CONFORMAL GROUP, QUANTIZATION, AND THE KEPLER PROBLEM

Joseph A. Wolf

§1. INTRODUCTION. This 1s a report on some Jolnt work with
Shlomo Sternberg. We consider a variation on geometric quanti-
zation for the orthogonal groups S0(2,n), realizing certain of
thelr representations on the nonzero cotangent bundle of the
(n-1)-sphere. Here the elliptic orbits of the Kepler problem
(with collision orbits regularized) appear as SO(2)-orbits.
Another viewpoint, related by a geometric Cayley transform, gives
the hyperbolic orbits as SO(1,1)-orbits in the nonzero cotangent
bundle of real hyperbolic (n-1)-space. This gives a correspon-
dence between the classical bound states and the classical
scattering states for the hydrogen atom.

Our group~-theoretic considerations are valid with only
minor changes for the unitary groups U{2,n), the special unitary
groups SU(2,n), and the unitary symplectic groups Sp(2,n). While
there 1s a connectlion with the harmonic oscillator, the physical
interpretations are not always so clear. 1In any case, here I
just 1indicate the situation for S0(2,n). Complete details will
appear elsewhere.

§2. A NILPOTENT CO-ADJOINT ORBIT. Let R2-N denote the real

vector space with standard basis (e e en} and inner

_1s €0 €psces
product <u,v> = u_;V_; + ugvy - (ulv1 + e + unvn). 0(2,n) is
the orthogonal group of R2’n, G = 30(2,n) denotes its identity
component, and the alternating tensor square zﬁ?(Re’n) is iden-
tified with the Lie algebra g = o(2,n) under
UAV ! X X, udv = <X, v>u .

Here the adjoint representation 1s given by Ad(g)(uav) = guagv.

If feg let E§ denote its range. If E§ is 2-dimensional
and totally isotropic, then §2 = 0, and Ef projects onto R2,O =
span[e_l,eo], so ¢ has unique expression

( ) ( W ) { P, 4 € rO:0 o span[el,...,en}
2.1 = s(e + p)Alen + ) where
5 =slen 0 Iol2 = fal® = -1, <p,a> = ©
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A1l such & form a single 0(2,n)-orbit. Here s = <§,e_q neyd,
and that single orbit falls into two G-orbits as s > O or 8 < O.
We will use the orbit

(2.2) UV ={8ee asin (2.1) : s> 0 ]}.

The semisimple Lie algebra g 1is identified with 1ts dual
space 3* under the Killing form, and we view VU as a (co-adjoint)
orbit of G on g*. That gives UV the structure of G-homogeneous
symplectic manifold.

In the notation (2.1), think of q as a polnt on the unit
sphere st o {xe RO qmi? 2 o1 } and sp as an arbitrary
nonzero cotangent vector to Sn'l at q. This identifies U with
the bundle T+(Sn'l) of nonzero cotangent vectors to g1, 1n
this identificatlion, the subgroup

G1=SO(1,n)={g£G:ge_l=e_’l] ;
i1s visibly transitive on T+(Sn'1), and thus on U . Furthermore
T= s(e_1 + p)/\(eo + q) — sp/\(eo + q) is a bijection of U
onto the principal nilpotent coadjoint orbit of G1 , which is

(2.3) V= [§y€ gy ¢ aim B =2 and din(Ep A Bg) =1 ).

VU now carrles three symplectic structures: as co-adjoint
orbit of G, from the natural symplectic structure on the cotangent
bundle of Sn-l, and from the natural symplectic structure of QJi .
Here our result is

THEOREM. The three symplectic structures on VU coineide. In
particular, the natural symplectic structure on T+(Sn~l) is invar-
iant under the action of G = S0(2,n).

