows, A = |A|eiφA , W0 = |W0|eiφW0 (W0 ≡W (S,U)flux|min).

The potential’s axion dependence now becomes

V (τ) ∼ 4ae−at

t2
(|A||W0| cos(aτ − φA + φW0

)) (5.10)

Where we have assumed that 1
(2s)(k(U,U))

|min ∼ O(1). Extremizing with respect to τ ,

V ′(τ) =
−4a2e−at

t2
(|A||W0| sin(aτ − φA + φW0

)) = 0 (5.11)

The set of solutions to this equation is

aτ − φA + φW0
= nπ n ∈ Z (5.12)

This set of solutions gives us insight into the structure of the Hessian matrix. In order

to find minima of the potential, we must find extrema for which the eigenvalues of the Hessian

matrix are all positive. From eqn. (5.11) and (5.12) we see that the off-diagonal terms vanish,

∂2V
∂τ∂t |min = ∂2V

∂t∂τ |min = 0. This simplifies the Hessian matrix to the following form




∂2V
∂t2

0

0 ∂2V
∂τ2




From this matrix, we see that both eigenvalues are positive if and only if both ∂2t V and ∂2τV are

also positive.

We now check the concavity of the potential at the τ extremum,

V ′′(τ) =
−4a3e−at

t2

(
|A||W0| cos(aτ − φA + φW0

)
)

(5.13)

In order to isolate a minimum, we require V ′′ > 0, therefore

aτ − φA + φW0
= (2n+ 1)π n ∈ Z (5.14)

5 This is essentially the same procedure as in [87].
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Inserting eqn. (5.14) into eqn. (5.10) with FS = FU = 0, we compute the scalar potential for

this model and expand in negative powers of the volume. For large volumes the potential can be

safely approximated by

V ∼ 4

3

(
a2|A|2e−2at

) t1/2
V + 4

(
a|A|2e−2at − a|W0||A|e−at

) t

V2
+

3|W0|2ξ
4V3

+ . . . (5.15)

Where we have again assumed that 1
(2s)(k(U,U))

|min ∼ O(1).

From here, the scalar potential can be further simplified with knowledge of the magnitude

of W0. There are two relevant regimes, |W0| ∼ e−at and |W0| ≫ e−at that may lead to the sort of

minimum we are looking for. In the first regime we see that the α′ correction term (the last term

of eqn. (5.15)) can be ignored. This is then essentially the KKLT situation and the corresponding

minimum is supersymmetric. The numerical search for minima in this limit confirm that such

minima are indeed supersymmetric.

We now investigate the remaining regime, |W0|≫ e−at. In this limit, the scalar potential is

exponentially suppressed at large volumes and simplifies to

V ∼ −
(
4|W0|(a|A|e−at)

) t

V2
+

3W 2
0 ξ

4V3
+ . . . (5.16)

We solve for the minimum of this potential by suppressing the term in the derivative that is

∼ O
(
W0e−at

t3

)
. This is tantamount to assuming that at & O(2). The extremization condition

(∂tV = 0) yields the relation

|W0| =
32

27ξ

(
a2|A|e−at

)
t7/2 (5.17)

This shows that at the minimum of the potential, |W0| is much larger than e−at, which is consistent

with our original assumption. Checking for positive concavity of the minimum and using the same

approximation (at & O(2)) gives the condition

V ′′ =
27|W0|2ξ
8t11/2

(
− a+

11

2t

)
> 0 (5.18)

We see from this equation that for at < 11/2 this extremum is a minimum (note that this is

essentially a condition relating the fluxes and a as is evident from eqn. (5.17)). Therefore, the
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gravitino mass is bounded from below by

m3/2 ∼
|W0|
t3/2

&
e−11/2

(
11
2

)2

ξ
∼ 10−3 MP or 1015 GeV (5.19)

For ξ ∼ O(100). We may estimate the value of the scalar potential at the minimum by inserting

eqn. (5.17) into eqn. (5.16). This yields the following relation

V |min = −
(
4|W0|

(
+

27ξ|W0|
32t7/2a

))
t−2 +

3|W0|2ξ
4t9/2

=
3|W0|2ξ
4t9/2

(
− 9

2at
+ 1
)

(5.20)

For at ∼ O(1), V |min ∼ O
(

1
V3

)
. This is in agreement with our original assertion about the scale

of V |min, namely, for large volumes, V |min is suppressed relative to the terms in the full potential

V (T, S, U) that are proportional to FS or FU . Therefore, this is a minimum of the full scalar

potential. It is a deSitter minimum for 9
2 < at < 11

2 . It is important to reiterate that this bound

on at is approximate and principally used to make an order of magnitude estimate on the lower

bound of m3/2. Exact bounds on at necessary for a deSitter minimum require one to numerically

solve6 the conditions ∂tV = 0 and ∂2t V > 0.

We may check the stability of this minimum against the well known necessary criteria es-

tablished in the work of Covi et.al. [102] (see eq. 5.35) as well as [111]. The relevant bound

is

δ̃ ≡ ξ

16V ≥ 2V |min

105m2
3/2

(5.21)

For our model, we maximize V |min and observe that

ξ

16V ≥ 2×2×3|W0|2ξ
105×11×4t9/2m2

3/2

=
ξ

385V (5.22)

Therefore, we confirm that this necessary condition is indeed satisfied.

We may also check whether this minimum is stable under quantum corrections. As discussed

in [92] [93] [120], the Kähler potential (eqn. (5.1)) receives corrections at 1-loop of the form

K → K +
1

T + T

[
f(A,A,U, U)

S + S

]
+ . . . (5.23)

6 We thank Alexander Westphal and Markus Rummel for discussing this issue. The explicit calculation of the
deSitter bounds of at is performed in [119].
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Here, f(A,A,U, U) is a function of the open string scalars as defined in [93]. For our model, this

translates into a scalar potential of the form

V =

[
c1(S + S)3/2

(T + T )9/2
+

c2

(T + T )10/2(S + S)2
+
c3(S + S)3/2

(T + T )11/2
+ . . .

]
|W0|2 (5.24)

where ci . O(10). Comparing this with eqn. (5.20), we may identify the 1-loop correction as the

term ∼ O
(

1
(T+T )10/2

)
. We see that for s ∼ O(1) the 1-loop correction indeed alters our minimum.

In order to suppress this correction we need to choose fluxes such that the value of s is large enough.

From eqn. (5.24), we find that for

(S + S) & (T + T )1/7 (5.25)

the quantum term in eqn. (5.24) can be ignored and we recover our original minimum. For example,

if t ∼ 10, s must be & 1.4 to suppress the quantum correction7 .

We now calculate the classical soft masses using the general expression [114] [95]

m2
αβ

= V |minKαβ +m2
3/2Kαβ − FAFBRABαβ (5.26)

For our model this reduces to

m2
αβ

∼ m2
3/2Kαβ − F TF TRTTαβ (5.27)

The calculation of the Riemann curvature tensor and the F-terms may be adapted from the results

derived in [24] which follow from [112] and [102]. We quote the value of the soft mass, m2
s, (where

m2
αβ

≡ m2
sKαβ) below

m2
s =

5ξ

8t3/2
m2

3/2 (5.28)

We conclude that the soft masses are not tachyonic (since ξ is positive). However, they are fixed

at a scale comparable to m3/2, i.e. parametrically above the weak scale and are thus of limited

phenomenological interest.

