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Zusammenfassung

Motivation

Mesonen sind Teilchen, die aus einem Quark und einem Antiquark aufgebaut sind. Be-
stimmte neutrale Mesonen können sich in ihr Antiteilchen umwandeln, und umgekehrt.
Die Rate, wie oft dieser Prozess in einer gegebenen Zeitspanne abläuft, wird Oszillations-
frequenz genannt.

Das Standardmodell der Teilchenphysik ist eine etablierte Theorie, in welcher die Eigen-
schaften der Elementarteilchen sowie deren Wechselwirkungen untereinander beschrieben
werden. Wie jede Theorie muss sich auch das Standardmodell im Experiment bewähren.
Eine Möglichkeit eines solchen Tests ist die Messung der Oszillationsfrequenz von B0

s -
Mesonen. Diese Messung bereitet auch den Weg für die Suche nach Physik jenseits des
Standardmodells, die sich in einer Verletzung der CP-Symmetrie bei B0

s -Meson-Zerfällen
manifestieren kann.

Zur Zeit werden B0
s -Mesonen nur an den beiden Experimenten CDF und DØ am

Tevatron-Beschleuniger untersucht. Die Messung der B0
s -Oszillationsfrequenz sowie die

Suche nach CP-Verletzung im B0
s -System sind zentrale Bestandteile des Flavour-Physik-

Programms der CDF-Kollaboration.

Flavour Tagging

Die Messung der B0
s -Oszillationsfrequenz besteht aus drei wesentlichen Schritten:

• Bestimmung des B0
s -Flavours beim Zerfall des Mesons

• Messung der Flugstrecke und damit der Lebensdauer

• Bestimmung des Produktionsflavours des B0
s -Mesons

Der dritte Punkt wird Flavour Tagging genannt. Als Flavour bezeichnet man im All-
gemeinen die

”
Sorte“ eines Quarks, also ob es sich zum Beispiel um ein s-Quark oder

ein b-Quark handelt. Wie im vorliegenden Zusammenhang wird der Begriff auch zur Un-
terscheidung von Quarks und Antiquarks verwendet, was sich auch auf die aus ihnen
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Abbildung 0.1: Schematische Darstellung eines typischen B0
s Zerfalls.

gebildeten Mesonen erstreckt. Flavour Tagging nennt man also ein Verfahren zur Unter-
scheidung zwischen B- und Anti-B-Mesonen. Das Ziel dieser Arbeit ist die Entwicklung
eines verbesserten Flavour-Tagging-Algorithmus für das CDF-Experiment.

In Abbildung 0.1 ist der Zerfall eines B0
s -Mesons schematisch dargestellt. Am Primärver-

tex, wo die Kollision der beschleunigten Teilchen stattfand, wird ein bb̄-Quarkpaar erzeugt.
Eines der beiden Quarks, in diesem Fall ein b̄-Quark, bildet im Fragmentationsprozess ein
B0
s -Meson. Die entsprechende Seite des Ereignisses wird als Same Side bezeichnet. Das

verbleibende Quark bildet auf der sogenannten Opposite Side ein weiteres B-Hadron.

Informationen über den Flavour des b-Quarks im B0
s -Meson sind in verschiedenen Eigen-

schaften des Ereignisses enthalten, beispielsweise in den Zerfallsprodukten des Opposite
Side B-Hadrons, in dessen Jet oder in Fragmentationsspuren auf der Same Side in der
Nähe des B0

s -Mesons.

Diese Informationen werden beim Flavour Tagging gesammelt und ausgewertet. Die
bisher bei CDF verfügbaren Tagger konzentrieren sich in der Regel auf jeweils eine dieser
Informationsquellen. Der hier vorgestellte Tagger vereint alle vorhandenen Hinweise in
einem einzigen Werkzeug. Dabei werden künstliche Neuronale Netzwerke an vielen Stellen
gewinnbringend eingesetzt.

Künstliche Neuronale Netzwerke

Künstliche Neuronale Netzwerke sind ein Klassifikationsverfahren für statistische Daten.
Das Funktionsprinzip ist von der Natur abgeschaut und der Arbeitsweise unseres Gehirns
nachempfunden.

In einem Lernprozess wird das Netzwerk mit Hilfe von Daten trainiert, bei denen die
gewünschte Antwort vorab bekannt ist. Dabei werden die Struktur und die internen Pa-
rameter des Netzwerkes so eingestellt, dass die Eigenschaften des Trainingsdatensatzes
möglichst gut abgebildet werden. Als Eingabegrößen dienen dabei Variablen, die einzeln
oder in Kombination miteinander Unterscheidungskraft bezüglich der vorzunehmenden
Klassifikation besitzen.

Die gelernten Eigenschaften werden in der Anwendung des Neuronalen Netzes benutzt,
um die trainierte Entscheidung für Daten zu treffen, bei denen die Klassenzugehörigkeit
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vorab nicht bekannt ist. Die Antwort wird dabei nicht als ja/nein-Entscheidung angege-
ben, sondern in Form einer Variablen, die als Wahrscheinlichkeit für die Sicherheit der
Einordnung interpretiert werden kann. Ein künstliches Neuronales Netzwerk führt also
eine Abbildung aus einem vieldimensionalen Eingaberaum auf eine eindimensionale Ent-
scheidungsvariable durch.

Flavour–Tagging mit künstlichen Neuronalen Netzwerken

Fast alle bisher bei CDF verwendeten Flavour Tagger konzentrieren sich auf jeweils einen
Teilaspekt, beispielsweise auf Leptonen oder auf die Ladung des Opposite Side Jets. Des-
wegen können sie nur in solchen Ereignissen eine Entscheidung liefern, in denen das spe-
zifische Merkmal identifiziert werden kann, das sie zum Tagging benötigen. Im hier vorge-
stellten Ansatz werden verschiedene Informationsquellen zusammengeführt und gemein-
sam ausgewertet. Eine Tagging-Entscheidung wird dabei für fast jedes Ereignis getroffen.

Das Verfahren besteht im Wesentlichen aus drei Stufen. Zuerst wird eine inklusive Re-
konstruktion des Opposite-Side-B-Zerfallsvertex vorgenommen und weitere Größen vorbe-
reitet, die für die folgenden Schritte von Nutzen sind. Danach wird für jede einzelne Spur
der Informationsgehalt bestimmt, den sie über den Produktionsflavour des B0

s -Mesons
trägt. Zuletzt wird die Aussage aller Spuren in einem Ereignis zu einer Entscheidung auf
Ereignisebene kombiniert.

Suche nach dem Sekundärvertex auf der Opposite Side

Die vollständige Rekonstruktion aller möglichen Zerfälle von B-Hadronen auf der Opposi-
te Side ist vor allem aufgrund begrenzter Detektorakzeptanz nicht durchführbar. Dennoch
wird versucht, den Zerfallsvertex räumlich einzugrenzen, um diese Informationen in spä-
teren Schritten nutzen zu können.

Dazu wird ein erstes Neuronales Netzwerk darauf trainiert, Spuren zu finden, die mut-
maßlich aus dem Zerfall des B-Hadrons stammen. Im Anschluss werden alle Spuren nach
ihrer B-Herkunftswahrscheinlichkeit sortiert und aus den ersten vier paarweise Kandi-
daten für den gesuchten Zerfallsvertex generiert. In einem zweiten Neuronalen Netzwerk
werden die Vertexkandidaten bewertet. Der Vertex mit der höchsten Wahrscheinlichkeit,
der wahre Zerfallsvertex zu sein, wird in den nächsten Schritten weiterverwendet. Mit
Hilfe des nun bekannten Sekundärvertex wird in einem dritten Neuronalen Netzwerk die
Entscheidung, welche Spuren aus dem B-Zerfall stammen, wiederholt und verfeinert.

Weiterhin werden in diesem Schritt einzelne Spuren zu Jets gruppiert und Verfahren
zur Identifikation von Elektronen und Myonen angewandt. Mit einem Neuronalen Netz-
werk werden Leptonen, die wahrscheinlich aus dem Opposite-Side-B-Zerfall stammen, von
übrigen im Detektor vorhandenen Leptonen unterschieden.
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Abbildung 0.2: Ergebnis des spurbasierten Flavour Tagging in den drei Spurklassen. Die
Darstellung wurde logarithmisch gewählt, da die meisten Spuren nur kleine Beträge liefern
und sich daher in der Mitte der Verteilung ansammeln.

Spurbasiertes Flavour Tagging

Im zweiten Schritt wird für jede Spur die Korrelation zwischen ihrer Ladung und dem Pro-
duktionszustand des Same-Side-B0

s -Mesons mit Neuronalen Netzwerken bestimmt. Weil
Flavour-Information aus verschiedenartigen Quellen gewonnen werden kann und jeder die-
ser Effekte für sich genommen klein ist, werden die Spuren in drei Klassen aufgeteilt, um
mit spezialisierten Netzwerken alle Informationsquellen optimal zu nutzen.

Die erste Klasse wird von den Spuren gebildet, die zum selben Jet gehören wie die
Spuren, aus denen das Same-Side-B0

s -Meson rekonstruiert wurden. In dieser Same-Side-
Spurklasse erwartet man überwiegend positive Korrelationen zwischen Spurladung und
Flavour. Zur Lepton-Spurklasse gehören alle Spuren, die nicht in der Same-Side-Spurklasse
enthalten sind und vom B-Lepton-Identifikationsnetz aus dem ersten Schritt als gute
Lepton-Kandidaten eingestuft wurden. Für diese Klasse erwartet man vorwiegend An-
tikorrelationen zwischen Ladung und Same-Side-B0

s -Flavour. Alle übrigen Spuren bilden
die allgemeine Spurklasse, in der ohne gesonderte Vorauswahl alle verbleibenden Effekte
ausgewertet werden. Da für die deutlichsten Flavour-Informationsquellen bereits in den
beiden ersten Klassen gesondert behandelt wurden, ist in dieser Klasse nicht mit hohen
Flavour-Korrelationen zu rechnen.

Das Ergebnis dieser Einordnung ist in Abbildung 0.2 gezeigt. Die meisten Spuren tragen
kaum Information, während anhand einiger Spuren eine sehr sichere Aussage möglich ist.
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Abbildung 0.3: Ausgabe des Neuronalen Netzwerks zur Bestimmung des B0
s -

Produktionsflavours, separat für wahre B- und B̄-Mesonen eines simulierten Datensatzes.
In der unteren Darstellung ist der wahre B-Meson-Anteil als Funktion der Netzwerkvor-
hersage dargestellt. Das Verhalten kommt dem durch die diagonale Linie dargestellten
Idealfall eines optimalen Netzwerks sehr nah.

Kombination auf Ereignisebene

In jeder Spurklasse werden alle Spuren durch Multiplikation ihrer Korrelationswahrschein-
lichkeiten kombiniert. Die entstandene Größe wird danach so normiert, dass sie eine Wahr-
scheinlichkeitsaussage für den Flavour auf Ereignisebene darstellt. Zusätzlich werden die
Spuren aller drei Klassen in gleicher Weise zu einer Aussage über den B0

s -Flavour kombi-
niert.

Die so gewonnenen Flavour-Aussagen werden mit einem Neuronalen Netzwerk zusam-
mengefasst. Als weitere Eingabegröße für dieses Netzwerk wird ein Schätzwert für die
Ladung des Opposite Side B-Hadrons verwendet. Die Ausgabe dieses Netzwerkes ist in
Abbildung 0.3 zu sehen. Im zentralen Bereich sammeln sich Ereignisse, bei denen eine
sichere Bestimmung des Flavours nicht möglich ist. Die Verteilungen für beide Klassen
zeigen dennoch einen deutlichen Unterschied, und für einige Ereignisse wird sogar eine
Zuverlässigkeit von mehr als 80% erreicht.
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Validierung

Die Leistungsfähigkeit eines Flavour Taggers wird durch die Größen Dilution D und Ef-
fizienz ε beschrieben. Die Dilution ist ein Maß für den Anteil richtiger Entscheidungen.
Die Effizienz misst den Anteil der Ereignisse, für die überhaupt eine Entscheidung getrof-
fen wurde. Als Tagging-Leistung T wird üblicherweise T = εD2 angegeben, weil dies der
effektiven Größe des mit Tagging-Entscheidungen versehenen Datensatzes entspricht und
die Signifikanz der B0

s -Oszillationsmessung von dieser Kombination abhängt.

Der vorliegende Flavour-Tagger liefert eine Entscheidung für jedes Ereignis, in dem
mindestens eine Spur zusätzlich zum rekonstruierten B0

s -Meson enthalten ist und erreicht
damit eine Effizienz von mehr als 99%. Seine Tagging-Leistung auf dem simulierten Da-
tensatz beträgt

T = 4.6%. (0.1)

Die Entwicklung des Flavour-Taggers erfolgte auf simulierten B0
s -Ereignissen, da hier

im Gegensatz zu echten Daten die für Trainingsprozesse nötige Wahrheitsinformation
zugänglich ist. Aus physikalischen und technischen Gründen ist die Realitätstreue solcher
Simulationen nicht perfekt. Das Verhalten des damit entwickelten Taggers bei Anwendung
auf echte Daten muss daher überprüft werden. Insbesondere ist dabei von Interesse, ob der
Tagger die Sicherheit einer Entscheidung korrekt vorhersagt und somit sein Ausgabewert
als Wahrscheinlichkeit interpretiert werden kann.

Ein Vergleich zwischen Eigenschaften der Simulation und der Daten zeigte Unterschiede
in der Beschreibung des Triggers. Die Datenrate beim Auslesen des CDF-Detektors ist be-
grenzt, und Triggerszenarien für verschiedene Analysebedürfnisse konkurrieren hier. Um
die verfügbare Bandbreite optimal zu nutzen, wird die Vergabe an einzelne Triggerszena-
rien während der Datennahme dynamisch optimiert. Da dies ein hochkomplexer Prozess
ist, der von vielen Betriebsparametern abhängt und sich zeitlich entwickelt, ist er sehr
schwer zu modellieren und wird nicht simuliert. Im simulierten Datensatz lag daher eine
andere Verteilung auf die drei verwendeten Triggerszenarien vor als im Datensatz. Diese
Diskrepanz wurde mit Gewichten korrigiert.

Geladene B+- sowie neutrale B0-Mesonen bieten weitere Möglichkeiten zur Validierung
des Flavour-Taggers. Aufgrund physikalischer Unterschiede bei den möglichen Quellen von
Flavour-Information ist nicht zu erwarten, dass ein B0

s -Tagger für andere B-Mesonen opti-
male Entscheidungen liefert. Simuliert man jedoch einen Datensatz mit dem gewünschten
Meson-Typ und wiederholt das Training der betroffenen Neuronalen Netzwerke im Tagger,
kann man auf diese Weise sowohl das Simulationsverfahren als auch die Tagging-Prozedur
überprüfen.

Die Erhaltung elektrischer Ladung verbietet es B+-Mesonen, mit ihren Antiteilchen zu
oszillieren. Daher ist ihr Produktions- und Zerfallsflavour identisch. Während es also aus
Analysesicht keinen Bedarf für Flavour-Tagging gibt, bieten sich für dessen Validierung
auf echten Daten gute Voraussetzungen, da die gewünschte Wahrheitsinformation auch
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bei Daten bekannt ist. Die Validierungsergebnisse für die B+-Variante des vorliegenden
Flavour-Taggers zeigen sehr gute Übereinstimmung zwischen vorhergesagter und gemes-
sener Dilution. Damit bestehen keine Hinweise auf größere Unstimmigkeiten zwischen
Simulation und Daten. Das Ergebnis stützt auch die Funktionsfähigkeit der verwendeten
Tagging-Strategie.

Die Oszillationen vonB0-Mesonen sind denen derB0
s -Mesonen physikalisch sehr ähnlich.

Aufgrund der niedrigeren Oszillationsfrequenz und der Größe des verfügbaren Datensatzes
sind sie jedoch experimentell besser handhabbar. Mit der B0-Variante des Taggers konnte
die B0-Oszillationsfrequenz in Übereinstimmung mit dem Weltmittelwert gemessen wer-
den. Die beobachtete Amplitude

A = 0.92± 0.08 (0.2)

ist innerhalb des statistischen Fehlers verträglich mit der physikalisch richtigen Oszilla-
tionsamplitude Aphys = 1. Damit bestätigt auch die B0-Validierung die Richtigkeit der
vorhergesagten Dilution.

Die einzige Möglichkeit zur Validierung des B0
s -Taggers mit echten Daten ist die Mes-

sung der B0
s -Oszillationsfrequenz. Während die volle Mischungsanalyse mit B0

s -Mesonen
aus mehreren Zerfallskanälen noch andauert, konnten erste vorläufige Ergebnisse mit dem
wichtigsten Kanal zur Validierung dieses Taggers herangezogen werden. Auch in diesem
Fall konnte die Oszillationsfrequenz in Übereinstimmung mit dem Weltmittelwert gemes-
sen werden. Die gemessene Amplitude

A = 0.98± 0.28 (0.3)

liegt ebenfalls sehr nahe beim erwarteten Wert 1. Der statistische Fehler dieser Messung
wird mit Abschluss der Analyse aller Zerfallskanäle verbessert werden.

Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurde ein neuer B0
s -Flavour-Tagger für das CDF-Experiment

entwickelt und sowohl mit Hilfe von B+- und B0-Mesonen als auch in einer vorläufigen
Analyse von B0

s -Oszillationen mit dem wichtigsten B0
s -Zerfallskanal validiert. Im Gegen-

satz zu bisher vorhandenen Taggern werden alle Flavour-Informationsquellen in einem
einheitlichen Verfahren ausgewertet und kombiniert. Dabei wird an vielen Stellen Ge-
brauch von künstlichen Neuronalen Netzwerken gemacht.

Die vorliegende Version des Tagger macht keinen Gebrauch von Informationen zur Teil-
chenidentifikation, die beim CDF-Experiment durch Flugzeitmessung oder spezifischen
Energieverlust im Spurdetektor gewonnen wird. Während die damit erreichbare Tren-
nung von Kaonen und Pionen besonders beim B0

s -Same-Side-Tagging von Nutzen wäre,
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gab und gibt es immer wieder technische und organisatorische Schwierigkeiten mit der Ver-
fügbarkeit der entsprechenden Größen und deren Simulation. Üblicherweise vergeht eine
bedeutende Zeitspanne zwischen Datennahme und Kalibration der Teilchenidentifikation.

In einer Studie wurde ermittelt, wie groß das Verbesserungspotential für die Tagging-
Leistung durch Teilchenidentifikation ist. Die entsprechende Version des Taggers erreicht
eine Leistung von

T = 6.7% (0.4)

auf dem simulierten Datensatz, was eine Verbesserung von gut 40% gegenüber der jetzigen
Version in Aussicht stellt.

Bisher wurden bei CDF ein kombinierter Opposite-Side-Tagger mit einer Leistung
T = 1.8% und ein Same-Side-Kaon-Tagger mit T = 3.7% verwendet, wobei letzterer auf
Teilchenidentifikation angewiesen ist. Die kombinierte Leistung beider Tagger ist nicht
angegeben, kann aber nicht höher sein als die Summe der beiden.

Der hier vorgestellte neue Tagger bietet also eine deutliche Erhöhung der Tagging-
Leistung für Daten, für die noch keine Kalibration der Teilchenidentifikation durchgeführt
wurde. Ist diese zusammen mit einer verlässlichen Simulation verfügbar, kann der neue
Tagger mit geringem Aufwand eine Leistung erreichen, die voraussichtlich 20% über der
bisher verfügbaren kombinierten Leistung beider Tagger liegt.