§3. ORBITS FOR THE KEPLER PROBLEM. We have R2’? = r2:0 g gO:2
as above, and the G-stabilizer of this splitting 1s the maximal
compact subgroup K = S0(2)X S0{n). Here 30(n) acts on U through
its usual actlon on the tangent bundle T(Sn'l),

A s(e_1 + p)a (eo + q) —> s(e_1 + Ap)/\(eO + Ag) ,
and S0(2) acts by rotations, the rotation r(p through an angle ¢
sending s(e“1 + p)A(eO + q) to

s(cosg e_; + sino ey + p) A{-sing e_q + COsp ey + q)

= s(e_1 + cosp p ~ sino q)/\(eO + s8ing p + cosp q) .

On (co)-tangent vectors of length s, this rotation Ty is geodesic
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flow fw/s at time ¢/s. The infinitesmal generator of the geodesic
flow {ft} is the vector field V, corresponding (by exterior deriv-
ative and the symplectic form) to H = -se/é, so [r@} has infini-
tesmal generator that is the Hamiltonian field for (-2H)1/2 = 5.
Since the SO(2)-orbits are the orbits of the geodesic‘flow, they
are the elliptic orbits of the Kepler problem with collision orbits
regularized.

Similarly 2" = rL: P g R where R = span[e_l,en) and
RY7"1 < span{eg,e),...,e ;). The G-stabilizer of this splitting
is a two-component group with identity component
K’ = 80(1,1)xS0(1,n-1), and U is the union of three K’-invariant

sets

1,n-1 1,1

Rl,n-l

V* = {t(e_j+p)ale +a): £50, p,qe , Ip1%=-1, 19171, p1q, <oy, a>>0),

vo {fevU Egr\Rl’l # 0}, and

]

v=

{t(e_j+p)a(e +q): t<O, p,qeRl’n'l,an2=—1,llqll2=l,plq,<eo,Q><O].

Let Hn"1 (resp. n—l) denote the real hyperbolic (n-1)-space that is
is the sheet <ey,a> > 0 (resp. <eq,a> < 0) of the mass hyperboloid
1ql® = 1 1n RYP"1. Then U * (resp. U”) is identified with
its bundle T+(H2 1) (resp. T+(H?'l)) of nonzero cotangent vectors,
£ = t(e_l + p)/\(en + q) corresponding to the vector tp of length
|t| at q. Here SO(1,n-1) acts through its usual action by 1so-
metries and S0(1,1) acts, as before, by hyperbolic rotations
proportional to the geodesic flow. So the S0(1,1)-orbits on U %
are the hyperbolic orbits of the Kepler problem.

If one interprets the SO0(2)-orbits on UJ as the classical
bound states for the hydrogen atom, and the SO(1,1)-orbits on’lft
as the scattering states, then the Cayley transform relating SO(2)
to S0{1,1) glves a sort of correspondence between those states.
The geometric plcture for thls Cayley transform comes from noting
that the sign condition on <e0,q> identifies H n-1 with the upper
hemisphere of s™* and H with the lower hemisphere:

-1
tle_j+p)ale +q) = t<ey,a>((e_j+p)A(ey + <oy, a>7 " (a-<ey,a>eqte )],

Another interesting picture comes from taking p for base
point and tq for (co)-tangent vector.
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§4. GEOMETRIC QUANTIZATION. We turn to the question of
quantizing the action of G = S0(2,n) on its co-adjoint orbit
v = H(s™ ).

The standard Kostant-Souriau quantization procedure does not
work here because there is no G-invariant polarization. In effect,
a result of Ozekl and Wakimoto says that any such polarization
would be a parabolic subalgebra g Ofi?c , a result of mine would
then say 7 =7c for some parabolic subalgebra‘r of 2 and of
course p would necessarily have codimension n-1 in g - But the
maximal parabolic subalgebras of g are the stabilizers of null
lines, which have codimension n, and the stabilizers of null
planes, which have codimension 2n-1, and so p does not exist.

