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Abstract

In peripheral heavy ion collisions, the Quark–Gluon Plasma that may be formed often has a large angular 
momentum per unit energy. This angular momentum may take the form of (local) rotation. In many physical 
systems, rotation can have effects analogous to those produced by a magnetic field; thus, there is a risk that 
the effects of local rotation in the QGP might be mistaken for those of the large genuine magnetic fields 
which are also known to arise in these systems. Here we use the gauge-gravity duality to investigate this, and 
we find indeed that, with realistic parameter values, local rotation has effects on the QGP (at high values of 
the baryonic chemical potential) which are not only of the same kind as those produced by magnetic fields, 
but which can in fact be substantially larger. Furthermore, the combined effect of rotation and magnetism 
is to change the shape of the main quark matter phase transition line in an interesting way, reducing the 
magnitude of its curvature; again, local rotation contributes to this phenomenon at least as strongly as 
magnetism.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Rotation/magnetism and the quark–gluon plasma

It has often been observed that, in many physical systems, local rotation (or vorticity) plays a 
role analogous to that of a magnetic field: to take but one of many examples, this “rotation/mag-
netism analogy” is important in the study of the quantum Hall effect [1].
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As is now well known [2–5], huge magnetic fields can be present in the quark–gluon plasma 
(QGP) produced by peripheral heavy-ion collisions [6–10], and these can give rise to a number 
of remarkable effects. In particular, various computations suggest that strong magnetic fields 
tend to lower the temperature at which various phenomena are otherwise expected to occur. For 
example, lattice computations [11] indicate the existence of a very remarkable “inverse magnetic 
catalysis” effect, in which the presence of a strong magnetic field lowers the temperature of the 
chiral transition (and, presumably—but see [12]—also the pseudo-critical temperature): see [13,
14].

On the other hand, it has recently become clear that local rotation might also be important in 
these systems, and this might manifest itself in the form of such phenomena as the “chiral vortical 
effect”: see [15] for a review. Now the large magnetic fields in the QGP mentioned above are in 
fact closely associated with very large angular momentum densities [16–24]; see [25,26] for 
recent in-depth analyses. The angular momentum arises in the same way as the magnetic field, 
and the corresponding vectors are (to a good approximation) parallel [26] (that is, perpendicular 
to the reaction plane).

This prompts the question: could the rotation/magnetism analogy be valid for the QGP? 
Might, for example, local rotation directly affect temperatures, just as magnetism apparently 
does? If this is so, then ignoring the effects of local rotation could lead to serious errors in 
estimating the effects of the magnetic field on the behaviour of the plasma.

For example, suppose that one has a calculation, for example lattice-based, of the likely lo-
cation of the quark matter critical endpoint (see for example [27–32]) in the quark matter phase 
diagram. For the QGP produced in peripheral collisions, it is thought that the corresponding mag-
netic field lowers the temperature and the baryonic chemical potential, μB , at that point (with 
fixed values of the other parameters), relative to the values expected in the absence of a magnetic 
field—that is, in a central collision. (See [31,32] and references therein for recent discussions of 
this.) But if there is a rotation/magnetism analogy, the local rotation generated by a peripheral 
collision could have an independent effect which might significantly strengthen (or even weaken) 
this important phenomenon. (Note that rotation itself may play a useful role [33] in locating the 
critical endpoint, underlining the importance of understanding its effects.)

To take another, related example: the quark matter critical endpoint, if it exists, is associated 
with a phase transition line, and investigating this line (see Fig. 1) is a prime objective of the 
beam energy scan experiments such as RHIC, GSI-FAIR and NICA, among others [34–39]. The 
line1 bends down into the region of lower temperature and higher μB , that is, into the region of 
higher net particle density. From a theoretical point of view, one hopes ultimately to compute not 
just the location of the critical endpoint but also the curvature of this line. Now, strong magnetic 
fields might affect not just the location but also the shape of the phase line. In other words, 
there could be a non-trivial interaction between increased net particle density and magnetism. 
However, if there is indeed a local rotation/magnetism analogy, there will be a corresponding 
interaction between the rotational angular momentum and the net particle density.2 Again, if this 
is indeed so, then ignoring local rotation could lead to erroneous predictions regarding this entire 
region of the phase diagram, for quark matter produced in peripheral collisions.

In short, if a local rotation/magnetism analogy exists, it must be taken into account in theo-
retical studies related to the high-μB experiments currently under way or projected: it is quite 

1 There may of course be other phase transition lines, as shown in Fig. 1, but we will not consider them here.
2 This could be related to the recent suggestion of a possible “rotation/density” analogy [40].
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Fig. 1. Quark matter phase diagram.

possible that analyses which give good results for central collisions may otherwise fail when 
extended to the peripheral case.

