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I. INTRODUCTION 
The obtaining of the required average beam current 

in a pulse operated proton linear accelerator with 
high duty-ratio may necessitate the injection of 
pulsed high intensity proton currents. At a vacuum 
of the order of 10-6 m m and with a pulse duration 
not surpassing several tens of microseconds, the 
neutralisation of the proton charge by slow electrons 
is impossible for lack of time1). In this case the 
beam space charge materially influences the motion 
of particles in the accelerator. With a given external 
focusing field and a definite phase volume of particles, 
the maximum cross-section of the beam grows with 
the beam current. 
It is well known that at injection energies up to 

1 MeV, the focusing of the proton beam by longitudinal 
magnetic field requires much greater electric power 
than the focusing by a quadrupole lens field. The 
focusing of the proton beam by a longitudinal 
magnetic field proves to be practically inexpedient 
even when the space charge is absent2), since the 
stability of the beam with due consideration for the 

defocusing action of the accelerating gaps may be 
ensured only by extremely strong fields. Nevertheless, 
by means of the longitudinal fields, there always 
exists, for an arbitrary beam current, at least a theoret
ical possibility to obtain the beam cross-section as small 
as wanted if the magnetic field intensity is sufficiently 
high. In case of strong focusing, the permissible 
field of quadrupole lenses is not only limited by 
the technical difficulties, but is restricted by the 
first region of stability. This, in principle, is a limita
tion for the maximum possible beam current at a 
given channel aperture. The aperture of the channel 
within the drift tubes is restricted by the requirements 
associated firstly with the necessity of ensuring a 
sufficiently high transit-time factor, and secondly, 
with the possibility of creating the quadrupole lens 
field gradient required to obtain a stable beam 
throughout the range of phase oscillations of the 
particles with the available magnetic materials (in 
the case of magnetic lenses), or with the permissible 
tension (in the case of electrostatic lenses). Thus, the 
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demands imposed on the aperture of the channel 
predetermine the maximum beam cross-section and 
thereby limit the beam current in the strong focusing 
channel. 
With a given beam current the space charge, 

generally speaking, does not affect the stability of 
particle motion but determines the beam cross-
section in the stationary conditions for a definite 
phase volume of injected particles. This paper 
presents the estimates of the dependence of the 
beam sizes upon the proton current at different values 
of quadrupole lens focusing fields and phase volumes 
of the injected particles, taking into consideration 
the longitudinal particle scattering associated with 
the presence of synchrotron oscillations in the accel
erator. A channel without acceleration is a special 
case. This paper discusses magnetic quadrupole 
lenses, but all the results may be easily applied to 
the case of electrostatic quadrupole lenses. Inasmuch 
as the co-solution of the equations of motion of 
many particles, taking into account the Coulomb 
interaction, in a general case is very difficult we have 
studied a number of special cases which are dis
tinguished by the fact that, thanks to the special 
choice of the initial phase space distribution of 
particles, the equations of motion remain linear. 

II. EQUATIONS OF TRANSVERSE OSCILLATIONS 

The following simplifying assumptions have been 
made in deducing the equations: 

1. The beam cross-section is appreciably smaller 
than the variation period of the focusing field; 
2. The particles move only in the linear region 

of the external field close to the accelerator's axis. 
3. Since the influence of the space charge is 

essential only at relatively small velocities, it is assumed 
that the particle velocity is much below the velocity 
of light; 
4. The energy increment in a gap is sufficiently 

small, so that the period of synchrotron oscillations 
is much greater than the acceleration period. 
In these assumptions the equations of transversal 

oscillations may be expressed in the following form 
d2x + Qx(τ)·x+ 

eλ2 • ∂UK = 0 (1) dτ2 + Qx(τ)·x+ mc2 • ∂x = 0 (1) 

d2y +Qy(τ)•y+ 
eλ2 • ∂UK = 0 (2) dτ2 +Qy(τ)•y+ mc2 • ∂y = 0 (2) 

The axis z is directed along the axis of the accel
erator. The following dimensionless value has been 
assumed as the independent variable 

