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The aim of this historical article is to describe
the development of the idea of spontaneous
symmetry breaking in gauge theories as seen
from my perspective as a member of Abdus
Salam’s group at Imperial College London, UK.
Beginning with an account of particle physics in
the years after the Second World War, I describe
early attempts at constructing a unified theory of
weak and electromagnetic interactions, the obstacles
encountered and how they were eventually overcome
with the mass-generating mechanism incorporating
the idea of spontaneous symmetry breaking, one of
whose features is the now-famous Higgs boson.

1. Introduction
Symmetry plays a big role in physics. It often greatly
simplifies the solution of a problem. If we have a perfectly
round, concave bowl and throw a small marble into it,
the task of following its subsequent trajectory would be
quite complex. But if we are only interested in where it
eventually comes to rest, the answer is clear: the only
symmetric point, the centre (figure 1a). However, this
does not always work. We could not solve the problem
for a roulette wheel, because its structure explicitly
breaks the symmetry. But suppose instead of a concave
bowl, we have one shaped like the base of a wine
bottle. Although this is still perfectly symmetric, the
marble will not end up in the centre, where it would
be sitting on a hump; it will come to rest somewhere
on the circle of lowest points (figure 1b). This is an
example of spontaneous symmetry breaking; the ground
or lowest-energy state does not share the symmetry
of the underlying physics. Instead, there is a whole
family of ground states, the different points on the circle.
The symmetry breaking is spontaneous in the sense that
(unless we have extra information) we cannot predict
which of these ground states will be chosen.

2014 The Author(s) Published by the Royal Society. All rights reserved.
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(a) (b)

Figure 1. Final equilibrium point in a circular concave bowl (a) and a bowl with a central hump (b). (Online version in colour.)

Spontaneous symmetry breaking is ubiquitous in condensed matter physics. It often occurs
when there is a phase transition between a high-temperature, symmetric phase and a low-
temperature one in which the symmetry is spontaneously broken. The simplest example is
freezing. If we have a round bowl of water sitting on a table, it looks the same from every
direction; it has rotational symmetry. But when it freezes, the ice crystals form in specific
orientations, breaking the symmetry.

Remarkably, the same phenomenon plays a crucial role in one part of the Standard Model of
particle physics, the unified theory of weak and electromagnetic interactions first developed in the
1960s. In this paper, I describe the history of that development as I saw it from my vantage point
as a member of the Theoretical Physics Group at Imperial College London, UK, led by Abdus
Salam.

2. Particle physics after the Second World War
I have always believed that it was stroke of immense good fortune that I was able to join that
group in 1959, less than 3 years after it was founded. Salam was a very talented physicist and
a charismatic and inspiring leader, who attracted many distinguished visitors, such as Murray
Gell-Mann and Steven Weinberg. It was a very exciting place to be, and a very exciting time in
particle physics.

In quantum physics, as is well known, the distinction between particles and waves is lost;
electrons show interference, and light comes in quantized photons. Both are described by quantum
fields. The first quantum field theory to reach a mature form was quantum electrodynamics (QED),
which describes the interactions of electrons and photons. In this theory, the interaction between
two electrons is mediated by the exchange of one or more photons between them, as represented
in figure 2.

QED had been around since the 1930s, and was very successful up to a point. The standard
method of calculation, perturbation theory, involved a power-series expansion in powers of the
fine-structure constant

α = e2

4πε0h̄c
≈ 1

137
, (2.1)

where −e is the charge on the electron, and h̄ is Planck’s constant divided by 2π . Lowest-order
calculation, as represented by figure 2a, gave results in good agreement with experiment. (The
photon is traditionally labelled γ and represented by a wiggly line, a relic of the idea that light
is formed of waves. Conventionally, time goes upwards in these diagrams.) The trouble was
that all the higher-order corrections, represented by diagrams such as those of figure 2b,c, gave
infinite answers.

The solution to this problem, the concept of renormalization, was discovered in 1947
independently by Schwinger [1] and Feynman [2], and in fact earlier, in 1943, by Sin-Itiro
Tomonaga, whose work in war-time Japan took some time to reach the West [3]. What these
authors found was that it was possible to group all the infinities into corrections to the mass
and charge of the electron. An electron is always surrounded by a cloud of ‘virtual’ photons
and electron–positron pairs, whose presence changes the measured mass and charge. And if the
results are re-expressed in terms of the actual measured mass and charge rather than the original
‘bare’ parameters, the infinities miraculously drop out.
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Figure 2. Electron–electron scattering: (a) lowest order, (b) and (c) higher order. (Online version in colour.)