There are several possibilities for circumventing thls lack
of polarizations:

(1) weaken the definition of polarization,

(11) view U as a limit of polarized co~adjoint orbits,

(1i1) use the Kostant-Sternberg-Blattner half-form method.
In the first approach, one takes the usual definition of invar-
lant polarization as complex subalgebra i of Ic > but no longer
requires that g +§ be an algebra; that 1s done implicitly in
N. Woodhouse’s report at thls conference. In the second approach,
one has a smooth family Y. of co-adjoint orbits with V = QJO ,
with representations 7, associated to Q]t for t £ 0, in such a way
that one can make sense of Tg = 1im Ty and associate it to U ; in
E. Onofri’s report here, that i1s done for elliptic semisimple
approximating orbits and holomorphic discrete serlies approximating
representations, and I have a comment on this in §6 below. Stern-
berg and I use the third approach.

§5. HALF FORMS AND VARYING POLARIZATIONS. Let P denote the
standard polarization on T'(S™1); 1ts maximal integral manifolds
are the cotangent spaces with origin deleted., Then Gl = 350(1,n)
is the stabilizer of P in G = S0(2,n), and the G-translates of P
are parameterized by the mass shell H = {(xe R 1xI® =1 }:

6/G, = 50(2,n)/s0(1,n) = s0(2,n)(e_;) = H .

Given x = ge_; € H, let P_ denote the image z(P). The half form
method gives a family of Hilbert spaces ?{X , and nondegenerate
palrings between them, stable under the action of G. Here 61 has
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natural irreducible unitary representation v on % = He by
standard geometrlc quantization using P = P, ; in fact -1 ¥ is
the principal series representation that cori%sponds to the
trivial character on the minimal parabolic subgroup, and 7 is
L2(Sn'1). More generally, if ge G then g carries N to Ny s

X = ge_;, and we pair this back to % using the half forms. Thus
G acts on Le(sn'l), and this action 7 restricts to the represen-
tation ¥ of Gl. Sternberg and I still have to clarify some technical

matters with the half form pairing here.

§6. LIMIT METHOD. 1I’11l close by exhibiting the representa-
tion 7 of G, corresponding to the co-adjoint orbit U = T+(Sn-l),
as a limit of spherical principal series representations. This
has the advantage of simplicity over Onofri’s procedure with the
holomorphic discrete series, but the disadvantage of obscuring the
place of , and L2(s""!) as compared with the half form method.

J 0 -J
Fix § = (e_j+e, ;)alegte )eg . Its matrix is <o 0 o)

J 0 <-J
where J = (g 'é) - Then 7 = - %(e_l—en_l)A(eo-en) is another
1 -J 0 =J
nilpotent element of‘g. It has matrix T 0 0 0}, and so
0 0 I J O J
10
h=[& ;7] has matrix (O 0 O> where I = (0 1) . Now
I 0 O

[h,g] = 2% , [h,’?] = —2/7 and [5,7] = h .
so (h,§ 37 } is a standard generating triple for a split three
dimensional simple subalgebra (TDS) in 9, that is

(9, 5= (8. 2= (09
defines a Lie algebra isomorphism of span[h,§',7 } onto «f(2;R).
From this we see that

§. = 5+ th is semisimple with real eigenvalues for ¢ # O.
Let B be a minimal parabolic subgroup of G whose Lie algebra con-
tains & and h , and denote

Vg = Ad(G)-§t viewed as a co-adjoint orbit,

7, ¢ the corresponding principal serles representation (t # 0),

9, : the positive definite spherical function for 7, (t # 0).

Then the Ty s t # 0, are irreducible unitary representations of G
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on L2(G/B) given by formulas that depend smoothly on t , and one
has

7=1im ., o7, : unitary representation of G on LQ(G/B).
Here T corresponds to the orbit "U% for t # 0, and so 7 corres-
ponds to VU= Vg, -

One obtains the same limit with the spherical functions. For
Py defines Ty in the standard manner when t # 0, and 9 = lim,c__)o Py
is a positive definite spherical function and thus defines a limit
representation .
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