
Fermilab FERMILAB-Conf-00/319 December 2000

A Beamline Matching Application based on Open Source
Software
J.-F. Ostiguy∗

Beam Physics Department, Fermi National Laboratory, Batavia, IL

Abstract. An interactive Beamline Matching application has been developed using beamline and automatic differen-
tiation class libraries. Various freely available components were used; in particular, the user interface is based on FLTK,
a C++ toolkit distributed under the terms of the GNU Public License (GPL). The result is an application that compiles
without modifications under both X-Windows and Win32 and offers the the same look and feel under both operating en-
vironments. In this paper, we discuss some of the practical issues that were confronted and the choices that were made.
In particular, we discuss object-based event propagation mechanisms, multithreading, language mixing and persistence.

INTRODUCTION
Up until just a few years ago, writing software for

scientific applications required the programmer to imple-
ment functionality that had little to do with his objectives.
Although commercial libraries were available, high costs
and licensing hassles made it more practical to reinvent
user interfaces, plot widgets, etc. By dramatically im-
proving free software localization and distribution mech-
anisms, the internet promotes code reuse.

In this paper, we describe an interactive lattice design
application assembled with various freely available soft-
ware components. The objective was not to compete with
commercial products, but rather to provide an application
that can be modified and adapted to meet our specialized
needs. There are currently a limited number of publicly
available interactive applications to perform beamline de-
sign. Popular lattice design programs like TRANSPORT
and MAD have extensive capabilities, but were developed
to be run in a batch-oriented environment.

The design goals were the following: (1) given a de-
scription of a beamline, allow a user to specify all aspects
of a matching problem interactively (2) provide graphi-
cal feedback and allow the user to dynamically interrupt
a nonlinear iteration and edit the state of variables and
constraints (3) make customization as easy as possible.
Although this is still a work in progress, basic features
have been implemented and are fully functional; the re-
sulting application is called BLIMP (BeamLine Interac-
tive Matching Program). A specialized version, produced
to tune the Fermilab Recycler Ring phase trombone, will
be described.

∗Work supported by DOE Contract DE-AC02-76CH0-3000

THE MATCHING PROBLEM
The matching problem is of fundamental importance

for lattice designers. It can be simply stated as follows:
given a beamline and a set of lattice functions specified
at one extremity, determine the strength and/or longitudi-
nal position of beamline elements necessary for the lat-
tice functions to assume certain specified values at one or
more distinct locations.

In most situations of practical importance, horizontal
and vertical motion are decoupled and a beamline is to
first order, completely characterized by a set of ten quan-
tities: βx,y, αx,y, µx,y, ηx,y and η′x,y, where β and α are the
familiar Courant-Snyder lattice functions, µ is the phase
advance and η and η′ are respectively the dispersion and
its derivative with respect to the longitudinal coordinate.

CODE STRUCTURE
BLIMP is written in ANSI standard C++ and takes

advantage of the facilities offered by the Standard Tem-
plate Library. Variables are defined independently of ba-
sic beamline elements and can in principle involve arbi-
trary linear combinations of element strengths. The user
can dynamically define both local and global constraints.
Typically, local constraints involve equalities while global
constraints involve inequalities (e.g. β function smaller
than a prescribed maximum). Figures 1, is a screen shot
of the user interface. BLIMP has been put together by
using both internally developed and freely available soft-
ware components which are now briefly described.
MXYZTPLK/Beamline Class Libraries
MXYZTPLK and Beamline are class libraries au-

thored by Leo Michelotti (1, 2) at Fermilab. Although
considered stable for a few years already, they con-
tinue to evolve and are maintained to keep up with the

FIGURE 1. The BLIMP user interface. The top window is a dis-
play of the beamline layout. Sliding cursors are displayed for
each user-defined variable. Similarly, a custom widget is dis-
played created for each local constraint.

latest developments in the C++ language. MXYZT-
PLK is a stand-alone set of C++ classes for performing
automatic differentiation and differential algebra. The
Beamline class library –built on top of MXYZTPLK–
is a rich set of classes supporting lattice related calcu-
lations. Beamlines are represented by doubly linked
lists whose nodes can either point to other beamlines or
to basic elements. Beamlines can be edited, concate-
nated, cloned, flattened (i.e. no hierarchical structure)
Most quantities of interest to accelerator physicists can be
computed; both field and alignment errors can be included
if necessary. Maps of arbitrary order can in principle be
computed to machine precision in either 4-dimensional
(i.e. transverse) phase space or full 6-dimensional phase
space.

