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Preface

The present is a written version of lecture notes for the introductory course on the
Phenomenology of Elementary Particles, held within the framework of the Master’s
equivalent degree course in Physics at Insubria University in Como. The lectures
were first delivered in the academic year 2005/06 and have since undergone some
evolution. The notes have been augmented and edited with the aim of being as
self-contained as is reasonably possible and therefore of more general utility. They
are thus primarily intended for use by students with a basic knowledge of classical
electromagnetism, quantum mechanics and special relativity but not necessarily,
for example, of quantum field theory. However, this volume should also hopefully
represent a useful reference text and study aid for other similar courses.
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Chapter 1

Introduction

1.1 Supplementary reading

A (very short) list of suggested supplementary reading material follows. The books
by Perkins and by Martin and Shaw are particularly recommended for their style,
clarity and completeness and their relevance to the subject matter of this course.
In addition, each chapter contains a more-or-less comprehensive list of cited works
(both original papers and more general pedagogical review articles), which may
be consulted for further study.

We should finally mention the Particle Data Group (PDG) Review of Particle
Physics (PDG-2012 – Beringer et al., 2012), which is updated every two years
and, besides providing a compendium of high-energy particle-physics data, con-
tains many clear and concise review articles on various aspects of particle physics,
including the theory behind the standard model (SM).

Reading list

Beringer, J. et al., Particle Data Group (2012), Phys. Rev. D86, 010001.

Cahn, R.N. and Goldhaber, G. (1989), The Experimental Foundations of Particle
Physics (Cambridge U. Press).

Close, F.E. (1979), An Introduction to Quarks and Partons (Academic Press).

Halzen, F. and Martin, A.D. (1984), Quarks and Leptons (John Wiley & Sons).

Martin, B.R. and Shaw, G. (1997), Particle Physics (John Wiley & Sons), 2nd.
edition.
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2 CHAPTER 1. INTRODUCTION

Perkins, D.H. (2000), Introduction to High Energy Physics (Cambridge U. Press),
4th. edition.

Povh, B., Rith, K., Scholz, C. and Zetsche, F. (1995), Particles and Nuclei
(Springer–Verlag).

1.2 Aims and philosophy

The specific topic of this lecture series is the phenomenology of particle physics
at both high and low energies. While a certain basic knowledge of the theoretical
foundations (in particular, notions of quantum mechanics and special relativity)
is assumed and is necessary for a full appreciation of the subjects treated, the
main emphasis is placed on the phenomenological aspects and on the experimental
manifestation of the underlying dynamics and symmetries. In particular, the role
of symmetries (exact and approximate) and their violation is central to many of
the discussions. In this context, I can also recommend, as general supplementary
reading, the Dirac Memorial Lecture delivered by Weinberg (1987).

While the formulation and physical significance of the Dirac equation (1928)
is briefly outlined, no attempt is made to enter into the realms of quantum field
theory. The formalism of Dirac spinors and their relation to the symmetries of
spin, parity and charge-conjugation is, however, necessary. Moreover, in order to
describe some of the phenomena that have played important roles in the growth
of our knowledge of particle interactions, the notion of Feynman diagrams (1949)
is introduced in an intuitive manner.
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Chapter 2

Symmetries
(Discrete and Continuous)

In this chapter we shall mainly be concerned with discrete symmetries, or more
precisely: parity, charge-conjugation and time-reversal invariances and also their
violation. However, since we shall be forced to examine the weak interaction in
some depth it is natural that some discussion be presented here of the flavour
symmetries present in the quark sector. In particular, in order to explain CP
violation, it will be necessary to examine the question of quark mixing and the
Cabibbo model (1963) with its extension to the full three-generation picture due
to Kobayashi and Maskawa (1973). However, the principal topics here will remain
the symmetries of C, P and T .

2.1 Parity violation in weak interactions

Within the realm of particle physics perhaps one of the first and most notable phe-
nomenological manifestations of symmetry (or lack thereof) is related to the role
of parity in the weak interaction. Of course, symmetry and its role in general was
recognised much earlier: Einstein’s development of the theory of relativity (both
special and general) rests on notions of symmetry (with respect to the choice of
reference frames) while Noether’s seminal work (1918) on the relationship between
continuous symmetries and conserved quantities stands at the very foundation of
all modern theory, both classical and quantum.

Parity, however, holds a special place as the first, simplest and previously
unquestioned symmetry to be found violated in Nature (Wu et al., 1957).∗ This

∗ It is often recounted that when Abdus Salam, as a young researcher, proposed a theory involving
parity violation to Wolfgang Pauli, he was unceremoniously dismissed with the remark: “This
young man does not realise the sanctity of parity!”

5



6 CHAPTER 2. SYMMETRIES (DISCRETE AND CONTINUOUS)

opens the window onto a completely new perspective: the breaking of symmetries.
Just over half a century later it is now quite normal to seek violation of symmetries
and indeed to use the natural violations that can occur at the quantum level to
explain, at least in part, the phenomenology of the particles populating the world
we see and experience.

2.1.1 The τ−θ puzzle

In the early fifties a puzzle arose (Dalitz, 1953) involving two new subatomic
particles, then called τ and θ. Both were members of the newly found family of
so-called strange particles, relatively long-lived objects that were being produced
in the new accelerator experiments. The long lifetimes of these particles suggested
that, although the final states often only contained strongly interacting particles,
they did not decay via the strong interaction; they were thus deemed strange. The
τ+ and the θ+ are now known to be one and the same particle, the charged kaon
or K+.

In fact, the τ+ and θ+ were found to be identical in terms of their mass, charge
and other properties (within experimental precision) and were only distinguished
by their decay modes.∗ The two particles decayed quite differently and hence their
being considered distinct. The τ+ decayed into three pions (π+π+π− or π+π0π0)
while the θ+ produced only two (π+π0). Indeed, it was only the different decay
modes that distinguished them and suggested the need for two separate particles.
The fact that their lifetimes were also very similar (identical within errors) rendered
the idea of two distinct yet almost identical states (one might say “twins”) very
puzzling—no other known pair of particles displayed such striking similarity.

The intriguing necessity for two distinct particles arose from the realisation
that the parity of the two final states must be different (Dalitz, 1953). In 1956,
based on observations of the charged-kaon decays, Lee and Yang were led to make
the (then extravagant) proposition that parity conservation might be violated.†

They further suggested that if the answer to the τ–θ puzzle were indeed parity
violation, then such an effect might also be observed in the spatial distribution of
the β-decay of polarised nuclei. In essence, they proposed measuring a pseudo-
scalar quantity such as p·s, where p is, say, the final electron momentum and s,
say, the spin of the decaying nucleus.

Let us first examine why the parity assignments must differ (Dalitz, 1953).
Experiments showed that the spin of both objects was zero; thus, the question of

∗ Naturally, their charge-conjugate versions or antiparticles, with opposite charge, also exist and
exhibit identical behaviour.

† The 1957 Nobel Prize for Physics was awarded equally to Chen Ning Yang and Tsung-Dao
Lee for “their penetrating investigation of the so-called parity laws which has led to important
discoveries regarding the elementary particles.”
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angular-momentum conservation is rather simple since pions too have spin zero:
the total orbital angular momentum of the final state must then also be zero. With
zero orbital contribution to the total angular momentum of the system, the overall
parity is just the product of the intrinsic parities of the final-state particles—recall
that the parity of the spatial part of the wave-function is simply (−1)L. This is
trivial in the two-pion case; for three pions, while they may individually have non-
zero orbital angular momentum, the overall total cancellation required implies
overall even parity of the spatial part. The parities of the final states are then
determined by the intrinsic parities of the pions they contain.

2.1.2 Intrinsic parity and its measurement

All particles either naturally possess or may be assigned an intrinsic parity. In
the case of fermions a consequence of the Dirac equation is that a given fermion
and antifermion have opposite parities. Since fermion number is conserved (only
fermion–antifermion pairs may be created or annihilated), the absolute value of,
say, the electron parity is undetectable and irrelevant. By convention, the parity
of fermions (antifermions) is taken as positive (negative) although no physical
significance may be attached to either separately. However, the intrinsic parity of
a fermion–antifermion pair is meaningful and is thus predicted to be negative.

Recall that the parity of a compound state is just the product of the parities of
the parts. The parity of a qq̄ meson is thus the product of the intrinsic parities of
the quarks of which it is composed and the parity of the spatial wave-function de-
scribing their relative orbital motion. In other words, Pπ=PqPq̄(−1)L=(−1)L+1,
where L is the orbital quantum number. This has the immediate consequence that
a pion, being the lowest-mass, zero-spin qq̄ state (and therefore presumably with
zero internal orbital angular momentum and with the quark and antiquark spins
antiparallel), should have negative intrinsic parity. This is indeed experimentally
verified; i.e. it is pseudoscalar.

The measurement of Pπ=−1 is conceptually rather simple: consider associated
production (via the parity-conserving strong interaction) of a neutron pair from a
low-energy, negatively charged pion incident on a deuteron:

π−d → nn. (2.1.1)

The deuteron is a spin-one nucleus (Lpn=0 and Spn=1) of positive parity and
the pion has zero spin, while the proton and neutron both have spin one-half.
In any case, the two nucleons are, with respect to parity, merely spectators in
this process. What are important are the relative initial- and final-state orbital
angular momenta. Now, the process is actually that of K-capture: the pion is
initially trapped, forming an excited pionic atom, and then rapidly cascades down
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to the lowest Bohr orbit, i.e. an s-wave, from which it then interacts with the
deuteron. The total angular momentum of the initial state is thus one, but with
Lπd=0 and therefore positive spatial parity. The parity of the initial and (so too)
the final states is therefore precisely the pion parity: Pπ=(−1)Lnn

The orbital angular momentum of the final state could, in principle, be meas-
ured by studying (statistically) the angular distribution of the neutrons produced.
However, it is easier to appeal to the Fermi–Dirac statistics obeyed by a system
of two identical fermions. The final nn system must have unit total angular mo-
mentum and this can be constructed from either a sum of the two neutron spins
giving zero (singlet) and orbital motion L=1 or a sum of spins giving one (triplet)
and orbital motion L=0, 1 or 2.∗ For the spin-singlet state, we have the following
spin wave-function:

1√
2

(
|↑↓〉 − |↓↑〉

)
. (2.1.2a)

Note, in particular, that it is antisymmetric under interchange of the neutrons.
Since they are identical fermions, the spatial part must then be symmetric and
thus L even. The total spin can then only be even and therefore one is excluded.
For the triplet state, on the other hand, we have the following three possible spin
wave-functions:

|↑↑〉, 1√
2

(
|↑↓〉+ |↓↑〉

)
, |↓↓〉. (2.1.2b)

These are all symmetric under interchange and thus the spatial part must be
antisymmetric, giving L odd, which will only accommodate L=1, combining with
S=1 to provide total spin one. Therefore, we must have S=1, L=1, negative
spatial parity and Pπ=−1.

Exercise 2.1. By considering the intrinsic parities of the proton and neutron,
together with their known orbital and spin alignments inside the deuteron, show
that indeed we do expect Pd=+1.

2.1.3 The physical consequences of parity violation

As mentioned earlier, the idea then was to measure the dependence of some decay
rate on a pseudo-scalar quantity such as p·s. The reason for this is quite simple.
Let us suppose that the transition matrix element or quantum amplitude for some
decay rate (or, of course, interaction cross-section) takes the general form

M ∝ A+B p·s, (2.1.3)

with A and B scalar quantities that do not depend (linearly) on either p or s.
Then, since p is a polar vector, it changes sign under the action of parity inversion

∗ Recall that angular momenta are to be added vectorially.
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while s, a pseudovector or axial vector, does not. The B term will thus change
sign with respect to the A term and so

∣∣MP
∣∣ 6=

∣∣M
∣∣, (2.1.4)

where M
P stands for the corresponding matrix element under parity inversion.

Such a difference would be precisely a manifestation of the parity violation that
Lee and Yang sought.

Now, although it is not possible to apply P as such experimentally, the presence
of a parity-violating term may be detected from the spatial dependence it implies.
For example, for a fixed spin s, we also have that

∣∣M(−p)
∣∣ 6=

∣∣M(+p)
∣∣ . (2.1.5a)

And so it is sufficient to simply examine, e.g., the decay rate for final-state electron
momenta parallel and antiparallel to the nucleon spin axis. Note that the two
statements are entirely equivalent. A final-state electron observed moving, say,
parallel to the nucleon spin axis, moves in the opposite direction in the parity-
inverted experiment. Note also that analogously, for fixed p, we have

∣∣M(−s)
∣∣ 6=

∣∣M(+s)
∣∣ . (2.1.5b)

2.1.4 Parity violation in β-decay

The invitation to perform an experiment to detect such parity violation was taken
up shortly after in 1957 by Wu et al.∗† of Columbia University in New York. At
that time Wu was considered a world expert on β-decay and Lee also worked at
Columbia.

The basic requirement of polarising the initial-state decaying nucleus then led
Wu et al. to select Co60 as it has a nuclear spin of J =5 in natural units (with a
large magnetic moment too). The experiment was by no means simple; in order
to substantially polarise the cobalt specimen and avoid depolarisation by thermal
motion, exceedingly low temperatures and thus new refrigeration techniques were
necessary. To this end Wu enlisted the help of Ernest Ambler, a cryogenics expert.

∗ Why, after all this time, some texts still refer to the leader of the group as Madame Wu is a
mystery. In a modern age reference to the gender of a research scientist (or indeed of anyone
when gender is irrelevant) is, at best, belittling. Indeed, if one wished to attach a title to the
name of, say, Feynman or Fermi, it would be Prof. and certainly not Monsieur.

† Although, perhaps rather surprisingly, Wu did not receive the Noble prize for this discovery,
her contribution was recognised via many other honours and awards: she was the first female
president of the American Physical Society and the first winner of the Wolf Prize in Physics,
to mention just two.
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Indeed, so convinced was Wu of the importance of such an experiment that she
forwent a long-awaited trip to her native China and immediately set about prepar-
ing the necessary equipment at the National Bureau of Standards’ headquarters in
Maryland, where important facilities were available. And so, with group members
sleeping in the laboratory in order to be ready when the required temperatures
were reached, just a few months after the discussions with Lee and Yang the ex-
periments were performed.

The measurement of any variations with respect to p would require either two
identical detectors or two independent runs with a single detector being placed
first above and then below the decaying specimen. However, the difficulties in
control over systematics would render any difference found highly suspect. The
observation exhibited in Eq. (2.1.5b) was thus exploited and the polarisation axis
flipped by inverting the applied (vertical) polarising magnetic field. Still, some
control over systematics was desirable and so advantage was taken of the full
decay chain. The basic β-decay process is

Co60 → Ni60 ∗ + e− + ν̄e, (2.1.6)

where the nickel daughter (J =4) is left in an excited state. The subsequent trans-
ition to the Ni60 ground state is a two-step process involving double γ emission.
Both transitions are of the electric-quadrupole (E4) type with its characteristic
double-lobe angular distribution. The presence of nuclear polarisation may thus
be checked by observation of the relative γ-ray intensities in the polar (i.e. vertical)
and equatorial directions (i.e. horizontal); the emitted photons prefer to lie in the
equatorial plane rather than along the polarisation axis.

The procedure thus essentially consisted of cooling the specimen to ∼0.01K
and applying a magnetic field along, say, the z direction. The refrigeration system
was then switched off and continuous read-outs were taken of both the polar β
flux and the polar and equatorial γ intensities. This was then repeated with the
polarising magnetic field inverted. The results are displayed in Fig. 2.1 and may
be summarised via the following angular decay distribution for the electrons with
respect to the polarisation axis of the Co60 nucleus (as suggested by Lee and Yang):

I(θ) ∝ 1 + α
v

c
cos θ, (2.1.7)

where, given that cosθ=±1 here, the asymmetry parameter α is effectively meas-
ured directly. Wu et al. found α negative and gave a lower-limit estimate of
|α|>∼ 0.7. In fact, α is negative for electrons and positive for positrons. More
precise measurements later showed that, in general, |α|=1; i.e. parity is maxim-
ally violated in β-decay.

Since the energies are so low that orbital angular momentum can play no role,
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Figure 2.1: Results of the parity violation experiment performed by Wu et al. (1957).
The γ anisotropy and the β asymmetry with the polarising magnetic field pointing up
and down as functions of the time after switching off the cryostat.

one can make an argument to infer the electron spin by noting that ∆J =−1 for
the nuclei in this decay and therefore the electron–neutrino pair must carry off
one unit of spin aligned in the positive z direction, i.e. both spins must be aligned
along the same positive z direction. Since the electron tends to move along the
negative z direction, it must have helicity −1;∗ in other words, it is left handed.
Likewise, in β-plus decays the positron is found to be always right handed.

“The sudden liberation of our thinking on the very structure of the physical
world was overwhelming.”

Chien-Shiung Wu

∗ Recall that helicity is defined as h := p̂·ŝ and therefore −1<h<+1.
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2.1.5 The helicity of the neutrino

The measurements performed by Wu et al., while unequivocally indicating that
parity is indeed violated and that the electrons (positrons) emerging are left (right)
handed, did not provide any indication as to the relative spin alignment of the
(undetected) neutrinos. Just a few months later Goldhaber et al. (1958) thus set
out to measure the helicity of neutrinos produced in β-decay. The method devised
is ingenious (see Fig. 2.2), combining as it does a number of non-trivial physical

Figure 2.2: Apparatus for analysing the circular polarisation of γ-rays in the experiment
to measure neutrino helicity performed by Goldhaber et al. (1958).

effects and phenomena.
The process used was K-capture:

Eu152 + e− → Sm152 ∗ + νe
|→ Sm152 + γ, (2.1.8)

J = 0 1 0

in which the samarium daughter nucleus subsequently de-excites via γ-emission.
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The spin actually measured was that of the emitted γ. The analysing magnet and
block of magnetised iron surrounding the source served to filter out one or other
of the two possible γ helicities: a photon may be absorbed by an atomic electron
if and only if their spins are opposite (the electron then flips its spin to conserve
angular momentum). Conversely, a photon with spin parallel to the electrons in
the block of iron will pass relatively unhindered.

−→
γ
⇒ +

e−

←
γ
⇒ +

e−

→ . . .
photon direction absorbed unabsorbed

(2.1.9)

Since the γ-emission process involves a J =1 nucleus decaying into J =0, the
photon evidently carries the same spin as the original nucleus, which in turn must
be opposite to that of the neutrino.

In order to extract the neutrino helicity, information is also needed on its
direction of motion (without directly detecting it). The lower samarium rescatterer
is only effective for those photons with energy exactly corresponding to the first
excited state (from which the photons were originally produced). Now, the effect
of the nuclear recoil in such processes results in emitted photons with slightly less
than the excitation energy while absorbed photons need slightly more. Therefore,
were both the emitting and absorbing samarium nuclei both stationary, there could
be no absorbtion. However, in the K-capture process, for which the captured
electron is essentially at rest while the neutrino is emitted with a non-negligible
energy, the daughter nucleus recoils. Such a recoil may be sufficient, if it is in the
right direction, to provide the necessary extra energy to the subsequently emitted
photon. Thus, only a photon produced from a nucleus moving in the same direction
(and therefore opposite to the neutrino) may be rescattered and finally detected.

To recap, the photon and neutrino move in opposite directions and also have
opposite spin projections; they therefore have the same helicities. By comparing
the counting rate with the magnetic field applied in the positive and negative
vertical directions, Goldhaber et al. were thus able to infer the neutrino helicity or
handedness. The results demonstrate that the neutrino too is always left handed.
Similar experiments on antineutrino emission (using, e.g., Hg203 ) show that the
antineutrino is instead right handed (as too is the positron emitted in β+-decay).

2.1.6 Muon-decay experiments

The findings of Wu et al. were confirmed by parallel experiments on muon decay
carried out at almost the same time by Garwin, Lederman and Weinrich (1957).
For completeness, we shall just briefly review the basic concepts. Once again, the
idea came from Lee and Yang: they suggested studying pion decay into muons
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and the subsequent in-flight muon decay, thus

π+ → µ+ + νµ
|→ e+ + νe + ν̄µ. (2.1.10)

In the first decay, thanks to parity violation, the muon spin is predominantly
aligned along its direction of motion. The muons are then stopped in a carbon
target and are assumed to lose little of their polarisation in the stopping process.
If this is the case, then again, by virtue of parity violation, the decay electrons
will emerge with an angular distribution with respect to the muon direction of the
form

I(θ) ∝ 1 + α cos θ. (2.1.11)

In fact, rather than moving the detectors, the experimenters exploited the magnetic
moment of the muon to precess its spin. The measured distribution suggested a
value α=0.33±0.03. The fact that here |α| 6=1 can be explained by the non-trivial
composite nature of the pion.

2.1.7 Interpretation

While one might be led to attribute the existence of parity violation to the neutrino
itself, a closer inspection reveals this to be wrong. The reason that suspicion falls on
the neutrino has to do with its mass, or rather lack thereof. A left-handed electron
appears so only in certain reference frames. However, if the observer is boosted to
a velocity exceeding that of the electron (which is always possible for a massive
particle), then it will now appear to have the opposite velocity while maintaining
the same spin projection and will thus have effectively flipped its helicity to become
right handed. There can therefore be nothing intrinsically special about a right-
or left-handed electron, or indeed any massive fermion. In contrast, a massless
neutrino always travels at the speed of light and so a neutrino that is left handed
in some given reference frame appears left handed in any frame. It is thus tempting
to attribute parity violation to the non-existence of the right-handed neutrino and
left-handed antineutrino.

What has not been mentioned here yet is that there are also a large number of
weak decays that do not involve neutrinos (so-called non-leptonic decays) but in
which parity is still violated. A simple example is furnished by the decay channels

Λ0 → pπ−, nπ0. (2.1.12)

By virtue of a non-zero magnetic moment, the Λ0 may easily be polarised (this
is indeed how its magnetic moment is measured) and thus one may measure the
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correlation between the Λ0 spin direction and say the momentum direction of the
emitted nucleon (the nucleon and pion naturally emerge back-to-back in the Λ0

rest frame). Again, such a quantity, depending on a scalar product p·s, violates
parity. In this case the asymmetry parameter is α≈0.64. Again, the reason |α| 6=1
has to do with the non-trivial internal structure of baryons.

Consequently, we must ascribe the violation of parity to the nature of the weak
interaction itself. This will be discussed fully in the next section; suffice it to say
here that the nature of the weak force is such that it only couples left-handed
fermions. In other words, at this level it is entirely irrelevant whether or not the
right-handed neutrino exists: it is simply non-interacting or sterile.

2.1.8 Closing remarks

“Discoveries in physics often depend on looking toward a new direction, quite
often with the very latest detector technology. Parity non-conservation is
an exception. The reason it was not discovered [earlier] was not because it
was at the margin of detector technology, but simply because people did not
look for it.”

Tsung-Dao Lee

Indeed, such an experiment could easily have been performed thirty years earlier
and it is probable that the effect had been seen as early as the twenties but not
recognised. In fact, it was not until the thirties and the work of Wigner that the
role of parity was at all appreciated.

2.2 V −A formulation of the weak currents

As we have seen in the previous section, parity violation, at least in the case of
leptonic interactions, is maximal. The questions raised now are how this may be
explained and what are the implications?

2.2.1 The Dirac equation

As mentioned in the previous section, the properties of fermions with respect to
spatial inversion are dictated by the form of the Dirac∗ equation (1928). This is
connected to the question of spin and the fact that the Dirac equation relates
particle to antiparticle and automatically includes spin states. We shall now
provide a very brief description of the Dirac equation and its main properties.

∗ The 1976 Nobel Prize for physics was awarded equally to Erwin Schrödinger and Paul Adrien
Maurice Dirac for “the discovery of new productive forms of atomic theory.”
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In quantum mechanics the wave equations governing particle motion may be
deduced from the classical laws via substitution of dynamical variables such as
momentum and energy with operators, thus: E→ i∂/∂t and p→− i∇ or, for a
relativistically covariant version, pµ→ i∂µ.∗ The free-particle Schrödinger equa-
tion is then derived from

E =
p
2

2m
. (2.2.1)

The Dirac equation is the result of an attempt to formulate a Lorentz covariant
wave equation that avoids certain problems of negative energies. If we attempt to
replace (2.2.1) with Einstein’s version

p2 = m2, (2.2.2)

where p is now a four-vector, we obtain the Klein–Gordon equation (Klein, 1927
and Gordon, 1926). However, owing to the presence of E2, apparently unphysical
negative-energy solutions naturally arise.

The idea of Dirac was effectively to take the square root of this equation and
adopt something of the form

pµ ∼ m. (2.2.3)

Now, since pµ transforms as a vector while m is a scalar quantity, we evidently
need to saturate the index µ:

γµpµ = m, (2.2.4)

where γµ, a new object introduced ad hoc, must evidently have special properties.
Indeed, this equation should still agree with the Einstein relation (2.2.2) and so,
squaring, we require that

γµpµ γ
νpν = p2 (2.2.5)

to be completely equivalent to (2.2.2). That is,

1
2
{γµ, γν}pµpν = γµpµ γ

νpν = p2 = pµpµ = gµνpµpν , (2.2.6)

where the first step is made by assuming the coefficient vectors γµ to commute with
pµ, as they must to avoid spurious forces, and then symmetrising in the indices
µ,ν (since pµpν is symmetric). The above requirement is then satisfied if

{γµ, γν} = 2gµν 1, (2.2.7)

where the 1 is the identity in the space spanned by the γµ. This is just the Clifford
algebra, which may be rendered with a matrix representation.

∗ We shall immediately adopt the “natural” units of the high-energy physicist, in which both c
and ~ are set equal to unity.
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The standard 4×4 representation is that of Dirac, given in the appendices:

γ0 =

(
1 0
0 −1

)
and γ =

(
0 σ
−σ 0

)
, (A.1.11)

where a 2×2 block notation has been used and the σ are just the usual Pauli
matrices. The Dirac equation is then

iγµ∂µψ = mψ, (2.2.8)

where ψ must now be a four-component spinor. The role of the four components
is uncovered by coupling the equation to a (classical) electromagnetic potential
Aµ via the usual procedure of minimal coupling : pµ→pµ−eAµ or equivalently
i∂µ→ i∂µ−eAµ. Consideration of a classical electric potential A0 and the form
of γ0 reveals that, if the upper two components of ψ are to describe an electron of
charge −|e|, then the lower two describe an object of charge +|e|, or the positron.
Moreover, consideration of the magnetic part in the low-energy limit reveals the
spin content and the prediction of a gyromagnetic ratio equal to two.

We further find that the various transformations of spatial inversion (or parity),
time reversal and charge conjugation are obtained via multiplication by suitable
combinations of the γµ (together with any other necessary transformations, e.g.
x→−x or t→−t). In particular, the parity operation, besides sending x→−x
requires the spinors to be multiplied by γ0. The sign difference between the upper
and lower blocks of this matrix leads to the opposite parity assignment for fermion
and antifermion.

If we wish to have a natural (positive definite) object for a probability density,
such as ψ†ψ, then we are led to define the current corresponding to the Dirac
equation as

jµ ≡ ψ γµ ψ, (2.2.9)

where the natural “conjugate” spinor is ψ≡ψ†γ0. In electromagnetism the coupling
between the electron and the electromagnetic field is then perfectly well described
by an interaction of the form j·A. Taking this as a template for particle inter-
actions, one immediately realises it is not unique; the most general form for a
“current” is ψΓψ, where Γ can be any one of a number of matrices spanning the
Dirac spinor space.

Briefly, as the reader may easily verify, the free-particle plane-wave solutions
to the Dirac equation take the following form:

ψ(x) = w(p, s) e− iǫ p·x, (2.2.10)

where the sign ǫ=± will be explained shortly, w(p,s) is a constant, four-component
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spinor, containing both energy–momentum (p) and spin (s) information and which
satisfies

ǫ γµpµw(p, s) = mw(p, s), (2.2.11)

in which p is no longer an operator. The sign of the exponent determines two types
of solutions. In fact, the Dirac equation does not eliminate the negative-energy
solutions but gives them a meaning: antimatter. Thus, according as to whether
ǫ=± the spinor w(p,s) takes on different forms:

Exercise 2.2. Verify that the free-particle plane-wave solutions to the Dirac equa-
tion do indeed take the form shown in Eq. (2.2.10), with the spinor w(p,s) satis-
fying Eq. (2.2.11).

The general form of a free-particle state is then

ψ(x) = w(p) e−
i

~
ǫ p·x, (2.2.12)

where the spinor w(p) is

w(p) =





u(p) =



√
E +m 1

√
E −m σ·p̂


⊗ χ (positive-energy),

v(p) =



√
E −m σ·p̂
√
E +m 1


⊗ χ (negative-energy),

(2.2.13)

and the two-component spinor χ is
(
1
0

)
and

(
0
1

)
. Given this form one can then

verify that ψγ5γ
µψ measures just the spin sµ of the particle.

Exercise 2.3. Verify that ψγ5γ
µψ does indeed give just the spin sµ of the particle

and find the constant of proportionality.

2.2.2 Relativistic currents

Thus far we have two possibilities: 1 and γµ. However, this sixteen-dimensional
Dirac space offers three other different possibilities. First of all, let us construct the
special matrix γ5≡ iγ0γ1γ2γ3, which immediately provides five more independent
pieces: γ5 and γ5γ

µ.∗ Finally, it is conventional to include the antisymmetric form
(with six independent components) σµν ≡ i

2
[γµ,γν ]. There are then five distinct

types of currents:

ψ1ψ, ψ γ5 ψ, ψ γµ ψ, ψ γ5γ
µ ψ, ψ σµν ψ, (2.2.14)

∗ Note that, as defined, in four dimensions we have {γ5,γµ}=0.
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which go under the names of scalar, pseudoscalar, (polar) vector, axial (or pseudo-)
vector and tensor, respectively. These names reflect their properties under Lorentz
transformations and also under spatial inversion. Each current also has specific
properties under temporal inversion and charge conjugation.

From the preceding discussion one sees that the vector current is related to the
momentum of a particle while examination of the role of γ5 and γ5γ

µ reveals that
the axial-vector current is related to intrinsic spin. The others, however, have no
direct physical interpretation. Now, the form of vector and axial-vector currents
suggests how to proceed in order to obtain parity-violating matrix elements.

2.2.3 Fermi theory

The basis for the Fermi theory of nuclear β-decay (1934)∗ rests on the ansatz of a
four-body point-like interaction:

Mfi ∝ GF

∫
d3
xψ∗

A
′(x)ψ∗

e(x)ψ
∗
ν(x)ψA(x). (2.2.15)

The (trivial) spin structure implicit in this form for the matrix element naturally
leads to a description of the so-called Fermi transitions, in which the e–ν pair car-
ries zero total angular momentum. Including the two-component spinorial forms
due to Pauli allows for a description of the so-called Gamow–Teller transitions,
in which the e–ν pair have their spins aligned and so carry one unit of angular
momentum. However, there is no apparent relation between the two types of
transitions. Phenomenologically, even taking into account a factor three for the
triplet final state, a further (phenomenological) factor ∼5/4 is needed if the same
constant GF is to describe both.†

One of the great assets of Dirac’s relativistic formulation is that it places severe
constraints on the different components, linking spin-dependent and -independent
matrix elements. In order to replace the simple non-relativistic Fermi interac-
tion above with a relativistic version, the concept of current–current interactions
must be introduced, which is borrowed from the only complete theory we have:
namely, quantum electrodynamics (QED). Thus, it is natural to write the possible
interaction terms schematically in the form

∝ GF

∫
d3
x j†1(x)·j2(x), (2.2.16)

∗ The 1938 Nobel Prize for Physics was awarded to Enrico Fermi for “his demonstrations of
the existence of new radioactive elements produced by neutron irradiation, and for his related
discovery of nuclear reactions brought about by slow neutrons.”

† To be precise, a complete description of the substructure in terms of quarks is required, but we
shall see how this works later.
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where j1,2 may be any combination of the above five currents above, provided that
the indices may be suitably saturated. This is the most general form compatible
with the Dirac construction. It turns out that each current leads to different parity
and angular-momentum selection rules and also to different angular distributions.
One may thus experimentally identify which is the correct form. It is found that
only the vector, ψγµψ, and axial-vector, ψγ5γ

µψ, forms (describing Fermi and
Gamow–Teller transitions, respectively) contribute to the weak interaction.

Now, the parity assignments are precisely those of a vector (negative) and an
axial-vector (positive). However, since the decay distribution is determined by
the modulus squared of the transition matrix element, neither taken separately
can provoke parity violation. Therefore, a combination must be taken. The two
possible extremes are V ±A or

jµW = ψ (γµ ± γµγ5)ψ. (2.2.17)

The ordering γµγ5 is chosen so that the factorised form γµ(1±γ5) makes explicit
the natural projective property.

Exercise 2.4. Using the Dirac matrix algebra and the spinor structure given, show
that the operators PR/L :=

1
2
(1±γ5) project onto right- and left-handed helicities

respectively.

It turns out that the signs of the asymmetries found in the experiments by
Wu et al., Goldhaber et al. and Garwin et al. (and many others) are consistent
with just one specific choice: V −A (Sudarshan et al., 1958 and Feynman et al.,
1958). That is, the weak interaction is maximally parity violating and involves
only left-handed currents. A simple and experimentally verifiable consequence of
this form is that parity will only be violated in those nuclear β-decays in which
both Fermi and Gamow–Teller transitions are possible and play a role. Indeed,
parity violation is seen to be the result of an interference effect and, as such,
is evidently a quantum-mechanical phenomenon—it cannot be accommodated by
classical physics.

As mentioned above, in other than purely leptonic decays, when hadrons take
part, this maximal violation is not always apparent owing to the complex internal
structure of hadronic matter (in particular, that of the baryons). However, if
hadrons are described as bound states of quarks and proper account is made for
the quark-spin symmetry (see the quark model later), then one finds that again
the violation is maximal at the purely quark level and the weak current is still
precisely V −A. Let us again emphasise that the V −A form factorises as follows:

ψ (γµ − γµγ5)ψ = 2ψγµ 1
2
(1− γ5)ψ = 2ψLγ

µψL, (2.2.18)
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where ψL≡ 1
2
(1−γ5)ψ. This demonstrates that only left-handed (elementary) fer-

mions interact weakly although, of course, the existence of right-handed fermions
is not explicitly precluded.

It should also be appreciated that implicit in this description of parity (P )
violation is the violation of charge conjugation (C) symmetry: all fermions that
interact weakly are left handed while all antifermions are right handed. However,
since the two violations go perfectly hand-in-hand the combined symmetry CP is
conserved. In other words, while comparisons of either “mirror” or “antiparticle”
experiments reveal differences, the translation to “mirror–antiparticle” experiments
returns the original experimental observations, e.g., β+-decay viewed in a mirror is
indistinguishable from β−-decay. Later on we shall examine very special systems
in which even CP is violated.

Exercise 2.5. Show how the transformation properties derived earlier lead to a
form γµ(1+γ5) for antifermion currents.

2.3 Cabibbo theory

2.3.1 Universality

The Fermi description of the weak interaction requires a new coupling constant:GF.
The β-decay matrix element is proportional to GF and thus the decay rates are
proportional to G2

F. In muon decay all participants are elementary and so there
are no other unknown ingredients. Knowledge of the muon lifetime thus translates
directly into a measurement of GF. We have (see PDG-2012 – Beringer et al.,
2012)

τµ = 2.19703± 0.00004× 10−6 s, (2.3.1)

which (in natural units) leads to

GF = 1.16637± 0.00001× 10−6 GeV−2. (2.3.2)

Note that to arrive at this result, the full electroweak theory (see later) has been
used. Now, already the formulation in terms of Dirac spinors has unified the
description of Fermi and Gamow–Teller transitions. However, there still remains
the question of the relationship between hadronic and leptonic weak couplings, and
even between different hadrons. That is, how does the above value for GF compare
with that deduced, for example, from neutron β-decay or from electron–neutrino
scattering? In other words, is it universal?
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In the case of other purely leptonic processes the answer is simple, the agree-
ment is perfect within errors. Here, though, the theory is rather simple: for purely
leptonic processes, the particles participating are all elementary. When dealing
with semi-leptonic and even more so for non-leptonic processes, the details of the
hadronic bound state (baryon or meson) cloud the issue somewhat. Let us examine
in more detail the case of neutron and also nuclear β-decay.

When Cabibbo was developing his theory of hadronic weak couplings in 1963
there was, as yet, no notion of the quark substructure and so the description
was constructed purely in terms of the physical baryon or meson states. And
this is how we shall proceed for the time being. As already noted, there are two
general types of nuclear transitions (Fermi and Gamow–Teller), which we have
discovered correspond to vector and axial-vector couplings respectively. In analogy
with electromagnetism, it is natural to assign charges gV and gA respectively. As
has already been hinted, the ratio gA/gV is not unity, as might be hoped by
appealing to universality, but is nearer to 5/4.∗ However, given that hadrons are
not point-like objects (evidently having non-trivial substructures) and that the
stringent relations on particle spins provided by the Dirac formulation only apply
to point-like elementary particles (e.g. the electron), it is not surprising that gV
and gA do not appear to have a strict relationship.†

The vector charge gV , by analogy with electromagnetism, is thus given quite
simply as a sort of weak charge, which may be set to unity via the normalisation
and definition of GF. On the other hand, gA may be thought of as a sort of weak
magnetic moment and, as such, for composite objects cannot be fixed by any
normalisation. This means that in order to measure GF, processes are needed in
which the transition is purely of the Fermi type. By noting that the Gamow–Teller
transitions involve a spin-one electron–neutrino pair, we see that it is sufficient to
consider transitions in which this is prohibited. In general, even if the variation
of total nuclear spin ∆J is zero, since angular momenta add vectorially, it is still
possible to have Leν 6=0. The exception is the case in which J =0 for both the
initial and final states. There are just 9 such decays that have been measured;
these are the so-called superallowed JP =0+ transitions. Examples are:

C10 (β+) B∗10
and O14 (β+) N∗14

. (2.3.3)

The others are the β+-decays of Al26 , AC34 , K38 , Sc42 , V46 , Mn50 and Co54 .
In such decays, the initial and final nuclear wave-function overlap integrals are

∗ The ratio may be determined by measuring various angular and/or spin correlations. The
present PDG value is rather precise: gA/gV =1.2701±0.0025 (PDG-2012 – Beringer et al.,
2012). Note that the overall sign is a matter of convention.

† We shall see later, however, that the quark model of hadronic structure, with its symmetries,
does actually salvage even this aspect.
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also essentially free of nuclear uncertainties, since the wave-functions are almost
identical. They thus provide a second, self-consistent and accurate determination
of GF.

However, the result of comparing the two determinations of GF (i.e. from µ-
decay and super-allowed nuclear decays) leads to a small discrepancy. Interestingly,
attempts to reconcile the two numbers first looked to improved calculations and
the quantum corrections: in particular, that due to the Coulomb repulsion (these
decays are all β+). However, such more accurate studies actually worsened the
situation. The final discrepancy, although small in magnitude, was many standard
deviations. Numerically, at the level of decay rates Γ, it was found that the nuclear
decays were approximately 4−5% smaller. In terms of the extracted nuclear GF

(since Γ∝G2
F) this implies approximately 2% weaker.

2.3.2 The mixing of weak and mass eigenstate

Attempting to resolve the issue, Cabibbo (1963) examined other known β-decays:
namely, those of the so-called strange particle Λ0. In this case it turns out that the
discrepancy is enormous. Using these decay rates to extract the Fermi coupling, the
valued obtained is approximate 22% of the muon value. Now, 0.222∼0.05; this was
interpreted by Cabibbo as the missing 5%. The idea then was to invoke the well-
known quantum phenomenon of mixing. The physical particles actually detected
experimentally correspond to mass eigenstates (technically asymptotic states), i.e.
those that propagate in space–time, and these do not necessarily coincide wth the
eigenstates of the weak interaction.

To understand this, recall, for example, the effect of an electromagnetic field
applied to the hydrogen atom: the perturbing interaction mixes the usual hydrogen
levels. In other words, the corresponding new eigenstates are different to those of
the free hydrogen atom, being superpositions of these.

The strange β-decay considered is Λ0→pe−ν̄, where the final state is identical
to that of neutron β-decay. Therefore, if the states are properly normalised, it is
natural to describe such mixing, which here then is between just two states (n and
Λ0), via an angle:

nW = cos θC n+ sin θC Λ0, (2.3.4a)

Λ0
W = − sin θC n+ cos θC Λ0, (2.3.4b)

where nW and Λ0
W are weak eigenstates, n and Λ0 being the usual mass eigenstates;

θC is known as the Cabibbo angle. The transitions must now be described by matrix
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elements involving these new states, that is, we must use so-called weak currents:

M ∝ GF

∫
d3
x jW †

h (x)·jWl (x), (2.3.5)

where jWh,l describe weak hadronic and leptonic currents respectively and are thus
of the form

jµW := ψW
f (gV γ

µ + gAγ
µγ5)ψ

W
i . (2.3.6)

In this theory the leptonic states do not suffer mixing (as we shall see later, this
is to do with the fact that neutrinos are massless).∗

With the mixing structure describe above, it is evident that matrix elements
between the real physical states will pick up a factor sinθC or cosθC depending
on whether the initial hadronic state is strange or not. That is, for the hadronic
current, we now have

jµW,h = ψW,p (V
µ −Aµ)ψW,n

= cos θC ψp (V
µ − Aµ)ψn + sin θC ψp (V

µ − Aµ)ψΛ. (2.3.7)

Taking sinθC≃0.22, both decays are then well described by one and the same
coupling GF. This picture is well corroborated by the description it provides
of other transitions, for example, the analogous pair of decays π−→π0e−ν̄ and
K−→π0e−ν̄. In fact, there are many similar β-like transitions to which the theory
may be applied. Note, however, that quite why the same Cabibbo angle should
work for both baryons and mesons is evidently a mystery until we move over to
the quark description of hadrons.

2.4 The GIM mechanism

2.4.1 A brief introduction to the quark model

Around the same time the quark model of Gell-Mann (1962)† was starting to
take shape and, although originally only intended as a mathematical expression
of the underlying flavour symmetry, many started to consider the possibility that
quarks were, in fact, real physical entities. Among those who saw early on the
possibility that this could explain other puzzling experimental observations were
Glashow, Iliopoulos and Maiani (1970). The problem they addressed was that of

∗ In recent years we have learnt that neutrinos are not, in fact, massless and so there can indeed
be the same type of mixing in the leptonic sector too—we shall discuss this later.

† For a more complete review, see for example Gell-Mann and Ne’eman (1964) or Sec. 3.2 in the
present notes.
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certain weak-decay channels, which were not observed, despite there being no
apparent reason for any suppression. As we shall now see, once again quantum
mechanics plays an important role, in this case via the phenomenon of interference.
The particular processes under consideration were possible purely leptonic decays
of the neutral kaon and its antiparticle.

Let us first rephrase the Cabibbo picture in terms of quarks. We now know
that the baryons (among which we find the spin-half nucleons, the proton and the
neutron, together with the Λ0 already mentioned) are all composed of three quarks
in particular spin configurations, which for the moment are inessential, while the
mesons (e.g., π0,±, K0,± etc.) are simply quark–antiquark pairs. The neutron and
proton are thus

|p〉 = |uud〉 and |n〉 = |udd〉, (2.4.1)

where the two quarks u and d are known as up and down respectively. The Λ0

hyperon is similar but contains a strange quark s:

|Λ0〉 = |uds〉. (2.4.2)

The β-decay process is then seen to be the transformation of either a d or an s into
a u quark, accompanied by the emission of an e−ν̄ pair. The remaining quarks
are considered to be mere spectators and play no role. With no change in the
reasoning, the Cabibbo mixing (2.3.4) can then be simply rewritten as

|d〉W = cos θC |d〉+ sin θC |s〉, (2.4.3a)

|s〉W = − sin θC |d〉+ cos θC |s〉. (2.4.3b)

The case of charged pions and kaons is similar:

|π−〉 = |dū〉 and |K−〉 = |sū〉. (2.4.4)

And again, it is just a d or an s quark that decays into a u, accompanied by an
electron–neutrino pair.

2.4.2 Feynman diagrams

By way of an introduction to the concept, let us represent these decays with the
use of so-called Feynman diagrams.∗ The idea is to assign each particle particip-
ating in a given process a line (internal lines represent propagation, external lines
the initial- and final-state wave-functions) while the interactions between particles

∗ The 1965 Nobel Prize for physics was awarded equally to Sin-Itiro Tomonaga, Julian Schwinger
and Richard P. Feynman for “their fundamental work in quantum electrodynamics, with deep-
ploughing consequences for the physics of elementary particles.”
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are indicated by vertices. Thus, the diagram describing neutron β-decay is shown
in Fig. 2.3. In the diagram time flows from left to right while the vertical axis rep-

u u
d d
d u

e−

ν̄eW−

n

{ }
p

Figure 2.3: The Feynman diagram describing the neutron β-decay process in terms of
the quark-level weak interaction.

resents generic spatial position. The arrows on the fermion lines do not represent
direction of mechanical motion, but the flow of particle quantum numbers; thus,
an antiparticle has an arrow directed backwards (in time).