7 Consistency of the two super-covariant derivative expansion when the lightest integrated-out scale is the Kaluza-
Klein scale requires |W0| < t−1/2. This implies t . O(10).
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5.3 Single Kähler Modulus with S and T SUSY breaking

5.3.1 Series Expansion Analysis

We now investigate a class of SUGRA models in which supersymmetry can be broken in

both the S and T directions. As in the previous example, we study models coming from IIB

compactifications on Calabi Yau orientifolds with matter living on D3 branes at a singularity. We

include Wilson lines in the compactification in order the break the gauge group into a direct product

group ΠiSU(Ni). We assume that these groups condense to give non-perturbative corrections to

the superpotential that break supersymmetry. Unlike the previous model, we do not include α′

corrections to the Kähler potential. The generic expressions for the Kähler and superpotentials are

given below

K = −3 ln(T + T )− ln(S + S)− ln(k(U,U)) (5.29)

W = A(U) +B(U)S +
∑

i

Ci(U, S)e
−xiT (5.30)

Here, xi ≡ 2π
Ni

where Ni is the rank of the ith gauge group and U represents all of the complex

structure moduli (Ua, a = 1, . . . , h21). For our analysis we will assume that the exponential pref-

actors Ci are O(1) and that their U and S dependence comes from threshold effects and internal

fluxes, i.e. Ci(U, S) = Ci(U)eαiS . (See for example [94]8 ) Therefore, the superpotential can be

written as

W = A(U) +B(U)S +
∑

i

Ci(U)e−xiT+αiS (5.31)

Let us now examine a technique for handling this model numerically9 . Suppose that we

identify a minimum of the scalar potential at a point, (S0, T0, U0) in field space. Without loss of

generality we assume that this point is real. We expand the superpotential only in fluctuations

about the S and T directions. We assume that there is sufficient freedom in the choice of fluxes

that once the minimization in these two directions are carried out fluxes can be chosen such that

8 In this paper the fluxes are used to break the SU(5) gauge group containing the standard model. Here by
contrast we are breaking the condensing group which generates the non-perturbative terms in W .

9 The following method was first outlined in [98].
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this remains a minimum with some value of U such that FU = 0. With a sufficient number of

3-cycles this should be always possible. We expand W as

W (S, T, U) =
∑

n,m

anm(U)(S − S0)
n(T − T0)

m (5.32)

Comparing this with eqn. (5.30) gives

anm =
1

n!m!
∂nS∂

m
T W0

=
1

n!m!
[(A0 + S0B0)δn0δm0 +B0δn1δm0 +

∑

i

(−xi)m∂nSCi0e
−xiT0 ]

≡ e−xiT0S−n
0 T−m

0 ãnm (5.33)

Where W0 ≡ W (S0, T0, U0). We now redefine the fields as (S̃ ≡ S/S0, T̃ ≡ T/T0). We may then

write the superpotential as

W = e−xiT0

∑

nm

ãnm(S̃ − 1)n(T̃ − 1)m ≡ e−xiT0W̃ (5.34)

This results in an overall scaling of the scalar potential

V =
e−2xiT0

T 3
0 S0

Ṽ (S̃, T̃ , U, S̃, T̃ , U) (5.35)

where Ṽ is defined in terms of W̃ and K̃ = −3 ln(T̃ + T̃ )− ln(S̃ + S̃)− ln(k(U,U)).

Expanding the superpotential in a Taylor series allows us to control the location and value

of scalar potential’s minimum. Since the Hessian matrix for the scalar potential only depends on

terms up to third order in the expanded superpotential, we can arbitrarily tune a minimum of the

scalar potential by solving the following system of equations (from eqn. (5.33))

ã00 = ex1T0(A0 + S0B0) +
∑

i

Ci0e
−(xi−x1)T0

ã10 = S0
[
ex1T0B0 +

∑

i

∂SCi0e
−(xi−x1)T0

]

ã01 = T0
∑

i

(−xi)Ci0e
−(xi−x1)T0

...

ã30 =
S0
6

∑

i

∂SCi0e
−(xi−x1)T0 (5.36)
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5.3.2 Numerical Example

Following the arguments of the previous section we consider the following SUGRA model

K = −3 ln(T + T )− ln(S + S)− ln(k(U,U)) (5.37)

W = A0 +B0 ∗ S + C1e
−x1T+α1S + C2e

−x2T+α2S + C3e
−x3T+α3S + C4e

−x4T+α4S (5.38)

We include four non-perturbative terms because expanding the superpotential to third order re-

quires ten independent parameters. If we want to construct a minimum of the scalar potential with

the gravitino mass fixed to a certain scale it turns out that unless we include four non-perturbative

terms it is too hard to solve for a minimum. We can construct an extremum of the scalar potential

with two or three non-perturbative terms but we cannot guarantee that such an extremum is a

minimum because we lack enough free parameters to simultaneously solve all ten equations given

above (eqn. (5.36)).

For models with two or three non-perturbative terms, requiring the extremum to be a min-

imum, in principle, defines some region in 3-dimensional parameter space. (e.g. {(α̃00, α̃10, α̃01)}).

This region is identified by requiring the eigenvalues of the Hessian to be positive definite. However,

general expressions for the eigenvalues are complicated enough to prevent the identification of this

region in a computationally tractable manner. Therefore, including four non-perturbative terms

and solving the system of equations given above (eqn. (5.36)) is the most reliable technique for

identifying a minimum in this class of models.

From these arguments we construct a Minkowski minimum with m3/2 ∼ 10 TeV for the

following values of the parameters given in table 5.1. Plots of this minimum along the s, (ℜ(S)),

and t, (ℜ(T )), directions are given in figures 5.1 and 5.2. This minimum is adapted from the local

model identified in [98].

In this example we note that, at the minimum of the potential, |FS | ∼ 4|FT |. In principle

we expect |FS | and |FT | to be of the same order. In fact, the relatively low scale of m3/2 for

this model depends on these two F-terms making comparable contributions to the SUSY breaking.
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Figure 5.1: Vmin for <t>= 40
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Figure 5.2: Vmin for <s>= 2.1
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A0 = 1.85 ∗ 10−8 B0 = 1.6 ∗ 10−10 C1 = −3.4 x1 =

2π
30

α1 = −1.06 C2 = 13.3 x2 =
2π
29 α2 = −1.1 C3 = −17.7

x3 =
2π
28 α3 = −1.14 C4 = 8.1 x4 =

2π
27 α4 = −1.18

<t> 40

<τ > 0

<s> 2.1

<σ> 0

V0|min 0

m2
3/2 ≡ eK |W |2 1.3×10−28

|F T |2KTT ≡ eKKTT |DTW |2 3.2×10−28

|FS |2KSS ≡ eKKSS |DSW |2 6.8×10−29

Table 5.1: Moduli field vev’s, F-terms, Gravitino mass and the Cosmological Constant for SKM +
4 Non-Pert Terms at a non-SUSY minimum of the scalar potential (in MP = 1 units).

In the limit of |FS | → 0 with |FT | 6= 0 we return to the situation described by well-known no-

go theorems [111] [102] [98] and there would be no deSitter minimum. When |FS | is non-zero

but subdominant to |FT | we may plausibly recover a high scale deSitter minimum, analogous to

the previous model, with the axio-dilaton playing the role of a subdominant correction to the

Kähler modulus. In either case, a low scale deSitter minimum depends crucially on that fact that

|FS | ∼ |FT |.

We may calculate the soft masses for this particular example by following the approach of [21].

Namely, we may express the full Kähler potential, including matter fields as

K = Kmod + Z(T )αβΦ
αΦ

β
+ . . . (5.39)

Where, Z(T )αβ =
3δαβ

T+T
and Kmod = −3 ln(T + T )− ln(S + S)− ln(k(U,U)). The soft masses can

be calculated from the Kähler potential following the general expression given in eqn. (5.26). The

only relevant non-vanishing curvature component is RTTαβ = 1
3KTTZαβ + O(Φ2). Therefore, for

this model, the soft mass expression becomes

m2
sZαβ =

(
m2

3/2 −
1

3
F TF

T
KTT

)
Zαβ =

1

3
FSF

S
KSSZαβ (5.40)
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Therefore, m2
s≈2.2× 10−29 MP or ms≈4.8 TeV. Note that as long as V0≪m2

3/2 for this class of

models, m2
s will always be roughly equal to 1

3 |FS |2 and hence positive.

It is worth reiterating that this specific model, including all its relevant scales, has been

arbitrarily chosen. We are free, in principle, to generate a model with any desired scale by solving

the corresponding system of equations (eqn. (5.36)). What we have demonstrated is a general

technique for finding such models.

5.4 Conclusion

We have demonstrated that there exists physically plausible vacua coming from IIB string

compactifications on Calabi-Yau orientifolds having one Kähler modulus together with fluxes and

D-Branes. Such models have natural FCNC suppression due to the fact that they contain only

one Kähler modulus10 . In the simplest model, (eqns. (5.1),(5.2)), an α′ correction allows SUSY to

be broken along the T , (Kähler modulus), direction. A Minkowski or de Sitter classical minimum

is attainable but the soft mass phenomenology is such that it is of no relevance for the hierarchy

problem. This is due to the fact that the gravitino mass is fixed at a high scale (m3/2 & 10−3×MP ).