Die finale Validierung des Verfahrens anhand der vollständigen B0
s -Oszillationsanalyse

mit allen verfügbaren Daten und Zerfallskanälen wird zugleich die erste physikalische An-
wendung des neuen Taggers sein. Danach kann er in der Suche nach CP -Verletzung in
B0
s → J/ψ φ-Zerfällen eingesetzt werden, die eine der wichtigsten Analysen im Flavour-

Physik-Programm des CDF-Experimentes ist. Auch für weitere Suchen nach CP -Verletzung
in B0

s → J/ψ f0(980) und in B0
s → K+K−-Zerfällen ist Flavour-Tagging ein zentraler Be-

standteil.
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1 Introduction

One of the central questions arising from human curiosity has always been what matter
is ultimately made of, with the idea of some kind of elementary building-block dating
back to the ancient greek philosophers. Scientific activities of multiple generations have
contributed to the current best knowledge about this question, the Standard Model of
particle physics. According to it, the world around us is composed of a small number of
stable elementary particles: Electrons and two different kinds of quarks, called up and
down quarks. Quarks are never observed as free particles, but only as bound states of
a quark-antiquark pair (mesons) or of three quarks (baryons), summarized as hadrons.
Protons and Neutrons, the constituents forming the nuclei of all chemical elements, are
baryons made of up and down quarks. The electron and the electron neutrino – a nearly
massless particle without electric charge – belong to a group called leptons. These two
quarks and two leptons represent the first generation of elementary particles.

There are two other generations of particles, which seem to have similar properties
as the first generation except for higher masses, so there are six quarks and six leptons
altogether. They were around in large amounts shortly after the beginning of the universe,
but today they are only produced in high energetic particle collisions. Properties of
particles are described by quantum numbers, for example charge or spin. For every type
of particle, a corresponding antiparticle exists with the sign of all charges swapped, but
similar properties otherwise.

The Standard Model is a very successful theory, describing the properties of all known
particles and the interactions between them. Many of its aspects have been tested in
various experiments at very high precision. Although none of these experimental tests
has shown a significant deviation from the corresponding Standard Model prediction, the
theory can not be complete yet: Cosmological aspects like gravity, dark matter and dark
energy are not described, and open questions remain in the sector of neutrino masses and
neutrino oscillations. Also no answer has been given to the question of matter-antimatter
asymmetry observed in the contemporary universe. Assuming that the Big Bang created
equal amounts of matter and antimatter, there must be effects where nature treats matter
and antimatter somehow different. This can happen through a mechanism called CP
violation, which has been observed within the Standard Model, but not in the necessary
order of magnitude. For all these reasons, the search for New Physics – theories beyond
the Standard Model – is one of the main objectives of modern particle physics. In this
global effort, flavour physics is the field of transitions between the different types of quarks,
called quark flavours, wherein the examination of B meson oscillations and the search for

17



18 Chapter 1. Introduction

CP violation in B0
s meson decays set the stage for the work presented in this thesis.

Neutral B mesons can transform themselves to B̄ mesons and vice versa. This process
is called oscillation and happens with a distinct oscillation frequency. Depending on the
individual time between production and decay, a B meson can decay as a B̄ meson with a
certain probability. The value of the oscillation frequency is governed by parameters of the
quark level transformation process. Measuring the frequency provides an experimental
test of its theoretical understanding. The oscillation frequency for B0 mesons has been
precisely measured by several experiments, with most important contributions made by
theB factory experiments BaBar [1, 2] and Belle [3, 4]. Until the Large Hadron Collider
at CERN takes up full operations, the Tevatron – the world’s second most powerful
particle accelerator – is the only place where large samples of B0

s mesons are produced
and studied. The B0

s oscillation frequency has been measured by its two experiments
CDF [5] and DØ [6] about three years ago. Since then, the available amount of data
has been increased roughly by a factor of five, opening up the possibility for an updated
measurement at increased statistical precision.

Measuring the oscillation frequency needs three main ingredients: The flavour of the
B meson at decay time, the time between production and decay as well as the flavour at
production time. The first two aspects are experimentally well under control and mostly
limited by detector performance, while the main challenge is in the third point. The
determination of the production flavour – whether a reconstructed B meson was a B or
B̄ at production time – is called flavour tagging, and the development of an advanced
flavour tagging algorithm for the CDF experiment is the objective of this work. Indirect
information about the production flavour can be gained from various sources, and former
CDF flavour tagging algorithms were focused on one source each. The new flavour tagger
presented here is designed to evaluate all available information in a uniform way, take
advantage of correlations between the individual hints and combine all knowledge into
a single flavour tag. The good classification performance of artificial neural networks is
extensively used in the process.

The new flavour tagger can be used for an improved measurement of the B0
s oscillation

frequency, which is at the same time the only possibility to validate the tagging per-
formance on data. After successful validation, the main application of improved flavour
tagging are measurements of time dependent CP violation in B0

s meson decays. Besides
the current cornerstone of the current CDF flavour physics program, the analysis of CP vi-
olation in B0

s → J/ψ φ decays [7], also future searches for New Physics in B0
s → J/ψ f0(980)

or B0
s → K+K− decays depend on flavour tagging.

This thesis is organized as follows: In chapter two, a brief overview on the theory of
B0
s oscillations and the analysis to measure the oscillation frequency is given and the

physics of flavour tagging is explained. In the third chapter, the Tevatron accelerator at
Fermilab and the CDF detector are described. The fourth chapter makes an introduction
to classification of statistical data and the principle of artificial neural networks. Chapter
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five contains a detailed description of the new combined flavour tagging algorithm. Studies
for validating the new tagger on simulated events as well as on data are presented in
chapter six. The last chapter gives a summary of development and validation as well as
an outlook to application and possible further improvements of the new flavour tagger.





2 Theoretical Overview

2.1 Flavour Physics and B0
s Oscillations

2.1.1 The CKM Matrix

Flavour physics is the field of transitions between different types of quarks, called quark
flavours. In the Standard Model of particle physics, quark mass eigenstates and flavour
eigenstates are not the same. The transformation d

′

s
′

b
′

 = VCKM ·

 d
s
b

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ·
 d

s
b

 (2.1)

between the mass (d, s, b) and flavour (d′, s′, b′) base is represented by a complex 3 × 3
matrix VCKM, the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It was introduced in
1973 by Kobayashi and Maskawa [8], based on the transformation for four quarks by
Cabibbo [9], and predicted the existence of three generations of matter at a time when
only three quarks were known experimentally. Half of the Nobel Prize in Physics 2008
was awarded to Kobayashi and Maskawa for the discovery of the origin of the broken
symmetry which predicts the existence of at least three families of quarks in nature [10].
In case of not more than three generations, the CKM matrix is unitary and fulfils the
relation

V †CKMVCKM = 1 = VCKMV
†

CKM, (2.2)

BC

A

V
ud
V*
ub

V
td
V*
tb

V
cd
V*
cb

α

βγ

Figure 2.1: The unitarity triangle derived from the unitarity condition of the CKM matrix,
rotated that VcdV

∗
cb is on the real axis.
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Figure 2.2: Current status in the determination of CKM triangle parameters [12].

which implies constraints between the matrix elements and therefore reduces the ma-
trix to three real parameters and one imaginary phase. A popular parametrization was
introduced by Wolfenstein [11], using the four real parameters λ, A, ρ and η:

VCKM ≈

 1− 1
2
λ2 λ λ3A(ρ− iη)

−λ 1− 1
2
λ2 λ2A

λ3A(1− ρ− iη) −λ2A 1

+O(λ4). (2.3)

The unitarity condition from equation 2.2 can be visualized in form of triangles in the
complex plane. Applying the condition to the first and third column of VCKM yields the
equation

V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0, (2.4)

which is the most common representation of a unitarity triangle. Figure 2.1 shows a
graphical representation of the triangle, rotated in a way that VcdV

∗
cb coincides with the

real axis. The side lengths and the three angles of the triangle can be determined from
various measurements. By overconstraining the triangle parameters, the consistency of all
involved measurements and the underlying theory is tested. Any significant disagreement
would result in an unclosed triangle and be an indicator for New Physics. The current
status of this effort is summarized in figure 2.2.

2.1.2 B0
s Meson Oscillations

Transitions between particles and their antiparticles, called mixing, have been observed
for neutral kaons in the 1960s. In the B0 system, mixing was observed in 1987 [13], and
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the mass difference ∆md has since been measured precisely [1, 2, 3, 4].

The time evolution of the B0
s flavour eigenstates

|B0
s 〉 = |b̄s〉, |B̄0

s 〉 = |bs̄〉 (2.5)

is given by the Schrödinger equation

i
∂

∂t

(
|B0

s 〉
|B̄0

s 〉

)
=

(
M− i

2
Γ

)(
|B0

s 〉
|B̄0

s 〉

)
(2.6)

with the hermitian 2 × 2 mass and decay matrices M and Γ. Diagonalization of this
effective Hamiltonian leads to the heavy and light mass eigenstates:

|BH
s 〉 = p |B0

s 〉 − q |B̄0
s 〉, (2.7)

|BL
s 〉 = p |B0

s 〉+ q |B̄0
s 〉. (2.8)

The complex parameters p and q satisfy the relation |p|2 + |q|2 = 1. Mass and width
difference between the heavy and light mass eigenstates are defined as

∆m = mH −mL = 2 |M12|, (2.9)

∆Γ = ΓL − ΓH = 2 |Γ12| cos(φs), (2.10)

where φs is a complex phase between M12 and Γ12:

φs = arg

(
−M12

Γ12

)
. (2.11)

Due to the mass difference, the heavy and light eigenstates have different time evolutions

|BH
s (t)〉 = |BH

s (0)〉 e−imH te−t/τ , (2.12)

|BL
s (t)〉 = |BL

s (0)〉 e−imLte−t/τ , (2.13)

where a difference in lifetime is neglected for simplicity of the equations. The difference
in time evolution results in a time-dependent B0

s - B̄0
s oscillation with a frequency equal

to the mass difference ∆ms. Therefore a |B0
s 〉 state can decay either as |B0

s 〉 or |B̄0
s 〉

depending on the time of its decay, following the probability densities

P (B0
s → B0

s , t) =
Γs
2
e−Γst(1 + cos(∆mst)), (2.14)

P (B0
s → B̄0

s , t) =
Γs
2
e−Γst(1− cos(∆mst)), (2.15)

where Γs = 1/τs denotes the mean decay width and τs the mean lifetime of the two mass
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Figure 2.3: The most important Feynman graphs for B0
q → B

0

q transitions, q denoting a d
or a s quark. In the B0

s case, the diagrams with the charm or up quarks are suppressed [14].

eigenstates.

The two most important Feynman diagrams for neutral B meson mixing are shown
in figure 2.3 and can be used to calculate the oscillation frequency [15]. Besides various
parameters for handling electroweak and QCD effects, the oscillation frequency is propor-
tional to |V ∗tbVtd|2 in the B0 and to |V ∗tbVts|2 in the B0

s case. If mass and flavour eigenstates
were identical, the off diagonal elements Vtd and Vts would be zero and no mixing would
occur. Expressing the CKM Matrix elements in the Wolfenstein parametrization (eq. 2.3)
and assuming no other significant differences between B0 and B0

s , the ratio of the two
frequencies can be expressed as

∆ms

∆md

≈ |Vts|
2

|Vtd|2
≈ 1

λ2
≈ 20. (2.16)

This means that B0
s oscillations are significantly faster than B0 oscillations, which leads

to additional challenges for their experimental analysis.

2.1.3 CP Violation in the B0
s Meson System

The CP transformation is the combination of charge conjugation C, exchanging parti-
cles and antiparticles, and parity transformation P , reversing the handedness of space.
The laws of nature are identical for matter and antimatter if CP is an exact symmetry.
Gravity, the electromagnetic and the strong interaction preserve the C and P symmetries
individually and are therefore as well CP -symmetric. The weak interaction on the other
hand violates both C and P symmetries in the maximum possible way by only coupling
to left-handed fermions and right-handed anti-fermions, while still preserving CP in most
processes.

Violation of the CP symmetry has been discovered 1964 in neutral Kaon decays [16]
and also been established in the B meson system. In the Standard Model, the violation
of the CP symmetry is caused by complex phases in the Yukawa coupling of quarks to
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the scalar Higgs field, which can be reduced to one complex phase in the CKM matrix
by eliminating unphysical phases [8]. In the Wolfenstein parametrization (eq. 2.3), this
phase corresponds to the parameter η.

In the B0
s system, the search for CP violation in B0

s → J/ψ φ decays is a sensitive probe
of New Physics and therefore one of the most active analysis fields in the current CDF B
physics program [7]. In a time dependent measurement of the CP asymmetry

ACP (t) =
Γ(B̄0

s → fCP )− Γ(B0
s → fCP )

Γ(B̄0
s → fCP ) + Γ(B0

s → fCP )
≈ ±sin(2βs) sin(∆ms t), (2.17)

it gives access to the angle β
J/ψ φ
s of the unitarity triangle given by the second and third

column of the CKM matrix:

2 βJ/ψ φs = − arg[(VtbV
∗
ts)

2/(VcbV
∗
cs)

2] (2.18)

The presence of New Physics enhancing φs (eq. 2.11) would affect β
J/ψ φ
s in the same way

[17]. As the Standard Model prediction φs = 0.004 is very small [18], the measurement of
a significantly larger value would be a clear indication of New Physics.

The J/ψ φ final state can be reached with and without mixing and is a mixture of CP
even and odd states. In the decay of the pseudoscalar B0

s meson into two vector mesons
J/ψ and φ, the L = 0, 2 states are CP even and the L = 1 state is CP odd. The
sensitivity to the phase is increased by studying the time evolution of CP even and CP
odd states separately, which can be distinguished by the angular distributions of their
decay products. Information about mixing is gained by tagging the production flavour of
the B0

s meson.

2.2 Outline of the B0
s Mixing Analysis

From an experimentalist’s point of view, the analysis of B0
s oscillations is done by mea-

suring the time dependent asymmetry

A(t) =
NB0

s→B0
s
(t)−N

B0
s→B

0
s
(t)

NB0
s→B0

s
(t) +N

B0
s→B

0
s
(t)

(2.19)

between the number of B0
s mesons decaying as B0

s mesons (NB0
s→B0

s
) and those decaying

as B
0

s mesons (N
B0

s→B
0
s
). Also the charge conjugate situation where a B̄0

s was produced

is implied, but not included in the equations for simplicity. The time dependence of the
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single decay rates is

NB0
s→B0

s
(t) = N0 ·

e−t/τ

2τ
(1 + cos ∆mst), (2.20)

NB0
s→B̄0

s
(t) = N0 ·

e−t/τ

2τ
(1− cos ∆mst), (2.21)

where N0 is the number of B0
s mesons at t = 0 with t being the time in the B0

s rest frame.
Combining these equations leads the asymmetry A(t) as a function of ∆ms

A(t) = cos(∆mst). (2.22)

Making a time dependent measurement of this asymmetry requires three main ingredients:

• flavour at decay time of the B0
s meson

• decay time of the B0
s meson in its rest frame

• flavour at production time of the B0
s meson

The first two items are covered by the reconstruction of a B0
s candidate, the third step is

called flavour tagging and is the main objective of this work. An overview of approaches
to flavour tagging is given later in this chapter. The significance of the B0

s mixing signal
depends on three components [19]:

signi =

√
εD2

2
exp

(
−(∆ms · σcτ )2

2

)
S√
S +B

(2.23)

The three terms correspond to important parts of the mixing analysis: S/
√
S +B is

optimized during B0
s signal reconstruction and selection, σcτ depends on the decay time

reconstruction, and εD2 is the contribution from flavour tagging. These components are
described in the next paragraphs.

2.2.1 Signal Reconstruction

The reconstruction of a B0
s meson is called exclusive if all particles originating from the

decay are found. If a particle is missing, only a partial reconstruction is possible. At
CDF, the exclusive reconstruction of a B0

s meson is possible if all final state particles are
charged hadrons. B0

s mesons in the semileptonic decay channel B0
s → l+νlX can only

be reconstructed partially because neutrinos are not visible in the detector. Due to the
absence of a track, the neutrino momentum is unknown, so momentum resolution for this
channel is significantly worse than for the hadronic decays.
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The most important hadronic B0
s decay channel is Bs → Dsπ. For development of the

tagger presented in this work on simulated events and for the first validation on data, the
decay

B0
s → D±s π

∓, D±s → φπ±, φ→ K+K− (2.24)

is used. Of all fully reconstructed flavour specific B0
s decay channels available at CDF, it

has the largest signal yield and is therefore also referred to as the golden channel.

The flavour of the B0
s meson at decay time is determined from the charge of its decay

products, for example the pion charge from the B0
s → D±s π

∓.

2.2.2 B0
s Decay Time Measurement

In comparison to most other unstable particles, B mesons are relatively long lived because
they decay only via the weak interaction, and the Vcb element of the CKM matrix is small.
The lifetime of a B0

s meson is about 1.5 ps [14]. At CDF, a B0
s meson typically travels

several hundred micrometers before decay, which is too short to reach the detector or even
leave the beam pipe, but long enough to find the displaced B decay vertex.

The decay time of the B meson in its rest frame, its proper decay time t, is given by

t =
L

βγ c
= L

mB

c p(B)
(2.25)

where L is the flight distance, βγ = p(B)/mB the relativistic boost, p(B) the momentum
of the B meson and mB its mass. As in many experiments, the detector resolution in the
x− y plane is better than along the z axis, therefore often the transverse projection

t = Lxy
mB

c pT (B)
(2.26)

is used. In this expression, Lxy and pT are the x−y projections of the respective quantities.

The error σt on the proper time t has contributions from the resolutions σLxy of the
decay length and σpT

of the transverse momentum:

σt =

√(
mB

c pT

)2

· σ2
Lxy

+

(
t

pt

)2

· σ2
pT

(2.27)

The contribution of σpT
can be neglected in exclusively reconstructed hadronic decays,

but is an important term in semileptonic decays.
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Figure 2.4: Illustration of a typical B0
s event.

2.2.3 Amplitude Scan Method

An alternative to directly fitting for the asymmetry A(t) is the amplitude scan method
[19]. Even if no mixing signal is seen, it is good for setting limits on a mixing frequency.
A new parameter A, called amplitude, is introduced:

A(t) ∼ A ·D · cos(∆mst). (2.28)

Several asymmetry fits are made for different assumptions on the value of ∆ms, which is
fixed in each of the fits. In each fit, the amplitude A is measured. For the true value of
∆ms, A = 1 is expected, for all other values the amplitude should be zero.

2.3 B Flavour Tagging

The aim of flavour tagging is to determine whether a neutral B meson was produced as
a particle or as an antiparticle. This section gives an overview on the physics of flavour
tagging and existing approaches at the CDF experiment.

In figure 2.4, a schematic view of a typical B0
s event is given. At the primary vertex,

where the initial reaction takes place, a bb̄ quark pair is produced. Single b quarks can
be created by electroweak processes, which have much lower cross sections than bb̄ pair
production within quantum chromodynamics. At the Tevatron, most b quarks are created
in pairs, so the presence of a bb̄ quark pair in the event is assumed in following.

In a B0
s event, at least one of the b quarks forms a B0

s meson. The corresponding
hemisphere of the event is called the same side. The side of the remaining b quark is
called the opposite side. This naming scheme is consequently applied to the B mesons or
hadrons on both sides, for their decay vertices, tracks originating from them and for their
jets. As bb̄ quark pairs are not always produced back to back, a spatial overlap between
same side and opposite side is quite common.

Flavour tagging approaches can be divided in same side tagging and opposite side
tagging. Taggers that are exclusively focused on opposite side effects are independent of
the actual type of B meson on the same side and can be used for B0

s , B
0 and B+ mesons

without special adaptation.
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2.3.1 Opposite Side Tagging

Opposite side tagging is based on the fact that the opposite side b quark has the opposite
flavour of the same side b quark at production time. If the quark flavour on the opposite
side can be determined, the production flavour on the same side is also known.

Unfortunately, neutral B mesons on the opposite side can also oscillate to their antipar-
ticle. This can lead to a wrong tagging decision in methods that determine the opposite
side flavour at decay time of the opposite side B hadron. Lepton and kaon tagging are
affected by this problem.

Due to the variety of possible decays and limited detector acceptance it is usually not
possible to fully reconstruct the opposite side B hadron, so inclusive properties need to
be used.

Leptons

About 20% of B hadrons decay semileptonically, having a muon or an electron in the
final state. The lepton charge is correlated to the flavour of the heavy quark: b→ l− and
b̄→ l+, l being a muon or an electron.

In principle also τ leptons can appear here. As they are hardly reconstructed in the
detector, only electrons and muons are used for tagging. A considerable number of τ
leptons decay into a muon or an electron and two neutrinos. Leptons from these decays
contribute to electron or muon tagging.