Even today, this seems a slightly questionable procedure, but it works astonishingly well.
The predicted results were verified by beautifully precise measurements of quantities such as
the magnetic moment of the electron and the Lamb shift in hydrogen, the difference in energy
between the 2p1/2 and 2s1/2 energy levels. QED rapidly became the most precisely verified theory
in physics.

Following this success, the next natural goal was to find similarly successful theories of the
other interactions or, even better, a unified theory of all of them—something for which we are
still searching. Conventionally, we distinguish four types of interaction. Two of these are the
familiar long-range forces of electromagnetism and gravity. The other two are short-range forces,
negligible on scales much larger than an atomic nucleus. There is the strong nuclear force which
binds together the protons and neutrons in nuclei, and the weak nuclear interaction responsible
for radioactive beta decay, which also plays a key role in the energy-generation mechanism in the
Sun. Each of these is characterized by a strength parameter or coupling constant analogous to the
fine-structure constant. As things stood in the 1950s, it appeared that, for strong interactions, this
constant must be of order one while for the weak it was around 10−10. For the fourth interaction,
gravity, it is of order 10−40; on particle physics scales, gravity is totally negligible.

Initially, most interest centred on finding a theory of strong interactions, and some promising
models were suggested. The problem was, however, that, with a coupling constant of order unity,
perturbation theory is no use; successive terms in the series are all of the same order, so no
one could actually do meaningful calculations. For this reason, quantum field theory fell out of
fashion. When I was a student in the late 1950s, S-matrix theory, based on a study of the analytic
properties of scattering amplitudes, was all the rage. Nevertheless, there were places, such as
Imperial College—another was Harvard University in Cambridge, MA, USA—where the flag of
field theory was kept flying.

3. Hadronic symmetries
Experimenters had been very busy too in the years after 1945. Observations of cosmic rays using
cloud chambers, and later, at accelerators, of particle collisions in bubble chambers, revealed a
whole host of new particles, especially hadrons, particles that have strong interactions, such as
the proton and neutron. Within a few years, a ‘zoo’ of a hundred or more apparently elementary
particles had emerged. One of the principal concerns of theorists was to try to bring some order
into this chaos, by finding patterns and regularities, much as chemists had done in the previous
century in establishing the periodic table.

A key role in this enterprise was played by the idea of approximate symmetries. The first of
these, now called isospin, was well established, having already been proposed by Heisenberg [4].
Heisenberg noted that in many respects protons and neutrons are very similar; they have the
same spin ( 1

2 in units of h̄), almost the same mass, and essentially the same strong interactions.
Heisenberg suggested that they might be regarded as two distinct states of a single entity, the
nucleon; it would have two possible charge states, N+ = p and N0 = n, analogous to the two
spin states of an electron, e↑ and e↓. More importantly, Heisenberg suggested a symmetry, under
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which one can ‘rotate’ one charge state into a combination of the two, just as one can rotate the
spin of an electron. The symmetry is called ‘isospin’ not because of any physical connection to
angular momentum, but because of a mathematical analogy with electron spin; both are described
mathematically by the symmetry group SU(2). This proved to be a very prescient idea that was
extremely useful for example in classifying the energy levels of light nuclei. It was later extended
by Kemmer [5] to the other known strongly interacting particles, the pions (or π -mesons) which
appear in three charge states (π+,π0,π−).

Of course, this is not an exact symmetry. The proton and neutron do differ: the proton has a
charge and the neutron does not. The symmetry is broken by the electromagnetic interactions. But
because on the nuclear scale they are much weaker than the strong interactions, it is still useful.
Today, we know that all hadrons are composed of quarks and antiquarks, and we understand
isospin as a symmetry relating the two lightest quarks, up (u) and down (d), the constituents of
nucleons and pions.

Another big step was taken in 1961. It was found that hadrons could be grouped in two-
dimensional patterns of octets and decuplets, with triangular symmetry. This was explained,
independently, by Gell-Mann [6] and Yuval Ne’eman [7], then a student of Salam’s, by invoking a
larger and more approximate SU(3) symmetry, which Gell-Mann called the ‘eightfold way’. This
is now understood as a symmetry of the three lightest quarks, u, d and s (strange).