In the second model, (eqns. (5.37),(5.38)), the gravitino mass can be set to any scale by ap-

propriate choice of fluxes. SUSY is broken in both the S, (axio-dilaton), and T , (Kähler modulus),

directions and we expect both fields to contribute comparable F-terms. The classical cosmolog-

ical constant as well as the location of the minimum in field space can be tuned by solving the

appropriate equations coming from the Taylor series expansion of the superpotential (eqn. (5.36)).

However, in order to solve these equations in a tractable manner, the superpotential must include

at least four non-perturbative terms.

Finally let us observe that while in principle it is possible to find models (as demonstrated

by the above numerical example) that can in fact give a phenomenology that is relevant to TeV

scale physics, it is hard to obtain generic consequences of the entire class of such models. The

phenomenology is clearly quite sensitive to the model parameters (fluxes choices). This is quite

10 Quantum corrections will not alter this picture due to the large volume suppression, see [99].
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unlike the case of LVS models where with a few general assumptions about the location of the

MSSM a viable phenomenology is obtained [101] [23] [24] [83] [4]. While the original motivation for

this investigation was in fact to remove the requirement on the location on the MSSM cycle, that

is needed in the LVS case, to satisfy FCNC constraints, the upshot of our investigation actually

strengthens the case for this scenario.

5.5 Appendix: Single Kähler Modulus + α
′ + RaceTrack

We may naturally extend our first model, (eqns. (5.1),(5.2)) to include the effects of two

non-perturbative corrections to the superpotential. This model is given below

K = −2 ln
((1

2
(T + T )

)3/2
+
ξ̂

2

(1
2
(S + S)

)3/2)− ln(S + S)− ln(k(U,U)) (5.41)

W =Wflux(S,U) +Ae−aT +Be−bT (5.42)

Here ξ̂ = −χζ(3)
2(2π)3

, χ = 2(h11−h21) and a = 2π
N , b = 2π

M , where N and M are the ranks of two

hidden sector gauge groups. We may naively believe that is model will yield an improvement on

the first model, but as we shall see, this improvement is only minor. Ultimately, the gravitino mass

is still fixed near the Planck scale. As before we define the complex moduli fields as T = t+ iτ and

S = s + iσ and we search for minima of this model’s scalar potential that break supersymmetry

along the T direction.

5.5.1 Analytic Results

As with our first model, we may identify minima of the full scalar potential, V (S, T, U), by

minimizing V (T ) with FS |min = FU |min = 0. Our analytic results are essentially a straight forward

generalization of the simpler model. We present them here with a modicum of redundancy.

Taking the large volume approximations (eqns. (5.4),(5.5),(5.6)) we get a full expression for

the scalar potential

V ∼ 1

t3k(U,U)(2s)

[4t2
3

(
a2|A|2e−at + b2|B|2e−2bt + 2ℜ

(
aAe−aT bBe−bT

))

+2ℜ
(
(−aAe−aT − bBe−bT )(−2t)W

)
+

3ξ

4t3/2
|W |2

]
(5.43)
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From eqn. (5.43) we may extract the axion dependence of the scalar potential

V (τ) =
1

t3k(U,U)(2s)

(
2ℜ
(
− aAe−aTW 0(−2t)− aAe−aTBe−bT (−2t)− bBe−bTW 0(−2t)

−bBe−bTAe−aT (−2t) +
4t2

3
aAe−aT bBe−bT

))
(5.44)

We define the complex quantities as follows, A = |A|eiφA , B = |B|eiφB , W0 = |W0|eiφW0 , (W0 ≡

Wflux|min) . The potential’s axion dependence now becomes

V (τ) =
1

t3

(
4ta|A||W0|e−at cos(aτ − φA + φW0

) + 4tb|B||W0|e−bt cos(bτ − φB + φW0
)

(
8

3
t2ab+ 4at+ 4bt)|A||B|e−(a+b)t cos((a− b)τ − φA + φB)

)
(5.45)

Where we have again assumed 1
k(U,U)(2s)

∼ O(1). Extremizing with respect to τ ,

V ′(τ) =
1

t3

(
− 4ta2|A||W0|e−at sin(aτ − φA + φW0

)− 4tb2|B||W0|e−bt sin(bτ − φB + φW0
)

−(a− b)(
8

3
t2ab+ 4at+ 4bt)|A||B|e−(a+b)t sin((a− b)τ − φA + φB)

)
= 0 (5.46)

The only set of solutions to this equation that is independent of |A|,|B| and |W0| is

aτ − φA + φW0
= nπ bτ − φB + φW0

= mπ n,m ∈ Z (5.47)

We now check the concavity of the potential at the τ extremum,

V ′′(τ) =
1

t3

(
− 4ta3|A||W0|e−at cos(aτ − φA + φW0

)− 4tb3|B||W0|e−bt cos(bτ − φB + φW0
)

−(a− b)2(
8

3
t2ab+ 4at+ 4bt)|A||B|e−(a+b)t cos((a− b)τ − φA + φB)

)
(5.48)

In order to isolate a minimum, we require V ′′ > 0. This condition, in turn, depends on the

value of t, a, b, |A|, |B| and |W0|. In the limit where |W0| ≫ e−at, V ′′ can be made positive if

aτ − φA + φW0
= (2n+ 1)π bτ − φB + φW0

= (2m+ 1)π n,m ∈ Z (5.49)

Inserting eqn. (5.49) into eqn. (5.45), we compute the scalar potential for this model and ex-

pand in negative powers of the volume. For large volumes the potential can be safely approximated
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by

V ∼ 4

3

(
b2|B|2e−2bt + a2|A|2e−2at + 2ab|A||B|e−(a+b)t

) t1/2
V (5.50)

+4
(
b|B|2e−2bt + a|A|2e−2at + |A||B|(a+ b)e−(a+b)t − |W0|(a|A|e−at + b|B|e−bt)

) t

V2

+
3|W0|2ξ
4V3

+ . . .

From here, the scalar potential can be further simplified with knowledge of the magnitude of W0.

Again, there are two relevant regimes; assuming a ∼ b, |W0| ∼ e−at and |W0| ≫ e−at. As in the

simpler model, minima in the first regime (a ∼ b, |W0| ∼ e−at) are supersymmetric. One may see

this by examining the potential in this regime. With the benefit of foresight, we first assume that

|W0| ≈ (at)e−at. In this limit, the scalar potential is volume suppressed yielding

V ∼ 4

3

(
b2|B|2e−2bt + a2|A|2e−2at + 2ab|A||B|e−(a+b)t

) t1/2
V (5.51)

+4
(
− |W0|(a|A|e−at + b|B|e−bt)

) t

V2

One can solve for the minimum of the scalar potential. At this minimum, |W0| is

|W0| =
2

3

(
b3|B|2e−2bt + a3|A|2e−2at + (a+ b)ab|A||B|e−(a+b)t

a2|A|e−at + b2|B|e−bt

)
t ∼ O

(
(at)e−at

)
(5.52)

This is consistent with our original assumption, |W0| ≈ (at)e−at. As in the simpler model, this

minimum is supersymmetric. One can see this by examining the F-term flatness equation.

DTW = ∂TW +KTW = −aAe−aT − bBe−bT − 3t1/2W

2t3/2 + ξ
= 0 (5.53)

Therefore, at the minimum,

|W0| ∼ (at)e−at (5.54)

This is the same order of magnitude estimate that we initially assumed. The numerical search for

minima in this limit confirm that all such minima are indeed supersymmetric.

