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§i. INTRODUCTION. This is a report on some Joint work with 

Shlomo Sternberg. We consider a variation on geometric quanti- 

zation for the orthogonal groups SO(2,n), realizing certain of 

their representations on the nonzero cotangent bundle of the 

(n-l)-sphere. Here the elliptic orbits of the Kepler problem 

(with collision orbits regularized) appear as SO(2)-orbits. 

Another viewpoint, related by a geometric Cayley transform, gives 

the hyperbolic orbits as SO(1,1)-orbits in the nonzero cotangent 

bundle of real hyperbolic (n-1)-space. This gives a correspon- 

dence between the classical bound states and the classical 

scattering states for the hydrogen atom. 

Our group-theoretic considerations are valid with only 

minor changes for the unitary groups U(2,n), the special unitary 

groups SU(2,n), and the unitary symplectic groups Sp(2,n). While 

there is a connection with the harmonic oscillator, the physical 

interpretations are not always so clear. In any case, here I 

Just indicate the situation for SO(2,n). Complete details will 

appear elsewhere. 

§2. A NILPOTENT CO-ADJOINT ORBIT. Let R 2'n denote the real 

vector space with standard basis {e_l, eo, el,..., e n] and inner 

product <u,v> = u lV_l + UoV 0 - (UlV 1 + ... + UnVn). O(2,n) is 

the orthogonal group of R 2'n, G = SO(2,n) denotes its identity 

component, and the alternating tensor square Ii2(R 2'n) is iden- 

tified with the Lie algebra ~ = ~(2,n) under 

u~v : x ~-~ <x,u>v - <x,v>u . 

Here the adJoint representation is given by Ad(g)(u^v) = guAgv. 

If [e~ let E~ denote its range. If E[ is 2-dimensional 

and totally isotropic, then ~2 = O, and E~ projects onto R 2'0 = 

span[e_l,eO], so ~ has unique expression 

I p, q e R O'n = span[el,...,e n] 
(2.1) ~ = s(e_l + p)A(e 0 + q) where 

Ilptl2 = (Iqll2 = - 1 ,  <p,q> = 0 
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All such ~ form a single 0(2,n)-orblt. Here s = <~,e_l A e0>, 

and that single orbit falls into two G-orbits as s > 0 or s < 0. 

We will use the orbit 

(2.2) OJ = [ ~E ~ as in (2.1) : s > 0 }. 

The semlslmple Lie algebra ~ is identified with its dual 

space ~ under the Killing form, and we view ~ as a (co-adJoint) 

orbit of G on ~. That gives ~ the structure of G-homogeneous 

symplectic manifold. 

In the notation (2.1), think of q as a point on the unit 

sphere S n'l = [ x ~ R 0"n : [xll 2 = -1 } and sp as an arbitrary 

nonzero cotangent vector to S n-1 at q. This identifies ~ with 

the bundle T+(S n-l) of nonzero cotangent vectors to S n-1. In 

this identification, the subgroup 

G I = S0(l,n) = [ g ~ G : ge_l = e_l } 

is visibly transitive on T+(Sn-1), and thus on "[/ . Furthermore 

= s(e_l + p)A (e 0 + q) ~-~ sp~(e 0 + q) is a biJection of Q.r 

onto the principal nilpotent coadJolnt orbit of G 1 , which is 

E & (2.3) Q~l = [ ~l ~ ~l : dim E~l = 2 and dim(E~l~ ~l ) = 1 }. 

~now carries three symplectic structures: as co-adJoint 

orbit of G, from the natural symplectlc structure on the cotangent 

bundle of S n-l, and from the natural symplectic structure of ~l 

Here our result is 

THEOREM. The three symplectic structures on I~ coincide. In 

particular, the natural symplectic structure on T+(S n-l) is invar- 

iant under the action of G = SO(2,n). 