The real importance of such a representation is that each element corresponds
to a mathematical object, which then goes to make up the matrix element or
scattering amplitude. We shall not labour this point here, but merely note that
an important aspect of the Feynman rules is that all possible (different) diagrams
connecting the same initial and final states must be added together to provide the
total amplitude, which is then squared and integrated to give the final rate. This
opens the way to quantum-interference effects: if two similar diagrams contribute
with similar magnitude but opposite sign then they cancel each other in the sum
(at least partially) and can thus lead to vanishing (or suppressed) rates even though
there may be no real obstacle or selection rule forbidding the process.

2.4.3 Unobserved neutral-kaon decays

Consider then the two neutral pseudoscalar strange mesons K0 and K0, the quark
content of these two hadrons is, recall, K0=ds̄ and K0= d̄s.∗ As we shall see later
this pair of particles has a rather complicated dynamics and CP is violated in their
decays. However, for the present purposes they may considered simply as the quark
composites just defined. Of course, these states are meant to represent the mass
eigenstates, or at least the quark mass eigenstates. Therefore, to describe possible
weak decays, we shall need the rotated states unveiled in the previous section.
Since the weak interaction then couples both the d and s quarks to the u quark,
we can envisage and indeed calculate the rate for the decay K0→ e+e−, depicted
in Fig. 2.4. This process is, however, not observed at the estimated rate. Note

∗ The assignment particle–antiparticle in the case of neutral mesons is dictated by the up–down
quark content. The K0 thus contains a d (or matter) while K0 contains d̄ (antimatter).
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u νeK
0





d

s̄

e
−

e
+

Figure 2.4: A possible process in which a K0 might decay via internal annihilation into
an electron–positron pair (recall that time runs from left to right).

that by exchanging the roles of the electron and the neutrino, we have a process
in which a kaon apparently disappears into thin air—this too is not seen.

The way out of this impasse was provided by Glashow, Iliopoulos and Maiani
(1970). Since the weak state dW couples to the u quark, one is tempted to hypo-
thesise that the orthogonal combination of mass eigenstates in sW couples to some
new state, the charm or c quark. If this is the case, then there is a second diagram,
similar to that of Fig. 2.4, in which the u quark is replaced by c. Let us now draw
the diagrams also including the cosθC and sinθC vertex factors with their relative
signs, as given in Eq. (2.4.3) and shown in Fig. 2.5, we then immediately see that

u νe

d

s̄

e
−

e
+

cosθ

sinθ

+ c νe

d

s̄

e
−

e
+

−sinθ

cosθ

Figure 2.5: The destructively interfering diagrams contributing to K0 decay into an
electron–positron pair.

there is a cancellation (or destructive interference) owing to the sign difference.
Of course, the u and c quarks in the internal propagators do not have the same
mass (mc≫mu) and so the cancellation is not perfect. This simply means that
the non-observation of such a channel at some level provides an upper limit on the
mass of the c quark.

Exercise 2.6. One might imagine that a similar cancellation should apply to the
decay K0→π+π−. By considering the quark diagrams responsible for this channel,
show that this is not the case.

The Glashow–Iliopoulos–Maiani (GIM) mechanism was proposed in 1970 and
the predicted new quark (with a mass that could not be much more than about
1.5GeV) was discovered in e+e− collisions four years later by two independent
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groups (Aubert et al., 1974 and Augustin et al., 1974, see Sec. 4.2.2). This discov-
ery then gave rise to the concept of quark (and lepton) family. At the quark level,
we place the states into pairs of up-type and down-type, paralleling the first known
pair u–d; the corresponding leptons are the e–νe and µ–νµ pairs. Although it must
be recognised that Kobayashi and Maskawa (1973) had already contemplated such
a structure (and more) and its consequences, as we shall now see.

2.5 The CKM matrix and CP violation

The following questions now naturally arise:
• Why have we taken the rather one-sided position of rotating (or labelling as

specifically weak) the down-type states and not those of the up-type?∗

• Since the state functions are naturally complex in quantum mechanics, the
rotation matrix, in general, could contain complex phases – why then is the
parametrisation in terms of only a single real parameter (an Euler angle)?
• What would happen if there were more quark states or families in the game?
• Since this happens for the weak interaction in the quark or hadronic sector,

should there not be an analogous mixing among leptons?
All but the last (with which we shall deal immediately) will be treated in the
following sections, the answer to the first will be answered at the end of the next
subsection while we shall tackle the other two shortly.

The case of leptons is conceptually rather simple: in general, mixing occurs
because there are two well-defined, unambiguous and distinct bases: the mass
eigenstates (i.e. those that propagate and which therefore correspond to experi-
mentally detected particles) and those of the weak interaction (i.e. those that are
produced, decay or anyway interact). However, even assuming that the weak-
interaction basis also remains well-defined for the leptons, the mass eigenstates of
the neutrinos are ambiguous in the standard model (SM) since they are all con-
sidered massless. That is, they are only distinguishable by virtue of their weak
interactions. Of course, in the wake of the recent experimental and theoretical
developments concerning solar and atmospheric neutrinos, we now believe their
masses to be non-zero and, indeed, work is already under way on mapping out the
leptonic mixing matrix.

2.5.1 CPT

In order to motivate the following discussion, we need to understand a little more
of the discrete symmetries C and T , mentioned earlier, and their relationship

∗ Naturally, Cabibbo, not having the c quark, only had the possibility he actually adopted.
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through the so-called CPT theorem. A rather self-contained and sufficiently com-
prehensive discussion is provided for the unfamiliar reader in App. A.2—it is highly
recommended to consult this before continuing.

2.5.2 The Kobayashi–Maskawa extension

We now turn to the other two intimately related questions posed: what happens
in the case of more families and why is there no complex phase in the Cabibbo
description? The naïve answer to the first of these is that the mixing matrix simply
grows to be n×n for n families, but, as we shall see there is more to it than this.
The second is a loaded question: a complex phase would allow for the violation of
time-reversal invariance, which, if CPT is conserved, would be equivalent to and
would imply CP non-conservation, as discussed in the appendix.

Let us attack the phase problem first. Once known that CP was not an exact
symmetry of nature (Christenson et al., 1964, see Sec. 2.5.6), the quest began
for its origins and the possibility of introducing a complex phase, via the weak-
interaction mixing matrix, thus became highly relevant. However, Cabibbo quite
rightly described the two-component mixing in terms of a single, real, Euler angle.
The reason is that there are the various constraints that must be imposed and also
a certain phase freedom.

Firstly, the 2×2 matrix, let us call it VC, must be unitary (V †
CVC=1) in order to

respect the ortho-normality of the bases involved. This implies four constraints on
the possible four real amplitudes and four complex phases. Matrix theory tells that
the constraints are actually divided up into three on the amplitudes and one on the
phases. The matrix is thus already reduced to just the one real amplitude (or Euler
angle) of Cabibbo. Secondly, the number of free phases is further reduced when
one considers that each of the four quantum-mechanical quark states multiplied by
the matrix possesses an arbitrary (unphysical and unmeasurable) intrinsic phase.
All except one, which must serve as a reference point, may therefore be rotated
so as to absorb phases in the matrix. The three remaining phases may thus all
be absorbed into redefinitions of the quark states. Finally then, one is left with a
real, one-parameter matrix, as proposed by Cabibbo.

This exercise naturally leads to investigation of the matrix in the case of more
than two families (Kobayashi and Maskawa, 1973).∗ A general, complex, n×n,
matrix contains n2 real amplitudes and n2 complex phases. Again, matrix theory
reveals that unitarity imposes n2 constraints: 1

2
n(n+1) on the real amplitudes and

1
2
n(n−1) on the imaginary phases. The 2n “external” quark states allow arbitrary

∗ One half of the 2008 Nobel Prize for Physics was awarded to Yoichiro Nambu for “the discovery
of the mechanism of spontaneous broken symmetry in subatomic physics” and one quarter each
to Makoto Kobayashi and Toshihide Maskawa for “the discovery of the origin of the broken
symmetry which predicts the existence of at least three families of quarks in nature.”
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phase rotations and thus absorption of a further 2n−1 phases. A little arithmetic
then reveals that the most general rotation matrix for n families may be described
in terms of

1
2
n(n− 1) real Euler angles (2.5.1a)

and
1
2
(n− 1)(n− 2) complex phases. (2.5.1b)

The case n=2 just confirms what we have already described while n=3 leads to
the possibility of three Euler angles and precisely one complex phase. Thus, the
important finding of Kobayashi and Maskawa is that the mixing induced by the
weak interaction in the case of three or more families is sufficient to accommodate
a T - or CP -violating phase.

Note that, historically, at that time, a year before the discovery of charm, even
the second family of leptons was still incomplete and it would not be until 1975
that evidence of a third family would emerge via the discovery of τ lepton by
Perl et al., with the b quark being discovered by Herb et al. in 1977.

Now, we still have the first question to answer: the justification of limiting the
mixing to down-type quarks. Let us carefully examine how the currents should be
defined in the presence of the most general possible mixing. A priori , we should
define both up-type ψWU and down-type ψWD weak eigenstates, as distinct from their
mass-eigenstate counterparts. There should thus be two n×n mixing matrices, U
and D say:

ψWU = UψU and ψWD = DψD, (2.5.2)

where ψU and ψD now represent n-component spinors in flavour space:

ψU =



u
c
t
...


 and ψD =



d
s
b
...


 . (2.5.3)

The natural extension of Eq. (2.3.7) is then

jµW = ψWU (V µ −Aµ)ψWD
= UψU (V µ − Aµ)DψD
= ψU U

† (V µ − Aµ)DψD

= ψU (V µ − Aµ)U†
DψD =: ψU (V µ −Aµ) VCKM ψD, (2.5.4)

where the various steps are made possible owing to the fact that, for example, the
Dirac matrices (γ) and the flavour matrices (U and D) commute since they act on
different spaces. One thus finds that only the combination VCKM=U

†
D counts and,
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moreover, that this can be seen as acting either to the right and mixing the down-
type quarks, or to the left and mixing the up-type quarks. Both interpretations
are physically equivalent. It thus becomes a matter of mere convention that we
describe this situation in terms of the mixing of down-type quarks.

The above discussion on the most general parametrisation and the possible
introduction of a complex phase must now naturally be applied unaltered to the
full Cabibbo–Kobayashi–Maskawa (CKM) matrix VCKM with n=3. This means
that the matrix can, as anticipated, admit just one complex phase, with the con-
sequent possible violation of time-reversal invariance. Given the CPT theorem,
this translates into the parallel and consequent violation of CP , to which we shall
now turn our attention.

2.5.3 The neutral-kaon system

We now come to what is possibly one of the richest systems in particle physics:
the K0–K0 pair. We recall that these two particles have the following quark
composition:

K0 = ds̄ and K0 = d̄s (2.5.5)

and thus, although neutral, they are distinct particles. However, they do have in
common several decay modes: as with the charged kaons they can decay into two
or three pions (with total charge zero). This fact has the consequence that they can
oscillate, i.e. each may transform spontaneously, via a virtual two- or three-pion
intermediate state, into the opposite particle or antiparticle state. Historically,
however, the first problem arose with regard to their CP assignment.∗

The first question is then: what is the CP signature of the two- or three-pion
final states in neutral-kaon decays? First of all, recall that it is always true that,
for a C eigenstate, C=±1 (since C2=1). Recall too that both neutral and charged
pions have negative intrinsic parity.

CP of the two-pion final state

As already discussed, the kaon and pion have spin zero and therefore angular
momentum conservation forces the two-pion final state to have L=0. The overall
parity of this state is then simply

P2π = P 2
π = +1. (2.5.6)

To discuss the signature under charge conjugation, we must distinguish between
the two possibilities π0π0 and π+π−. In the case of a charged-pion pair, the

∗ The phenomena described here are not to be confused with the case of the τ–θ puzzle described
earlier, which involves the charged kaons and does not imply CP violation.
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operation of C interchanges the two and therefore introduces a factor (−1)L owing
to the spatial wave-function, for an s-wave we thus have +1. The properties of a
fermion–antifermion pair (such as go to make up a neutral pion) under C are such
that Cπ0 =+1. This is indeed confirmed experimentally by the observation of the
principal decay mode

π0 → γ + γ (2.5.7a)
and the non-observation of

π0 → γ + γ + γ. (2.5.7b)

Putting all this together, we find that the two-pion final state in neutral-kaon
decay must have CP =+1.

CP of the three-pion final state

There are again two possibilities to consider: π0π0π0 or π0π+π−. The presence
of an extra particle complicates the discussion of both the spatial-inversion and
charge-conjugation properties. Any pair may now have non-zero orbital motion
with respect to the remaining pion, taken as a reference point. However, since the
total must still be zero, the two must have identical L, with equal and opposite
Lz. Thus, the final state with three neutral pions has spatial-parity signature
P =(−1)2L=+1 and therefore CP =(+1)(−1)3=−1. The π0π+π− case is a little
more complex as the charge-conjugation signature depends on the relative orbital
angular momentum of the charged pair, which may be odd. However, studies of the
decay angular distribution indicate Lπ+

π
− =0, as might be deduced from the very

low Q-value of this decay. The three-pion final state thus always has CP =−1.
Although the problem of parity violation was already understood and it was

accepted that the weak two- and three-pion decays of the kaons violate P , the
product symmetry CP was still believed to hold. Indeed, for example, the neutral
pion, which is its own antiparticle, displays no evidence of CP violation. The
problem was elegantly solved by Gell-Mann and Pais (1955). While the neutral
pion is its own antiparticle, the same is not true for the neutral kaons and thus
neither K0 nor K0 is an eigenstate of C and therefore certainly not of CP. However,
since C transforms K0 into K0 and vice versa, the following linear combinations
are easily seen to be eigenstates not only of C but also of CP:

|K0
1〉 := 1√

2

(
|K0〉+ |K0〉

)
(2.5.8a)

and
|K0

2〉 := 1√
2

(
|K0〉 − |K0〉

)
. (2.5.8b)
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Note that the standard phase convention for the action of C sets

C |K0〉 = −|K0〉 and C |K0〉 = −|K0〉. (2.5.9)

As always, the intrinsic phase of a transformation such as C may be altered by
redefining (or rotating ) the phases of one or other of the states involved. Thus,
the minus sign is merely conventional and has no effect on the physical results.
With this definition and, of course,

P |K0〉 = −|K0〉 and P |K0〉 = −|K0〉 (2.5.10)

we have

CP |K0〉 = +|K0〉 and CP |K0〉 = +|K0〉, (2.5.11)

which for our new states |K0
1,2〉 implies

CP |K0
1 〉 = +|K0

1〉 and CP |K0
2 〉 = −|K0

2〉. (2.5.12)

It is now obvious that the decays may be explained by associating the initial
state K0

1 (K0
2) with the final state containing two (three) pions. In fact, since

the two-pion decay mode has a shorter lifetime (by a factor of order 600) the two
states are then identified as “K-short” (K0

S→2π) and “K-long” (K0
L→3π):

|K0
S〉 := 1√

2

(
|K0〉+ |K0〉

)
(2.5.13a)

and
|K0

L〉 := 1√
2

(
|K0〉 − |K0〉

)
. (2.5.13b)

The phenomenology is thus perfectly well explained and CP is not violated
here: in some given production process one might imagine that an s quark is
created and encounters a d̄ (e.g. from a virtual dd̄ pair) to then form a K0. Now,
such a state may be rewritten, by inverting the above relations, as an equal mixture
of K0

S and K0
L, which will then decay according to their natural probabilities into

either two or three pions. The mean lifetimes are (PDG-2012 – Beringer et al.,
2012):

τS = (0.8954± 0.0004)× 10−10 s and τL = (0.5116± 0.0021)× 10−7 s,
(2.5.14)

with K0
S decaying predominantly into two pions (99.9%) while K0

L has a 68%
semileptonic branching ratio and only 32% into three pions.
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2.5.4 Regeneration

Thanks to the peculiar form of the neutral-kaon eigenstates, various interesting
quantum-mechanical phenomena become possible. One such is that known as
regeneration, suggested by Pais and Piccioni (1955). For the purposes of this dis-
cussion we may ignore any possible effects of CP violation (which we shall discuss
shortly∗) and take the K0

S and K0
L as being pure K0

1 and K0
2 states respectively. As

already noted, in the generation of strange particles one typically produces either
a strange or an antistrange quark and therefore either a pure K0 or K0 respect-
ively. For definiteness, let us assume that predominantly K0 is being produced
(as is typically the case since matter contains many more d quarks than d̄). That
is, the beam created is initially an equal mixture or superposition of K0

S and K0
L.

Likewise, a beam of pure K0
L, say (as will always be the case after a period of time

that is long with respect to the K0
S lifetime), can be viewed as an equal mixture

of K0 and K0. The question now arises as to how such states evolve in time.
Let us first recall that the two states K0 and K0 are very different with respect

to their content in terms of ordinary matter (by which we mean up and down
quarks): the first contains d̄ while the second contains d. This means that the
first may undergo strong interactions in which the d̄ annihilates with a d found
in matter while, since ordinary matter does not contain d̄, the second may not.
Therefore, while the K0 is very likely to decay or effectively disappear on contact
with matter, K0 is not as it may only interact weakly or electromagnetically. The
background to this disappearance is just their normal weak decays, which are no
competition for the strong interaction. It is thus expected that on passage through
matter aK0 beam should be subject to severe attenuation, while aK0 beam should
survive much longer.

More formally, after some time we may say that fractions f and f̄ of initially
pure K0 and K0 beams will survive, with f≫ f̄ . Thus, an initially pure K0 state
will evolve (in the vacuum) into a pure state of K0

L (that is, an equal mixture of
K0 and K0), which on passing through ordinary matter will become

1√
2

{
f |K0〉 − f̄ |K0〉

}
= 1

2

{
(f − f̄)|K0

S〉+ (f + f̄)|K0
L〉
}
. (2.5.15a)

Now, since f and f̄ are different or rather (f− f̄) 6=0, we have the reappearance
of K0

S. In fact, since f≫ f̄ , then to a good approximation we may write the new
state as

≃ 1
2

{
f |K0

S〉+ f |K0
L〉
}
, (2.5.15b)

or roughly equal populations. This can, of course, be easily tested by, e.g., the

∗ The phenomenon we are about to describe will actually turn out to be a source of background
for CP -violation measurements.
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observation of two-pion decays immediately after passage through matter, where
immediately prior there were none. This phenomenon is known as regeneration.∗

The first experimental demonstrations were performed by Good et al. (1961).

2.5.5 Quantum oscillation

A related, but more subtle, effect is that known as oscillation, in which states
effectively transform back and forth between K0 and K0. The phenomenon is
mathematically the same as the effect known as beating in wave mechanics, or
more simply, as is the case here, that seen in a system of two weakly coupled
oscillators. The central point in such phenomena is the presence of two slightly
different natural frequencies in the system—in the case of weakly coupled oscil-
lators, if the individual natural frequencies are identical, then the weak coupling
induces a splitting between the two lowest possible coupled modes (typically in
and out of phase); the in-phase mode usually has the lowest fundamental fre-
quency while the out-of-phase mode is slightly higher. This difference results in
beats: namely, if the starting condition has only one of the two oscillators in mo-
tion, then the subsequent evolution will see the other begin to move while the first
comes to a stop and vice versa. The frequency of these beats is just the frequency
difference between the two lowest modes.

Our oscillating system is just that of the particle states themselves: according
to quantum mechanics, for an energy eigenstate we have

φ(t,x) = φ0(x) e
− i

~
Et, (2.5.16)

where, for our purposes here, the spatial part φ0(x) is irrelevant. Taking into
account special relativity, the energy of a physical particle state must include its
rest mass, E=mc2. If we thus neglect the kinetic energy of the particles involved,
we may substitute E above with mc2. If then the particle (or antiparticle) state
under consideration is described as an equal superposition of two states of different
masses m1,2 (with m2>m1 say), at time t=0 we have

|a〉 = 1√
2

(
|1〉+ |2〉

)
(2.5.17a)

and
|ā〉 = 1√

2

(
|1〉 − |2〉

)
, (2.5.17b)

where, for clarity, we suppress any (irrelevant) spatial dependence. The inverse

∗ Naturally then, any attempts at measuring CP violation though detection of two-pion decays
must avoid all regeneration effects, which could literally swamp the tiny CP -violating effect.
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relations are

|1〉 = 1√
2

(
|a〉+ |ā〉

)
(2.5.18a)

and
|2〉 = 1√

2

(
|a〉 − |ā〉

)
. (2.5.18b)

At a later time t, for an initially pure |a〉 state we have (also suppressing now the
factors c2 and ~)

|a,t〉 = 1√
2

[
e− im1t |1〉+ e− im2t |2〉

]
, (2.5.19)

We then re-express this in terms of the particle–antiparticle states:

|a,t〉 = 1
2

[
e− im1t

(
|a〉+ |ā〉

)
+ e− im2t

(
|a〉 − |ā〉

) ]

= 1
2

[(
e− im1t+e− im2t

)
|a〉+

(
e− im1t− e− im2t

)
|ā〉
]

= e− imt
[
cos(1

2
∆mt)|a〉+ i sin(1

2
∆mt)|ā〉

]
, (2.5.20)

where m := 1
2
(m1+m2) and ∆m :=m2−m1.

We thus see that the particle–antiparticle content oscillates: the sine and cosine
coefficients giving particle and antiparticle content cos2(1

2
∆mt)= 1

2
(1+cos∆mt)

and sin2(1
2
∆mt)= 1

2
(1−cos∆mt) respectively. As already noted in the classical

case, the oscillation frequency is then given by the energy (or mass) difference:

ωosc =
|m2 −m1|c2

~
. (2.5.21)

The physical meaning should be evident: a beam initially containing, say, only
K0 will at a later time actually contain some (oscillating) fraction of K0. This
can be verified experimentally by examining the decays: K0 (containing ds̄) can
decay into π−e+ν while K0 (containing d̄s) decays into π+e−ν. The measured
lepton charge asymmetry as a function of time (or distance travelled) should thus
oscillate.

The real experimental situation is a little more complicated owing to the finite
and, indeed, rather short lifetimes of the particles involved. So, we must now
included the effects of decay into the above description. A state with a finite
lifetime may be described by:

φ(t) = φ0 e
− iEt e−

1

2
Γt, (2.5.22)

where Γ is just the decay rate. This can be seen by considering the number density:

|φ(t)|2 = |φ0|2 e−Γt, (2.5.23)
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which satisfies the standard exponential decay-law equation

d

dt
|φ(t)|2 = −Γ |φ(t)|2. (2.5.24)

The previous temporal evolution equations are then modified as follows

|a,t〉 = 1
2

[
e− im1t e−

1

2
Γ1t
(
|a〉+ |ā〉

)
+ e− im2t e−

1

2
Γ1t
(
|a〉 − |ā〉

) ]

= 1
2

[(
e− im1t e−

1

2
Γ1t+e− im2t e−

1

2
Γ2t
)
|a〉

+
(
e− im1t e−

1

2
Γ1t− e− im2t e−

1

2
Γ2t
)
|ā〉
]
,

which we shall write as

= f(t)|a〉+ f̄(t)|ā〉. (2.5.25)

Thus, the particle (vis à vis antiparticle) content of the beam is given by

∣∣f(t)
∣∣2 = 1

4

∣∣∣e− im1t e−
1

2
Γ1t+e− im2t e−

1

2
Γ2t
∣∣∣
2

= 1
4

[
e−Γ1t+e−Γ2t+2 e−Γt cos(∆mt)

]
, (2.5.26)

where Γ := 1
2
(Γ1+Γ2). Similarly one can calculate the antiparticle fraction. Since

ΓL≪ΓS, the only terms that survive in the large-t limit are 1
4
e−ΓLt, which merely

implies the expected survival (up to its own decay) of the part of the initial beam
corresponding to the K0

L state. A graphical representation of the fractional intens-
ities (i.e., normalised to the overall e−ΓLt decay behaviour) is displayed in Fig. 2.6.

Experimentally, as seen in Fig. 2.6, ∆mτS∼ 1/2. This is fortunate as it allows
just one oscillation before the decay process kills the signal. Had the value turned
out much smaller, no oscillation would have been observable. Equally, had it
turned out much larger then the risk would have been that the rapid oscillations
might have washed themselves out. The precise measured value is

∆mτS = 0.474± 0.002, (2.5.27)

which, given the value of τS, implies (see PDG-2012 – Beringer et al., 2012)

∆m ∼ 3.5× 10−6 eV, (2.5.28)
or

∆m

m
∼ 0.7× 10−14. (2.5.29)
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Figure 2.6: A graphical representation of the time-dependent K0 and K0 intensities
(normalised to the overall e−ΓLt decay behaviour).

Experimentally, it is also found that mL>mS. The first such mass-difference
measurements were performed by Good et al. (1961) and Fitch et al. (1961).

As remarked earlier, this phenomenon is rather general and more specifically
may also occur in the leptonic sector once non-zero neutrino masses are estab-
lished. Indeed, there is already some understanding of the form of the lepton
mixing matrix, which, in order to be non-trivial, requires the neutrino masses to
be different. We might, however, remark here that technically the situation for
oscillation is slightly different. The neutral-kaon mass difference is exceedingly
small as compared to their rather large mass. In the neutrino case the masses are
very small (especially with respect to any kinetic energy they might possess) while
the differences are comparable. In particular, this means that it is not so much
the mass differences themselves that are felt but differences in the corresponding
neutrino energies for a given momentum. The formalism thus changes somewhat.

2.5.6 CP violation

The enormous difference in decay rates suggests a possible method to search for
CP violation (Christenson et al.∗, 1964). In short, if we wait for long enough (but

∗ The 1980 Nobel Prize in Physics was awarded jointly to James Watson Cronin and Val Logsdon
Fitch for “the discovery of violations of fundamental symmetry principles in the decay of neutral
K-mesons.”



2.5. THE CKM MATRIX AND CP VIOLATION 39

not too long) all the K0
S in an initially purely K0 or K0 sample will have decayed

and only the K0
L component will have survived. Since the initial populations are

equal, the ratio at some later instant t will be

NS

NL

=
e−t/τS

e−t/τL
, (2.5.30)

where, recall, τS/τL∼1/600. For τS≪ t<∼ τL this ratio is very small indeed: we
have NS/NL∼O(e−600)∼O(10−260). We should thus no longer see any two-pion
decays at all.

Exercise 2.7. Ignoring relativistic time-dilation effects, calculate the mean dis-
tances that K0

S and a K0
L mesons moving at roughly the speed of light will travel

before decaying.

For their experiment Christenson et al. (1964) used the Brookhaven alternat-
ing gradient synchrotron (AGS) 30GeV ∗ proton beam, incident on a beryllium
target, to produce a secondary beam of neutral kaons. The detector (shown
in Fig. 2.7) was placed a little over 17m away. A lead collimator and suitable

Figure 2.7: The apparatus used by Christenson et al. (1964) to detect two-pion decays
of the K0

L at a little over 17m from the production point.

magnetic fields ensured a relatively pure kaon beam while a final collimator guar-
anteed the direction of motion (important for reconstructing the kinematics). Final

∗ In their paper Christenson et al. (1964) use the notation BeV, standing for billion electron-volts;
the present-day accepted form is GeV.
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pion pairs were selected by requiring their invariant mass to be near that of the
K0 (about 498MeV); thus excluding three-pion events in which one pion goes
undetected.

Put simply, the measured branching ratio was

K0
L → π+π−

K0
L → all charged modes

= (2.0± 0.4)× 10−3. (2.5.31)

This was based on a two-pion sample of 45±10 events.
The interpretation is that the K0

L state is not purely K0
2 , but instead contains

a small admixture of K0
1 :

|K0
L〉 := 1√

1+|ǫ|2
(
|K0

2〉+ ǫ|K0
1 〉
)
, (2.5.32a)

where the measured branching ratio implies |ǫ|≃2.3×10−3. The corresponding
K0

S state is
|K0

S〉 := 1√
1+|ǫ|2

(
|K0

1〉+ ǫ|K0
2 〉
)
. (2.5.32b)

We must, however, be careful in the explanation of the observed CP violation
we have just described since there are, in fact, two distinct possible underlying
phenomena:

Direct CP violation

The introduction of a complex phase into the CKM matrix allows for CP -violation
at an elementary interaction level. For example, the decays K0

1→3π and K0
2→2π

are thus possible. This then is a direct effect.

Indirect CP violation

It turns out that the K0–K0 case just illustrated is an indirect consequence of CP
violation inasmuch as it derives from mixing of CP eigenstates, which in turn is,
of course, due to CP violation in the interaction.∗

Further measurements must be made in order to disentangle the two phenom-
ena. Suffice it to note here that experimental results demonstrate that it is the
indirect effect that dominates in neutral-kaon decays.

∗ By the same token, parity violation is observed in atomic physics, due to the effect of mixing
of parity eigenstates—in this case such indirect effects are very small indeed.
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Chapter 3

Hadronic Physics

In this chapter we shall discuss various aspects of the physics of the strongly
interacting particles or hadrons. Hadrons are not elementary particles but are
made up of combinations of quarks and antiquarks. The present description of
interactions between quarks is constructed on the basis of a so-called non-Abelian
gauge theory known as quantum chromodynamics (QCD). In particular then, we
shall discuss the theoretical and experimental foundations of this theory, from the
early developments of the quark–parton model, due to Gell-Mann and Feynman,
up to the modern version of the theory of strong interactions.

3.1 Pre-history

3.1.1 The bootstrap model

Until as recently as the early seventies there was no truly fundamental theory of
the strong interaction, but rather a model based mainly on ideas of mathematical
self-consistency. Although QED provided an substantially complete quantum field
theory for the electromagnetic forces, no such theory could be constructed for
the strong interaction. First of all, this is not surprising since we know that the
hadrons are not elementary particles and therefore cannot be expected to have
point-like interactions. Moreover, if one insists on constructing a model in which,
for example, the pion acts as the exchange field for the strong force, simple fits
to say nucleon–nucleon scattering data indicate a strong fine-structure constant
of order 10. This would render nonsense of a perturbative approach and such a
model is thus almost useless.

Instead, theorists appealed to the general mathematical structure that typically
emerges from quantum field theory approaches and attempted to directly construct
the so-called S-matrix (or scattering matrix). The natural constraints to be applied

43
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were then:

• analyticity,
• crossing,
• symmetry.

While the meaning of the last should be obvious, the other two (borrowed, so-to-
speak, from field-theoretical descriptions) need a little explanation. At any rate,
the idea was simply that, in the absence of a truly fundamental theory from which
one could, in principle, have calculated the scattering matrix or S-matrix, the S-
matrix should be constructed or rather parametrised from general principles and
experimental data. The above requirements would then become constraints on
such a construction.

Analyticity

This refers to a general mathematical property of scattering amplitudes: namely,
that they should be analytic functions of the energies, momenta and other variables
involved, which is actually a rather strong constraint. It means, in particular, that
Cauchy’s theorem applies and therefore the pole structure or spectrum of the
theory determines to a large extent the general nature of the S-matrix.

Crossing

This indicates the requirement that amplitudes for processes differing only by the
exchange of initial- and final-state particles should be obtainable simply via inter-
change of the relevant variables (i.e. four-momenta and possible spin variables).
Thus, for example, the processes π0p→π+n and π−p→π0n should be described
by one and the same amplitude with the incoming and outgoing pion momenta
exchanged. And by exchanging instead, say, the proton and π+, the amplitude for
π0π−→pn is obtained etc.

Symmetry

The concept of symmetry simply refers to the fact that the model must include
or respect all known discrete and continuous symmetries of the strong interac-
tion (such as C, P , T etc.) and all conservation laws (such as electric charge,
strangeness, energy and momentum etc.). Moreover, as we shall now see, there are
many more observed (at least approximate) symmetries, for which explicit account
should be made.

Put together, these requirements place very stringent boundary conditions on
the construction of possible scattering amplitudes. Such a picture was partially
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justified by the development of a string theory∗ of hadronic interactions, which in
turn was supported by Regge theory. However, as far as the structure of hadrons
was concerned, one had a vision in which, so to speak, everything was made of
everything and nothing was fundamental. This self-generating view of strong-
interaction phenomenology led to the name “bootstrap”.† While, to some extent,
this permitted a self-consistent description and even some useful predictions, the
overall agreement and predictive power were not acceptable for a complete theory
or understanding of hadronic physics.

Before moving on, we should mention that while such an approach could never
provide a fundamental description of hadronic interactions, nevertheless it has
some use. In particular, it does not rely on perturbative techniques and can thus
provide important information in those situations where standard perturbative
methods fail. For a detailed discussion of the S-matrix, the reader is referred to
the classic text by Eden et al. (1966) although the book by Collins and Martin
(1984) provides more insight to modern applications.

3.1.2 The birth of quarks and partons

This evermore unsatisfactory situation spurred physicists on in their quest for
newer and, in particular, more fundamental descriptions. Among these were
Gell-Mann and Ne’eman (1964)‡ with the quark § theory of the observed hadronic
symmetries (see also Sakata, 1956, for early work in this direction) and Feynman
(1969) with his point-like parton constituents of the proton. While these two
roads were initially followed independently and were indeed somewhat orthogonal
in inspiration, it soon became evident that the two pictures coincided and merely
described two different aspects of the same fundamental objects: quark–partons.
Mention should also be made of the role played by Bjorken (1969) in uniting
the known symmetries with a high-energy (and therefore short-distance) view of
particle interactions. This chapter describes then the unfolding of these two paths
to their eventual unification and the successive development of the theory of the
strong interaction now known as quantum chromodynamics (QCD).

∗ This is not to be confused with modern superstring theory, which is considered by many to
represent a possible theory of all known particle interactions (including gravity).

† The origins of the expression “bootstrap”, as employed here, are usually attributed to Baron
Munchausen. The story attributes him with the claim that, finding himself once stuck in a
swamp and unable to escape, he pulled himself out of the mud by his own bootstraps.

‡ The 1969 Nobel Prize for physics was awarded to Murray Gell-Mann for “his contributions and
discoveries concerning the classification of elementary particles and their interactions.”

§ Note that, according to Gell-Mann, the word “quark” rhymes with “walk” (not “park”) and was
possibly inspired by James Joyce’s Finnegan’s Wake.
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3.2 Gell-Mann’s flavour SU(3)

3.2.1 The eightfold way

The reader should already be familiar with the symmetry associated with what is
known as isotopic spin or, more simply, isospin∗; we shall now describe how such
a picture is extended to include strangeness. Let us first remark that the necessity
for introducing this new quantum number arose from observations such as the
relatively long lifetime of the Λ0 hyperon (and other so-called strange particles).
Despite having a large enough mass to decay comfortably into pπ− or nπ0 (i.e. with
sufficient phase-space or Q-value so as not to be suppressed), the lifetime of the
Λ0 is 2.6×10−10 s, far from that of a strong decay, for which typical lifetimes are of
order 10−23 s. In addition, one notices that in strong-interaction processes certain
particles (such as kaons and hyperons) are only ever produced in pairs, which on
examination may be consistently assigned labels of strange or anti-strange.

First, let us note that, for historical reasons, the strangeness associated with
the strange quark (and hence with baryons that contain one) is −1 while a strange
antiquark has S=+1. Now, if one also defines a new quantum number B or baryon
number, which is +1 for qqq baryons (−1 for antibaryons) and 0 for qq̄ mesons,
then by inspection one discovers the Gell-Mann–Nishijima relation (Gell-Mann,
1953; Nakano and Nishijima, 1953):

Q = I3 +
1
2
(B + S) = I3 +

1
2
Y, (3.2.1)

where Q is the electric charge of the baryon in units of the proton charge and
where we have also taken the liberty of introducing yet another quantum number,

Y := B + S, (3.2.2)

the hypercharge. This formula correctly reproduces the charges of all known had-
rons (i.e. both baryons and mesons).

Combining isospin with hypercharge leads to a natural set of periodic tables for
the baryons and mesons (see Fig. 3.1). The fact that both baryons and mesons fall
into octets is an accidental property of SU(3). That they should also be the lowest
mass states is, however, a property of the strong interaction itself. In Fig. 3.1 the
masses of the particles are approximately the same along the rows (separately for
each group, of course), with the exception of the isospin singlets: Λ0 and η0. The
third component of isospin varies horizontally while the vertical axis represents
the hypercharge (or strangeness since B is constant in any given diagram). The
early identification of the pseudoscalar meson octet led Ohnuki already in 1960 to

∗ For a brief introduction to the concept of isospin see App. B.2.
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n p

Σ− Σ0Λ0 Σ+

Ξ− Ξ0

K0 K+

π− π0η0 π+

K− K0

K∗0 K∗+

ρ−
ρ0ω0

φ0 ρ+

K∗− K∗0

Figure 3.1: From left to right: the arrangements of the lowest-mass baryons, pseudo-
scalar mesons and vector mesons into three octets of flavour SU(3).

predict the existence of the (then unknown) η0.
The rightmost group in Fig. 3.1 actually contains nine particles: along with

the octet, there is an SU(3) would-be singlet (of larger mass). In fact, also in
the pseudoscalar meson case one can identify a ninth (singlet) particle: namely,
the η′(958). In the case of the vector mesons the similarity of the masses favours
strong mixing and thus the distinction between singlet and octet member loses any
clear meaning. The baryon case is rather more complex: the colour and flavour
wave-functions should be antisymmetric and thus zero orbital angular momentum
and spin-1/2 are not possible if the wave-functions is to be overall antisymmetric
as required by Fermi–Dirac statistics.

At any rate, such an arrangement in octets is readily explained via an under-
lying flavour SU(3) symmetry. In mathematical terms, baryons are products of
three fundamental representations while mesons are constructed from one funda-
mental representation and one anti-fundamental representation. Such composite
objects can the be decomposed into the following irreducible representations:

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10, (3.2.3a)

3⊗ 3 = 1⊕ 8. (3.2.3b)

As noted, the baryon singlet is difficult to identify while the meson singlet is
naturally associated with the η′. The extra baryon octet is observed as a set of
so-called N∗ resonances, with similar properties but heavier. The decuplet nicely
accommodates the set of spin three-halves, isospin three-halves baryon resonances
shown in Fig. 3.2. The question mark in the lowest entry of the table represents
a particle that was unknown when the table was first laid down, but which was
discovered shortly after (Barnes et al., 1964): namely, the Ω− an sss state (see
Fig. 3.3).∗ Now, not only does the table evidently predict the existence of such

∗ It is interesting to note that in 1973 by reanalysing earlier cosmic-ray photographic-emulsion
data Alvarez demonstrated that it had actually been unwittingly “seen” as early as 1954.
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∆− ∆0 ∆+ ∆++

Σ∗− Σ∗0 Σ∗+

Ξ∗− Ξ∗0

?

Figure 3.2: The arrangement of the lowest-mass, spin-3/2, isospin-3/2, baryons into a
decuplet of flavour SU(3).

Figure 3.3: The bubble-chamber image in which the Ω− was discovered. A K− strikes
a proton, producing Ω−K0K+. These unstable particles then all decay further. The
dashed lines indicate neutrals, which do not produce tracks. The figure is taken from
Barnes et al. (1964).

a particle, but also its mass. Indeed, SU(3) symmetry in this case leads to the
simple prediction that the mass spacing between rows of the table is constant.
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3.2.2 SU(3) mass relations

Now, the approximate SU(3) symmetry of the Gell-Mann model also leads to a
surprisingly good description of the baryon-octet masses, in this case via just three
parameters. Such detailed agreement is highly non-trivial: while the decuplet mass
spacing is even, in the case of the octet it is not and, for example, the Λ0–Σ0 mass
difference can neither be ignored nor simply ascribed to electromagnetic effects.
The celebrated Gell-Mann–Okubo mass formulæ may thus be used, for example,
to very successfully “predict” the mass of the Λ0 hyperon, given the mean masses of
the three isospin multiplets: n–p, Σ−,0,+ and Ξ−,0 (see also Coleman and Glashow,
1961, 1964).

To derive these formulæ, we need to examine the representations of SU(3).
Recall that SU(2) is locally isomorphic to SO(3) (it actually provides a double
covering for the rotation group) and has just three generators, which are conveni-
ently represented by the three Pauli σ-matrices:

(
0 1

1 0

)
,

(
0 − i

i 0

)
,

(
1 0

0 −1

)
. (3.2.4)

The SU(3) group, which incidentally is not related to any SO(N) group, has eight
generators∗, which can be constructed in a very similar fashion

λ1 =



0 1 0

1 0 0

0 0 0


 , λ2 =



0 − i 0

i 0 0

0 0 0


 , λ3 =



1 0 0

0 −1 0

0 0 0


 ,

λ4 =



0 0 1

0 0 0

1 0 0


 , λ5 =



0 0 − i

0 0 0

i 0 0


 , (3.2.5)

λ6 =



0 0 0

0 0 1

0 1 0


 , λ7 =



0 0 0

0 0 i

0 − i 0


 , λ8 = 1√

3



1 0 0

0 1 0

0 0 −2


 .

The matrices in the first row are evidently a direct extension to 3×3 of the Pauli
matrices (i.e. they connect u to d). On close inspection, one sees that also the pairs
(λ4,λ5) and (λ6,λ7) play a role similar to that of (λ1,λ2), connecting u to s and
d to s respectively. Indeed, the usual ladder operators to raise or lower the third

∗ In general, the group SU(N) has N2−1 generators, which form an adjoint representation, while
the fundamental representation is N dimensional.
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component of isospin (or I-spin), so-called V-spin and U-spin may be constructed
as follows:

1
2
(λ1 ± iλ2),

1
2
(λ4 ± iλ5),

1
2
(λ6 ± iλ7). (3.2.6)

Finally, the eigenvalues of the matrix λ8 correspond to hypercharge.
To describe (though not truly explain) the baryon mass spectrum, one would

naturally wish to write a formula of the form mB= 〈B|M|B〉, where M represents
the (unknown) mass operator. We thus seek an SU(3) representation of the baryons
themselves. Without formally deriving such, let us simply state that the following
does the job: 



1√
2
Σ0 − 1√

6
Λ0 Σ+ p

Σ− − 1√
2
Σ0 − 1√

6
Λ0 n

Ξ− Ξ0 2√
6
Λ0


 . (3.2.7)

The interpretation of (3.2.7) is that the matrix used to represent any given baryon
will have entries corresponding to the coefficients of that baryon in the above
matrix. Thus, for example,

p =



0 0 1

0 0 0

0 0 0


 , Λ0 =

1√
6



−1 0 0

0 −1 0

0 0 2


 etc. (3.2.8)

As far as the SU(3) dependence is concerned, the interaction is then constructed by
simply multiplying the tensors representing the physical states together with the
relevant interaction matrix and saturating the indices. For the two-dimensional
representations adopted here, this simply means matrix multiplication and an
overall trace.

If SU(3) were exact, then the interaction would have the unit-matrix form
shown below as M0 while a term that violates SU(3) via the strange-quark mass
(a reasonable though not proven hypothesis) should take the form of δM below:

M0 = m01 and δM = δmλ8. (3.2.9)

We now simply need to evaluate traces of products of the matrices involved.∗

The SU(3)-symmetric piece leads to something like Tr[BM0B], where B implies
the transpose of the corresponding matrix. Since M0 is proportional to the unit
matrix this reduces trivially to Tr[BB]=1. The SU(3)-breaking term is a little
more difficult since λ8 does not necessarily commute with B and thus a priori
there are two possible inequivalent orderings. The best we can do is associate each

∗ Recall that traces are invariants and therefore depend only on the relevant symmetry-group
structure and not on the representation adopted.



3.2. GELL-MANN’S FLAVOUR SU(3) 51

with a new parameter, as follows:

mB = 〈B|M|B〉 = m0 + δm1 Tr[BBλ8] + δm2Tr[BBλ8]. (3.2.10)

The final form is thus a three-parameter expression for the masses of the eight
baryons.∗ The term m0 corresponds to the value all the baryon masses would have
for exact SU(3) symmetry while the two terms in δm1,2 describe the symmetry
breaking.

Exercise 3.1. Evaluate the two coefficients of δm1,2 in each of the four independ-
ent cases: N , Λ, Σ and Ξ.

Now, since we have not considered isospin breaking, we have already effect-
ively set mp=mn, the masses of the three Σs equal and also the pair of Ξs to have
equal masses. Therefore, there are actually only four independent quantities to
consider. However, this still leaves room for a prediction (or rather “post-diction”):
for example, the Λ0 mass is completely determined by the others. The result de-
pends on how one weights the individual contributions in the three separate isospin
multiplets and is also affected by the presence of electromagnetic corrections; nev-
ertheless, the mass so obtained is in excellent agreement with the experimental
value. Alternatively, one may use the four equations obtained from Eq. (3.2.10)
to eliminate the three unknown mass parameters, this leads to

3mΛ +mΣ = 2(mN +mΞ). (3.2.11)

This is just one of many mass formulæ obtainable assuming an approximate (but
broken) SU(3) flavour symmetry.

Exercise 3.2. Using the coefficients derived in the previous exercise, verify the
above mass relation.

Finally, we note that one can also consider taking into account the small SU(2)
or isospin breaking (leading to the proton–neutron mass difference). This certainly
has at least two origins: the differing charges of the u and d quarks and the differing
masses of the same. In such a simple picture (we have no dynamics here) the two
effects cannot be separated, but may both be included in the formulæ via the
inclusion of another breaking term:

δM′ = δmλ3. (3.2.12)

Two more parameters are necessary and thus one then has a five-parameter for-
mula, to describe though the eight independent baryon masses. Indeed, another

∗ It is not difficult to show that any choice for the matrix δM that does not violate SU(2) (i.e.
treats u and d quarks equally) would lead to an equivalent formula.
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relation, due to Coleman and Glashow (1961), deals precisely with these so-called
electromagnetic corrections:

(mp −mn)− (mΣ
+ −mΣ

−) + (mΞ
0 −mΞ

−) = 0. (3.2.13)

Exercise 3.3. Introduce SU(2) breaking as described above and thus add two new
coefficients, say δm3,4. Calculate the four coefficients of δm1−4 and determine the

parameters using the five independent cases of say p, n, Λ0 and Ξ0,−. Using the
values thus found, predict the Σ0,± masses.