We now investigate the remaining regime, |W0|≫ e−at. In this limit, the scalar potential is

exponentially suppressed at large volumes and simplifies to

V ∼ −
(
4|W0|(a|A|e−at + b|B|e−bt)

) t

V2
+

3W 2
0 ξ

4V3
+ . . . (5.55)
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Solving for the minimum and assuming that at ∼ bt & O(2) (as in the earlier model) gives the

condition

|W0| =
32

27ξ

(
(a2|A|e−at + b2|B|e−bt)

)
t7/2 (5.56)

This shows that at the minimum of the potential, |W0|≫e−at, which is consistent with our original

assumption. Checking for positive concavity of the minimum gives

V ′′ =
27|W0|2ξ
8t11/2

(
−a+ 11

2t

)
− 4|W0|b2

t2
(b− a)|B|e−bt > 0 (5.57)

We see from this equation that for at . O(7) this extremum is a minimum (this is an approximate

upper bound based on the assumption that a ∼ b). This should be compared with the upper bound

obtained in our first model (at < 11/2). We see that there is only marginal improvement our first

model. The gravitino mass is bounded from below by

m3/2 ∼
|W0|
t3/2

& 5× 10−4 MP or 5× 1014 GeV (5.58)

Where, as before, ξ ∼ O(100). We may estimate the value of the scalar potential at the minimum

by inserting the extremization equation (eqn. (5.56)) into eqn. (5.55). This yields the following

relation

V |min = −
(
4|W0|

(
+
27ξ|W0|
32t7/2a

− b2

a
|B|e−bt + b|B|e−bt

))
t−2 +

3|W0|2ξ
4t9/2

=
3|W0|2ξ
4t9/2

(
− 9

2at
+ 1

)
− 4|W0|

t2
|B|be−bt

(
1− b

a

)
(5.59)

In principle, V |min can be fine-tuned to zero. Due to the transcendental nature of eqn. (5.59),

this has to be done numerically. We also note that, as with the first model, this model is, in

principle, susceptible to destabilization via 1-loop quantum corrections (à la eqn. (5.24)). However,

with sufficiently large values of s, this correction can be suppressed and the classical minimum

maintained.



Chapter 6

A QCD Axion from a IIB Local Model

in the Large Volume Scenario

Chapter Summary

We examine a model for the QCD axion within IIB string theory. The matter content is that

of the Next-to-Minimal Supersymmetric Standard Model and the string moduli are stabilized using

the Large Volume Scenario. We investigate the resulting particle spectrum and argue that, under

certain conditions, this model can be made to satisfy the known phenomenological constraints from

cosmology and particle physics.

6.1 Introduction

Since its inception in 1978, the axion model has provided an elegant solution to the Strong

CP problem (for review see for instance [115]). Within this model, the axion is taken to be a

pseudo-Goldstone boson of an additional U(1) global symmetry known as Pecci-Quinn symmetry.

This symmetry is broken at some scale fa that is assumed to be high (i.e. fa ≫ MWeak). In

conventional axion models, known constraints from cosmology restrict fa to be within the window

109 GeV . fa . 1012 GeV.

The upper bound on fa comes as somewhat of a disappointment for GUT-scale model building

because these models generically prefer fa ∼ MGUT . In fact, axions are ubiquitous within string

theory, but in most instances fa is of the order of the string scale. Fortunately, several authors

[88] [85] have noted that in supersymmetric extensions of the axion model the conventional upper
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bound on fa can be circumvented. Essentially, the bound of fa . 1012 GeV comes from constraints

on the dark matter relic abundance of the universe. However, the decays of the axion superparters,

the saxion and the axino, can dilute the axion’s contribution to the dark matter relic abundance

and hence allow for a higher scale fa.

The increased upper bound on fa improves the likelihood of constructing a realistic QCD

axion model within string theory. However, any honest attempt to do so likely requires one to

address the challenges endemic to most string theory model building. These challenges include

successful moduli stabilization, the presence of a chiral matter sector containing the Standard Model

and low-scale supersymmetry breaking. Recently, much progress has been made in overcoming these

challenges in IIB string theory. In particular, the issue of moduli stabilization and SUSY-breaking

can be achieved in the Large Volume Scenario (LVS) [87]. Additionally, a chiral matter sector can

be introduced by local D-Brane models at a singularity. These models are then embedded within

a global Calabi-Yau Orientifold (CYO) whose moduli are stabilized along to lines of LVS.

In the present paper, we will examine an effective supergravity Lagrangian coming from such

a local model [101] [23]. In particular, we will assume that chiral matter fields come from a D7-

Brane wrapping a 4-cycle that shrinks below the string scale. This local model will be embedded in

a CYO with the requisite number of Kähler moduli and non-perturbative effects to ensure moduli

stabilization and low-scale SUSY breaking. Additionally, we will assume that the matter content is

that of the Next-to-Minimal Supersymetric Standard Model (NMSSM) [107]. This assumption will

allow us to exploit several benefits over the traditional Minimal Supersymmetric Standard Model

(MSSM). These benefits will be described in detail later.

Many aspects of the phenomenology resulting from local models within LVS have been anal-

ysed in detail (see for instance [24] [83]). In particular, the nature and scale of the soft-terms

as well as the scales of the stabilized Kähler moduli have been determined. Essentially, gauginos

gain mass predominately through the Weyl anomaly whereas the remaining soft terms emerge from

Renormalization Group running. In this paper, we assume these soft-terms take this form and

we instead focus on the phenomenology of an effective supergravity model. We incorporate the
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soft-terms and Kähler moduli vev’s when necessary. This paper is outlined as follows. In section

2, we introduce our supergravity model and examine its field content. In section 3, we determine

the relevant mass scales of the axion supermultiplet and other important quantities. In section 4,

we discuss the important phenomenological constraints from cosmology and determine under what

conditions they can be satisfied. In section 5, we provide concluding remarks.

6.2 The SUSY Lagrangian

Following the analysis of [101] [23], we consider a Calabi Yau Orientifold of so-called “Swiss

cheese” type, i.e. with one big Kähler modulus, Tb, one small Kähler modulus, Ts, and at least

two shrinking modulus, (T and B2). We assume that the presence of non-perturbative effects (e.g.

Euclidean D3 instantons or gaugino condensation) can be used to stabilize Tb and Ts such that

the resulting volume of the CYO is exponentially large. Additionally, we assume that fluxes can

be chosen in order to stabilize the complex structure moduli and the axio-dilation as is done in

GKP-KKLT type models (For review see [7] [8]). The chiral matter fields will be introduced via

D-branes wrapping the T cycle. The B2 modulus is needed for a consistant orientifold action, with

the B2 cycle being exchanged with the T cycle under orientifolding.

After fixing the complex structure moduli and the axio-dilalon, but before fixing the volume

moduli, the Kähler potential takes the following form (see [101] eq. 3.11)

K = −2 ln
((
Tb + Tb

)3/2 −
(
Ts + Ts

)3/2
+ ξ
)
+

(
T + T +MV

)2

V

+

(
B2 +B2 + qV ′)2

V +
ΦiΦ

i

V2/3

(
1 +O

(
T + T

)λ
+ . . .

)
(6.1)

Here, λ is a positive parameter, ξ ≡ −χξ(3)
4(2π)2

<s>3/2, ξ > 0 and Φi represents the chiral matter fields.

M and q are the U(1) charges of T and B2 respectively.

After stabilizing the volume moduli, as well as the B2 moduli, one can absord the volume

factor into the remaining terms as follows

T → T√
V
, M → M√

V
Φi →

Φi

V1/3
(6.2)
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The Kähler potential then reduces to the following form

K =
(
T + T +MV

)2
+Φ†

ie
QiV Φi (6.3)

Here, we adopt the conventional Pecci Quinn charges for the chiral fields (QH = 1, QS = −2, . . . ).

For simplicity, we have suppressed the Standard Model gauge couplings that conventially appear

inside an MSSM-like Kähler potential. We instead focus on the U(1)PQ SUSY gauge couplings and

term involving the T modulus. As stated before, the T modulus is charged under an anomalous

U(1). The vector superfield, V , transform under this U(1) in such a way as to cancel the anomaly.

Namely, the superfields transform as δT = −MΛ, δT = −MΛ† and δV = Λ + Λ†. This is a 4D

example of the Green Schwartz Mechanism. The now non-anamolous U(1) will later be recognized

as the Pecci-Quinn symmetry U(1)PQ.

We assume that the superpotential is that of a restricted (Pecci-Quinn Symmetric) version

of the NMSSM. (This is often refered to as PQNMSSM). In principle, this matter content must

be defined by an appropriate del Pecco surface (see for example [103]). We assume there is no

obstruction to constructing such a surface. The superpotential is given by

W = ySHu ·Hd +WMSSM (6.4)

Where S is the NMSSM singlet chiral superfield and y is a complex cubic interaction constant

(Yukawa type). By WMSSM , we imply all terms present in the MSSM superpotential except an

explicit µ-term. Throughout this paper, the symbol S refers to this singlet field and not to the

axio-dilaton. In fact, the axio-dilaton will not appear in most calculations, so there should be no

confusion. For simplicity we have suppressed any higher order terms involving S that are typical

of the most general version of the NMSSM.