The strongly coupled QGP is, however, not well-understood when μB is comparable to or 
larger than the temperature, and it is not clear that the local rotation/magnetism analogy works 
in any straightforward way here. Theoretical investigations of the effects of local rotation can be 
pursued using lattice methods [41], but, at large values of μB , one encounters the usual “sign 
problem”. We wish to argue that the gauge-gravity (“holographic”) correspondence [42–44], 
in which a given problem regarding the plasma is related to an equivalent problem in a dual 
gravitational system, may be useful here.

In the simplest cases, the gauge-gravity duality postulates a duality of some “plasma-like” 
boundary theory with a suitably chosen asymptotically AdS black hole in the bulk.3 In the ap-
plication at hand, this black hole must rotate, to reflect the rotation at infinity, and it must be 
charged (both electrically and magnetically), to reflect non-zero values of the magnetic field 
and of the baryonic chemical potential in the dual field theory. A holographic study of the local 
rotation/magnetism analogy, if it is valid in this application, would therefore involve the study 
of one of the (several) asymptotically AdS black holes which are counterparts of the (dyonic) 
asymptotically flat Kerr–Newman [45] geometry.4

A holographic treatment of angular momentum is possible because of two effects: first, as 
is well known, a black hole endowed with angular momentum induces frame-dragging in the 
ambient spacetime; and, second, because this frame-dragging persists all the way to infinity 
in the case of asymptotically AdS black holes. Unlike their asymptotically flat counterparts, 
these are not uniquely specified by their metric parameters: the geometry of the event horizon 
need not be that of a sphere [55]. Broadly speaking, there are two well-behaved5 classes: first, 

3 The bulk here is four-dimensional, since the dual physics is effectively three-dimensional: the rotational motion is 
studied by confining attention to the reaction plane (with the standard (x, z) coordinates), which is strictly perpendicular 
to the magnetic field and the angular momentum vectors (both parallel to the usual y axis.)

4 Asymptotically AdS black holes endowed with angular momentum have been studied with a view to holographic 
applications in [46–51]. The holography of inverse magnetic catalysis was considered in [52–54].

5 “Well-behaved” in the sense of being dual to a well-defined (stable) boundary theory.
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black holes with event horizons which (prior to the introduction of angular momentum) have 
the local geometry of a sphere, and, second, black holes with event horizons which (prior to the 
introduction of angular momentum) have the local geometry of a flat plane.

It turns out, very remarkably, that this classification precisely reflects the two basic ways 
[19] in which angular momentum is manifested in the QGP in the aftermath of a heavy-ion 
collision: as local rotation (vorticity) [20–25], or as a shearing motion [16–18,26]. (The two are 
not mutually exclusive, and in fact in a real plasma the two forms would co-exist, but for clarity 
we treat them separately.) Here we are concerned with local rotation or vorticity, and one finds 
that this corresponds to the case of asymptotically AdS black holes with topologically spherical
event horizons: that is, to the simplest extension of the asymptotically flat dyonic Kerr–Newman 
metric to the AdS context. Even this “simplest” generalisation can give rise to surprises, however.

We are interested in studying the temperature of the plasma and its baryonic chemical poten-
tial. The quantity which is holographically dual to the temperature of the QGP is of course the 
Hawking temperature of the bulk black hole, which depends both on its electromagnetic charges 
and on its angular momentum. As we will see, the dual of the baryonic chemical potential is also 
a certain combination of the charges and the angular momentum parameter. In this very general 
sense, holography indicates that there must indeed be some kind of analogy between local rota-
tion and a magnetic field in the dual plasma. Notice that an observation which is immediate on 
one side of the duality is far from it on the other: this is the point of holography.

These considerations allow us to formulate the analogy in a concrete way; so we can begin to 
answer some basic questions. Does local rotation always change the temperature and chemical 
potential in the same direction as does a magnetic field—that is, does it always reinforce the 
magnetic effect or sometimes tend to counteract it?6 Which of the two effects is dominant? Do 
local rotation and magnetism modify the shape of the phase transition line, and, if so, how do the 
two effects compare?

In fact, the problem of understanding the behaviour of the temperature and chemical potential 
corresponding to a dyonic, topologically spherical AdS black hole is not straightforward: for two 
reasons. First, unlike the parameters of an asymptotically flat black hole, the geometric param-
eters of a rotating AdS black hole are not related in any simple way to its physical properties. 
For example, the mass parameter M is not the physical mass of the black hole (see equations (3)
below). Second, holography does not relate the boundary parameters to the physical parameters 
of the black hole in as simple a way as in the non-rotating, non-magnetic case: for example, the 
baryonic chemical potential of the boundary theory is not proportional to the electric charge on 
the black hole here (see equation (14) below), as it is in the familiar case of the dyonic AdS–
Reissner–Nordström black hole.

In short, the answers to our questions are unclear: they can only be settled by means of a de-
tailed investigation, which we propose to carry out here. We stress that the holographic model of 
these extremely complex systems may well be severely over-simplified, so that accurate numer-
ical predictions are not to be expected here. Our emphasis is on more qualitative questions. The 
answers to these questions may guide more quantitative investigations of these basic properties 
of the QGP.