Besides mixing on the opposite side, cascade decays are another physical reason for
wrong decisions in lepton tagging. There is a large branching fraction for the decays
b→ c→ l+ and b̄→ c̄→ l−. If the lepton used for tagging originates from such a c quark
decay, the sign will be swapped.

Kaons

Cascade decays, which are a limitation in lepton tagging, can be exploited in opposite side
kaon tagging: According to the CKM matrix, the most probable decay path is b→ c→ s.
The s quark will often end up in a kaon. If the kaon is charged, its charge is correlated
to the opposite side b quark flavour.

Jet Charge

Jets are formed during fragmentation of quarks into hadrons. The charge of the entire
jet is correlated to the charge of the initial quark. Jet charge tagging tries to determine
the charge of the opposite side B decay jet by a weighted sum of its track charges. The
identification of the right jet is a nontrivial task, and also the decision about which tracks
belong to the selected jet is not clear without ambiguity.
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Figure 2.5: Fragmentation process of the same side b quark: The Kaon charge can be used
to determine the B0

s state at production time.

At least one reconstructed jet on the opposite side is necessary for this method. The
opposite side B hadron type and its decay are of minor importance. In about 95% of all
events a jet charge tag can be made.

Vertex Charge

If the opposite side B hadron was charged and its decay vertex is known, the charge of
the hadron can be determined by summing up charges of all tracks originating from that
vertex.

Usually the opposite side decay vertex is not well known, so the quality of this tag
is limited. Furthermore, decisions can only be made on charged hadrons, which reduces
efficiency. There are no problems concerning mixing on the opposite side because charged
mesons cannot oscillate to their antiparticle.

2.3.2 Same Side Tagging

The same side B meson emerges from the hadronization of the same side b quark. As the
s or s̄ quarks that are necessary to form B0

s mesons differ by their charge, the remaining
fragmentation tracks have a charge bias correlated to the b quark charge. Same side
flavour tagging is based on this effect.

To form a B̄0
s meson from a b quark, an s̄ quark is needed. It is obtained by pulling a

ss̄ quark pair from vacuum, so an s quark is left. This process is illustrated in figure 2.5.
The probability that it will end up in a kaon is large. If this kaon is charged, its charge
has the same sign as the b quark in the same side B̄0

s meson.

The same principle is used for flavour tagging in the B0 system. Instead of an ss̄ quark
pair, a dd̄ pair is involved. The leading fragmentation partner of the B0 meson is a pion
instead of a kaon in the B0

s case.
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2.3.3 Tagging Performance

To measure the performance of flavour tagging, the quantities dilution, efficiency and
tagging power are used and will be explained in the following paragraphs.

Dilution

In a binary decision like flavour tagging, half of the answers are expected to be true in case
of random decisions. If all decisions are wrong, one can correct that simply by swapping
the sign of the decision. To measure the performance of a tagging algorithm it is therefore
useful to define a quantity that is larger than zero if there are more right then wrong
decisions, is zero if half of the decisions are right and smaller than zero if there are more
wrong decisions. Furthermore is it convenient to normalize this quantity to the number
of decisions made, so that its values are from the interval (−1, 1). In flavour tagging
terminology, this quantity is called dilution, which is misleading, because a high dilution
is desirable for a flavour tagging algorithm. In the definition of the dilution

D =
NRS −NWS

NRS +NWS

(2.29)

NRS is the number of right and NWS the number of wrong decisions made. It is of great
use in the mixing fit to have an event by event prediction on the dilution, as it can be used
to give events with a better tagging decision a higher weight in the fit for the asymmetry.

Efficiency

As many algorithms do not give a tag to every event (for example only to events containing
leptons), the efficiency ε is defined as the fraction of events with a flavour tag:

ε =
NRS +NWS

NRS +NWS +NNT

, (2.30)

where NNT is the number of events where no tag is given at all. The flavour tagging
algorithm described in this thesis is designed to give an answer for every event that has at
least one track not used in the exclusive reconstruction. Its efficiency is therefore higher
than 99%.

Tagging Power

As given by equation 2.23, the significance of the B0
s mixing analysis depends on

√
εD2,

so the tagging power T is defined as

T = εD2. (2.31)
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Figure 2.6: Event display of a B0
s decay in the channel B0

s → D−s π
+, D−s → K−π+π− in

transverse projection. The tracks of the same side B0
s decay are black. Some tracks of the

opposite side B+ decay (green) are missing, the red arrow denoting missing transverse
momentum. Energy deposition in the calorimeter is indicated by the radial columns
outside the black circle corresponding to the tracker. Background tracks are grey.

It corresponds to the size of a hypothetical sample with perfect tagging decisions that has
the same overall statistical power as the reference sample.

2.3.4 Flavour Tagging at CDF Today

Challenges in Hadronic Environment

Due to the high total proton-antiproton cross section, events in a hadron collider like the
Tevatron are usually full of background tracks. Besides the interesting process, in this
case the production of a B0

s meson, there are tracks from proton remnants fragmentation
and from multiple interactions per beam crossing. To illustrate this, part of an event
display from the CDF detector is shown in figure 2.6.

The B decay tracks on both sides are not collimated to form the typical jet structure.
As the bb̄ quarks are not necessarily produced back to back, their decay regions are
often overlapping, complicating separation of the two sides. Because of limited detector
acceptance, there are often opposite side B tracks missing. These challenges render flavour
tagging a difficult task in a hadronic environment.
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Available Taggers

For the current measurement of B0
s oscillations [5] at CDF, a combination of several flavour

taggers was used, each of them dealing with a separate tagging aspect. For opposite side
tagging there are likelihood based soft lepton taggers for muons [20] and electrons [21],
the opposite side kaon tagger [22] and the neural network based jet charge tagger [23].
An artificial neural network is used to combine all opposite side taggers [24], yielding a
tagging power of

TNNOST = (1.8± 0.1) %. (2.32)

Same side tagging is done by a same side kaon tagger [25] based on a neural network
combination of a kaon identification likelihood with kinematic track quantities. Its tagging
power

TSSKT = 3.7% (2.33)

in hadronic B0
s decay modes [5] is roughly twice as large as the power of the combined

opposite side tagger.

Same side and opposite side tags are regarded as independent measurements of the b
quark flavour. The predicted dilution D of both tags (D1 and D2) is combined to

D =
D1 +D2

1 +D1 ·D2

(2.34)

when the tags have the same sign, or to

D =
D1 −D2

1−D1 ·D2

(2.35)

when the tags have different signs. The combined same side and opposite side tagging
power is not stated, but it is certainly between the power of the same side tagger alone
and the sum of both taggers:

3.7% ≤ T ≤ 5.5%. (2.36)

2.4 Experimental Status

In 2006, the CDF collaboration measured the B0
s oscillation frequency for the first time

at a significance level of more than 5σ [5]. The measurement was based on a dataset of
1 fb−1 and made use of 5600 fully and 3100 partially reconstructed hadronic B0

s meson
decays as well as 61500 partially reconstructed semileptonic B0

s decays. For initial state
flavour tagging, the neural network combination of all opposite side taggers and the same
side kaon tagger were used. The B0

s oscillation frequency was determined in an unbinned
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Figure 2.7: Result of the CDF B0
s mixing analysis [5]. The amplitude scan of all modes

combined can be seen on the left. At the measured frequency the observed amplitude
is incompatible with zero. The time dependent asymmetry with all later oscillations
collapsed to the first period is shown on the right. It gives a visible impression of the
oscillation signal.

maximum likelihood fit to be

∆ms = 17.77± 0.10 (stat.)± 0.07 (syst.)ps−1. (2.37)

The result of an amplitude scan as well as a visualization of the time dependent asymmetry
can be seen in figure 2.7.

Since then, the available dataset has been increased by roughly a factor of five. An
updated measurement will take advantage of the increased statistics and provide the only
possibility for the validation of B0

s flavour tagging on data. Therefore a new analysis of
B0
s oscillations is underway in the context of another PhD thesis within the Karlsruhe

CDF group [26]. Preliminary results concerning the validation of the new flavour tagger
are given in chapter 6.

Concerning CP violation in B0
s → J/ψ φ decays, the latest CDF measurement was

performed in summer 2008 on a dataset of 2.8 fb−1, corresponding to 3200 signal events.
The neural network combined opposite side tagger was used on the full dataset, while the
use of the same side kaon tagger was limited to the first 1.35 fb−1, because calibrations for
particle identification were not available for later data. An unbinned maximum likelihood
fit was performed to extract β

J/ψ φ
s and ∆Γs. Due to undetermined strong phases, the

likelihood functions shows two symmetric minima in the plane of the two parameters,
which are overlapping and not of a Gaussian shape. Therefore no point estimates for
β
J/ψ φ
s and ∆Γs can be given, instead the confidence regions have been evaluated using the
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a level of 1.8σ. The physical region under the assumption that new physics only affects
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Feldman Cousins method.
The resulting contours can be seen in figure 2.8, and the compatibility with the Standard

Model expectation is 1.8σ. Also an update of this analysis is currently in preparation. As
soon as the validation of the new flavour tagger has been fully established in the updated
oscillation analysis, the B0

s → J/ψ φ analysis will be the first place where it is used in the
search for CP violation.





3 Experimental Setup

The Fermi National Accelerator Laboratory (Fermilab) is a high energy physics laboratory
situated about 50 km west of Chicago in Batavia, Illinois (USA). It was founded in 1967
as National Accelerator Laboratory and was renamed in honour of Nobel Prize winner
Enrico Fermi in 1974. Two Standard Model particles were discovered here, the b quark in
1977 and the top quark in 1995. Besides various activities in development of accelerator
technology, fixed target and neutrino experiments, Fermilab is home of the Tevatron
collider with its two experiments, DØ and CDF.

3.1 Accelerator

The Tevatron is a proton-antiproton-collider with a centre of mass energy
√
s = 1.96 TeV/c2.

It is currently the highest energy artificial particle accelerator until the Large Hadron
Collider at CERN successfully takes up operation. During Run I, the first period of
operation between 1985 and 1996, a total luminosity of 110 pb−1 has been delivered at√
s = 1.8 TeV/c2. Run II started in March 2001 and is expected to continue until at

least summer 2010. Up to the 2009 summer shutdown, the Tevatron has delivered about
6.7 fb−1 to each of the two experiments.

Before the Tevatron can do its work, the two beams need to undergo several prepara-
tional steps, especially antiprotons need to be produced and conditioned. A schematic
view of the accelerator complex necessary for this task is shown in figure 3.1 and will be
explained below.

3.1.1 Proton Source

The Proton Source consists of the Preaccelerator, Linac and Booster [27]. In the Preac-
celerator, hydrogen gas is first converted to negatively charged H− ions and accelerated
to a kinetic energy of 750 keV/c2. The necessary static electric field of 750 kV is provided
by a Cockcroft-Walton cascade generator.

After preacceleration, the H− ions are passed on to the Linac via the 750 keV transfer
line. The low energy side of the Linac consists of five RF drift tubes driven by a power
amplifier tube each, while the high energy side has seven side coupled cavity linac modules
powered by Klystrons. In between both sections, bunches are formed by the vernier and

37
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Figure 3.1: Overview of Fermilab accelerators, including antiproton production and preac-
celeration stages.

the buncher. At the end of the 150 m long Linac, the ions have been accelerated to
400 MeV/c2.

Before the next stage of acceleration, a carbon foil target is used to strip the electrons
from the H− ions, leaving only bare protons. These are then accelerated to 8 GeV/c2 in
the Booster synchrotron, the first circular accelerator in the chain, with a radius of 75 m.

3.1.2 Main Injector

The Main Injector is a circular synchrotron seven times as large as the Booster and can
accelerate or decelerate particles between the energies of 8 GeV/c2 and 150 GeV/c2 [28].
It is used for injecting beam into the Tevatron at 150 GeV/c2, for antiproton production
at 120 GeV/c2 and for other uses in the various Fermilab experiments.
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3.1.3 Antiproton Source

Unlike protons, antiprotons are not available in gas bottles. Production and conditioning
of a suitable amount of antiprotons to fill the Tevatron is a challenging task and a limiting
factor for the collider luminosity. The antiproton source consists of the target station,
Debuncher and Accumulator. Also the Recycler plays an important role in antiproton
handling.

A 120 GeV/c2 proton beam from the Main Injector is directed onto a nickel alloy target,
producing all sorts of secondary particles [27]. By using magnets selecting momentum and
charge, antiprotons at 8 GeV/c2 can be isolated from this particle spray.

The Debuncher, a rounded triangular-shaped synchrotron with an average radius of
90 m, captures the antiprotons by a special RF configuration called bunch rotation. To
reduce beam emittance and momentum spread, stochastic cooling techniques [29, 30] are
used here. On one side of the ring, a signal is picked up from the beam, amplified and
applied to the same bunch on the other side of the ring, creating a negative feedback loop.
Two transverse and one longitudinal cooling systems are available in the Debuncher.

The same triangular tunnel is also home of the Accumulator. It accepts antiprotons
from the Debuncher and stores them at 8 GeV/c2. This process is called stacking. The
stack of antiprotons in the Accumulator is further cooled by several systems.

The final place where antiprotons are kept before injection is the Recycler. It is a
storage ring located in the same tunnel as the main injector using, permanent magnets
that maintain their field even when electrical power is lost. The original purpose of
the Recycler was to collect the remaining antiprotons at the end of a Tevatron store
instead of discarding them in the beam dumps. However, it turned out that this is not
operationally feasible, as it would involve scraping all remaining protons away, decelerating
the antiprotons and cooling them again. So despite its name, the Recycler is nowadays
used as an extension to the Accumulator, which also greatly improved antiproton handling.

Besides stochastic cooling, the Recycler also uses electron cooling, which is a more
efficient technique at higher beam intensities. When a certain amount of antiprotons
is reached, a concentrated cool beam of electrons is injected on top of the antiprotons.
A momentum transfer from the hot antiprotons to the cool electrons happens in the
subsequent collisions, providing a substantial longitudinal cooling force.

3.1.4 Tevatron

The end of the accelerator chain is the Tevatron, a circular synchrotron with a circumfer-
ence of 6.3 km. Both protons and antiprotons are kept in the same beam pipe, moving
in opposite directions to allow head-on collisions. Collisions take place at two interaction
points, where the CDF and DØ experiments are located.

The Tevatron is the only cryogenically cooled accelerator at Fermilab, and virtually
all of its magnets are superconducting. They are made of niobium/titanium alloy and
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need to be kept at temperatures below 4 K. Superconductivity allows for generating high
magnetic fields without the danger of overheating from the high electric currents. The
price for this advantage is that extensive cryogenic facilities and special magnet protection
systems are needed for operations.

The Tevatron is mainly used as a storage ring. The stable situation of colliding
980 GeV/c2 proton and antiproton beams is called a store. It starts with a shot setup,
where the Main Injector delivers proton and antiproton bunches at 150 GeV/c2 to the
Tevatron, which are subsequently accelerated to the final energy within less than two
minutes. After acceleration, collisions are initiated and the beam halo is removed by col-
limators. Then the store is ready for high energy physics use and lasts until it is lost or
aborted to make room for a new one, typically after 16 to 20 hours.

The beam in the Tevatron consists of 36 bunches grouped in three trains, separated by
abort gaps. When the beam needs to be aborted, abort kicker magnets are ramped up to
guide it safely into the beam dump blocks. The abort gap is long enough to allow these
kickers to ramp up to their full field.

3.2 The CDF Detector

The Collider Detector at Fermilab (CDF II) is a multi purpose solenoidal detector with
subsystems for precise tracking, fast calorimetry and fine grained muon detection [31].
Figure 3.2 shows an elevation view of the CDF detector. The tracker is located inside a
superconducting solenoidal coil, generating a 1.4 T magnetic field parallel to the beam
axis. Calorimeters and muon systems are installed outside the magnet.

Following the symmetry of the detector, a polar coordinate system is used. The proton
direction - towards the east at CDF - defines the z-axis. The polar angle θ is measured
from positive z direction, while the pseudo-rapidity η = − ln(tan(θ/2)) is commonly used
when referring to that coordinate. The azimuthal angle φ is measured from the Tevatron
plane, and r is defined in a plane orthogonal to the beamline.

3.2.1 Tracking System

Precise and efficient charged particle tracking is a major benefit in many CDF analyses
[31]. It makes secondary vertex reconstruction possible, helps increasing the momentum
resolution in meson reconstructions and is of great value in electron and muon identifica-
tion.

The CDF tracker consists of two different detectors: A silicon tracker, formed by the
subsystems Silicon Vertex Detector (SVX II), Layer 00 (L00) and Intermediate Silicon
Layers (ISL), and the Central Outer Tracker (COT), a cylindrical drift chamber. The
arrangement of the tracking components and their respective η coverage is illustrated in
figure 3.3.
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Figure 3.2: The CDF II detector.

Silicon Detector

Five layers of double sided silicon microstrip detectors form the SVX II, mounted in three
barrels at a total length of roughly 1 m. On three of these layers, the strips on the second
side are rotated by 90◦, making precise z measurements possible, while the remaining two
layers use a stereo angle of 1.2◦ for reducing ambiguities in case of multiple hits.

The L00 provides an additional layer of single sided silicon sensors mounted directly
on the beam pipe, as close as possible to the interaction point. This late addition to
the design significantly improves the impact parameter resolution and therefore vertexing
capabilities.

The ISL consists of double sided sensors with a stereo angle of 1.2◦, a single layer in
the central region and two layers towards the detector end plugs. It is located between
the SVX II and the drift chamber and helps matching tracks between both tracking
subsystems.
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Figure 3.3: CDF tracking components and their η coverage.

Central Outer Tracker

The Central Outer Tracker [32] is a cylindrical drift chamber with a length of 3 m along
the z axis, covering the radial region between 44 and 132 cm. Its 30240 sense wires are
grouped in supercells of 12 wires each, which again are arranged in eight superlayers.
Field sheets and potential wires are used to shape the electric drift field. A charged
particle on its way through the COT interacts with the Ar-Et-CF4 gas mixture, creating
secondary charged particles. These are accelerated in the drift field, amplifying the signal
by generating additional charged particles, and are detected as a charge deposition on the
sense wires. The maximum drift distance is roughly 1 cm. Four axial superlayers have
their wires parallel to the z direction, while the other four stereo superlayers have wires
tilted by about two degrees, providing z position information. The maximum number of
96 hits for a given track allows a precise reconstruction of the transverse momentum pT in
the r− φ plane, which is complementary to the very good spatial resolution in the silicon
detector close to the interaction point.

3.2.2 Particle Identification

Long-lived particles like protons, kaons and pions can not be distinguished by tracking
information alone. In many physics analyses this is desirable, as for example kaons play
an important role in flavour tagging. CDF allows particle identification based on two
different physical sources: The specific energy loss in matter and the flight velocity.
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The energy loss of a particle in matter is described by the Bethe-Bloch equation and
depends on its velocity β = v/c as well as on material properties. The energy deposition in
the COT can be determined from the measured hit pulse length ∆t, which is proportional
to the logarithm of the deposited charge:

dE

dx
∼ ln(Q) ∼ ∆t. (3.1)

Also the silicon detector could be used for measuring specific energy loss, which is not
done because it would only yield a reasonable separation for very low energetic particles
[33].

A velocity measurement is done with the Time Of Flight detector (TOF) [34], located
between the COT and the solenoid. It consists of 216 scintillator bars roughly as long as
the COT, leading to the same η coverage, and is used to determine the flight duration
t = tTOF − t0 between the primary interaction t0 and the arrival at the TOF detector
tTOF. In combination with the momentum measurement from the reconstructed track
curvature, the relation

m =
p

c

√
(ct)2

L2
− 1, (3.2)

where L is the length of the flight path, can be used to determine the particle’s mass.

Figure 3.4 shows the momentum dependence of the performance of the two particle
identification subsystems. It can be seen that both methods are complementary: Time
Of Flight is a valuable separator at low track momenta, while dE/dx is more powerful in
the higher momentum region.

3.2.3 Calorimeters

The CDF II calorimetry system consists of five calorimeter units [36] located outside
the solenoid (see figure 3.2). Their purpose is to measure the energy of all particles
except muons and neutrinos by full absorption. Electromagnetic [37] and hadronic [38]
calorimeters are used in the central and the end-plug regions, with an additional hadronic-
only end-wall calorimeter. The whole system covers the pseudorapidity region up to
|η| = 3.64.