4. Gauge theories
QED is a gauge theory. This means it has a special kind of local symmetry. In ordinary quantum
mechanics, the physics is unchanged by a global change of phase of the wave function ψ :

ψ(t, r) →ψ(t, r)eiα , (4.1)

where α is an arbitrary constant. Mathematically, this is a U(1) symmetry. In quantum field theory,
however, the physics is unchanged by a more general space–time-dependent transformation:

ψ(t, r) →ψ(t, r)eiα(t,r), (4.2)

provided that a compensating transformation is applied to the electromagnetic potentials.
This idea of replacing a global by a local symmetry, often called the ‘gauge principle’, provides

a sort of rationale for the existence of the electromagnetic field; without that field, the extension is
not possible. Moreover, it was also seen as offering an explanation for the fact that the quantum
of the electromagnetic field, the photon, is massless, in the sense of having zero rest-mass; in
vacuum it cannot ever be at rest, and its minimum energy is zero. This is because the gauge
principle does not work if we add a mass term. That yields a theory that cannot be renormalized,
so it is inconsistent in the sense of giving infinite answers to physical questions.

It seemed natural to ask if this gauge principle could be extended. Salam was convinced from
an early stage that a unified theory of all interactions should be a gauge theory. The first proposal
of this kind was made by Yang & Mills [8] in 1954 and in fact independently in the same year by
Ronald Shaw, then a student of Salam’s, though he never published it except as a PhD thesis [9].
This Yang–Mills theory was based on applying the gauge principle to the isospin SU(2) group, and
was intended as a theory of strong interactions. But the fact that isospin is not an exact symmetry
posed a problem, because adding symmetry-breaking terms seemed to destroy the nice properties
of gauge theories. In the end, it did not turn out to be the correct theory of strong interactions; that
is a quite different gauge theory called quantum chromodynamics (QCD), which I will not discuss in
detail here. However, the Yang–Mills theory is the basis on which all subsequent gauge theories
have been founded.

Because of the difficulty, mentioned earlier, of calculating with a strongly interacting theory,
interest began at least to some extent to shift towards the weak interactions, especially after the
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Figure 3. (a) Muon–electron scattering and (b) muon decay. (Online version in colour.)
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Figure 4. Decay of 60Co, viewed directly and in a mirror image. (Online version in colour.)

discovery that they could be understood as proceeding through the exchange of particles of spin
1 (in units of h̄), such as the photon [10,11]. In this case, two charged particles, called W+ and
W−, were required. So people began to ask, could this be a gauge theory, or even could there be a
unified theory of weak and electromagnetic interactions, with some sort of symmetry between the
three ‘gauge bosons’, the W+, W− and γ ?

It is worth comparing examples of the two kinds of interactions. Figure 3a shows a typical
electromagnetic interaction, the scattering of an electron and a muon (a heavier version of the
electron), proceeding via photon exchange. Figure 3b, on the other hand, represents a typical
weak process, the decay of a muon into an electron and a pair of neutrinos, proceeding via the
intermediary of a W−. Clearly, these two diagrams are quite similar. But there are some very
important differences. Most significantly, the long range of the electromagnetic force means that
the photon must have zero rest-mass, as expected for a gauge boson. But correspondingly, the very
short range of the weak interactions means that the W+ and W− must have very large masses, of
the order of 100 times the mass of a proton. Moreover, the electromagnetic interactions conserve
parity, meaning that they look the same if viewed through a mirror. But the weak interactions do
not. It was discovered in 1957 that they violate parity conservation; spinning 60Co nuclei, when
they decay, emit electrons preferentially in the direction opposite to the spin, a correlation that
would be reversed if we looked through a mirror [12] (figure 4). So clearly if there is some kind of
symmetry between the three gauge bosons, it must be broken.

The first proposal of a gauge theory of weak interactions came in 1957 from Schwinger [13],
who also suggested there might be a unified theory based on the SU(2) group involving all
three gauge bosons. A big step forward was taken by Glashow in 1961 [14]. To solve the parity
problem, he proposed an extended theory, based on a larger symmetry group SU(2)×U(1) and
incorporating a fourth gauge boson Z0, and showed that, by a mixing mechanism between
the two neutral gauge bosons, it was possible to arrange that one (the photon) would have
parity-conserving interactions, whereas the others, such as the W±, did not.

