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A new tetrad is introduced within the framework of geometrodynamics for non-null
electromagnetic fields. This tetrad diagonalizes the electromagnetic stress-energy tensor

and allows for maximum simplification of the expression of the electromagnetic field.

The Einstein-Maxwell equations will also be simplified. New group isomorphisms are
proved. The local group of electromagnetic gauge transformations is isomorphic to the

new group LB1. LB1 is the group of local tetrad transformations comprised by SO(1,1)
plus two different kinds of discrete transformations. The local group of electromagnetic

gauge transformations is also isomorphic to the local group of tetrad transformations

LB2, which is SO(2), as well. Therefore, we proved that LB1 is isomorphic to LB2.
These group results amount to proving that the no-go theorems of the sixties like the

S. Coleman- J. Mandula, the S. Weinberg or L. ORaifeartagh versions are incorrect.

Not because of their internal logic, but because of the assumptions made at the outset
of all these versions. These new tetrads are useful in astrophysics spacetime evolution

algorithms since they introduce maximum simplification in all relevant objects, specially

in stress-energy tensors.

Keywords: Einstein-Maxwell Spacetimes, Non-Null Electromagnetic fields, New Tetrads,

Covariant Diagonalization of Stress-Energy Tensor, New Groups, New Group Isomor-

phisms.
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1. Diagonalization of the Stress-Energy Tensor

Throughout the paper we use the conventions of Ref.1 In particular we use a metric

with sign conventions -+++. The only difference in notation with Ref.1 will be that

we will call our geometrized electromagnetic potential Aµ, where fµν = Aν;µ−Aµ;ν

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution

of this work is permitted, provided the original work is properly cited.
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is the geometrized electromagnetic field fµν = (G1/2/c2) Fµν . The stress-energy

tensor according to Eq. (14a) in Ref.,1 can be written as,

Tµν = fµλ f λ
ν + ∗fµλ ∗ f λ

ν , (1)

where

∗fµν =
1

2
εµνστ f

στ ,

is the dual tensor of fµν . The local duality rotation given by Eq. (59) in paper1

fµν = ξµν cosα+ ∗ξµν sinα ,

allows us to express the stress-energy tensor in terms of the extremal field

Tµν = ξµλ ξ λ
ν + ∗ξµλ ∗ ξ λ

ν .

We can express the extremal field as,

ξµν = e−∗αfµν = cosα fµν − sinα ∗ fµν . (2)

Extremal fields are local gauge invariants in the electromagnetic sense as it can

be noticed from Eq. (2). Extremal fields satisfy the equation

ξµν ∗ ξµν = 0 . (3)

This a condition imposed on extremal fields in order to find a local scalar named

the complexion α. The explicit expression for the complexion, which is also a local

electromagnetic gauge invariant, can be given when imposing condition (3), by

tan(2α) = −fµν ∗ fµν/fλρ fλρ .

Through the use of the general identity,

Aµα B
να − ∗Bµα ∗Aνα =

1

2
δ ν
µ Aαβ B

αβ , (4)

which is valid for every pair of antisymmetric tensors in a four-dimensional

Lorentzian spacetime,1 when applied to the case Aµα = ξµα and Bνα = ∗ξνα, it can

be proved that condition (3) yields the equivalent condition,

ξαµ ∗ ξµν = 0 . (5)

The extremal field ξµν and the scalar complexion α have been previously defined

through Eqs. (22-25) in Ref. 1 It is our purpose to find a tetrad in which the stress-

energy tensor is diagonal. This tetrad would simplify the analysis of the geometrical

properties of the electromagnetic field. There are four tetrad vectors that at every

point in spacetime diagonalize the stress-energy tensor in geometrodynamics,

V α(1) = ξαλ ξρλ X
ρ ; (6)

V α(2) =
√
−Q/2 ξαλ Xλ ; (7)
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V α(3) =
√
−Q/2 ∗ ξαλ Yλ ; (8)

V α(4) = ∗ξαλ ∗ ξρλ , Y ρ , (9)

where Q = ξµν ξ
µν = −

√
TµνTµν according to Eq. (39) in manuscript Ref.1 Q

is assumed not to be zero, because we are dealing with non-null electromagnetic

fields. We are free to choose the vector fields Xα and Y α, as long as the four vector

fields (6-9) are not trivial. Two equations in the extremal field are going to be

used extensively in this work, in particular, to prove that tetrad (6-9) diagonalizes

the stress-energy tensor. The first equation is given by (64) in Ref.,1 also given in

Eq. (5). When we replace Aµα = ξµα and Bνα = ξνα in (4), the second identity is

found,

ξµα ξ
να − ∗ξµα ∗ ξνα =

1

2
δ ν
µ Q . (10)

When we make iterative use of Eqs. (5) and (10) we find,

V α(1) T
β

α =
Q

2
V β(1) ; (11)

V α(2) T
β

α =
Q

2
V β(2) ; (12)

V α(3) T
β

α = −Q
2
V β(3) ; (13)

V α(4) T
β

α = −Q
2
V β(4) . (14)

In paper1 the stress-energy tensor was diagonalized through the use of a

Minkowskian frame in which the equation for this tensor was given in Eqs. (34)

and (38). In this work, we give the explicit expression for the tetrad in which the

stress-energy tensor is diagonal. The freedom we have to choose the vector fields

Xα and Y α, represents available freedom that we have to choose the tetrad. If we

make use of Eqs. (5) and (10), it is straightforward to prove that (6-9) is a set of

orthogonal vectors.