As the calorimetry system is optimized for higher track momentum regions, they are
not of major importance for most B-physics analyses as the one described here. Their
absorbers however form a valuable shielding to stop all other particles from reaching
the muon chambers. More details on the calorimetry system can be found in the CDF
technical design report [31].
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Figure 3.4: Performance of the particle identification system at CDF [35]. The solid lines
show the separation power in the Time Of Flight system for different particle pairs, while
the dashed line represents the kaon/pion separation by dE/dx in the COT. The typical
time resolution of the Time Of Flight system is between 110ps and 130ps.

3.2.4 Muon Systems

Muons are more than 200 times heavier than electrons and do not take part in the strong
interaction. Therefore they do not lose significant amounts of energy in both the elec-
tromagnetic and the hadronic calorimeter and cross them nearly undisturbed. As all
other charged particles are absorbed there, the best muon identification is achieved in the
outermost region of a detector.

The CDF muon system consists of four subdetectors [39, 40]. The central region up
to |η| < 0.6 is covered by the Central Muon Detector (CMU) and the Central Muon
Upgrade (CMP). The CMP is located outside extra shielding to increase the muon purity
and has therefore a higher sensitivity threshold in transverse track momentum. The
Central Muon Extension (CMX) covers the region 0.6 < |η| < 1.0 and is tilted about 45◦

to the z axis. For mechanical reasons the modules at the bottom of the detector have
to be smaller, slightly reducing the coverage in this φ-region. In the forward region, the
Intermediate Muon System (IMU) extends the azimuthal coverage to |η| < 1.5. All muon
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systems are basically small tracking chambers with sense wires in drift tubes, which are
not fast enough for trigger use. Therefore all muon chambers except CMU are covered
with fast scintillators of lower granularity to provide fast response that can be used in
muon triggers. Also cosmic muons can be rejected by the timing information provided by
the muon scintillators.

3.2.5 Trigger

Every hadron collider has a much higher interaction rate compared to an electron machine,
but most interactions do not contain physics processes of interest. The b production cross
section at Tevatron energy is about three orders of magnitude lower than the total cross
section, so roughly one out of thousand collisions is interesting for B-physics. This ratio is
even worse for other interesting physics processes such as top quark or W± and Z0 boson
production.

The Tevatron runs at a high collision rate of 1.7 MHz, and storing the detector readout
for one event takes about 250 kB. Putting aside that some detector systems are too slow
for such a frequent readout, just the pure amount of one Terabyte every two seconds makes
it impossible to store all information. An online system for preselecting interesting events
is needed for reducing the amount of data that is read out. CDF uses a sophisticated
three-level trigger system for this task [41]. An schematic view of the data flow is given
in figure 3.5.

Level 1

The first trigger level is a synchronous trigger entirely implemented in hardware. During
the roughly 5 µs that are needed for the decision, the digitized detector information is kept
in a 42 clock cycle pipeline. It uses information from all components except the silicon
detector. Approximate tracking information is provided by the Extremely Fast Tracker
(XFT) [42] already at this early stage, which compares precalculated tracking patterns
to COT information in order to find tracks and obtain their pT and φ information. Also
muon and calorimeter information is available at this stage.

Level 2

After being accepted by Level 1, an event is passed to the second trigger stage [43]. Level
2 uses a reconfigurable software implementation running on special hardware. Because its
decisions are allowed to take more time than Level 1, four events can be kept in buffers in
the meantime. The additional time is used for refining the L1 decisions with finer detector
granularity and better precisions. For finding secondary vertices, XFT information from
L1 is combined here with silicon tracking information in the Secondary Vertex Trigger
(SVT) [44]. This offers the unique opportunity for B-physics to enrich events containing
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Figure 3.5: Overview of the CDF trigger and data acquisition system. The 7.6 MHz
crossing rate were evaluated as a possible mode of Tevatron operation in the design phase;
today the crossing rate is about 1.7 MHz.

secondary vertices already at an early trigger stage. The raw event rate has been reduced
by a factor 20000 after L1 and L2 trigger.

Level 3

The third trigger stage is a computer farm running similar software to what is used
during the offline reconstruction, but with different parameters. It has therefore the
best momentum and impact parameter resolution of all trigger levels. When an event is
accepted by L3, it is sent to the Feynman Computing Center for final storage and offline
reconstruction. The output rate of the L3 trigger is around 100 Hz, which corresponds to
accepting one in 120000 events.



4 Classification with Artificial Neural
Networks

This chapter gives an introduction to statistical classification using artificial neural net-
works. First performance measurement of a classification method is discussed, followed
by a brief description of conventional classification methods. After a short excursion into
biology to provide some analogies, the concept and implementation of artificial neural
networks is described.

4.1 Statistical Classification

In high energy physics it is often necessary to classify data into categories, often called
signal (data that are interesting for the particular analysis) and background, based on
several measured variables. Several statistical classification methods exist, one of them
being artificial neural networks, which are described in the next sections.

4.1.1 Performance Measurement

When making binary decisions between signal and background classes, there are two types
of errors: Accepting background events as signal and rejecting signal events as background.
To quantify them, purity

P =
Nsignal, selected

Nsignal, selected +Nbackground, selected

(4.1)

and efficiency

ε =
Nsignal, selected

Nsignal

(4.2)

are defined, both ranging from zero to one. For the first kind of error, the quality of the
signal sample is tainted by background events, so the purity is decreased. A purity of
one means that all selected events are actually signal events. For the other kind of error,
signal events are lost, lowering the efficiency of the selection. If all signal events have been
selected, the method has an efficiency of one. The efficiency is sometimes referred to as
signal efficiency.

47
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Figure 4.1: Example of a diagram showing purity as a function of efficiency of the identi-
fication of leptons from a B hadron decay. For many application, the cut that gets closest
to the ideal point in the upper right corner is of interest.

Many classification methods provide information on the quality of their decision. In the
ideal case, this is a scalar value that can be interpreted as a probability that the current
event is signal or background. The actual classification is then done by selecting a single
cut on such a quantity.

Every possible cut can be characterized by purity and efficiency. The performance of
a method can therefore be illustrated by plotting purity as a function of efficiency for
different cuts. An example of a purity/efficiency diagram is shown in figure 4.1. The ideal
point is (1/1), which corresponds to having selected all signal events without accepting
a single background event. The purity/efficiency pair of the selected cut is called the
working point.

4.1.2 Conventional Approaches to Classification

A classification technique widely used is the method of sequential cuts. By looking at
the characteristics of signal and background distributions of single variables, the best
discriminating quantity is identified and a suitable cut applied. After cutting on the most
important quantity, the procedure is repeated for the remaining variables.

Unfortunately, within the method of sequential cuts it is very difficult to take correla-
tions between quantities into account. If there is a class of signal events that cannot be



4.2. Neurons in Nature 49

Figure 4.2: Structure of a typical neuron.

identified by looking at single variables, but is clearly visible in a combination of two of
them, a cut based classification technique might fail. Although usually a high purity can
be obtained, the efficiency tends to be lower. Selecting a specific working point is difficult.

It is useful to combine all variables available into one scalar variable called test statistics
and find a decision by cutting on that. This can be done for example in a likelihood ratio.
For all input quantities, a parametrization of their signal fractions is derived. Then the
test statistics is composed by multiplying the current value of this parametrization for all
measured input quantities. This is a good approach if all input quantities are independent.
Correlations lead to overestimating the influence of distinguishing features found in more
than one input quantity.

4.2 Neurons in Nature

The human brain has a lot of features that are very helpful for classification: It is fault
tolerant, robust against inconsistent input data and can adapt itself quickly to various
problems. Therefore it might be helpful to have a look at its architecture and try to
implement a simple model in a computer program.

The smallest unit of the brain is a neuron (figure 4.2), a special type of cell that also
forms our nerves. It is connected to other neurons by dendrite for incoming and axons
for outgoing signals. Dendrite and axons of different neurons are connected by synaptic
junctions.

Signal transmission between neurons is a chemical process resulting in a change of the
electrical potential in the receiving cell. If a threshold value is reached, the receiving cell
emits a signal of a certain strength and duration to all cells connected to its axons. A
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simplified mathematical model of such a neuron n can be written as

n(t+ 1) = θ

(∑
i

wini(t)− µ

)
(4.3)

with µ being the threshold value of the current neuron n, wi representing the strength of
the synaptic junction from neuron ni and t being an index for a specific neuron in the
chain. The transfer function θ is a step function in this simple model.

The brain is adapted to new tasks by changing the weights of the connections between
neurons, adding new synaptic connections or pruning them away completely. The acquired
knowledge of a neural network is stored in the weights of its connections.

4.3 Artificial Neural Networks

To construct an artificial neural network, the same basic concept of nodes (corresponding
to neurons) and weighted connections is used. Instead of the simple step function from
above, a sigmoid or fermi function (see figure 4.3) is used:

f(x) =
1

1 + e−cx
. (4.4)

Such a nonlinear function enables the neural network to learn nonlinear correlations be-
tween input variables. It maps the interval (−∞,∞) to (−1, 1) and can approximate a



4.4. Neural Network Training 51

Figure 4.4: Multi layer feed forward neural network.

linear or a step function by variation of the parameter c.
There are several ways of grouping nodes into a network. A so called single layer

perceptron consists of one layer of input nodes that are all directly connected to an
output node. Neural networks used in classification usually have an additional hidden
layer between input and output nodes. As there are no connections looping back to
previous layers, these neural networks are also referred to as feed forward networks. A
typical topology of such a neural network can be seen in figure 4.4.

For other applications as for example pattern recognition, a more complex network
structure may be useful, including loops to previous neurons or even to the same neuron
itself. These architectures will not be discussed here.

4.4 Neural Network Training

As mentioned above, all experience of a human brain is stored in the weights of its synaptic
connections. Therefore, training an artificial neural network means finding a set of weights
which maximizes knowledge.

A data sample is needed for training where the answer of the classification is already
known, called training sample. This can be historical data, simulated events or sometimes
even real data from the same measurement as the data to classify later. After training,
the neural network is applied to the classification sample.

In a classification task, the neural network should be able to recognize important fea-
tures of signal and background events from the training sample and base its decision upon
them. There is a danger of overtraining the neural network. In that case, statistical fluc-
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tuations of the training sample are ’learned by heart’. This can be detected by testing
the neural network on a part of the training sample left out from the training process.

Neural network training is based on the minimization of a loss function E(w) rating
the overall difference between the neural network output O(w) for the current weights w
and the true value T . A χ2 loss function is one of the most popular:

E(w) =
∑
µ

(Oµ(w)− Tµ)2 (4.5)

where µ is running over all training events. The loss function has a global minimum for
Oµ = Tµ. Basically every differentiable function with this property can be used as a loss
function, as for example an entropy based definition, which is used for neural networks in
this thesis:

E(w) =
∑
µ

log

(
1 +Oµ · Tµ

2

)
. (4.6)

As shown in [45], the neural network output can be interpreted as a probability if the
global minimum of the loss function is found.

4.5 NeuroBayes

Although the basic principle of an artificial neural network is simple and easy to under-
stand, its implementation is far more difficult. Deep statistical knowledge and experience
in numeric programming is necessary. It it therefore useful to rely on a software package
that is carefully designed and thoroughly tested.

For all neural networks in this thesis, the NeuroBayes [45] package is used. NeuroBayes
was initially written by Michael Feindt and other members of the Institut für Experi-
mentelle Kernphysik of the Karlsruhe Institute of Technology and makes a lot of expert
knowledge easily available to the user. Since 2002 it is further developed, promoted and
applied to data analysis tasks outside high energy physics by Phi-T GmbH.

4.5.1 Preprocessing

NeuroBayes offers several preprocessing possibilities for input data that can be used to
suppress statistical fluctuations and to evaluate correlations among variables or to the
training target. The individual variable preprocessing options that were used in the neural
networks within this thesis are explained here, along with a description on how to read
the preprocessing plots shown at various places in the other chapters.

Continuous variables can be distributed in various ways and across wide number ranges,
which can lead to numerical complications when used in their raw form. Interesting
information is often compressed to a very small range of numbers in peaking regions,
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Figure 4.5: Example of individual variable preprocessing in NeuroBayes. Each of the
100 bins contains one percent of all input events, covering non-equidistant regions of the
original input quantity. The fraction of signal events in each bin is denoted by the black
data points. The red fit function is a regularized spline, suppressing statistical fluctuation
of the data points. The overall signal fraction of the whole training sample is indicated
by the red point on the y axis.

while comparably uniform behaviour in tail regions often evens extends across more than
an order of magnitude. The first preprocessing measure is therefore usually to transform
the input quantity into a flat distribution. This is achieved by means of a non-equidistant
binning, leading to 100 bins of equal statistics. That technique is called importance
sampling and also helps to suppress the influence of random fluctuations in low-statistics
regions of the original distribution. Figure 4.5 gives an example of a preprocessing plot
which can be used to follow the single steps that are described here.

As a next step, the fraction of signal events in each bin, called purity, is determined. To
further suppress random noise, the purity as a function of the bin number is parametrized
by a regularized spline fit. The example in figure 4.5 clearly shows that the fit describes
the overall shape very well while effectively smoothing out fluctuations of the data points
around it. Also a monotonous spline fit can be chosen by the user if warranted by the
shape of the purity to be fitted. A similar procedure exists for input data consisting of
discrete values where the spline fit is replaced by a regularization algorithm. For all further
steps, the function value of this spline fit is used for representing the corresponding input
quantity in a given event. At this point, the transformed variable can be interpreted as
signal probability.

After the individual variables have been preprocessed, correlations between them as well
as their correlations to the training target are determined. Then a principal component
analysis in the space of all input variables is performed, effectively removing linear corre-
lations between them. This set of input quantities in their new decorrelated base is then
used to train the artificial neural network. Evaluating the linear correlation separately,
the neural network is free to learn higher order correlations between variables without
being distracted by information that can be handled by analytic procedures before.

As an alternative to a network training, one more transformation of the variable set
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can be performed to project all target correlation into a single quantity. The purity of
this quantity is parametrized by a monotonous spline fit similar to individual variable
preprocessing and can then be used instead of the actual output of the neural network.
In many cases the separation power of this quantity is equal to that of the neural network
result.



5 Combined Flavour Tagging Using
Neural Networks

The objective of the work presented in this thesis is to provide a general flavour tagging
tool that makes use of all information available in an event. It should take advantage
of correlations between the tagging information sources and combine all the information
into a single probability variable for the flavour of the quark that is to be tagged.

Existing flavour tagging algorithms at CDF focus on one information source, for ex-
ample on opposite side leptons. If there is no lepton, the given event is not tagged. In
contrast to this, our tagger provides a decision for every event. To achieve this ambitious
goal, advanced classification techniques are necessary. Artificial neural networks are used
throughout all classification tasks arising on the way, and wherever possible the applica-
tion of hard cuts is avoided. Instead, the probability delivered by one neural network is
used as an input into the next stage.

Existing tools are used where they are available, for example NeuroBayes for all neural
networks and the LeptonTools package [46] for lepton identification. The basic idea of
this tagger is inspired by the BSAURUS [47] package from the DELPHI experiment.
Its implementation is based on the jet charge tagger [23] and was started in preceding
work [48, 49]. It has been further developed on Monte Carlo and validated on real data.

The flavour tagger has been developed for application in the B0
s meson system. However,

from the B0
s version two other taggers for B0 and B+ mesons can easily be derived by

training the relevant neural networks on a corresponding Monte Carlo simulation for
another B meson family. These additional taggers provide valuable cross checks, as it is
much easier to evaluate their performance on data than for the B0

s case. The variables that
are regarded useful by the neural network training differ for the three cases, and flavour
correlations are also not expected to be identical. In this description of the tagging
strategy, the B0

s case is described. Information on the other two taggers will be given
along with the description of calibration and performance evaluation in the next chapter.

5.1 Strategy

The architecture of this flavour tagger can be divided into three major parts:

• Preparing quantities that are useful for the later stages,

55
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• examining every single track for its flavour information,

• combining everything into an event level flavour tag.

In the first step, an inclusive reconstruction of the opposite side B decay vertex is done -
an exclusive reconstruction would not be feasible due to the variety of possible B hadrons
and decay channels as well as limited detector acceptance. Spatial and kinematical rela-
tions between other tracks and the vertex are subsequently calculated. Combining this
vertex information with electron and muon identification, leptons from the opposite side
B decay are identified for later use in tagging.

The second step is flavour tagging on track level. Every charged track can either have
the same or the opposite charge sign as the same side b quark. A probability value for this
track flavour correlation is constructed. Depending on the region in the event the flavour
correlations can differ a lot. Therefore the tracks are divided into natural subsamples:
Tracks in the same side jet, lepton candidate tracks and the other remaining tracks. Each
sample is then handled separately. Most tracks do not carry much flavour information,
but as there are several of them in every event, the combination of their small correlations
yields significantly more power than every track alone.

Finally, the track flavour correlation is combined to an event level flavour tag in one
probability ratio per subsample and one combined probability ratio using all tracks. These
probability ratios and an estimation of the opposite side vertex charge are used in a final
neural network to make a tagging decision on event level. The following sections will
describe each of the steps in more detail.

5.2 Variable Definitions

Several quantities on three different levels are used in the followings steps. The base of the
variable hierarchy is the collision event in which a B meson candidate was reconstructed,
defining the event level. Every event consists of at least the tracks used in the reconstruc-
tion of the B meson. Information about single tracks is defined on track level. It will be
explained in the next section that up to six secondary vertex candidates for a second B
hadron decay are formed in every event. Quantities describing these vertex candidates
are available on vertex level. All variables that are relevant for the tagging procedure or
the validation process are described here to give the reader a central reference point.

5.2.1 Event Quantities

The following quantities are defined once for every reconstructed same side B meson:

• run: The CDF run number in which a given event was reconstructed. Every run of
the CDF data acquisition system has a unique run number assigned.
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• event: The event number, also known as the trigger number, in which the given B
meson candidate was reconstructed. Together with the run number it can be used
to uniquely identify a collision event.

• trigger: The trigger scenario in which the event was recorded.

• charge: The charge of the B meson.

• flavour: The flavour of the B meson at decay time, determined from the charge of
its decay products.

• mass: B meson invariant mass.

• transverse momentum pT : The momentum component in the r − φ plane.

• pseudo-rapidity η: The pseudo-rapidity of the reconstructed B meson.

• bMesonProb: The output of a neural network for distinguishing B mesons in the
given decay channel from combinatorial background.

5.2.2 Track Quantities

Track description quantities are grouped into categories: Standard track parameters, re-
lation to the jet, to the same side B meson and to the opposite side secondary vertex.

Standard Track Information

Standard track parameters are provided by the CDF tracking code and used in many B
physics analyses. When a spatial reference point is necessary, the origin of the detector
coordinate system is used unless stated otherwise. The perigee is the point on the track
helix that is closest to the reference point in the r − φ projection.

• charge: The track charge, measured from the direction of the track curvature in the
magnetic field of the tracker.

• transverse momentum pT : The projection of the track momentum to the r−φ plane.

• pseudo-rapidity η: The pseudo-rapidity of the track, where θ is the polar angle at
the perigee (see also section 3.2).

• φ: The azimuthal angle φ at the perigee.

• impact parameter d0: The minimum distance in the r − φ plane between the track
helix and the reference point.
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• z0: The distance along the z axis between the track perigee and the reference point.

Besides the track parametrization itself, also information about the track quality is avail-
able:

• nSIHits: The number of hits in the silicon detector that are associated with the track.
It can be further distinguished between hits with axial and stereo information.

• nSIHitsL00: The number of hits in Layer 00 of the silicon detector.

• nCTHits: The number of hits in the COT that are associated with the track. This
can be subdivided into axial and stereo hits.

• fit χ2: The χ2 value of the track fit.

Relation between Track and Same Side B Meson

These track variables relate a track to the same side B meson:

• signed impact parameter d0: The signed impact parameter as explained in figure 5.1,
using the direction of the same side B to define the sign.

• ∆η: The difference between the pseudo-rapidity of the track and of the same side
B meson.

• ∆φ: The difference between φ of the track and of the same side B meson.