Salam & Ward (long-time collaborator of Salam) [15], apparently unaware of Glashow’s work,
wrote down a very similar model, also based on SU(2) × U(1), 3 years later.

But in all these models, the symmetry breaking, giving the W± large masses, had to be
inserted by hand, and models with spin-1 bosons with explicit masses were well known to be
non-renormalizable, in other words inconsistent.

The big question that began to be asked was whether this could be achieved by spontaneous
symmetry breaking, where the underlying symmetry remains, but is broken by its particular
realization. It was first suggested by Nambu [16,17] that particle masses might be generated by
such a process, by analogy with what was known to happen in superconductivity. There was,
however, a major difficulty.
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5. Nambu–Goldstone bosons
The problem was that in many cases spontaneous breaking of a continuous symmetry leads to
the appearance of unwanted massless scalar (spin-0) bosons [17,18]: ‘unwanted’ because no one
had seen any such bosons, and if they existed and had any reasonable strength of interaction they
ought to have been easy to see.

The simplest model to illustrate this is the Goldstone model, which involves a complex scalar
field φ(t, r) with a self-interaction described by the potential function

V = 1
2λ(φ∗φ − 1

2η
2)2, (5.1)

where λ and η are positive constants. This is the sombrero potential (figure 5).
Like the base of a wine bottle discussed earlier, this potential has a maximum at φ = 0,

and minima around a circle. So the ground state, in this case the vacuum state |0〉, breaks the
symmetry. In fact, we have a degenerate vacuum state; we can have

〈0|φ|0〉 = η√
2

eiα , (5.2)

for any value of α.
Suppose we choose one particular value, say α= 0, thus making the expectation value real,

and write φ as the vacuum expectation value plus real and imaginary parts:

φ = 1√
2

(η + ϕ1 + iϕ2). (5.3)

Then, substituting into V , we find

V = 1
2 m2

1ϕ
2
1 + cubic and quartic terms, (5.4)

where m2
1 = λη2. The mass of the ϕ1 boson representing radial oscillations is determined by the

curvature of the potential in that direction. But in the transverse ϕ2 direction, the potential is flat,
and the corresponding boson is massless. This is the Nambu–Goldstone boson. The corresponding
waves represent space-dependent oscillations in the direction of symmetry breaking.

If this phenomenon were inevitable, it seemed that spontaneous symmetry breaking could
be ruled out, because nobody had seen any massless spin-0 bosons. There were known
counterexamples in condensed matter physics, in particular superconductivity [16,19]. But these
were not well understood; there was considerable debate among the experts as to whether that
was really an example of spontaneous symmetry breaking, and it was generally believed that the
Nambu–Goldstone bosons were unavoidable in relativistic theories. This became known as the
Goldstone theorem.

Naturally, there was a lot of discussion of this issue among those trying to develop gauge
theories. When Steven Weinberg came to Imperial College on sabbatical in 1961/1962, he and
Salam spent a lot of time discussing this issue, and eventually developed what seemed like a
watertight proof, which they published together with Goldstone [20].

For the sake of those who want to know the details, let me summarize the argument. (Others
may skip this paragraph.) It relied on the well-known fact (called Noether’s theorem after its
discoverer, Emmy Noether) that a continuous symmetry is always associated with a conservation
law; for example, translational symmetry is associated with conservation of momentum. The
conservation law is expressed through a local continuity equation of the form

∂μjμ ≡ ∂ρ

∂t
+ ∇ · j = 0, (5.5)

where j0 ≡ ρ is the density of the conserved quantity and j ≡ (j1, j2, j3) the flux density. This
normally leads to a global conservation law

dQ
dt

= 0, where Q(t) =
∫
ρ(t, r)d3r. (5.6)
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Figure 5. The sombrero potential. (Online version in colour.)