Exercise 3.4. As a final check, insert the known values into the previous mass
formulæ and examine how closely they are actually satisfied.

3.2.3 The nature of quarks

At this point it is perhaps relevant to note that although it is often stated that
Gell-Mann himself did not believe in quarks as real physical objects inside hadrons,
he has more recently claimed:

“I always believed they were real—I just said that they had such strange
properties that they were better stuck away where they can’t be seen. But
I didn’t know that one could find them inside particles.”

At any rate, many did begin to believe in the physical reality of quarks and indeed,
independently, Feynman was already working towards a description of the possible
constituents of hadrons or, more precisely, of the way they might reveal their
presence through interaction with an external probe at very high energies (one
should not forget here the important contributions of Bjorken).

If we do take the physical reality of quarks seriously, then assuming the lowest-
mass baryons (the spin-1/2 octet and the spin-3/2 decuplet already mentioned) to all
be composed of three quarks in an s-wave state, one evidently requires the quarks
themselves to be spin-1/2. Their electric charges are easily determined from, say,
the p–n system:

2Qu +Qd = 1 and Qu + 2Qd = 0, (3.2.14)

leading to
Qu = 2/3 and Qd = −1/3. (3.2.15)

The same conclusions are reached by considering the ∆ quadruplet. Indeed,
these charge and spin assignments, together with Qs=−1/3 correctly reproduce the

charges, spins and parities (taking into account the orbital angular momentum as-
signments) of all known hadrons, both baryons and mesons (not yet including, of
course, charm or beauty). Finally, taking the individual quark magnetic moments
as free parameters, it is possible to obtain similar formulæ for the baryon magnetic
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moments; the agreement here is not quite so striking, but is nevertheless another
success for the theory.

3.3 Feynman’s parton model

3.3.1 High-energy electron–proton scattering

At this point in history (the late 1960’s) the experimental capabilities became the
determining factor in progress. At the Stanford Linear Accelerator Center (SLAC)
the machine then in operation was capable of delivering an intense electron beam
with an energy of around 2GeV. It was being used to study the internal structure
of the proton in much the same way that Rutherford and collaborators had used
α-particles to study the internal structure of the atom (Geiger and Marsden, 1909;
Rutherford, 1911). The correct energy to use is, of course, a question of the length
scale one wishes to resolve. An α-particle with a kinetic energy of 5MeV has
momentum

pα =

√
2mαc

2Eα ≃
√
2× 4000× 5 MeV/c = 200 MeV/c. (3.3.1)

Using the scale set by ~c∼200MeV/c, we immediately see that the best resolution
attainable is of the order of 1 fm (in practice it will always be rather poorer), which
is what would be necessary to approach the nuclear size.∗

If we now wish to look inside the proton, we evidently need a resolution roughly
an order of magnitude better, which would mean a factor of 100 in the α-particle
energy. However, in order to avoid confusing signals, we also require a probe that
does not partake in the strong interaction and which thus avoids a convolution
of the non-trivial structure of the projectile and that of the target. The obvious
choice then, as indeed already much used in nuclear physics, is the electron. At such
energies it is already highly relativistic, which actually simplifies the calculations
since we have pc≈E. And so an electron of energy 2GeV has a resolving power
of order 0.1 fm.

3.3.2 The parton model

In order to appreciate how and why Feynman was led to develop a picture of
hard, point-like constituents inside the proton (for an interesting account of the
model, see Feynman, 1972), we need to take a few steps back to the work done in
nuclear physics. We wish to describe e–p interactions at very high energies, where

∗ Rutherford and collaborators were indeed able to provide an estimate for the size of a nucleus
based on the observed deviations from the simple Rutherford formula.
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the possibility arises to “shatter” the proton into numerous (hadronic) fragments
(see Fig. 3.4). The initial and final electron four-momenta are ℓµ=(E,ℓ) and

ℓµ

qµ

ℓ′µ

pµ

θ

Figure 3.4: The Feynman diagram describing the electron–proton deeply inelastic scat-
tering process.

ℓ′µ=(E ′,ℓ′) while θ denotes the angle between ℓ and ℓ
′ in the laboratory frame.

In the energy regime of interest the energy transferred by the photon is

ν ≡ E −E ′ ≫ M, (3.3.2)

where M is the nucleon mass.∗ We thus require a formalism capable of dealing
with inelastic processes, which, by virtue of the short wavelengths (high energies)
involved, take place in very small regions of space and thus probe the small-scale
structure of the targets. Let us once again stress that, particularly in the field of
particle physics, high-energy and short-distance are considered synonymous, as too
are low-energy and long-distance—the dimensional translation factor is, as always,
~c∼200MeV fm.

3.3.3 High-energy elastic ep scattering

The starting point will be the simplest form of e–p interaction: namely, elastic
scattering. The low-energy case is dealt with in App. C.1.2, where we present
the effective Mott formula, applicable when nuclear recoil may be neglected. At
higher energies the recoil of the target nucleon is no longer negligible and the
reduced Mott formula Eq. (C.1.6) must be replaced by the full form (C.1.8):

dσ

dΩ

Mott

=
E ′

E

dσ̃

dΩ

Mott

, (3.3.3)

∗ What actually interests us is that this is more–or–less the same as the condition that the
effective wavelength of the photon be much smaller than the radius of the proton.
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where the factor E
′

E
accounts for the (now non-negligible) recoil effect of the target

nucleon. The four-momentum squared of the exchange photon assumes a certain
importance and in the high-energy limit, where we may safely neglect the electron
mass, we have

q2 = (ℓ− ℓ′)2 ≃ −4EE ′ sin2 θ
2
. (3.3.4)

Since this expression is evidently always negative, it is traditional to introduce
the positive variable Q2 :=−q2. This quantity appears in the propagator for the
photon and therefore naturally sets the scale for the process. We shall see that in
the energy regime of interest both ν and Q2 become large.

As the electron energy increases and its motion becomes ultra-relativistic, it
also becomes necessary to include the magnetic interaction (normally suppressed
by a factor v/c). For a point-like particle having gyromagnetic ratio exactly two
the full elastic cross-section takes on the form

dσ

dΩ

Dirac

=
[
1 + 2τ tan2 θ

2

] dσ
dΩ

Mott

, (3.3.5)

where the suffix “Dirac” indicates a point-like cross-section for a spin-half object

and the variable τ := Q
2

4M
2 . Note that the new term, proportional to tan2(θ/2),

disappears for θ=0◦, reflecting the spin-flip nature of the magnetic interaction
together with the usual requirement of angular-momentum conservation, coupled
to electron-helicity conservation due to the vector nature of the interaction.

However, neither the proton nor the neutron is point-like. Indeed, even the
neutron has an appreciable magnetic moment and can therefore scatter high-energy
electrons with a cross-section comparable to that of the proton. Moreover, since
we are now moving into a regime where the substructure becomes apparent, we
must also take into account both the charge and magnetic-moment distributions
inside the nucleons. As discussed in App. C.2, this simply requires the inclusion of
form factors, which are nothing other than Fourier transforms of the distributions
in question. The cross-section for elastic electron–nucleon scattering thus takes on
the Rosenbluth form (1950):

dσ

dΩ

Rosen.

=

[
G2
E(Q

2) + τ G2
M(Q2)

1 + τ
+ 2τ G2

M(Q2) tan2 θ
2

]
dσ

dΩ

Mott

. (3.3.6)

In the limit Q2→0, where the photon wavelength becomes infinite, the scattering
becomes effectively point-like and the electric and magnetic form factors GE(Q

2)
and GM(Q2) take on the their so-called “static” values:

Gp
E(0) = 1, Gp

M(0) = 2.79, (3.3.7a)

Gn
E(0) = 0, Gn

M(0) = −1.91, (3.3.7b)
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that is, at zero momentum transfer the electric form factor measures the total
charge while the magnetic form factor measures the magnetic moment (in units
of the nuclear magneton). In the absence of a theory for these form factors, the
Q2 dependence must simply be measured experimentally. The dependence on θ
allows a two-dimensional plot (Q2 also depends on E and so is an independent
variable), from which the functions G(Q2) may be extracted separately. For ex-

ample, note that for Q2 constant, the ratio dσ
dΩ

Rosen.
/ dσ
dΩ

Mott
is linear in tan2 θ

2
, with

slope 2τ G2
M(Q2).

Performing such measurements, one finds that the three form factors with a
non-zero limiting value all have a dipole-like behaviour (of the form mentioned in
App. C.2) while the neutron electric form factor is more difficult both to measure
and categorise:

Gp
E(Q

2) =
Gp
M(Q2)

2.79
=

Gn
M(Q2)

−1.91 =

[
1 +

Q2

M2
V

]−2

, (3.3.8)

where the single, phenomenological, mass parameter is MV ≃0.84GeV. It can be
shown that such a dipole form corresponds to an exponentially decaying charge
density:

ρ(r) = ρ(0) e−ar with a = 4.2 fm−1. (3.3.9)

Taking the Q2→0 limit of the experimentally measured slope, one deduces a
typical root-mean-square radius for the nucleon of approximately 0.8 fm.

3.3.4 Deeply inelastic scattering

As the energy transfer increases, processes other than elastic scattering become
possible and inelastic scattering sets in. Since the strict one-to-one constraint of
the relation between the outgoing electron energy and scattering angle is then
lost, for a fixed detector (or spectrometer) angle a broad spectrum of energies
will be observed. The upper limit is obviously the standard elastic scattering
final-state energy but many events are seen for energies below this. The first
important structure one observes is due to the quadruplet of ∆ resonances, with
masses around 1230MeV. It is convenient to introduce a new variable W , the
final hadronic-state invariant mass. The four-momentum of the hadronic state
emerging after photon absorbtion (assuming nothing is emitted) is simply pµ+qµ

and the invariant mass we seek is thus

W 2 ≡ (p+ q)2 = M2 + 2Mν −Q2, (3.3.10)
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which, recalling that for fixed beam energy and scattering angle,

q2 = −4EE ′ sin2 θ
2
, (3.3.11)

is linear in E ′. Recall too that, as defined∗, ν is actually implicitly a Lorentz
invariant, as is of course Q2. Figure 3.5 displays a typical cross-section or spectrum
for ep→ eX near the ∆ resonance mass peak. Allowing for the underlying inelastic

Figure 3.5: The cross-section for ep→ eX for electron beam energy E=4.9GeV and
scattering angle θ=10◦. The figure is taken from Bartel et al. (1968).

events (e.g. pion production), the shape of the resonance is a classic Breit–Wigner
(BW)†, from which one can deduce a mass of a little over 1200MeV and a width
of around 100MeV. Up to around 2GeV in W it is possible to identify other
resonances, after which the continuum production of multiparticle states starts to
dominate.

Exercise 3.5. Calculate the maximum possible resolution, i.e. the shortest photon
wavelength, obtainable with an electron beam energy of 4.88GeV. For the same
beam energy, calculate the maximum value of W .

∗ Defined, that is, not specifically as the energy transfer in the rest frame, but as Mν=p·q.
† For a detailed discussion, the reader is referred to App. A.5
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The question now is what will happen as we move to higher energies? The
situation is very similar to that of Rutherford in the early 1900’s: here the proton
has taken over the role of the atom (and the electron that of the α-particle). So,
if the proton is just a diffuse sphere of charge, again the large-angle cross-section
is expected to fall off very rapidly. Instead the remarkable behaviour found in
deeply inelastic scattering (DIS) at the end of the sixties (Bloom et al., 1969;
Breidenbach et al., 1969) was that, far from dying away as Q2 increased, as the
above form factors would predict, the cross-sections remained large and (up to
an overall dimensional scale factor) were independent of Q2 for fixed ν/Q2 ratio
(see Fig. 3.6).∗ Note that such scaling behaviour was already observed from about
W =2GeV onwards and is therefore often termed “precocious”. An early review
may be found in Friedman and Kendall (1972).

Before continuing, let us try to understand the expected decrease in physical
terms and thus better realise the implications of these findings. As the energy
of the probe increases, the wavelength of the exchange photon decreases. At the
moment of the interaction the photon effectively coherently “sees” only a small
volume inside the nucleon, given roughly by the photon wavelength. Therefore,
if the charge of the nucleon is distributed more–or–less uniformly throughout its
volume, the interaction strength is expected to decrease rapidly with increasing
energy. Since this does not happen, we are forced (just as was Rutherford) to
entertain the idea that there are small, dense (or rather point-like) objects inside
the nucleon, where its charge is then concentrated, thus avoiding the decreasing
cross-section.

3.3.5 Bjorken scaling

For inelastic scattering there are two independent variables, which historically were
taken as Q2 and ν, and in place of the Rosenbluth formula (3.3.6) one writes

d2σ

dΩdE ′ =
[
W2(Q

2, ν) + 2W1(Q
2, ν) tan2 θ

2

] dσ̃
dΩ

Mott

=
4α2E ′ 2

(Q2)2

[
W2(Q

2, ν) cos2 θ
2
+ 2W1(Q

2, ν) sin2 θ
2

]
. (3.3.12)

However, as noted, the data are well described as a function of a single variable.
This had already been largely foreseen by Bjorken (1969) essentially via dimen-
sional analysis. He argued that since at high energies (and it must be admitted

∗ The 1990 Nobel Prize for physics was awarded equally to Jerome I. Friedman, Henry W. Kendall
and Richard E. Taylor for “their pioneering investigations concerning deep inelastic scattering
of electrons on protons and bound neutrons, which have been of essential importance for the
development of the quark model in particle physics.”
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Figure 3.6: The ratio (d2σ/dΩdE′)/σMott as a function of q2 for W =2, 3 and 3.5GeV
in units of GeV−1. The lines drawn through the data are meant to guide the eye. Also
shown is the cross-section for elastic e–p scattering divided by σMott, (dσ/dΩ)/σMott

calculated for θ=10◦ using the dipole form factor. The relatively slow variation of the
inelastic cross-section with q2, as compared to the elastic cross-section, is clearly seen.
The figure is taken from Breidenbach et al. (1969).

that he had rather more the just a few GeV in mind) all relatively small masses
and energy-like parameters could be neglected. Therefore, once the naïve dimen-
sions of, say, a cross-section (e.g. the E ′2/Q4 pre-factor in the above formula) had
been factored out, the remaining dimensionless form factors could only depend on
dimensionless variables. Now, in DIS at high energies, for example, unless there
is some new scale due to some new physics or dynamics, only two large quantities
with dimensions of energy or mass remain important: namely, Q2 and ν. One
can only construct the adimensional, so-called, Bjorken scaling variable xB, which
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satisfies the following kinematical constraints:

0 ≤ xB :=
Q2

2Mν
≤ 1. (3.3.13)

It is thus an ideal candidate as the variable against which to plot the data.∗ We
shall soon see that in the Feynman picture it also has a very special meaning. In
1969 Bjorken showed that the correct scaling behaviour is then obtained via the
following substitutions:

MW1(Q
2, ν) → F1(xB), (3.3.14a)

νW2(Q
2, ν) → F2(xB). (3.3.14b)

3.3.6 The Feynman picture

It was, however, Feynman (1969) who gave more specific meaning to xB and the
form factors F1,2 or structure functions (as they are now known). Assuming that
there were point-like spin-half objects (which he called partons) inside the nucleon
and that it was with these that the high-energy electromagnetic probe interacted,
Feynman calculated the resulting cross-section, much in the same fashion as in
App. C.3 for quasi-elastic scattering (see Fig. 3.7). The parton approach also

nucleon

e−
e−

γ

q

Figure 3.7: The electron–nucleon deeply inelastic scattering process, according to Feyn-
man’s parton-model picture (the blob inside the circle represents the struck parton).

leads to a simplification: the two a priori unrelated structure functions F1,2 turn
out to be a single function (because the partons are treated as elementary Dirac
particles with gyromagnetic ratio 2). Indeed, Callan and Gross (1969) quickly

∗ It might be mentioned that Bjorken himself used x≡ Q
2

Mν
, which differs by a factor two. Indeed,

in the early literature one can also find the inverse ω≡ Mν

Q
2 while many authors (including

Bjorken himself) still often simply used ν as the independent kinematic variable.
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showed the following relation to hold in the high-energy, so-called, scaling limit :

F2(x) = 2xF1(x). (3.3.15)

It is important to realise that this and indeed the whole picture is to be taken as
an approximation that would be precise only in the limit Q2→∞. In fact, it turns
out that higher-order quantum corrections also spoil the simple picture although
they can be incorporated in a systematic way to provide precise and experimentally
verifiable numerical predictions.

We can now try to understand the physical meaning of xB and the structure
functions that depend on it. It is natural (following the quasi-elastic scattering ana-
logy) to attempt to describe the process as a collision between a virtual photon and
a parton bound inside a nucleon. Indeed, one considers the lepton–photon vertex
as so thoroughly understood as to be of no interest here. The only obstacle is that
the partons are considered massless (or as having negligibly small masses) and thus
their rest-frame is ill-defined. It is therefore necessary to work in a relativistically
boosted frame. There are many possible choices of, so-called, infinite-momentum
frames, but that which lends itself best to the present purpose is the Breit (or
so-called “brick-wall”) frame, in which the struck parton turns through 180◦ while
retaining the same energy and absolute momentum, i.e. it simply reverses its mo-
mentum, as if it had indeed collided with a brick wall. In this frame the photon
evidently carries zero energy and qµ is therefore purely space-like. We shall also
take the z-axis as the direction of the proton in this frame (the photon momentum
is thus negative). Now, since Q2/2p·q=xB and q0=0, then qz=−2xBpz. To re-
verse the direction of the incoming parton (with momentum k, say), we evidently
require qz=−2kz. We thus finally obtain

xB = kz/pz. (3.3.16)

This is then the famous parton-model relation: xB is just the fraction of the proton
momentum carried by the parton as seen in an infinite-momentum frame.

Exercise 3.6. Derive the above relation explicitly and thus demonstrate that the
adimensional Bjorken scaling variable xB, as defined in Eq. (3.3.13), is bounded
to lie in the range [0,1].

At this point we have a picture in which a parton carrying a fraction xB of the
parent hadron momentum collides with an electron at very high energy and with
very large momentum transfer. It may thus be reasonable (though more on this
later) to avail ourselves of the impulse approximation already used in describing
quasi-elastic scattering. In such an approach one can calculate the deeply inelastic
scattering e–p cross-section for a given xB as simply the product of the probability
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of finding a parton with that momentum fraction and the cross-section for its
elastic scattering with the incoming electron. Comparison of the two expressions
immediately leads to the identification of the structure functions with probability
distributions or densities for partons:∗

F2(x) = 2xF1(x) =
∑

i

Q2
i

[
xfi(x) + xf̄i(x)

]
, (3.3.17)

where the sum runs over the different types or flavours of partons that might be
found inside a hadron, Qi is the charge (in units of the proton charge) of the
i-th. parton type, fi its probability distribution or density with respect to the
momentum fraction x and f̄i that of the corresponding antiparton.†

We have included antiquarks in the sum over parton types since we know that,
via spontaneous quark–antiquark production (predicted by quantum field theory),
at any given instant in time a hadron will also contain some (albeit small) fraction
of antiquarks. Note that the cross-section is only sensitive to the charge squared Q2

i

and therefore the contributions of partons and antipartons are indistinguishable.
We may as well now start calling Feynman’s partons quarks. We shall at times still
continue to use the term parton since it may be taken to refer to any constituent
of the proton, neutron or other hadrons—as we shall see shortly, there are also the
gluons to consider.

3.3.7 Difficulties with the Feynman approach

A number of (actually rather deep) questions now arise, which absolutely beg
clarification:

1. parton transverse-momentum effects have been ignored,

2. no theory of the distribution f(x) has been given,

3. gluons have not been included,

4. the destiny of the struck quark is not specified,

5. binding-energy effects have been ignored.

We shall deal with the second in some detail later. We shall also try to provide
some understanding of the fourth and fifth shortly; they are related but are also
somewhat more complex and profound issues. Let us begin, however, with a few
brief comments.
∗ From now on, for simplicity of notation and according to accepted convention, we shall usually
drop the suffix B on the Bjorken variable xB.

† It should perhaps be stressed that x here has nothing whatsoever to do with position or con-
figuration space.
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Parton transverse-momentum effects

Let us then first comment on the momentum components of the quark in the plane
transverse with respect to the z-axis (defined by the proton–photon directions in
their centre–of–mass frame). In the above treatment they were totally ignored,
this may be justified by assuming that they are due to Fermi motion of the quarks
inside the nucleon, which is restricted to low momenta. According to the familiar
Heisenberg principle, the mean (internal) momentum will be of the order of the
inverse size of the nucleon in which they are bound and thus presumably of order
200MeV. Moreover, transverse components are unaffected by longitudinal boosts.
As a first approximation this is just fine although there are certain circumstances
where the role of transverse momenta is non-negligible.

Parton distributions

As to a theory for the quark–parton distributions f(x), it simply does not exist as
yet. The bound-state problem in QCD is still far from being solved and although
various theoretical techniques and models have been developed, none provides truly
satisfactory solutions for the bound states of three quarks or quark–antiquark pairs
and certainly no approach is sufficiently advanced to provide complete ab initio
calculations of the parton densities.

Gluons

As far as gluons are concerned, since they carry no electric charge, they cannot
contribute to DIS in the Born approximation. However, at higher order in per-
turbation theory, a gluon inside the proton may spontaneously split into a quark–
antiquark pair, of which one or other may then interact with the photon. Such
effects can be calculated and included systematically into phenomenological de-
scriptions. In fact, it is found that approximately only half the proton momentum
is carried by quarks and antiquarks (these last carry only some 6% or so), the
other half being associated with gluons.

Moreover, as we shall soon see, gluons carry the colour charge of QCD and
therefore interact not only with quarks but also with each other. This means that
in hadron–hadron collisions we may have a parton-level process in which two gluons
collide and fuse to produce, e.g. a quark–antiquark pair. Indeed, at high energies
such gluon–gluon fusion processes can even dominate the scattering cross-section.
Yet another possibility is a gluon–quark Compton-like process.
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Confinement and asymptotic freedom

The remaining two points are conceptually much tougher. Especially in view of the
fact that, no matter how high we go in energy experimentally, it has (so far) proved
impossible to liberate a quark from inside its host hadron. The problem of binding
leads us to two concepts that are central to the theory of strong interactions:
namely confinement and asymptotic freedom. Indeed, so important are they that
they deserve a dedicated section. However, this will be postponed until we have
described at least a little of the nature of the interaction involved: namely, QCD.

3.4 Quantum chromodynamics

The attempt to construct a fundamental theory took as its starting point the theory
known as QED. This is the field-quantised version of the classical field theory of
electrodynamics, a gauge theory (the photon is rigorously massless) and as such
possessing important symmetries, which guarantee suitable high-energy behaviour
under quantisation. However, QCD differs from QED in that the gauge structure
has a non-Abelian symmetry, i.e. it is of the Yang–Mills type (Yang and Mills,
1954). Apart from various theoretical complications this leads to a very important
difference: there is not just one single charge but three. By analogy with the
primary colours in optics, these are traditionally identified as red, blue and green.
A quark may thus carry any one of these three charges while an antiquark carries
an anti-colour charge and, as we shall explain, the (massless) gluon is also coloured.

3.4.1 Motivation for colour SU(3)

Let us first examine how such a theory came into being. The choice of SU(3)col
∗

as the strong-interaction gauge group (Greenberg, 1964; Han and Nambu, 1965)
is uniquely determined by a number of phenomenological and theoretical obser-
vations (see Muta, 1998, for example). Note that the following do not constitute
a requirement regarding the interaction, but merely indicate the nature of the
symmetry group. However, it is natural, following in the footsteps of the highly
successful theory of QED, to extend it to a local gauge symmetry and thus intro-
duce a very desirable interaction. For a variety of reasons (which we shall shortly
discuss), it is necessary to enlarge the symmetry group beyond the simple single
parameter space of the QED U(1) to SU(3)col

∗ There must be no confusion between SU(3)
col

and SU(3)
flav

– the first refers to the local gauge

symmetry of the strong interaction (i.e. the gluon dynamics) while the second is a global sym-
metry of the quark fields irrespective of their interactions and contains no real dynamics.
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(a) The group must admit a totally antisymmetric colour-singlet (“white”) baryon
composed of three quarks, qqq. Note that states with, e.g., four quarks have
never been observed. From the study of hadron spectroscopy it is known that
the lowest-mass baryons, the spin-1/2 octet and the spin-3/2 decuplet of SU(3)flav

(the approximate flavour symmetry that rotates the three light quarks u, d and
s), are composed of three quarks in what are assumed to be colour-singlet states.
Indeed, the qqq wave-function must be antisymmetric in colour, in order to satisfy
Fermi–Dirac statistics. Consider, for example, a ∆++ with spin z-component +3/2:

this has the form |u⇑u⇑u⇑〉 in an s-wave (likewise, Ω− should be |s⇑s⇑s⇑〉 with
L=0), i.e. three identical fermions in the same state. In space, spin and flavour
the wave-function is thus totally symmetric and hence antisymmetry in colour is
required for overall antisymmetry. This requirement is neatly satisfied by SU(3)col
and the natural construct ǫabc q

aqbqc, where a, b and c are SU(3)col indices.

(b) The group structure must admit complex representations since it must dif-
ferentiate between quarks and antiquarks. In fact, there exist qq̄ mesonic states
while no analogous qq bound states are known. Among the simple groups, this
restricts the choice to E(6), SU(N) with N ≥2 and SO(4N+2) with N ≥2, taking
into account that SO(6) has the same algebra as SU(4).

(c) The choice of the gauge group SU(Nc=3)col is also confirmed a posteriori by

many processes that directly or indirectly measure Nc. We shall now present some
important examples.

The hadron-production rate in e
+
e
− annihilation

The e+e− annihilation process proceeds via the production of a virtual interme-
diate boson (γ or Z0), which then “decays” into a fermion–antifermion pair (see
Fig. 3.8). These may be charged leptons or quarks (in the case of Z0 neutrinos

γ,Z0

e+

e−

f

f̄

Figure 3.8: The e+e− annihilation process into a fermion–antifermion pair, via the
intermediate production of a virtual photon or Z0 boson.

are also possible). The overall rate for any given channel is proportional to the
charge squared of the final-state fermion. Final states containing only hadrons are
assumed to have their origins in a qq̄ pair. Counting a separate contribution for



66 CHAPTER 3. HADRONIC PHYSICS

each colour of quark, the total rate for hadron production in e+e− annihilation is
thus proportional to Nc:

∗

Re
+
e
− ≡ σ(e+e− → hadrons)

σpoint(e
+e− → µ+µ−)

= Nc

∑

f

Q2
f (for 2mf < ECM),

where the sum runs over individual contributions (weighted by Q2
f , the quark

electric charge squared) from accessible qf q̄f final states. Above the bb̄ threshold
but well below mZ we have qf =u, c, d, s and b (t is, of course, too heavy):

Re
+
e
− ≈

[
2×(2

3
)2 + 3×(−1

3
)2
]
Nc = 11

9
Nc. (3.4.1)

The data nicely indicate Nc =3, as seen from Fig. 3.9 (PDG-2012 – Beringer et al.,
2012). Note that the cross-section excess in the data of a few percent with respect
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Figure 3.9: R
e
+
e
− as a function of total centre–of–mass energy. The figure is taken

from PDG-2012 (Beringer et al., 2012).

to the value 11/3 can be accounted for by QCD radiative (or quantum) corrections.

∗ Important, known, quantum corrections have been neglected here (they will be discussed later).
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The branching ratio B(W−→e
−−

νe)

A similar example is provided by the W− decay rate (see Fig. 3.10). Again, in

W−

f̄ ′= ν̄e, ν̄µ, ν̄τ , d̄W , s̄W

f = e−,µ−,τ−,uW ,cW

Figure 3.10: The general W−→f f̄ ′ decay process (the natural charge-conjugate chan-
nels also exist for the W+).

the Born approximation, the allowed fermion–antifermion (f f̄ ′) final states in W−

decay are e−ν̄e, µ
−ν̄µ, τ

−ν̄τ , (dū)W and (sc̄)W ; the final state (bt̄)W is not possible
since the top quark is too heavy to be produced. Each channel type (lepton or
quark) contributes equally∗, except that for quarks there are Nc colours and we
must therefore include an extra weight factor Nc =3 for the quark channels:

B(W− → e−ν̄e) ≡
Γ(W− → e−ν̄e)

Γ(W− → all)
≈ 1

3 + 2Nc

. (3.4.2)

For Nc=3, B=11% (it would be 20% for Nc =1); to be compared with the
experimental value B=10.75±0.13%.

The branching ratio B(τ−→e
−−

νeντ )

The τ lepton, having a mass of very nearly 1777MeV, may decay into a number
of final states, both leptonic and hadronic. The basic process τ→f f̄ ′ντ , obviously
an analogue of β-decay, is depicted in Fig. 3.11. Considering the energetically

τ−

ντ

W−

f̄ ′= ν̄ℓ, d̄W

f = ℓ−,uW

Figure 3.11: The general τ−→ντf f̄
′ decay process (ℓ stands for either of the two

lighter charged leptons).

∗ Quark and lepton mass effects (mc and mτ ) may be more-or-less neglected here.



68 CHAPTER 3. HADRONIC PHYSICS

available final-state channels, the f f̄ ′ pair may be e−ν̄e, µ
−ν̄µ, or (dū)W . In prin-

ciple, neglecting the small mass effects, each should contribute with equal weight.
However, if the quarks are coloured, the number of (dū)W states available becomes
Nc=3. The branching ratio B(τ−→ e−ν̄eντ ) is then

B(τ− → e−ν̄eντ ) ≡
Γ(τ− → e−ν̄eντ )

Γ(τ− → all)
≈ 1

2 +Nc

. (3.4.3)

For Nc =3, B=20% (it would be 33% for Nc =1) while the experimental number
is B=17.84±0.05% (the poorer agreement in this case is explained by the larger
QCD radiative corrections since the mass of the τ− is small and thus αs large, see
later).

The rate Γ(π0→2γ)

The process Γ(π0→2γ) is quadratic in Nc and is depicted in Fig. 3.12. The rate

γ

π0 γ

Figure 3.12: The quark description of decay π0→2γ. Given the natural mass scale
involved (mπ), the internal fermion loop only involves the light quarks u, d and s.

can be reliably calculated via so-called soft-pion theorems and is related to the
so-called chiral anomaly :

Γ(π0 → 2γ) ≈
(
Nc

3

)2
α2m3

π
0

32π3f 2
π

= (7.73± 0.04)×
(
Nc

3

)2

eV, (3.4.4)

where fπ=(130.7±0.37)MeV is the charged-pion decay constant. The measured
experimental value is Γ=(7.7±0.5) eV, in good agreement with Nc=3.

Cancellation of the ABJ triangle anomaly

Another rather more technical problem, but related to the previous case, is that
of the Adler–Bell–Jackiw (ABJ—Adler, 1969; Bell and Jackiw, 1969) so-called tri-
angle anomaly. At the classical level the theory not only has a U(1) vector sym-
metry, but also a U(1) axial-vector symmetry—i.e. additional invariance with re-
spect to transformations under γ5. (The associated axial current is just that which
contributes to the Gamow–Teller transitions in nuclear β-decay.) However, the
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one-loop triangle graph with two vector vertices and one axial vertex breaks this
symmetry—the axial current is therefore not conserved (see Fig. 3.13). The anom-

γ5γ
µ

γν

γσ

Figure 3.13: The triangle diagram contributing to the Adler–Bell–Jackiw anomaly; the
loop contains all the leptons and all the quarks.

aly contribution is proportional to the charge of the fermion circulating in the loop
and is thus: −1 for the charged leptons, zero for neutrinos, +2/3 for up-type quarks

and −1/3 for down-type quarks. Therefore, if and only if there are precisely three
colours of quark, each quark–lepton family contributes with an overall coefficient

− 1 + 0 + 3×
(
2
3
− 1

3

)
= 0. (3.4.5)

The Drell–Yan process

In the Born approximation the rate for Drell–Yan processes (e.g., pp→µ+µ−X) is
inversely proportional to Nc. Such a process proceeds via qq̄ annihilation into a
virtual (massive) photon, which subsequently decays into a µ+µ− pair. Thus, for
example, a quark of a given colour in one hadron must find an antiquark of the
same colour in the other and hence only 1/Nc of the cases may actually proceed.

3.4.2 Asymptotic freedom and confinement

That quarks (and gluons) appear to be inextricably bound inside hadrons (baryons
and mesons), i.e. that they are not allowed to propagate in free space, is ascribed
to the property (presumably of QCD) known as confinement. The behaviour
observed in high-energy collisions, where the scattering processes between quarks,
gluons and other particles occur as though the partons themselves were instead
free, despite being bound, is referred to as asymptotic freedom (again, a property of
QCD). While the latter can actually be demonstrated in perturbative approaches,
the former is so far only a reasonable conjecture that may be partially understood
and justified through arguments of plausibility.

The confinement problem is a serious obstacle to Feynman’s picture: the im-
pulse approximation is applicable in nuclear physics because the interaction time
for the probe is much shorter than that of the nuclear motion; i.e. nucleons bound
inside the nucleus do not actually feel the potential until they touch the bound-
aries (internally the potential is approximately constant). It is also true that the
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binding energy is much less than the potential-well depth; i.e. the binding is loose.
Finally, the nucleons do actually emerge (and the energy difference due to the well
depth is manifest in their spectrum); quarks, on the other hand, do not and thus
would appear to have infinite binding energy. One might therefore presume the
potential to be far from flat inside the nucleon. How then is it that they appear
as though free?

The answer to this question was provided by Gross and Wilczek and, inde-
pendently, by Politzer in 1973.∗ These three theoreticians examined the behaviour
of coupling constants in general quantum field theories. In QED it had long been
known that one effect of renormalisation is to transmute the coupling constant α
into a function that varies with energy scale (one uses generically Q2).

To understand this, let us imagine trying to measure the charge of an isolated
electron, in a vacuum, by using another (infinitesimal) charge as a probe at some
large distance r. Now, in quantum field theory the vacuum is not strictly empty;
it is rather a sort of bubbling soup of virtual particle–antiparticle pairs being
continually created and subsequently annihilating spontaneously. When such a
pair is formed, the particle with positive charge is attracted to the electron that
is the object of our measurement while the other is repelled. Consider then the
Gaussian sphere at radius r: there will be a net movement of neutralising charge
towards the electron under study. According to Gauss’ theorem, this reduces
the effective charge as measured by the probe, leading to a so-called “screening”
effect. However, as the probe approaches the object the screening diminishes and
the measured charge thus increases. A full calculation in QED reveals that there
comes a point at high enough energies where the charge becomes effectively infinite
while the large-distance (or Q2≈0) limit is well-defined and finite: its value is just
the oft-quoted 1/137.

Fortunately, it turns out that the scale orQ2 for which the charge would diverge
(the so-called Landau pole) is actually far beyond the Planck mass and is thus of
little physical relevance.† The variation of α with Q2 is, in contrast, very phys-
ical and indeed observable. For example, at the Large Electron–Positron Collider
(LEP) α has been measured for Q2≈M2

Z and the value obtained is approximately
1/128, in perfect agreement with theory.

The above description is typical of Abelian gauge theories (such as QED) and
indeed most quantum field theories, with the exception of non-Abelian theories
(such as QCD and, by the way, the electroweak theory). In such theories, the gauge

∗ The 2004 Nobel Prize for physics was awarded to David J. Gross, H. David Politzer and Frank
Wilczek for “the discovery of asymptotic freedom in the theory of the strong interaction.” The
work of Gross and Wilczek (1973b) and, independently, of Politzer (1973) marks the effective
birth of QCD as the theory of strong interactions.

† That is, until the role of gravity in quantum field theory is understood and/or becomes import-
ant phenomenologically, we need not (and indeed cannot) address such a problem.
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fields themselves also carry the charge of the interaction and can thus interact, even
in the absence of matter fields. It turns out that their contribution to the vacuum
colour polarisation has the opposite effect to that of the fermions, i.e. it antiscreens
an isolated charge.

The results of the calculations performed by Politzer, Gross and Wilczek may
be summarised as follows. For convenience, as all variation is logarithmic in energy
scale (Q2), we introduce the so-called β-function as the logarithmic derivative of
α with respect to the scale:

Q2 ∂α(Q
2)

∂Q2 =
∂α(t)

∂t
= β(α(t)) , (3.4.6)

where we have defined

t = ln
Q2

µ2 , (3.4.7)

with µ an arbitrary parameter—varying µ merely translates the t-axis, leaving de-
rivatives unaffected. The β-function may be calculated perturbatively in quantum
field theory and depends in an essential way on the type of theory. We thus make
a power expansion in α:

β(α) = −α2(b0 + b1α + b2α
2 + . . .). (3.4.8)

Note that the first term turns out already O(α2). The sign of the first coefficient
is crucial in determining whether the coupling constant increases or decreases with
growing energy scale (the overall minus sign is conventional).

In QED we find:

bQED
0 = − 1

3π

∑

f

Ncf Q
2
f , (3.4.9a)

where Ncf = 3 for quarks, 1 for leptons, and the sum runs over all fermions of
charge Qf that are active∗ at the chosen energy scale. In QCD, however,

bQCD
0 =

(11Nc − 2Nf)

12π
, (3.4.9b)

where, as usual, Nf is the number of active flavours of quarks. Therefore, provided
Nf<17, the β-function in QCD is negative.† An important proven result is that, in

∗ By active we mean energetically accessible at the scale determined by Q2.
† In fact, b1 and b2 are known for QCD and have the same sign as b0 for N

f
not too large.
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four space–time dimensions, only non-Abelian gauge theories are asymptotically
free (Gross and Wilczek, 1973a,b, 1974; Politzer, 1973, 1974).

If α is small enough for perturbation theory to be valid, defining α0≡α(t)|t=0,
the leading-order solutions to the differential equations are simply

QED : α(t) ≃ α0

1− |b0|α0t
(3.4.10a)

and
QCD : α(t) ≃ α0

1 + |b0|α0t
. (3.4.10b)

A different and more transparent form may be adopted for QCD: by defining
α−1
0 =: b0 ln(µ

2/Λ2
QCD), for b0>0, it may be rewritten as

α(Q2) ≃ 1
1
α0

+ b0t
=

1

b0 ln
µ
2

Λ
2

QCD

+ b0 ln
Q

2

µ
2

=
1

b0 ln
Q

2

Λ
2

QCD

. (3.4.11)

where a dimensional parameter ΛQCD has been introduced to replace µ (and α0).

The logarithmic decrease of α(Q2) with Q2 is thus made manifest.
At this point we may consider ΛQCD as an independent physical parameter,

substituting the non-physical α0 (the value of α for Q2=µ2). In quantum field
theory jargon this parameter exchange is known as dimensional transmutation.
The exact value extracted experimentally depends on the order of perturbation
theory used and the energy scale (through the number of active flavours), but
generally lies between 200 and 300MeV.

In other words, so effective is the antiscreening of gluons that, unless there
are more than 17 different quark types, the behaviour of the QCD coupling is the
opposite of that in QED and the charge decreases with increasing Q2. This leads
to the notion of asymptotic freedom. With this concept in hand we can justify
the apparent freedom of the quarks inside the proton: as long as they are probed
at high enough energies, the effective interaction strength with the surrounding
nucleon is small. To have some idea of this, for Q2≃M2

Z one finds (experimentally)
αs≃0.11, where we have used the standard notation of αs to indicate the strong
coupling constant (i.e. that of QCD). To be honest, at 1969 SLAC energies it was
larger by about a factor 3 or 4; in other words, it was not really very small. In any
case there are now many independent measurements of α(Q2) and the agreement
with perturbative QCD calculations is excellent (see Fig. 3.14).

How then, on the other hand, can such a picture be reconciled with the phe-
nomenon of confinement? Here the discussion necessarily becomes less rigorous as
there is presently no way of performing complete and reliable ab initio calculations
in the low-energy regime, where the coupling is strong and the non-trivial vacuum
structure of QCD comes into play. Some very plausible arguments can, however, be
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Figure 3.14: The running of α(µ); the data points correspond (in increasing order of
energy): τ -decay rate, Υ-decay rate, DIS scaling violation, and event shapes in e+e−

annihilation to hadrons; figure taken from PDG-2012 (Beringer et al., 2012).

made. Note first that the 1/r behaviour of the Coulomb potential is a consequence
of living in three spatial dimensions: the flux lines are distributed over the surface
of sphere and therefore the force decreases as 1/r2 (see Fig. 3.15a). In a spatially

charge

(a)

charge

(b)

Figure 3.15: The force-field flux lines for spatially (a) three-dimensional and (b) one-
dimensional field theories.

one-dimensional world the flux-line “density” is constant (as in Fig. 3.15b), so that
the force is constant and therefore the potential is proportional to r—evidently
a confining potential. Theoretical work has been performed on such theories and
much is known about them.
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However, we do live in three dimensions. How then might the effective number
of dimensions be reduced? Recall that the gluons themselves carry the colour
charge and thus interact strongly with one another. One can show that a plausible
effect of this is to squeeze the flux lines. If they are actually forced into a tube-like
one-dimensional structure, then the force law indeed becomes string-like and the
potential becomes linear in r (see Fig. 3.16).

charge anticharge

Figure 3.16: The force-field flux lines between a charge and anti-charge, assuming a
one-dimensional tube-like behaviour.

One can imagine that such squeezing is only operative for large separations of
two “isolated” colour charges and that at short distances the configuration returns
to a three-dimensional Coulomb-type behaviour. The potential might then be
described (approximately) by the form

VQCD ∼ −
a

r
+ b r. (3.4.12)

The more usual Coulomb behaviour will only dominate in the short-distance regime
while the string-like, linear, second term will naturally take over at sufficiently large
distances. Indeed, a close inspection of the flux-tube picture shown in Fig. 3.16,
in particular of the region near to one of the charges, reveals that it depicts just
such a situation. The actually scale at which the switch occurs depends on the
coefficients a (coupling constant) and b (string tension).

In the light of the foregoing discussion, it is tempting to consider confinement
and asymptotic freedom as being opposite sides of the same coin (the term infrared
slavery is often used). However, this over-simplification is misleading and should be
avoided. As we have seen, the same behaviour that leads to a diminishing coupling
constant with growing energy also leads to an apparent divergence (the Landau
pole) for low energies. It would be wrong, however, to associate confinement
with this effect. At a formal level, at large distances the strong-coupling regime
takes over and perturbative arguments no longer apply; hic sunt leones. More
physically, as we have just discussed, confinement must be a result of the peculiar
vacuum structure of QCD (which can have nothing to do with perturbation theory)
and may arise owing to effective string-like forces between colour charges at large
distances.



3.4. QUANTUM CHROMODYNAMICS 75

3.4.3 A brief survey of quark and gluon densities

Having, hopefully, convinced the reader of the validity of the picture presented by
combining the ideas of Gell-Mann and Feynman, we must now demonstrate some-
thing of its utility. More to the point, as we shall see, there are various predictions
of the model that, given their success, on the one hand lend strong support to the
model and on the other provide useful information for both experimental analysis
and planning.

The predictive power of the model, coupled with QCD, is twofold: firstly, the
structure functions are universal and may be used to calculate cross-sections for
processes other than DIS and, secondly, the scale variation is calculable, which
means that relatively low-energy information gathered early in history may be
exploited to make predictions for future high-energy experiments.

The intuitive picture we have derived for the DIS process is essentially that of a
convolution of two basic ingredients: parton distributions or densities (which may
be thought of as fluxes) and partonic cross-sections. It can be shown that for high-
energy processes, where αQCD is small, many hadronic processes may described in
a similar manner. From process to process, the partonic (hard or high-energy)
scattering cross-sections will vary, but are calculable, while the (incalculable) par-
ton densities are assumed to be the same, i.e. they are universal up to calculable
scale variations. We may therefore use DIS, say, to measure them and then use
the functions thus measured to make predictions for other processes.