• ∆R: The spatial difference ∆R =
√

∆φ2 + ∆η2 between the track and the same
side B meson. Also the rank in ∆R is available, with the first ranks corresponding
to the smallest values of ∆R.

• prel(B)
L : The projection of the track momentum to the same side B meson direction.

Also the rank in prel
L starting with high momentum tracks.

• prel(B)
T : The track momentum component perpendicular to the momentum of the

same side B meson. The rank in prel
T starts at low momentum values.

• invariant mass: The invariant mass of the combination of the track with the same
side B meson, assuming pion mass for the track. The rank in this quantity starts
at low mass values.
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Figure 5.1: Definition of a signed impact parameter d0, in this case related to a jet. If the
intersection between the track and the jet axis is on the same side of the primary vertex
(PV) as the jet direction (left illustration), the impact parameter is given a positive sign.
If it is behind the primary vertex (right illustration), the sign is negative. Apart from a jet,
any momentum vector can be used as a reference, for example a reconstructed particle.

Relation between Track and Jet

It will be explained below in subsection 5.3.3 that tracks are grouped into jets by a cone
clustering algorithm. For an individual track, the following variables describe the relation
to the jet it belongs to:

• inSameSideJet: A flag if the same side B meson was reconstructed in the same jet
as the current track.

• jet signed impact parameter djet
0 : The signed impact parameter as illustrated in

figure 5.1 with respect to the jet direction.

• prel(jet)
T : The track momentum component perpendicular to the jet momentum.

• rapidity : The rapidity along the jet axis, assuming pion mass. Also the rank in this
quantity is available, starting with the highest rapidity.

• pjet
T : The transverse momentum of the jet associated with this track. It has the same

value for all tracks that form a given jet.

• nTracksJet: Number of tracks in the jet associated with this track. It has the same
value for all tracks that form a given jet.

Relation between Track and Opposite Side Secondary Vertex

The relation of a track to the opposite side secondary vertex is described by the following
quantities:
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• usedInFit: A flag which is true when the current track was used in the fit of the
opposite side vertex candidate.

• inJet: A flag which is true if the track is in the same jet as the tracks used for the
secondary vertex candidate.

• mass: The invariant mass of the track combined with the vertex, assuming pion
mass for all tracks.

• prest: The track momentum transformed to the rest frame of the opposite side B
decay vertex.

• cos θrest: the cosine of the helicity angle θ between the track in the opposite side
secondary vertex rest frame and the corresponding opposite side B direction in the
laboratory frame cos(θrest)

• impact parameter d0: The impact parameter as defined in standard track data, but
using the opposite side secondary vertex as reference point. Also the error on the
impact parameter σd0 is available.

• z0: The z difference as defined in standard track data, but using the opposite side
secondary vertex as reference point. Also the error σz0 is available.

5.2.3 Secondary Vertex Quantities

Secondary vertex candidates are fitted from track pairs that have large probabilities to
originate from the opposite side B decay. This process is described below in section 5.3.4,
also the explanation of the B track networks and the secondary vertex network is given
there. The properties of a secondary vertex candidate are described by the following
variables:

• bProb1: The output of the first B track network for the first of the two tracks. The
first track is always the one with the higher probability to originate from a B decay.
Also the rank in this quantity is provided.

• bProb2: The output of the first B track network for the second of the two tracks.
The second track is always the one with the lower probability to originate from a B
decay. Also the rank in this quantity is provided.

• inSameJet: A flag which is true if both tracks forming the vertex candidate are
associated with the same jet.

• charge: The sum of the two track charges, can be either 0 or ±2.
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• mass: The invariant mass of the two track combination, assuming pion mass for
both tracks.

• Lxy: The distance of the vertex to the primary vertex in the xy-plane. Also the
error σLxy is provided.

• ∆φ: The difference in φ between the vertex momentum and the vector pointing
from the primary to the secondary vertex.

• ∆η: The difference in η between the vertex momentum and the vector pointing from
the primary to the secondary vertex.

• fit χ2: The χ2 value of the vertex fit and the corresponding fit probability.

5.3 Opposite Side Vertexing and Other Prerequisites

5.3.1 Monte Carlo Dataset

For a neural network training, simulated events with similar properties as measured events
are needed. To achieve a good agreement between data and Monte Carlo events, some
aspects of the simulation process need special attention. The procedure is described for
the B0

s case, but equally applied to the B+ and B0 cases.
Using the event generator Pythia [50], qq̄ events with all quark flavours are produced

and immediately discarded if they don’t contain b quarks. When Pythia is asked to
explicitly generate bb̄ events, only the leading order process flavour creation is simulated.
The method we use also includes bb̄ quark pairs from flavour excitation and gluon splitting,
which is necessary for a proper description of spatial and kinematic relations of the two b
quarks [23].

The decay of the hadron containing b and c quarks is simulated by EvtGen [51]. For
each event containing at least one B0

s meson, exactly one B0
s meson is forced into the

decay channel B0
s → D±s π

∓. All events without a B0
s meson are removed. Finally, a

simulation of the full CDF detector and trigger is done. Events surviving the two track
trigger are reconstructed, resulting in a dataset of roughly one million events.

5.3.2 Track Selection

All tracks that are used in this flavour tagger need to pass the following requirements:

• The track was not used in the exclusive reconstruction of the B meson to be tagged
(the same side B meson).

• The transverse momentum of the track is at least 400 MeV/c2.
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Figure 5.2: Distribution of the number of selected tracks per event on Monte Carlo.

• In the r−ϕ plane, the distance d0 between the track and the primary vertex (impact
parameter) is smaller than 5 mm.

• At the point of minimum distance between the track and the origin of the coordinate
system, the distance ∆z0 between z0 of the current track and the average z0 of all
tracks belonging to the same side B0

s meson is less than 5 mm: ∆z0 < 5 mm

The cuts on d0 and ∆z0 are there to exclude tracks from other interactions within the
bunch crossing. The distribution of the number of selected tracks per event can be seen
in figure 5.2.

5.3.3 Jet Reconstruction

It is valuable information for flavour tagging to know in which jet a track was recon-
structed. For example, the leading fragmentation partner of the same side B meson is
most likely found within the same jet.

In top or Higgs physics, jets usually have high transverse momenta pT and are re-
constructed primarily in the calorimeters. In contrast, bb̄ jets at the Tevatron are low
energetic and are mainly reconstructed in the tracking system. Track based jet recon-
struction is done by the cone clustering algorithm, using the distance ∆R in η − ϕ:
∆R =

√
∆η2 + ∆ϕ2. Jets are formed by clustering tracks within a cone of ∆R < 0.9,

starting at a track with pT > 1 GeV/c .
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Figure 5.3: Schematic overview of the opposite side vertexing procedure.

5.3.4 Opposite Side Vertexing

As written above, it is generally not feasible to make an exclusive reconstruction of the
opposite side B hadron. However, some information can be gained from inclusive prop-
erties of the event. Since B hadrons decays are mediated by the weak interaction, they
have a relatively long lifetime, so their decay vertex is often measurably displaced from
the production vertex.

The inclusive reconstruction tries to identify tracks from the B decay chain by means
of the first B track network. The best track candidates are paired to vertex candidates,
which are subsequently ranked in the secondary vertex network. With the additional
vertex information, the second B track network is used to refine the decision of the first
stage and to provide a useful track based quantity for later tagging stages. A graphical
representation of the procedure can be seen in figure 5.3, the individual steps are described
below.

First B Track Network

The purpose of the first B track network is to decide for a single track whether it orig-
inates from the decay chain of a B hadron or not. Tracks from the B decay chain are
regarded as signal in the neural network classification, all others as background. It is
trained on and applied to all tracks that fulfil the general track selection criteria listed
in subsection 5.3.2. Input variables for this neural network consist of standard track pa-
rameters, track parameters with respect to the reconstructed B meson and to the jet as
defined in section 5.2.2.

Tracks from secondary vertices have higher values for the impact parameter d0 and
for the longitudinal distance ∆z0 to the primary vertex than other tracks in the event.
Standard track parameters are used to benefit from this fact. Also kinematical properties
can be exploited: Compared to all background tracks from fragmentation and proton
remnants, the B daughter tracks have a relatively high transverse momentum pT .

In the leading order process flavour creation, bb̄ quark pairs are created back to back,
that means their momentum vectors are collinear and of opposite direction. Tracks from
the opposite side B decay are therefore expected to accumulate in the opposite spatial
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Figure 5.4: Neural network output distribution of the first B track network for tracks from
the B decay chain (red) and other tracks (black).

region as the same side B meson. The relation of a given track to the same side B meson
is therefore useful information at this stage. Quantities that make this effect visible to the
neural network are ∆φ, ∆R and the signed impact parameter with respect to the same
side B meson.

The full list of input variables as well as their importance for the neural network training
can be found in appendix A.1. The neural network output distributions are shown in figure
5.4.

Opposite Side Secondary Vertex Fit

All tracks of an event are ranked by their probability to originate from a B decay as given
by the first B track network. The best four of them are selected and fitted in pairs to a
common vertex, forming six secondary vertex candidates. The invariant mass of the two
track vertex is calculated assuming pion mass for both tracks.

The secondary vertex network is then used to identify the bestB decay vertex candidate.
Vertex candidates where both tracks are really from a B decay are treated as signal in the
training. Input quantities for this neural network are properties of the two tracks (output
from the first B track network, charge, invariant mass), vertex position and fit quality
information. The full list is given in appendix A.2.

In the neural network, bTrackProb2 – the smaller of the B track probabilities from the
two tracks – is the most significant input variable, a higher value gives a better vertex
probability. It is followed by the decay length significance Lxy/σLxy and the inSameJet
flag. The neural network output distribution is shown in figure 5.5. The vertex candidate
with the highest output is selected for the next steps.

In figure 5.6, the performance of the secondary vertexing procedure is evaluated using
Monte Carlo truth information. The highest ranked vertex candidate is a true B decay
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Figure 5.5: Neural network output distribution of the secondary vertex network for true
B vertices (red) and wrong candidates (black).
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Figure 5.6: Performance evaluation of the opposite side vertexing procedure using Monte
Carlo truth information. The left plot shows the fraction of true B decay vertices as a
function of the vertex candidate rank given by the secondary vertex network. In the right
plot, the distribution of number of true B tracks per event in the tagging track selection
is shown. In the region to the left of the red line, less than two true B decay tracks are
available, so the reconstruction of a true B vertex is impossible.
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Figure 5.7: Neural network output distribution of the second B track network for tracks
from the B decay chain (red) and other tracks (black).

vertex in about 25% of all cases, the following ranks have lower probabilities to be a true
B vertex. It can be concluded that the vertexing procedure selects the best available
vertex candidate. From the distribution of the number of true B decay tracks in the track
selection it becomes evident that it is impossible to find a B vertex in roughly 60% of all
cases. A true vertex purity of 25% for the selected candidate where 40% is the maximum
achievable value is a very satisfying result.

Second B Track Network

With the information gained about the opposite side decay vertex, another neural network
is used to refine the decision of the first B track network. The second B track network
therefore uses the same signal and background definitions.

It is an obvious choice to use the quantities from the previous vertexing steps as input
to this neural network, so the output of the first B track network and the secondary vertex
probability are used. Also the location of the secondary vertex should be exploited, so the
impact parameter d0 and the longitudinal distance ∆z0 together with their uncertainties
are recalculated with respect to the secondary vertex. A given track’s role in the vertex
fit is also useful information, so the usedInFit and inJet flags are used, as well as the
track’s invariant mass with the vertex, prest and cos θrest. In addition, muon and electron
identification quantities provided by the LeptonTools package are used, and kinematic
quantities that were already used in the first B track network like pT and η are repeated
here.

As expected, the output of the first B track network is the most significant input
variable, followed by the output of the secondary vertex network and the impact parameter
relative to the secondary vertex. The neural network output distributions for signal and
background can be seen in figure 5.7, the variable list can be found in appendix A.3.
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Figure 5.8: Purity as a function of Efficiency for the first (trackNet1) and second (track-
Net2) B track network. The definition of purity and efficiency is given in section 4.1.1.

Figure 5.8 illustrates the gain in performance between the first and the second B track
network. This neural network output is later used as an input in the track based tagging
procedure and as a weight in the vertex charge estimator.

5.3.5 Lepton Identification

Leptons play a prominent role in B physics because semileptonic decays have a noteworthy
share of the B branching ratio and leptons provide a good experimental signature. When
coming from opposite side B decays, they also carry valuable flavour information. To
identify them, the LeptonTools package [46] is used. It provides probability-like variables
for the identification of muons and electrons based on artificial neural networks.

Besides interesting electrons from B decays, a lot of electrons originate from photon
conversions. In the interaction of photons with matter from the detector, e+e− pairs
are produced. For most physics analyses, they are background and should be removed.
Therefore, the LeptonTools provide an additional neural network for the identification
and suppression of conversion electrons.

The idea behind opposite side lepton tagging is described in chapter 2.3.1. To enable
the later stages to learn about the valuable lepton tagging information, it is desirable to
have a single probability-like quantity indicating whether a given track is a lepton from
an opposite side B decay. Providing this is the purpose of the lepton from B network.

Leptons from B and from D decays have opposite charge correlations to the flavour
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in question, and the ability to distinguish them would further increase the value of lep-
ton flavour tagging. However, both classes have very similar properties compared to
background tracks, so only a common identification of both is feasible at this point. In-
formation for a separation between them is included in the track based tagging stages.
The signal definition for the lepton from B network contains any true lepton that has a
b or b̄ quark in its chain of ancestors.

As the signal fraction among all tracks is in the order of 1.5 %, precuts are done to
remove most non-lepton background and exclude regions that show suboptimal agreement
between data and the simulation (see also section 6.2.1). To be used in the lepton from
B network, a track must fulfil one of the following two requirements:

• the muon identification network classifies it as a good muon candidate with pµ > 0.5

• the candidate has a high output value from the electron identification network and
a low conversion probability at the same time: pel · (1− pconv) > 0.7

The choice of input variables for this neural network follows the tasks it is designed
for: Combining muon and electron identification, suppressing conversion electrons, distin-
guishing between those from B decays and other leptons. As the second B track network
already provides an identification of tracks from B decays, it is used as input here. For
lepton identification, the same combinations pµ and pel · (1 − pconv) as in the precut are
used, both accompanied by a flag if they are defined.

In addition, variables that have already proven useful in the B track networks are used:
The relation to the same side B meson is given in form of the signed impact parameter
and the relative momenta pT and pL.

Opposite side secondary vertex information is also used to find leptons from B decays:
Tracks can be transformed into the rest frame of the presumed B decay. Because the
two track combination is not a true reconstruction of the full opposite side B decay, its
invariant mass is scaled up to 5.3 GeV/c2 to compensate for the missing components.
The following two quantities are calculated in the new vertex rest frame and used in the
lepton from B network:

• the track momentum prest in the secondary vertex rest frame

• the cosine of the helicity angle θ between the track in the vertex rest frame and the
corresponding B direction in the laboratory frame cos(θrest)

Also the flags usedInFit and inJet are used as input variables.
The most important input for the neural network is the output of the second B track

network, followed by pT relative to the same side B meson and the signed impact pa-
rameter. Lepton identification seems not to play the leading role here because the precut
on the lepton identification variables is already quite strict. The neural network output
distributions can be seen in figure 5.9, the variable lists can be found in appendix A.4.
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Figure 5.9: Neural network output distribution of the lepton from B network for signal
(red) and background (black).

5.4 Track Based Flavour Tagging

The heart of this flavour tagging procedure is to examine all selected tracks for information
about the B production flavour. The charge of each track can either have the same or
the opposite sign compared to the charge of the b quark in the same side B meson. Track
based tagging tries to find correlations and anticorrelations between these charge signs
based on a variety of spatial, kinematical and higher level track information.

These correlations are determined in flavour correlation networks, artificial neural net-
works trained to separate correlated from anticorrelated tracks. Signal tracks for these
neural networks have the same charge sign as the same side B flavour, background tracks
are those where charge and flavour are opposite. The result of the neural network classi-
fication is the track flavour correlation probability, a continuous value between zero and
one. Correlations between track charge and flavour correspond to high values, anticorre-
lations to low values close to zero. The track flavour correlations are later combined into
event level tags.

5.4.1 Subsamples

Following the description in chapter 2.3, flavour information can be gained from several
different physical effects. Tracks that are interesting for one effect are often background
for another. For example, tracks with high kaon probability are important for same
side tagging, but are rather bad lepton candidates. As all sources are small effects by
themselves, they need specialized procedures to harvest as much information as possible.
Therefore the track charge correlations are not determined in a single neural network.
Instead tracks are grouped into three different mutually exclusive track tagging classes:
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Figure 5.10: Schematic overview of the track based tagging procedure.

• If a track was reconstructed in the same jet as the tracks forming the same side B
meson (the same side jet), it belongs to the tagging class of same side tracks and is
handled in the same side correlation network (SCN). The main physical effect that
is exploited in this class is the charge of the leading fragmentation particle – a kaon
in the Bs case.

• If a track is not part of the same side jet, but passes the precuts for the lepton from
B network, it is considered a lepton candidate and handled by the lepton correlation
network (LCN). This class is designed to handle opposite side lepton tagging.

• Each track that is not in one of the previous classes is a general track and fed into
the general correlation network (GCN). This class is not specialised on one tagging
effect and tries to catch remaining information like opposite side kaon decays and less
pure leptons or same side tracks that do not fit in the relatively tight requirements
of the two previous classes.

A schematic overview of the track based tagging step is given in figure 5.10.

Although the three tagging classes have suggestive names and aim at well defined effects,
they are not that clean in reality. In the relatively unclean hadronic environment with its
many tracks, it is not expected that same side and opposite side can be cleanly separated.
Also contributions from the other not aimed-for tagging sources are expected to be present
in each of the classes.

5.4.2 Common Set of Input Variables

All track flavour correlation networks are offered the same set of input variables. Their
relevance for the individual neural network is determined in the training process. If the
contribution of a variable is not larger than 4.5σ, it is completely excluded from the
training. The full set of used variables is described here, the corresponding tables for the
individual trainings can be found in the appendix.
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In the previous stages, high-level quantities have been prepared that already contain
distilled information and should be used for the track based tagging step:

• The B track probability (bTrackProb2) is the output of the second B track network,
which is designed to identify tracks from the opposite side B hadron decay, mak-
ing use of secondary vertex information. Tracks that are assigned a high B track
probability are more likely to carry flavour information than other tracks, which are
predominantly background.

• The lepton from B probability (lepFromBProb) is the output of the lepton from B
network. By its definition, its purpose is to be used for opposite side lepton tagging.
As the division into the three tagging classes is done in a hierarchical way, about
10 % of all lepton candidates are contained in the same side tag class, the remaining
90 % form the lepton tag class. Therefore the lepton from B probability is always
defined in the lepton tag class and never defined in the general tag class.

To benefit from the reconstructed opposite side B decay vertex, prest and cos(θrest)
are included among the input variables. As most of the vertex information is already
contained in the B track probability, these vertex quantities are expected to be most
useful in opposite side lepton tagging, where smaller differences after a relatively hard
precut on the lepton from B probability can play a role.

Also the relation of a track to the jet in which it was reconstructed can carry information
about the flavour. As already exploited in the first B track network, tracks from B decays
are usually among the higher momentum tracks forming a jet. The variables included to
benefit from such effects are nTracksJet, djet

0 , prel
T and rapidity relative to the jet.

The relation to the reconstructed same side B meson is also expected to be useful in
finding track flavour correlations. When looking for the fragmentation partner of a meson,
it is expected in spatial proximity and will probably have a high momentum and rapidity
along the B meson direction. The signed impact parameter, ∆η, ∆φ and ∆R are used
to describe the kinematical and and spatial aspects, along with prel

L , prel
L rank, prel

T and prel
T

rank.
In the following sections, the flavour correlation networks for the three classes of tagging

tracks are described. For each of these, physics expectations, plots of important variables
and possible interpretations of the training findings are discussed. Details about the
conventions and reasons behind the way of plotting these quantities are discussed in
chapter 4.5.1. All input quantities as well as their significance for the neural network
trainings are given in the appendix.