§3. ORBITS FOR THE KEPLER PROBLEM. We have R 2'n = R 2'0 @ R 0'n 

as above, and the G-stabilizer of this splitting is the maximal 

compact subgroup K = SO(2)XSO(n). Here S0(n) acts on'[/ through 

its usual action on the tangent bundle T(Sn-1), 

A : s(e_l + p)A (e 0 + q) ~-* s(e_l + Ap)A(e 0 + Aq) , 

and S0(2) acts by rotations, the rotation r through an angle 

sending s(e 1 + p) A(e 0 + q) to 

s(cos@ e_l + sin~ e 0 + p) A(-sin~ e 1 + cos~ e 0 + q) 

= s(e_l + cos~ p - sln~ q)A(e 0 + sin~ p + cos~ q) . 

On (co)-tangent vectors of length s, this rotation r is geodesic 
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flow f~/s at time ~/s. The inflnitesmal generator of the geodesic 

flow [ft ] is the vector field V H corresponding (by exterior deriv- 

ative and the symplectlc form) to H = -s2/2, so [r_] has Infini- 
1/2 tesmal generator that is the Hamiltonlan field for (-2H) = s. 

Since the S0(2)-orblts are the orbits of the geodesic flow, they 

are the elliptic orbits of the Kepler problem with collision orbits 

regularized. 

Similarly R 2'n = R l'l ~ R l'n-1 where R l'l 
= span[e_l,e n] and 

Rl,n-i = span[eo,el,...,en_l}. The G-stabillzer of this splitting 

is a two-component group with identity component 

K' = SO(I,I)X SO(l,n-l), and qg~ is the union of three K'-Invarlant 

sets 

q2+ = {t(e_l+p)A(en+q): t>O, p,q~R l'n-1, ilpll2=_l,[lqll2=l,plq,<e0,q>>O}, 

120= {~eq/ : E~nRI'I ~ 0}, and 

12" = [t(e_l+p)A(en+q) : t<O, p,q~Rl'n-l,lpll2=-l,~qll2=l,plq,<eo,q><O]. 

H~ -I (resp. H n-l)_ denote the real hyperbolic (n-l)-space that is Let 

is the sheet <eo,q> > 0 (resp. <eo,q> < O) of the mass hyperbolold 

llqll 2 = 1 in R l'n-l. Then 9-/ + (resp. q]-) is identifled with 
+(.n-l~ its bundle T n+ ) (resp. T+(Hn_-I)) of nonzero cotangent vectors, 

= t(e_l + P)A(e n + q) corresponding to the vector tp of length 

}tl at q. Here S0(1,n-1) acts through its usual action by iso- 

mettles and S0(1,1) acts, as before, by hyperbolic rotations 

proportional to the geodesic flow. So the S0(1,1)-orbits on q-7 ± 

are the hyperbolic orbits of the Kepler problem. 

If one interprets the SO(2)-orbits on oJ as the classical 

bound states for the hydrogen atom, and the S0(1,1)-orblts onq/± 

as the scattering states, then the Cayley transform relating SO(2) 

to S0(1,1) gives a sort of correspondence between those states. 

The geometric picture for this Cayley transform comes from noting 
n-1 that the sign condition on <e0,q> identifies H+ with the upper 

hemisphere of S n-1 and H n-1 with the lower hemisphere: 

t(e l+p)A(en+q) = t<eo,q>{(e_l+P)A(e 0 + <e0,q>'l(q-<e0,q>e0+en)}. 

Another interesting picture comes from taking p for base 

point and tq for (co)-tangent vector. 
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§4. GEOMETRIC QUANTIZATION. We turn to the question of 

quantlzlng the action of G = SO(2,n) on its co-adJolnt orbit 

q~ = T+(sn-I). 

The standard Kostant-Souriau quantization procedure does not 

work here because there is no G-Invariant polarization. In effect, 

a result of Ozeki and Wakimoto says that any such polarization 

would be a parabolic subalgebra ~ of ~C " a result of mine would 

then say ~ =TC for some parabolic subalgebra T of ~ , and of 

course~ would necessarily have codlmension n-I in ~ . But the 

maximal parabolic subalgebras of ~ are the stabilizers of null 

lines, which have codimenslon n, and the stabilizers of null 

planes, which have codimenslon 2n-l, and so ~ does not exist. 