6 In fact, in the case of shearing angular momentum, it was found in [54] that unexpected behaviour does occur in some 
cases: it can happen that increasing the shearing angular momentum has the opposite effect to that of a large magnetic 
field (though never enough to counteract the latter entirely—in this sense, shearing angular momentum has a “weaker” 
effect than magnetism).
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In order to proceed, we need a detailed description of gauge-gravity duality in this case, 
including a “dictionary” that converts all of the relevant boundary parameters to quantities de-
scribing an asymptotically AdS black hole. To this we now turn.

2. The holographic dictionary for the topologically spherical dyonic AdS–Kerr–Newman 
black hole

The dyonic (that is, both electrically and magnetically charged) four-dimensional AdS–Kerr–
Newman black hole with topologically spherical event horizon has a metric of the form, in 
Boyer–Lindquist-like coordinates [56],

g(AdSdyKN+1
4 ) = − �r

ρ2

[
dt − a

�
sin2 θ dφ

]2

+ ρ2

�r

dr2 + ρ2

�θ

dθ2 (1)

+ sin2 θ�θ

ρ2

[
a dt − r2 + a2

�
dφ

]2

,

where the “dy” denotes “dyonic”, where the “+1” reminds us of the spherical topology of the 
event horizon, and where

ρ2 = r2 + a2 cos2 θ,

�r = (r2 + a2)
(

1 + r2

L2

)
− 2Mr + Q2 + P 2

4π
,

�θ = 1 − a2

L2
cos2 θ,

� = 1 − a2

L2
. (2)

Here −1/L2 is the asymptotic curvature, and a is the “specific angular momentum” (angular 
momentum per unit physical mass). Note that the quantity � must be present in order to ensure 
regularity of the geometry: see below. The geometric parameters M, Q, and P are related to the 
physical mass E, electric charge q , and magnetic charge p, by [57,58]

E = M/�2, q = Q/�, p = P/�. (3)

We begin to see the principal point: for example, the parameter M in the metric is related to 
the physical mass through a formula which also involves the specific angular momentum [59], 
through the quantity �. More generally, the ubiquity of � throughout the formulae describing 
this system implies that the physical black hole parameters vary in a complicated way as the 
specific angular momentum is varied.7 We note in passing that the presence of the � factors 
requires that the inequality

a2/L2 < 1 (4)

must always be satisfied.

7 We should stress that the corresponding black hole describing a shearing plasma [49,54] is very different to the one 
considered here: in particular, there is nothing analogous to � in that case. The results of [54] therefore offer no guide as 
to what one should expect here.
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The electromagnetic potential form here is given by

A =
( −�

4πρ2L
[Qr + aP cos θ ] + κt

)
dt (5)

+
(

1

4πρ2L

[
Qar sin2 θ + P cos θ

{
r2 + a2

}]
+ κφ

)
dφ,

where κt and κφ are constants which can be evaluated as follows. First, consider the Euclidean 
version of g(AdSdyKN+1

4 ), obtained by complexifying t , Q, and a (but not P ). A calculation of 
their lengths in this metric shows that ∂t and ∂φ vanish at the points corresponding to the poles 
of the Euclidean “event horizon” (where the Euclidean version of �r has its largest root), and so 
we must have AE(∂t ) = AE(∂φ) = 0 there if the Euclidean potential AE is to be regular. These 
equations yield the values of the Euclidean versions of κt and κφ , and continuing back to the 
Lorentzian section we have finally

A =
(

− �

4πρ2L
[Qr + aP cos θ ] + �(Qrh + aP )

4πL
(
r2
h + a2

)
)

dt (6)

+
(

1

4πρ2L

[
Qar sin2 θ + P cos θ

{
r2 + a2

}]
− P

4πL

)
dφ,

where rh is the value of the radial coordinate at the event horizon.
The conformal boundary of this spacetime has a structure which can be represented by the 

metric

g(AdSdyKN+1
4 )∞ = −dt2 − 2a sin2(θ)dtdφ

�
+ L2 dθ2

1 − (a/L)2 cos2(θ)
+ L2 sin2(θ)dφ2

�
; (7)

with this choice, t represents proper time for a distinguished observer at infinity.
A massive, zero-momentum particle in this boundary geometry has a worldline satisfying 

φ̇ = aṫ/L2 (where the dot refers to the proper time of the particle), so it is frame-dragged in the 
φ direction at an angular velocity relative to the distinguished observer of ω = a/L2. This shows 
that frame-dragging does indeed persist to infinity in this case, and that (since ω is independent of 
position at infinity) this frame-dragging takes the form of uniform rotation in the reaction plane. 
Thus, under these conditions, we have a holographic setup for the locally rotating QGP.