5.4.3 Same Side Correlation Network

The same side correlation network (SCN) is used for all tracks that are reconstructed in
the same side jet. Same side tagging information is predominantly contained in the chain
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Figure 5.11: The three most important input quantities for the same side correlation
network. The plotting conventions are explained in chapter 4.5.1.

of fragmentation partners of the same side B meson, so information on the kinematical
proximity can be expected to play the leading role in this neural network.

As the fragmentation partners for Bs mesons are kaons, also particle identification
quantities for pion/kaon separation are expected to be highly useful. However, there are
technical and organisatorial issues with these quantities, so the current version of the
flavour tagger does not rely on them. This will be discussed further in section 6.5, along
with a study on what can be gained.

The three most relevant input variables for the same side correlation network are shown
in figure 5.11. Most important is the longitudinal momentum component pL along the
direction of the B meson, showing that higher values correspond to larger flavour cor-
relation probabilities. This is consistent with the expected behaviour for fragmentation
tracks of a neutral B meson.

The B track probability turned out to be on second place in importance and shows that
probable B daughter tracks tend to be anticorrelated to the same side flavour. Although
this tagging class is intended for same side tagging, a clean selection of same side tracks
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Figure 5.12: The three most important input quantities for the lepton correlation network.
The plotting conventions are explained in chapter 4.5.1.

only based on the jet algorithm can not be expected in a hadronic environment. Therefore
these tracks most likely originate from the opposite side B decay, for which the observed
behaviour is expected.

The third most important variable is the rank in ηrel with respect to the same side B
meson. The closest track in ηrel has a significantly higher flavour correlation than other
tracks, which have decreasing correlation probabilities with increasing kinematic distance
to the same side B. Again the expectation is confirmed that kinematically close tracks
have positive flavour correlations.

The neural network output is part of the combined track flavour correlation probability
shown in figure 5.14.

5.4.4 Lepton Correlation Network

Tracks that have a lepton from B probability assigned and do not belong to the same
side tagging class form the lepton tagging class and are handled by the lepton correlation
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Figure 5.13: Two of the four relevant input quantities for the general correlation network.
The plotting conventions are explained in chapter 4.5.1.

network (LCN). Leptons from opposite side B decays have an anticorrelation to the same
side flavour. As the prerequirements for the lepton from B network are already quite
strict, kinematic quantities to evaluate more subtle effects could play an important role
in this neural network.

In figure 5.12, the three most important input quantities for this neural network can be
seen. The most important input variable turned out to be the number of tracks in the jet,
followed by the transverse momentum relative to the jet and cos(θ) between the opposite
side vertex momentum direction and the track in the secondary vertex rest frame. Apart
from tracks that have not been assigned to a jet (zero tracks in the jet), a lower number of
tracks per jet shows a stronger flavour anticorrelation. This might be due to the fact that
less misidentified leptons are among the more isolated leptons than among those in the
middle of a multi-track jet. A high transverse momentum relative to the jet also indicates
a flavour anticorrelation, which is consistent with the expectation for lepton decays.

5.4.5 General Correlation Network

The tracks not fitting in the previous two classes are handled by the general correlation
network. The more striking effects from same side and lepton tagging have already been
exploited by the other tagging classes, so the power of the general correlation network
is expected to be low. Therefore no clear expectations corresponding to special physics
effects can be given in advance. The same selection of input quantities as for the other
classes is offered in the hope that inclusive effects might be still relevant.
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Figure 5.14: Neural network output distributions of the three track flavour correlation
networks for the different tagging classes. The distribution in each class is the sum of
signal (correlated tracks) and background (anticorrelated tracks) distributions. The lower
plot shows that the neural network output can be regarded as a probability value for the
true flavour correlation.

Figure 5.13 shows two of the four variables that were found to be relevant enough for
the classification process by NeuroBayes preprocessing. The most important quantity is
the track from B probability, showing the same behaviour as in the same side correlation
network. As there is no special tagging class for non-lepton opposite side B tracks, the
importance of this high-level input quantity is not surprising. The other input variable
in this figure, ∆R to the same side B meson, is the fourth most important for this neural
network. The assignment of tracks to the same side tagging class is based on the findings
of the jet clustering algorithm, so it is a reasonable assumption that same side tagging
effects can also be found in this class of remaining tracks; to illustrate this, this input was
chosen for plotting here. Tracks that are close to the same side B meson are likely to have
positive flavour correlations.

In figure 5.14, the neural network output distributions for all three flavour correlation
networks is shown. As expected, lepton tracks have show an anticorrelation between
charge and flavour, while same side tracks tend to have a positive flavour correlation. The
tracks of the general class accumulate in the central region, yielding the lowest separation
power of the three classes.
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Figure 5.15: Schematic overview of the event level tag combination process.

5.5 Flavour Tagging on Event Level

All tagging efforts described so far are based on single tracks. An event level flavour
tag is obtained by combining the information of multiple tracks. This is done with four
probability ratios of the track flavour correlation probabilities and an estimator of the op-
posite side vertex charge. All event level tags are combined in a neural network, delivering
the final decision of the flavour tagger containing all information available. A graphical
overview over the event level tag combination is given in figure 5.15.

5.5.1 Probability Ratios

In first order, all track flavour correlation probabilities can be regarded as independent
measurements which can be combined in a probability ratio. For each track i, the flavour
correlation probability pi is a prediction whether the track charge qi has the same sign as
the B meson flavour to tag. To transform this relative flavour correlation into an absolute
statement on the flavour, the track charge needs to be taken into account. There are two
cases for the probability pBi to have a B meson, containing a b̄ quark:

pBi = pi for qi = −1 (5.1)

pBi = 1− pi for qi = +1 (5.2)

The probability PB on event level to have a B meson is obtained by multiplying track
probabilities and normalizing the overall probability to 1:

PB =

∏
i p

B
i∏

i p
B
i +

∏
i(1− pBi )

(5.3)
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Figure 5.16: Distribution of the probability ratio of track flavour correlations using all
tracks.

A low probability to have a B meson is equivalent to a high probability to have a B̄
meson:

PB̄ = 1− PB (5.4)

Besides a probability ratio using all selected tracks in an event, also separate ones
are calculated in each of the three tagging classes. Although it can be expected that
the combination of all tracks contains all available flavour information, the additional
probability ratios give insight into the relative contributions of the tagging classes to the
overall power. Furthermore, each event level tagging quantity can in principle be used for
verification of the procedure and of agreement between simulation and reality. Validation
of the individual event level tags on Monte Carlo is further discussed in section 6.1.2. The
distribution of the track probability ratio using all tracks can be seen in figure 5.16.

5.5.2 Opposite Side Vertex Charge

Another quantity for flavour tagging on event level can be calculated from the B track
probability. By calculating a weighted sum of the charges qi of all tracks i in an event, using
the B track probability pBi as weight, an estimator QV for the charge of the reconstructed
opposite side B decay vertex is obtained:

QV =
∑
i

pBi · qi (5.5)
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Figure 5.17: Distribution of the vertex charge estimator and correlation to the same side
B flavour.

The number of tracks per event differs, its distribution is shown in figure 5.2. A nor-
malization of the vertex charge to the number of tracks involved is not done. The QV

distribution and its correlation to the same side B flavour can be seen in figure 5.17. A
low value for QV corresponds to a high probability of having a B meson on the same side.

5.5.3 Combining All Tags

In the last step of the tagging procedure, a final neural network is used to combine the
four track probability ratios with the vertex charge estimator. The output of this neural
network is a probability value that the same side B meson is a particle containing a b̄
quark, as opposed to being an antiparticle containing a b quark, and can be regarded as the
result of the whole flavour tagging procedure. Its distribution can be seen in figure 5.18.

Performance measurements on simulated events, validation, cross checks with B0 and
B+ mesons and results on data are presented and discussed in the next chapter.
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Figure 5.18: Output distribution of the final neural network (NNTag) used to combine all
available tagging information on event level.





6 Validation

On the way to a reliable flavour tagger for application in B physics analyses, the develop-
ment result described in the previous chapter is an important milestone. However, Monte
Carlo simulations as those used for this tagger always have a limited degree of realism. A
part of this is because the complicated simulation of all detector aspects must be achieved
within reasonable development and computing time, and also because we are just at the
borders of knowledge about the physics processes that are involved. Therefore Monte
Carlo predictions should be compared to findings on data wherever possible to find out
how far the procedure can be trusted and to quantify its reliability.

In this chapter, the different items of the validation procedure and their results are
described. The first step is to evaluate the training results on the B0

s Monte Carlo and
determine the predicted tagging power for the subtaggers and the neural network combina-
tion. Then the agreement between the Monte Carlo simulation and real data is examined
and measures are described that were taken to improve the agreement where necessary.
After that, cross checks for the procedure on B+ and B0 mesons and their results are
provided. At the end, preliminary results of the new B0

s mixing analysis are discussed
and an outlook on possible improvements to this flavour tagger by particle identification
information is given.

6.1 Performance on B0
s Monte Carlo

The first step towards validation of the tagger is to evaluate its performance on a Monte
Carlo simulation similar to the one used for training. A sample independent of the actual
training sample, the validation Monte Carlo sample, was used where possible. If there
are overtraining effects, they will become evident within the validation procedure. Only
the lepton part is an exception to this: All available lepton candidate tracks on Monte
Carlo have been used for training the lepton from B and the lepton correlation networks,
so unfortunately no independent sample is left to test this part on Monte Carlo.

6.1.1 Combined Neural Network Tagger

The final output of the tagger is a continuous value between zero and one that can be
interpreted as a probability that the same side B is a particle, containing a b̄ quark. To
verify the behaviour of this output it is useful to plot the distributions of this quantity

81



82 Chapter 6. Validation

nu
m

be
r 

of
 e

nt
rie

s

0

1000

2000

3000

4000 B mesons
 mesonsB

NNTag
0.0 0.2 0.4 0.6 0.8 1.0

B
 m

es
on

 fr
ac

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.1: Output distribution of the combined Neural Network tagger for true B and
true B̄ mesons on the validation Monte Carlo sample.

for true B mesons and for true B̄ mesons separately. Particles should accumulate at
higher, antiparticles at lower output values. Furthermore, the probability behaviour can
be checked by plotting the fraction of true B mesons in every bin. For a good estimator
all points in this plot should be on a straight line with slope one. The described plots can
be seen in figure 6.1.

The output distribution has a clear peaking shape in the central region between 0.4
and 0.6, where events accumulate that can not be tagged very clearly. The lower tail
extends to values around 0.15, the higher tail to about 0.85. These regions are populated
by events where the best decisions can be made.

The lower plot shows the relation between the neural network output and the fraction
of B mesons in a given bin. The plotted line represents the expectation for an ideally
trained neural network. Small systematic deviations can be seen in the tail regions, so
the classification has slightly more separation power there than the actual output value
suggests. The overall agreement between the expected and measured behaviour is very
good, especially in the central region of the neural network output, where most events are
found.

The distributions are not completely symmetric to each other, which means that both
production flavours can be identified with different uncertainties. There are physical
as well as detector effects that are different for tracks of the two charges: The cross
sections for positive and negative kaons for interaction with material are different, and
the COT geometry leads to different tracking efficiencies for positive and negative tracks.
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Charge symmetry is not assumed or enforced in the tagging procedure, so the resulting
asymmetries give no reason to worry.

The definition of the dilution from equation 2.29 can be written using the probability
PRS to have a right tag:

D =
NRS −NWS

NRS +NWS

=
2 ·NRS

NRS +NWS

− 1 = 2 · PRS − 1. (6.1)

The neural network output is a probability PB to have a B meson. Values below 0.5 are
considered B̄ tags, the others B tags. The probability PRS to take the right decision is
therefore equal to PB in case of a B meson and 1−PB in case of a B̄ meson. The tagging
power T is evaluated using the event by event predicted dilution:

T =
1

N

N∑
i=1

D2
i , (6.2)

where N is the total number of events and Di the predicted dilution of the individual
event. On the validation Monte Carlo sample, the tagging power was measured to be

ε = 99.6% (6.3)

D2 = 4.6% (6.4)

T = εD2 = 4.6%. (6.5)

The combined neural network tagger provides a tagging decision for every event that has
at least one track not used in the same side B reconstruction, so its overall efficiency is
close to one. For the subtaggers that do not have this feature, events without a tagging
decision are equivalent to Di = 0.

6.1.2 Individual Track Probability Ratios

It is worthwhile to check not only the final combination of all information, but as well
the contributing input quantities on event level, as it gives insight into their share of the
overall tagging power and can highlight possible problems in single parts. As described
in section 5.5.1, the track flavour correlation probabilities are combined in three separate
probability ratios for the three track tagging classes as well as in one probability ratio for
all available tracks. The behaviour of these probability ratios on the validation Monte
Carlo sample is examined here. Their output distributions can be seen in figure 6.2.

The same side tagging track class has the highest tagging power of the three classes. In
the majority of events, a tag in this class is available, and the same side track kinematics
exploited in the corresponding flavour correlation network yield reasonable discrimination
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Figure 6.2: Distributions of the individual track probability ratios for true B and true B̄
mesons on the validation Monte Carlo sample. In the upper line, the probability ratios
for the same side (left) and lepton (right) classes can be seen, below those for the general
track class (left) and for all tracks (right) are shown.
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power between both flavours. Its tagging power was measured to be

ε = 71.5% (6.6)

D2 = 3.3% (6.7)

T = εD2 = 2.4%. (6.8)

In the lepton tagging class, quite clean decisions can be made, but only a small fraction
of all events have at least one lepton candidate track:

ε = 4.7% (6.9)

D2 = 19.6% (6.10)

T = εD2 = 0.9%. (6.11)

This behaviour is amplified by the strong requirements that had to be done for the lep-
ton tagging class due to suboptimal agreement between data and Monte Carlo (see sec-
tion 6.2.1).

In nearly all events there are tracks that belong to the general tagging class. Because
the well measurable effects have been treated by the other two tagging classes, the power
is relatively low. It was measured to be

ε = 99.2% (6.12)

D2 = 0.8% (6.13)

T = εD2 = 0.8%. (6.14)

The probability ratio of all tracks contains all information of the three subclasses and is
defined for each event with at least one track not used in the same side B reconstruction.
Its tagging power

ε = 99.6% (6.15)

D2 = 4.0% (6.16)

T = εD2 = 4.0% (6.17)

corresponds to the sum of the values in the individual classes.

Also the relation between the B meson probability predicted by the respective tagger
and the true B meson fraction can be seen in figure 6.2. For all four cases the observed
behaviour is consistent with the ideal behaviour indicated by the diagonal line in the
plot. No parametrization as for the vertex charge was needed to achieve this feature. The
assumption that the individual track flavour correlations are uncorrelated measurements
can be regarded as justified. Therefore the results of the track probability ratios can be
interpreted as B meson probabilities.
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Figure 6.3: Distribution of the vertex charge tag in its raw form (left) and after the
parametrization fit (right). The fit function is shown in the lower left plot.

6.1.3 Vertex Charge Estimator

In contrast to the other event level tagging quantities, the vertex charge estimator is not
based on a track probability ratio combining the output of flavour correlation networks.
As explained in section 5.5.2, it is a weighted sum of a varying number of track charges
without a special normalization. To transform it into a probability for having a B meson
similar to the other event level tags, a parametrization fit is needed. This is only necessary
when using the vertex charge as a stand alone flavour tagger, for example for checking its
performance. When it is used as an input for the final tagging neural network, the raw
form is fully sufficient because of NeuroBayes preprocessing.

The raw vertex charge (shown in figure 5.17) distribution is centered at zero and extends
from roughly −4 to 4. As parametrization fit function,

f(x) = 0.5 + a · x+ b · x3 (6.18)

is chosen, where x corresponds to the raw vertex charge value and f(x) to the parametrized
vertex charge. The mapping of the neutral point from 0 in the raw form to 0.5 in the
probability form is fixed to avoid random shifts. To ensure that no asymmetries are
introduced by the fit, the function is symmetric, leaving out a possible quadratic term.
The cubic term is meant to catch outliers that might fake extraordinary high dilutions
when only mapping with a linear relation. In figure 6.3, the distribution of the raw vertex
charge, the parametrization fit and behaviour of the transformed quantity are shown. It
can be seen that the cubic term in the fit function is also justified by the shape of the B
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meson fraction. The parameters are determined in the fit to be

a = (−9.5± 0.3) · 10−2, (6.19)

b = (9.9± 7.3) · 10−4. (6.20)

After the transformation, also the vertex charge can be regarded as a B meson proba-
bility, and the tagging power was determined to be

ε = 99.6% (6.21)

D2 = 1.3% (6.22)

T = εD2 = 1.3% (6.23)

Also the vertex charge is available for every event with at least one track not used in the
same side B reconstruction, leading to 99.6% efficiency.

6.2 Agreement between Data and Simulation

6.2.1 Lepton Identification

During development of the flavour tagger, notable differences between the Monte Carlo
simulation and real data have been observed for the lepton identification quantities. The
LeptonTools have been developed and tested several years ago. Since then, the trigger
system and the offline reconstruction software have evolved. The work needed to investi-
gate and improve the observed disagreement in detail is beyond reach as a part of tagger
development. Fortunately the discrepancies predominantly affect the regions of low signal
fraction, so the problem can be attenuated by tightening the selection that needs to be
done anyway.

The comparison plots of electron and muon identification quantities can be seen in
figure 6.4. Especially for pmuon < 0.5, a clear discrepancy between data and simulation
can be seen. The region above 0.5 shows roughly the same shape, so only muon candidates
with pmuon > 0.5 are used.

In terms of statistics, the lepton from B network and the lepton correlation network are
at the lower limit and would benefit from softer precuts. For future updates of the flavour
tagger it would be desirable to either have updated LeptonTools available or switch to
the likelihood based electron and muon identification used in the existing opposite side
lepton taggers.
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Figure 6.4: Data to Monte Carlo comparison for the lepton identification quantities pro-
vided by the LeptonTools package, shown on B0

s data and Monte Carlo. The muon
probability pmuon is shown on the left, the combination of electron probability pel and con-
version probability pconv that is used in the tagger can be seen on the right. The precuts
chosen to avoid the problematic regions are indicated with the vertical lines.

6.2.2 Multiple Interactions per Bunch Crossing

Since the beginning of Run II, the Tevatron has significantly increased its instantaneous
luminosity. At the time when the CDF software was designed, it was a reasonable assump-
tion that there is only one hard scattering process per bunch crossing, so the standard
Monte Carlo simulations do not have multiple interactions. A so called pile-up of multiple
interactions is to be expected in today’s luminosity regime. Tracks from these additional
interactions that pass the track selection criteria for this flavour tagger are completely
unrelated to the B meson of interest. They can however fake signatures of interesting
tracks, for example appear like coming from a secondary vertex due to a large impact
parameter.

The purpose of this study is to quantify the amount of pile-up tracks that are to be
expected in order to decide on additional measures against these tracks if necessary. It
was performed on the B0 version of the flavour tagger, but is equally valid for the B0

s and
B+ variants. The number of hard scattering processes per bunch crossing is calculated
from Tevatron parameters and the interaction cross section. From the Tevatron radius of
1km, the revolution time is calculated to be

T = 1 km · 2π

c
≈ 21 µs. (6.24)
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Figure 6.5: The distribution of instantaneous luminosity at which the events in the B0 data
sample have been recorded. The bin width corresponds to ∆L = 28.5 · 1030 sec−1 cm−2,
the value for which the average number of expected primary interactions increases by one.

CDF has measured the total inelastic pp̄ cross section to be σ = 60.3 mb [52]. Taking
into account that the Tevatron is filled with 36 pairs of colliding bunches, the number of
interactions n per bunch crossing as a function of instantaneous luminosity L is determined
by the relation for the event rate

Ṅ =
n · 36

T
= L · σ, (6.25)

which means that one additional interaction is expected for an increase of

∆L = 28.5 · 1030 sec−1 cm−2 (6.26)

in instantaneous luminosity.