Combining the Kähler and superpotentials (eqns. (6.3)(6.4)) together we arrive at the full

Lagrangian

L =
1

4

[
fWαWα + fW α̇W α̇

]
F
+
[
(T + T +MV )2 +Φ†

ie
QiV Φi

]
D
+ [W + h.c.]F (6.5)
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Here, the f term is the gauge coupling function to be defined later with α and α̇ as spinor indicies.

M is naively expected to be on the order of the string scale (e.g. M ∼ 1016 GeV).

We have suppressed many of the standard MSSM terms in the Lagrangian. We will incorpo-

rate these terms when the need arrises. In particular we will be carefull to add F and D-terms for

the Higgs fields in order to compute the potential for the scalar fields.

6.2.1 The Field Content

In order to examine the Lagrangrian (eqn. (6.5)), we first expand the superfields in terms of

their field content. We define the superfields in terms of the following vector and chiral supermul-

tiplets

V ≡ (Aµ, λ,D) Φi ≡ (φi, ψi,Fi) (6.6)

For the specific case of the T and S chiral fields, the supermultiplets are

T ≡ (φ, ψ,F) S ≡ (s, ψS ,FS) φ ≡ τ + ia√
2

s ≡ ρ+ iχ√
2

(6.7)

The superfield expansions and integrations are given in Appendix A.1. Here, we qoute the results.

The contribution to the Lagrangian coming from the Kähler potential is

LK = −1

2
∂µτ∂µτ +MτD + 2i

(
ψ†γµ∂µψ +

√
2Mψλ

)
+ 2|F|2 − (∂µa+MAµ)

2

+|Fi|2 − (Dµφi)
†Dµφi +

1

2
(QiD) |φi|2 + i∂µψ

†
iσ

µψi +
1

2
QiA

µψ†
iσ

µψi

− i√
2
Qi(φiλ

†ψ†
i − φ†iλψ) (6.8)

Where Dµ =
(
∂µ + iQi

2 Aµ

)
and λ =

(
λ
λ†

)
.

We now examine the SUSY field strength tensor. Near the singulary, the gauge coupling

function becomes [101]

f = S + κT (6.9)

In this case, (and this case alone), S is the axio-dilaton (instead of the NMSSM singlet) and T is

a Kähler modulus defined in eqn. (6.44). Here κ is a loop correction parameter with dim[κ] = −1.
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We assume that the axio-dilaton field S is stabilized by a particular choice of fluxes such that we

may replace S with its vev, <S>, which takes the value <S>= 1
g2
.

As calculated in Appendix A.1, the SUSY field strength is given by

1

4
[(S + κT )WαWα + h.c.]F = κg2

(
Fλ2 + Fλ2

)
+ 23/2κg2

(
σµνψλFµν

)

+4κg2
(τ
2
λ†γµ∂µλ− τ

8
F 2
µν +

a

16
F̃µνF

µν
)

+2D2 + 4

(
λ†γµ∂µλ− 1

4
F 2
µν

)
(6.10)

6.2.2 Scalar Potential Considerations

We are interested in computing the terms contributing to the potential of the full Lagrangian

eqn. (6.5). Two of these terms come from solving the F and D-term equations of motion. This is

done in Appendix A and we quote the results. The F-term potential is

VF (hu, hd, s) = |y(h+u h−d − h0uh
0
d)|2 + |ys|2

(
|h0u|2 + |h+u |2 − |h0d|2 − |h−d |2

)2
(6.11)

Where we have defined the Higgs doublet superfields by the following supermultiplets

Hu ≡ (hu, ψu,Fu) Hd ≡ (hd, ψd,Fd) (6.12)

Similiarly, the D-term potential is given by

VD = −1

2

(
2M2τ2 + g2

1

4
Q2

i |φi|4 + g2
1

2

∑

j 6=i

QiQj |φi|2|φj |2 + gM
√
2τ |φi|2Qi

)
(6.13)

In addition to the F and D-term potentials, we include general soft terms. The potential for

the soft terms that are relevant to our calculation is given below

VSoft =
(
yAS(h

+
u h

−
d − h0uh

0
d)s+ h.c.

)
+m2

Hu
|h0u|2 +m2

Hd
|h0d|2 (6.14)

Here, the yAShh term plays the role of the b-term in convential MSSM models. As described

in [24], the soft Higgs masses are generated through RG evolution.
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6.3 Sparticle Masses

We assume the h0u and h0d are stabilized at non-zero vev’s (EWSB) by a double-well potential

within theWMSSM contribution to the full Lagrangian. After EWSB, the potential the scalar fields

can be expanded as

hu = vu +
huR + ihuI√

2
hd = vd +

hdR + ihdI√
2

φ = vτ +
τ + ia√

2
s = vs +

ρ+ iχ√
2

(6.15)

The full potential for the Higgs, T and S scalar fields can now be written combining the F and

D-term potentials (eqns. (6.11)(6.13)) with general soft terms (eqn. (6.14)).

V (hu, hd, φ, s) = VF + VD + Vsoft

= |y(h+u h−d − h0uh
0
d)|2 + |ys|2

(
|h0u|2 + |h+u |2 + |h0d|2 + |h−d |2

)

+
g21 + g22

8

(
|h0u|2 + |h+u |2 − |h0d|2 − |h−d |2

)2

+
g2Q2

H

8

(
|h0u|2 + |h+u |2 + |h0d|2 + |h−d |2

)2

+
g22
2
|(h+u h0∗d + h0uh

−∗
d )|2 + 1√

2
τgMQH

(
|h0u|2 + |h+u |2 + |h0d|2 + |h−d |2

)

+
1√
2
τgMQS |s|2 +M2τ2 +

1

8
Q2

S |s|4

+
1

2
g2QSQH |s|2

(
|h0u|2 + |h+u |2 + |h0d|2 + |h−d |2

)

+
(
yAS(h

+
u h

−
d − h0uh

0
d)s+ h.c.

)
+m2

Hu
|h0u|2 +m2

Hd
|h0d|2 (6.16)

Here we have defined g1, g2 and g as the U(1)Y , SU(2) and U(1)PQ gauge couplings respectively.

We may combine these into one coupling defined as

g2x ≡ g21 + g22
2

(6.17)

We may also extremize V along the various directions in field space and insert the vev’s for each

respective field. We assume the following vev’s

<s>≡ vs <φ>≡ vτ <h0u>≡ vu <h0d>≡ vd <h+u >= 0 <h−d >= 0 (6.18)
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Suppressing the charged Higgs fields reduces the potential to

V (hu, hd, φ, s) = VF + VD + Vsoft

= |y(h0uh0d)|2 + |ys|2
(
|h0u|2 + |h0d|2

)
+
g2X
4

(
|h0u|2 − |h0d|2

)2

+
g2Q2

H

4

(
|h0u|2 + |h0d|2

)2
+

1√
2
τgMQH

(
|h0u|2 + |h0d|2

)

+
1√
2
τgMQS |s|2 +M2τ2 +

1

4
g2Q2

S |s|4

+
1

2
g2QSQH |s|2

(
|h0u|2 + |h0d|2

)

+
(
−yAS(h

0
uh

0
d)s+ h.c.

)
+m2

Hu
|h0u|2 +m2

Hd
|h0d|2 (6.19)

Extremizing with respect to the remaining scalar fields and inserting vev’s yields

∂huV = 0 → 2|y|2v2d +
(
2|y|2 + g2QSQH

)
v2s + g2X

(
v2u − v2d

)
+ (gQHv)

2 + vτgMQH + 2m2
Hu

= 2|y||AS |
vsvd
vu

∂hd
V = 0 → 2|y|2v2u +

(
2|y|2 + g2QSQH

)
v2s + g2X

(
v2d − v2u

)
+ (gQHv)

2 + vτgMQH + 2m2
Hd

= 2|y||AS |
vsvu
vd

∂τV = 0 → 1√
2
gMQHv

2 + 2M2vτ +
1√
2
gMQSv

2
s = 0

∂sV = 0 → g2Q2
Sv

2
s + vτgMQS +

(
2|y|2 + g2QSQH

)
v2 = 2|y||AS |

vuvd
vs

(6.20)

As stated before, QS = −2 and QH = 1. We now add and subtract the first two equations of

eqn. (6.20). From ∂huV + ∂hd
V we get (note µeff ≡ yvs)

Bµeff ≡ ASyvs =
1

2
sin(2β)

[
m2

Hu
+m2

Hd
+ 2µ2eff

]

+
1

2
sin(2β)