The conserved quantity Q generates the symmetry in the sense that, under an infinitesimal
symmetry transformation, the change in any field φ is given by the commutator

δφ(t, r) = iε[φ(t, r), Q(t)], (5.7)

where ε is an infinitesimal parameter. The fact that the symmetry is spontaneously broken means
that there is some field φ whose vacuum expectation value 〈0|φ|0〉 is not invariant under the
transformation, i.e. 〈0|[φ, Q]|0〉 �= 0. However, if Q is time-independent, this can happen only if
there are possible intermediate states with zero energy in the limit of zero momentum, in other
words massless particle states.

The development seemed to have reached an impasse. Spontaneous symmetry breaking
required the existence of massless spin-0 particles, which ought to have been easy to see.
Because none had been found, that appeared to rule the idea out. Weinberg commented on this
disappointing conclusion ‘Nothing will come of nothing; speak again!’, a quotation from King
Lear. Fortunately, however, we were eventually able to speak again.

6. The mass generation mechanism
In 1964, a young American postdoctoral fellow arrived at Imperial College, Gerald Guralnik, who
had been a student of Walter Gilbert, who in turn was a student of Salam. I was very interested to
find that he had already been working on this problem and indeed published some ideas about
it [21,22]. We began working on it, together with another American visitor, Carl Richard Hagen.
We, and of course others, found the solution. It turns out that gauge theories are different. In a
remarkable way, the masslessness of the would-be Nambu–Goldstone boson and of the gauge
boson apparently ‘cancel out’, creating a massive gauge boson.

This was presented in papers by three independent groups, all published in the summer and
autumn of 1964: first by Englert & Brout [23] from Brussels, Belgium, then Higgs [24,25] from
Edinburgh, UK, and finally Guralnik et al. [26] from Imperial College.

All three, starting from very different viewpoints, proposed essentially the same model
for spontaneous symmetry breaking in the simplest U(1) gauge theory, a broken version of
electrodynamics of spin-0 charged particles. It involves introducing a new complex scalar field φ.
To be specific, again for those who want the details, it is described by the Lagrangian density

L= Dμφ
∗Dμφ − 1

4 FμνFμν − V(φ), (6.1)

where

Dμφ = ∂μφ + ieAμφ, Fμν = ∂μAν − ∂νAμ, (6.2)
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and V is the same sombrero potential (5.4) as in the Goldstone model. As before, the field acquires
a non-zero average value, breaking the symmetry spontaneously. We can again make the same
expansion of φ as in (5.3), and it is convenient also to define a new field Bμ by

Bμ = Aμ + 1
eη
∂μϕ2. (6.3)

The relation between Aμ and Bμ is effectively a gauge transformation, so Fμν = ∂μBν − ∂νBμ. The
radial ϕ1 mode acquires a mass as before from the curvature of the potential; this is the Higgs
boson. But, the kinetic term for ϕ2 turns into a mass term for Bμ. We find

L= 1
2∂μϕ1∂

μϕ1 − 1
4 FμνFμν − 1

2λη
2ϕ2

1 + 1
2 e2η2BμBμ + cubic and quartic terms. (6.4)

Miraculously, the massless fields seem to have disappeared, leaving only a massive scalar (the
Higgs boson) and a massive gauge (vector) boson.

7. Escaping the Goldstone theorem
How then did we manage to avoid the conclusions of the Goldstone theorem? This is a very subtle
question, which I try to answer in this section. (Those who are not interested in these details can
safely skip to the next.)

The answer lies in a well-known peculiarity of the electromagnetic field (and other gauge
fields). Gauge invariance means that we can make a transformation of the form (4.2), together
with the matching transformation of the electromagnetic potentials, without changing anything
physical. Thus, the same physical state can be represented by many different solutions of the
field equations related to each other in this way. Correspondingly, there may be oscillations
in the field variables that look like physical particles, but actually represent only oscillations
in the value of the function α. These are not real physical particles but only ‘gauge modes’,
space–time-dependent gauge transformations. For many purposes, this is awkward, and it is
convenient to impose a specific gauge condition, a rule for choosing one specific representation
for each physical state.

One of the simplest is the so-called Coulomb or radiation gauge condition, the requirement
that the spatial part of the potential field Aμ be divergenceless:

∂kAk ≡ ∇ · A = 0. (7.1)

If Bμ = 0 then by (6.3) this implies that ϕ2 must satisfy the Laplace equation, ∇2ϕ2 = 0, which,
with appropriate boundary conditions, means that ϕ2 itself vanishes (or is at most a constant).
But imposing the Coulomb-gauge condition (7.1) requires that we choose a specific rest frame.
By imposing this condition we remove the unwanted gauge modes, but we also lose the explicit
relativistic invariance of the theory under Lorentz transformations. The physical results are of
course still independent of the choice of reference frame, but if we go to a relatively moving frame
we also have to make a gauge transformation to impose the Coulomb-gauge condition in the
new frame.