Quark densities from electron scattering

Still today we have no reliable way to calculate the densities f(x) from first prin-
ciples and therefore do indeed need to measure them. Here we shall briefly review
what is known about their general behaviour. In DIS at moderate energies (e.g.
for Q2<∼ m

2
c) only the three lightest quarks (u, d and s) contribute appreciably and

so we may write

x−1F ep
2 (x) = 4

9

[
up(x) + ūp(x)

]
+ 1

9

[
dp(x) + d̄p(x)

]
+ 1

9

[
sp(x) + s̄p(x)

]
(3.4.13a)

and

x−1F en
2 (x) = 4

9
[un(x) + ūn(x)] +

1
9

[
dn(x) + d̄n(x)

]
+ 1

9
[sn(x) + s̄n(x)] , (3.4.13b)

where the suffixes p and n on the quark densities indicate that they refer to a parent
proton or neutron respectively. Now, assuming isospin to be a good symmetry,
we expect up=dn, un=dp, sp= sn etc. Exploiting this symmetry, the accepted
convention is to drop the suffixes p and n and use densities that refer to the
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proton. We thus write

x−1F ep
2 (x) = 4

9
[u(x) + ū(x)] + 1

9

[
d(x) + d̄(x)

]
+ 1

9
[s(x) + s̄(x)] (3.4.14a)

and

x−1F en
2 (x) = 1

9
[u(x) + ū(x)] + 4

9

[
d(x) + d̄(x)

]
+ 1

9
[s(x) + s̄(x)] . (3.4.14b)

Valence and sea quark separation

At this point we still have too many unknown functions to be able to determine or
extract very much, but let us see what may be assumed and/or deduced. A first
reasonable assumption is that, at least on average, the u and d antiquark and s
quark and antiquark (or so-called sea-quark) densities should be suppressed with
respect to those of the two valence quarks. In fact, we might decompose the u and
d densities as follows:

q(x) = qval(x) + qsea(x) (q = u,d), (3.4.15)

where by sea we mean those quarks and antiquarks produced spontaneously while
the valence quarks are those of Gell-Mann. We therefore have

∫ 1

0

dxuval(x) = 2 and

∫ 1

0

dx dval(x) = 1. (3.4.16)

Moreover, since the sea quarks are always produced as quark–antiquark pairs, they
must exist in equal numbers overall:

∫ 1

0

dx qsea(x) =

∫ 1

0

dx q̄sea(x) (q = u,d,s). (3.4.17)

One might hope that equality holds at each value of x, but there is no guarantee
of this; the integrals, however, must be equal.

Let us subsume all the sea densities into one global function, say Σ(x), thus

x−1F ep
2 (x) = 4

9
uval(x) +

1
9
dval(x) + Σ(x) (3.4.18a)

and
x−1F en

2 (x) = 1
9
uval(x) +

4
9
dval(x) + Σ(x). (3.4.18b)

Now, since the individual quantities on the right-hand side are all positive defin-
ite, then the ratio F en

2 (x)/F ep
2 (x) is bounded to lie between 1/4 and 4 (Nachtmann,

1972). It can only attain one or other bound if Σ(x) is negligible. On the other
hand, if the sea should dominate anywhere, then the ratio there will be approx-
imately unity. The data (see Fig. 3.17) show that for x very small, the ratio does
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indeed tend to unity while for large x it tends to the value 1/4. This then is in-
terpreted as implying that the valence quarks are important for large values of x
while the sea grows as x→0. The actual large-x limit indicates that u dominates
over d as x→1.

Figure 3.17: The ratio σn/σp for DIS as a function of x. The figure is taken from
Bodek et al. (1974).

One may also consider the proton–neutron structure function difference:

x−1
[
F ep
2 (x)− F en

2 (x)
]
= 1

3

[
uval(x)− dval(x)

]
. (3.4.19)

The sea-quark contribution only cancels exactly in the limit of perfect SU(2) or
isospin symmetry.∗ The result then is the difference between purely valence quarks.
As a first approximation, one might make the assumption

uval(x) ≃ 2 dval(x) and, say, dval(x) ≃ qval(x), (3.4.20)

where qval(x) represents a generic single valence-quark density. The right-hand
side of Eq. (3.4.19) is then roughly 1

3
qval(x). With the availability of more precise

and varied data, allowing the separation of uval(x) and dval(x), it was found that
this is not a particularly good approximation, especially for large x, where the

∗ In fact, it is now known that, as far as the sea is concerned, SU(2) is broken quite strongly.
This may be explained by appealing to the Pauli exclusion principle: the proton contains more
valence u quarks than d and thus the u–ū content of the sea is suppressed. An experiment-
ally observed consequence is a non-cancellation of the sea in the proton–neutron F2 difference
integral.
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following behaviour is typically found:

dval(x)

uval(x)
∼ 1− x. (3.4.21)

That is, the d quarks are relatively suppressed for x→1. A possible explanation for
this may be found in the Pauli exclusion principle, which forces the more numerous
u quarks to distribute themselves more evenly (i.e. to higher x). Unfortunately,
with no real theory of the bound state in QCD, this remains merely a plausible
conjecture. Some weight is, however, lent to such an argument by the observation
of a surprisingly large difference between the antiquark distributions ū(x) and d̄(x):
experimentally one finds

d̄(x) ≃ 2 ū(x). (3.4.22)

Quark densities from neutrino scattering

In order to obtain more independent information we need new probes. That is,
currents coupling differently to the quarks. Neutrino scattering via the weak in-
teraction provides just such as case—the detected final state is no different to
standard charged-lepton scattering (νeN→ e−X). However such a process is sens-
itive to different combinations of the quark densities. Defining analogous structure
functions for deeply inelastic neutrino scattering, we have

x−1F νp
2 (x) = 2 [d(x) + ū(x)] (3.4.23a)

and
x−1F νn

2 (x) = 2
[
u(x) + d̄(x)

]
. (3.4.23b)

Charge conservation requires a negatively charged quark in the neutrino–proton
case (and then u↔d for the neutron) while the strange and antistrange contribu-
tions are suppressed at low energies owing to the requirement that the final state
be either a (heavy) c quark with a cross-section factor cos2θC or a u quark with
sin2θC. Similar formulæ apply to antineutrino scattering.

Now, consider isoscalar targets (i.e. with equal numbers of protons and neut-
rons, such as a deuteron or C12 ), which just average over the proton and neutron
structure functions. In this case the electron-to-neutrino DIS ratio is

F ep
2 (x) + F en

2 (x)

F νp
2 (x) + F νn

2 (x)
=

5
9
(u+ ū+ d+ d̄) + 2

9
(s+ s̄)

2(u+ ū+ d+ d̄)
≥ 5

18
. (3.4.24)

This combination ratio is studied in Fig. 3.18. The fact that it saturates well for
x>∼ 0.2, but not below (not seen clearly in the figure owing to the large error bars),
again suggests that the sea quarks are suppressed in this region, but are present
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Figure 3.18: The data for the denominator in Eq. (3.4.24) compared with the curve of
18/5 times the numerator (from global experimental averages) as a function of x. The
figure is taken from Perkins (1975).

for smaller values.

Sum rules for quark and gluon densities

We may integrate the quark (and gluon) densities with various weights and so
relate them to known static properties of the nucleons. Evidently, the entire integ-
rals cannot be determined purely from data since the regions x∼0 and x∼1 are
experimentally inaccessible.∗ However, from theoretical arguments one can make
reliable extrapolations to these limits.

First of all, the total charges of the proton and neutron are given by the sum
over integrated quark densities weighted with their individual charges:

1 =

∫ 1

0

dx
[
2
3
(u− ū)− 1

3
(d− d̄)

]
(3.4.25a)

∗ Since Q2 must be kept finite and not small, the limit x→0 requires an infinitely large beam
energy, while for x→1 we find that the DIS cross-sections tend to zero and therefore data are
limited by statistics in this region.
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and

0 =

∫ 1

0

dx
[
2
3
(d− d̄)− 1

3
(u− ū)

]
. (3.4.25b)

The s-quark contribution evidently vanishes in this sum rule since we must have
zero overall strangeness or

0 =

∫ 1

0

dx [s− s̄]. (3.4.26)

Rearranging, we obtain

2 =

∫ 1

0

dx [u − ū] =
∫ 1

0

dxuval (3.4.27a)

and

1 =

∫ 1

0

dx [d − d̄] =
∫ 1

0

dx dval, (3.4.27b)

which is, of course, just what would be expected from a simple valence-quark model
picture.

There are many such sum rules, but a last important one should be mentioned:
by weighting the integral with x itself, one calculates the total fraction of the
parent momentum carried by the quarks. If there were nothing other than quarks
inside the nucleon then, summed over all quark types, this would give unity. In
contrast, one finds experimentally

∫ 1

0

dxx [u+ ū+ d+ d̄+ s+ s̄] ≃ 0.5, (3.4.28)

for Q2 in the few-GeV region. From this we may deduce that the gluon density is
actually rather important, although invisible to DIS, and that

∫ 1

0

dxx g(x) ≃ 0.5, (3.4.29)

where g(x) is the probability of finding a gluon with momentum fraction x. This
can be verified in other experiments; i.e. in hadron–hadron interactions (for ex-
ample the Drell–Yan process mentioned earlier), where collisions between gluons
and quarks (and even gluons and gluons) may contribute. The presence of gluons
is also made manifest when considering higher-order corrections: a gluon inside
the target hadron may split into a quark–antiquark pair, one of which may then
interact with the virtual photon.

Exercise 3.7. Show that the total quark momentum fraction may be obtained
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directly from the following combination of DIS structure function integrals:

∫ 1

0

dx
[
9
2
F ep+en
2 − 3

4
F νp+νn
2

]
. (3.4.30)

The shapes of parton distributions

As a first guess, assuming the quarks inside the nucleon to be non-interacting,
for three valence quarks one would then expect the densities to be simple sharp
spectral lines at precisely x= 1/3 (see Fig. 3.19a). Treating them now as an in-
teracting gas, the energy and momentum may be redistributed and one would
expect a rather broader spectrum, still centred around x= 1/3 (see Fig. 3.19b). Fi-

nally, allowing for gluon emission (or Bremsstrahlung) and quark–antiquark pair
production one can imagine that the peaks should move down in x and the new
sea and gluon distributions should be important for low energies and momenta
(see Fig. 3.19c). A very schematic example of the experimentally measured quark
distributions is shown in Fig. 3.20. One can clearly see all the above-mentioned
features.

Other quark–parton model topics

In closing this chapter, we should at least make mention of certain topics not
covered here, which are nonetheless rather important.

Meson and other parton densities: First of all, the entire exercise may now
be carried out in parallel for mesons—the main difference is merely that there
are then only two valence objects: the quark and antiquark—indeed, one might
consider any hadron. Measurements can be performed by colliding, e.g. pion beams
with standard hydrogen or other nuclear targets. Experimentally, only very limited
information is available for the charged pions and almost nothing for other hadrons.
Moreover, at sufficiently high-momentum transfers even a real photon may be
viewed in the same manner—here, of course, there are no valence quarks and the
entire partonic content is composed of sea quarks and gluons.

Spin correlations: There is another label that may be attached to the parton
distributions: namely, spin. That is, one may ask how the spin or helicity of
quark or gluon is correlated to the spin or helicity of the parent hadron. Starting
from the mid seventies (and with ever-increasing interest since the late eighties) a
number of experimental groups have been active in this area. Again, one can find
constraining sum rules, in this case related to the axial-vector couplings of nucleon
and hyperon β-decays.
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Figure 3.19: The DIS structure function F2(x) in the naïve and QCD-enhanced parton
models: (a) The simple narrow spectral line expected for three static, non-interacting,
valence quarks. (b) The spectral broadening effect of interactions between the three
valence quarks. (c) The effect of spontaneous pair creation by the gluon field.

Fragmentation functions: We must also mention that the, so-to-speak, inverse
processes may be defined and studied. That is, we may ask the probability that a
given quark emerging from the hard-scattering with the DIS photon materialise in
the laboratory as a given hadron with a given fraction of the parent quark’s energy.
In such a way, it is natural to define so-called fragmentation functions, which can
also be studied experimentally (especially in e+e− collisions). The situation is
however rather more complex than for the case of distribution functions, from
both the theoretical and experimental points of view. We shall comment a little
more on the process of fragmentation or hadronisation in the next chapter, where
we shall present quark-model inspired pictures.
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Figure 3.20: The general shape of the various quark densities. In the left panel they
are shown for each quark and antiquark flavour, on the right the division is in terms of
valence and sea.

Fracture functions: A further development in very recent years has been the
study of hadrons emerging from the remnants of initial hadronic state. That is,
those hadrons whose genealogies are not traceable to the struck quark, but rather
to the so-called spectator quarks inside the initial hadron. One can then define
so-called fracture functions. We shall, however, not delve further into this subject
and simply refer the reader to the literature (see, e.g., Trentadue et al., 1994).

Constituent versus current quarks: As a final note let us mention that while
we have suggested here that there is a direct correspondence between the quarks
of Gell-Mann and the partons of Feynman, the situation is not quite so simple.
The objects described in Gell-Mann’s theory have to do with the static properties
of hadrons and certainly no account is given of the gluonic field binding them.
Indeed, for such a picture to make sense, the quarks should be non-relativistic;
they should, moreover, provide the mass of baryons in which they reside (and
are in fact confined). One thus talks of constituent quarks with, for example, a
constituent mass that depends on the specific environment and which for baryons
must therefore be of the order of 300MeV for the up and down quarks of the
nucleons. On the other hand, the infinite-momentum frame used by Feynman and
also the kinematics of, say, DIS imply very light quarks with masses (deduced from
other considerations) of just a few MeV. These are known as current quarks and
are, for example, what should appear in the QCD Lagrangian and which, in the
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perturbative sense, knows nothing of confinement.
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Chapter 4

The New Particles

In this chapter we shall trace the history of particle discovery, from the early ex-
periments exploiting the first available source of energetic particles, namely cosmic
rays right up to the most energetic particle colliders available today, in all their
various forms: e+e−, ep, pp, pp̄ etc. Now, although ep colliders do exist even with
very high-energy beams, they are not normally considered as suitable for particle
discovery and here we shall, after discussing the role of cosmic rays, concentrate
on e+e− and hadron–hadron machines.

Before discussing the various types of experiments in detail, let us briefly ex-
amine the basic requirements for the discovery of new particles. Firstly, of the
various reasons that at some given point in time a particle has not previously been
discovered, the most common is that its mass is larger than the available energies.
Obviously, there are also other possible explanations: it interacts too weakly to
be detected (e.g. the neutrino), there are conserved quantum numbers that sup-
press production processes (e.g. the strange particles) etc. And it is usually more
a combination of such effects. However, the question of mass is fundamental: if a
particle is too heavy it simply cannot be produced.

To make further discoveries then, one needs more control over the interacting
system. In particular, we need to control (and raise) the energy. We also often need
a clean initial system so that the details of the final state may emerge clearly and
provide unambiguous indications of any new object produced. These requirements
immediately suggest e+e− colliders as the prime candidate. The initial particles are
point-like, well understood, can be produced with very precisely known energies
and have no by-products that might pollute the final state. Having said that,
hadron–hadron machines can reach much higher energies and therefore in certain
circumstances must be used instead.

87
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4.1 Cosmic rays and the early discoveries

It might be said that the birth of particle physics lies in cosmic rays. Antimatter
was first detected in cosmic rays, as were many of the first strange hadrons, not to
mention the muon. Until the fifties cosmic rays were the only source of high-energy
particles and still today they remain the source of the highest-energy particles that
can be studied: single particles up to O(109GeV) have been observed.

4.1.1 The positron

In 1930 Dirac proposed the particle–hole interpretation of the solutions to the
relativistic wave equation he had himself derived earlier (Dirac, 1928). He had
found that the equation not only correctly described the electron (including its
gyromagnetic ratio of two), but also contained an object that was an exact copy
of the electron with, however, the opposite charge: the antielectron or positron as
it became known.

Dirac’s hole theory suggested that a photon of energy slightly more than 1MeV
could, in principle, produce an electron–positron pair. However, kinematics does
not permit direct production or conversion and more energy is required. Such
energy is found naturally in cosmic rays. What are commonly called cosmic rays
are, of course, only the by-products of extremely high-energy collisions between,
typically, protons of cosmic origin and nuclei in the Earth’s atmosphere. Such
collisions, although totally uncontrollable, give rise to all energetically accessible
states. The problem then lies in detecting the particles produced.

In 1932, Anderson∗ (see Anderson, 1933b) and, independently a few months
later, Blackett and Occhialini (1933)† detected the passage of positively charged
particles, similar in mass to the electron, using Wilson cloud chambers. While
Anderson did not immediately connect his discovery to the prediction by Dirac,
Blackett and Occhialini clearly recognised these particles as Dirac’s positrons.

The idea behind the cloud chamber is that a charged particle passing through
supersaturated water vapour provokes local condensation. The cloud chamber
consists of a container, fitted with a piston, into which a saturated air–vapour
mixture is injected. When the piston is moved suddenly to lower the pressure, the
temperature also drops rapidly and the vapour passes into a supersaturated phase.
Any charged particle traversing the chamber in this moment leaves a track of fine
condensation droplets, which may be photographed (possibly from two different

∗ The 1936 Nobel Prize for physics was awarded equally to Victor Franz Hess for “his discovery
of cosmic radiation” and to Carl David Anderson for “his discovery of the positron.”

† The 1948 Nobel Prize for physics was awarded to Patrick Maynard Stuart Blackett for “his
development of the Wilson cloud chamber method, and his discoveries therewith in the fields
of nuclear physics and cosmic radiation.”



4.1. COSMIC RAYS AND THE EARLY DISCOVERIES 89

angles so as to permit a stereo image). The presence of a magnetic field reveals
the sign of the charge.

In Fig. 4.1 we see one of Anderson’s positron events. The track enters from the

Figure 4.1: A Wilson cloud-chamber photograph showing the passage of a positron.
The radius of curvature determines the momentum while the direction indicates the
charge sign. The track length for such a relatively low-momentum particle allows one to
distinguish between a positron and a proton. The figure is taken from Anderson (1933a).

bottom with very high energy (deduced from the large radius of curvature in the
1.5T magnetic field used). It then passes through a 6mm lead strip, which has the
purpose of slowing the particles, and continues for nearly 3 cm before presumably
annihilating with an atomic electron. The curvature of the upper track indicates
a momentum of approximately 23MeV. Were it a proton, this would correspond
to a very low velocity and it is known that the range would then be only a few
millimetres.∗

4.1.2 The muon

The muon has a mass of 106MeV and thus requires much higher energies to be
produced in the laboratory. It was discovered in cosmic-ray experiments independ-
ently by Anderson and Neddermeyer (1936) and Street and Stevenson (1937).

Electrons and muons are produced copiously in high-energy collisions and while
the electron is stable, the muon is not, decaying with a relatively long lifetime:

∗ Recall that low-energy cross-sections are typically inversely proportional to the velocity.
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τµ=2.2×10−6 s. Ignoring time-dilation effects, a highly relativistic muon therefore
travel an average distance of nearly 0.7km before decaying. On the other hand,
the tau lepton is rather heavier and therefore less common, added to which its
lifetime is ττ =2.9×10−13 s. Thus, a τ produced by cosmic-ray interactions never
reaches a laboratory on the ground. Moreover, its decay products are either a
number of light hadrons or, in the leptonic mode, contain two neutrinos. It was
not until 1975 and the availability of high-energy electron–positron colliders that
the third of the charged leptons was discovered.

4.1.3 The pion

In the same year that Conversi, Pancini and Piccioni discovered that the muon was
not Yukawa’s mesotron (see App. B.1 for further details), the pion was discovered.
This discovery was made, however, with photographic-emulsion detection methods
at high altitude (typically used on mountain tops or even in aeroplanes). Recall
that the neutral-pion lifetime is (8.5±0.2)×10−17 s while that of the charged pions
is 2.6×10−8 s. Moreover, the neutral-pion decays predominantly via the electro-
magnetic two-photon channel while the charged states undergo a weak β-type
decay principally to µνµ.

4.1.4 The strange particles

There are, however, other particles having masses not too dissimilar to the muon
and with very similar (weak) decay rates. They are the kaons: K±, K0 and K0.
These then were ideal candidates for discovery in cosmic-ray experiments. Indeed,
the strange baryons, Λ0, Σ0,± and Ξ0,−, having masses a little larger than the nuc-
leons and lifetimes of the order of 10−10 s, were also soon discovered. Moreover,
in the same year as the pion discovery the first “V” particles were detected too
(Rochester and Butler, 1947), so-called owing to their distinctive two-pronged
decay-state tracks, easily identifiable in cloud-chamber, emulsion and, later on,
bubble-chamber experiments (see Figs. 4.2 and 4.3). Figure 4.3 shows both a
photograph and a sketched version of an interesting event: a negatively charged
pion enters from the left and strikes a proton, producing two uncharged particles
(a neutral kaon and a lambda baryon):

π− + p → K0 + Λ0. (4.1.1)

Note that this process does not violate any known conservation law and is therefore
most likely a strong interaction. The kaon and lambda travel some distance (but,
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Figure 4.2: In the left-hand cloud-chamber photograph slightly to the right of the lead
plate and above centre we see a typical “V” fork, probably due to the decay of a neutral
(hence no incoming track) kaon into a π+π− pair; the right-hand photograph shows a
charged “V” (very open) top left, probably the signal of a charged kaon decaying into a
muon plus neutrino. The figure is taken from Rochester and Butler (1947).

being neutral, leave no tracks) before decaying via the standard weak processes:

K0 → π+ + π− and Λ0 → p+ π−. (4.1.2)

4.2 Electron–positron colliders

A particular limitation of cloud chambers, emulsions and bubble chambers is that
the new particle produced must leave a detectable track. While this obviously
severely limits their use in the case of neutrals, the most important consequence
here is that they are also inadequate for very short-lived (intermediate) states
such as the π0 in the example above. One evidently needs an indirect method of
detecting the presence of such an object. This is where the concept of a resonance
à la Breit and Wigner (1936) arises.∗ Once a particle lifetime becomes too short
to be measured directly (e.g. via the mean length of its cloud-chamber, emulsion or
bubble-chamber tracks) one must move over to the energy counterpart, the decay

∗ For a detailed discussion, the reader is referred to App. A.5
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Figure 4.3: A negatively charged pion enters from the left and strikes a proton, pro-
ducing two uncharged particles (a kaon and a lambda baryon) that leave no tracks until
they too decay. The figure is taken from LBL NEWS Magazine, Vol. 6, 1981.

rate or width, related in the following way:

Γ = ~/τ. (4.2.1)

Thus, for shorter lifetimes we exploit the growing uncertainty in the mass of the
state produced, which being (very) unstable is always an intermediate state in
any given process. As the term “width” suggests, the uncertainty principle implies
that given only a short time to determine the mass of a particle there will be some
natural fluctuation around a central value compatible with the above expression;
spectral lines are thus broadened and their width provides an indirect measure of
the lifetime.

4.2.1 Resonance production

A first simple practical example in particle physics∗ is that of ∆ production in
pion–nucleon elastic scattering via, for example, the process

π+ + p → ∆++ → π+ + p. (4.2.2)

The nominal masses and widths of the ∆ resonances are 1232MeV and 120MeV
respectively. In this case the initial (and final) spins are 0 and 1/2 while the inter-

mediate ∆ has spin 3/2.

∗ The earliest applications of the partial-wave and Breit–Wigner approach are found in nuclear
physics, where it is used to describe interactions that proceed via the formation of intermediate
excited nuclear states or resonances.



4.2. ELECTRON–POSITRON COLLIDERS 93

Exercise 4.1. Show that, for a charged-pion projectile incident on a fixed proton
target, the resonance peak is attained for a pion kinetic energy just below 200MeV.
Calculate the centre–of–mass pion energy.

With such energies, although the pion itself is quite relativistic in the laborat-
ory frame, this is no longer true in the centre–of–mass frame and we are justified in
using the non-relativistic Breit–Wigner (BW) form given in Eq. (A.5.15). There-
fore, the maximum value of the cross-section is

σ
max

R =
4π~2

p2
4

1× 2
=

8π~2

p2
. (4.2.3)

Note that, owing to the rapidly falling underlying cross-section, the experimental
peak lies a little below the true resonance energy, corresponding to the point where
the experimental value coincides with the maximum-value curve (see Figs. 4.4).
Note also the skew effect due to the variation of Γ over the width of the ∆ reson-

Figure 4.4: The π+p elastic cross-section as a function of laboratory-frame pion kinetic
energy. Note the skew effect due to the variation of Γ over the width of the ∆ resonance.

ance. This is principally the effect of the variation of Γ in the numerator, which
grows with increasing centre–of–mass energy. The high-energy tail is thus rather
higher than the low-energy tail. Once out in the tails, the value of Γ used in the
denominator usually has little influence.

A further way in which to search for resonances is to examine the invariant
mass of, say, a π−π+ pair. A possible production mechanism is shown in Fig. 4.5.
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Again, the form of the effective propagator for an intermediate resonance, having

X0

p

π−

π−

π+

n

Figure 4.5: The production of an intermediate resonant state X0 in the π+π− channel
of the process π−p→π−π+n.

the same quantum numbers as two pions, leads to the classic BW shape in the
invariant-mass distribution (see Fig. 4.6). In the figure one sees three clear peaks

Figure 4.6: The π−p→π−π+n cross-section as a function of the π−π+ pair invariant
mass W , for a pion beam momentum 17GeV/c.

with widths of the order of 100−200MeV. These correspond to: ρ0(769) having
Γ≃150MeV; f 0

2 (1275), Γ≃180MeV and ρ0(1700), Γ≃200MeV. Naturally, these
peaks are superimposed on a background of non-resonant, continuum production
of charged-pion pairs
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In general, by considering a multiparticle state, we see that the invariant-mass
distribution of the final composite system measures both the mass and width of
any intermediate resonant state having the same quantum numbers as the detec-
ted system. To search for strange mesonic resonances, one might thus study the
invariant mass of, say, a particular Kπ final state.

One word of caution is in order. As we know from quantum mechanics, to
calculate any particular process (scattering or decay), we must sum all amplitudes
that can contribute. If the peaks are sufficiently narrow and/or well separated (as
is the case above), then to a good approximation we may consider the contributions
independently. However, it can happen that two or more resonances with the same
quantum numbers have very similar masses and thus the BW peaks can overlap. In
this case the phase variation and, in particular, the possibility of phase mismatch
in the initial production process may mean that across the interval in which the
two (or more) resonances contribute there are successive regions in which the two
(or more) channels interfere destructively and constructively. These can distort
the peaks in an essential way, leaving their appearance very misleading. We shall
say more on this when we examine the very specific case of three-body decays.

4.2.2 Hadronic resonances in e+e− annihilation

As remarked earlier, one of the simplest imaginable situations is the search for and
discovery of the neutral resonances that may be produced in e+e− annihilation.
We have already seen the basic type of (resonance) diagram via which a fermion–
antifermion pair may be produced (see Fig. 4.7). The process is very similar to that

R

e+

e−

a

ā

Figure 4.7: The e+e− annihilation process into a particle–antiparticle pair (aā) via a
direct intermediate resonant state R.

of e+e− annihilation through a virtual photon. Note that the quantum numbers
and energy of the initial state are well determined.

The picture provided here is not yet complete. The initial-state e+e− pair
cannot couple directly to a hadronic resonance and therefore the annihilation pro-
cess proceeds via the formation of a virtual photon, which can then transform
into any neutral resonance having the same JPC quantum numbers. In such a
way, whenever the centre–of–mass energy corresponds to the mass of a neutral,
spin-one, flavourless hadronic resonance, we have the picture given in Fig. 4.8.
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γ∗ R

e+

e−

a

ā

Figure 4.8: The e+e− annihilation process into a particle–antiparticle pair (aā) via a
photon coupling to an intermediate resonant state R.

The total angular momentum, P and C properties of the resonance so formed are
thus predetermined. Indeed, the photon is characterised as having JPC=1−− and
isospin I=0,1—the isospin is not completely determined as the electromagnetic
interaction violates isospin (the up-quark and down-quark have different charges)
and therefore the photon is not an eigenstate of isospin.

Now, it turns out to be more useful to examine the cross-section into hadrons
rather than the elastic cross-section and we shall need to modify formula (A.5.15)
slightly to take into account that the initial and final states are different (at higher
energies many channels do indeed exist). The most general form of the BW ap-
proximation for such an inelastic process is then

σR ≃
4π~2

p2
(2JR + 1)

(2s1 + 1)(2s2 + 1)

(Γi/2)(Γf/2)

(E −E0)
2 + (Γtot/2)

2 , (4.2.4)

where the width Γtot appearing in the numerator is the total width of the resonance,
while in the numerator we have the two partial widths Γi and Γf , corresponding
to the decay channels into the actual initial and final states.

To understand how this comes about, let us examine the appropriate Feynman
diagram for such a process (see Fig. 4.8). The approximation made is equivalent to
considering this single amplitude as the product of two factorising sub-amplitudes:
namely, e+e−→R and R→aā. The process is thus seen in two distinct and inde-
pendent stages: initial production followed by decay. The first corresponds to the
Hermitian conjugate of the process R→ e+e− while the second evidently describes
the decay of the resonance R into the state aā. On taking the square of the mod-
ulus, we are thus equivalently calculating the product of the processes e+e−→R
and R→aā. The spin factors are kept explicitly separate and so are still correct.

From this description we can also appreciate a little better the nature of the
approximation: the resonance R is effectively considered as a real, on-shell particle,
which is evidently not true, except precisely at the peak. To some extent, the
inclusion of momentum factors, as in Eq. (A.5.26), can corrects for this. However,
we are also implicitly treating the couplings at the vertices as point-like whereas
an exact formulation would require form factors. Since we do not have a complete
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theory of the bound state in the strong interaction, we can only make models and
parametrise these.

Inserting the spins of the initial-state electron–positron pair and the interme-
diate photon, we have

σR ≃
3π~2

4p2
Γi Γf

(E −E0)
2 + (Γtot/2)

2 . (4.2.5)

We use the photon spin since we are considering a process initiated by elec-
trons, which do not interact strongly and which cannot therefore directly produce
strongly interacting particles. Thus, the first vertex in the diagram must be of
the e+e−γ type. However, the photon may convert into any hadronic resonance
having the same quantum numbers, in particular having the same spin.

An example case is the production of the ρ0(770) meson (with I,JPC=1,1−−).
As already noted, it has the decay channel π+π− and will thus be seen as a BW
resonance according to Fig. 4.8 with R=ρ0 and aā=π+π−.

However, in the case of e+e− annihilation it is easier to simply require that the
final state contain only hadronic states (all those allowed). We thus now examine
the spectrum obtained in e+e− annihilation when the final states are restricted to
those containing only hadrons. See Fig. 4.9, in which the total hadronic cross-
section is plotted as a function of

√
s=ECM . A large number of peaks are evident,

from very low energies right up to the maximum available.
The first peak correspond to resonant production of the ρ0(770) meson together

with the ω0(782), the former having a width Γ≃146MeV and I,JPC=1,1−− while
the latter is much narrower with Γ≃8.5MeV and I,JPC=0,1−−; these two cer-
tainly overlap owing to the broadness of the former. The reason for the difference
is that while ρ0(770) is part of an isospin triplet, the ω0(782) is a singlet; in quark
terms it is almost purely (uū+dd̄)/

√
2 and its principal decay mode is into three

pions.
The successive peak is the φ0(1020), also I,JPC=0,1−− and width Γ≃4.3MeV.

This is the SU(3) partner to the ω0(782) and is almost purely ss̄. The fact that
these two states are arranged in this manner, i.e. neither being the natural super-
positions of uū, dd̄ and ss̄ states,

φ0 = 1√
3
(uū+ dd̄+ ss̄) (4.2.6a)

and
φ8 = 1√

6
(uū+ dd̄− 2ss̄), (4.2.6b)

is known as ideal mixing. Quite why the mixing should be so nearly ideal is not
clear and must have to do with the (poorly understood) bound-state dynamics.
The determination of these combinations is obtained through comparison with the
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Figure 4.9: The e+e− cross-section into hadrons as a function of CM energy. The
dashed line indicates the baseline µ+µ− final-state cross-section.

mass formulæ in SU(3). In any case, these three states belong to the nonet of
pseudoscalar mesons.
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The OZI or Zweig rule

It is interesting to examine and compare the principal decay modes of the two
SU(2)-singlet states ω0(782) and φ0(1020), displayed in Table 4.1. Naïvely, the

Table 4.1: The principal decay modes of the two lowest-lying, spin-zero, SU(2)-singlet
states ω0(782) and φ0(1020).

K+K− 49% π+π−π0 89%

φ0(1020) →
{
K0K0 34% ω0(782) →

{
π0γ 9%

π+π−π0 15% π+π− 2%

phase-space factor should favour the three-pion decay mode of the φ since the Q-
value is 600MeV, as compared to just 24MeV for the two-kaon decay. Nevertheless,
the three-pion mode is relatively suppressed by a factor of nearly 6. This and
other similar observations led to the formulation of the so-called OZI or Zweig rule
(Okubo, 1963; Zweig, 1964; Iizuka et al., 1966).

Let us examine the quark diagrams for these decays (see Fig. 4.10). We see

s

s

s̄

s̄

ū

u
φ

K−

K+(a)

u

u

ū

ū

d

d
ω

π+

π0

π−
(b)

s

u

s̄

ū

d

d
φ

π+

π0

π−
(c)

Figure 4.10: Comparison of the diagrams for OZI suppressed and unsuppressed decays
of quark–antiquark states: (a) φ→K+K−, (b) ω→π+π−π0, (c) φ→π+π−π0.

that while at least some of the quark lines are connected between the initial and
final state for the three-pion decay of the ω and for the two-kaon decay of the φ,
the case of φ→3π is distinctive in that the initial and final states are completely
disconnected with respect to quark lines. The OZI rule then simply states that
such decays are suppressed.
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We can understand this suppression in terms of gluon exchange. To connect
the initial annihilating quark–antiquark pair to the final state, one evidently needs
a number of gluons. Unlike the photon, gluons are carriers of the relevant (colour)
charge, a single gluon is therefore not allowed since the intermediate state would
then be (colour) charged while the initial and final states are (colour) neutral.
A two-gluon state would permit a colour-singlet exchange but would not have
the correct JPC quantum numbers; recall that, just as the photon, the gluon has
JPC=1−−. The minimum number of gluons is therefore three. Since each gluon
is associated with an extra factor αs at the amplitude level, the price is high
and such a process is evidently suppressed with respect to decays proceeding via
connected diagrams. Compare this with the relative decays rates of para- and
ortho-positronium, which proceed via two- and three-photon final-state channels
respectively. There are many examples of decays in which the OZI rule is at work
and it is now considered both well confirmed and well understood.

Discovery of the c quark

The next set of visible peaks corresponds to production of the so-called J/ψ and
one of its excited states, ψ′. The observation of this resonance marks the discovery
of the c or charm quark∗ (at Brookhaven by Aubert et al., 1974 and at SLAC by
Augustin et al., 1974).† The principal object, the J/ψ, has the following mass and
width:

mJ/ψ = 3097 MeV and ΓJ/ψ ≃ 93 keV, (4.2.7)

with spin–parity quantum numbers JPC=1−−. The second peak is due to the ψ′

or ψ(2S) with
mψ

′ = 3686 MeV and Γψ′ ≃ 286 keV (4.2.8)

and it too obviously has JPC=1−−. These two states are then evidently cc̄ in
an s-wave and with spins aligned, the ψ′ being a radial excitation. Various other
radial-excitation states are now known.

We should remark that the experiment of Aubert et al. (1974), performed at
the Brookhaven National Lab., did not use colliding electron and positron beams.
Instead, the AGS provided 28GeV protons, which were made to collide with a
beryllium target. The experiment consisted in the measurement of the invariant-
mass spectrum of e+e− and µ+µ− pairs produced in these collisions. The reaction

∗ The 1976 Nobel Prize for physics was awarded equally to Burton Richter and Samuel C.C. Ting
for “their pioneering work in the discovery of a heavy elementary particle of a new kind.”

† Almost immediately after the announcement of the discovery similar evidence was found at the
ADONE machine in Frascati (Bacci et al., 1974).
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studied was then

p+ Be → J/ψ + anything
|→ e+e−, µ+µ−, (4.2.9)

so that standard BW resonance peaks were clearly visible here too.
It is interesting to examine a little more closely the data of the experiment

performed at SLAC. The process here is classic e+e− annihilation in the Stanford
Positron–Electron Accelerating Ring (SPEAR) collider. The possible channels are

e+e− → J/ψ → hadrons, e+e− and µ+µ−. (4.2.10)

The three related cross-sections are shown in Fig. 4.11. The particularly skewed
shapes of some of the curves is typical of interference between competing channels.
Here we have both the direct channel (as shown in Fig. 4.7) and the channel with
an intermediate photon (Fig. 4.8). It can be shown that the interference pattern
corresponds well to interference between these two channels.

This is also an example of how too selective a production mechanism can ac-
tually hide states. There exists a so-called ηc (for its similarity to the much lower-
mass η), also an s-wave cc̄ but with spins antiparallel:

mηc
= 2981 MeV and Γηc ≃ 30 MeV, (4.2.11)

but IG,JPC =0+,0−+. Being spin-zero and also of positive C-parity (and thus the
natural cc̄ partner to the original pseudoscalar η), it is not accessible in e+e−.

Discovery of the b quark

The situation then repeats itself a little higher in energies: at around 10GeV in
the centre–of–mass the threshold for upsilon (Υ) production is reached and we
find several peaks near together. The first of these is the Υ(1S). Historically, the
discovery of the b (beauty or bottom) quark (Herb et al., 1977 and Innes et al.,
1977) was actually made at the Fermilab proton machine, where 400GeV protons
were made to collide with copper and platinum targets. The process studied was

p+ Cu, Pt → Υ+ anything
|→ µ+µ−, (4.2.12)

where again the resonance is evident via a final-state spectrum. The various ra-
dial excitations of the fundamental Υ state were observed later in the two most
energetic e+e− machines of the time: the Doppel-Ring-Speicher (DORIS) at the
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Figure 4.11: The e+e− cross-section vs. energy for various final states: (a) hadrons,
(b) e+e− and (c) µ+µ−, π+π− and K+K−. The dashed curve in the top figure is the
theoretical prediction including a Gaussian energy spread of the beams. The figure is
taken from Augustin et al. (1974).

Deutches Elektronische Syncrotron (DESY) in Hamburg and the Cornell Electron
Storage Ring (CESR) at Cornell University.

The first Υ state has the following mass and width:

mΥ = 9.46 GeV and ΓΥ ≃ 53 keV, (4.2.13)
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with spin–parity quantum numbers JPC=1−− (just as the J/ψ). On a logarithmic
energy scale there are a number of states quite close to each other. In fact, in the
first Fermilab experiment the resolution was rather poor (around 0.5GeV) and the
set of peaks thus appeared as one or possibly two broad humps. Nevertheless,
since the total width of the distribution was around 1.2GeV, it was immediately
deduced that more than one resonance was present (see Fig. 4.12). On further

Figure 4.12: The broad overlapping peaks of the lowest-mass Υ states in the dimuon
spectrum, as reported by Innes et al. (1977).

investigation, others were indeed found; the first and most prominent are those
shown in Table 4.2, although there are many others (see too Fig. 4.13). The evident
reduction in the widths with growing radial excitation will be discussed shortly.

Table 4.2: The three lowest-mass Υ (bb̄, JPC =1−−, radial excitation) states.

state mass/GeV width/keV

Υ(2S) 10.02 43

Υ(3S) 10.36 26

Υ(4S) 10.58 20
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Figure 4.13: The narrow Υ(1S), Υ(2S) and Υ(3S) states observed with the CLEO
detector at CESR. The figure is taken from Andrews et al. (1980).

Again, these states are very narrow owing to OZI-type suppression. Indeed,
they are seen to be even narrower than the typical J/ψ widths. One might have
naïvely expected just the opposite on the basis of arguments of both phase-space
and number of channels available. However, since the OZI rule is evidently oper-
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ative here and the decays must proceed via three-gluon intermediate states, there
will be a very strong dependence on αs. Each gluon implies a factor αs in the total
decay rate and thus, if perturbative calculations can be trusted, the widths are
expected to be proportional to α3

s. The reason this is not (α3
s)

2 is that the final
coupling to quarks is not included as this part of the calculation is considered as
a sort of decay of the gluons produced, which must occur with unit probability.
Thus, in complete analogy with positronium decay, we expect one power of αs for
each gluon “emitted”.∗

Now, as already remarked in the section on the strong interaction, in quantum
field theory the couplings are not constant, in particular, in QCD the coupling is
a decreasing function of energy scale. It can be shown (in quantum field theory)
that the correct scale to consider here is of the order of the quark masses involved.
For a change of scale from that of the c-quark mass to that of the b-quark, the
change in αs is roughly a factor two. The resulting suppression is, of course, offset
by various other effects: phase-space, number of channels and, last but not least,
the size of the objects involved: the larger mass of the b quark in a non-relativistic
approximation leads to a smaller Bohr radius and thus the wave-function is more
concentrated at the origin, thus favouring the qq̄ annihilation channel.

It is, of course, not possible to perform complete ab initio calculations since
we are unable to reliably calculate the bound-state wave-function. However, for a
heavy system such as cc̄ or bb̄ one might imagine non-relativistic quantum mech-
anics to be sufficient. Moreover, as discussed in the previous chapter, a reasonable
assumption as to the effective form of the potential might be

V (r) = −α(r)
r

+ b r, (4.2.14)

where the first term represents a typical Coulomb-like potential, including the
known scale dependence of the coupling (Q2∼ r−2), and the second term is a string-
like potential, which is believed to be dominant at large distances. The coefficient
b is just a parameter of the model (the so-called string tension), to be fixed by
fitting to the data. Using such a potential, we may solve the Schrödinger equation
for a heavy quark–antiquark pair and the resulting “energy levels” will provide
the masses of the various excitations (radial and rotational). The model can be
refined by the inclusion of spin–orbit and spin–spin effects, with the necessary
additional parameters. Indeed, such models already have modest success even with
lighter systems and, for example, the string tension turns out to be approximately
universal, with a value of the order of 1GeVfm−1.

It is then possible to reliably estimate decay rates. An obvious prediction of

∗ Note, however, that for exclusive decay-channel rates, where a specific final state must also
couple to the gluon, one would still expect a behaviour as (α3

s)
2.
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such a model would be precisely the observed decrease in the decay widths of the
heavy qq̄ states with growing radial excitation. The decay annihilation requires
the pair to be found at some instant at the origin and thus the rate is proportional
to the wave-function at the origin. The radial-excitation states, having greater
spatial extension naturally have smaller wave-functions at the origin. Note also
that reliability can be improved by taking ratios: for example, we may compare the
two-photon and two-gluon decays of the spin-zero quarkonia states, or the decays
via a single photon (to two charged leptons) and three gluons in the case of the
JPC=1−− states. In this way, to some extent, the uncertainties in the bound-state
parameters cancel in the ratio. The measured values for the decay rates agree well
with the values of αs extracted from other sources.

Toponium

A few words are in order here on the question of toponium (tt̄ ), First of all, as
we shall see, the t quark is much more massive than the others, having a mass
173.5±0.6±0.8GeV (see PDG-2012 – Beringer et al., 2012). This already nat-
urally precludes its discovery in any e+e− collider built to-date, or indeed ever
proposed. Moreover, the t quark itself is very unstable and is likely to have a
much greater intrinsic decay rate than any bound state. Note that at energies
corresponding to the top mass the weak interaction is no longer particularly sup-
pressed by the W± and Z0 boson masses. This would make the tt̄ meson a very
short-lived and weakly bound object, rendering it highly unlikely that any such
resonances will ever be observed.

4.2.3 Discovery of the Z0 boson

We now turn to the very last of the pronounced peaks in the cross-section plot for
e+e−→hadrons: namely, the Z0 boson. This is evidently a very different situation
to those described in the case of qq̄ resonances. The Z0 boson is an elementary
field, with a point-like fundamental coupling to an e+e− initial (and/or final)
state. However, its experimental appearance is very similar: having a finite (large)
mass and a finite (but not small) width, a standard BW shape is observed in the
cross-section energy dependence for a variety of final states. It was first produced
on-shell in large numbers in LEP at the Centre Europée de Rechèrche Nucleaire
(CERN—Geneva) although incontrovertible evidence for its existence had already
been obtained in various other experiments. In particular the TRISTAN e+e−

collider at KEK in Japan had already achieved a maximum 32+32GeV. At such
energies the presence of the Z0 BW tail is very evident.

At intermediate energies (i.e. below the peak), where the Z0 boson is not
completely dominant and where interference with the photon intermediate state is
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thus non-negligible, we can check (via the presence of interference) certain of the
quantum numbers of this resonance. This is important: the spin and parity could,
in principle, be different to that of the photon, since the coupling to fermions could
be different. In an e+e− collision all possible spin configurations of the initial pair
are possible and indeed present:

|−ẑ〉|−ẑ〉, |−ẑ〉|+ẑ〉, |+ẑ〉|−ẑ〉, |+ẑ〉|+ẑ〉, (4.2.15)

where the ẑ indicates that these are not helicities, but spin projections along the z-
axis. They therefore represent the helicities of the particle moving in the positive
z direction and minus the helicities for the other. These states should then be
rearranged into multiplets according to total spin:

spin-1 : |−ẑ〉|−ẑ〉, 1√
2

(
|−ẑ〉|+ẑ〉+ |+ẑ〉|−ẑ〉

)
, |+ẑ〉|+ẑ〉, (4.2.16a)

spin-0 : 1√
2

(
|−ẑ〉|+ẑ〉 − |+ẑ〉|−ẑ〉

)
. (4.2.16b)

The coupling to a spin-one boson merely selects a particular multiplet; three out
of four are acceptable, reflecting the following factor already shown in the BW
formulæ:

(2JR + 1)

(2s1 + 1)(2s2 + 1)
=

3

4
. (4.2.17)

Note that, for the Z0 to interfere with the photon, it must have the same JPC . As
we shall see in the next chapter, the Z0 is to be considered a close relative of the
photon, as too are the W±.