[
g2QSQHv

2
s + (|y|2 + g2Q2

H)v2 + vτgMQH

]
(6.21)

We have introduced the angle β using the convential definintion

vd = v cos(β) vu = v sin(β) v2u + v2d ≡ v2 (6.22)

From ∂huV − ∂hd
V we get

µ2eff =
m2

Hd
−m2

Hu
tan2(β)

tan2(β)− 1
− M2

Z

2
− g2v2

4
− g2

2
QSQHv

2
s + vτgMQH (6.23)

Here, M2
Z =

(
g2
1
+g2

2

2

)
v2. For g = 0, we recover the MSSM results for µ and Bµ.
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6.3.1 Scalar Masses

We will construct two vectors, one containing all CP-even scalars and one containing all

CP-odd scalars. The CP even and odd scalar vectors are given below

ET = (hdR, huR, ρ, τ) OT = (hdI , huI , χ, a) (6.24)

We gather all bilinear terms into the the following matrices

−1

2
Ea(M

2
E)

abEb − 1

2
Oa(M

2
O)

abOb (6.25)

Using the minimization equations (eqn. (6.20)) we may simplify the CP-even mass matrix to

(M2
E)

ab =




g2Xv
2
d + yASvs

vu
vd

(2|y|2 − g2X + g2)vuvd − yASvs (2|y|2 − 2g2)vdvs − yASvu gMQHvd

g2Xv
2
u + yASvs

vd
vu

(2|y|2 − 2g2)vuvs − yASvd gMQHvu

g2Q2
Sv

2
s + yAS

vuvd
vs

gMQSvs

M2




We suppress the lower triangular terms because the matrix is symmetric. In order to deter-

mine the physical mass eigenstates we must diagonalize this matrix. However, analytic expressions

for the eigenvalues of this matrix are prohibitively complicated. We can make progress by exam-

ining the characteristic equation and estimating the scales of the resulting roots. We know that

there are three relevant energy scales in our model. These are;

M ≫ vs ≫ v (6.26)

In this limit, the characteristic equation for this mass matrix can be approximated as

λ4 −M2λ3 +AM2v2sλ
2 +BM2v4sλ+ CM2v6s = 0 (6.27)

Where A,B, and C are unknown real coefficients in the set {−10, 10}. These coefficients depend

on the couplings in the model as well as functions of β. We may examine the analytic expression
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for the roots of eqn. (6.27) and utilize the scale hierarchy (eqn (6.26)). In this limit, the roots

corresponding to saxions can be approximated by

λ1,2 =
M2

4
+

1

2

√
M4

4
+ C1M2v2s ±

1

2

√
M4 + C2M2v2s

∼ M2

4
+
M2

4

(
1 +

2C1v
2
s

M2

)
± M2

2

(
1 +

C2v
2
s

2M2

)

∼ M2, v2s (6.28)

Where C1 and C2 are order 1 coefficients that are linear combinations of A, B, and C. Therefore,

there are two physical saxions, one (s1) at a high mass scale and one (s2) at a low mass. These are

given by

m2
s1 = λ1 ∼M2 m2

s2 = λ2 ∼ v2s (6.29)

The remaining two CP-even eigenstates correspond to Higgs bosons. The mass of the the

lightest of these can be constrained by rotating the upper left 2×2 submatrix of CP-even mass

matrix. After doing this, one finds that one the diagonal elements represents an upper bound on

the Higgs mass. This is given by

m2
h < M2

Z

[
cos2(2β) +

|y|2 + 1
2g

2

g2X
sin2(2β)

]
(6.30)

For g → 0 we recover the convential NMSSM bound. This bound suggests that for |y|2 + 1
2g

2

slightly bigger than g2X , the classical Higgs mass may be lifted over its value within the MSSM. In

light of the recent hints of a Higgs mass of roughly 123− 125 GeV at the LHC, this classical lifting

may be seen as a welcomed result.

In a similiar fashion to the CP-even scalars, we compute the CP-odd mass matrix from

eq. (6.19)

(M2
O)

ab =




yvsAS tan(β) yvsAS yvuAS 0

yvsAS/ tan(β) yvdAS 0

yAS
vuvd
vs

0

0



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After diagonalizing this matrix we find three zero eigenvalues and one non-zero eigenvalue

which we give below

M2
A = Bµeff

(
2

sin(2β)
+
v2

v2s

sin(2β)

2

)
(6.31)

6.3.2 Fermion Masses

In order to calculate the axino mass, we first identify all fermion bilinears in the full La-

grangian. We consider a fermion vector of the form

Ψ = (ψ, λ,B,W,ψd, ψu, ψS)
T (6.32)

Where ψ is the T modulus fermion, λ Pecci-Quinn U(1) fermion, B and W are the Bino and Wino,

ξu and ξd are the up and down higginos respectively and ψS is the NMSSM singlet fermion. The

neutralino bilinears take the form

Lneut = −1

2
(Ψ)Ta (Mf )

abΨb (6.33)

We present all the terms in Appendix A. After S, Hu and Hd acquire vevs the mass matrix becomes

(Mf )
ab =




0 M 0 0 0 0 0

0 0 0 gQHvd gQHvu gQSvs

M1 0 −1√
2
g1vd

1√
2
g1vu 0

M2
1√
2
g2vd

−1√
2
g2vu 0

0 −yvs −yvu

0 −yvd

0




The bottom left half has been suppressed because the matrix is necessarily symmetric. We have

also introduced gaugino mass terms, M1 andM2, into the scalar potential. The gauginos gain mass

at the GUT scale through the Weyl anomaly and their electroweak scale values are determined

through RGE evolution.
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Due to the fact that the characteristic equation for the fermion mass matrix is seventh order,

analytic expressions, even approximate ones, are not known. One must resort to numerical studies

to identify the mass spectrum for these fermions.

6.3.3 Physical Couplings

After determining the physical mass eigenstates of our model, we wish to compute the Pecci-

Quinn scale fa. This will determine the couplings strengths of the axion supermultiplet to matter.

In principle, we can acheive this by comparing the full Lagrangian (6.5) in the mass eigenstate basis

with the effective PQMSSM Lagrangian given in Baer et.al. [85]. For saxion s(x) and axino ã(x),

the effective interaction Lagrangian is

Leff,s,ã =
αs

8π

s(x)

fa

(
FµνF

µν + 2ig̃γµDµg̃
)
+ i

αs

16π

ã(x)

fa
γ5[γ

µ, γν ]g̃Fµν +O(α3/2
s ) (6.34)

here Fµν is the SU(3) field strength tensor and g̃ are the associated gluinos. The effective Lagrangian

for the axion, a(x), is given by

Leff,a =
αs

8π

a(x)

fa
FµνF̃

µν (6.35)

Comparing these expressions with those in Appendix A.2 we may make the following identifications

χ̂(x) ↔ a(x) η̂(x) ↔ ã(x) ρ̂(x) ↔ s(x)
1

8πfa
∼ 1

M
(6.36)

6.4 Cosmological Considerations

For fa ∼ MGUT the cosmological phenomenology has been discussed in detail by Banks

et.al. [88], Baer et.al. [85] and others (e.g. ). The conclusion derived in these works is that the

conventional upper bound on fa coming from models with only an axion can be circumvented if

one includes the supersymmetric partners of the axion, namely the saxion and the axino. In what

follows, we discuss the cosmological constraints on all of these particles necessary for a high scale

fa. The relevant parameters in this analysis are axion decay constant fa, the saxion mass ms and

axino mass mã. These are have been determined elsewhere in the paper. We reiterate them below.

fa ∼M ∼ 1015 ↔ 1016 GeV ms ∼ vs ∼ 500 GeV ↔ 50 TeV mã ∼ 10 GeV < mZ̃1
(6.37)
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6.4.1 Saxion Dominated Epoch

The presence of a saxion can have both adverse and advantageous effects on the cosmology

of this model. Due to its weak couplings (suppressed by fa), the saxion will thermally decouple

early in the history of the universe. At a certain temperature , Ts, the saxion field will coherently

oscillate about the minimum of its potential and hence contribute to the energy density of the

universe. Due to the fact that the saxion’s energy density scales as R−3, it may come to dominate

the energy density of the universe. The temperatures at which the saxion dominated epoch begins

and ends are denoted as Tsb and Tse respectively, and they are defined by the following relations;

ρs(Tsb) = ργ(Tsb) Γs = H(Tse) (6.38)