Nonlinear Optimizer
Numerical nonlinear optimization problems can be

classified according to (1) whether or not the objective
function is expressible as a continuous, differentiable
function (2) the nature of the external constraints that need
to be enforced, if any. For matching problems, the ob-
jective function is usually a differentiable function of the
elements strengths and positions. In that case, Newton
method has the advantage of quadratic convergence if the
extremum is sufficiently close. In practice, it is expensive
to compute a Hessian matrix since it involves second or-
der derivatives. To avoid this, a standard strategy is the
Davidon-Fletcher-Powell (DFP) algorithm (3) which pro-
gressively constructs the inverse of the Hessian matrix at
each step of an iteration involving a sequence of one di-
mensional conjugate gradient searches.

BLIMP uses the DFP method as implemented in the
MINUIT library from CERN (6), a good general purpose
optimization library freely available for research institu-
tions. Unfortunately MINUIT suffers from various lim-
itations associated with its Fortran heritage. Among the
most problematic issues: Fortran I/O cannot be mixed
with the C/C++ I/O in a portable way; the objective func-
tion must be passed to the library as a static function. The
optimization code is encapsulated into an Optimizer
class; this should allow an alternative to MINUIT to be
substituted with minimal side effects. A full C++ imple-
mentation would also allow the use of functors objects
to completely decouple the optimizer from the rest of the
code.

Graphical User Interface
The choice of a user interface toolkit has been driven

by two requirements: (1) object orientation and (2) porta-
bility between various flavors of UNIX and Windows NT.
The Fast Light Toolkit (FLTK) (7) satisfies both require-
ments and is available under the terms of the GNU Public
Library License. FLTK also provide support for OpenGL
(or MESA, a free compatible alternative) and BLIMP
takes advantage of the facilities offered by OpenGL to ef-
ficiently display the beamline at different scales.

Events
In addition to the primitive event propagation mecha-

nism provided by FLTK for GUI related events, BLIMP
uses a generic event propagation scheme. It relies on rela-
tively recent, but nevertheless, standard features of ANSI
C++ templates. This allows the code to be structured as
a collection of independent “components”and allows the
code to be completely generic and type-safe. Events can
be arbitrarily complex objects and generic lists are created
for each distinct published event type. Subscribers are
added to each list by interested objects. To propagate an
event, a publisher object need only to instantiate it and in-
voke its virtualpropagatemethod. In practice, to pub-
lish and/or subscribe to a certain event type, a class need
only to be derived from a Publisher or Subscriber
base class (or both).

At this point, a few comments are in order. In certain
commercial frameworks such as MFC, event declaration
and propagation mechanisms are enforced by the frame-
work. MFC does not rely on templates, but rather on a
compex collection of macros. Certain commercial com-
pilers, like Borland C++ Builder for example, provide lan-
guage level support for event propagation by introducing
special additional keywords for that purpose. An interme-
diate approach, used by Qt (a popular C++ framework) is
to extend the C++ language and use a special preproces-
sor to convert the original source code into standard ANSI
C++.

A number of similar free generic template-based
generic “callback” libraries can be found on the internet
(4).