As deduced from the BW-resonance line-shape, the mass and width parameters
of the Z0 are (see PDG-2012 – Beringer et al., 2012):

mZ = 91.1876± 0.0021 GeV and ΓZ = 2.4952± 0.0023 GeV. (4.2.18)

It is a spin-one boson, just as the photon, but its parity and charge-conjugation
properties are not defined: the weak coupling of the Z0 violates both parity and
charge-conjugation (just as that of the W±) and it cannot therefore be an eigen-
state of either parity or charge conjugation. This last observation does not preclude
its interfering with the photon since it should thus be considered as a superposi-
tion of parity- and charge-conjugation eigenstates (just as, e.g. the K0 and K0 are
superpositions of CP eigenstates). Note finally that such precise measurements∗

on such a broad object require the inclusion of the phase-space corrections to the

∗ Indeed, such is the precision achieved at LEP, that tidal effects on the length of the ring
(variations of order 1mm), which can contribute up to 40MeV to the beam energy, must be
taken into account (Arnaudon et al., 1995). Even gravitational effects, owing to the nearby Jura
mountains and seasonal changes in the level of water in Lake Geneva, have to be considered.
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width itself as s various across the BW peak, see Eq. (A.5.26).
Now, recall that the width ΓZ , as deduced from the line-shape, is the total

width—that is to say it includes all available channels without discrimination.
Remembering that the width is none other than the decay rate, we see that if
there are a number of different (i.e. non-interfering) final states, then the total
width (or rate) is simply the sum of all the partial widths (or rates). This leads
to some very important cross checks.

Z
0 partial decay widths

First of all, universality of the weak coupling may be checked in the neutral-current
channel by comparing the measured decay rates or branching ratios into electrons,
muons and tau leptons:

Γe
+
e
−

Z /Γ
tot

Z = (3.363± 0.004) %, (4.2.19a)

Γµ
+
µ
−

Z /Γ
tot

Z = (3.366± 0.007) %, (4.2.19b)

Γτ
+
τ
−

Z /Γ
tot

Z = (3.370± 0.008) %. (4.2.19c)

Note that phase-space differences due to lepton masses are essentially negligible
here. One can, of course, also calculate the partial decay rates; the generic rate
for a real (i.e. on mass-shell) Z0 to decay into a fermion–antifermion pair is

Γff̄Z =
C GFM

3
Z

6
√
2π

[
g2V f + g2Af

]
, (4.2.20)

where GF is just the usual Fermi weak coupling constant, e.g. as measured in
µ-decay. The coefficient C is defined as follows:

C =




1 for lepton pairs,

Nc

[
1 + a+ 1.409a2 − 12.77a3 − 80.0a4

]
for quark pairs.

(4.2.21)

The second line here includes the corrections due to the strong interaction (or
QCD), where a=αs(MZ)/π (i.e. αs as evaluated at the energy scale of the Z0,
for which the present world average is 0.1184±0.0007). Finally, the vector- and
axial-vector weak coupling constants (or weak charges) are

gV f = I3f − 2Qf sin
2 θW, (4.2.22a)

gAf = I3f , (4.2.22b)
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where I3f is just the third component of weak isospin (+1/2 for up-type quarks

and neutrinos, −1/2 for down-type quarks and charged leptons), Qf is the electric

charge of the fermion in units of |e| and θW≃0.223 is the weak mixing angle, which
we shall discuss later. Inserting the values of the various parameters (all of which
may, in principle, be measured independently in other processes), one obtains

Γff̄Z =





300.26± 0.05 MeV (uū, cc̄),

383.04± 0.05 MeV (dd̄, ss̄),

375.98± 0.03 MeV (bb̄),

167.22± 0.01 MeV (νν̄),

84.00± 0.01 MeV (ℓℓ̄).

(4.2.23)

The predicted total width is then

Γ
tot

Z = 2.4968± 0.0011 GeV, (4.2.24)

in excellent agreement with the measurements.

The number of light neutrinos

Hidden inside the numbers and formulæ just presented is an interesting and per-
haps surprising measurement: the number of light neutrinos. First of all, we say
light neutrinos since one would obviously not be sensitive to a neutrino with a mass
greater than half that of the Z0. Now, of course, although the statistics gathered
at LEP is considerable (many tens of millions of Z0 bosons have been produced
and detected), there is little chance of actually detecting either the neutrino or
anti-neutrino produced in a Z0 decay. Note that to be certain, one would need to
detect both and measure their energies, in order to fully reconstruct the mass of the
decaying object. However, since the line-shape provides the total width and the
other partial widths may all be measured directly, we can deduce the “invisible”
width from the difference. The following combination is then usually calculated:

Nν =

(
Γinv

Γℓ

)

expt

(
Γℓ
Γν

)

th

=

(
Γtot − Γvis

Γℓ

)

expt

(
Γℓ
Γν

)

th

. (4.2.25)

The double ratios in these equalities are so chosen as to improve the reliability of
the calculation by allowing cancellations of various systematic effects, both the-
oretical and experimental. Combining the results from all four LEP experiments,
leads to

Nν = 2.92± 0.06. (4.2.26)
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That is, the three known neutrinos (the partners to the electron, muon and tau
lepton) are confirmed as the only light neutrinos. Incidentally, this number also
places very stringent limits on the existence of other light particles coupling to the
Z0 and which might hitherto have gone undetected for some reason.

Many other tests of the SM may be performed at the Z0 peak. For example,
there are various parity-violating angular asymmetries that may be measured and
that are directly related to the parameters of the theory (in particular, to sinθW).
All measurements so far performed provide absolutely no evidence of any flaw or
shortcoming in the model. We shall discuss these questions more in detail in the
following chapter.

4.2.4 Discovery of the τ lepton

The remaining major discovery made in e+e− collisions is that of the τ lepton, again
found using SPEAR at SLAC (Perl et al., 1975). The experiment obtained just
64 events of the form e+e−→ e±+µ

∓
+missing energy, in which no other charged

particles or photons were detected. Most of these events were detected at or just
above a centre–of–mass energy of 4GeV (see Fig. 4.14). The missing-energy and

Figure 4.14: The observed cross-section for the e±+µ
∓
+missing-energy events as a

function of e+e− centre–of–mass energy. The figure is taken from Perl et al. (1975).

missing-momentum spectra indicated that at least two additional particles had
been produced in each event. There being no conventional explanation for such
events, they were attributed to the production of a new charged-lepton pair τ+τ−.
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The processes being observed here are then presumed to be

e+e− → τ+τ−

||
| |→ µ−ν̄µντ
|→ e+νeν̄τ (4.2.27a)

and
e+e− → τ+τ−

||
| |→ e−ν̄eντ
|→ µ+νµν̄τ . (4.2.27b)

Under normal circumstances, neither of these two (charged) final states is possible
at the level measured since they would represent individual (electron and muon)
lepton-number violation. However, the undetected neutrinos (missing energy) bal-
ance all relevant quantum numbers.

4.2.5 Open-flavour and other particle production

Shortly above the thresholds for each new quark, which are first seen as qq̄ reson-
ances, the thresholds for open production are reached. That is, the centre–of–mass
energy is sufficient to produce a meson–antimeson pair, each containing the new
quark or antiquark paired up with a light antiquark or quark respectively.

D mesons

Immediately above the J/ψ peak we thus see a fall in the cross-section, back to
the previous level, owing to the fact that we are now off resonance but have not
yet reached the threshold for open charm. As soon as there is sufficient energy
available in the centre–of–mass to produce a D-meson pair, we see a rise to the
new level. The lowest-lying D mesons have JP =0−; the masses and decay widths
are shown in Table 4.3. An extra charged state is now possible by replacing the d

Table 4.3: The lowest-lying D-meson masses and decay widths.

state quark content mass/MeV τ/10−12 s

D± (cd̄,dc̄) 1870 1.04

D0, D0 (cū,uc̄) 1865 0.41

D±
s (cs̄,sc̄) 1968 0.49

quark with an s—it is naturally a little heavier than the others.
Note that here we do not talk of decay widths, but of lifetimes. These mesons

do not have access to strong annihilation channels and only decay via the weak
decay of the individual c and c̄ quarks. The lifetimes are therefore considerably
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longer and the resonance widths too narrow to be determined as such. By using
modern silicon-strip tracking detectors with vertex resolution capabilities of the
order of a few microns, the lifetimes are thus typically determined via precise
measurement of track lengths.

B mesons

Slightly above the Υ peak we see a rise in cross-section to a new level corresponding
to the threshold for open-b production, which initiates with the production of B
mesons. This is in precise analogy with the previous case of D mesons. Again,
the lowest-lying B mesons have JP =0−; the masses and decay widths are shown
in Table 4.4. Here we see yet another new possibility: the doubly heavy, charged,

Table 4.4: The lowest-lying B-meson masses and decay widths.

state quark content mass/MeV τ/10−12s

B± (ub̄,bū) 5279 1.64

B0, B0 (db̄,bd̄) 5279 1.53

B0
s , B

0
s (sb̄,bs̄) 5368 1.47

B±
c (cb̄,bc̄) 6286 0.46

meson states cb̄ and bc̄.

W
+
W

− pair production

The final structure visible in the plot of the hadronic cross-section in e+e− anni-
hilation is the opening of the threshold for the production of W+W− pairs. So far
such a study has only been possible in one machine: LEP at CERN. After having
thoroughly studied the Z0 resonance with centre–of–mass energies around 91GeV,
the machine was slowly pushed to its design limit of about 100GeV beam energy,
thus providing a total centre–of–mass energy of 200GeV. This permitted the study
of the highest-energy process accessible in this machine W+W− production:

e+e− → γ, Z0 → W+W−. (4.2.28)

Note that while one might assume the photon channel to be rather natural, since,
after all, the W± is charged, the triple weak-boson coupling Z0W+W− is a precise
prediction of the electroweak theory. As such, it must be tested; again, the meas-
urements performed revealed absolutely no indication of deviations with respect
to theoretical predictions.
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4.2.6 Jets in e+e− annihilation

Before leaving the topic of e+e− collisions, there is one final type of process that
deserves detailed examination. We have discussed a great deal the production
of hadrons in such collisions. Before the advent of QCD and the quark model,
the description of the process e+e−→hadrons took the form of the intermediate
creation of what was typically called a fireball. In such a picture the centre–
of–mass energy was more-or-less uniformly distributed among final-state particles
emerging over the entire 4π solid angle. However, once the idea of point-like objects
that could be produced in particle–antiparticle pairs was established, this picture
changed radically. We have already seen the relevant quark diagrams many times;
the main point to appreciate is that, at leading order, the dominant process sees
the production of a pair of quarks, with a large amount of kinetic energy and
which are therefore projected out of the interaction region back-to-back. Thus, if
the hadronisation process does little to change the direction of motion, we might
expect to see something like two back-to-back jets of particles (see Fig. 4.15).

e+

e−

q

q̄

hadrons

hadrons

Figure 4.15: A schematic view of the jet-like structure one might expect, based on the
assumption of a process initiated by quark–antiquark pair production.

The final detected hadronic state is born then of just two objects, separating
at high velocity. Unfortunately, we do not know how these two fundamental fields
convert or fragment into the hadrons that eventually materialise in the laboratory
and propagate some finite distance until either arriving directly in a detector or
decaying into other lighter, more stable hadrons. At any rate, one present con-
ventional picture of the hadronisation process is as follows (see Fig. 4.16). As the
qq̄ separate the field lines stretch out between them to form a string-like object,
in which energy is stored according to an approximately linear potential. As this
stored potential energy grows, the threshold for real pair production is approached
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→ →

Figure 4.16: The Lund string-model picture of quark fragmentation. The hadrons
created at the ends of the string will be the fastest (or so-called leading) particles and
each will be followed by a jet of slower hadrons.

and at some point, the string may break producing a quark–antiquark pair, which
will then form the new ends of the two strings so produced. Although a small
amount of energy may be converted into transverse momentum, the principal dir-
ection of the quarks thus created will be parallel to the initial motion. This process
will iterate, with the smaller strings breaking again and again until the energy has
been fully dissipated.

The end picture then (the Lund model; Andersson et al., 1983) has a number
of final-state particles, over which the energy of the initial quark–antiquark system
is shared (in relation to position along the string) and which are moving more-or-
less collinearly—this is called a jet. At low centre–of–mass energy and consequent
low final-state multiplicity, it is hard to distinguish such behaviour. However, at
higher energy the two-jet nature of the majority of hard-scattering events clearly
emerges. Models based on these ideas, with a simple stochastic choice of the
string breaking points provide a good description of the jet-like events observed;
an example experimentally observed two-jet event is shown in Fig. 4.17.

Figure 4.17: An artistic rendering of a two-jet event as experimentally observed in the
UA2 detector, together with the corresponding Lego plot.

A number of variables may be defined to describe the shape of a jet-like event:
examples are sphericity and thrust. A value of sphericity is defined for each event
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as

S :=
3
(∑

i p
2
Ti

)
min

2
∑

i p
2
i

, (4.2.29)

where pTi is the momentum of the i-th. particle perpendicular to the sphericity
axis; the sphericity axis is defined as that minimising S. A perfect two-jet event,
with outgoing particles aligned precisely along the axis, has S=0 whereas for
a perfectly isotropic event S=1. The graph in Fig. 4.18 shows measured mean

Figure 4.18: The mean sphericity as a function of centre–of–mass energy in comparison
with a jet-model (solid line) and an isotropic phase-space model (dashed curve).

sphericity as a function of centre–of–mass energy in comparison with jet-model
(solid line) and isotropic phase-space model (dashed curve) predictions.

So far we have appealed to non-perturbative aspects of QCD and its string-like
long-distance potential. There is also a perturbative aspect to the interaction, in
which gluons may be emitted, essentially via Bremsstrahlung , see Fig. 4.19a. Given
the size of αs, such a process has a non-negligible probability. Moreover, it is quite
likely to produce a gluon with large energy and at a large angle with respect to
the direction of the emitting quark. There are then three rapidly moving particles,
which, according to the string model, should give rise to three jets. Again, with
sufficient centre–of–mass energy, such events are clearly visible. Indeed, since
the probability of gluon emission is directly proportional to αs, the ratio of the
numbers of events with three and two jets is a direct measure of αs. This method
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γ∗

q̄

g

q

(a)

γ∗

q̄

g

g

q

+
γ∗

q̄

q̄

q

q

(b)

Figure 4.19: Hard gluon Bremsstrahlung and qq pair-production processes leading to
(a) three- and (b) four-jet events.

of extracting the strong coupling constant agrees well with other results.
One can naturally go further and consider events with four or more jets, see

Fig. 4.19b. However, there is evidently a limit to how many jets one can sensibly
hope to identify experimentally. The available energy is a severe limitation but
there is also the question of overlapping of adjacent jets.

Going back to the string model, we see that in the case of a three-jet event
the string will stretch from the quark to the gluon and on to the antiquark (see
Fig. 4.20). Note how the string is stretched between the quark and gluon and

q q̄

g colour string

q q̄

γ

(a) (b)

Figure 4.20: The evolution of a three-jet event in the Lund string picture. Of the two
possibilities shown, that on the left apparently better describes the data. In particular,
it leads to a depletion of particle and energy flow on the opposite side to the gluon jet.
The right-hand figure would be as expected for Bremsstrahlung of, say, a hard photon.

antiquark and gluon and will thus generate final-state hadrons partially filling the
angular region between those pairs of partons. However, there is no string directly
between the quark and antiquark. Therefore, one would expect this angular region
to be depleted with respect to the other two. Now, since the gluon should on
average carry less energy, there should be a correlation between the number of
particles in intermediate regions and the energy of the away-side jets. In other
words, on average, we expect to find less particles opposite to the lowest-energy jet
as compared with the other two. This prediction of the model is also experimentally
well verified (see Fig. 4.21).
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Figure 4.21: Correlations between the energy/particle flow in the angular region
between the two jets opposite the lowest-energy jet. Comparisons are presented with a
QCD-based model (Hoyer et al., 1979) and with the Lund string model (Andersson et al.,
1983). The figure is taken from Bartel et al. (1983)

In a different approach, the idea of parton emission (i.e. gluon Bremsstrahlung
and quark–antiquark pair production) led to the development of a perturbative
model of hadronisation (Marchesini and Webber, 1984), in which each emission is
treated more-or-less independently and thus iterated (see Fig. 4.22). At the end of
such a parton shower we are again left with a large number of quarks distributed
over a range of momenta. The hadronisation ansatz adopted consists of combining
each nearby colourless quark–antiquark pair and assuming it will form the meson
state nearest in mass and quantum numbers. Again, a good description of the
observed phenomenology is obtained. The depletion phenomenon on the opposite
side to the gluon jet is seen here as the result of a so-called colour-coherence effect.

In conclusion, let us remark that in all approaches to the description of a final
multi-hadron state there is a great deal of modelling, with necessarily a large
number of parameters to be fitted or tuned to the data. That these models work
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q

Figure 4.22: The perturbative QCD-based parton-shower model for quark fragmenta-
tion.

as well as they do is a clear indication that our heuristic picture cannot be far
from the truth. That said, it must always be borne in mind that we have as yet no
first-principles approach to the problem, and then again, with enough parameters,
even an incorrect model may appear satisfactory.∗

4.3 Proton–antiproton colliders

In this final section of the chapter on new particles we now turn briefly to the case of
proton–antiproton (and proton–proton) colliders. All else being equal, one would
not normally choose to perform new-particle searches in a hadron collider owing
its inherently dirty nature. Conceptually, the problems are essentially two-fold,
but with a common origin: the actual collisions that take place in such a collider
at the elementary level are not between the hadrons themselves but between the
partons they contain. The two resulting difficulties can be classified as initial- and
final-state.

The difficulty with the initial state is that a priori we can have no direct
knowledge (i.e. event-by-event) as to the details: parton type, energy–momentum,
spin etc. What we do have is a statistical description: we have parton distributions,
measured in other processes, that give us the probability of finding a given parton
type with a given momentum fraction inside a given hadron. Indeed, event-by-
event we can only hope to reconstruct the initial kinematics from measurement of

∗ One need only recall the Ptolemaic or geocentric model of the universe with its necessary
epicycles, to understand how complex but wrong models can nevertheless produce apparently
or rather approximately correct answers.
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an exclusive final state, which thus limits what can measured.∗ Even considering
only statistical analyses, we do nevertheless require accurate prior information on
the parton densities and, for example, in the case of gluons, or in general for very
small values of xB, this is not yet available.

As far as the final state is concerned, the difficulty here is that a large part
of the hadron remnants disappears along the beam pipe and cannot therefore
be detected. Moreover, it is possible for remnants of the spectator systems (the
unstruck quarks) to fall within the detector acceptance. This all makes complete
reconstruction impossible and therefore precludes certain types of analyses.

Naturally though, there are situations where there is no choice: typically this
has to do with the available energy. The highest centre–of–mass energy achieved
to date in an e+e− machine is 200GeV at LEP whereas the Tevatron at Fermilab
ran for many years at a centre–of–mass energy of slightly less than 2TeV, while the
Large Hadron Collider (LHC) at CERN is designed to achieve 14TeV centre–of–
mass energy—although it should be noted that this is a proton–proton machine.†

Moreover, we have already seen cases (such as the discovery of J/ψ) in which
discovery is equally as favourable in hadron–hadron as in e+e− machines. Indeed,
the ηc, for instance, cannot actually be produced directly in an e+e− machine.

4.3.1 Discovery of the W± boson

A clear example of the need for a hadron–hadron machine is the case of the dis-
covery of the W± bosons.‡ Given that the W± couple to a pair of different flavour
fermions (e.g., ud̄, e+νe etc.), a simple e+e− collision is no longer useful. Since
high-energy collisions between electron or muon and neutrino beams of sufficient
intensity are unattainable, the only choice is to collide proton and, preferably, an-
tiproton beams. For discovery of the W± in pp̄ collisions, the following then are
the main channels:

u+ d̄ → W+ → e+ + νe, µ
+ + νµ, (4.3.1a)

and
ū+ d → W− → e− + ν̄e, µ

− + ν̄µ. (4.3.1b)

∗ Incidentally, for somewhat technical theoretical reasons, the use of exclusive final states can
seriously reduce the reliability of perturbative QCD predictions.

† In its heavy-ion mode LHC is also intended to provide collisions between, e.g. lead or gold ions
with approximately 2.6TeV per nucleon.

‡ The 1984 Nobel Prize for physics was awarded equally to Carlo Rubbia and Simon van der
Meer for “their decisive contributions to the large project, which led to the discovery of the field
particles W and Z, communicators of weak interaction.”
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As a by-product, in the same collisions production of the Z0 is also accessible,
although a little more difficult, via

u+ ū, d+ d̄ → Z0 → e+e−, µ+µ−. (4.3.1c)

If we recall that valence quarks might be expected to carry on average roughly
one third of the total hadronic energy, then we might expect to need of order at
least three times the W± mass, or >∼ 240GeV in the centre–of–mass. In fact, the
situation is rather worse, for two reasons. First of all, interactions, via which the
gluons and sea quarks are generated inside the proton, significantly reduce the en-
ergy share of the valence quarks: as mentioned earlier, we find experimentally that
the gluons carry slightly more than half the total energy of the proton. Secondly,
this effect grows with energy scale. A higher energy scale is equivalent to finer
spatial resolution and, as we look at the proton in ever finer detail, we resolve
more and more gluons and sea quarks. The resulting mean effective valence and
sea-quark fractions relevant to such an experiment are then

〈xval〉 ≈ 0.12 and 〈xsea〉 ≈ 0.04. (4.3.2)

To produce a W± in a pp̄ machine, one would therefore expect to require nearer
80/0.12∼670GeV and for pp around 80/

√
0.12×0.04∼1200GeV total centre–of–

mass energies. In practice, one can use slightly lower energies and work in the tails
of the parton distributions; i.e. accepting lower event rates.

The cross-section for W± production in a parton–parton collision may be cal-
culated using the standard BW form, see Eq. (A.5.15):

σ(ud̄ → W+ → e+νe) ≃
1

Nc

1

3

(2J + 1)

(2su + 1)(2sd + 1)

× 4π~2

p2
(1
2
Γud̄)(

1
2
Γeν)

(ECM −MW )2 + (1
2
Γtot)

2 , (4.3.3)

where the factor Nc in the denominator accounts for the requirement that for a
quark of a given colour, the corresponding antiquark must have precisely that
(anti-) colour out of the three possible; the further factor 3, associated with spin
degeneracy, arises owing to the requirement that the quark and antiquark be left
and right handed respectively; i.e., the W± are only produced in one of the three
possible helicity states.

Therefore, at the peak energy (ECM=MW ) the maximum total cross-section
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(in natural units) is

σmax(ud̄ → W+ → e+νe) ≃
4π

3M2
W

Bud̄Beν =
4π

81M2
W

≃ 9.2 nb. (4.3.4)

The branching ratios used are then based on the observation that each single decay
channel (leptonic or coloured quark) has the same weight (neglecting phase-space
variations. There are thus three leptonic (eνe, µνµ and τντ ) and two quark channels
(ud̄W and cs̄W) of three colours, giving a total of nine equal-weight channels. We
therefore have

Bud̄ = Nc/9 = 1/3 and Beν = 1/9. (4.3.5)

To calculate the cross-section for hadronic collisions, we need to integrate (or
average) over the width of the resonance and the relevant partonic distributions.
For the actual experiments (UA1: Arnison et al., 1983a and UA2: Banner et al.,
1983) performed in the Spp̄S collider at CERN, with very high-intensity proton
and antiproton beams at 270GeV,∗ the cross-sections are

σ(pp̄ → W+ → e+νe) ∼ 1 nb (4.3.6)
and

σ(pp̄ → Z0 → e+e−) ∼ 0.1 nb. (4.3.7)

These should be compared to the total pp̄ cross-section at such energies, which is
measured to be about 40mb. In other words, the two signals were at a level of 10−8

and 10−9 of the total, respectively. Such a weak signal requires very distinctive
events.

Now, since almost all of the available energy must be used to provide the W±

mass and since the quark and antiquark will also tend to have similar velocities,
the boson so-produced will be almost at rest in the laboratory. When it decays
there is then a high probability that the final-state lepton–neutrino pair will come
out more-or-less back-to-back (in the laboratory) and at large angles with respect
to the beam direction, i.e. with high transverse-momentum or pT. Moreover, the
detected lepton will have large energy ≈ 1

2
MW while, of course, the neutrino goes

undetected. The signature is thus:

• a single, isolated, high-pT electron track in the central tracking detector;
• a very localised shower in the electromagnetic calorimeter;
• large missing pT when all transverse momenta are added vectorially.

Schematically then, the principal components of detector setup are as follows (see
Fig. 4.23)

∗ In later, so-called ramped, runs the CERN machine achieved beam energies of 318GeV.
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• a central tracking detector with a high magnetic field to observe charged
particles and measure their momenta;
• electromagnetic shower counters, which detect both electrons and photons;
• hadron calorimeters;
• muon detectors.

Figure 4.23: A schematic view of a transverse section of the UA1 detector at CERN.
The beams travel along the centre (in and out of the page). CD is the central detector, S
the shower counters, HC the hadron calorimeters and finally MD are the muon detectors.
The shaded area represents the magnetic coils.

Figure 4.24 shows an example of the electromagnetic-calorimeter energy deposition
due to a W± event. Note that the individual longitudinal momenta of the incident
partons are not known and therefore we know nothing of the possible Lorentz
boost of the decaying system. It is thus impossible to fully reconstruct the event
and so nothing can be said about the W± mass or width on an event-by-event
basis However, the pT distribution of the detected electrons may be measured.
For the purposes of this explanation, we shall assume that the W± is produced
approximately at rest in the laboratory system—a full (numerical) analysis should
also use the parton distributions to account for non-zero centre–of–mass motion.
The transverse momentum of the outgoing electron is then

pT ≈ 1
2
MW sin θ, (4.3.8)
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Figure 4.24: The so-called Lego plot from the electromagnetic calorimeter due to a W±

event. The figure is taken from UA2 (Banner et al., 1983).

where θ is the electron angle with respect to the beam axis. Therefore,

dσ

dpT

=
dσ

dcos θ

dcos θ

dpT

≈ dσ

dcos θ

[
1− 4p2T/M

2
W

]− 1

2 . (4.3.9)

Another often used and related variable is the so-called transverse mass:

mT =
√

2peTp
ν
T(1− cos φeν), (4.3.10)

where pνT is the transverse momentum of the undetected neutrino, reconstructed
as the missing transverse momentum. The so-called Jacobian peak (see Fig. 4.25)
thus induced in the pT or mT distribution allows for a fairly precise determination

Figure 4.25: The Jacobian peak in the transverse-mass distribution of the electron or
positron emitted in the W± decay, as seen in the UA2 experiment at CERN. The figure
is taken from Alitti et al. (1992).
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of the mass and width of theW± (via a full parton-model analysis); the present-day
values are (see PDG-2012 – Beringer et al., 2012)

mW = 80.399± 0.023 GeV and ΓW = 2.085± 0.042 GeV. (4.3.11)

We see that the precision is roughly twenty times poorer with respect to the
LEP measurements of the Z0 parameters. Note that the CERN experiments also
published data on observation of the Z0 (UA1: Arnison et al., 1983b and UA2:
Bagnaia et al., 1983).

4.3.2 Discovery of the t quark

The Higgs boson aside (which we shall discuss later), the last major discovery made
in a high-energy hadron collider, indeed in any collider, is that of the top quark.
This was achieved at Fermilab in 1995 by two experiments: CDF (Abe et al., 1995)
and DØ (Abachi et al., 1995). The basic process observed is

p+ p̄ → t + t̄

||
| |→ W−b̄
|→ W+b. (4.3.12)

Of course, both the W ’s and b’s also decay (either leptonically or hadronically)
rather rapidly—the cleaner leptonic channels are used here for the W± while vertex
tracking allows full reconstruction of the semi-leptonic b decays. In such a way,
for the initial analyses, CDF collected 19 events and D0 17 events. Combining
all possible production modes (i.e. quark–antiquark annihilation and gluon–gluon
fusion), the cross-section is estimated to be of order 5pb at Tevatron energies
and for a top-quark mass around 175GeV, as determined from the reconstructed
top-quark mass spectrum (see Fig. 4.26).

These two experiments continued to collect data over a long period and also
performed analyses aimed at detecting the weak bosons, in particular the W±.
The current values are (see PDG-2012 – Beringer et al., 2012):

mt = 173.5± 0.6± 0.8 GeV (direct measurement by CDF and D0),
(4.3.13a)

= 178.1+10.4
− 8.3 GeV (indirect extraction from global SM fits),

(4.3.13b)

= 160.0+4.0
−4.3 GeV. (deduced from the observed cross-section).

(4.3.13c)

The second number is obtained from the precision fits to high-statistics data of
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Figure 4.26: The reconstructed top-quark mass spectrum as seen in the CDF experi-
ment at Fermilab. The figure is taken from Abe et al. (1995).

various standard-model parameters (e.g. sinθW), in which the top quark plays a
role via mass-dependent, higher-order corrections.

Now, as already commented, the top quark decays so rapidly that there is no
chance of forming top mesons (Bigi et al., 1986). The width is measured to be

Γt = 1.99+0.69
−0.55 GeV, (4.3.14a)

while theoretical calculation in the SM gives

Γt ≃
GFm

3
t

8
√
2 π

(
1− M2

W

m2
t

)2(
1 + 2

M2
W

m2
t

)[
1− 2αs

3π

(
2π2

3
− 5

2

)]
. (4.3.14b)

The theoretical value, obtained using the measured masses and strong coupling
constant, is approximately 1GeV, in reasonable agreement with experiment. Note
that the first-order QCD correction is about 10%; the second-order correction is
also known. Such widths are equivalent to a lifetime of order 10−24 s.

4.3.3 The search for quark–gluon plasma

We have seen that phenomenologically the strong interaction confines quarks and
gluons, presumably by means of an effective string-like long-distance potential.
However, at short distances (or high energies) the quarks and gluons behave as
though they were free and not subject to a confining potential. This picture has
led to the idea that at very high energy and parton density QCD should undergo a
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transition to a sort of plasma phase, of which the principal consequence or feature
would be deconfinement. That is, there should be no identifiable hadronic states,
but rather effectively free quarks and gluons.

Such a phase presumably existed in the very early moments after the big bang
and maybe even occurs inside some very dense neutron stars. One might hope to
recreate it in the laboratory by generating very high energy and particle densities
in high-energy heavy nucleus–nucleus collisions. To achieve this, the Relativistic
Heavy-Ion Collider (RHIC) has been built at Brookhaven (USA), in which heavy
ions (primarily gold) at around 100GeV per nucleon collide. The LHC programme
at CERN also includes a large fraction of heavy-ion physics.

In this new phase of QCD matter, owing to the effective deconfinement, it
is believed that, for example, the strange quark should no longer be suppressed
and should exist in roughly equal quantities with the other two light quarks. The
signal that is sought then is a sudden and marked enhancement of strange-particle
production. To some extent, this is indeed seen at RHIC, but there is still some
debate as to the significance of the results.
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Chapter 5

The Standard Model and Beyond

In this final chapter we shall deal with the so-called standard model (SM) of particle
physics. In particular, we shall turn our attention to more dynamical questions
and examine the role of interactions. A central issue here will be the generation
of mass. Various theoretical considerations lead us to prefer theories in which no
masses are explicitly present. We find the gauge principle to be immensely valuable
and, indeed, all known phenomena may be described by theories taking the basic
form of a QED-like interaction. However, most, if not all, particles have mass and,
in particular, the W± and Z0 are very heavy. As we shall see, the solution is to
induce effective masses via interaction energies and we shall find, moreover, that
symmetries and their breaking play an important role here too.

5.1 Fundamental forces and particles

5.1.1 The table of forces and particles

The building blocks we now have in our hands comprise a number of quarks and
leptons, interacting via the exchange of various types of spin-one bosons. Leaving
aside gravity and not yet wishing to comment on the special case of the Higgs
boson, these are grouped according to type and family (or generation) in Table 5.1.
A major problem in theoretical physics is precisely how the W± and Z0 might
acquire a non-zero mass while remaining true gauge bosons. Let us first of all
examine the reasons for requiring them to have a large mass.

129
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Table 5.1: The elementary matter and force fields of the standard model; the only fields
missing from this table are the spin-zero Higgs boson and the spin-two graviton.

leptons

{
νe νµ ντ
e µ τ

quarks

{
u c t

d s b

}
g

(QCD)





γ
(QED)





W±, Z0

(weak)

︸ ︷︷ ︸ ︸ ︷︷ ︸
generations electroweak

︸ ︷︷ ︸ ︸ ︷︷ ︸
fermions spin-one bosons

5.1.2 The need for weak-boson mass

Unitarity violation in Fermi theory

Fermi theory describes all known low-energy weak-interaction phenomena very well
and to high precision. However, once we have the universal four-point interaction
introduced by Fermi, we can imagine many new processes that have yet to be ob-
served or studied experimentally. For example, the following process (improbable
as it may appear and difficult to detect experimentally) becomes possible:

νµ + e− → µ− + νe. (5.1.1)

The theory also determines precisely how to calculate the cross-section. If we do
this for a sufficiently high energy so that in comparison we may neglect all particle
masses, we obtain (in natural units,∗ ~=1= c)

σtot(νµe
− → µ−νe) ≈

G2
FE

2
CM

π
; (5.1.2)

that is, a cross-section growing with energy. In fact, such behaviour might have
been anticipated on dimensional grounds simply by using the knowledge that the
Fermi coupling constant GF≃1.166×10−6GeV−2 has dimensions E−2 (again in
natural units). A cross-section has dimensions of an area, which in natural units is
also E−2. Therefore, to compensate the two powers of GF, we need two powers of
E. It is obvious that such a behaviour must sooner or later violate unitarity; that

∗ Recall that, since (~c)2=0.39mbGeV2, the conversion is performed by multiplying an expres-
sion for a cross-section in GeV−2 by 0.39 to obtain the answer in mb.
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is, above some critical energy the probability of such an interaction will exceed
unity.

The statement may be made more quantitative and even more stringent by
considering the partial-wave expansion for the total cross-section:

σtot =
4π

k2

∑

ℓ

(2ℓ+ 1) sin2 δℓ, (5.1.3)

where k is the projectile momentum, ℓ is the angular momentum of the individual
partial wave and δℓ is the associated phase-shift, which depends on the precise
details of the theory. This may be applied to the above case by exploiting one
simple property of the Fermi interaction: it is point-like, which implies vanishing
impact parameter and therefore zero orbital angular momentum. One thus only
needs to consider ℓ=0, or s-wave, which leads to the following limiting behaviour:

σtot = σ0 ≤
4π

k2
→ 4π

E2
CM

. (5.1.4)

Equality of the two expressions (5.1.2) and (5.1.4) for σtot provides an upper limit
to ECM for which Fermi theory can be valid—beyond this energy partial-wave
unitarity is violated. Inserting the relevant numbers leads to

E
max

CM
≈ 300 GeV. (5.1.5)

In other words, before this energy is reached, some new physics must take over that
is evidently not visible at lower energies but that tames the unbounded growth of
the cross-section.

Intermediate vector bosons

Comparing such behaviour with that of QED, one sees a hint of how it might be
cured. The equivalent interaction in QED is not a four-fermion interaction but
rather a pair of fermion–photon vertices connected via a photon propagator. An
indicator of the correct behaviour is that the QED coupling constant is dimension-
less. The dimensionality corresponding to GF is provided by the propagator, which
introduces the sought-after high-energy suppression. Diagrammatically then, one
might be tempted to make the substitution depicted in Fig. 5.1.

In terms of couplings and propagators, this translates into

GF →
g2

|q2 −M2|
, (5.1.6)
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e−

νµ

νe

µ

−→

e−

νµ

νe

µ

Figure 5.1: A possible cure to the divergent behaviour of Fermi theory via substitution
of the four-point coupling with a boson propagator à la QED.

where g is some new dimensionless coupling and we have allowed for a mass M
in the new propagator. At very high energies (|q2|≫M2), where help is needed,
M2 may be neglected and thus an asymptotic behaviour is attained such as that
of QED, i.e. acceptable. For low-energy interactions, where |q2|≪M2, q2 may be
neglected in the propagator and thus the standard behaviour of Fermi theory is
recovered. Moreover, inverting the relation at low energies, one finds

g ∼ M
√
GF. (5.1.7)

Now, we have already seen that M cannot be more than about 300GeV if it is
to save unitarity. On the other hand, it cannot be significantly smaller, otherwise
the propagator energy dependence would spoil the accurate predictions of Fermi
theory. This suggests a value for g that is not so very different from the value of
e, the QED coupling. It is then reasonable to speculate that the new theory has
indeed a similar coupling to QED and thus M should be around, say, 100GeV,
but we shall justify this a little better shortly.

Charge conservation at the vertices requires that, together with a non-zero
mass, the new boson be charged and we should thus introduce something like
W±. Moreover, if we are to reproduce the V −A interaction associated with Fermi
theory, then it must be a spin-one particle, just as the photon. Now, while photon
vertices only transfer energy and momentum, interactions involving W± must also
change the nature of the fermion. For example, a u quark is converted into a d
quark and vice versa. We are thus faced with the choice of either continuing to
speak of isospin violation or to admit that the new bosons also carry isospin. This
latter is, of course, much more attractive. Indeed, it is more natural to include
the leptons in such a picture and thus introduce weak isospin. To couple objects
of isospin one-half we are forced to introduce bosons of isospin one. This implies
a multiplicity three (2I+1), that is, a triplet. Thus, just as in the pion case, we
should expect a W 0 (a so-called weak neutral current) together with the two W±.
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Weak neutral currents

Now, the W 0 cannot be the photon since it must both have a large mass and in-
teract with neutrinos. We should remark immediately, moreover, that the particle
so introduced is not exactly the Z0 already mentioned, which is in fact a mixture
of W 0 and a new field B0 (while γ is the corresponding orthogonal combination)
due to the same mechanism designed to provide the new (gauge) bosons with a
non-zero mass. We shall discuss this in more detail later.

The introduction of a new intermediate neutral boson suggests further possible
new phenomenology: that of the so-called weak neutral currents. An immediate
question arises: why had no experimental indication been observed earlier? The
answer lies in both the similarity and the difference with respect to the photon. The
neutrality of a W 0 (or Z0) implies that almost everywhere it may be exchanged, a
photon may be exchanged too. However, at low energies photon exchange is not
suppressed by a large mass. Indeed, we can estimate the cross-section ratio for
W 0 and photon exchange in any given low-energy process as follows:

σ(W 0)

σ(γ)
∼
(
1/(q2 −M2)

1/q2

)2

≈
(
q2

M2

)2

for |q2| ≪ M2. (5.1.8)

Since we expect M ∼100GeV, for energies of the order of a GeV the suppression
is of order 10−8. While for interference effects this may improve to the square-
root and therefore 10−4, to separate the two contributions, one would still require
absolute cross-section measurements of unprecedented precision.

If normal W 0-exchange processes are swamped by photon exchange, then we
should look for something not possible in QED. As noted earlier, the photon
does not change the nature of matter particles while the W± evidently do. One
might then hope that some process exists in which the W 0 also provokes a change
of flavour. We are thus led back to the old question of eigenstates of different
interactions. The electron and muon etc. are evidently eigenstates of QED, which
is experimentally seen to be perfectly diagonal in these states. Note that the basis
states of QED are precisely those we call mass eigenstates and which propagate in
the laboratory. However, the natural eigenstates of the weak interaction are not
necessarily the same, that is, they may be superpositions of these states. In other
words, if we write a three-component vector describing the charged leptons e−, µ−

and τ− then there should be a unitary transformation U that takes us to the weak
basis:

ψW
i = Uijψj . (5.1.9)

A similar consideration could naturally be made for the neutrinos, but it is rather
useless in this connection since they do not interact with the photon.

Now, we have always described interactions in terms of currents; thus, the QED
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(neutral) current is
JµQED = eψ γµ1flav ψ, (5.1.10)

where the unit matrix 1flav just expresses the fact that the interaction is diagonal

in this basis. The equivalent weak neutral current (i.e. mediated by the W 0 or
rather Z0 boson) would then be

J0µ
W = gψW(cVγ

µ − cAγµγ5)1flav ψW, (5.1.11)

where we are now in the weak basis, the zero index indicates a neutral current
and we also remind the reader that this interaction probably violates parity con-
servation, but for the purposes of this discussion the actual values of cV and cA are
quite irrelevant. The fact that the components of ψW are mixtures of the physical
charged-lepton states could, in principle, allow for some flavour changing effect.
However, let us rewrite the above current in the physical basis:

J0µ
W = gUψ (cVγ

µ − cAγµγ5)1flav Uψ

= gψ U †(cVγ
µ − cAγµγ5)1flav U ψ

= gψ (cVγ
µ − cAγµγ5)U †

1flav U ψ

= gψ (cVγ
µ − cAγµγ5)1flav ψ. (5.1.12)

We thus see that it remains perfectly diagonal; in effect, a GIM-like mechanism
has protected this situation from the possible consequences of flavour-changing
neutral currents. Indeed, no evidence of such phenomena is found.∗

The experimental discovery of weak neutral currents

We must then find some process in which the photon cannot participate and yet
which has a clear signal. This may be provided by the following interactions:

νµ + e− → νµ + e− and ν̄µ + e− → ν̄µ + e−. (5.1.13)

The corresponding experiment was first performed at CERN in the PS and SPS
rings by the Gargamelle collaboration (Hasert et al., 1973). Beginning in the late
sixties, the production of high-energy (200−300GeV) and high-intensity proton
beams allowed the generation of high-energy and high-intensity secondary νµ and
ν̄µ beams.

The so-called narrow-band neutrino beam was produced via the system shown
schematically in Fig. 5.2. A 400GeV proton beam impinged on a beryllium target

∗ We note for completeness, however, that higher-order quantum corrections, so-called penguin

diagrams, can and do lead to non-vanishing effective flavour-changing neutral currents.
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Figure 5.2: A schematic view of the narrow-band neutrino beam at CERN.

producing a large number of high-energy particles. By judicious choice of electric
and magnetic fields, all but charged pions (although the beam did also contain
some charged kaons) were filtered out over a length of around 100m, selecting
an energy of around 200GeV. Inside a vacuum pipe of about 200m these then
decayed in-flight into muons and muon neutrinos. A long shielding block of steel
and the earth cleaned up the remaining muons and other stray particles, leaving a
pure muon neutrino or antineutrino beam with a rather narrow spectrum. (There
is, moreover, a strong correlation between the angle of emission and the energy
of the neutrinos.) At the end of all this was Gargamelle, a giant bubble-chamber
detector, designed principally for neutrino detection. With a diameter of nearly
2m and length 4.8m, it held nearly 12 cubic metres of freon (CF3Br).

Exercise 5.1. For the given kinematics, that is, a decaying charged-pion beam of
energy 200GeV, calculate the energy spread of the resulting neutrino beam.

The importance of using muon neutrinos is simply that charged currents are
excluded in their interactions with electrons (see Fig. 5.3). By requiring the final
state to contain an electron, while the initial states contains a muon neutrino or
antineutrino, guarantees the process to be neutral current. Indeed, the process
depicted in Fig. 5.3a is impossible without a weak neutral current. The observa-
tion then of electrons scattered by the muon neutrino beam constituted a clear
indication of the existence of weak neutral currents. Fig. 5.4 displays the first such
event recorded by Gargamelle.

One can also look for deeply inelastic type processes where all that is seen to
recoil is a purely hadronic system (Hasert et al., 1974). The two possible reactions
are then

νµ +N → νµ +X and ν̄µ +N → ν̄µ +X, (5.1.14)

where N is a struck nucleon and X the recoiling hadronic system (see Fig. 5.5).
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(a)

Z0

e−

νµ

e−

νµ

(b)

W−

e−

νµ

νe

µ−

(c)

W−

e−

νe

νe

e−

(d)

W−

e−

ν̄e

ν̄e

e−

Figure 5.3: A comparison of the possible neutral- and charged-current interactions
between muon and electron neutrinos and electrons. (a) A neutral-current event with an
electron in the final state; (b) a charged-current event with instead a muon in the final
state; (c) and (d) electron-neutrino initiated charged-current events with a final-state
electron.

Figure 5.4: The first example of the neutral-current process ν̄µ+e−→ ν̄µ+e−. The
electron is projected forward with an energy of 400MeV at an angle of 1.5±1.5◦ to the
beam, entering from the top.

Other evidence of weak neutral currents

Nuclear β-decay proceeds via charged-current exchange and is easily studied. On
the other hand, since the neutral currents do not change flavour they cannot give
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νµ

Z0

νµ

N X

Figure 5.5: Deeply inelastic neutrino–nucleon scattering via neutral-current exchange.

rise to decays. Thus, it is not possible to detect their direct role in weak nuclear
transitions. However, the presence of a parity-violating interaction in competition
with the usual Coulomb potential leads to bound-state nuclear wave-functions
that are no longer pure eigenstates of parity. This in turn allows the observation
of indirect parity violation in, for example, electromagnetic or strong-interaction
nuclear transitions.

Three such examples are the following:

O16 ∗ → C12 + α (5.1.15)

JP : 2− 0+ 0+.

This process violates parity but proceeds via the strong interaction and should
therefore be absolutely prohibited. However, neither the initial nor the final nuclear
state is a pure parity eigenstate and the decay is experimentally observed with a
width Γ∼10−10 eV.

F19 ∗ → F19 + γ (5.1.16)

JP : 1
2

− 1
2

−
1−.

In this case, we have an electromagnetic transition, which again cannot directly
violate P . Nevertheless, given the spin of the decaying F19 ∗, we may polarise
the initial state and examine the up–down photon-momentum asymmetry. An
asymmetry of Aγ∼10−4 is found.