According to the track selection criteria listed in section 5.3.2, tracks are selected for
tagging when they are within tight d0 and ∆z0 limits around the reconstructed same side
B meson. A thorough way of determining how many tracks from additional interactions
actually fulfil these requirements is to make a complete Monte Carlo simulation including
additional interactions. This is done by using the same simulation process as described
in section 5.3.1, but inserting a specified number of minimum bias interactions generated
by Pythia [50] before detector simulation. Our dataset of reconstructed B0 mesons was
used to extract the distribution of instantaneous luminosity in bins with a width of ∆L
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Figure 6.6: Result of the pile-up Monte Carlo study: The fraction of pile-up tracks among
the selected tracks in an event as a function of the number of additional interactions that
were simulated.

calculated above. The luminosity profile in this binning can be seen in figure 6.5.
Another Monte Carlo sample including the simulation of pile-up interactions is then

created with this luminosity profile. How many additional interactions are generated for
a given event is determined by a random number that follows a poisson distribution with
the mean of the given luminosity region. Effects of pile-up corresponding to the behaviour
in data are included in this enhanced Monte Carlo sample.

Using Monte Carlo truth information, the fraction of pile-up track passing the selection
criteria can be determined as a function of the number of additional interactions simulated.
This relation is shown in figure 6.6. While the fraction of pile-up tracks is increasing with
additional interactions, it is still below 3% for nearly all simulated events. Taking into
account the distribution of selected tracks per events (see figure 5.2), one additional pile-
up track is expected on average in every third event. It is unlikely that pile-up effects at
such low intensities affect the performance of the flavour tagger notably. Therefore they
are regarded to be negligible, and no special Monte Carlo simulations for B0

s and B+ have
been generated. As the B0 Monte Carlo sample has been created within this study, it is
used for training of the B0 version of the flavour tagger.

6.2.3 Reweighting

Some of the inherent limitations of Monte Carlo simulations can be overcome by weighting
the individual Monte Carlo events in a suitable way to achieve the desired properties. The
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correction weights can have continuous values, but their distribution should not extend
across several orders of magnitude. It is also reassuring if the average weight is around
one, because then the sum of all weights equals the number of events before reweighting.
In the following sections, reweighting measures for improving the Monte Carlo used in the
flavour tagger are described.

Opposite Side B Hadron Composition

In the b quark fragmentation process, about 40% B0 , 40% B+ , 10% B0
s and 10% other

B hadrons are produced [14]. When generating the Monte Carlo according to the pro-
cedure described in section 5.3.1, this composition is distorted and needs to be restored
by appropriate weights. The generation process involves filtering of events containing at
least one of the desired B meson type, which is assumed to be a B0

s meson in the context
of this description, but is valid in the same way for the other two B meson types. Exactly
one B0

s meson per event is then forced to decay in the selected decay channel, artificially
enhancing the branching ratio of this channel to one. The selected decay channel in the
B0
s case is

B0
s → D±s π

∓, D±s → φπ±, φ→ K+K− (6.27)

with a branching ratio B = 7.2 · 10−5 [14], including the subsequent D±s and φ decays.
The artificial branching fraction enhancement saves a considerable amount of computing
time.

If there is a second B0
s meson present, its decay is simulated according to the decay

table without additional constraints. Which of the two B0
s mesons decays freely is decided

randomly, with equal probabilities for both. In comparison to the case of only one B0
s

meson per event, the branching ratio of the selected decay channel is effectively enhanced
to 1

2
instead of one.

After Monte Carlo generation, B0
s mesons in the specified decay channel are recon-

structed, defining the same side B meson. Now first consider all cases where the b̄ quark
enters the same side B: All events with one B0

s meson are reconstructed, but only half
of those with two B0

s mesons1. The other case with the b quark on the same side is
symmetric, again all events with one B0

s meson are found, but only half of those with two
B0
s mesons. For the opposite side B hadron, only half of the possible cases for B0

s are
retained, while all other pass unrestricted.

To correct this distortion, all events that have the same kind of B meson on the same
side and on the opposite side are weighted up by a factor of two in relation to all other
events. The sum of all weights is normalized to the number of events in order to keep the
total number of events unchanged. The composition of opposite side B hadrons before
and after reweighting is shown in figure 6.7 for the B0 case.

1To be precise, also the second B can decay in the preferred channel, so it would be 0.5 + B, which is a
negligible correction in this case.
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Figure 6.7: Composition of opposite side B hadrons before (black) and after (red) the
described reweighting procedure, shown for the B0 case.

Trigger

The CDF trigger system is continuously evolving to accommodate external influence like
the increased Tevatron luminosity as well as to benefit from grown understanding of the
system and its suitability for analysis needs. The overall bandwidth is limited by the
data acquisition system, so all trigger scenarios are competing for their share of the total
bandwidth. The balance between them is maintained by prescaling factors which are
adjusted in a global optimization of technical and physical requirements. Luminosity
dependent prescales are used to enable high-rate triggers only after the instantaneous
luminosity has dropped below specified threshold values.

As the whole trigger system is very complex, it is very difficult to predict the available
free bandwidth in a given operational situation. Offline determination of static prescaling
factors can therefore only be used as a starting point for further optimization. To make
optimal use of the available bandwidth, a dynamic prescaling system is used to grant
individual triggers more trigger rate if free bandwidth is available.

No simulation of the dynamic prescaling system is available for Monte Carlo produc-
tion. The composition of trigger scenarios in the Monte Carlo dataset can therefore be
significantly different from the one observed in real data. As the trigger scenario in which
an event was recorded influences quantities like the momentum spectrum of reconstructed
B mesons, data to Monte Carlo disagreement in trigger composition should be corrected
before examining the agreement in kinematic properties.

In figure 6.8, the distribution of trigger scenarios on data and on Monte Carlo before
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Figure 6.8: Composition of trigger scenarios for B0
s data (left) and unweighted Monte Carlo

(right). After reweighting, the composition on Monte Carlo is by construction identical
to the one observed in data. Data is shown sideband-subtracted.

trigger path data MC weight

LOWPT 9% 33% 0.26
B CHARM 27% 27% 1.01
HIGHPT 64% 39% 1.63

Table 6.1: Composition of trigger paths on B0
s data and Monte Carlo. The weights are

obtained by dividing the fraction of a given trigger path in data by its fraction in Monte
Carlo.
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reweighting can be seen. Table 6.1 shows the data in numeric form, along with the weights
that are calculated as the ratio between the fraction in data to the fraction in Monte Carlo.
Events simulated in the B CHARM scenario remain unchanged, the LOWPT scenario
needs to be scaled down to approximately 1

4
of its previous size, while the HIGHPT events

are significantly more frequent on data than predicted in the simulation and are weighted
up accordingly. This behaviour can be explained by the recent increase in Tevatron
luminosity: The event acceptance requirements of the HIGHPT scenario are stricter than
for the other two, so it can be operated at relatively high luminosities where the other
scenarios are disabled by high prescales. Compared to the luminosity profile assumed in
the trigger simulation, a larger share of data taking happens in high luminosity running
conditions.

Neural Network Reweighting

Artificial neural networks have been used in classification problems throughout this thesis.
Their task is to evaluate differences between the signal and background samples, reducing
the multi-dimensionality of the problem to a single probability value for an event being
signal or background. Finding differences between data and Monte Carlo can also be seen
as a classification problem. No separation power is expected from the neural network if
both samples are similar to each other, whereas disagreement between them will result in
different outputs for the two samples.

Neural networks can not only be used to identify differences between the samples,
but their output can also be used for reweighting one sample to make it similar to the
other. NeuroBayes conveniently offers a neural network output which is a probability
Psignal ∈ [0 : 1] for having a signal event. Defining the real data to be signal and Monte
Carlo to be background, the neural network output NN can be written as

NN =
Pdata

Pdata + PMC

, (6.28)

from which the Monte Carlo weight

wMC =
Pdata

PMC

=
NN

1−NN
(6.29)

follows.

The available B0
s dataset consists of roughly 2500 events. For reliably training a weight-

ing neural network, about three to four times this sample size is necessary, as the danger
of learning statistical fluctuations is high at small statistics. Therefore, the B0

s Monte
Carlo in this tagger uses only the described opposite side and trigger reweighting. The
B0 and B+ datasets are more than ten times as large as the B0

s sample, so the additional
neural network reweighting is applied here. In this chapter, the B0 case is shown and
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discussed, the corresponding plots for the B+ case can be found in appendix B.1.
Before the reweighting network is trained, the trigger composition is corrected as de-

scribed in the last section. Nevertheless, the trigger path is also included as input variable
for the network reweighting as a cross check. The other input quantities are the trans-
verse momentum pT , the pseudo-rapidity η and the angle φ of the reconstructed same
side B meson. Equal sized samples of data (signal) and Monte Carlo (background) are
used in the training process so that the data probability is 0.5 for events that are in good
agreement.

In figure 6.9, the input variables and the neural network output for the B0 event
reweighting network are shown. The overall agreement between data and simulation
in the selected variables is reasonable even before the network reweighting. The trigger
composition does not show significant disagreement, which is expected because the Monte
Carlo sample had already been reweighted before this comparison. A significant difference
is visible in the B meson transverse momentum, with a tendency for higher pT values on
data compared to Monte Carlo. High pT events will have high neural network output
values, resulting in larger weights. In the pseudo-rapidity η, events in the very forward
regions of the detector are more frequent on Monte Carlo than on data. These regions
will be weighted down as a result of their relatively low neural network output. For the
azimuthal angle φ, significant simulation problems are neither expected nor observed here,
which is a reassuring result.

From the neural network output, the event weights are calculated according to equa-
tion 6.29. The weight to restore the correct opposite side B hadron composition, the
trigger and the network wights are considered independent and therefore combined by
multiplying all three. The resulting distribution of weights can be seen in figure 6.10, the
average weight is one.

After applying these event weights to the Monte Carlo sample, the training process is
repeated as a cross check. The observable differences should be significantly smaller after
the reweighting. The variables and the neural network output of the validation round can
be seen in figure 6.11. In comparison to the uncorrected situation shown in figure 6.9, the
width of the neural network output distribution is visibly smaller, and the contributing
variables do not show significant disagreement any more. The reweighting procedure can
therefore be regarded as a successful improvement of the available Monte Carlo simulation.

6.3 Test With Other B Mesons

Studying the new flavour tagger on data is the key part in the validation procedure.
Besides the relatively rare B0

s mesons, also its sister particles B+ and B0 , of which CDF
has accumulated substantial amounts, can be used. Due to conservation of the electric
charge, B+ mesons are not subject to flavour oscillations. While this eliminates the
need for flavour tagging in analyses, it opens up possibilities for tagging validation that
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Figure 6.9: Input quantities and neural network output (on logarithmic scale) for the B0

Monte Carlo reweighting network. The plotting conventions are explained in chapter 4.5.1.
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Figure 6.10: Distribution of event weights to correct differences between B0 data and
Monte Carlo. The mean value is indicated by the marker on the x axis.

are almost as straightforward as on Monte Carlo, because the true production flavour
is always known. Concerning flavour tagging physics, B0 mesons are very similar to B0

s

mesons. Their considerably lower oscillation frequency removes some of the experimental
challenges of the B0

s case, and due to their more frequent occurrence, larger samples allow
for more precise measurements. In this section, validation procedures and results on both
B+ and B0 mesons are discussed.

6.3.1 Charged B± Mesons

The production flavour of a reconstructed B+ meson is unambiguously known because it
is identical to its decay flavour. Validation of tagging performance can be done in a similar
way as on Monte Carlo, with only minor complication from combinatorial background.
The distribution of the different event level tagging quantities are known separately for
B+ and B− mesons, and so also the relation between predicted and measured flavour can
be obtained.

The physical aspects of B+ mesons are considerably different from neutral B mesons,
especially in same side tagging. As the initial pp̄ state is charge neutral while the B+

meson itself is charged, all other tracks have a higher probability for being oppositely
charged. Because of this fundamental difference, B+ data can not directly be used to
validate the B0

s trained tagger. Instead a specialized B+ version of the tagger was derived
by retraining the track flavour correlation networks and the combined tag network. For
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Figure 6.11: Validation of the B0 Monte Carlo reweighting network with the reweighted
Monte Carlo sample. The plotting conventions are explained in chapter 4.5.1.
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Figure 6.12: Mass spectrum of the B+ validation sample. The blue peak region con-
tains a mixture of signal and background candidates, the red sideband regions are pure
background samples. Both sidebands together contain the same number of background
candidates as expected in the peak region.

this, a B+ Monte Carlo sample was generated in the same way as the B0
s Monte Carlo.

While a flavour tagger for a charged meson has no application for analysis, it is here
used for testing the tagging procedure itself along with the quality of the Monte Carlo
simulation. Additional differences could arise from the fact that the B+ data sample in
the decay channel

B± → J/ψ K±, J/ψ → µ+µ− (6.30)

was collected using a di-muon trigger, while the B0
s and B0 are two-track trigger samples.

During the reconstruction of a B meson from its stable daughter particles, random com-
binations of tracks can form false candidates, called combinatorial background. Although
advanced selection procedures with high purity and efficiency are available and in use, a
signal sample will always contain a certain amount of background.

When studying the distribution of a given quantity on data, the influence of these back-
ground events can be taken into account by a sideband subtraction. The mass spectrum
of reconstructed B meson candidates after candidate selection usually shows a distinct
peak at the expected meson mass and more or less flat background regions. In the signal
region, a mass window around the central peak value, a mixture of signal and background
properties can be observed. The background contribution to the peak region can be ac-
counted for by subtracting a pure background sample – taken from the sideband region
outside the peak – from the distribution of the quantity of interest. In figure 6.12, the
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Figure 6.13: Output distribution of the combined neural network flavour tagger (NNTag)
on sideband subtracted B± → J/ψK± data. The true B meson fraction shown in the
lower plot agrees well with the line indicating ideal behaviour.

mass spectrum of the B+ data sample used for validation can be seen. Signal and sideband
regions are indicated in the plot.

Figure 6.13 shows the final output of the B+ version of the combined neural network
tagger on real B+ data. It can be seen from the lower plot that the relation between tagger
output and true B meson probability is linear. It is also consistent with the indicated
ideal situation, which means that the tagger output is a true B meson probability also on
B+ data. This is a very satisfying result and gives confidence in the quality of the Monte
Carlo simulation as well as in the overall tagging strategy.

Also the ingredients in the final tag can be validated individually. The corresponding
set of validation plots can be found in figure 6.14. All of them show consistency with the
ideal behaviour, so no indications of problems is present in this check, providing confidence
in the basic approach behind this tagger and the simulation.

6.3.2 B0 Flavour Oscillations

The physics of flavour oscillation and tagging in the B0 meson system is very similar to
the B0

s case. The B0 oscillation frequency is about 35 times slower than in the B0
s system,

which poses significantly lower requirements on the resolution of the proper decay time
measurement. Another notable difference to theB0

s case can be found in same side tagging:
The leading fragmentation partner of the same side B meson is usually a kaon for B0

s and
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Figure 6.14: Distributions of event level tagging quantities constructed from the track
flavour correlation probabilities on sideband subtracted B± → J/ψK± data.
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Figure 6.15: Raw observed B0 oscillation asymmetry as a function of proper decay time,
measured with the combined neural network tagger.

a pion for B0. Nearly ten times as many reconstructed B0 mesons are available in data
compared to B0

s mesons. Furthermore, the B0 oscillation frequency has been precisely
measured by the B factories. All these reasons suggest that B0 mesons provide a nearly
ideal validation testbed.

Raw B0 Oscillation Asymmetry

The easier experimental situation makes it possible to directly plot the time dependent
B0 oscillation asymmetry and thereby deliver a visual proof that the new flavour tagger
is able to measure flavour oscillations.

Figure 6.15 shows the asymmetry (see equation 2.19) between mixed (production and
decay flavour are opposite) and unmixed (production and decay flavour are equal) B0

mesons as determined by the B0 tagger as a function of proper decay time. Only binary
tagging decisions were used, ignoring the predicted dilution delivered by the tagger. We
fit the asymmetry with a function

A(t) = A0 · cos(∆md t), (6.31)

which is the B0 equivalent of equation 2.22. The parameter values

A0 = 0.12± 0.01, (6.32)

∆md = (0.518± 0.023) ~ ps−1, (6.33)



6.3. Test With Other B Mesons 103

4.8 5.0 5.2 5.4 5.6 5.8 6.0

2
C

an
di

da
te

s 
pe

r 
9 

M
eV

/c

0

1000

2000

3000

4000

5000

6000

7000

8000 Data
Fit Function

π D →B
 D K→B

Comb. Backgr.
 D X→B

πs D→sB
πcΛ→bΛ

2/NDF = 257.7/102χ

fit prob. = 0.0 %

 192.47±S = 37043.31 

 69.41±B = 4817.26 

 0.12±S/B = 7.69 

 0.67± = 181.05 S+BS/

-1
CDF Run 2 Preliminary, L = 2.8 fb (+ cc)-π-π+ K→-, D+π- D→0B

2Invariant Mass in GeV/c

5.0 5.5 6.0

da
ta

(d
at

a 
- 

fit
)

-4
-2
0
2
4

0.0 0.1 0.2 0.3

 c
m

-3
 1

0
×

C
an

di
da

te
s 

pe
r 

3.
50

 

1

10

210

310

Data
Fit Function

π D →B
Comb. Backgr.

πs D→sB
πcΛ→bΛ

2/NDF = 173.5/91χ

fit prob. = 0.0 %

mµ 3.2 ) ± = ( 450.5 τc

-1
CDF Run 2 Preliminary, L = 2.8 fb (+ cc)-π-π+ K→-, D+π- D→0B

Proper Decay Time in cm

0.0 0.1 0.2 0.3

da
ta

(d
at

a 
- 

fit
)

-2

0

2

Figure 6.16: Fit projections in mass (left) and proper decay time (right), using the B0

decay B0 → D−π+, D− → K+π−π−.

have been determined in the fit. The measured oscillation frequency is in good agreement
with the world average value ∆md = (0.508 ± 0.005) ~ ps−1 [14]. While the physical
amplitude of this asymmetry is 1, the lower value observed for A0 is caused mainly by
wrong tagging decisions.

Full Mixing Fit

The full B0 mixing analysis is very similar to the measurement of B0
s oscillations. In

an unbinned maximum likelihood fit, the oscillation frequency and the observed oscil-
lation amplitude A are determined. For a correctly predicted dilution, A is one, while
underestimation of the dilution results in larger and overestimation in lower values of the
amplitude. An overview on the mixing measurement is given in section 2.2. As it is an
extensive analysis on its own, it is work in progress in the context of another thesis [26]
within the Karlsruhe CDF group. Preliminary results interesting for tagger validation are
presented here.

In figure 6.16, the fit projections to invariant mass and proper decay time are shown.
Both spectra are well described by the fit parametrization, indicating a thorough under-
standing of all background contributions found in the dataset. The resulting oscillation
frequency

∆md = (0.484± 0.034) ~ ps−1 (6.34)
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Figure 6.17: Fit projections in mass (left) and proper decay time (right) in the decay
channel B0

s → D±s π
∓, D±s → φπ±, φ→ K+K− that was used for the validation analysis.

agrees well with the world average value ∆md = (0.508 ± 0.005) ~ ps−1 [14]. Also the
observed amplitude

A = 0.93± 0.08 (6.35)

is consistent with one. Both values are in good agreement with the expectation and give
credibility to the predicted tagging performance.

6.4 Bs Flavour Oscillations

The B0
s oscillation measurement is one of the main applications of this flavour tagger,

while serving as validation opportunity at the same time. The B0
s mixing signal has been

observed by the CDF experiment three years ago [5] and the oscillation frequency has been
measured to be ∆ms = (17.77± 0.10) ~ ps−1. Once an oscillation signal can be observed,
the measured amplitude serves as a consistency check for the predicted dilution. The
observed oscillation amplitude A is one if the dilution is well predicted.

In the published CDF analysis, multiple hadronic and semileptonic B0
s decay chan-

nels have been combined. In the meantime, a significantly larger data sample has been
accumulated, allowing a preliminary check on the decay channel

B0
s → D±s π

∓, D±s → φπ±, φ→ K+K−. (6.36)
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alone. The new neural network B flavour tagger presented in this thesis has been used to
perform the full B0

s mixing analysis in this decay channel for validation. Fit projections
for mass and proper decay time can be seen in figure 6.17, underlining the thorough
understanding of dataset composition and the maturity of the mixing analysis. The
measured oscillation frequency

∆ms = (17.65± 0.14) ~ ps−1 (6.37)

is consistent with the previously measured value, and also the observed oscillation ampli-
tude

A = 0.98± 0.28 (6.38)

is consistent with one. The tagging power on B0
s data

T = 4.6% (6.39)

has been determined from the predicted dilution and corrected by the observed oscillation
amplitude. It is consistent with the tagging power measured on the validation Monte
Carlo sample.