Unfortunately, the boundary theory is evidently defined on a spacetime with curved spa-
tial sections. This is obviously not realistic for the application to heavy ion collisions, and, 
furthermore, the curvature induces irrelevant or unphysical effects such as spurious mass gap 
phenomena. It is therefore essential to ensure that the curvature is negligible here. We proceed as 
follows.

Near to either pole, the spatial geometry induced by the metric g(AdSdyKN+1
4 )∞ is approx-

imately that of a round two-sphere8 of radius L̂ = L/
√

�; therefore, this geometry will be 
approximately flat provided that L̂ is sufficiently large relative to the size of the system being 
described, which in our case would be a sample of rotating plasma, placed so that its centre is 

8 It is by considering this two-sphere geometry that one understands why the important quantity � must be present 
throughout this work: without it, the geometry would never be approximately flat, even for arbitrarily small regions 
around the poles. See [50] for the details.
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at the pole.9 In order to ensure this, we must, since L̂ ≥ L for all values of a (with equality for 
a = 0, that is, central collisions), take L to be significantly larger than the plasma sample, that is, 
more than about 10 femtometres. From a physical point of view, we should take it to be of the 
order of the largest length scale naturally associated with this system. As we will see later, this 
is provided by a, which (in this case) ranges up to about 50 femtometres: so, bearing in mind 
the inequality (4), we will take L ≈ 100 femtometres. This ensures that the space we are dealing 
with can be assumed flat under all circumstances; notice that in fact the approximation becomes 
a little better if a is relatively large, since then L̂ is somewhat larger than L. (Notice too that this 
value of L is compatible with the conditions for holography to be valid from a string-theoretic 
point of view, that is, it is much larger than the string scale.)

Under these circumstances, � = L̂θ and φ define plane polar coordinates in the flat space 
tangential to the pole,10 and this flat space is dual to the reaction plane of the collision giving rise 
to the plasma. We are now in a position to construct the holographic dictionary in this case.

We are interested in the following parameters describing the plasma: its specific angular mo-
mentum, its temperature, the intensity of the magnetic field to which it is subjected, its specific 
entropy (entropy per unit of energy), and its baryonic chemical potential (which is related to the 
net particle density). We consider these in turn.

The specific angular momentum a of the black hole will be interpreted as the specific angular 
momentum of the plasma, that is, the ratio of its angular momentum density to its energy density. 
This quantity varies for different collisions in a given beam, ranging from zero (in exactly central 
collisions) up to some maximum which can be estimated [17]. We therefore have to allow for a 
range of values for a (from zero up to some value below L, as explained above).

The temperature of the plasma corresponds to the Hawking temperature of the black hole. 
This is given [56] by

T =
rh

(
1 + a2/L2 + 3r2

h/L2 − a2+{Q2+P 2}/4π

r2
h

)
4π(a2 + r2

h)
, (8)

where, as before, r = rh locates the event horizon.
Next, consider the electromagnetic potential (equation (6)) at infinity: we have

A∞ = �(Qrh + aP )

4πL
(
r2
h + a2

) dt + P

4πL
(cos θ − 1)dφ, (9)

with corresponding field strength

F∞ = − P

4πL
sin θ dθ ∧ dφ. (10)

Let θ̂ and φ̂ represent unit (relative to g(AdSdyKN+1
4 )∞) one-forms parallel to dθ and dφ. One 

finds that θ̂ = L dθ/
√

�θ , φ̂ = L sin θ dφ
√

�θ/�, and so

9 This “sample” is to be regarded as a relatively small part of the entire system produced in a peripheral collision. The 
vorticity is expected to vary with position [25], so our analysis should be thought of as applying locally, to each of many 
samples.
10 The presence of L̂ here can be understood physically in terms of the well-known problem of the rotating disc [60]: the 
rotation causes the circumference of the disc to increase, according to an observer on the disc, by the usual Lorentz factor. 
In this case, that factor is �−1/2 = 1/

√
1 − (a/L)2, so we can think of a/L as the maximal rotational velocity of the 

system; this also explains the inequality (4), above. Our choice for L represents a maximal velocity which is relativistic 
but still causal.
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F∞ = − �P

4πL3
θ̂ ∧ φ̂. (11)

Clearly we have here a magnetic field at infinity, perpendicular to the reaction plane and uniform 
within it, given by

B = �P

L3
. (12)

This is similar to the way magnetic fields are treated in holographic condensed matter theory 
[61]. As with the specific angular momentum, the value of B depends on the geometry of each 
collision: like a, it varies from zero up to some maximum, so we have to consider a range of 
values.

Equation (12) is the third entry in our “dictionary”. Again we see that the relation between the 
black hole magnetic charge and the boundary magnetic field is not simple, for it too involves the 
specific angular momentum of the black hole.