Ta181 ∗ → Ta181 + γ. (5.1.17)

Here the initial state is not polarised, but the photon is experimentally found to
emerge with a slight preference for being left handed: Pγ∼−4×10−6. Finally,
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we might remark that there are analogous, smaller but still measurable, effects in
atomic physics.

5.1.3 Further unitarity problems

The problem of growing cross-sections with respect to unitarity limits is not, how-
ever, completely solved: the νµe

−→µ−νe process previously examined still grows
logarithmically but would exceed the bounds only at extremely high energies. More
problematically, the new states invoked to tame the Fermi-theory divergences nat-
urally induce new processes, which although often rather exotic are nevertheless
theoretically possible and thus too should not violate unitarity.

A particular example is νeν̄e annihilation into a W+W− pair (but there are
many others). The first obvious contribution comes from the diagram in Fig. 5.6a.
This diagram leads to a total cross-section that again grows as s. One solution

(a)

e−

νe

ν̄e

W+

W−

(b)

E−

νe

ν̄e

W+

W−

(c)

Z0

νe

ν̄e

W+

W−

Figure 5.6: Contributions to the annihilation process νeν̄e→W+W−: (a) the t-channel
electron exchange graph, (b) a possible u-channel heavy-electron exchange graph, (c) the
s-channel neutral-current annihilation graph.

might be to create a sort of GIM-like cancellation with a new (heavy) lepton,
as shown in Fig. 5.6b, having suitably chosen ad hoc couplings. No such heavy
lepton has ever been detected though and there are stringent limits on the mass
it may have for the cancellation to still be effective. Of course, there are now also
other possible, new, but more natural contributions that might be included, such
as the neutral-current annihilation graph of Fig. 5.6c. This is evidently a different
process, however, and has no specific relationship to the first unless there is some
larger symmetry linking them.

It turns out that any such attempt to patch up the cross-section growth-rate
problem still runs foul of the requirement of renormalisability: when quantum
corrections are evaluated, this type of theory is not generally renormalisable.
Moreover, if we examine the νeν̄e→W+W− cross-section in detail, we discover
that it is precisely the “extra”, longitudinal, component of the W± bosons that is
responsible for the unbounded growth.

Now, had the gauge principle somehow been enforced, such contributions would
have been absent. Indeed, QED suffers none of these problems. That is, QED is
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renormalisable and has no longitudinal component. However, such highly desir-
able properties are a direct consequence of the masslessness of the photon; local
gauge symmetry is broken by any explicit mass term. We recall briefly that gauge
symmetry requires that the Lagrangian (and all physical quantities) be invariant
under the following (local gauge) transformation:

Aµ(x) → A′µ(x) = Aµ(x) + ∂µΛ(x) (5.1.18)
and

ψ(x) → ψ′(x) = e− ieΛ(x) ψ(x), (5.1.19)

where Λ(x) is any scalar function of x; Aµ(x) is the gauge field (for instance, the
photon) while ψ(x) is a spinor field representing, say, the electron.

The field equations governing the motion and interaction of such fields are
derived from the following Lagrangian:

L = ψ
(
iγµDµ −m

)
ψ − 1

4
F µνFµν , (5.1.20)

where the covariant derivative is

Dµ := ∂µ + ieAµ(x) (5.1.21)

and the field-strength tensor F µν is

F µν := ∂µAν − ∂νAµ. (5.1.22)

It is straightforward to verify explicitly that the purely gauge term in the above
Lagrangian leads to Maxwell’s equations for the photon field. The term −eAµψγµψ
leads to the standard fermion–photon interaction. A mass term for the gauge field
would take the form −1

2
m2AµAµ, which would plainly violate gauge invariance.

We thus see that, to render the propagation of the vector fields W± massive, some
other way of providing a mass must be found, via an interaction, for example

5.2 Spontaneous symmetry breaking:

the Higgs mechanism

In this section we shall briefly describe the mechanism by which it is possible to
retain gauge symmetry (with all the consequent benefits) while allowing the gauge
bosons to acquire significant effective masses. The concept of a broken symmetry,
with the consequent generation of massless states was first discussed by Goldstone
(1961). That a spontaneously broken symmetry (i.e. a symmetry of the Lag-
rangian broken by the vacuum) could circumvent the Goldstone theorem and thus
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avoid the existence of massless states was proposed by Anderson (1963)∗ within
the context of superconductivity and successively adapted to particle theory by
Nambu and Jona-Lasinio (1961)—see footnote on p. 29. Spontaneous symmetry
breaking in a gauge theory and the resulting mass generation, known as the Higgs
(or Higgs–Kibble) mechanism, was first applied to quantum field theory by Higgs
(1964), Englert and Brout (1964) and Guralnik et al. (1964).† Quigg (2007) has
published an interesting review article on the general problem of mass generation.

5.2.1 A real scalar field

The simplest case is a purely scalar theory with a mass term of the “wrong sign”‡

and a ϕ4 self-interaction (which guarantees stability):

L = 1
2
(∂µϕ)(∂µϕ) +

1
2
m2ϕ2 − 1

4!
λϕ4. (5.2.1)

The corresponding potential

V (ϕ) = −1
2
m2ϕ2 + 1

4!
λϕ4 (5.2.2)

has the form shown in Fig. 5.7, which is evidently symmetric under the discrete
transformation ϕ→−ϕ. However, the point ϕ=0 is no longer the minimum while

ϕ

V (ϕ)

Figure 5.7: The form of the potential for a single, real, scalar field in the case of a mass
term with negative sign.

∗ The 1977 Nobel Prize in Physics was awarded jointly to Philip Warren Anderson, Sir Nevill
Francis Mott and John Hasbrouck van Vleck “for their fundamental theoretical investigations
of the electronic structure of magnetic and disordered systems.”

† The 2013 Nobel Prize in Physics was awarded jointly to François Englert and Peter W. Higgs
“for the theoretical discovery of a mechanism that contributes to our understanding of the origin
of mass of subatomic particles, and which recently was confirmed through the discovery of the
predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron
Collider”

‡ Note that it is the term that has the “wrong” sign and not the mass itself.
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there are now two equivalent minima at ϕ=±
√
6m2/λ. The vacuum or ground

state of the system may be one or other, but not both at the same time, and will
therefore break the original symmetry.

Since perturbation theory is to be performed around the minimum, we should
shift to ϕ′ :=ϕ−υ, where for the purposes of example and without loss of generality
we shall take υ=+(6m2/λ)

1/2 . The Lagrangian then takes the form

L = 1
2
(∂µϕ′)(∂µϕ

′)−m2ϕ′ 2 − 1
3!
λϕ′ 3 − 1

4!
λϕ′ 4, (5.2.3)

where an irrelevant constant term has been eliminated. Thus, the true physical
state of the theory has a mass

√
2m and a cubic self-interaction has appeared.

5.2.2 A two-component scalar field

The case of a continuous symmetry is rather more interesting. Consider now a
complex scalar field ϕ with the following Lagrangian

L = (∂µϕ∗)(∂µϕ) +m2ϕ∗ϕ− 1
2
λ(ϕ∗ϕ)2. (5.2.4)

The corresponding potential

V (ϕ, ϕ∗) = −m2ϕ∗ϕ+ 1
2
λ(ϕ∗ϕ)2 (5.2.5)

has the so-called Mexican-hat form shown in Fig. 5.8 and is symmetric under the
(global gauge) transformation ϕ→ e iφϕ. The possible vacuum states now belong to

Reϕ
Imϕ

V (ϕ,ϕ∗)

Figure 5.8: The so-called Mexican-hat form of the potential in the case of a complex
scalar field with a negative mass-squared term; it possesses a cylindrical symmetry about
the vertical axis.

a continuum, corresponding to the variable φ∈ [0,π] in the above transformation.

Let us choose, without loss of generality, the ground state as ϕ=υ=(m2/λ)
1/2 and

again make the shift to ϕ′ :=ϕ−υ, with υ real. It is now convenient to re-express
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the fields in terms of two real fields ϕ1,2:

ϕ′ = 1√
2
(ϕ1 + iϕ2). (5.2.6)

The Lagrangian then takes the form

L = 1
2
(∂µϕ1)(∂µϕ1) +

1
2
(∂µϕ2)(∂µϕ2)−m2ϕ2

1

− λυϕ1(ϕ
2
1 + ϕ2

2)− 1
4
λ(ϕ2

1 + ϕ2
2)

2. (5.2.7)

In this case we see that, together with interaction terms of various degrees, there is
just a single non-zero mass; that is, one state is left massless. It is easy to see why:
the original continuous symmetry implies that there is always a direction (that of
the symmetry) in which the derivative of the field is zero. This is the essence of
the Goldstone theorem: for each broken continuous symmetry there is a massless
field, known as the Goldstone boson. We should stress here that the theorem only
applies to continuous symmetries and is thus only relevant to multidimensional
symmetry subspaces.

5.2.3 The Higgs–Kibble mechanism

We now examine the case of spontaneous symmetry breaking in the presence of
a local gauge symmetry. We shall find that this provides an exception to the
Goldstone theorem, in that the massless bosons do not appear as true individual
states of the theory, but are absorbed (or eaten) by the gauge bosons to provide
the third components for the gauge fields, which in turn become massive. The
important point to realise though is that the underlying gauge symmetry survives;
the theory thus remains renormalisable and satisfies unitarity in the usual way.

Consider the simplest example of a single charged scalar field, minimally coupled
to a gauge field. The Lagrangian then takes on the standard form

L = (Dµϕ∗)(Dµϕ) + µ2ϕ∗ϕ− λ(ϕ∗ϕ)2 − 1
4
F µνFµν , (5.2.8)

where the covariant derivative Dµ is defined as

Dµϕ(x) :=
(
∂µ − ieAµ(x)

)
ϕ(x) (5.2.9a)

and
Dµϕ∗(x) :=

(
∂µ + ieAµ(x)

)
ϕ∗(x). (5.2.9b)

It is convenient to reparametrise the field ϕ exponentially in terms of two real
fields η and ξ (the “radial” and “angular” components respectively):

ϕ(x) = 1√
2

(
υ + η(x)

)
exp
(
iξ(x)/υ

)
, (5.2.10)
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with

υ =

√
µ2/λ. (5.2.11)

In the absence of the gauge field and the resultant coupling, the field ξ would
be the massless Goldstone boson associated with the spontaneous breaking of a
global U(1) symmetry. However, the presence of a gauge symmetry and corres-
ponding fields induces mixing of the ξ and Aµ fields. To see this, let us rewrite
the Lagrangian in terms of ξ and η:

L(ξ, η, Aµ) = −1
4
F µνFµν +

1
2
∂µξ∂µξ +

1
2
∂µη ∂µη

+ 1
2
e2υ2AµAµ − eυAµ∂µξ − µ2η2

+ terms higher than quadratic order. (5.2.12)

The higher-order terms describe various interactions and are of interest for the full
phenomenology, but here we are only interested in the question of mass. At first
sight, we appear to have the fields of the previous example: η a boson of mass

√
2µ

and ξ a massless Goldstone boson, together now with a massive gauge field (since
a term in AµAµ has been generated). However, the presence of the term in Aµ∂

µξ
complicates matters: it directly mixes the ξ and Aµ fields, which cannot then be
the true asymptotic or physical states of the theory, and we must therefore be a
little more careful.

We may exploit the gauge invariance of the Lagrangian to apply the following
gauge transformation, which effectively diagonalises the mass terms:

ϕ → ϕ′ = exp[− iξ(x)/υ]ϕ = 1√
2
(υ + η) (5.2.13a)

and

Aµ → A′
µ = Aµ −

1

eυ
∂µξ. (5.2.13b)

With this, the Lagrangian becomes

L(ξ, η, Aµ) = −1
4
F ′µνF ′

µν +
1
2
e2υ2A′µA′

µ +
1
2
∂µη ∂µη − µ2η2

+ 1
2
e2A′µA′

µη(2υ + η)− λυη3 − 1
4
λη4. (5.2.14)

The gauge field has thus acquired an effective mass eυ and the scalar field η has a
mass m=

√
2µ while the field ξ has simply disappeared from the theory.

The physical interpretation should be rather obvious: a massive vector field
necessarily has three degrees of freedom whereas the original massless gauge field
only had two; the third is provided by the would-be Goldstone boson ξ, which, we
say figuratively, has thus been ‘eaten’ by the gauge field.

As a by-product, the presence of a scalar field with non-vanishing vacuum
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expectation value allows the generation of effective mass terms for the matter
fields, which may then be initially defined as massless too. It is simply necessary
to add a Yukawa-type coupling to each fermion for which a mass is desired:

Lint = −g ϕψψ. (5.2.15)

Shifting the scalar field and rewriting it as above, we obtain

Lint = −g(υ + ϕ′)ψψ. (5.2.16)

The first term in brackets is evidently none other than a mass term for the field ψ
and we have thus have

mψ = g υ. (5.2.17)

Since the coupling g is arbitrary, the mass is not determined. However, given the
measured mass, the relation may be inverted to provide g in terms of the Higgs
vacuum expectation value. Indeed, this relation tells us that the heavier fermions
will have the strongest couplings.

5.2.4 The Glashow–Salam–Weinberg model

To describe the weak interaction correctly it is found necessary to include the
theory of electromagnetism at the same time—although, of course, the photon
remains rigorously massless. That is, we are led to the construction of a (quasi)
unified model of the electromagnetic and weak interactions, or electroweak theory
(Glashow, 1961; Salam, 1968; Weinberg, 1967).∗

We start then with a weak-isospin triplet of massless spin-one bosons W (1)
µ ,

W (2)
µ and W (3)

µ , where now the associated SU(2) symmetry is taken to be a local
gauge symmetry, thus guaranteeing unitarity and renormalisability but requiring
masslessness. In addition, we include a single (isoscalar) neutral gauge boson B0

µ.
It turns out that this is not to be associated directly with the photon and electric
charge, but with the weak hypercharge. The W triplet may be more suggestively
rewritten as

W±
µ = W (1)

µ ± iW (2)
µ (5.2.18a)

and
W 0
µ = W (3)

µ . (5.2.18b)

∗ The 1979 Nobel Prize for Physics was awarded equally to Sheldon Glashow, Abdus Salam and
Steven Weinberg for “their contributions to the theory of the unified weak and electromagnetic
interaction between elementary particles, including, inter alia, the prediction of the weak neutral
current.”
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The scalar system necessary for spontaneous symmetry breaking here consists of
two doublets, which we may express as (cf. the K±, K0, K0 system)

(
ϕ1 ± iϕ2

ϕ3 ± iϕ4

)
or

(
ϕ+

ϕ0

)
and

(
ϕ0

ϕ−

)
. (5.2.19)

The construction of the standard interaction part of the Lagrangian, via gen-
eralisation of the electromagnetic case, then leads to the following two terms:

Lint = gJµ
W·W µ + g′JµYBµ + Hermitian conjugate, (5.2.20)

to which we must add terms coupling the scalar and gauge fields. The two currents
introduced here are J

µ
W (weak) and JµY (hypercharge). The SU(2) symmetry of

the Higgs potential is spontaneously broken in such a way that the two charged
W± acquire a mass just as described in the preceding section while the case of
the two neutral vector bosons is a little more complicated. The neutral fields that
finally emerge as the physical degrees of freedom of the theory are the mutually
orthogonal combinations

Aµ =
g′W 0

µ + gBµ√
g2 + g′ 2

(the photon) (5.2.21a)

and

Zµ =
gW 0

µ − g′Bµ√
g2 + g′ 2

(the weak neutral boson). (5.2.21b)

The two independent coupling constants g and g′ thus play the role of a mixing
angle here and it is therefore more convenient to introduce

sin θW :=
g′√

g2 + g′ 2
and cos θW :=

g√
g2 + g′ 2

. (5.2.22)

In other words,

tan θW :=
g′

g
. (5.2.23)

As to the scalar fields, the two charged scalars ϕ± are absorbed into the W±
µ

respectively to provide the longitudinal components, as before, while the combin-
ation 1√

2
(ϕ0−ϕ0) is absorbed by the combination of W 0

µ and Bµ corresponding to
Zµ. This all leaves just one physical, massive, scalar field:

H0 := 1√
2
(ϕ0 + ϕ0), (5.2.24)
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which is precisely the object known as the Higgs boson.
Using the fact that hypercharge Y =Q−I3 (a factor 2 has been introduced to

avoid spurious factors of 1/2), so that

JµY = JµEM − J
µ
(3), (5.2.25)

we may now rewrite the above in terms of the asymptotic or physical fields. The
original interaction Lagrangian

Lint = g
[
Jµ(1)W

(1)
µ + Jµ(2)W

(2)
µ

]
+ Jµ(3)

[
gW (3)

µ − g′Bµ

]
+ g′JµEMBµ

+ Hermitian conjugate

then becomes

=
g√
2

[
Jµ−W

+
µ + Jµ+W

−
µ

]
+

g

cos θW

[
Jµ(3) − sin2 θWJ

µ
EM

]
Zµ + g sin θW JµEMAµ

+ Hermitian conjugate. (5.2.26)

The first bracketed term represents the charged-current interaction, the second
the weak neutral current, which we see mixes the parity-conserving and max-
imally parity-violating couplings (we shall expand on this later), while the third
is identified with the standard electromagnetic interaction and thus immediately
leads to the relation

e = g sin θW. (5.2.27)

Leaving aside the fermion mass parameters, we see that the theory is determ-
ined by a very small number of physical constants. For example, if we take GF

and the electromagnetic coupling constant α as known, then we can predict both
of the heavy-boson masses in terms of the same mixing parameter sinθW:

MW =

(√
2g2

8GF

)1/2

=

( √
2e2

8GF sin
2 θW

)1/2

=
37.4

sin θW
GeV (5.2.28)

and

MZ =
MW

cos θW
=

74.8

sin 2θW
GeV. (5.2.29)

As we shall see, sinθW is also determined by various other independent physical
quantities; the present world average value is (see PDG-2012 – Beringer et al.,
2012)

sin2 θW ≃ 0.231, (5.2.30)
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although care must be taken in comparison with, e.g., the boson masses, as there
are important quantum corrections to be taken into account, which are different
for the various physical quantities.

Unfortunately, one important physical quantity is left entirely undetermined:
the Higgs-boson mass mH. This is because the vacuum expectation value of the
Higgs field is undetermined. However, the decay width of the Higgs boson is only
a function of its mass and may thus be calculated; one finds ΓH∼GFm

3
H. Since to

have any chance of “seeing” the Higgs particle (i.e. as a Breit–Wigner resonance
peak) its width should be less than its mass, this means that the mass should
therefore be less than about 1/

√
GF. A more accurate analysis in terms of partial-

wave unitarity in WW scattering places an upper limit of about 1TeV. Moreover,
since the quantum corrections to various physical quantities and processes con-
tain contributions depending on the mass, global fits to SM data can actually
provide a window of acceptable masses, which at the 90%CL was (see PDG-2012
– Beringer et al., 2012)

mH = 99+28
−23 GeV. (5.2.31)

Despite the high-precision data available, the limits are not very stringent owing
to the weak (logarithmic) dependence. In Fig. 5.9 the constraints on the Higgs-

Figure 5.9: The one-standard deviation boundaries for the Higgs-boson mass mH as a
function of the top mass mt from various sources. The ellipse marks the 90%CL allowed
region combining all the data. The figure is taken from PDG-2012 (Beringer et al., 2012).

boson mass mH as a function of the top mass mt are displayed as 90%CL allowed
regions. The central ellipse marks the 90%CL allowed region combining all data.



148 CHAPTER 5. THE STANDARD MODEL AND BEYOND

EW couplings of the fermions

The charged W± bosons maximally violate P inasmuch as they only interact with
left-handed fermions. The extra W (3) necessarily also behaves in the same manner
as it belongs to the same multiplet. On the other hand, the photon has equal left-
and right-handed couplings and therefore the Z0, being a mixture of the two, only
partially violates P in its interactions with the charged fermions (both quarks and
leptons), though still maximally with neutrinos.

The leptonic sector may be characterised as follows (ℓ= e, µ, τ):

ψL =

(
νℓ
ℓ

)

L

I = 1
2

I3 =

{
+1

2

−1
2

Q =

{
0

−1
Y = −1

2
, (5.2.32a)

ψR = ℓR I = 0 I3 = 0 Q = −1 Y = −1. (5.2.32b)

Recall that here we use the definition Y =Q−I3. Now, the Z0 couples to the cur-
rent Jµ(3)−sin2θWJ

µ
EM and we can therefore define left- and right-handed coupling

constants:
gL = I3 −Q sin2 θW and gR = −Q sin2 θW, (5.2.33)

where Q is the fermion charge in units of |e|. We may also define the vector and
axial-vector couplings cV and cA, gL/R=

1
2
(cV±cA); they are shown in Table 5.2 as

functions of sinθW for the different fermion species. Note that, since sin2θW∼ 1/4,

Table 5.2: The Z0 vector and axial-vector couplings cV and cA, gL/R= 1
2(cV±cA) as

functions of sinθW for the various fermion species; ℓ are the charged leptons while U and
D are up- and down-type quarks.

cV cA gL gR

νℓ
1
2

1
2

1
2

0

ℓ −1
2
+2sin2θW −1

2
−1

2
+sin2θW sin2θW

U 1
2
− 4

3
sin2θW

1
2

1
2
− 2

3
sin2θW −2

3
sin2θW

D −1
2
+ 2

3
sin2θW −1

2
−1

2
+ 1

3
sin2θW

1
3
sin2θW

the vector coupling almost vanishes for the charged leptons and the up-type quarks
and these channels (coupling to the Z0) thus have almost no parity violation while
the neutrino channel remains maximally parity violating.
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Neutrino scattering via neutral currents

We first examine the various possible neutrino scattering cross-sections in which
the charged current intervenes (see Figs. 5.3c and d): at low energies the purely
charged-current contributions are (y :=E ′

e/Eν in the laboratory frame—initial elec-
tron at rest, E ′

e= final electron energy):

dσCC(νee → νee)

dy
=

G2
Fs

π
(LL→ LL, ⇒ J = 0) (5.2.34a)

and

dσCC(ν̄ee → ν̄ee)

dy
=

G2
Fs

π
(1− y)2 (RL→ RL, ⇒ J = 1). (5.2.34b)

Exercise 5.2. Neglecting the electron mass, show that y= 1
2
(1+cosθe), where θe

is the centre–of–mass electron scattering angle with respect to the neutrino beam
direction. Thus, show that the J =1 cross-section above behaves as (1−cosθe)

2.

Recall that for an intermediate vector particle one normally expects an angular
dependence of the form 1+cos2θe. The difference here is that only one helicity
state of the intermediate vector boson is available, corresponding to the amplitude
1−cosθe. The other helicity would have provided an amplitude 1+cosθe and then
the combination would have given

1
2
(1− cos θe)

2 + 1
2
(1 + cos θe)

2 = 1 + cos θ2e , (5.2.35)

as expected.
These are to be compared with the corresponding neutral -current cross-sections

(see Fig. 5.10). For W± we have gL=1 and gR=0 while for Z0 exchange they are

(a)

Z0

e−

νe

e−

νe

(b)

Z0

e−

ν̄e

e−

ν̄e

Figure 5.10: The neutral-current interactions between electrons and (a) electron neut-
rinos and (b) electron anti-neutrinos.
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as listed just above. Thus, for purely neutral-current contribution, we have

dσNC(νee → νee)

dy
=

G2
Fs

π

[
g2L + g2R(1− y)2

]
, (5.2.36a)

dσNC(ν̄ee → ν̄ee)

dy
=

G2
Fs

π

[
g2R + g2L(1− y)2

]
. (5.2.36b)

Note that while the electron may be either L or R here, the νe is only L and the
ν̄e only R.

Now, for the scattering of muon neutrinos off electrons, only the neutral-current
contributions survive and so

gL = −1
2
+ sin2 θW and gR = sin2 θW. (5.2.37)

Adding the charged-current diagrams for the electron-neutrino case, we have

νe :

{
gL = −1

2
+ sin2 θW + 1 = 1

2
+ sin2 θW,

gR = sin2 θW + 0 = sin2 θW,
(5.2.38a)

ν̄e : as above with gL ↔ gR. (5.2.38b)

The value deduced from the experimental comparison of these cross-sections in
the case of muon neutrinos is sin2θW =0.2324±0.0083, in good agreement with
the measurement of the MW/MZ ratio. Note, as always, that due account must
be made for important quantum corrections.

Polarisation asymmetries

A further independent method for extracting sinθW is provided by polarisation
asymmetries measured in electron–nucleon scattering. The first such experiments
were performed at SLAC in 1978 using a polarised electron beam of 16−18GeV,
provided by the linear accelerator. The process studied was electron–deuteron
DIS, with an unpolarised deuteron:

e−L,R + d → e− +X. (5.2.39)

Together with the dominant QED photon-exchange diagram, there is also a weak
neutral-current contribution coming from Z0 exchange. Interference between the
two allows a measurable parity-violating asymmetry

A :=
σR − σL
σR + σL

. (5.2.40)
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The two contributing amplitudes are

MEM ∼
e2

q2
and MW ∼ GF. (5.2.41)

In the denominator of the asymmetry the electromagnetic contribution dominates
while in the numerator it cancels between σR and σL, leaving the interference term
to dominate. The resulting asymmetry may thus be estimated as

A ∼ 2GF q
2

e2
∼ 2

(
10−5/m2

p

)
q2

4π/137

∼ 10−4 q2 (for q2 in GeV2). (5.2.42)

More precisely, as a function of y=E ′
e/Ee (laboratory energies) we have

A = − 9GFq
2

20
√
2πα

[
c1 + c2

1− (1− y)2

1 + (1− y)2
]
, (5.2.43)

where
c1 = 1− 20

9
sin2 θW and c1 = 1− 4 sin2 θW. (5.2.44)

The value obtained was sin2θW =0.22±0.02, again, in good agreement with other
determinations.

The Higgs boson

The final prediction of the Glashow–Salam–Weinberg model that we shall examine
is the existence of the Higgs boson. The Higgs mechanism, as applied to the con-
struction of the Glashow–Salam–Weinberg electroweak model, unavoidably leads
to a neutral, massive, scalar boson H0. The model also determines very precisely
the form of the Higgs-particle interactions with the other fields in the theory, gen-
erating a number of trilinear and quadrilinear couplings, such as those in Fig. 5.11.
It therefore couples to all other fields in the theory and to itself—it will even couple

H0

Z0

Z0

H0

W+

W−

H0

H0

H0

H0

f̄

f

Figure 5.11: Examples of the Higgs trilinear couplings to gauge and matter fields in
the standard electroweak model, f stands for any massive fermion.
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(albeit very weakly) to any massive neutrino. At the time of writing it is the one
still undetected particle in the SM and a major quest is thus to demonstrate its
existence. This may be approached in two mutually independent ways:

• its direct production and detection through the final decay-product system
configuration for specific decay channels,
• its indirect contribution in quantum corrections to the various accurately

measured electroweak processes and parameters via combined fits.

The direct non-detection of the process e+e−→Z0H0 at LEP places a lower
limit (see PDG-2012 – Beringer et al., 2012) on the mass:

mH > 114.4 GeV (95 % CL). (5.2.45)

On the other hand, indirect evidence from consideration of electroweak quantum
corrections actually places both upper and lower limits:

54 GeV < mH < 219 GeV (95 % CL), (5.2.46)

with a central value of around 100GeV, which is thus already effectively excluded
by direct searches.

Direct searches at LEP were performed by checking the following two possible
production processes:

e+e− → Z0 → H0 + ℓ+ + ℓ−,

→ H0 + νℓ + ν̄ℓ,
(5.2.47)

where ℓ= e, µ or τ , as shown in Fig. 5.12. We may calculate the branching ratio

Z0
Z0

H0

e−

e+

ℓ−, νℓ

ℓ+, ν̄ℓ

Figure 5.12: The simplest and most sensitive process for Higgs-particle production and
detection at LEP (ℓ= e, µ or τ).
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for such a channel in Z0 decay:

10−4 >∼
Γ(Z0 → H0ℓ+ℓ−)

ΓZ
0

tot

>∼ 3× 10−6 for 10 GeV <∼ mH
<∼ 50 GeV

(5.2.48)
and Bν≃2Bℓ. The LEP I data thus led to a lower limit of about 60GeV. LEP II
raised the centre–of–mass energy to 200GeV and was therefore able to search for
the direct channel e+e−→Z0→Z0H0. In this way a lower limit of about 114GeV
was obtained.

The LHC is, however, a proton–proton machine and the colliding quarks will
evidently not have all of the laboratory 14TeV available. Nevertheless, it should be
possible to produce the Higgs particle directly (pp→H0+X) via, for example, the
process depicted in Fig. 5.13. This is a good channel for the LHC, in which both

d

u

u

W−

H0

d

W+

Figure 5.13: Production of the Higgs boson in proton–proton collisions via the so-called
W+W− fusion process.

beams are protons, as both the u and d are then valence quarks. Naturally, the
Higgs boson must be detected through its decay products. If, as appears evermore
likely, mH≥2mZ

0 then the two following decay channels become possible:

H0 → Z0 + Z0 and W+ +W−. (5.2.49)

The two weak bosons must be detected via their decay products; in the case
of W+W− two of the final-state particles will be neutrinos, which will escape
detection. The simplest and cleanest signal for Higgs production (in this mass
range) thus involves a final state of four charged leptons:

p+ p → H0 +X
|→ Z0 + Z0 → ℓ+ + ℓ− + ℓ+ + ℓ−. (5.2.50)

The gold-plated channel is the four-muon final state. Such a process allows for
Higgs searches in the range 200GeV<∼ mH

<∼ 500GeV. Of course, the mass may be
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measured by reconstructing the invariant mass of the four final-state muons, for
which we expect to see a classic BW distribution. The branching ratio here is

Γ(H0 → 4ℓ)

Γ(H0 → 2Z0)
≃ 4 %. (5.2.51)

Note that for mH very large, the width becomes comparable to the mass and the
BW resonance shape is lost with the signal merging invisibly into the standard
continuum background.

Should the Higgs be lighter than the threshold for double weak-boson pro-
duction, the search becomes, perhaps surprisingly, rather more difficult. This is
because we shall need to extract the signal from processes with hadronic final
states, for example H0→ bb̄. In this case the b quarks will give rise to a pair
of jets and such signals risk being swamped by a dominating standard QCD jet-
production background. A possible alternative in this case is the rare but very
distinctive H0→γγ channel depicted in Fig. 5.14. In the SM the branching ratio
for this decay is about 10−3 and it is dominated by the two processes shown in
Fig. 5.14. The two diagrams represent virtual-particle loops, in which the only

γ
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W±

W±

W±

γ

+

γ

H0

f

f

f

γ

Figure 5.14: The probably dominant contributions to Higgs-boson decay into a photon
pair; f may be any charged fermion (since it must couple to the photon).

requirement is a charge for the circulating field. Thus, both quarks and leptons
may contribute, together with the charged weak bosons W±.

Early in 2012 both ATLAS (Aad et al., 2012a,b) and CMS (Chatrchyan et al.,
2012a,b) published papers on the search for the Higgs boson at the LHC. The
results indicate an excess of events (with respect to background) in the region of
mH≃125GeV2, at a combined level of 4.3σ. At around the same time the two
Tevatron experiments CDF and D0 (Aaltonen et al., 2012) also announced results
in agreement with the CERN data although statistically less significant.

5.2.5 The CKM matrix

Perhaps one of the richest areas to emerge in hadronic physics in the 90’s is that
of the CKM matrix. Recall that this matrix describes the unitary transforma-
tion between the asymptotic quark basis states and those of the weak interaction.
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Since we have, as yet, no accepted grand unified theory (GUT), the CKM matrix
parametrises our ignorance of any possible link between the electroweak theory
and the physics of the strong interaction (or QCD). As such, it is presently seen
by many as an important window onto possible physics beyond the SM. First of
all, it is the best candidate we have for the origin of CP violation, which should
then be described by just a single imaginary phase appearing in various matrix
elements. Secondly, and perhaps more importantly at this point, the property (or
requirement) of unitarity can be tested experimentally.

One should note that the existence of a non-trivial (i.e. non-diagonal) mixing
matrix also requires that the all various quarks have different masses (at least
separately within the two classes of up and down types). While this is already
experimentally verified, it also indicates that any measured CP -violating effects
will be proportional to the mass(-squared) differences.

Before proceeding let us briefly examine the present status of the experimental
determination of the CKM matrix. We should first define its elements:

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (5.2.52)

As we have shown, in its most general form, this matrix may be parametrised by
three Euler angles and just one imaginary phase. The standard choice of repres-
entation is the following (Chau et al., 1984):

VCKM =




c12c13 s12c13 s13 e
− iδCP

−s12c23 − c12s23s13 e iδCP c12c23 − s12s23s13 e iδCP s23c13

s12s23 − c12c23s13 e iδCP −c12s23 − s12c23s13 e iδCP c23c13


 ,

(5.2.53)
where sij=sinθij and cij=cosθij , while δCP is the single allowed phase, which may
then be responsible for CP violation. Note also that, by suitable global rotation
of both quark bases, all the angles may be taken to lie in the range [0,π/2] so that
all sines and cosines are non-negative.

If we now restrict consideration to the first two families (i.e. the first two rows
and columns), then we just have the Cabibbo matrix, with θ12 being the Cabibbo
mixing angle (we should set θ13=0= θ23 and thus the phase terms disappear).
Experimentally, we have already noted that this angle is small; that is, the diagonal
elements are near to unity and are much larger than those off-diagonal. Extending
the discussion to the 3×3 case, this hierarchy continues and one finds that the
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elements furthest from the diagonal are smallest; in other words,

sin θ12 ≫ sin θ23 ≫ sin θ13. (5.2.54)

Indeed, if we measure the scale of smallness of the near off-diagonal terms via a
parameter λ, then those further off-diagonal are order λ3. This observation leads
to an alternative parametrisation due to Wolfenstein (1983):

VCKM =




1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 +O(λ4). (5.2.55)

The parameter λ is then essentially sinθC. The current best fits to the world
experimental data for the moduli of the elements (see PDG-2012 – Beringer et al.,
2012) give

VCKM =



0.97425± 0.00022 0.2252± 0.0009 0.00415± 0.00049

0.230 ± 0.011 1.006 ± 0.023 0.0409 ± 0.0011

0.0084 ± 0.0006 0.0429± 0.0026 0.89 ± 0.07


 . (5.2.56)

There is clearly too little information as yet to provide a precise value for the last
element; by imposing unitarity one finds that the magnitude is constrained to be

Vtb = 0.999146+0.000034
−0.000004 (5.2.57)

and is thus likely to be very near to unity.

The unitarity triangles

Let us begin with the question of unitarity; the equation is simple:

V †
CKMVCKM = 1. (5.2.58)

Since in the SM this is a 3×3 matrix equation, it actually represents nine equations
or constraints. The three “diagonal” equations each have a left-hand side involving
the square of one large component, which dominates the sum and the comparison
with the large right-hand side. They are therefore rather difficult to test exper-
imentally. In contrast, the six “off-diagonal” equations dilute the dominance of
the large diagonal components and are therefore less critical. It can thus even be
hoped, for example, that possible physics beyond the SM might be made manifest
via the non-vanishing of these sums of products.
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Now, the off-diagonal equations (all containing just three terms) may be ex-
pressed as triangles in the complex plane. The most commonly used triangle (being
the most sensitive to CP -violation) is generated by the “d–b” product:

Vud V
∗
ub + Vcd V

∗
cb + Vtd V

∗
tb = 0. (5.2.59)

First of all, we take the best determined term VcbV
∗
cd as a reference length and use

it to rescale all three terms thus:

Vud V
∗
ub

Vcd V
∗
cb

+ 1 +
Vtd V

∗
tb

Vcd V
∗
cb

= 0. (5.2.60)

We may then choose to place the middle term (now unity) along the positive
real axis, running from the origin to the point (1,0). Considering the other two
as complex numbers, the sum above then represents a triangle in the complex
plane. We thus arrive at the geometric representation shown in Fig. 5.15. The

Figure 5.15: A schematic representation of the CKM-matrix unitarity triangle.

new variables ρ̄ and η̄ are equivalent to ρ and η up to corrections of order λ2, which
are thus order λ4 corrections to the matrix elements themselves. The angles of the
triangle are just the phases of the various ratios of elements:

φ1 = β = arg

(
Vcd V

∗
cb

Vtd V
∗
tb

)
, (5.2.61a)

φ2 = α= arg

(
Vtd V

∗
tb

Vud V
∗
ub

)
, (5.2.61b)

φ3 = γ= arg

(
Vud V

∗
ub

Vcd V
∗
cb

)
. (5.2.61c)

First and foremost, one should experimentally verify whether the three terms
actually do form a non-trivial triangle (i.e. they do not collapse to a single line).
This would then demonstrate that the CP -violating phase is indeed non-zero.
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Secondly, one should note that the three angles are given by different combinations
of matrix elements and are therefore experimentally independent. Unitarity of the
matrix evidently requires that the sum of the angles be exactly 180◦ and that the
two upper sides end at the same point; if this were found not to hold, then we
would have a signal for physics beyond the SM. The most obvious case would be
a fourth generation of fermions.

A further observation is that the six possible triangles so formed all have the
same area. An obvious necessary condition for the CKM matrix to generate CP
violation is that the area should be non-zero. Now, it is a fairly simple exercise in
geometry to show that it is given by half the Jarlskog (1985) invariant J :

J = Im[Vij Vkl V
∗
il V

∗
kj]/

∑
mn εikmεjln. (5.2.62)

Note that this definition is entirely phase-convention independent and J is thus
indeed an invariant. In terms of the general parametrisation of the CKM matrix
given earlier, we have

J = c12 c23 c
2
13 s12 s23 s13 sin δCP . (5.2.63)

The present value (from global fits) for this parameter is (see PDG-2012 – Beringer et al.,
2012)

J = 2.96+0.20
−0.16 × 10−5. (5.2.64)

The fact that the Jarlskog invariant involves elements from all three generations
is intimately related to the observation that for less than three generations there
can be no CP violation at the level of the CKM matrix. In other words, if an
experimental (physical) quantity depends on elements involving less than three
generations then, by means of a suitable, unitary transformation of the matrix
itself, any CP -violating phase could be rotated away. Conversely, this also implies
that for an experimentally measurable quantity to be sensitive to CP violation
all three generations must contribute to the process. For example, in the case of
the K0–K0 system a three-family GIM-like mechanism would actually cause all
effects to cancel and it is the large mass of the t quark that partially deactivates
the cancellation.

Measurement of the CKM-matrix elements

Let us briefly outline how the magnitudes of at least some of the CKM-matrix
elements are determined experimentally. For up-to-date experimental values (see
PDG-2012 – Beringer et al., 2012).
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|Vud|: The most precise determinations of |Vud| are provided by the so-called
superallowed 0+→0+ nuclear beta decays. Recall that while (vector) Fermi trans-
itions involve an eνe pair in a spin-zero state, (axial-vector) Gamow–Teller trans-
itions produce a spin-one pair and cannot therefore contribute to the superallowed
decays considered, which are thus purely vector transitions. The nine most precise
determinations combine to lead to (PDG-2012 – Beringer et al., 2012)

|Vud| = 0.97425± 0.00022. (5.2.65)

The error is dominated by theoretical uncertainties in the nuclear corrections.
The neutron lifetime measurement also affords a precise determination of |Vud|.

The theoretical uncertainties are very small here too but the extraction of the
CKM element requires precise knowledge of the ratio between the axial-vector
and vector couplings (gA/gV ), which is measured to comparable precision via the
decay angular distributions. Finally, the theoretically very clean charged-pion
decay π+→π0e+ν may also be used; however, present experimental precision is
not yet competitive.

|Vus|: The magnitude of Vus is typically extracted either from semileptonic kaon
decays or from the strangeness-changing semileptonic hyperon decays. Consider-
able experimental effort has been made in recent years with regard to the former.
High-statistics measurement of B(K+→π0e+ν) and a number of measurements
of neutral-kaon branching ratios, form factors, and lifetime have been performed.
Form-factor input is also required: the theoretical value f+(0)=0.961±0.008 is
generally adopted. The kaon semileptonic decay rates then lead to

|Vus| = 0.2252± 0.0009. (5.2.66)

However, it must be said that the theoretical calculations of f+(0) differ by as
much as 2%, with quoted uncertainties around 1%.

The determination from hyperon decays has long lacked comparable theoret-
ical understanding although in recent years it has received new input from both
experiment and theory. In analogy with the strangeness-conserving decays, the
vector form factor is protected against first-order SU(3)-breaking effects by the
Ademollo–Gatto theorem (Ademollo and Gatto, 1964). Therefore, one may again
use the ratio between the axial-vector and vector form factors (often denoted in
this context as g1/f1) as experimental input, thereby circumventing the problem
of accounting for SU(3)-breaking effects in the axial-vector contribution. The best
present extraction is

|Vus| = 0.2250± 0.0027, (5.2.67)

which does not though include estimates of the theoretical uncertainty due to
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second-order SU(3) breaking.
Other determinations of |Vus| are provided by leptonic kaon decays and also

τ decays. Lattice-QCD calculation of the ratio between the kaon and pion decay
constants allows extraction of |Vus/Vud| from K→µν and π→µν. The KLOE
measurement of the K+→µν branching ratio, combined with the theoretical

fK/fπ = 1.198± 0.003+0.016
−0.005, (5.2.68)

leads to
|Vus| = 0.2245+0.0012

−0.0031, (5.2.69)

where the accuracy is limited by the lack of knowledge of the ratio of the decay
constants.

|Vcd|: The most precise determination is based on neutrino and antineutrino in-
teractions. The difference in the ratio of double- to single-muon production by
neutrino and antineutrino beams is proportional to the charm production cross-
section off valence d-quarks, and therefore to |Vcd|2 times the average semileptonic
branching ratio of charm mesons, Bµ (see Fig. 5.16 for the quark-model inter-
pretation). In the muon-neutrino case, the most probable process involves the

(a)

W+

d,s

νµ

u,c

µ−

(b)

W−

d̄, s̄

ν̄µ

ū, c̄

µ+

Figure 5.16: The neutrino and antineutrino interactions with a nucleon leading to the
production of double-muon to single-muon events.

transitions d→u since it is both Cabibbo favoured (i.e. proportional to |Vud|) and
proportional to the relatively large valence d-quark density—this leads to a single
muon in the final state. However, there is also the Cabibbo-suppressed transition
(i.e. proportional to |Vcd|) d→ c; the final charm decay then leads to a second
muon. The d-quark density cancels in the ratio. There is, of course, some back-
ground due to the presence of s quarks in the proton, but these are sea quarks and
therefore much less probable.

This method was used by CDHS, followed by CCFR and CHARM II. The PDG
average of their results is

Bµ|Vcd|2 = (0.463± 0.034)× 10−2. (5.2.70)
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Moreover, data from the CHORUS experiment are now sufficiently precise to ex-
tract Bµ directly and combining their results with those of the other experiments
leads to Bµ=0.0873±0.0052, finally giving

|Vcd| = 0.230± 0.011. (5.2.71)

The magnitude of Vcd may be also extracted from semileptonic charm decays
using theoretical input from form-factor calculations: e.g. lattice-QCD calculations
for D→Kℓν and D→πℓν. Using these estimates and the isospin-averaged charm
semileptonic width measured by CLEO-c, one obtains a compatible but less precise
|Vcd|=0.213±0.008±0.021.

|Vcs|: An analogous determination of |Vcs| from neutrino and antineutrino scat-
tering is much less precise than in the previous case since it requires knowledge
of the s-quark density, which is relatively small and not well measured. Other
approaches must therefore be adopted.

The direct determination of |Vcs| is possible from semileptonic D or leptonic Ds

decays, but again theoretical input from hadronic matrix-element calculations is
required. The use of D+

s → ℓ+ν requires lattice-QCD calculation of the decay con-
stant fDs

while for semileptonic D decays form factors are required, which depend
on the invariant mass of the lepton pair. Lattice-QCD calculations can predict the
normalisation and the shape of the form factor in D→Kℓν and D→πℓν. These
theoretical results and the isospin-averaged semileptonic widths provide

|Vcs| = 1.006± 0.023. (5.2.72)

Real W± decays are also sensitive to |Vcs| and such measurements were made
at LEP-II. The W± branching ratios depend on all six CKM matrix elements
involving quarks lighter than MW . For each lepton flavour we have

1

B(W→ℓν̄ℓ)
= 3

[
1 +

(
1 +

αs(mW )

π

) ∑

u,c,d,s,b

|Vij |2
]
. (5.2.73)

Assuming lepton universality, the result

B(W → ℓν̄ℓ) = (10.83± 0.07± 0.07) % (5.2.74)

then implies ∑

u,c,d;s,b

|Vij|2 = 2.002± 0.027, (5.2.75)

which is a precise test of unitarity. However, |Vcs| can only be extracted from
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flavour-tagged measurements. The LEP experiment DELPHI measured tagged
W+→ cs̄ decays and obtained

|Vcs| = 0.94+0.32
−0.26 ± 0.13. (5.2.76)

|Vcb|: Naturally, this matrix element can be extracted from semileptonic decays
of B mesons to charm states. Inclusive determinations use the semileptonic decay-
rate measurement combined with the leptonic-energy and the hadronic invariant-
mass spectra. The basis of the calculation is the so-called heavy-quark expansion,
via which the total rate and moments of differential energy and invariant-mass
spectra are expressed as expansions in inverse powers of the heavy-quark masses.
Since the dependence on mb, mc and other parameters occurring at subleading
order is different for different moments, the large number of measured moments
overconstrains the parameters and tests the consistency of the approach. Inclusive
measurements have been performed using B mesons from Z0 decays at LEP and
in e+e− machines operated at the Υ(4S) energy. At LEP the large boost of B
mesons from Z0 decays allows determination of the moments throughout phase
space, which is not otherwise possible, but the large statistics of the so-called B-
factories leads to more precise determinations. An average of the measurements
leads to

|Vcb| = (40.9± 1.1)× 10−3. (5.2.77)

Exclusive determinations are based on semileptonic B decays into D and D∗.
In the limit mb,c≫ΛQCD all form factors are provided by a single so-called Isgur–
Wise function, which is a function of the scalar product of the four-velocities,
w= v·v′, of the initial- and final-state hadrons. Heavy-quark symmetry determ-
ines the normalisation of the rate at w=1, the maximum momentum transfer to
the leptons, and |Vcb| is obtained from an extrapolation to w=1. The exclusive
determination,

|Vcb| = (40.9± 1.8)× 10−3, (5.2.78)

is less precise than the inclusive method since the uncertainties, both theoretical
in the form factor and experimental in the rate near w=1, are around 3%. The
PDG quotes the following average:

|Vcb| = (41.6± 0.6)× 10−3. (5.2.79)

|Vub|: The natural determination of |Vub| from inclusive B→Xuℓν̄ decays (where
Xu represents a meson containing a u-quark) suffers large B→Xcℓν̄ backgrounds.
In most phase-space regions where the charm background may be excluded for
kinematic reasons there are unknown non-perturbative contributions: the so-called
shape functions. In contrast, the non-perturbative physics for |Vcb| is encoded in
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a few parameters. At leading order in ΛQCD/mb there is only one shape function,
which may be extracted from the photon energy spectrum in B→Xsγ and applied
to several spectra in B→Xuℓν̄.