Where ρs is the saxion energy density, ργ is the photon energy density and Γs is the saxion decay

width given by

Γs(s→ gg) =
αsm

3
s

32π3(fa)2
(6.39)

6.4.2 BBN Constraints

Since the decay rate of the saxion scales as Γs ∝ 1
f2
a
, large fa can give rise the long-lived

saxions. If the saxion decays hadronically after T = 5 MeV the successful predictions of Big Bang

Nucleosynthesis (BBN) will be disrupted. This places a bound on Tse, i.e. the end of the saxion

dominated era. This bound results in the following condition

Tse > 5 MeV =⇒ ms & 0.1TeV

(
fa

1012GeV

)2/3

(6.40)

From eq.(6.40) we see that for fa ∼ 1016 GeV, ms & 50 TeV. However, from eq.(6.23) we

know that ms ∼ vs ∼ MHu . This leaves us with one of two options. Either we retain a high scale

fa (fa ∼ 1016) and require MHu ∼ 50 TeV. However, from eq.(6.23) we see that this results in a

fine tuning between MHu and µeff of one part in 106. One the other hand, if we decrease fa to

1015 GeV, the lower bound on ms becomes ms & 10 TeV. This results in a fine-tuning of roughly
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one part in 104. This is an improvement in fine-tuning but it comes at the cost of giving up gauge

unification.

6.4.3 Dark Matter Overabundance

If one ignores the saxion and axino fields then the relic dark matter density contribution from

the axion field scales as follows

Ωah
2 ∼ f(θi)

(
fa

1012 GeV

)7/6

< 0.1123 (6.41)

where f(θi) is the initial axion field amplitude. From this bound we derive that either fa . 1012 GeV

or f(θi) ≪ 0. However, as pointed out by Baer, one need also consider the possibly that saxions

can decay and inject entropy into the universe thereby diluting the axion relic density. Once this

dilution is factored in, the axion dark matter relic density becomes

Ωah
2 = 1.4 ∗ θ2i f(θi)

1

(g∗(Ta))14/11

(
fa
1012

)
Tse

T
4/11
sb

(6.42)

Where θi is the initial axion misalignment angle and g∗ is the number of massless degrees of freedom

(g∗ ≈ 229). Since Tse ∝ 1/fa and Tsb ∝ f2a we see that Ωah
2 decreases with increased fa and is

minimized for Tse = 5 MeV, which is the bound for BBN.

6.5 Conclusion

In this work, we have examined the potential for realizing a QCD axion with IIB string

theory. Our approach has been to assume that the moduli fields are stablized along the lines of

the Large Volume Scenario and the matter fields arise from D-branes wrapping a shrinking cycle.

Without constructing the local model explicitly, we considered the matter content to be that of

the NMSSM. A QCD axion emerges from a linear combination of the CP-odd scalar fields in the

NMSSM and and Standard Model Cycle supermultiplets respectively.

A generic feature of this model is that the Pecci-Quinn scale, fa, is typically on the GUT

scale. As detailed in section 4, this high scale value fa can still be made to satisfy cosmological
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contraints. Essentially, the saxion and axino decays inject enough entropy into the universe to

dilute the axion’s contribution to the dark matter relic abundance.

6.6 Appendix

6.6.1 Superfield Expansions

Working in the Wess Zumino gauge, we may expand the superfields as follows (we use the

conventions of Wess and Bagger [121])

V = −ãσµθAµ + iããθλ† − iθθãλ+
1

2
ããθθD (6.43)

T = φ+ iãσµθ∂µφ+
1

4
ããθθ∂2φ+

√
2ãψ +

i√
2
ããθσµ∂µψ + ããF (6.44)

where φ = τ+ia
2 . For completeness, we give the chiral matter field expansion

Φi = φi + iãσµθ∂µφi +
1

4
ããθθ∂2φi +

√
2ãψi +

i√
2
ããθσµ∂µψi + ããFi (6.45)

The contribution to the full Lagrangian from the Kähler potential can be expanded via

superspace integration

LK =

∫
d4ãK =

∫
d4ã

[(
T + T +MV

)2
+Φ†

ie
QiV Φi

]

=
1

2
τ
(
∂2τ + 2MD

)
+ 2i

(
ψ†σµ∂µψ +

√
2Mψ†λ†

)
+ 2i

(
ψσµ∂µψ

† −
√
2Mψλ

)

+2|F|2 − (∂µa+MAµ)
2 + |Fi|2 −

(
∂µ − i

Qi

2
Aµ

)
φ†i

(
∂µ + i

Qi

2
Aµ

)
φi

+
1

2
(QiD) |φi|2 + i∂µψ

†
iσ

µψi +
1

2
QiA

µψ†
iσ

µψi −
i√
2
Qi(φiλ

†ψ†
i − φ†iλψ) (6.46)

We may combine the Weyl spinors λ and ψ into Majorana spinors (following [116])

λ =

(
λ

λ†

)
ψ =

(
ψ

ψ†

)
(6.47)

Making this identification and integrating by parts yields
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1

4

[
(S + κT )WαWα + (S + κT )W α̇W α̇

]
F

=
κ

4

(
Fλ2 + Fλ2

)

+
κ√
2

(
Dψλ+Dψλ+ σµνψλFµν + σµνψλFµν

)

+κ
(τ
2
λσµ∂µλ+

τ

2
λσµ∂µλ− τ

8
F 2
µν +

a

16
F̃µνF

µν
)

+
1

2g2
D2 +

1

g2

(
λσµ∂µλ+ λσµ∂µλ− 1

4
F 2
µν

)

= κg2
(
Fλ2 + Fλ2

)
+ 23/2κg2

(
Dψλ+ σµνψλFµν

)

+4κg2
(τ
2
λ†γµ∂µλ− τ

8
F 2
µν +

a

16
F̃µνF

µν
)

+2D2 + 4

(
λ†γµ∂µλ− 1

4
F 2
µν

)
(6.48)

Where in the last two lines we have used the Majorana spinors defined in eq. (6.47). We have also

canonically normalized the vector supermultiplet (Aµ, λ,D) → 2g(Aµ, λ,D).

For our model, the superpotential is given by (eq. (6.4))

W = ySHu ·Hd +WMSSM = yS
(
H+

u H
−
d −H0

uH
0
d

)
+WMSSM (6.49)

The F-term for the ySHu ·Hd component of W is given below

[
yS
(
H+

u H
−
d −H0

uH
0
d

)]
F

= y
(
FSh

+
u h

−
d + F+

u sh
−
d + F−

d sh
+
u u− ψSψ

+
u h

−
d − ψ−

d ψSh
+
u − ψ−

d ψ
+
u hS

)

−y
(
FSh

0
uh

0
d + F0

ush
0
d + F0

dsh
0
u − ψSψ

0
uh

0
d − ψ0

dψSh
0
u − ψ0

dψ
0
uhS

)
(6.50)

Solving the F-term equations of motion for hu, hd and s gives the following potential

V (hu, hd, s)F = |y(h+u h−d − h0uh
0
d)|2 + |ys|2

(
|h0u|2 + |h+u |2 − |h0d|2 − |h−d |2

)2
(6.51)

From the full Lagrangian (eq. (6.5)) we collect all the terms proportional to D. They are

given below

[(
T + T +MV

)2]
D

→ 2
√
2τMD

[
φ†ie

2gQiV φi

]
D

→ g|φi|2QiD

1

4

[
fWαWα + fW α̇W α̇

]
F

→ 2D2 (6.52)
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We may therefore write the terms in the Lagrangian proportional to D as

LD = 2
√
2τMD + g|φi|2QiD + 2D2 (6.53)

For our model (eq. (6.53)) the D-Lagrangian becomes

LD = −VD =
−4
(√

2τM + g 1
2 |φi|2Qi

)2

4 (2)

= −1

2

(
2M2τ2 + g2

1

4
Q2

i |φi|4 + g2
1

2

∑

j 6=i

QiQj |φi|2|φj |2 + gM
√
2τ |φi|2Qi

)
(6.54)

6.6.2 The Physical Couplings

We now examine the following Lagrangian

L = − 1

4g2
F 2
µν −

1

2
(k∂µa+MAµ)

2 +AiaTr[Fi ∧ Fi]− (DµS)† (DµS) + V (|S|) + γSψψ (6.55)

The potential V (|S|) is double-well Higgs-like potential given by eq. (6.16) and the covariant deriva-

tive is given byDµ = ∂µ+iegAµ (where e ≡ QS). We may absorb the constant k into the Stuekelberg

pseudoscalar field a, (a→ a
k ). The Lagrangian then becomes

L = − 1

4g2
F 2
µν −

1

2
(∂µa+MAµ)

2 +
Aia

k
Tr[Fi ∧ Fi]− (DµS)† (DµS) + V (|S|) + γSψψ (6.56)

We may perform a Cartesian split on S, (NMSSM singlet field) and expanded about the minimum

v, v ≡<S>.