Next, we turn to the specific entropy of the black hole. According to Hawking’s formula, the 
entropy itself is given by one quarter of the area of the event horizon; this area is 4π(r2

h +a2)/�, 
and since the physical mass is (as above) M/�2, the specific entropy is

ςS = π�(r2
h + a2)

M
. (13)

We interpret this holographically as the average entropy (per unit of energy) of the particles in the 
collisions, occurring in a given beam, that give rise to the plasma. This is a physical characteristic 
of the beam; in order to make a meaningful comparison, we hold it constant when we consider 
two situations: one in which the effects of vorticity and magnetism are ignored, and one in which 
they are taken into account.

Finally, the holographic version of the chemical potential is obtained by examining the electric 
potential as evaluated by an observer at infinity. Since ∂t is a unit vector at infinity, this means 
that we simply take the timelike component of A∞ (equation (9) above) and so we obtain

μB = 3�(Qrh + aP )

4πL
(
r2
h + a2

) , (14)

the factor of 3 being needed to express the relation in terms of the usual baryonic chemical 
potential. Notice that μB depends explicitly (and implicitly, through rh) on both Q and P —as 
well as on a.

Recall that the baryonic chemical potential is related to the net particle density, that is, to 
the extent to which particles dominate over antiparticles; see for example the discussion in [62]. 
However, the particle/antiparticle ratio is given not by μB itself (which has units of length−1

here) but rather as a monotonically increasing function of the dimensionless ratio μB/T . We 
therefore quantify “density” here by the quantity , defined simply as

 = μB/T . (15)

This quantity is directly accessible to experiment; μB is secondary in this sense. As with the 
specific entropy, this physical parameter allows us to compare the situations with and without 
vorticity/magnetism.

The horizon coordinate rh, which occurs in many of our equations, is related to the other 
parameters through its definition,

�r(rh) = (r2
h + a2)

(
1 + r2

h
)

− 2Mrh + Q2 + P 2

= 0. (16)

L2 4π
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Using equation (14), one computes

r2
h

(
Q2 + P 2

)
=

(
r2
h + a2

)[
P 2 + 16π2μ2

B

(
r2
h + a2

)
L2

9�2
− 8πμBaPL

3�

]
, (17)

and using this and equations (12),(13), and (15), one can show after some computation that (16)
can be expressed as

r4
h

L2
− 2π�r3

h

ςS

+
[

1 + 4π2T 2L2

9�2

]
r2
h + L2

4π�2

[
BL2 − 4πT a

3

]2

= 0. (18)

This equation allows us to regard rh as a known function of the parameters describing the bound-
ary field theory: in principle, given a, ςS , , T , B (and L), one solves this quartic for its largest 
root. (In practice, one does not regard T as known: see below.)

Similar computations allow one to express equation (8) in the following form:

L2

16π2�2r3
h

[
16π22T 2r2

h

9
+

(
BL2 − 4πT a

3

)2
]

+ T

−
rh

(
1 + a2/L2 + 3r2

h/L2 − (
a2/r2

h

))
4π(a2 + r2

h)
= 0. (19)

If we regard a, ςS , , B , and L as known, then equations (18) and (19) are a pair of simultaneous 
equations for rh and T with known coefficients: so now T (and μB =  T ) are, in principle, 
known, or at least computable, functions of these parameters. In particular, we can take a specific 
heavy-ion beam with a prescribed value of  and of ςS , and consider the variation of T and μB

as a and B vary from collision to collision, allowing us to investigate the holography of the local 
rotation/magnetism analogy as it applies at various points of interest in the quark matter phase 
diagram.

It is evident that T is not a simple function of these variables; in particular, it is an extremely 
complex function of a. In analysing this function, one begins by trying to understand rh; but is 
not clear whether rh always increases or decreases with a (other parameters being fixed) under 
these circumstances11; and, even if that could be ascertained, it is still not clear whether T , given 
by equation (19), increases or decreases with a. Bear in mind that we are not fixing the black 
hole metric parameters (such as M) in this discussion, but rather the (somewhat distantly) related 
boundary parameters; so one cannot rely on familiar intuitions regarding the behaviour of the 
Hawking temperature under changes of black hole parameters. Similar comments apply to μB .

In summary, then, holography reduces our questions regarding the local rotation/magnetism 
analogy to the solution of the pair of equations (18) and (19). These equations are relatively 
straightforward algebraic relations, so the simplification here is extreme. In practice, they are 
still sufficiently intricate as to require a numerical investigation, based on reasonably realistic 
data. We now proceed to that.

11 In the special case where  vanishes, it is not hard to show that rh does in fact always decrease as a increases; but 
this is not clear if  �= 0.
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3. Numerical results

For definiteness, we will focus on the region in the quark matter phase diagram around the 
proposed QGP/hadronic phase transition line, a major object of interest for various current and 
prospective beam energy scan experiments [35–39]. We will try to apply holographic methods 
to data pertaining to locally rotating plasmas produced in such experiments. We stress again that 
the use of these data is merely to ensure that we are in the physical domain, not to try to make 
precise numerical predictions. The objective is to try to discern the trends: do local rotation and 
magnetic fields tend to raise or lower the expected temperature and chemical potential (with all 
other parameters having fixed values)? Do they have these effects to similar degrees? Do they 
tend to change the shape of the phase line, and, again, if so, do they have effects of the same 
magnitude?