Alternatively, one can extend measurements into the B→Xcℓν̄ region to re-
duce the theoretical uncertainties. Analyses of the electron-energy endpoint from
CLEO, BABAR and Belle quote B→Xueν̄ partial rates for |pe|≥2.0GeV and
1.9GeV, which are well below the charm endpoint. The large and pure B–B
samples produced at B-factories permit the selection of B→Xuℓν̄ decays in events
with the recoiling B is fully reconstructed. Using such a full-reconstruction tag
method, the four-momenta of both the leptonic and hadronic systems can be ex-
tracted.

Exclusive channels may also be used, but then form factors are needed. The
better experimental signal-to-background ratios are offset by smaller yields. The
B→πℓν̄ branching ratio is now known to 8% and lattice-QCD calculations of
the B→πℓν̄ form factor for q2>16GeV2 have been performed. So-called light-
cone QCD sum rules are applicable for q2<14GeV2 and yield somewhat smaller
values for |Vub|, (3.3+0.6

−0.4)×10−3. The theoretical uncertainties in extracting |Vub|
from inclusive and exclusive decays are different. The PDG quotes the following
average:

|Vub| = (4.15± 0.49)× 10−3, (5.2.80)

which is dominated by the inclusive measurement.

|Vtd|, |Vts| and |Vtb| : The CKM matrix elements involving the t quark are
rather more difficult to access, first and foremost owing to the exceedingly limited
number of top quarks so-far produced (and detected) in laboratory experiments.
However, the top quark plays an important role in the intermediate states in B–B
oscillation phenomena and also in higher-order corrections (coming from so-called
penguin diagrams. Unfortunately, present experimental precision does not yet
allow significant measurements to be performed.

On the other hand, the Tevatron experiments CDF and D0 have found evidence
for single top-quark production. The basic process studied is the annihilation of
a quark and antiquark of different flavours via production of a virtual W±, which
subsequently decays into b̄t or bt̄. Special techniques are necessary to extract the
single top-quark signal from a large background. The cross-section measurements
can be used to provide a direct measurement of the CKM matrix element |Vtb|.

The CP -violating phase and unitarity-triangle angles: The angles of the
unitarity-triangle are evidently non-trivial, i.e. the triangle is not flat, if and only if
CP -violation has its origins in the CKM matrix itself. It is therefore evident that
their measurement requires the study of CP -violating effects. Different processes
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provide more-or-less direct access to different angles and thus it is, in principle,
possible to verify that the sum of the three angles is indeed 180◦. The field is
in continual evolution and here we shall limit ourselves to a presentation of the
current picture. In Fig. 5.17 the combined world constraints on the unitarity
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Figure 5.17: World constraints on the unitarity triangle represented in ρ̄ and η̄ plane.
The shaded areas are the 95%CL intervals for the various measurements and the small
red ellipse indicates the overall constraint on the upper vertex. The figure is taken from
PDG-2012 (Beringer et al., 2012).

triangle are displayed as 95%CL allowed regions in ρ̄ and η̄ plane. The global
agreement is excellent; the consistency worsens noticeably however if B→ τν data
is included in the fit.

5.3 Beyond the standard model

5.3.1 Neutrino masses, oscillation and mixing

Neutrino masses and limits

In the SM the masses of all three neutrino species are rigorously zero. This is re-
lated to the observation that only left-handed neutrinos appear to exist in Nature—
or rather, only left-handed neutrinos are involved in the observed interactions. A
standard Dirac mass term in the Lagrangian describing the propagation of a fer-
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mion implicitly connects left- and right-handed states and would therefore violate
such observations.∗

However, recent data provide strong evidence for oscillations between the dif-
ferent neutrino states. Such a phenomenon is possible if and only if at least one
of the neutrino species has a non-zero mass. In fact, as we saw in the K0–K0

system, the oscillation process requires a mass difference and so we are only able
to conclude that there is a difference between the masses of at least two neutrino
states. Over the next few years more precise and detailed measurements should
clarify the issue.

Oscillation phenomena aside, other experimental data are only able to place
upper limits on neutrino masses. By far the most stringent limits are those on the
electron-neutrino mass and come from nuclear β-decay studies. In particular the
end-point (in the Kurie plot) of the β-decay spectrum is lowered if the emitted
neutrino is massive (by just the energy equivalent to its mass). The experimental
data on tritium decay provide an upper limit of around 3 eV.

It is interesting to note that a similar, though less stringent, limit is provided by
the finite spread in arrival times of the few neutrinos collected after the supernova
SN 1987A in the Large Magellanic Cloud, approximately 51.4kpc (∼170 thousand
light years) from Earth. A burst of neutrinos was observed at three separate
neutrino observatories (Kamiokande II, IMB and Baksan). In total, 24 neutrinos
were detected, a significant deviation from the observed background level; 11 were
detected by Kamiokande II, 8 by IMB and 5 by Baksan, over a time interval of
less than 13 seconds. Analysis of the energy and arrival-time spread provides a
limit of about 20 eV (Roos, 1987).

Neutrino oscillation and mixing

If, as then appears to be the case, at least one neutrino is massive, the possibility
of oscillation becomes real. Moreover, the possibility of a mixing matrix à la CKM
naturally arises.† Indeed, this is a prerequisite for oscillation. Let us consider the
simple case of b states with b (not necessarily both non-zero). Call the two mass
eigenstates states ν1,2. The two states we call, for example, νe,µ are then weak-
interaction eigenstates, which may then be expressed superpositions of the mass
eigenstates, thus:

νe = cos θ ν1 + sin θ ν2 (5.3.1a)
and

νµ = − sin θ ν1 + cos θ ν2. (5.3.1b)

∗ We should note that it is possible to introduce a so-called Majorana mass term for the neutrino,
which then becomes its own antiparticle, without altering the observed phenomenology.

† Purely leptonic CP violation then also becomes a natural possibility.
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This may be compared with the case of the K0–K0 system. An important differ-
ence here is that typically Eν≫mν and thus we should use momentum eigenstates.

Consider an electron neutrino produced in a weak interaction at instant t=0:

|νe,p〉 = cos θ|ν1,p〉+ sin θ|ν2,p〉. (5.3.2)

We shall now suppress the momentum variable and write the corresponding state
evolved to the instant t as

|νe,t〉 = a1(t) cos θ|ν1〉+ a2(t) sin θ|ν2〉, (5.3.3)

where the time-dependent coefficients are

ai(t) = e iEit for i = 1, 2. (5.3.4)

Since m1 6=m2, for a given well-defined momentum p, E1 6=E2.

Exercise 5.3. Following similar steps as for the case of K0–K0 oscillations, show
that the probability that a state initially produced at t=0 as say an electron neutrino
will be a muon neutrino a time t is

P (νe → νµ; t) = sin2 2θ sin2 1
2
(E2 − E1)t. (5.3.5)

We may rewrite the energy difference as follows (using E2=p2+m2):

E2 − E1 =
E2

2 − E2
1

E2 + E1

=
∆m2

2E
, (5.3.6)

where ∆m2=m2
2−m2

1 and E is the average of the two energies. We see that the
oscillation depends on two parameters: the mixing angle sinθ and mass-squared
difference ∆m2, which must both be non-zero. Indeed, in the limit Eν≫m (taking
vν≃ c) we may rewrite the time-dependent transition probability as

P (νe → νµ; t) ≃ sin2 2θ sin2

(
1.27∆m2L(t)

E

)
, (5.3.7)

where ∆m2 is in eV2, L(t) is the distance travelled in metres and E is the neutrino
energy in MeV.

Since this obviously leads to a loss of electron-neutrino flux, it was immediately
suggested as a possible explanation of the so-called solar neutrino problem; that is,
the result of the Homestake gold-mine chlorine experiment (Bahcall, 1964; Davis,
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1964; Davis et al., 1968):∗†

Φexpt
νe
∼ 1

3
Φstandard solar model
νe

. (5.3.8)

Such oscillations have now been confirmed by the Super-Kamiokande exper-
iment in Japan (see, for example, Fukuda et al., 1998; Ashie et al., 2004, 2005).
The data on atmospheric neutrinos, produced immediately above the apparatus
and also on the far side of the Earth, are consistent with two-flavour νµ↔ντ
oscillations, sin22θ>0.92 and

1.5× 10−3 < ∆m2 < 3.4× 10−3 eV2 at the 90 % CL. (5.3.9)

However, the data cannot indicate which neutrino superposition is the more massive
and various mass hierarchies are presently allowed.

5.3.2 Grand unified theories

In earlier sections we have seen how the attempt to correctly describe the weak
interaction and, in particular, the massive intermediate bosons it requires led to
the development of a (quasi) unified theory of the electromagnetic and weak in-
teractions. The concept of a spontaneously broken symmetry allows the bosons
to acquire a mass without violating the local gauge invariance of the theory and
leads to a final remnant U(1)EM symmetry from the initial larger U(1)Y⊗SU(2)W.
Note that since there are two distinct coupling constants, g and g′ in the previous
sections, one cannot speak of a complete unification.

Moreover, this does not yet include QCD, the theory of the strong interaction.
The successes of the unified electroweak theory immediately sparked attempts to
include the SU(3) gauge symmetry of QCD. The idea is a little more challenging
than a mere extension of U(1)Y⊗SU(2)W to the larger U(1)Y⊗SU(2)W⊗SU(3)QCD.
It would, in reality, be preferable to have a single gauge group with thus a single
coupling constant, which is what is known as a GUT. Sensible examples of groups
containing the above product are SU(5) or SO(10). The problem of the single
coupling is almost automatically solved when one realises that the three known
constants actually vary with energy scale: the largest αQCD decreases, as does that

∗ The Cl37 solar neutrino detector in the Homestake Gold Mine consisted of 615 t of tetrachloro-
ethylene, 4200m of water equivalent underground. It used radiochemical techniques to determ-
ine the Ar37 production rate. The detector was built at Brookhaven National Lab. (BNL) in
1965–67 and operated by Brookhaven until 1984.

† One quarter of the 2002 Nobel Prize for Physics was awarded each to Raymond Davis Jr. and
Masatoshi Koshiba for “pioneering contributions to astrophysics, in particular for the detec-
tion of cosmic neutrinos”; the other half was awarded to Riccardo Giacconi for “pioneering
contributions to astrophysics, which have led to the discovery of cosmic X-ray sources.”
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associated with the SU(2)W, while the weakest αQED increases. Indeed, examina-
tion of the theoretical variation suggests that they should all have a similar value
for E∼1015GeV.

Now, the enlargement of the group to SU(5), SO(10) or similar involves the
addition of further gauge degrees of freedom: new gauge bosons (usually indicated
X) must be introduced. These new fields inevitably couple quarks to leptons and
thus allow for baryon- and lepton-number changing transitions. In particular, the
proton is no longer stable since a u quark may be converted into an electron plus
other leptons. In all such models the proton lifetime is estimated to be no greater
than about 1030 years while present lower limits coming from non-observation of
proton decay in the various dedicated experiments around the world are of order
1034 years.

There are further problems with the naïve extensions to obtain a GUT. First
of all, even in the simpler electroweak theory, problems to do with renormalisation
still remain. The presence of a scalar field (necessary for the Higgs mechanism) up-
sets the usual renormalisation programme: the contributions coming from virtual
scalar loops tend to shift the masses of the particle spectrum up to the upper mo-
mentum cut-off, which here should be of order E∼1015GeV. In order to arrive at
the masses of the known quarks and leptons, one therefore has to invoke very del-
icate cancellations between different contributions. That is, the unphysical (bare)
masses need to be fine-tuned to many decimal places in order that the difference
of two large numbers be the small number required; this is known as the hierarchy
or fine-tuning problem. Moreover, close examination of the running of the three
coupling constants reveals that they do not all meet at a single energy and thus
such a naïve grand unification is not strictly speaking possible (see Fig. 5.18).

5.3.3 Supersymmetry

The difficulties encountered in constructing GUT’s, as discussed above, suggest
some missing ingredient. There are many possibilities, here we shall just mention
the presently most favoured: namely, supersymmetry. The idea of supersymmetry,
in a nutshell, is to enlarge the spectrum of particles and the symmetries to include
a symmetry operation that transforms fermions into bosons and vice versa. One
might hope in such a way to relate the photon to, say, the electron; however,
this proves to be impossible. It is then necessary to introduce an entire family
of supersymmetric partners to the existing particles. Thus, to every quark there
corresponds a pair of scalar squarks (matching the two quark helicity degrees of
freedom) while for every gauge boson there is a fermionic gaugino. Since no such
particle states have ever been observed, they must evidently be very heavy.

With a suitable spectrum (typical masses should be of the order of a TeV or
more), both the fine-tuning and GUT-point problems may be solved. The fine-
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tuning is now automatic: the “opposite” spin nature means that the contributions
in quantum corrections enter with the opposite sign∗ and thus cancellations are
guaranteed. Such cancellations will not be exact, precisely because of the large
supersymmetric particle masses. Indeed, this observation helps to place an up-
per limit on the likely masses, in order that the cancellations should not be lost
altogether.

Secondly, the extra contributions alter the running of the coupling constants,
which can now be arranged to all coincide at one particular energy. The new
unification point is typically of order 1016GeV (see Fig. 5.18). Both solutions are
achieved if and only if the sparticle masses are less than around 10TeV. Such a
limit suggests that they may well be within reach of the LHC.
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Figure 5.18: The running of the three coupling constants for the SM on the left and
the so-called minimal supersymmetric SM on the right. From top to bottom the curves
are respectively for the QED, weak and strong coupling constants. The figure is taken
from Kazakov (2001).

∗ This is to do with Fermi-Dirac statistics: loop diagrams with a fermion circulating acquire an
extra minus sign with respect to boson loops.
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Appendix A

Quantum Mechanics

A.1 Relativistic QM and the Dirac equation

Historically, the first attempts at a relativistic formulation of quantum mechanics
are due independently to Klein (1927) and Gordon (1926) although earlier both
Fock and Schrödinger had considered such a possibility. Starting from the Einstein
energy–momentum relation

E2 = p
2c2 +m2c4, (A.1.1)

they simply applied the canonical approach of transforming the variables E and p

into operators:

E → i~
∂

∂t
and p → − i~∇. (A.1.2)

This is represented more conveniently and compactly in four-vector notation
as follows:

p2 = pµpµ = m2c2, (A.1.3)

where now
pµ ≡ (E/c,p) and e.g. xµ ≡ (ct,x). (A.1.4)

The operator substitution then becomes

pµ ≡ (E/c,p) → i~ ∂µ ≡ i~
∂

∂xµ
≡ i~

(
1

c

∂

∂t
,−∇

)
. (A.1.5)

Note the negative sign in front of the spatial components here.
This leads to the following Lorentz-covariant wave equation

(
∂µ∂

µ +
m2c2

~
2

)
φ = 0. (A.1.6)
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For an even more compact notation, it is customary to define the d’Alambertian
or wave operator:

� ≡ ∂µ∂
µ (A.1.7)

and thus write (setting now ~=1= c)

(
�+m2

)
φ = 0, (A.1.8)

this is the Klein–Gordon equation. Historically, the well-known problems with
negative particle probability densities, associated with the possibility of negative-
energy solutions (energy enters squared in the Einstein’s equation), led to its being
abandoned and to Dirac’s famous alternative.

In a nutshell, Dirac’s idea was an attempt to avoid negative energies by effect-
ively taking the square-root of the Klein–Gordon equation and writing

γµpµ ϕ(x) = mϕ(x), (A.1.9)

where γµ is some new and unknown vector object (to be determined), necessary
to render the left-hand side a scalar quantity, as is the right-hand side. Then,
in order that the operator version γµpµ =̂m should agree with Einstein’s relation

p2=m2 for any pµ, we need a Clifford (or Dirac) algebra: {γµ,γν}= gµν. Indeed,
it is easy to see that with such an algebra we have

γµpµγ
νpν = 1

2
{γµ, γν}pµpν = gµνpµpν = p2. (A.1.10)

The simplest way to represent such anticommuting γµ is via matrices; the
minimal representation has rank four and may be constructed block-wise with the
aid of the Pauli matrices. An explicit form (due to Dirac) is

γ0 =

(
1 0
0 −1

)
and γ =

(
0 σ
−σ 0

)
, (A.1.11)

where the sub-matrices are 2×2. The first immediate consequence is that the
wave-functions are represented by four-component spinors.∗ The indices on such
a spinor, as too those (implicit) on the matrices γµ, are often referred to as Dirac
indices and the space over which they run, Dirac space. Note that it cannot be
thought of as any sort of vector since, for example, we shall find that a spatial
rotation through 2π reverses its sign.

We now simply list some of the basic properties of the γ-matrices:

γ0† = γ0, γ
† = −γ, or γµ = γµ† = γ0γµγ0. (A.1.12)

∗ These are not to be confused with Lorentz four-vectors!
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Finally then, the relativistic wave equation or Dirac equation is (~=1= c)

[
iγµ∂µ −m1

]
ϕ(x) = 0, (A.1.13)

where 1 is just the rank-four unit matrix.
As one might imagine from the appearance of the Pauli matrices, the different

spinor components have to do with the spin states of the electron. Indeed, if
we consider the coupling to a magnetic field and take the non-relativistic limit
we find that the two-by-two block form of the Dirac equation simply reduces to
the Schrödinger equation augmented with the Pauli construction to describe the
coupling of the intrinsic electron magnetic moment. And the gyromagnetic ratio
for the electron ge is predetermined to be precisely two, as found experimentally.∗

In the next section we shall also see how the concept of antiparticle arises naturally
from the Dirac equation.

A.2 The discrete symmetries C, P and T

As stressed at various points during the lectures, the concept of symmetry plays a
central role in the development of physics in general and particularly in elementary
particle physics. While many of the symmetries encountered are continuous (e.g.
spatial and temporal translations, rotations etc.), there are three fundamental
discrete symmetries, which we shall discuss here within the context of a quantum-
mechanical description of particle interactions. These symmetry transformations
are the operations of:

C: transforming particle into antiparticle and vice versa;

P: spatial inversion, i.e. x→−x;

T: time reversal, i.e. t→−t.

Recall that the first two are linear transformations while the last is antilinear ;
that is, together with the obvious coordinate transformation, one must apply com-
plex conjugation to all C-number parameters (e.g. masses, coupling constants etc.)
involved.

Since we shall need to deal with current–current interactions, it will be useful
to know in advance the transformation properties of the possible currents under
the action of the above operations. Generalised currents may be constructed from
bilinears of spin-half fields. We shall thus now examine each separately within the
context of the Dirac equation.

∗ To be precise, owing to quantum mechanical corrections, the value is not exactly two. Never-
theless, the measured and calculated values coincide perfectly to a very high precision.
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A.2.1 Charge-conjugation invariance (C)

The obvious way in which to detect theoretically (and indeed experimentally)
the presence of an antiparticle is through the relative sign of its coupling to an
external classical electromagnetic field Aµ=(Φ,A). Indeed, the Dirac equation for
an electron in the presence of a real (for simplicity) electromagnetic field is

[
iγµ∂

µ + eγµA
µ −m

]
ψ(x) = 0. (A.2.1)

The sign adopted for the electromagnetic coupling is, of course, purely conven-
tional. It does determine, though, the corresponding sign for the coupling of a
positron. Indeed, consider the Coulomb part of the potential A0(x): it couples via
γ0, which, as we have seen has positive entries for the upper two diagonal elements
and negative below. The lower two spinor components thus couple to the electric
field with opposite sign and hence we have the anti-electron or positron.

If the physics of the positron is to be the same as that of the electron, we must
seek a transformation (C) that results in the following equation:

[
iγµ∂

µ − eγµAµ −m
]
ψC(x) = 0. (A.2.2)

Now, the action of complex conjugation evidently only affects the sign of the
first term (for a real electromagnetic field). Recall too the following relation (which
is a direct result of the Clifford algebra and does not depend on the particular
representation adopted):

γ0γµγ
0 = γ†µ, (A.2.3)

while the following representation-dependent relation holds in the standard Dirac
representation:

γ2γµγ
2 = −γTµ , (A.2.4)

where T simply indicates matrix transposition. Thus, by applying complex con-
jugation to the Dirac equation (A.2.1) and then multiplying from the left by γ0γ2,
one can easily verify that the precise form shown in Eq. (A.2.2) is obtained with
the identification

C : ψ(x) → ψC(x) ≡ iγ0γ2 ψ T(x), (A.2.5)

where the conjugate spinor ψ :=ψ†γ0. Note that the presence of the factor “ i ”
corresponds to an arbitrary, but conventional, phase choice.

A.2.2 Spatial-inversion invariance (P)

Following a similar procedure to that of the previous section we shall now derive
the form of the operator generating spatial inversion. The starting point will again



A.2. THE DISCRETE SYMMETRIES C, P AND T 177

be the Dirac equation (A.2.1), although the coupling to an electromagnetic field
is now superfluous. The transformation of the equation under x to −x may be
represented by simply replacing ∂µ with ∂µ (since the lowering of the index implies

a sign change in the spatial components). Now, the effect of γ0, already noted
above, may be equally expressed as

γ0γµγ
0 = γµ. (A.2.6)

Thus, we recover the original equation via the identification

P : ψ(x) → ψP(x′) ≡ γ0 ψ(x′), with x′ = (t,−x), (A.2.7)

where once again the implicit phase choice is conventional.
An immediate consequence of the above form for the parity transformation is

that, since the matrix γ0 is block-diagonal ±1, the parities of the upper and lower
components of ψ are opposite. That is, fermion and antifermion have opposite
parities. By convention, the parity of fermions is chosen positive and antifermions
negative. This particular choice has, of course, no physical consequence as fermions
are always produced in fermion–antifermion pairs (for which the overall intrinsic
parity is predetermined to be −1).

A.2.3 Time-reversal invariance (T)

Finally, we turn to the case of time reversal. Note first that the transformation
t→−t also implies exchange of initial and final states. Since, as remarked above,
this transformation has the peculiar property of being antilinear, let us start with
the simpler case of the Schrödinger equation for a free particle:

i
∂

∂t
ψ(t,x) = − 1

2m
∇2ψ(t,x). (A.2.8)

The eigen-solutions are plane-waves and may be written as

ψ(t,x) = u(p) e− i (Et−p·x), (A.2.9)

where, of course, the energy and momentum satisfy E=p2/2m. It should be
immediately obvious that the first choice of simply changing t to −t in the above
does not satisfy the original equation, nor indeed does it even correspond to a
particle with momentum −p, as it should for time reversal. However, the choice

ψ∗(−t,x) = ψ∗
0 e

− i (Et+p·x) (A.2.10)



178 APPENDIX A. QUANTUM MECHANICS

respects all requirements. We thus see the necessity for an antilinear (complex con-
jugation) operator. That is, the transformation t→−t is accompanied by complex
conjugation applied to all C-number quantities.

Now, complex conjugation applied to the Dirac equation (A.2.1) leads to

[
− iγTµ ∂

µ −m
]
ψ T(t,x) = 0, (A.2.11)

where, as always, T simply stands for matrix transposition and once again the
commutation properties of the γ matrices with γ0 have been exploited. Mul-
tiplication from the left by γ0 together with the simultaneous transformation
xµ→x′µ≡ (−t,x) then leads to

[
iγTµ∂

′µ −m
]
γ0 ψ T(−t′,x′) = 0. (A.2.12)

All that remains is to find the unitary transformation (which must exist) between
the Dirac bases for γµ and γTµ : it is simply iγ1γ3, where the factor “ i ” is again
conventional. Thus, the time-reversal operation is given by

T : ψ(x) → ψT(x′) ≡ iγ1γ3 ψ T(x′), with x′ = (−t,x). (A.2.13)

T and Complex Potentials

As a closing remark to this section, let us illustrate the role of a complex contri-
bution to the potential describing particle interactions. While there is evidently
no counterpart in classical mechanics, in quantum mechanics all quantities are
potentially complex. Typically, when particles (or radiation) may be emitted or
absorbed (created or destroyed), an imaginary contribution to the scattering mat-
rix elements is found. Consider schematically the temporal evolution of a state of
definite energy E,

φ(t,x) = a(x) e− iEt . (A.2.14)

The probability density is just ρ(t,x) :=φ∗φ= |a(x)|2, which in this case is time
independent. If, however, we introduce an imaginary contribution, −1

2
iΓ say, to

the energy, that is E→E− 1
2
iΓ, then something interesting occurs:

ρ(t,x) = |φ(t,x)|2 = |a(x)|2 e−Γt . (A.2.15)

The probability density thus follows the usual decay law, with rate Γ.
Note that the resulting time dependence evidently violates time-reversal invari-

ance. That is, an imaginary phase in the interaction Hamiltonian automatically
provokes a violation of T. This may be immediately understood as a direct con-
sequence of the anti linearity property of the temporal inversion operator.
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A.2.4 Dirac-spinor bilinears and CPT

Armed with the previously derived transformation operators, it is now easy to
determine the transformation property of any spinor-field bilinear and thus any
current we may wish to employ in the description of particle interactions. The nat-
ural electric four-current associated with the Dirac equation, is shown by standard
methods to be jµ :=ψγµψ, the temporal component of which is ρ=ψ†γ0γ0ψ=ψ†ψ,
a natural and positive-definite probability density.

However, we also wish to describe all possible interactions (include the weak
and strong nuclear forces) and thus we must consider all possible currents. The
complete basis of generalised currents is S=ψψ, P =ψγ5ψ, V =ψγµψ, A=ψγµγ5ψ
and T =ψσµνψ. Their transformation properties under the discrete transforma-
tions C, P and T are summarised in Table A.1.

Table A.1: The properties of the five spinor-bilinear currents (S, P , A, V and T ) under
the discrete transformations C, P and T.

S P V A T

C + + − + −
P + − + − +

T + − + + −
CPT + + − − +

In order to construct a current–current interaction, it is necessary to combine
two (or possibly more) currents by completely contracting or saturating the indices.
For the currents listed here, it is immediately noticeable that the CPT signature
is (−1)ni, where ni is the number of indices. Since complete saturation implies
ni even, it follows that it is impossible to obtain a product that is overall CPT
odd. In other words, within our present knowledge and method of constructing
(current–current) interactions in field theory, CPT cannot be violated. That is
not to say that it is absolutely impossible, but simply that we do not know how.

For completeness, let us mention that a possible consequence of CPT violation
is a difference between particle and antiparticle masses. At present the most
stringent limits come from the study of the K0–K0 system (which is examined in
some detail in Sec. 2.5.3):

∣∣∣∣
mK

0 −mK
0

m
K

0

∣∣∣∣ ≤ 9× 10−19 (90 % CL). (A.2.16)

Note, in contrast, that any of C, P or T may be violated individually (or in
pair products) by a suitable choice of interfering currents; e.g. the product V ·A
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violates both C and P but not T . What is not included above is the possibility of
a complex coupling (as in the elements of the VCKM matrix, see Sec. 2.5.2). Such a
contribution would naturally induce a violation of time-reversal invariance, which
is rather difficult (though not impossible) to detect experimentally. For this reason
and since the conservation of CPT requires a simultaneous compensating viola-
tion of the product CP , one normally talks of CP violation and not T violation,
although the two are entirely equivalent in this context.

A.2.5 C and P of simple composite systems

Many simple composite systems, such as positronium (an e+e− bound state) and qq
pairs, but also two- or multi-pion final states, may possess well-defined symmetry
properties under the operations of C and P. In theories in which these symmetries
are respected such properties naturally lead to the idea of associated conserved
quantum numbers C and P , even for composite objects (the same is true too for
T ). Such discrete quantum numbers are multiplicative in nature and thus in the
case of a composite system all the relevant quantum numbers of the parts must
simply be multiplied together. We shall now present a few instructive examples.

From the foregoing discussion on CPT , we see that, by complementarity, once
the properties under C and P are understood an explicit discussion of T is super-
fluous. That said, in condensed matter physics, foe example, a consequence of T
for systems of fermions is the so-called Kramers degeneracy, whereby even certain
highly disordered systems must have degenerate energy eigenstates.

Charge conjugation in composite systems

First of all, note that C can clearly only be associated with neutral systems, such
as positronium or neutral qq states.

C
π

+
π

−: Let us start by considering the two-pion state π+π−. The action of C is

to interchange the two pions and this will introduce a factor (−1)L, where L is the
orbital angular momentum quantum number, owing to the parity of the spatial
part of the wave-function. Since there is no other effect, we have C

π
+
π
− =(−1)L.

C
e
+
e
−: Next we examine the case of positronium. This is a little more complic-

ated owing to the spin effects. For the spatial exchange of the electron and positron
there is the same factor (−1)L above. However, the spin part of the wave-function
must also be considered: for the spin-0 singlet state this is antisymmetric and for
the spin-1 triplet, symmetric. This leads to another factor conveniently expressed
as −(−1)S . Finally, the full relativistic theory of electrons generates a further −1
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for every interchange of two identical fermion or antifermion states. Putting all
this together, we obtain a charge-conjugation quantum number Ce+e− =(−1)L+S.

Parity in composite systems

Here we should recall that all particles (elementary or not) may be ascribed an
intrinsic parity: for fermions this is not determined absolutely, but Dirac theory
predicts it to be opposite for fermion and antifermion. A fermion–antifermion pair
thus have overall negative intrinsic parity, which must then be multiplied by the
parity of the relative spatial wave-function. In the case of bosons a scalar particle
has, by definition P =+1 while a pseudoscalar (such as a pion) has P =−1.

P
π

+
π

−: Given an even number of pions, it is not necessary to know the intrinsic

parity of the pion since in this case we have P 2=+1, whatever the value of P =±1.
We therefore need only consider the parity of the spatial wave-function, which leads
to Pπ+

π
− =(−1)L.

P
e
+
e
−: As noted above the product of intrinsic parities for the e+e− pair is −1,

which again must be multiplied by the spatial contribution. Here then we have
Pe+e− =−(−1)L.

The J
PC classification of mesons

We can now study the classification of mesons (qq states) in terms of the three
quantum numbers J , P and C. Let us examine the angular momentum first. The
purely spin part may be either spin-0 (antisymmetric, singlet) or spin-1 (symmet-
ric, triplet). The orbital angular momentum part is naturally any integer from zero
up. The JPC assignments may then be deduced easily from the previous analysis
of the positronium case.

The lowest-lying mesons (π0, K0, η and η′) are L=0, S=0 states, which must
then have JPC=0−+.∗ The slightly heavier s-wave S=1 states (ρ, K∗, φ and ω)
have JPC=1−−. For increasing mass the JPC quantum numbers then follow a
natural sequence. A complete list of all the known mesonic states and their JPC

assignments may be found in the PDG Review of Particle Physics (see PDG-2012
– Beringer et al., 2012).

Exercise A.1. From the foregoing classification, show that for a standard qq state
the assignments JPC=0+−, 0−−, 1−+, 2+− etc. are not admissible while 0++, 1++

etc. are allowed.

∗ While C is clearly not defined for a charged meson, the JP assignments given still hold.
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Finally, for completeness, we might add that the photon has JPC=1−−, the
gluons (being colour charged with therefore C undefined) have JP =1− while the
spin-1 W± and Z0 weak bosons have neither P nor C well-defined. The neutral
Higgs boson in the SM has JPC=0++.

A.3 The double well and quantum oscillation

The double potential well in quantum mechanics nicely demonstrates one of the
more surprising phenomena associated with quantisation: namely, quantum oscil-
lation. Consider the situation in which there are two identical square wells (in one
dimension for simplicity) sufficiently separated so that the form of the solution to
the Schrödinger equation locally in the neighbourhood of either well is not appre-
ciably affected by the presence of the other. In other words, the solution within
the regions of the wells is very similar to that of a single isolated well. The form of
the well and the x dependence of the corresponding two lowest-energy eigenstates
are represented in Fig. A.1.

V (x)

ψ0(x)

ψ1(x)

Figure A.1: The double potential well and the x dependence of the corresponding two
lowest-energy eigenstates, E1>E0.

The solutions can be represented generically as

ψ1,2(x, t) = u1,2(x) e
− i

~
E1,2t, (A.3.1)

where the precise form of u1,2(x) is entirely irrelevant for the present purposes.
Now, these represent the “unperturbed” eigenstates of the system and are those

with independent temporal evolution. However, if now some “interaction” with the
system introduces a particle into one of the wells (the left, say) the state induced
does not correspond to any single pure eigenstate. In other words, a different basis
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is necessary to describe this external interaction:

uL,R(x) = 1√
2

[
u1(x)± u2(x)

]
. (A.3.2)

Such a state describes the system at the instant t=0, when the particle is intro-
duced into the left-hand well. At later times the evolution is given by (we shall
now take the initially left-hand case for definiteness)

ψL(x, t) = 1√
2

[
u1(x) e

− i

~
E1t+u2(x) e

− i

~
E2t
]
. (A.3.3)

However, if we wish to know the probability of finding the particle in one or other
well, we should decompose over the L/R basis:

ψL(x, t) = 1
2

[(
uL(x) + uR(x)

)
e−

i

~
E1t+

(
uL(x)− uR(x)

)
e−

i

~
E2t
]

= 1
2

[
uL(x)

(
e−

i

~
E1t+e−

i

~
E2t
)
+ uR(x)

(
e−

i

~
E1t− e−

i

~
E2t
)]
. (A.3.4)

Introducing now the average energy E≡ 1
2
(E1+E2) and the energy difference ∆≡

E2−E1, we finally obtain

ψL(x, t) =
[
uL(x) cos

(
∆
2~
t
)
− iuR(x) sin

(
∆
2~
t
)]

e−
i

~
Et . (A.3.5)

One sees that the coefficient of, for example, uL(x), which determines the probab-
ility of finding the particle in the left-hand well, oscillates in time:

PL(t) = cos2
(
∆
2~
t
)
= 1

2

[
1− cos

(
∆
~
t
)]
. (A.3.6)

Note that the frequency is thus ∆/~ (and not half that). In other words, the
particle effectively oscillates between the two potential wells with a frequency
determined by the difference of the natural frequencies associated with the two
states involved. Note too the close parallel with the case of coupled oscillators in
classical mechanics.

To conclude this section, let us underline a common aspect of such phenomena:
the original physical system possesses a symmetry (in this case under parity or
spatial inversion), which the state created externally does not respect (i.e. it is not
an eigenstate of the basic Lagrangian). This is a sufficient (and in fact necessary)
condition for the induced mixing, which lies at the heart of the quantum oscillation
phenomenon.
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A.4 The partial-wave expansion

A.4.1 Scattering in perturbation theory

In quantum mechanics scattering by weak finite-range potentials may be treated in
a perturbative manner. That is, we assume to have solved the free-field equations
and that the scattering potential maybe treated as a small perturbation. In this
section we shall present a simplified derivation of the cross-section for the case of a
spherically symmetric potential. The basis is the knowledge we have of solutions to
the Schrödinger equation in such a case—the angular part is provided by just the
spherical harmonic functions already encountered in the solution of the hydrogen
atom. Moreover, for a finite-range potential the asymptotic form of the radial
wave-function is also predetermined.

We consider then the simple case of a particle of momentum k incident on a
spherically symmetric potential V (r), centred at the origin. The initial state, in
the absence of V (x), may be represented as a plane-wave

u0(x) = e ik·x . (A.4.1)

We suppress the normalisation since our aim is to calculate a cross-section, which
is a ratio of fluxes. In the presence of the scattering potential, but outside its
range, the full solution to the Schrödinger equation will be of the form

u(x)
r→∞−−−→ e ik·x+f(θ, φ)

1

r
e ikr (A.4.2)

where θ and φ are the polar scattering angles in the laboratory frame with respect
to k, which we then take to be along the z-axis, while r= |x|. That is, we have
the incident plane-wave plus an outgoing spherical wave centred on the origin.

In perturbation theory one can always calculate the form of f(θ,φ) from first
principles if the potential is known. We shall just quote the result here: in the
Born (or leading-order) approximation we have

f(θ, φ) = −2m
~
2

(2π)3

4π
〈k′|V |k〉

= −2m
~
2

(2π)3

4π

∫
d3
x
′ e

− ik
′·x′

(2π)
3/2
V (x′)

e+ik·x′

(2π)
3/2
, (A.4.3)

where the final-state momentum k
′ is direct along (θ,φ) and energy-momentum

conservation requires that k=k′. Gathering together exponentials and constant
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factors, this becomes

f(θ, φ) = − 2m

4π~2

∫
d3
x
′ e i(k−k

′)·x′

V (x′). (A.4.4)

That is, as remarked elsewhere in these notes, the Born-approximation to the
scattering amplitude is just a Fourier transform of the potential, in the variable
q=k−k

′, the momentum transfer. In practice then, we may model a potential
and calculate the corresponding phase shifts; alternatively, at least in principle,
measured phase shifts may be used to reconstruct (or fit) a potential model.

Exercise A.2. Using the Yukawa potential,

VYuk.(r) ≡
V0 e

−µr

r
, (A.4.5)

and taking the limit µ→0, show that the quantum expression for Rutherford scat-
tering takes on the same form as the classical result.

Often, however, we do not possess a priori a realistic model of the scattering
potential, e.g. for pion scattering off a nucleon. In such cases we require a suitably
parametrised description of the cross-section. In what follows we shall exploit
our knowledge of the general solution to the Schrödinger equation in the case of a
spherically symmetric potential to construct a faithful and simple parametrisation,
which may then be fit to experimental data.

A.4.2 The partial-wave formula

Now, the cross-section is defined in terms of the ratio of the scattered flux divided
by the incident flux. Recall that in quantum mechanics the flux corresponding to
a wave-function solution to the Schrödinger equation has the form

j(x) =
~

2m i

[
u∗(x)∇u(x)− u(x)∇u∗(x)

]
. (A.4.6)

In Eq. (A.4.2) for u(x), we should consider the two parts as spatially separated:
the incident wave will, in practice, be collimated along a narrow region around the
z-axis, where the outgoing spherical wave will have little weight. The incident flux
(jinc) therefore simply corresponds to the plane-wave piece while the scattered flux
(jscatt) corresponds to the other, with no interference terms (which are negligible as
far as the present discussion is concerned, but see later). The partial cross-section
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for scattering into a given solid angle dΩ(θ,φ) is defined as

dσ =
scattered flux in dΩ

incident flux

=
jscatt r

2dΩ

jinc

=
∣∣f(θ, φ)

∣∣2 dΩ . (A.4.7)

The differential cross-section is therefore quite simply

dσ

dΩ
=
∣∣f(θ, φ)

∣∣2 . (A.4.8)

We thus see that the object containing all the necessary information is just the
angular modulation f(θ,φ).

The spherical symmetry of the problem suggests transformation to a basis of
solutions in terms of spherical harmonic functions. In the case of a plane-wave, we
have the following decomposition

e ik·x = e ikr cos θ =
∑

ℓ=0

(2ℓ+ 1)i ℓ jℓ(kr)Pℓ(cos θ), (A.4.9)

where Pℓ(cosθ) are Legendre polynomials and jℓ(kr) are spherical Bessel functions,
the solutions to the reduced radial equation. Note that the imaginary factor may
also be rewritten as

i ℓ ≡ e
1

2
iℓπ (A.4.10)

and asymptotically the Bessel functions take the form

jℓ(kr)
r→∞−−−→ sin(kr − 1

2
ℓπ)

kr
=

1

2ikr

[
e+i(kr− 1

2
ℓπ)− e− i (kr− 1

2
ℓπ)
]
. (A.4.11)

Now, considering the full wave-function in the presence of the scattering po-
tential, we may make a similar expansion and write for r large

u(x) =

∞∑

ℓ=0

(2ℓ+ 1)i ℓ
1

2ikr

[
e+i(kr− 1

2
ℓπ+2δℓ)− e− i (kr− 1

2
ℓπ)
]
Pℓ(cos θ). (A.4.12)

In writing this expression we have taken into account certain simple general prop-
erties of the solutions to the Schrödinger equation. First of all, each term in the
sum corresponds to a component of well-defined orbital angular momentum ℓ~ and,
since angular momentum is conserved, term-by-term the partial amplitudes cannot
change in magnitude but only in phase. Moreover, the two terms in square brackets
on the right-hand side represent outgoing and incoming waves respectively. Only
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the outgoing wave has had the opportunity to interact with the potential V (x)
and thus only these components may have a phase shift, 2δℓ(Ek), the factor 2 is
for later convenience. Note that the phase shift can (and therefore will) only be a
function of the incident beam energy.

Comparing now (A.4.2) and (A.4.12), taking into account (A.4.9), we find

f(θ, φ) =

∞∑

ℓ=0

(2ℓ+ 1) i ℓ
1

2ik

[
e i (−

1

2
ℓπ+2δℓ)− e i (−

1

2
ℓπ)
]
Pℓ(cos θ) (A.4.13)

and using the expression for i ℓ given earlier, this becomes

=

∞∑

ℓ=0

(2ℓ+ 1)
1

2ik

[
e2iδℓ −1

]
Pℓ(cos θ) (A.4.14)

=
1

k

∞∑

ℓ=0

(2ℓ+ 1) e iδℓ sin δℓ Pℓ(cos θ). (A.4.15)

Let us make a few comments: firstly, we see that there is no φ dependence, as
would be expected for a spherically symmetric potential—since k is directed along
the z-axis, there can be no z-component of orbital angular momentum. Secondly,
we see that all the scattering information is contained in the phase-shifts δℓ(Ek);
they determine not only the phase of each partial amplitude (through the factor
e iδℓ), but also the magnitude (through the factor sinδℓ). Finally, let us remark on
the validity of the above formula: it may be used for two-body scattering, provided
we use the centre–of–mass system and reduced mass etc., and even carries over to
the relativistic case.

The importance of the partial-wave expansion is that, as just stated, it provides
a useful (and, in particular, model-independent) parametrisation of the scattering
amplitude, even when nothing is known about the potential. This permits un-
biased analysis of experimental scattering data, which may then be compared
with theoretical predictions. As it stands though, the expansion contains an in-
finite number of parameters (the phase shifts δℓ for ℓ=0,1,... ,∞), which would
render any experimental fit totally impracticable. However, for a finite-range po-
tential (say r<a) and finite incident momentum, the maximum orbital angular
momentum that can be generated is

ℓmax ~ ≈ a |k|. (A.4.16)

Therefore, recalling that ~c∼200MeV fm, we see that, for example, a typical
nuclear-potential of range O(1 fm) and a beam of momentum 200MeV could gen-
erate up to ℓ=O(1). In general then, low-energy scattering off a finite-range
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potential involves only a very limited number of partial waves. Incidentally, this
also explains why the expansion only has limited use in high-energy hadronic phys-
ics: a beam of momentum 20GeV, say, would involve up to ℓ=O(100) terms in
the expansion. Note that with a small number of partial waves contributing (each
with its own angular dependence), the phase shifts may be extracted directly from
the measured angular distributions.

A.4.3 The optical theorem

We can now provide a simplified proof of a very important theorem in scattering.
Let us first calculate the total cross-section:

σ =

∫
dΩ

dσ

dΩ
=

∫
dΩ

∣∣f(θ, φ)
∣∣2

=

∫
dΩ

∣∣∣∣∣
1

k

∞∑

ℓ=0

(2ℓ+ 1) e iδℓ sin δℓ Pℓ(cos θ)

∣∣∣∣∣

2

,

which, using the orthogonality of the Legendre polynomials, reduces to

=
4π

k2

∞∑

ℓ=0

(2ℓ+ 1) sin2 δℓ. (A.4.17)

Consider now the forward amplitude, i.e. for θ=0 (or cosθ=1):

f(0) =
1

k

∞∑

ℓ=0

(2ℓ+ 1) e iδℓ sin δℓ, (A.4.18)

where we have used the fact that Pℓ(1)=1 for all ℓ. The imaginary part of this
last expression is just the total cross-section, up to a factor 4π/k:

σ =
4π

k
Im f(0). (A.4.19)

This is precisely the optical theorem: the total cross-section is proportional to the
forward scattering amplitude. Its validity actually extends beyond the simple proof
provided here.