There are several possibilities for circumventing this lack 

of polarizations: 

(i) weaken the definition of polarization, 

(ii) view q~ as a limit of polarized co-adJolnt orbits, 

(iii) use the Kostant-Sternberg-Blattner half-form method. 

In the first approach, one takes the usual definition of invar- 

iant polarization as complex subalgebra ~ of ~C ' but no longer 

requires that q +~ be an algebra; that is done implicitly in 

N. Woodhouse's report at this conference. In the second approach, 

one has a smooth family ~t of oo-adJolnt orbits with qY= q]O ' 

with representations ~t associated to ~t for t ~ O, in such a way 

that one can make sense of ~0 = lim ~t and associate it to q/ ; in 

E. Onofri's report here, that is done for elliptic semlsimple 

approximating orbits and holomorphlc discrete series approximating 

representations, and I have a comment on this in §6 below. Stern- 

berg and I use the third approach. 

§5. HALF FORMS AND VARYING POLARIZATIONS. Let P denote the 

standard polarization on T+(Sn-1); its maximal integral manifolds 

are the cotangent spaces with origin deleted. Then G 1 = SO(1,n) 

is the stabilizer of P in G = S0(2,n), and the G-translates of P 

are parameterlzed by the mass shell H = [x~R 2'n : Ux~ 2 = I }: 

G/G 1 = SO(2,n)/SO(l,n) ~ SO(2,n)(e_l ) = H . 

Given x = ge_l 6 H, let Px denote the image g(P). The half form 

method gives a family of Hilbert spaces ~x ' and nondegenerate 

pairings between them, stable under the action of G. Here G] has 
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natural irreducible unitary representation ~ on ~ = ~ by 

standard geometric quantization using P = Pe ; in fact e'l ~ is 

the principal series representation that corresponds to the 

trivial character on the minimal parabolic subgroup, and OA is 

L2(sn-I). More generally, if g~ G then g carries 04 to ~4 x , 

x = ge_l , and we pair this back to 9~ using the half forms. Thus 

G acts on L2(sn-I), and this action ~ restricts to the represen- 

tation ~ of G 1 • Sternberg and I still have to clarify some technical 

matters with the half form pairing here. 

§6. LIMIT METHOD. I'll close by exhibiting the representa- 

tion ~ of G, corresponding to the co-adJoint orbit q5 = T+(Sn-1), 

as a limit of spherical principal series representations. This 

has the advantage of simplicity over Onofri's procedure with the 

holomorphic discrete series, but the disadvantage of obscuring the 

place of G 1 and L2(S n-l) as compared with the half form method. 

!) J 0 
FIx g = (e l+en_l)^(e0+en)~2 . Its matrix is 0 

0 - 

where J ~ (~ -~) . Then 7 = - ~(e_l-en_l)A(e0-en) is another 

nilpotent element of ~. It has matrix ~ 0 0 , and so 
0 J 0 

h = [~,~] has matrix 0 where I = . Now 
0 

[h,~] = 2~ , [h,~] = -2? and [~,7] = h . 

So [h,~ ,~ ] is a standard generating triple for a split three 

dimensional simple subalgebra (TDS) in ~ , that is 

defines a Lie algebra isomorphism of span{h,~,7 ) onto ~(2;R). 

From this we see that 

~t = ~ + th is semisimple with real eigenvalues for t ~ 0. 

Let B be a minimal parabolic subgroup of G whose Lie algebra con- 

tains ~ and h , and denote 

Q5 t = Ad(G).~t viewed as a co-adJoint orbit, 

w t : the corresponding principal series representation (t ~ 0), 

~t : the positive definite spherical function for ~t (t ~ 0). 

Then the ~t ' t ~ 0, are irreducible unitary representations o£ G 
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on LR(G/B) given by formulas that depend smoothly on t , and one 

has 

= lim t~0 ~t : unitary representation of G on L2(G/B). 

Here ~t corresponds to the orbit ~Jt for t ~ 0, and so ~ corres- 

ponds to "LT= ~/0 " 

One obtains the same limit with the spherical functions. For 

~t defines ~t in the standard manner when t ~ 0, and ~ = lim t~0 ~t 

is a positive definite spherical function and thus defines a limit 

representation ~ . 
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