3.1. Rotation/magnetism and the critical endpoint

We begin with a study of the effects of local rotation and magnetism on the location of the crit-
ical endpoint. The coordinates of this point are estimated in (for example) [30]. For definiteness 
we choose, as a rough estimate,

T CEP
0 ≈ 140 MeV, μCEP

B0 ≈ 280 MeV, (20)

where the zero subscript indicates that these estimates effectively ignore the magnetic field (and 
therefore the angular momentum). This means that  ≈ 2 in this Section.

We will investigate the way in which the endpoint is displaced by magnetic fields B and 
(specific) angular momenta a. Our principal objective at this stage is simply to assess which of the 
two effects is the dominant one. We stress that, in reality, B and a are by no means independent: 
they vary together in a complex manner as the impact parameter varies from collision to collision. 
For our purposes, however, it is more instructive to vary them independently. (An example in 
which a simplified version of their actual relationship is taken into account is provided in the 
next section.)

For the magnetic field, the classic study of Skokov et al. [2] finds that maximal values for 
the field in peripheral RHIC collisions are conveniently measured in units of the squared mass 
of the pion: let us call this Bπ2 ; note however that several subsequent studies have considered 
substantially larger values than those suggested in [2]. In order to gain some feel for the effect, 
and to make the trends clear, we have considered fields from zero (for central collisions) up 
to 15Bπ2 ; this value is probably realistic for collisions at the LHC, but probably not for the 
experiments that probe the vicinity of the critical endpoint.

For the specific angular momentum, it is also difficult to estimate a realistic value: for a dis-
cussion of the reasons, see [54]. Maximal values around 75 fm are probably reasonable for RHIC 
collisions (considerably larger values may be possible at the LHC). We will settle on a conserva-
tive range between zero (again, corresponding to central collisions) and 50 fm.

With these assumptions, we can solve equations (18) and (19) numerically (for rh and T ).12

The results for the temperature (units MeV) are shown in the table, with values of B increasing 

12 The value of ςS is obtained by solving (for  ≈ 2) the equations at a = B = 0. In solving the full versions of (18)
and (19) one finds that there are in general two real solutions for rh ; one chooses the larger, since, as is well known, it is 
the outer horizon that determines the thermodynamics of the black hole. This identifies the correct solution for T .
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downward, and of a increasing towards the right. (As above, we take it that the temperature is 
140 MeV when a = B = 0.)

a = 0 fm 10 20 30 40 50

B = 0 × Bπ2 140 137.9 131.5 121.1 106.5 88.3
1 139.9 137.9 131.5 121.0 106.5 88.2
5 139.2 137.0 130.5 119.7 104.4 84.2

10 136.7 134.4 127.3 115.3 96.7 62.6
15 132.0 129.3 121.1 105.5 77.9 < 40

We have expressed the result in the lower right corner as an inequality, on the grounds that in that 
(almost certainly unphysical) domain the numerical technique is not reliable.

Three aspects of the results are important:
• The effect of both rotational angular momentum and of magnetism is always to reduce 

the temperature (and therefore, according to our model, the baryonic chemical potential) corre-
sponding to the critical endpoint. This is not a trivial observation, because in the case of shearing 
angular momentum [54], the effect of increasing a (at non-zero B and μB ) is sometimes to in-
crease the temperature somewhat13 (though never above the value at B = a = 0.) Thus, the local 
rotation/magnetism analogy holds in this sense: both have the same kind of effect on the location 
of the critical endpoint. This effect is in agreement with previous (non-holographic) studies [31,
32].

• The effects are highly non-linear: for example, the drop in the temperature in going from 
B = Bπ2 to B = 10Bπ2 is actually not as large as the drop in going from B = 10Bπ2 to B =
15Bπ2 (at any value of a), and similarly for the variation with a. This could lead to dramatic 
effects if the values of B and a prove to be larger in the beam energy scan experiments than one 
might expect.

• Most importantly, the effect of increasing a completely dominates the effect of increasing
B: indeed, apart from the very extreme B = 15Bπ2 case, the effects of increasing B at a = 0
are almost certainly too small to be detectable, whereas rather modest values of a at B = 0 lead 
to very appreciable drops in the expected temperature. To see this explicitly, compare Fig. 2
(showing the effect on the temperature of increasing the magnetic field at a fixed value of a, 
a = 30 fm) with Fig. 3 (showing the effect on the temperature of increasing a at a fixed value 
of B , B = 5Bπ2 ): the effect is obviously larger in the latter case.14

The qualitative conclusions here are twofold. First, holography indicates that the QGP pro-
duced in peripheral collisions in the beam energy scan experiments may have discernibly differ-
ent properties to the plasma emerging from central collisions: in particular, the critical endpoint 
may be located, in the peripheral case, at unexpectedly low values of T and μB . Secondly, if 
such an effect should be observed, one will have to consider very carefully whether it is due to 
the magnetic field, and not rather to the vorticity in the plasma. Ignoring this second possibility, 
clearly indicated by the gauge-gravity duality, could lead to severe over-estimates of the intensity 
of the magnetic field.