Now, one of the assumptions made in proving the Goldstone theorem [20] was that the theory
is explicitly Lorentz invariant. This is the assumption that fails in the case of Coulomb-gauge
electrodynamics. The time independence of the ‘charge’ operator Q of (5.6) only follows from the
continuity equation (5.5) if one can drop a surface integral term at infinity. This is legitimate in
a manifestly Lorentz-invariant theory, because what we are really interested in are commutators,
and in such a theory the commutators always vanish outside the light cone. However, it is not
legitimate in Coulomb-gauge electrodynamics, where commutators fall off quite slowly at large
distances. In fact, as was shown explicitly in our paper [26], the operator Q, in this case, not only
fails to be time-independent, but actually does not exist at all as a well-defined operator. This is
now recognized as a characteristic feature of spontaneous symmetry breaking.
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There is an alternative approach that does preserve relativistic Lorentz invariance. That is, to
choose instead of (7.1) the Lorentz gauge condition, namely

∂μAμ = 0, (7.2)

which does not require a choice of reference frame. But, in this case, some gauge freedom remains;
here, if Bμ = 0, all we can say about ϕ2 is that it satisfies the wave equation, ∂μ∂μϕ2 = 0, which,
being a hyperbolic equation, does have non-trivial solutions. In this manifestly Lorentz-invariant
formalism, the Goldstone theorem does apply. There are Nambu–Goldstone bosons, and because
the field ϕ2 satisfies the wave equation they are massless. But they are not physical, they are pure
gauge modes.

There is one further subtlety. We have spontaneous symmetry breaking in a gauge theory, but
it is not, in fact, the local gauge transformations that are spontaneously broken. Indeed, in 1975,
Elitzur [27] showed that spontaneous breaking of a local symmetry is logically impossible. In
the Coulomb-gauge formalism, our gauge condition has eliminated the local gauge invariance;
it is broken explicitly, not spontaneously. But there remains a global symmetry. We chose φ to
be real, or equivalently ϕ2 = 0, but we could have chosen any other fixed phase instead. (This
corresponds to the fact that ϕ2 may not vanish but be a non-zero constant.) It is this remaining
global symmetry that is actually spontaneously broken. Moreover, it should be emphasized that,
unlike for example the distinct degenerate ground states of a freezing liquid, our distinct vacuum
states are all physically equivalent. This is because for the phase of φ, unlike the orientation of
the crystals, there is no fixed external reference standard. In our case, there is no true physical
degeneracy of the vacuum.

8. Electroweak unification
The papers from the three groups I have described attracted hardly any attention at the time,
except for some scepticism. By the end of 1964, we knew of Glashow’s (or Salam and Ward’s)
SU(2) × U(1) model, and we knew of the mass-generating mechanism based on spontaneous
symmetry breaking. So it is perhaps rather surprising that it still took three more years for anyone
to think of putting the two together. This may have been partly because many of us were still
thinking more of strong interactions.

I did some further work early in 1967 on how the mechanism could actually be applied to more
realistic gauge-theory models with larger symmetry groups, in particular on how the symmetry-
breaking pattern determines the numbers of massive and massless bosons [28]. I had several
discussions with Salam which I think served to revive his interest in the subject. Eventually, a
unified theory of weak and electromagnetic interactions of leptons (particles such as the electron
and muon that do not have strong interactions) was proposed by Weinberg [29]. Salam presented
essentially the same model in lectures he gave at Imperial College in the autumn of 1967 (though I
was not present, because I was then in the USA). He did not publish this work until the following
year [30], probably, in large measure, because he was very occupied with developments at his
International Centre for Theoretical Physics in Trieste, Italy. He called this the electroweak model.

Both Salam and Weinberg speculated that their theory was renormalizable, but they were
unable to prove it. It was proved in 1971 by a young student, Gerard ’t Hooft [31], in a real tour
de force using methods developed by his supervisor, Martinus Veltman, especially the computer
algebra program Schoonship.