The apparent contradiction in a left-hand side that is, by definition, propor-
tional to an amplitude squared and a right-hand side linear in the amplitude may
be reconciled by carefully considering the origin of the scattering cross-section.
In Eq. (A.4.2) we see that the general form of the wave-function is a sum of two
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terms:

ψ(x) ∝ e ik·x+
e ikr

r
f(θ, φ). (A.4.20)

Now, the flux loss in the forward direction (which is clearly proportional to the
total cross-section) must be due to the interference between these two terms (to see
this, consider the difference in flux along the z-axis between points before and after
the scattering centre) and thus is indeed linear in f(θ,φ). In fact, if we perform
the calculation in this way, it becomes clear that the theorem is very general and
holds even in the presence of inelastic scattering (or absorption). As one might
imagine, the expression optical theorem is borrowed from classical optics, where
the phenomenon is well known: a bright central spot that appears behind a black
disc diffracting a light source of suitable wavelength.

A.5 Resonances and the Breit–Wigner form

A.5.1 Resonances in classical mechanics

In classical mechanics the equation of motion for a forced oscillator subject to
friction is

mẍ+ γẋ+ kx = F cosωt, (A.5.1)

Defining the natural frequency of the oscillator as ω0=
√
k/m, the solution is

x = xmax cos(ωt+ φ), (A.5.2)

where the phase difference φ is given by

tanφ =
−γω

m(ω2 − ω2
0)

(A.5.3)

and the oscillation amplitude is

xmax =
F

[m2(ω2 − ω2
0)

2 + γ2ω2]
1/2
. (A.5.4)

The total energy (Ekin+Epot) of the oscillator is thus

E =
kF 2

[m2(ω2 − ω2
0)

2 + γ2ω2]
. (A.5.5)

Notice that the presence of dissipation (in the form of friction, γ 6=0) tames the
otherwise divergent behaviour for ω=ω0.
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A.5.2 BW resonances in quantum mechanics

A similar behaviour occurs in quantum mechanics for the production of interme-
diate so-called resonant (virtual) states when the natural energy of the virtual
state is near to that of the real energy of the system. A formal description may
be provided by considering the variation of phase shifts in the partial-wave de-
composition of scattering amplitudes. We shall start from the standard form of
the elastic scattering amplitude in quantum mechanics, taken for some particular
partial wave ℓ (recall ℓ is the total orbital angular momentum quantum number):

fℓ =
~

2ip

(
2ℓ+ 1

) (
aℓ e

2iδℓ −1
)
Pℓ(cos θ), (A.5.6)

where p is the centre–of–mass initial-state momentum, aℓ is the amplitude of the
of the ℓ-th partial scattered wave (0≤aℓ≤1, aℓ<1 implies absorption) and δℓ is
the so-called phase-shift, which contains all relevant information on the scattering
potential.

In the purely elastic case, i.e. with zero absorption (i.e. aℓ=1), the correspond-
ing partial cross-section is then

σ
el

ℓ =
π~2

p2
(2ℓ+ 1)

∣∣∣e2iδℓ −1
∣∣∣
2

. (A.5.7)

This expression has a maximum whenever δℓ=(n+ 1
2
)π with n integer. The max-

imum value is

σ
max

ℓ = (2ℓ+ 1)
4π~2

p2
. (A.5.8)

Note that for the case of total absorption (i.e. aℓ=0), the cross-section is just a
quarter of this.

Experimentally, cross-sections are often observed with a well-pronounced peak
at some particular centre–of–mass energy. The question then is how one might
describe such effects in the absence of a complete theory of the interaction in-
volved. From the above formula, we immediately deduce that if the cross-section
attains a maximum at some energy for some partial wave, then the corresponding
phase-shift evidently passes through a value (n+ 1

2
)π, so that cotδℓ passes through

a zero. Now, the only independent variable for each individual partial wave is the
centre–of–mass energy (the angular dependence is already coded into the spherical
harmonics) so the phase-shift δℓ is only a function of E. Thus, those energies for
which δℓ=(n+ 1

2
)π and for which the cross-section is therefore maximal, corres-

pond to resonances. We shall assume that such a resonance is sufficiently well
separated from any others so that it dominates the cross-section for E∼E0, the
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resonant energy. It is instructive to study the behaviour of the amplitude in the
neighbourhood of such a point.

The identity
e2iδ−1
2i

≡ 1

cot δ − i
(A.5.9)

may be used to rewrite the elastic partial-wave amplitude as

fℓ =
~/p

(cot δℓ − i )
. (A.5.10)

At the resonance cotδℓ=0; therefore, performing a Taylor expansion about this
point in the energy E and retaining only the leading term, linear in E−E0, we
may write

cot δℓ(E) ≃ −
2

Γ
(E − E0). (A.5.11)

The sign choice is conventional but physically motivated: indeed, suppose the
phase-shift grows with energy in the neighbourhood of the resonance. Therefore,
cotδℓ(E) decreases and the parameter Γ is positive. Inserting this into Eq. (A.5.10)
leads to the standard BW form for the amplitude:

fℓ(E) = −~
p

Γ/2

(E −E0)− iΓ/2
(2ℓ+ 1)Pℓ(cos θ). (A.5.12)

That is, the elastic cross-section is described by the form

σℓ ≃
4π~2

p2
(2ℓ+ 1)

(Γ/2)2

(E − E0)
2 + (Γ/2)2

. (A.5.13)

More simply, we may rewrite this as

σℓ ≃ σ
max

ℓ

(Γ/2)2

(E − E0)
2 + (Γ/2)2

. (A.5.14)

For any production process that passes through a (well-isolated) resonant channel,
one thus finds that the spectrum or cross-section assumes the BW form shown
in Fig. A.2 (Breit and Wigner, 1936). Note that, in practice, the peak behaviour

is superimposed over the energy dependence of σ
max

ℓ , which from Eq. (A.5.8), for
example is typically a rapidly falling function of energy.

Finally, including the multiplicity factors associated with spin states in the
case of initial particles of arbitrary spin, the BW approximation to the total cross-
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0

1

0 E0

I

E→

Figure A.2: The standard Breit–Wigner resonance form; the underlying behaviour of

σ
max

ℓ has been factored out.

section for particles 1 and 2 scattering via a resonance R may be expressed as

σR ≃
4π~2

p2
(2J + 1)

(2s1 + 1)(2s2 + 1)

(Γ12/2)(Γ/2)

(E − ER)2 + (Γ/2)2
, (A.5.15)

where the denominators (2s1,2+1) provide the usual average over the initial-state
spins s1,2 and J is the spin of the resonance R. The numerator factor Γ12 represents
the partial width for resonance two-body decay into particles 1 and 2 (this may be
better understood considering the Feynman diag4rams introduced in the following
subsection). The possible multiplicity factors for any final-state spins are subsumed
(indeed, summed not averaged) in the numerator Γ.

A.5.3 BW resonances in quantum field theory

We shall now try to motivate such a form in particle physics without recourse to
detailed calculation. First, recall that for a metastable state the decay rate is the
inverse of the mean life (up to factors of ~ and c): Γ= τ−1. Note that here we
are not necessarily limited to discussing purely elastic processes, the main aspect
is the resonant nature of the intermediate state. The probability density for the
decaying state then takes the following form:

P(t) ∝ e−Γt . (A.5.16)

In quantum mechanics this should simply be the squared modulus of the wave-
function describing the state. Thus, one is led to the following form for the time
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dependence of the wave-function:

ψ(t) ∝ e− iEt e−
1

2
Γt = e− i(E− i 1

2
Γ)t . (A.5.17)

Considering a particle of physical mass m0 in its rest frame, the total energy E
may be replaced by m0. The wave-function is then seen to represent a state of
complex mass m≡m0− iΓ/2.

If we now make the plausible step of using this mass in the propagators ap-
pearing in any Feynman diagram where such an unstable particle might propagate
internally, we are led to the following substitution (assuming Γ≪m0):

1

p2 −m2 →
1

p2 −m2
0 + im0Γ

. (A.5.18)

One can show, by explicit calculation, that the effect of the self-interaction induced
by the decay channels (i.e. the possibility of temporary spontaneous fluctuations
into the decay final states) is precisely this. However, the full armoury of quantum
field theory is needed to attack such a problem.

As an example, let us finally examine the effect of such a substitution on the
interaction probability of the process e+e−→Z0→µ+µ− (see Fig. A.3). At lowest

γ,Z0

e+

e−

f

f̄

Figure A.3: An example of the Feynman rules for a particle-physics process.

order in perturbation theory the propagator associated with the intermediate Z0

state is normally:
1

q2 −m2
Z

, (A.5.19)

where qµ is the Z0 four-momentum and mZ its mass. According to the above
discussion, one should thus adopt the following form:

1

s−m2
Z + imZΓZ

, (A.5.20)

where use has been made of the Mandelstam variable

s ≡ (p1 + p2)
2 ≡ q2 ≡ E2

CM. (A.5.21)

The interaction probability is proportional to the modulus squared of the amp-
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litude and thus we should really examine

∣∣∣∣
1

s−m2
Z + imZΓZ

∣∣∣∣
2

=
1

(s−m2
Z)

2 +m2
ZΓ

2
Z

. (A.5.22)

Note once again that the presence of dispersion (in this case particle decay) tames
a potential divergence for ECM=mZ . This also demonstrates that higher-order
corrections are not merely a theoretical luxury to be easily foregone. The form
shown in Eq. (A.5.22) is relevant for relativistic field-theory calculations; noting
that for energies near the pole mass (ECM∼mZ)

s−m2
Z = E2

CM −m2
Z

= (ECM +mZ)(ECM −mZ) ≃ 2mZ(ECM −mZ), (A.5.23)

one readily obtains the standard BW form:

∝ 1

(ECM −mZ)
2 + 1

4
Γ2
Z

. (A.5.24)

The final complete form for e+e−→Z→ab is then

σe+e−→Z→ab ≃
4π~2

p2
(2sZ + 1)

(2s1 + 1)(2s2 + 1)

(Γ12/2)(Γab/2)

(E −mZ)
2 + (Γtot/2)

2 , (A.5.25)

where sZ and s1,2 are the spins of the Z0, electron and positron respectively. The

partial widths in the numerator, Γ12 and Γab are those for Z0 decay into e+e− and
ab final states while for the denominator the total width Γtot must be used in all
cases.

One further refinement is necessary for greater precision in those cases where
the momenta of the outgoing particles varies appreciably over the width Γ of the
resonance. Since Γ may also be correctly interpreted as the decay rate, it will
depend on the final-state momentum p (evaluated in the rest-frame). One can
then show, by explicit calculation (see Flatté, 1976), that for a resonance of mass
M the generally correct form is

Γ(s) =

∣∣∣∣
p

p0

∣∣∣∣
2ℓ+1

Γ(M2), (A.5.26)

where Γ(M2) is the on-shell decay rate, i.e. for s=M2; p (p0) is the off-shell (on-
shell) final-state momentum and ℓ is the intrinsic spin of the resonance. The effect
of this is seen in a certain skew of the otherwise symmetric BW form. If not taken
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into account, it would induce a shift in the extracted mass of the resonance.
A few final observations are in order before concluding. Here we have only

considered the simplified case of a single resonance contributing to a given channel.
Now, while it is true that only one intermediate state is likely to be resonant at any
one energy, if two or more resonances are near in mass (i.e. with respect to their
widths), then interference effects can become important. In such cases care must
be taken to sum over all possible contributing amplitudes, after which the cross-
section (or decay rate) may be calculated from the square of the total amplitude
so obtained.

Now, it is indeed quite likely that more than one process contributes to the
overall width or rate Γ for the decay of any given resonance while we may only
be interested experimentally in a particular channel. In such a case the procedure
is quite simple: the width Γ appearing in the denominator, being effectively the
imaginary part of the physical mass, must be taken as the total decay width.
However, the width appearing in the numerator should be that corresponding to
the particular channel under study.

Finally, there is evidently an implicit approximation in the derivation of the BW
form. Quite simply, the intermediate objects should not be too broad—one often
speaks of the “narrow-resonance approximation.” Now, while the above correction
for the intrinsic energy dependence of the width goes some way to allowing even
relatively broad states to be accurately included, this can in no way take into
account the non-elementary nature of many of the particles involved. The BW
form has its base in a treatment of all processes as involving only elementary
particle and although something can be done to include form-factor like effects
there is no well-defined way in which the substructure of the resonance (nor indeed
of the initial and/or final states) may be reliably accounted for.
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Appendix B

Background Notes

B.1 The muon

As a forerunner to the problem of describing the strong interaction, as we see
it today, let us examine the case of the muon. Discovered independently by
Anderson and Neddermeyer (1936) and Street and Stevenson (1937) in cosmic-
ray experiments, the muon was considered a prime candidate as the particle (then
known as the mesotron) suggested by Yukawa (1935)∗ as the exchange field re-
sponsible for the strong interaction. With a mass of 106MeV, it appeared more
similar to the baryons than to the other known charged lepton at that time, the
electron. According to Yukawa’s theory, such a mass would lead to a range of
action around 1 fm or so, which corresponded well to the observed finite range of
the strong nuclear force.

The question then arises as to how to ascertain whether or not such an inter-
pretation is correct. Apart from the experimental evidence, which we shall shortly
discuss, there are theoretical reasons (not, however, available at that time) for not
accepting such a role for the muon. Conservation of angular momentum requires
that the exchange particle have integer spin—we now know that the muon is a
fermion. Moreover, the flavour or isospin symmetry of the strong interactions re-
quires that the exchange particle have integer isospin too (the proton and neutron
belong to an isospin one-half doublet). A singlet state would not interact (or at
best its interactions would be suppressed) and therefore it should have at least one
unit of isospin. Finally, the multiplicity of an isospin-one system is three while
there exist only two states for the muon: µ±, there being no neutral state.

Evidently though, it was necessary to examine the strength of its interaction to
really understand the nature of the muon. Its decay is seen to be weak (τµ∼2µs),

∗ The 1949 Nobel Prize for Physics was awarded to Hideki Yukawa for “his prediction of the
existence of mesons on the basis of theoretical work on nuclear forces.”
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but this alone cannot be interpreted as excluding its strong interaction; the type of
interaction through which a particle may decay is also determined by the various
conservation laws. In this case conservation of energy is sufficient to exclude a
strong decay: the muon is lighter than all known strongly interacting particles
and, in fact, decays primarily to eν̄eνµ, none of which are strongly interacting. We
must then study the behaviour of the muon in a strongly interacting environment,
e.g. inside the nucleus. The strong interaction has a time scale of the order of
10−23 s (a typical decay time for the heavier hadrons such as ∆++ etc.), so we
might expect a muon to be absorbed on such a time scale by a nucleus (inside
which the energy balance may easily be redressed).

In 1947 Conversi, Pancini and Piccioni set out to measure the lifetime of what
had then been dubbed the mesotron (the present-day muon) by studying its stop-
ping behaviour in nuclear matter; they had already measured the free lifetime. The
experiments they performed turned out to be a disproof of the strong-interaction
hypothesis.

In matter (negatively charged) muons lose energy via electromagnetic inter-
actions until they are eventually captured by an atom and become bound, just
as an electron. Since the muon is evidently distinguishable from the electrons, it
does not suffer Pauli exclusion and, via photon emission, may cascade down to the
ground state. At this point, owing to its relatively large mass, it is much nearer
to the nucleus than the corresponding K-shell electron would be. Indeed, for a
charged particle of mass m, the Bohr radius in an atom with atomic number Z is

RB =
Z

mα
, (B.1.1)

which leads to RB
e ≃Z×0.6×10−10m for an electron. And since then

RB
µ =

me

mµ

RB
e , (B.1.2)

for the given mass ratio of approximately 200, this leads to RB
µ ≃Z×3×10−13m

for a muon.
The strong interaction is evidently negligible at such distances; however, the

smaller radius implies that the wave-function for the muon will have a higher
density inside the nucleus than would the corresponding electron, by roughly a
factor 2003. As we shall now show, this represents a sufficiently long time spent
inside the nucleus to test the strong-interaction hypothesis. Conversi et al. meas-
ured a decay lifetime (i.e. for the disappearance or so-called K-capture of muons)
of 0.88µs (to be compared to the free decay time of 2µs). Thus, some form of
interaction evidently occurs. In order to evaluate the strength of this interaction
it is necessary to estimate the mean free path of muons in nuclear matter.



B.1. THE MUON 199

A simple (back-of-the-envelope) estimate may be performed by considering the
volume of the nucleus itself as a fraction f of the total volume occupied by aK-shell

muon. This is just the ratio (Rnucl/R
B
µ )

3. Recall that empirically Rnucl =R0A
1

3 ,
where A is just the atomic mass and R0≃1.2 fm. Using this and Eq. (B.1.2) we
obtain

f =

(
Rnucl

RB
µ

)3

= 0.27A

(
Z

137

)3

. (B.1.3)

For aluminium one has Z=13 and A=27, giving

f ≃ 6× 10−3. (B.1.4)

This will be roughly the fraction of its lifetime that a muon spends inside an alu-
minium nucleus. Already, one might anticipate that, as a fraction of a microsecond,
this still leads to a survival time inside the nucleon many orders of magnitude lar-
ger that the 10−23 s one might have expected. However, let us first estimate the
mean free path (for a strongly interacting particle it should not be much larger than
about 1 fm). The mean velocity of the muon may be estimated from the Heisenberg
uncertainty principle by setting pµ∼~/RB

µ . In a non-relativistic approximation,

this leads to an estimated velocity vµ∼Zα, which, given that typically Z≪α−1,
justifies the approximation a posteriori . Finally, the mean free path is

Λ = vfτ, (B.1.5)

where τ is the lifetime of such a K-shell state.
Now, since decay rates are additive and inversely proportional to lifetimes (i.e.

Γ=Γd+Γc and Γ∝1/τ), the rule for combining lifetimes is

1

τ
=

1

τd
+

1

τc
, (B.1.6)

where τd and τc stand for the free-decay and capture lifetimes respectively. The
measured values are τd=2.16µs and τ =0.88µs in aluminium. We thus obtain

τc ∼ 1.5 µs. (B.1.7)

Inserting this into the formula for the mean free path, Eq. (B.1.5), leads to

Λ ∼ 20− 30 cm. (B.1.8)

In other words, muon survival inside the nucleus far exceeds the expectations for
a strongly interacting particle (Fermi et al., 1947). Indeed, the K-capture time τc
is more suggestive of a weak interaction; this came very much as a surprise:
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“This result was completely unexpected, and we believed at first that there
might be some malfunction in our apparatus.”

Marcello Conversi

Indeed, the revelation that apparently the muon therefore had no particular role in
the general scheme of particle physics prompted Isidor Rabi to comment publicly,
in astonishment:

“Who ordered that?”

B.2 Isospin and SU(2)

In nuclear and particle physics a number of symmetries are apparent. One of the
simplest is the existence of a large number of so-called mirror nuclei : that is, pairs
of nuclei that differ only by interchange of the number of protons and neutrons.
An example is

B11
5 ⇌ C11

6 . (B.2.1)

While the chemical properties of B11 and C11 atoms are obviously rather different,
the nuclei are very similar indeed. When one takes into account the variation due
to the effects of Coulomb repulsion, one might even say they are identical, as far
as the strong interaction is concerned, that is.

Evidently, such a symmetry must have to do with a corresponding symmetry
at the nucleon level. That is, we assume it to be just the manifestation of a deeper
proton–neutron symmetry. In fact, at the hadronic level in general we see much
the same sort of mirror behaviour in various particles:

• The masses of the neutron and the proton are very similar; indeed, although
the proton has a positive charge and the neutron is neutral, they are almost
identical in all other respects. In fact, inasmuch as electromagnetic effects
may be ignored with respect to the strong interaction and taking into account
that, as we now know, there is a small up–down quark mass difference, they
might be considered as two different states of the same fundamental field.

• The strong interaction between any pair of nucleons is identical, independ-
ently of whether they are protons or neutrons. That is, the proton–proton,
proton–neutron and neutron–neutron forces are the same. Again, to see this
phenomenologically, one must first subtract electromagnetic effects.

• In a similar fashion, the three known pion states π+, π0 and π− are also very
similar. Indeed, the two charged pions have exactly the same mass while the
neutral pion is just slightly lighter. Moreover, apart from very systematic
differences, which are in fact explained by the isospin picture we shall now
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discuss, their strong interactions with matter (protons and neutrons) are also
the same.

In 1932 Heisenberg thus introduced the notion of isotopic spin (or isobaric spin) to
explain these observations. The standard contraction of the name is now isospin.

We know from quantum mechanics that when the Hamiltonian of a system
possesses a discrete symmetry, e.g. with respect to spatial inversion, this manifests
itself through a degeneracy of the energy states of the system. Consider, for
example, the various energy levels of the hydrogen atom.

In particle physics mass is equivalent to energy (since E=mc2) and so the
near mass degeneracy of the neutron and proton indicates a symmetry of the
Hamiltonian describing the strong interactions. The neutron does have a slightly
higher mass and so the degeneracy is not exact. However, here (as the case would
be in general for quantum mechanics) the appearance of a symmetry may be
imperfect as it can be perturbed by other forces, giving rise to slight differences
between otherwise degenerate states. Indeed, the proton is charged while the
neutron is not and therefore electromagnetism must play a different role.

Heisenberg noted that the mathematical description of the observed symmetry
rendered it similar to the symmetry structure of orbital angular momentum or
spin, hence the term isotopic spin or isospin. In mathematical terms, the isospin
symmetry is due to an invariance of the strong-interaction Hamiltonian under
the action of the (Lie) group SU(2). The neutron and the proton are placed in
a doublet (a spin-1/2 or fundamental representation) of SU(2). The pions, being

evidently a triplet are assigned a spin-one or adjoint (rank-3) representation of
SU(2).

The mathematical structure (or algebra) is then quite simply that of the usual
angular momentum. Isospin is described by two quantum numbers: the total
isospin I and the spin projection along the quantisation axis I3. The proton and
neutron thus both have I= 1

2
; the proton has I3=+1

2
or ‘isospin up’ while the

neutron has I3=−1
2

or ‘isospin down’. The pions naturally belong to the I=1

triplet, with π+, π0 and π− having I3=+1, 0 and −1 respectively. In Dirac
notation, for the nucleon pair, we write

|p〉 = |1
2
,+1

2
〉 and |n〉 = |1

2
,−1

2
〉 (B.2.2)

while the pion triplet becomes

|π+〉 = |1,+1〉, |π0〉 = |1, 0〉 and |π−〉 = |1,−1〉. (B.2.3)

The pairs of quantum numbers above then have the same mathematical significance
as the j,m pairs for angular-momentum states.
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An important consequence of isospin symmetry and its mathematical struc-
ture is the possibility to apply Clebsch–Gordan coefficients to combinations (or
composition) of particles. A simple example is the strong decay of the so-called
∆ resonances (spin-3/2, isospin-3/2), which may be generically described as ∆→Nπ

(N being a nucleon, p or n). For concreteness, let us consider the state ∆+,
whose isospin designation is indicated as |3

2
, 1
2
〉. There are two distinct possible

final states: pπ0 and nπ+ or |1
2
,+1

2
〉|1,0〉 and |1

2
,−1

2
〉|1,1〉 respectively. Now, a

glance at a table of Clebsch–Gordan coefficients tells us that a spin-3/2 state may

be decomposed into the following combination of spin-one and spin-1/2 objects:

|3
2
, 1
2
〉 =

√
2
3
|1
2
,+1

2
〉|1,0〉+

√
1
3
|1
2
,−1

2
〉|1,1〉. (B.2.4)

The squares of the coefficients provide the branching fractions: namely 2/3 into pπ0

and 1/3 into nπ+. These fractions are experimentally well verified.
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Appendix C

Scattering Theory

C.1 Electron scattering

Through the study of α-particle scattering, Rutherford arrived at a new under-
standing of the atom and its internal structure. However, the α-particle is not
a point-like object and can also interact via the strong force. Thus, the details
of a small nuclear target obtained via such scattering are clouded by the internal
structure of the probe used. On the other hand, the electron only has electromag-
netic interactions (the weak interaction may usually be neglected in comparison)
and so far it has exhibited a purely point-like behaviour (at least up to the highest
energies presently available).

For low-energy scattering (E≪mW , where the weak force is particular sup-
pressed) the interaction of the electron with a nucleon or nucleus is governed
purely by the theory of QED and is therefore completely known. This makes the
electron an ideal probe to study the internal structure of the nucleus and, going
deeper, of the nucleon.

C.1.1 Non-relativistic point-like elastic scattering

The simplest example of scattering with electrons is the elastic case. Here energy
and momentum are transferred from an electron to a nucleus (or nucleon) exchange
via (single) photon exchange and the final nucleus remains intact (see Fig. C.1).
The four-momenta in the problem are then the initial (final) electron momentum
kµ (k′µ) and the initial (final) nucleus momentum pµ (p′µ). Conservation of energy
and momentum requires

kµ + pµ = k′µ + p′µ. (C.1.1)
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e− (kµ)

nucleus (pµ) e− (k′µ)

nucleus (p′µ)

θ

Figure C.1: Elastic electron–nucleus scattering.

Since the momentum of the final nucleus is not usually measured, it is convenient
to rewrite this as

p′ 2 = M2 = (kµ − k′µ + pµ)2, (C.1.2)

where M is the nuclear mass. It is then straight-forward to derive the relation

EM = E ′E(1− cos θ) + E ′M, (C.1.3)

where E and E ′ are the laboratory-frame initial and final electron energies respect-
ively, θ the laboratory-frame electron scattering angle and we have neglected the
electron mass, note that in the laboratory frame pµ=(M,0). This may then be
rearranged to express E ′ as a function of E and θ:

E ′ =
E

1 + (1− cos θ)E/M
. (C.1.4)

which provides the well-known result that, for elastic scattering, the final energy
is determined by the angle (and vice versa).

Let us now simplify to the non-relativistic limit (we shall treat the relativ-
istic case later). The scattering cross-section for electrons is then given by the
Rutherford formula (1911), with the obvious substitution z=−1 for the electron:

dσe
−

dΩ
=

1

16

(
Zα

E∞

)2

cosec4 θ
2
. (C.1.5)

However, this is the cross-section for a point-like target, whereas we may wish to
study the charge distribution inside the nucleus or nucleon; we shall discuss later
how a distributed charge modifies the formula. Let us first consider though the
modifications due to relativistic effects.
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C.1.2 Relativistic elastic scattering—the Mott formula

To resolve the internal structure of a nucleus (i.e. to be sensitive to energy de-
pendence in the form factors, see later), we require the wavelength of the exchange
photon to be small compared to the nuclear size. Since ~c∼200MeV fm, we de-
duce that the energy required is of the order of 100’s of MeV. This implies that the
electrons will certainly be relativistic, in which case we should really perform a cal-
culation based on the Dirac equation. The relativistic calculation for a point-like
object then leads to the Mott cross-section (1929):

dσ̃

dΩ

Mott

=
(
1− β sin2 θ

2

) dσ
dΩ

Ruther.

, (C.1.6)

where the tilde indicates that this is not yet the full (high-energy) Mott formula
since we are still neglecting the nuclear recoil—we shall call this the reduced Mott
formula. The new factor is due to the conservation of angular momentum and
the role played by the spin of the electron. Note that in the ultra-relativistic
limit, where β→1, the spin factor becomes simply cos2 θ

2
. The large-angle Mott

cross-section falls off more rapidly than that of Rutherford; indeed, for θ=180◦ it
vanishes. Note though that the effect conveniently factorises.

Let us just take a moment to try and understand this behaviour in physical
terms. For Dirac theory in the relativistic limit, β→1 (which is evidently equival-
ent to the limit m→0), it turns out that the helicity or projection of the particle
spin onto the direction of motion h≡ ŝ·p̂ is a conserved quantum number if the
interactions are of a purely vector or axial-vector type (e.g. via photon or weak-
boson exchange). Indeed, starting from the Dirac equation, it can be shown that
helicity-flip amplitudes are proportional to m/E (where E is some characteristic
energy scale of the interaction (e.g. the centre–of–mass energy). We thus speak
of right- and left-handed fermions as having h=±1 respectively and in the mass-
less limit they cannot flip (i.e. the two helicities do not communicate). Consider
now the extreme cases of forward and backward scattering, in which the incoming
electron collides and either continues unaltered or returns in the direction from
where it came (θ=0 or π in Fig. C.2). Now, assuming a spin-zero nucleus, since
any orbital angular momentum between the electron–nucleus pair L=r

∧
p must

lie in the plane orthogonal to p, the spin of the electron must be conserved on its
own. For forward scattering this is trivially the case and for backward scattering
it is evidently impossible. For intermediate cases, one needs to understand how
spin-projection eigenstates are constructed for arbitrary directions. For a state of
positive helicity travelling in a direction θ with respect to the chosen quantisation
axis (ẑ say), we find

|+,θ〉 = cos θ
2
|+,z〉+ sin θ

2
|−,z〉. (C.1.7)
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⇒
e−

⇒
e−

θ z

A

Figure C.2: Helicity conservation in high-energy scattering processes; θ is the electron
scattering angle (the blob A represents the target nucleus).

Thus, the amplitude 〈+,θ|+,z〉=cos θ
2

and, squaring, we have the Mott result.
Of course, if the nucleus also possesses an intrinsic angular momentum (due to
internal motion or spins of the constituent nucleons), then the situation is a little
more complex and one also needs to understand the mechanism by which the
nucleus, as a whole, may change or flip its spin projection.

Finally we should take into account the recoil of the struck nucleus and the
consequent modification of the final-state phase space. The final, full Mott formula
is then (in the target rest frame)

dσ

dΩ

Mott

=
E ′

E

dσ̃

dΩ

Mott

=
E ′

E

(
1− β sin2 θ

2

) dσ
dΩ

Ruther.

. (C.1.8)

Again, note the fortunate factorisation of all the new effects.

C.2 Form factors

C.2.1 Elastic scattering off a distributed charge

In describing the case of scattering off a distributed charge, it will be helpful to
make two simplifying approximations:

(i) Ee≪mA—in order to neglect the nuclear recoil,

(ii) Zα≪1—to permit the Born approximation (i.e. single-photon exchange).

We shall also consider the quantum-mechanical treatment, as the concepts of inter-
ference and coherence will become relevant here. Our starting point will therefore
be Fermi’s golden rule:

W =
σva
V

=
2π

~

∣∣〈ψf |Hint|ψi〉
∣∣2 dn

dEf
, (C.2.1)



C.2. FORM FACTORS 209

where the third factor in the last line is the density of final states and Ef is the
total final energy K+mA (K is the final kinetic energy of the electron) and, since
mA is constant, dEf =dE ′=dE.

We first need the description of the initial and final electron states, which we
shall naturally take to be plane-waves:

ψi =
e

i

~
p·x
√
V

and ψf =
e

i

~
p
′·x

√
V
, (C.2.2)

where the normalisation is one particle in a volume V (of course, V will not appear
in the final answer). With this choice, the density of final states is

dn(p) = V
p2dp dΩ

(2π~)3
, (C.2.3)

where p≡|p| (recall that we are using a non-relativistic approximation). We there-
fore have

dσ

dΩ
=

V 2E ′ 2

(2π)2
∣∣Mfi

∣∣2 1

~
4v
. (C.2.4)

We thus need to find the transition matrix element Mfi= 〈ψf |Hint|ψi〉.
For a non-relativistic electron (with charge −e) the interaction is given in terms

of the electromagnetic scalar potential φ(x): Hint(x)= eφ(x). We therefore have
(suppressing ~ for clarity)

〈ψf |Hint |ψi〉 =
e

V

∫
d3
x e iq·x φ(x), (C.2.5)

where we have substituted q=p−p
′, defined to be the momentum transfer. It

is immediately obvious that this is none other than the Fourier transform of the
potential φ(x), which is in turn determined by the charge-density distribution ρ(x)
that generates it:

∇2φ(x) = −ρ(x). (C.2.6)

The plane-wave form allows us to rewrite the expression for the matrix element
directly in terms of ρ(x) by noting that

∇2 e iq·x = −q2 e iq·x . (C.2.7)

If we now apply Green’s theorem or integration by parts, we obtain

〈ψf |Hint |ψi〉 =
e

V q2

∫
d3
x e iq·x ρ(x), (C.2.8)
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where q := |q|.
It is convenient to define a normalised density,

ρ(x) =: Ze f(x), (C.2.9)

such that ∫
d3
x f(x) = 1. (C.2.10)

We thus obtain

〈ψf |Hint |ψi〉 =
Zα

V q2

∫
d3
x e iq·x f(x). (C.2.11)

The integral on the right-hand side, the Fourier transform of the charge density,
is known as the form factor :

F (q) ≡
∫

d3
x e iq·x f(x). (C.2.12)

Putting everything together, we have the differential cross-section:

dσ

dΩ
=

Z2α2E ′ 2

q4
∣∣F (q)

∣∣2. (C.2.13)

It is easy to show (neglecting the electron mass) that

q
2 = (p− p

′)2 = 4EE ′ sin2 θ
2

(C.2.14)

and thus we may finally write

dσ

dΩ
=

Z2α2

16E2 sin4 θ
2

∣∣F (q)
∣∣2, (C.2.15a)

or

=
∣∣F (q)

∣∣2 dσ

dΩ

Ruther.

. (C.2.15b)

In other words, the substructure of the nucleon has the effect of introducing a
multiplicative form factor F (q), which simply modulates the cross-section. From
the definition, we see that the standard Rutherford cross-section is recovered for a
point-like distribution, which is just a δ-function (for which the Fourier transform
is just unity). Note that this is also the limiting case for low-energy scattering; for
q≪~/rnucl or λ≫ rnucl, f(x) does not vary appreciable over the nuclear volume.
For q large, however, the q-dependence of F (q) makes itself felt and thus changes
the energy dependence with respect to that of the point-like formula.
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C.2.2 The phenomenology of form factors

We have just seen that the effect of an extended charge distribution is factorisable
into a form factor, which only depends on the momentum transfer and which, being
a Fourier transform, contains (at least in principle) all necessary information on
the charge distribution. That is, if we were able to measure F (q), by comparing
data with the point-like Mott expression,

dσ

dΩ

expt

=
∣∣F (q)

∣∣2 dσ

dΩ

Mott

. (C.2.16)

over the entire range of q from zero to infinity, we could then perform the in-
verse Fourier transform to obtain f(x). Needless to say, this is impossible; the
momentum transfer is always limited by the beam (or centre–of–mass) energy.
However, the lack of higher frequencies (or shorter wavelengths) simply translates
into a lack of resolution. An example of the sort of information one extracts from
experiment on F (q) is shown in Fig. C.3. Note the pattern of maxima and min-

Figure C.3: The theoretical angular dependence of electron–nucleus elastic scatter-
ing. The upper curves represent the point-like Mott cross-section while the lower curves
correspond to a sphere of uniformly distributed charge (dashed curves) and typical ex-
perimental results (full line), where the edge effects of smearing are felt.
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ima, reminiscent of diffraction in classical optics. Note also that the rapid fall-off
with angle severely limits the maximum q effectively available. The first measure-
ments of this type were made in the fifties at SLAC, with a beam energy of around
500MeV (for which the effective absolute resolution us λmin∼0.4 fm).

In Fig. C.3 we also see a comparison of the point-like Mott cross-section with
that from scattering off a continuous extended charge distribution. At very small
angles, for which the momentum transfer is kinematically constrained to be low,
the exchange photon has a very long wavelength and thus cannot resolve the
internal nuclear structure. In this region there is no difference between a point-
like and extended charge distribution. However, if the beam energy is sufficient,
with growing angle the photon wavelength may eventually become short enough to
resolve the internal structure of point-like charges. In this case the cross-section is
much less suppressed, even out to large angles and does not fall off as rapidly as in
the unresolved, extended case. This comparison will be important in the discussion
of very high-energy electron scattering off a single proton and the question of the
proton substructure.

C.2.3 Fitting form factors to trial functions

By appealing to simple parametrisations for plausible charge-density distributions,
parametrisations of the form factors may be obtained. Such parametrisations are
then compared to the data to extract the parameters. Note that the large-angle
dependence provides information on the internal structure while as θ→0 (for which
eventually λ>Rnucl) one should see a return to the typical q−4 behaviour. By
exploiting spherical symmetry, we may integrate out the angular dependence and
thus simplify the expression for F (q). This leaves

F (q2) =
4π

q

∫ ∞

0

dr r sin qr f(r), (C.2.17)

where q= |q|. Note that the density f(r) is then normalised as

4π

∫ ∞

0

r2dr f(r) = 1. (C.2.18)

In Table C.1 we provide a list of typical functional forms used. As an example,
consider the case of a uniform sphere; the first minimum lies at qR≃4.5. Thus,
referring to the graph in Fig. C.3, we find R≃2.5 fm for C12 . Moreover, the fact
that the minima are not as sharp as is predicted for a uniform sphere indicates the
existence of an outer “skin” of finite depth.
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Table C.1: A collection of possible forms of charge distribution inside the nucleus
together with the corresponding form factors. In all cases R represents a measure of the
nuclear radius.

form f(r) F (q2) behaviour

point δ(r)/4π 1 constant

exponential 1

8πR
3 e

−r/R (1+q2R2)−2 “dipole”

Gaussian 1

(2π)
3/2

R
3 e

− 1

2
r
2
/R

2

e−
1

2
q
2
R

2

Gaussian

uniform sphere 3

4πR
3 (r<R) (sinρ−ρcosρ)

ρ
3 (ρ≡qR) oscillatory

C.2.4 Physical interpretation

Let us conclude this section by providing a physical interpretation of the form-
factor effects. For wavelengths much greater than the size of an extended target
object, the latter is not resolved and acts as an effective point-like charge. However,
for a given wavelength there is a limited region over which scattering may be
coherent; that is, over which the subregions all interfere constructively. A simple
comparison of trajectories reveals that the size of this region is of the order of
one wavelength. Thus, for objects much larger than the wavelength used, only a
small fraction of their total charge actually effectively contributes to the scattering.
This leads to a rapid decrease of the cross-section with decreasing wavelength, or
correspondingly increasing energy–momentum transfer.

C.3 Quasi-elastic scattering

Let us now consider a case intermediate between pure elastic scattering and the
process known as deeply inelastic scattering (DIS, in which the proton is completely
broken up into many pieces). The process we wish to consider is thus called
quasi -elastic scattering. As we have already seen, elastic scattering kinematics
imposes a one–to–one relation between the scattering angle and the energy of the
outgoing electron. We should thus expect a single spectral line. Let us examine
what one observes in practice for scattering off a nucleus at high energy. The
example we shall use is that of scattering off a water molecule (see Fig. C.4).
There are essentially three prominent features to be found in the spectrum, two
pronounced spikes and one broad underlying peak. The larger of the spikes (at
around 165MeV) is evidently due to elastic scattering off one of the hydrogen nuclei
(this is determined simply from the position of the spike with respect to the initial
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Figure C.4: Quasi-elastic scattering of electrons off water as a function of outgoing-
electron energy for a beam energy of 246MeV at a scattering angle of 148.5◦.

Figure C.5: Quasi-elastic scattering of electrons of helium as a function of outgoing-
electron energy for a beam energy of 400MeV at a scattering angle of 60◦.

energy and fixed scattering angle) while the lower (at around 218MeV) corresponds
to the oxygen nucleus—the shift in position being due to the different mass of the
scattering object. The question then remains of the underlying, broader structure
(centred roughly around 147MeV), which nevertheless has the clear form of a peak.
We shall now show that this may be attributed to scattering off a proton bound
inside an oxygen nucleus; the proton is then ejected from the nucleus and this is
what is known as quasi-elastic scattering. Another example, scattering off helium,
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is shown in Fig. C.5.
We known that, for example, the Fermi-gas model makes rather precise pre-

dictions: the nucleons lie in a potential well of approximate depth 40MeV with a
Fermi level corresponding to a momentum of the order of 250MeV. The depth of
the well represents an energy that must be supplied above and beyond the kinemat-
ical needs while the Fermi motion will induce smearing of the total centre–of–mass
energy, leading to a smearing of the final-state spectrum. Let us now examine in
detail how this works. The process we wish to study has a three-body final state:
the electron, the proton and the recoiling nuclear remnant (see Fig. C.6). We begin

recoil
nucleus

e−
e−

γ∗

proton

Figure C.6: A schematic view of quasi-elastic electron–nucleus scattering: via exchange
of a virtual photon a proton is ejected from the nucleus.

by introducing the necessary kinematic variables in the laboratory frame:

p = initial electron momentum, (C.3.1a)

p
′ = final electron momentum, (C.3.1b)

P = initial struck proton momentum, (C.3.1c)

P
′ = final struck proton momentum, (C.3.1d)

q = p− p
′

= momentum transfer. (C.3.1e)

Finally, a useful variable is ν≡Ee−E ′
e, the energy transfer in the laboratory frame.

It then a simple exercise to show that we have

ν =
q2

2M
+ V0 +

2qP cosα

2M
, (C.3.2)

where q= |q|, P = |P | and α is the angle between the vectors q and P .

Exercise C.1. Derive the above expression for the energy transfer ν.

Now, assuming the initial momentum P to be distributed uniformly inside the
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Fermi sphere, we can easily evaluate both ν and σν :

ν = 2π

∫ pF

0

p2dp

∫ 1

−1

dcosα

[
q2

2M
+ V0 +

2qP cosα

2M

]/[
4πp3F
3

]

=
q2

2M
+ V0 (C.3.3)

and

σν ≡
√
ν2 − ν2 =

q

M

√
P 2 · cos2 α =

q

M

√
1
3
P 2

=
1√
5

qpF

M
, (C.3.4)

where we have used the standard result that, for a uniform spherically symmetric

momentum distribution, P 2= 3
5
p2F.

Exercise C.2. From the peak position and width, as shown in Fig. C.4 and/or
Fig. C.5, estimate the corresponding values of pF and V0.

We should now comment on the implicit approximation made here: the fact
that the cross-section may be calculated as though the nucleons (or protons in this
case) were free inside the nuclear volume is not entirely trivial. If the struck particle
sits in a potential well with a strong spatial dependence, then it is presumably
permanently subject to forces comparable to the scattering potential itself and
that should therefore be added to those operating during the scattering process.
However, the data lead to a picture in which the nucleons apparently lie in a
potential well with an effectively flat bottom. That is, deep inside the nucleus
they are not subject to any forces except for the brief moments in which they
make contact with the boundary or surface of the nucleus and thus we are justified
in making what is known as the impulse approximation.

It is perhaps also worth mentioning that the same approximation is used in
describing the scattering of electrons off single quarks inside the nucleon (a pro-
cess known as deeply inelastic scattering). In this case the struck quark does not
actually materialise as a free particle in the laboratory owing to the absolute con-
fining effect of the strong interaction. Nevertheless, calculations (first performed
by Feynman) in the impulse approximation describe the data surprisingly well. In
this case the explanation is not the triviality of the potential, but a phenomenon
known as asymptotic freedom. According to this property of QCD, the strength of
the interaction decreases with increasing energy scale or, equivalently, at short dis-
tances. Thus, provided the energy of the probe is sufficiently large, then the time
and distance scales become such that the struck quark can interact only weakly
with the parent nucleon.
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A more quantitative and rigorous way of defining the impulse approximation
is in terms of interaction times. The struck objects, bound inside a more complex
structure (be they nucleons inside the nucleus or quarks inside a nucleon) move
freely for a time that may be roughly estimated as the diameter of the surrounding
structure divided by their average velocity. The interaction has a time scale which
may be estimated as the inverse of the energy transfer. The impulse approximation
is then justified if the interaction time is less than that of the mean free motion.

Exercise C.3. Estimate the mean free time for a nucleon bound inside an iron
nucleus and thus estimate the energy transfer necessary to guarantee applicability
of the impulse approximation.
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Appendix D

A selection of suitable examination
topics

In this appendix we provide a short list of suitable topics to prepare for the course
(oral) examination:

• Gell-Mann’s quarks and SU(3)—motivation, structure and consequences.

• Feynman’s parton model—motivation, structure and consequences.

• The Higgs model for the electroweak interaction—motivation, structure and
consequences.

• The CKM matrix, with particular reference to CP violation.

• The physics of e+e− machines, with particular reference to particle discovery.

• The role of symmetries and their violation in particle physics.
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Appendix E

Glossary of Acronyms

ABJ: Adler–Bell–Jackiw

AGS: alternating gradient synchrotron

BW: Breit–Wigner

BNL: Brookhaven National Lab.

CERN: Centre Europée de Rechèrche Nucleaire

CESR: Cornell Electron Storage Ring

CKM: Cabibbo–Kobayashi–Maskawa

DIS: deeply inelastic scattering

DESY: Deutches Elektronische Syncrotron

DORIS: Doppel-Ring-Speicher

GIM: Glashow–Iliopoulos–Maiani

GUT: grand unified theory

LEP: Large Electron–Positron Collider

LHC: Large Hadron Collider

PDG: Particle Data Group

QCD: quantum chromodynamics
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QED: quantum electrodynamics

RHIC: Relativistic Heavy-Ion Collider

SLAC: Stanford Linear Accelerator Center

SM: standard model

SPEAR: Stanford Positron–Electron Accelerating Ring

SSC: Superconducting Super-Collider
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