13 This answers the question raised in [54]: is this peculiar behaviour due to some aspect of the shearing motion itself? 
Evidently the answer is affirmative.
14 This is again in marked contrast to the case of shearing angular momentum, where similar values of a lead to changes 
in the temperature of much the same size as those caused by increasing the magnetic field (both being very small).
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Fig. 2. Reduction of the temperature with increasing magnetic field B , at a fixed value of a = 30 fm. Units of T are MeV, 
those of B are B

π2 .

Fig. 3. Reduction of the temperature with increasing specific angular momentum a, at a fixed value of B = 5B
π2 . Units 

of T are MeV, those of a are fm.

We conclude this section by noting that there has recently been much interest in the effect of 
finite system size on computations of the location of the quark matter critical point; see for exam-
ple [31] and numerous references therein. The point is that many earlier computations effectively 
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assumed that the system was infinitely large: the question is whether taking finite size effects into 
account shifts the phase transition line towards or away from the origin of the phase diagram.

In the present case, a finite (and physically realistic) system size has been assumed from the 
outset—the vorticity is a local rotational effect, and so we have applied our holographic model to 
small “samples” of the plasma. That is, the system size (related here to the parameters a and L, 
both with dimensions of length) is already fixed by the basic physics of vorticity itself.

Nevertheless, one can ask whether holography throws any light on the question as to the 
way the phase line is shifted by varying the system size, that is, by varying a and L. Care is 
required here: the systems we are dealing with involve plasmas moving locally (due to vorticity) 
at relativistic speeds, and the model must reflect this, while respecting causality. Concretely, 
our model has a dimensionless velocity parameter a/L, which must, of course, be smaller than 
unity (see the inequality (4)) but which should not be too small. Thus, if we wish to investigate 
the effects of increasing the size of the system, the natural way to do so is to increase L while 
keeping a/L fixed. That is, we should increase L, but also a (and therefore B) appropriately.

If for example we consider a typical entry in the table above, say a = 30 fm, B = 5Bπ2 , and 
simply double L, a, and B , we find that the predicted temperature drops from 119.7 MeV to 
about 115.2 MeV. Similar effects are observed at all other values in the table. Thus, increasing 
the volume of the system causes, according to the holographic model, a contraction in the phase 
diagram towards the origin; broadly speaking, this is in agreement with the findings of [31] (and 
of some earlier investigations cited there). The effect is rather weak, however; interestingly, it 
varies with a and B , being more pronounced at higher values of these parameters. It might be of 
interest to see whether this effect can be replicated with the methods of [31] (which focuses on 
the consequences of varying the system size at B = 0).

3.2. Rotation/magnetism and the shape of the phase line

We now wish to use the gauge-gravity duality to investigate the effect of local rotation/mag-
netism on the shape of the putative quark matter phase line. The curvature of this line has yet to 
be settled to the satisfaction of all, even in the immediate vicinity of the critical endpoint [30,
63–67]. We will therefore content ourselves here with the simplest possible question: do local 
rotation and magnetism tend to increase the magnitude of the curvature or decrease it?

We therefore begin with a sequence of five points in the phase diagram, arranged uniformly 
along a straight line within the region in the phase plane expected [37,68] to be explored at 
GSI-FAIR: roughly from the critical endpoint down to T0 ≈ 100 MeV, μB0 ≈ 600 MeV, where, 
as before, zero subscripts indicate values taken at a = B = 0. Our objective is simply to see what 
becomes of this straight line.

We will abandon the fiction that the angular momentum and the magnetic field can be varied 
independently: in reality they vary together. We will not attempt to construct a realistic relation 
here; the simplest possible assumption, that the relation is linear, will suffice. In fact, the magnetic 
fields produced in the beam energy scan collisions are relatively small [32], but we will use 
somewhat unrealistically large values here, with the usual intention of clarifying the trend. (As 
we will see, the effect of magnetic fields here is in any case quite small relative to the effects 
of local rotation, so this does not unduly modify the results.) We consider, as in the preceding 
section, values of a ranging from zero up to 50 fm, and corresponding values of B ranging 
linearly with a from zero up to 5Bπ2 .