2. Electromagnetic Potentials in Geometrodynamics

Our goal is to simplify as much as we can the expression of the electromagnetic

field through the use of an orthonormal tetrad, so its geometrical properties can be

understood in an easier way. As it was mentioned above we would like to show this

simplification through an explicit example by making a convenient and particular

choice of the vector fields Xα and Y α. In geometrodynamics, the Maxwell equations,

fµν;ν = 0 ,

and

∗fµν;ν = 0 ,
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are telling us that two potential vector fields exist,3

fµν = Aν;µ −Aµ;ν ,

and

∗fµν = ∗Aν;µ − ∗Aµ;ν .

For instance, in the Reissner-Nordstrom geometry the only non-zero electromagnetic

tensor component is

ftr = Ar;t −At;r ,

and its dual

∗fθφ = ∗Aφ;θ − ∗Aθ;φ .

The symbol “;′′ stands for covariant derivative with respect to the metric tensor gµν
and the star in ∗Aν is just a name, not the dual operator, meaning that

∗Aν;µ = (∗Aν);µ .

The vector fields Aα and ∗Aα represent a possible choice in geometrodynamics for

the vectors Xα and Y α. It is not meant that the two vector fields have independence

from each other, it is just a convenient choice for a particular example. A further

justification for the choice Xα = Aα and Y α = ∗Aα could be illustrated through

the Reissner-Nordstrom geometry. In this particular geometry, ftr = ξtr and ∗fθφ =

∗ξθφ, therefore, Aθ = 0 and Aφ = 0. Then, for the last two tetrad vectors (8-9), the

choice Y α = ∗Aα becomes meaningful under the light of this particular extreme

case, when basically there is no magnetic field.

3. Gauge Geometry. Gauge Transformations on Blades

One and Two

Once we make the choice Xα = Aα and Y α = ∗Aα the question about the geomet-

rical implications of electromagnetic gauge transformations of the tetrad vectors

(6-9) arises. We first notice that a local electromagnetic gauge transformation of

the “gauge vectors”

Xα = Aα ,

and

Y α = ∗Aα ,

can be just interpreted as a new choice for the gauge vectors

Xα = Aα + Λ,α

and

Yα = ∗Aα + ∗Λ,α .
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When we make the transformation,

Aα → Aα + Λ,α ,

fµν remains invariant, and the transformation,

∗Aα → ∗Aα + ∗Λ,α ,

leaves ∗fµν invariant, as long as the local functions Λ and ∗Λ are scalars. It is valid

to ask how the tetrad vectors (6-7) are going to transform under

Aα → Aα + Λ,α ,

and (8-9) under

∗Aα → ∗Aα + ∗Λ,α .

Schouten defined what he called, a two-bladed structure in a spacetime.4 These local

blades or planes are the planes determined by the pairs (V α(1), V
α
(2)) and (V α(3), V

α
(4)).

Given the space constraint in these proceedings we will limit ourselves to show

a few illustrative results as far as tetrad transformations for gauge vector choice

given by electromagnetic gauge transformations. The whole analysis is given in

manuscript Ref.2 In order to simplify the notation we are going to write Λ,α = Λα.

First we study the change in (6-7) under

Aα → Aα + Λ,α .

Using the following notation,

C = (−Q/2) V(1)σ Λσ/( V(2)β V
β
(2) ) ,

and

D = (−Q/2) V(2)σ Λσ/( V(1)β V
β
(1) ) ,

several cases arise on blade one. We would like to calculate the norm of the trans-

formed vectors Ṽ α(1) and Ṽ α(2),

Ṽ α(1) Ṽ(1)α = [(1 + C)2 −D2] V α(1) V(1)α ; (15)

Ṽ α(2) Ṽ(2)α = [(1 + C)2 −D2] V α(2) V(2)α , (16)

where the relation V α(1) V(1)α = −V α(2) V(2)α has been used and V α(1) assumed timelike

for simplicity. In order for these transformations to keep the timelike or spacelike

character of V α(1) and V α(2) the condition

[(1 + C)2 −D2] > 0 ,

must be satisfied. If this condition is fulfilled, then we can normalize the transformed

vectors Ṽ α(1) and Ṽ α(2) as follows,

Ṽ α
(1)√

−Ṽ β
(1)

Ṽ(1)β

= (1+C)√
(1+C)2−D2

V α
(1)√

−V β
(1)