Persistence
A valuable feature for any interactive application is the

ability to save its current state. This state is completely de-
fined by a certain number of objects and their relation to
each other, as defined by pointers and references. Unfor-
tunately, simply saving objects in binary form is not suf-
ficient to save the state of an application, since pointers
and references are process specific. To correctly restore
the state of an application, is its necessary to keep track
of relations between objects and to fix all memory refer-
ences a posteriori. Although its is a straightforward mat-
ter to fix explicitly declared pointers and references, cor-
rectly restoring virtual functions presents a special chal-
lenge, since virtual function pointers are not directly ac-
cessible. Fortunately ANSI C++ provides a solution. In
a nutshell, the technique consists in reading a raw binary
object into a block of (allocated) memory of correct size,
and subsequently invoke the operatornew using the ANSI
C++ placement syntax. This syntax allows one to place an
object in pre-allocated memory. Provided the constructor
does not perform any explicit initialization, all data fields
are left untouched; however, all virtual pointers are cor-
rectly initialized. Persistent versions of the MXYZTPLK
and Beamline libraries have been developed based on
the above described scheme.

Multithreading
Although the FLTK code is not reentrant and there-

fore does not directly support threads, an application can
still take advantage of multithreading provided all GUI
activity remains confined to a single thread. Since the
Optimizer consumes a fair amount of CPU it is use-
ful to dedicate a separate thread to it. An added benefit
of using separate threads is that the Optimizer no longer
needs to conatin any specific GUI code. A threaded ver-
sion of BLIMP is currently under consideration. One dif-
ficulty arises from the fact that the UNIX and WIN32
thread models are somewhat different.

APPLICATIONS
We now describe two applications that motivated the

development of BLIMP.
Phase Trombone

The Fermilab Recycler ring is a new machine for an-
tiproton accumulation and recycling which has the dis-
tinction of being the first machine to make large scale uti-
lization of permanent magnet technology. The machine
operates at fixed energy of 8 GeV with a lattice based
on fixed field combined function magnets. The tune of
the machine is adjusted (±0.5) by varying nine electro-
magnetic quadrupoles grouped in five symmetric families

within a region where ηx,y = η′x,y = 0. Four hard con-
straints must be met, i.e. at the symmetry point αx,y = 0
and the two phase advances set to the desired values; an
additional softer requirement is to prevent the beta func-
tions from exceeding a maximum value.

Low Beta Insertion
In a low-beta insertion, the objective is to use a

pair of quadrupole doublets or triplets to focus counter-
circulating beams into a very small size interaction region.
In general, the insertion has to match the lattice functions
of the ring at both extremities; the phase advance is un-
constrained. At the interaction point, βx,y must assume
specified values and the beam envelope must go through
a minimum i.e. α′x,y = 0. It is also often required for the
dispersion to be as small as possible and one usually de-
mands ηx,y = 0. Constraining η′ may also be desirable.

Low beta insertions are notoriouslynonlinear. Without
experience, it is difficult for a novice to find a satisfactory
solution and interactivity is certainly no substitute for ex-
perience. However, the ability to quickly experiment with
different strategies and stop the iterations dynamically can
be a significant advantage.

CONCLUSION
BLIMP is still a work in progress, although it is cer-

tainly already useful as it stands. The current priority is to
make the application multithreaded. Also under consider-
ation is a port from FLTK to Qt, a commercial framework
much more mature than FLTK, which has only recently
(Sept 2000) been released under the terms of the GPL li-
cense.

REFERENCES
1. L. Michelotti, “MXYZPLTK Version 3.1 User’s Guide: A

C++ Library for Differential Algebra”, Fermilab Publication
FN-535-REV, October 1995

2. L. Michelotti, “MXYZPLTK and Beamline: C++ Objects
for Beam Physics”,AdvancedBeam Dynamics Workshop on
Effects of Errors in Accelerators, their Diagnosis and Correc-
tion, AIP Conf. Proceedings No 225, 1992

3. R. Fletcher and M.J.D Powell, “A rapidly convergent De-
scent Method for Minimization”, The Computer Journal, 6,
163-168, 1963

4. For example, seehttp://libsigc.sourceforge.net.

5. J. Hesse, “EZSave for C++”, C++ Report 12(2): 21-26, 40-
41, Feb. 2000

6. F. James, “MINUIT Minimization Package Reference Man-
ual Version 94.1”, CERN Program Library D506, Computing
and Networks Division CERN Geneva, Switzerland

7. Information about FLTK is available at the following URL:
www.fltk.org

8. Fermilab Recycler Ring Technical Design Report, Fermilab
Publication TM-1936, July 1995