The results for the phase diagram coordinates of the five points, after they have been displaced 
by the effects of local rotation and magnetic fields, obtained as before by solving equations (18)
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Fig. 4. Displacement and distortion of a line in the quark matter phase diagram by combined local rotation/magnetism. 
(a, B) = (0, 0) is the straight line at the top right; increasing values of (a, B) displace this line towards the origin and 
cause its curvature to increase. The points at bottom left correspond to a = 55 fm, B = 5.5B

π2 , for illustrative purposes 
(data not included in the Table). Units are MeV.

and (19) with the appropriate parameter values, are given in the table, in the order (T , μB). For 
legibility we have deleted the units: they are MeV for T and μB , fm for a, and Bπ2 for B .

a,B = 10,1 a,B = 20,2 a,B = 30,3 a,B = 40,4 a,B = 50,5

T0,μB 0 = 140,280 137.9, 275.8 131.4, 262.8 120.58, 241.2 105.2, 210.4 84.2, 168.4
T0,μB 0 = 130,360 127.8, 353.8 121.0, 335.2 109.9, 304.6 94.5, 261.8 74.4, 206.0
T0,μB 0 = 120,440 117.7, 432.2 111.1, 407.6 100.2, 367.6 85.3, 313.2 66.7, 244.8
T0,μB 0 = 110,520 107.8, 510.0 101.4, 479.8 91.1, 430.8 77.2, 365.2 60.3, 285.2
T0,μB 0 = 100,600 98.0, 587.8 92.0, 552.0 82.4, 494.4 69.7, 418.4 54.5, 327.2

We need not go into a detailed analysis of these results (we have in fact carried out the calcula-
tions for many more points); instead we summarise as follows.

• For all values of (a, B), the effect is to shift the line towards the origin; this is in agreement 
with the previous section and with general expectations [31,32].

• Rotation/magnetism tends to cause the line to acquire a small amount of positive curvature: 
while the line is pushed towards the origin, it bends upward (though never enough to compete 
with the downward translation). This effect increases with (a, B).

• Not surprisingly in view of the results of the preceding section, a detailed analysis (not 
reflected in the Table) involving independent variation of a and B shows that, once again, angular 
momentum is the dominant effect here; magnetism is important only at completely unrealistic 
values of B .

This summary (with an additional line corresponding to a = 55 fm, B = 5.5Bπ2 , added for 
illustrative purposes) is represented in Fig. 4.
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In reality, of course, the phase line is not straight: it bends downward (see Fig. 1, though 
note that the current estimates [30,63–67] imply that the actual curvature is very much smaller
in magnitude than indicated there). We interpret our results as implying that the effect of local 
rotation/magnetism is to reduce the magnitude of this (negative) curvature.

In short, then, holography suggests that the QGP produced in some peripheral collisions may 
be described by a quark matter phase diagram which differs from the diagram for central colli-
sions: the critical endpoint and its associated phase transition line may be displaced towards the 
origin, and the phase line may be appreciably straighter. (As we noted above, the deformation is 
small, but so is the magnitude of the initial curvature: for example, [66] and [67] put it at around 
0.01 or less, at least for values of μB which are not extremely large.) Once again, if such an ef-
fect were actually observed, one would have to find ways of determining whether it is due to the 
strong magnetic field or to the high vorticity associated with (some) such collisions. Holography 
points towards the latter.

4. Conclusion

In this work, we have used the gauge-gravity duality to investigate the combined effects of 
local rotation and strong magnetic fields on the QGP produced in some peripheral collisions. In 
reality, the internal motion of the plasma produced in such collisions is a complex mix of local 
rotation and shearing, with one or the other dominating depending on physical conditions [19].

The effects of shear in the QGP were considered, also from the gauge-gravity duality point 
of view, in [54]. They differ in many ways from those considered here. The principal difference 
is that, in the shearing case, the effects of angular momentum are quite small, generally even 
smaller than those of the magnetic field. Here, by contrast, rotational angular momenta have 
effects which can be much greater than those of the accompanying magnetic field. (On the other 
hand, they always have effects in the same direction, which, again, is not true of the shearing 
case.)

The question then arises: how can the effects of shear, vorticity, and magnetic fields be dis-
tinguished theoretically and in the data? In the gauge-gravity perspective, this is straightforward, 
since the various parameters enter the relevant equations in very different ways: for example, 
there is certainly no a ↔ B symmetry in equations (18) and (19) above. Whether it will be easy 
to extract this distinction from the data, on the other hand, is open to doubt.

In overall summary, then: if effects like those we have found here (progressive shifting of 
critical endpoint and phase line towards the origin, and reduction of the magnitude of the curva-
ture of the phase line) in peripheral collisions should actually be observed, then gauge-gravity 
duality indicates that they are probably due to (rotational) angular momentum (vorticity) rather 
than to the magnetic field. If this is not borne in mind, there is a risk that the magnetic field will 
be over-estimated, with possible consequences for the study of the many phenomena expected 
to be associated with fields of that magnitude. One should perhaps be prepared to associate such 
observations instead with the chiral vortical effect [15] and allied phenomena.
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