V(1)β

+ D√
(1+C)2−D2

V α
(2)√

V β
(2)

V(2)β

(17)
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Ṽ α
(2)√

Ṽ β
(2)

Ṽ(2)β

= D√
(1+C)2−D2

V α
(1)√

−V β
(1)

V(1)β

+ (1+C)√
(1+C)2−D2

V α
(2)√

V β
(2)

V(2)β

. (18)

The condition [(1 +C)2 −D2] > 0 allows for two possible situations, 1 +C > 0

or 1 + C < 0. For the particular case when 1 + C > 0, the transformations (17-18)

are telling us that an electromagnetic gauge transformation on the vector field Aα,

that leaves invariant the electromagnetic field fµν , generates a boost transformation

on the normalized tetrad vector fields V α(1)√
−V β(1) V(1)β

,
V α(2)√

V β(2) V(2)β

 ,

The case 1+C < 0, represents the composition of two transformations. An inversion

of the normalized tetrad vector fields V α(1)√
−V β(1) V(1)β

,
V α(2)√

V β(2) V(2)β

 ,

and a boost. If the case under study is that [(1 + C)2 −D2] < 0, the vectors V α(1)
and V α(2) are going to change their timelike or spacelike character,

Ṽ α(1) Ṽ(1)α = [−(1 + C)2 +D2] (−V α(1) V(1)α) ; (19)

(−Ṽ α(2) Ṽ(2)α) = [−(1 + C)2 +D2] V α(2) V(2)α . (20)

These are improper transformations on blade one. They have the property of

being a composition of boosts and a discrete transformation given by Λoo = 0,

Λo1 = 1, Λ1
o = 1, Λ1

1 = 0. We notice that this discrete transformation is not

a Lorentz transformation. They might also be composed with an inversion, see

Ref.2 for the whole analysis. On blade or plane two, the choice Yα = ∗Aα + ∗Λ,α
induces just local spatial tetrad vector transformations. We reiterate that local

tetrad electromagnetic gauge transformations can be interpreted as new or different

gauge choices Xα = Aα + Λ,α and Yα = ∗Aα + ∗Λ,α. In order to summarize this

section we state that there is a new local group LB1 composed by the boosts SO(1, 1)

and two discrete transformations. One of the discrete transformations is the full

inversion or just minus the identity. The other one is the “’switch” given by the

components Λoo = 0, Λo1 = 1, Λ1
o = 1, Λ1

1 = 0. The “switch” is not a Lorentz

transformation. The local group LB2 is just SO(2).

4. Group Isomorphisms

We will just limit ourselves to state these new theorems proved in detail in Ref.2

Theorem 1. The mapping between the group of electromagnetic gauge transforma-

tions and the group LB1 defined above is isomorphic.

Theorem 2. The mapping between the group of electromagnetic gauge transforma-

tions and the group LB2 defined above is isomorphic.
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5. Conclusions

We can state the following conclusions as a summary.

• New orthonormal tetrad for non-null electromagnetic fields in four-

dimensional curved Lorentzian spacetimes. This tetrad diagonalizes locally

and covariantly the Einstein-Maxwell stress-energy tensor. Astrophysical

applications in spacetime evolution5,.6

• Isomorphisms between the local electromagnetic gauge group and the local

groups of tetrad spacetime transformations LB1 and LB2. There is an iso-

morphism between kinematic states and gauge states of the gravitational

fields, locally.

• Maximum simplification of relevant tensors and field equations.

• New tetrads encode gravitational and electromagnetic gauge information.

• We are introducing an explicit “link” between the “internal” and the “space-

time”, so far detached from each other.

• Extension or generalization to non-Abelian theories with gauge group

SU(2)× U(1), see Ref.7

• Hypotheses made at the outset of the no-go theorems8−10 proved incorrect.

Therefore, the no-go theorems are incorrect.

We have proven that the local group of electromagnetic gauge transformations is

isomorphic to the new group LB1. The local group of electromagnetic gauge trans-

formations is isomorphic to the local group of tetrad transformations LB2 as well.

Therefore, we proved that LB1 is isomorphic to LB2. These group results amount

to proving that the no-go theorems8−10 of the sixties like the S. Coleman- J. Man-

dula, the S. Weinberg or L. ORaifeartagh versions are incorrect. Not because of

their internal logic, but because of the assumptions made at the outset of all these

versions. The explicit isomorphic link between the Abelian local “internal” elec-

tromagnetic gauge transformations and the local tetrad transformations on special

orthogonal local planes is manifest evidence of these incorrect assumptions as it has

been proved.2 Simply because the Lorentz transformations on a local plane in a

four-dimensional curved Lorentzian spacetime do not commute with Lorentz trans-

formations on a different local plane in general, element of contradiction with the

no-go theorems assumptions. LB1 isomorphic to LB2 which is SO(2) means that

the boosts plus two discrete transformations can be put in a one to one relation

to SO(2) which also contradicts the assumptions made at the outset of the no-go

theorems.
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