S(x) =
1√
2
(v + ρ(x) + iχ(x)) (6.57)

The Stuekelberg kinetic term can be expanded as follows

LSK = −1

2
(∂µa+MAµ)

2 = −1

2
(∂a)2 −M∂µaA

µ − M2A2

2
(6.58)

Similarly, the Higgs kinetic term can be expanded (using the Cartesian split) as

LHK = −1

2
[(∂µ − ievAµ) (v + ρ− iχ) (∂µ + ievAµ) (v + ρ+ iχ)]

= −1

2
∂µρ∂µρ−

1

2
∂µχ∂µχ− 1

2
e2A2

(
v2 + ρ2 + χ2 + 2vρ

)

−1

2
(2e∂µχA

µ(v + ρ)− 2e∂µρA
µχ) (6.59)
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Neglecting interaction terms and the ρ kinetic term gives

LHK,χ = −1

2
(∂χ)2 − ev∂µχA

µ − e2v2A2

2
(6.60)

Adding this term together with the Stuekelberg kinetic term gives

LSK + LHK,χ = −1

2
(∂a)2 −M∂µaA

µ − M2A2

2
− 1

2
(∂χ)2 − ev∂µχA

µ − e2v2A2

2
(6.61)

In order to diagonalize this Lagrangian we multiply by factors of 1 and add and subtract equivalent

terms

LSK + LHK,χ = −1

2

M2 + e2v2

M2 + e2v2
(∂a)2 − 1

2

M2 + e2v2

M2 + e2v2
(∂χ)2 −M∂µaA

µ − ev∂µχA
µ

−(M2 + e2v2)A2

2
+
Mev∂χ∂a

M2 + e2v2
+

1

2

e2v2(∂χ)2

M2 + e2v2
+

1

2

M2(∂a)2

M2 + e2v2

−Mev∂χ∂a

M2 + e2v2
− 1

2

e2v2(∂χ)2

M2 + e2v2
− 1

2

M2(∂a)2

M2 + e2v2
(6.62)

Rearranging terms

LSK + LHK,χ = −(M2 + e2v2)

2

[
A2 +

e2v2(∂χ)2

(M2 + e2v2)2
+

M2(∂a)2

(M2 + e2v2)2
+ 2Aµ ev∂µχ

(M2 + e2v2)

+2Aµ M∂µa

(M2 + e2v2)
+ 2

Mev∂χ∂a

(M2 + e2v2)2

]
− 1

2

M2 + e2v2

M2 + e2v2
(∂a)2 − 1

2

M2 + e2v2

M2 + e2v2
(∂χ)2

+
Mev∂χ∂a

M2 + e2v2
+

1

2

e2v2(∂χ)2

M2 + e2v2
+

1

2

M2(∂a)2

M2 + e2v2

= −(M2 + e2v2)

2

(
Aµ +

ev∂µχ

M2 + e2v2
+

M∂µa

M2 + e2v2

)2

−1

2

M2(∂χ)2 + e2v2(∂a)2 − 2Mev∂χ∂a

M2 + e2v2
(6.63)

We now rotate to an orthonormal basis (χ̂, â) via the rotation



χ̂

â


 =

1√
M2 + e2v2



M −ev

ev M


×



χ

a


 (6.64)

We may redefine the vector field via a gauge transformation as

Aµ → Aµ +
ev∂µχ

M2 + e2v2
+

M∂µa

M2 + e2v2

→ Aµ +
∂µâ√

M2 + e2v2
(6.65)
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Also

(∂χ̂)2 =

(
M∂χ− ev∂a√
M2 + e2v2

)2

=
M2(∂χ)2 + e2v2(∂a)2 − 2Mev∂χ∂a

M2 + e2v2
(6.66)

Therefore the kinetic Lagrangian simplifies to

LSK + LHK,χ = −(M2 + e2v2)

2
A2 − 1

2
(∂χ̂)2 (6.67)

We may re-express the full Lagrangian (eq. (6.56)) in terms of χ̂. Suppressing terms proportional

to â yields

Lχ̂ = − 1

4g2
F 2
µν−

(M2 + e2v2)

2
A2

µ−
1

2
(∂µχ̂)

2− Aiev

k
√
M2 + e2v2

χ̂Tr[Fi∧Fi]+γ
iMχ̂√

M2 + e2v2
ψψ (6.68)

The remaining terms in the Lagrangian are

Lâ =
AiM

k
√
M2 + e2v2

âTr[Fi ∧ Fi] + γ
ievâ√

M2 + e2v2
ψψ (6.69)

In order to preserve supersymmetry between the components of the axion supermultiplet

we must also rotate the saxion (τ) and axino (λ) fields with the real scalar (ρ) and fermionic

(ψS) components of the S respectively. As with the axi-higgs, we make the following orthogonal

transformation 

ρ̂

τ̂


 =

1√
M2 + e2v2



M −ev

ev M


×



ρ

τ


 (6.70)

equivalently 

ρ

τ


 =

1√
M2 + e2v2



M ev

−ev M


×



ρ̂

τ̂


 (6.71)

The kinetic and interaction terms in the full Lagrangian (eq. (6.5)) that contain τ are

Lτ = LK,τ +
1

4

[
fWαWα + fW α̇W α̇

]
F,τ

= −1

2
∂µτ∂µτ +

(τ
2
λγµ∂µλ− τ

8
F 2
µν

)

=
1

2

(
ev√

M2 + e2v2

)
∂µρ̂∂µρ̂−

1

2

(
M√

M2 + e2v2

)
∂µτ̂ ∂µτ̂

−
(

ev√
M2 + e2v2

)
ρ̂

(
+
1

2
λγµ∂µλ− 1

8
F 2
µν

)

+

(
M√

M2 + e2v2

)
τ̂

(
1

2
λγµ∂µλ− 1

8
F 2
µν

)
(6.72)
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Similarly, the elements of the full Lagrangian containing ρ are

Lρ = −1

2
∂µρ∂µρ−

1

2
e2A2ρ2 − ve2A2ρ− e∂µχA

µρ+ e∂µρA
µχ+ Fuhdρ+ Fdhuρ

= −1

2

(
M√

M2 + e2v2

)
∂µρ̂∂µρ̂−

1

2

(
ev√

M2 + e2v2

)
∂µτ̂ ∂µτ̂ + interaction terms (6.73)

We may write an effective Lagrangian for ρ̂ as

Lρ̂ = −1

2

(
M√

M2 + e2v2

)
∂µρ̂∂µρ̂−

(
ev√

M2 + e2v2

)
ρ̂

(
ξD +

κ

4
D2 +

1

2
λγµ∂µλ− 1

8
F 2
µν

)

+interaction terms (6.74)



Chapter 7

Conclusion

In this dissertation we have studied several theoretical and phenomenological issues related

to IIB string theory. We have seen that, to date, the Large Volume Scenario for stabilizing string

moduli fields represents the best known mechanism for connecting string theory with TeV-scale

physics. The method of supersymmetry breaking coming from LVS is known as inoAMSB, and as

we have seen, this method has several desirable phenomenological features. Aside from being the

simplest of all known models of supersymmetry breaking, inoAMSB has the potential to address

many important issue in contemporary physics including the origin of electroweak symmetry, the

Higgs mass and dark matter. We have also seen that many interesting physical models, such as the

axion of Quantum Chromodynamics, can be made to fit comfortably within this string framework.

Future work in this field would follow naturally along two lines, one more theoretical and one

more phenomenological. As in chapter 4, one could investigate moduli stabilization in deeper detail.

By examining more exotic string constructions, one might be able to create a scenario that could

potentially surpass LVS. Alternatively, one could continue to further study the phenomenological

issues of IIB string theory. Ultimately, one would like to prove that the Standard Model itself can

be embedded within a moduli stabilization scenario like LVS. Clearly, there remain interesting and

important questions to be addressed by future research.
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