The observed oscillation amplitude confirms the validity of the dilution prediction,
which also implies that the Monte Carlo simulation is sufficiently well under control and
has an acceptable agreement with real data. Together with the encouraging cross check
results from the B+ meson studies and the B0 oscillation measurement, this result is
another indication that the new flavour tagger is ready for application. The update of
the B0

s oscillation measurement using all available B0
s decay channels will be the final

validation and the first application for the tagger, so that studies of CP violation in the
B0
s meson system can benefit from improved flavour tagging.

6.5 Outlook: Particle Identification

The reconstruction of a charged particle track based on hit locations in the CDF tracking
system allows for a precise momentum measurement, but spatial information alone is not
enough to determine the type of particle associated with a given track. An estimate on
the mass of a particle can be calculated by combining the momentum measurement with
velocity information from the time of flight detector (TOF) or with the specific energy loss
dE/dx in the Central Outer Tracker. In the context of flavour tagging, this is especially
useful to distinguish kaons from pions, as kaons play an important role in B0

s same side
tagging.

Despite the usefulness of particle identification information (PID), it can not be used
without complications. Providing a sufficiently accurate simulation is a challenging task
and can up to now only be achieved by parametrizing the observed behaviour in data.
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As the performance and availability of the relevant detector components is a complicated
function of various aspects, a data based calibration of both TOF and dE/dx quantities
must be established before they can be used in analysis. These calibrations are often
not available for a considerable time after data taking, delaying the application in every
analysis that depends on them.

These limitations have proven impedimental during the development work on this
flavour tagger, especially concerning the agreement between data and simulation. There-
fore no TOF or dE/dx information is used in the current version of the new flavour tagger,
making it ready for application on future new data without waiting for calibrations. Af-
ter the agreement between data and simulation for the PID-free version of the tagger are
understood and its development is finished, particle identification can be included again
to benefit from kaon/pion separation in B0

s same side tagging.

A study of the possible gain by particle identification for the new tagger is presented in
this section. It was done by including TOF and dE/dx information based on the existing
simulation for the first 1 fb−1 in the track flavour correlation networks of the B0

s tagger.
The additional PID input quantities for the same side correlation network are pion and
kaon probabilities from TOF, dE/dx and from a likelihood based combination of both
(CLL). The track based same side correlation network and the event level combined tag
network have been retrained and applied on a Monte Carlo sample. The simulation is not
valid for later data, and good agreement between data and simulation is not expected for
this study.

The three most important input variables for the modified same side correlation network
can be seen in figure 6.18. In comparison to the original network (see figure 5.11), the
role of pL along the B meson direction has been taken over by the combined particle ID
likelihood ratio (CLL) for kaon hypothesis, which is the most significant input variable
now. High kaon probabilities correspond to strong correlations between track charge and
B flavour, which is expected for kaons being the leading fragmentation particles for B0

s

mesons. The second and third most input variables have swapped their position, but
remain unchanged otherwise.

Figure 6.19 shows the broader neural network output distribution corresponding to in-
creased separation power of the PID-version in comparison to the original network output
distribution. The output distributions of both versions of the combined tag network are
shown in figure 6.20. The increased separation power leads to more events in the tail
regions of the output distribution.

In the same way as described in section 6.1, the tagging power of the PID-version is
determined on the validation Monte Carlo sample. The determined value of

T = εD2 = 6.7% (6.40)

corresponds to a 40% increase compared to T = εD2 = 4.6% of the version without
particle identification. This confirms the potential for improvement with the help of TOF
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Figure 6.18: The three most important input quantities for the same side correlation net-
work, including particle identification information. The plotting conventions are explained
in chapter 4.5.1.
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and dE/dx information. As soon as calibrations for the latest data and a sufficiently
accurate simulation are available, the power of the new combined flavour tagger can be
significantly improved as was shown in this study.





7 Conclusion

Flavour tagging is a central element of all B physics analyses that involve resolving time
dependent neutral B meson oscillations, most prominent among them the measurement of
the B0

s oscillation frequency. Its goal is to determine whether a meson was produced as B
or B̄ meson. In this thesis, an advanced approach to B flavour tagging has been presented.
Flavour information from all available sources is extracted in a uniform procedure and
combined into a probability statement on the production flavour. Existing CDF flavour
taggers are focused on individual information sources and can therefore not benefit from
correlations between them.

The new flavour tagger consists of three main parts. In a first step, quantities useful
for the later stages are obtained and an inclusive reconstruction of the second B hadron
in an event is done. The second step is the heart of the procedure, where a probability
for a correlation between track charge and the B meson production state is gained for
every track. In the third step, these probability values of all tracks are combined so that
an event level flavour tag is obtained. Artificial neural networks are used in all three
parts to benefit from good classification performance. The tagger has been developed on
simulated B0

s events and is now implemented within the CDF software framework.

The figure of merit for flavour tagging is the tagging power T = εD2 with efficiency
ε and dilution D. The efficiency corresponds to the fraction of events which have been
given a tagging decision at all, while the dilution is a measure of confidence associated
with a decision given by the tagger. Despite its name, a high dilution indicates a more
reliable decision and is favourable for a tagger. The relation between the dilution D and
the probability P to have a correct tag is given by D = 2 · P − 1. Having suboptimal
tagging decisions results in an effective reduction of the available sample of B mesons.
The combination εD2 indicates the size of a hypothetical sample with perfect tagging
decisions that has the same overall statistical significance as the reference sample.

The new flavour tagging algorithm presented here provides a tagging decision for all
events that have at least one additional track not used in the exclusive reconstruction of
the studied B meson. This is the case for more than 99% of all events, so the efficiency is
virtually one. The overall tagging power on simulated B0

s events has been determined to
be

T = 4.6%. (7.1)

Because the agreement between simulated events and real data is always limited from
fundamental reasons, the behaviour of the flavour tagger needs to be verified on data.
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This was done on experimentally favourable B+ and B0 mesons as well as in the B0
s

oscillation measurement. Dedicated B+ and B0 versions of the tagger have been derived
by training the relevant neural networks on corresponding samples of simulated events.
Validation results on B+ mesons show good agreement between data and simulation,
giving confidence in the simulation quality and the validity of the tagging procedure.
The analysis of B0 oscillations is very close to the B0

s case on the physics side, but has
the experimental advantages of higher statistics and a lower oscillation frequency. The
observed oscillation amplitude on data is consistent with the expected value of 1, and
the frequency is consistent with the world average value, indicating good understanding
of both simulation and the tagger itself. Also preliminary results of the B0

s oscillation
analysis with the new tagger on real data show good agreement between simulation and
application, although with a larger statistical uncertainty than in the B0 case due to the
experimental challenges in the B0

s system.
To eliminate a possible source of simulation problems and because calibrations are often

not available for a considerable time after data taking, no information from the specific
energy loss and time of flight system for particle identification is used in the current version
of the flavour tagger. As improved kaon identification would especially help in B0

s same
side tagging, the gain in stability and robustness is bought dearly by sacrificing overall
tagging power. To quantify the cost of this tradeoff, the existing simulation of particle
identification has been included in a testing version, disregarding the disagreement to
data. In this study, the tagging power has been determined to be T = 6.7%, which
is a 40% increase compared to the current version without particle identification. It is
therefore highly desirable to overcome the technical difficulties with particle identification
and include it in future versions of the flavour tagger.

Up to now, the CDF collaboration made use of a neural network combined opposite
side tagger with a tagging power of T = 1.8% and of a same side kaon tagger yielding T =
3.7%, where the latter depends on information for particle identification. The combined
tagging power of both is not stated, but can not be higher than the sum of the two. Thus
the new tagger presented in this thesis offers a significant increase in tagging power for
data that has no calibrated particle identification available. When this calibration along
with a reliable simulation is available, the new tagger can reach a prospective tagging
power that is about 20% higher than that of the existing taggers combined.

The B0
s oscillation analysis with the increased CDF dataset since the last published

result will be the first major application and constitute the final validation for the new
flavour tagger. Afterwards, the search for CP violation inB0

s → J/ψ φ, inB0
s → J/ψ f0(980)

and in B0
s → K+K− decays, which are sensitive to New Physics effects, will benefit from

the new flavour tagger.
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A Neural Network Input Variables

Key to read the tables:

• rank: importance rank for the given variable

• index: variable number, starting with two because of NeroBayes numbering conven-
tions

• added: additional significance in σ added by this variable, given the higher ranked
variables are already included

• only this: significance in σ for only this variable

• loss: lost significance in σ when this variable is removed from the network with all
others remaining

• corr.: global correlation of this variable to the other variables

• identifier: variable name in short form

• a separating line in the table indicates which variables have been automatically
removed because their contribution was not above the required precut
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A.1 First B Track Network

rank index added only this loss corr. identifier
1 21 258.08 258.08 67.98 82.2% jetData d0signi
2 2 110.50 118.00 36.37 89.0% stdData pt
3 10 91.97 217.97 66.93 78.1% bMesonData d0
4 11 82.39 116.12 43.47 95.2% bMesonData deltaPhi
5 13 66.05 66.78 42.13 80.7% nOtherTracks
6 8 59.05 89.25 58.51 14.5% muonProbFlag
7 6 56.78 15.00 52.52 27.7% nSiHitsL00
8 4 37.67 258.92 36.75 87.8% stdData d0signi
9 7 37.82 18.15 32.10 56.9% stdData eta

10 12 23.78 99.71 21.98 95.3% bMesonData deltaR
11 14 22.12 53.28 25.71 78.7% nTracksJet
12 5 20.56 33.32 20.74 33.4% stdData z0signi
13 9 14.29 12.22 14.74 29.8% bMeson pt
14 22 9.65 53.09 15.63 77.3% inSameSideJet
15 20 14.56 62.81 16.68 76.6% jetData pt ptJet
16 16 8.86 14.85 12.58 54.4% jetData ptRelFlag
17 18 10.04 70.17 14.80 86.8% jetData rapidity
18 15 9.77 30.02 9.53 32.2% jetData ptJet
19 3 8.39 121.35 10.51 88.7% stdData ptRank
20 19 8.56 96.21 8.23 90.5% jetData rapidityRank
21 17 7.05 38.98 7.05 48.1% jetData ptRel
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A.2 Secondary Vertex Network

rank index added only this loss corr. identifier
1 3 288.65 288.65 126.67 72.0% bProb2
2 12 104.20 214.31 18.30 87.7% lxySigni
3 6 91.14 143.45 51.85 54.9% inSameJet
4 15 56.60 37.26 52.41 23.6% fitChi2
5 2 60.38 235.36 54.02 72.7% bProb1
6 13 42.49 189.72 22.52 76.0% abs deltaPhi
7 14 29.31 161.21 28.31 50.6% abs deltaEta
8 9 26.87 41.19 29.80 34.0% cosThetaStar
9 10 17.64 218.31 19.38 89.8% lxy

10 8 16.77 113.70 16.54 45.5% mass
11 5 16.35 78.70 10.63 60.4% bProbRank2
12 7 15.12 29.26 15.13 5.5% abs charge
13 4 6.45 58.84 6.50 62.9% bProbRank1
14 11 4.23 41.03 4.23 59.1% sigmaLxy
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A.3 Second B Track Network

rank index added only this loss corr. identifier
1 2 537.61 537.61 341.40 67.3% bTrackProb1
2 12 62.92 163.57 44.24 86.4% vertexData d0signi
3 3 94.92 201.20 61.30 65.2% secVertex bProb
4 9 78.74 303.28 28.93 87.4% vertexData cosThetaRest
5 20 39.22 85.71 40.48 11.2% stdData isEfromBcand
6 4 35.61 102.59 39.57 63.0% secVertex lxy
7 5 35.30 303.00 43.46 76.0% vertexData usedInFit
8 8 33.01 284.56 15.11 89.4% vertexData pRest
9 10 23.05 234.63 14.74 88.6% vertexData d0

10 6 17.86 268.02 16.26 76.8% vertexData inJet
11 11 11.36 258.62 12.19 73.5% vertexData sigmaD0
12 16 10.18 167.31 16.64 71.7% stdData pt
13 7 12.67 116.80 12.89 54.4% vertexData mass
14 21 11.60 20.29 11.56 3.4% stdData electron noconv
15 13 10.47 54.96 10.62 41.0% vertexData z0
16 19 10.01 20.90 10.08 3.8% stdData muonProb
17 18 9.46 130.21 9.49 26.4% stdData muonProbFlag
18 14 6.31 109.25 9.63 67.9% vertexData sigmaZ0
19 17 9.24 33.60 9.25 56.4% stdData eta
20 15 0.71 22.71 0.71 17.7% vertexData z0signi



A.4. Lepton from B Network 119

A.4 Lepton from B Network

rank index added only this loss corr. identifier
1 2 94.74 94.74 43.68 79.6% bTrackProb2
2 9 29.10 60.92 26.90 48.8% bMesonData pTrel
3 10 15.47 40.50 14.11 38.1% bMesonData pLrel
4 13 12.48 48.42 16.35 56.1% vertexData pRest
5 12 11.04 34.51 8.53 82.2% vertexData inJet
6 7 8.70 3.83 8.61 23.9% stdData eta
7 4 7.42 47.73 7.31 51.1% electronAndNotConversion
8 8 5.61 31.90 5.38 39.9% bMesonData d0
9 14 3.62 50.07 4.54 82.9% vertexData cosThetaRest

10 11 2.95 48.97 2.75 85.0% vertexData usedInFit
11 3 1.56 35.03 1.35 46.6% isEfromBcand
12 6 1.19 28.66 1.19 39.0% muonProb
13 5 0.00 35.04 0.00 100.0% isMufromBcand
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A.5 Same Side Correlation Network

rank index added only this loss corr. identifier
1 23 23.60 23.60 11.53 83.9% bMesonData pLrel
2 2 23.12 19.46 9.97 67.9% bTrackProb2
3 22 18.61 23.64 2.76 94.6% bMesonData etaRelRank
4 10 9.73 21.61 3.23 99.1% jetData d0
5 25 9.99 9.54 6.45 67.8% bMesonData pTrel
6 24 6.46 25.67 5.91 69.4% bMesonData pLrelRank
7 19 6.00 20.78 5.63 97.9% bMesonData deltaR
8 21 5.91 20.07 6.56 97.5% bMesonData etaRel
9 26 5.18 4.90 4.75 76.9% bMesonData pTrelRank

10 14 4.22 22.16 2.84 82.5% jetData rapidity
11 3 4.01 5.89 3.97 11.3% lepFromBProb
12 13 2.83 8.51 2.86 67.7% jetData ptRel
13 5 2.81 2.87 2.72 30.0% vertexData z0
14 15 2.55 17.80 2.99 62.9% jetData rapidityRank
15 8 2.13 9.97 2.10 83.7% vertexData cosThetaRest
16 6 2.10 10.16 2.30 77.2% vertexData inJet
17 16 1.73 21.44 1.76 99.1% bMesonData d0
18 17 1.56 11.84 0.78 81.0% bMesonData deltaEta
19 4 1.30 4.74 1.33 20.4% vertexData d0
20 20 0.86 23.33 0.87 94.7% bMesonData deltaRRank
21 7 0.84 17.18 0.83 81.9% vertexData pRest
22 18 0.48 14.47 0.48 84.9% bMesonData deltaPhi
23 9 0.25 2.80 0.25 30.2% jetData nTracksJet
24 12 0.00 0.00 0.00 0.0% jetData inSameSideJet
25 11 0.00 0.00 0.00 0.0% jetData inOppositeSideJet
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A.6 Lepton Correlation Network

rank index added only this loss corr. identifier
1 9 20.20 20.20 12.57 65.7% jetData nTracksJet
2 13 22.04 16.63 11.53 66.3% jetData ptRel
3 8 17.46 19.90 11.13 48.8% vertexData cosThetaRest
4 16 13.65 16.48 4.92 90.0% bMesonData d0
5 7 12.01 19.31 9.16 56.4% vertexData pRest
6 25 7.80 19.45 3.27 79.1% bMesonData pTrel
7 23 5.56 16.10 3.31 70.0% bMesonData pLrel
8 5 5.08 8.79 4.16 43.3% vertexData z0
9 15 4.32 15.50 2.78 69.9% jetData rapidityRank

10 2 3.85 16.67 1.22 89.5% bTrackProb2
11 20 1.98 9.55 2.36 84.6% bMesonData deltaRRank
12 24 2.49 7.09 2.51 77.0% bMesonData pLrelRank
13 18 1.44 4.38 2.35 70.5% bMesonData deltaPhi
14 19 1.80 3.37 2.31 81.9% bMesonData deltaR
15 21 2.08 3.21 2.14 71.3% bMesonData etaRel
16 11 1.64 4.08 1.77 46.0% jetData inOppositeSideJet
17 4 1.26 5.36 1.66 65.6% vertexData d0
18 3 1.26 23.17 1.27 93.8% lepFromBProb
19 6 1.07 1.33 1.05 65.5% vertexData inJet
20 17 0.90 1.87 0.95 32.9% bMesonData deltaEta
21 26 0.84 1.19 0.81 33.1% bMesonData pTrelRank
22 14 0.81 13.45 0.80 74.9% jetData rapidity
23 10 0.42 15.07 0.42 90.5% jetData d0
24 22 0.02 8.97 0.02 85.9% bMesonData etaRelRank
25 12 0.00 0.00 0.00 0.0% jetData inSameSideJet
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A.7 General Correlation Network

rank index added only this loss corr. identifier
1 2 10.79 10.79 4.85 67.5% bTrackProb2
2 13 5.80 6.35 4.95 55.3% jetData ptRel
3 14 5.58 5.44 2.10 68.8% jetData rapidity
4 19 5.18 6.51 2.52 80.6% bMesonData deltaR
5 8 4.05 8.72 4.11 56.2% vertexData cosThetaRest
6 16 2.87 6.04 2.08 68.5% bMesonData d0
7 17 2.60 2.33 2.58 10.4% bMesonData deltaEta
8 9 2.35 4.48 1.44 55.2% jetData nTracksJet
9 7 2.60 3.27 1.96 63.9% vertexData pRest

10 18 2.30 5.93 2.34 53.0% bMesonData deltaPhi
11 20 2.05 3.90 1.94 71.0% bMesonData deltaRRank
12 15 1.36 5.59 1.16 67.3% jetData rapidityRank
13 26 1.29 3.56 0.93 48.2% bMesonData pTrelRank
14 4 1.33 4.88 1.54 40.5% vertexData d0
15 6 1.20 4.25 1.01 67.0% vertexData inJet
16 10 0.84 5.34 0.86 69.8% jetData d0
17 25 0.86 7.95 0.92 76.0% bMesonData pTrel
18 22 0.77 2.89 1.00 78.7% bMesonData etaRelRank
19 24 0.73 2.09 0.80 70.4% bMesonData pLrelRank
20 5 0.71 0.99 0.69 25.1% vertexData z0
21 11 0.58 3.11 0.61 53.0% jetData inOppositeSideJet
22 21 0.46 5.38 0.46 83.3% bMesonData etaRel
23 23 0.26 6.88 0.26 54.6% bMesonData pLrel
24 12 0.00 0.00 0.00 0.0% jetData inSameSideJet
25 3 0.00 0.00 0.00 0.0% lepFromBProb

A.8 Combined Tag Network

rank index added only this loss corr. identifier
1 2 76.84 76.84 5.55 98.8% lhrAll
2 6 13.98 41.03 16.60 62.2% vertexCharge
3 3 7.68 59.75 6.08 98.1% lhrSameSide
4 4 6.96 36.09 4.74 94.4% lhrLepton
5 5 1.70 32.59 1.70 94.5% lhrGeneral



B Data / Monte Carlo agreement

B.1 Reweighting B+ Monte Carlo
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Figure B.1: Input quantities and neural network output (on logarithmic scale) for the B+

Monte Carlo reweighting network. The plotting conventions are explained in chapter 4.5.1.
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Figure B.2: Validation of the B+ Monte Carlo reweighting network with the reweighted
Monte Carlo sample. The plotting conventions are explained in chapter 4.5.1.
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