In 1973, the key prediction of the theory, the existence of ‘neutral current’ interactions, those
mediated by Z0, was established at CERN [32]. This led to the award of the Nobel Prize to
Glashow, Salam and Weinberg in 1979, but Ward was left out, even though he was a collaborator
on almost all of Salam’s papers on the subject, perhaps because of the ‘rule of three’ that limits the
number of recipients to no more than three.

In 1983, the W and Z particles were finally discovered at CERN [33,34]. This led the following
year to Nobel Prizes for the experiments to Carlo Rubbia and Simon van der Meer.

’t Hooft and Veltman gained their Nobel Prizes much later, in 1999.
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Also during the 1970s and 1980s, in parallel with these developments, a theory of strong
interactions, quantum chromodynamics (QCD), was developed. This was a gauge theory based
on an SU(3) symmetry, though with no relation to the eightfold way. It does not involve any
spontaneously broken symmetry—the SU(3) is exact—but solves the problem of short range by a
completely different mechanism. So by then we had a Standard Model of particle physics, based on
the symmetry group SU(3) × SU(2) × U(1). Over the past few decades, this model has been tested
in all kinds of ways and become more and more established.

9. The Higgs boson
In 1964 or 1967, the Higgs boson had been a rather minor feature; the important thing was the
mechanism that gave masses to the gauge bosons while escaping the Goldstone theorem. But after
1983, when all the other elements of the Standard Model had been seen (except the top quark,
which completes the family of six), the Higgs boson started to acquire a key importance, as the
last remaining piece of the standard-model jigsaw. The Standard Model worked so well that it (or
something else doing the same job) more or less had to be present.

Finding the Higgs boson was of course one of main objectives of the Large Hadron Collider
(LHC) at CERN, and of the two dedicated teams that designed, built and operated the great
ATLAS and CMS detectors. The search was triumphantly successful in 2012 [35,36], leading to
Nobel Prizes for Englert and Higgs in 2013.

The main purpose of the Higgs boson was to give mass to gauge bosons, but it also gives
mass to all other particles it interacts with. The mechanism is very similar to refraction. The non-
zero vacuum value of the Higgs field corresponds in particle terms to a uniform sea or condensate
of Higgs bosons. A similar effect is produced when a photon enters a plasma, containing free
electrons. The photon is slowed by interaction with the electrons, though without losing energy.
It acquires an effective mass mγ related to the plasma frequency ωpl by

mγ = h̄ωpl

c2 , with ω2
pl = e2ne

ε0me
, (9.1)

where ne is the electron density. Here, the electrons play an analogous role to the Higgs bosons.
It is quite often said that the Higgs is responsible for all the mass in the Universe. But this is not

true. It does give mass to all the known elementary particles except the photon, which remains
massless, and perhaps the neutrinos, which do have small, but non-zero masses of unknown
origin. But it does not contribute most of the mass of protons and neutrons, which comes instead
from the gluons (the gauge bosons of QCD) that hold them together.

10. Conclusion
Our Standard Model is now in one sense complete. But, it is certainly far from being the last
word. It is a wonderfully successful theory that agrees very well with almost all the experimental
data. But it must be admitted that it is also a mess. It has something like 20 arbitrary parameters,
such as mass ratios and coupling strengths, that we cannot predict. Many of these are apparently
quite critical for our very existence, so one theory is that there are many universes in which these
parameters take all kinds of different values, but creatures like us will only appear in a very
restricted set in which the parameters happen to have values favourable to us. To me however
that anthropic theory seems like a counsel of despair.

Moreover, there are still a lot of things the Standard Model does not explain: what is the dark
matter and the ‘dark energy’ in the Universe?; why did it apparently undergo a rapid period of
inflation?; why do the neutrinos have these tiny masses?; why are there, as there seem to be, three
generations of otherwise similar particles with wildly differing masses? In addition, the standard
model is not truly unified, because its symmetry is a product of three distinct symmetries, each of
which has its own coupling strength. And finally, of course, the Standard Model does not include
gravity, and efforts to bring the two together have shown that there are major obstacles. Possibly,
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for this, we need string theory or its modern incarnation, M-theory, or loop quantum gravity, or
who knows what?
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discovery of the Higgs boson’ meeting, on which this article is based. I would also like to acknowledge the
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