τ = ct (3) τ = 
λ 

(3) 

In these equations 
e, m are charge and the mass of a particle, 
λ is the wavelength of the high frequency accel

erating field in free space and 
Uk(x,y,z) is the potential of the field of the beam 

space charge. 
Functions Qx(τ) and Qy(τ) are equal to 

Qx(τ) = Q1(τ) + Q2(τ) (4) 

Qy(τ) = Q1(τ)-Q2(τ) (5) 

The function Q1 (τ) is determined by the defocusing 
action of the accelerating gaps: 

Q1 (τ) = 
eλ2 • ∂Ez(r,z,τ) 

(6) 2mc2 
• 

∂z (6) 

Ez is the longitudinal component of the accelerating 
field. The function Q2(τ) is determined by the 
focusing field: 

Q2(τ) = K2•g(τ) (7) 

Κ = λ•√ eβ •G (8) Κ = λ•√ mc2 

The function g(τ) has the period of the focusing 
field and changes within the limits of | g (τ) | ≤ 1; 
G is the magnetic field gradient on the axis in the 
middle portion of the lens. 
The period of the beam cross-section change has 

the same value order as the period of the focusing 
field; since the beam cross-section is substantially 
smaller than the period of cross-section change, 
the field of the space charge changes much slower 
along the axis z than along the axes x,y : 

| ∂E k z | | ∂E x k 

|, 

∂Eyk 

|. 

| 
∂z | | ∂x |, ∂y |. 
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Thus, 

div ≈ ∂Exk + ∂Eyk 
' div ≈ ∂x + ∂y ' 

from which 
∂2UK + ∂2UK = -4π.p(x,y,z) (9) ∂x2 

+ 
∂y2 

= -4π.p(x,y,z) (9) 

Let us assume that n(x,y,z,) is the density 
of particle distribution in the phase space of co
ordinates and velocities. According to Liouville's 
theorem the function n(x,... ) remains constant 
along the trajectory of the particle motion in the 
phase space, so that n depends only on the integrals 
of motion. The space charge density in the beam 
p(x,y,z) is determined by the integral 

p(x,y,z) = e∫∫∫ n(x,y,z,) d d d (10) 

Thus due to the fourth assumption 
| 

-νs | = 
1 | dØ 

| 1, (11) 
| 

νs 
| = 2π 

| 
dτ | 1, (11) 

where νs is the speed of the equilibrium particle 
and Ø is the phase of the high frequency field at the 
passage of the particle in the electrical centre of the 
gap. The deviation of the velocity of the particle 
from that of the synchronous particle νs may be 
neglected, by introducing into Eq. (10) = νs 

for all the particles. 
Then 

p(x,y,z) — e ∫∫ n(x,y,z,) d d (12) 

The current in the beam along the axis z 

I = νs ∫∫ p(x,y,z) dxdy = const. (13) 

The Equations (1), (2) should be solved jointly 
with the Equations (9), (10), which determine the 
potential of the space charge field Uk(x,y,z), provided 
the phase density of particles n is a function of 
the integrals of motion of the Equations (1), (2). 
The coordinate of the particle z, owing to our assump
tions is a function of the variable τ only. 
It is expedient to simplify the expression (6) for 

the function Q1(τ) by replacing the action of the 
defocusing force, which varies along the accelerating 

gap, by the action of the equivalent defocusing 
force constant in the gap which is described by the 
gap averaged value of the function Q1(τ) 

=-
1 

∫Q1(τ) (14) =-
bτ 

∫Q1(τ) (14) 
bτ 

bτ is the length of the gap along the axis τ; inasmuch 
as throughout the gap β ≈ const, bτ = b/βλ, where 
b is the length of the gap in cm. The longitudinal 
component of the accelerating field may be expressed 
as 

Ez = Ε·h(r,z)· cos 2πτ (15) 
Moreover 

= eEλ2 ∫ ∂h cos ( 2πz + Ø-Øs)dz (16) = 2mc2b 
∫ 
∂z cos ( βλ + Ø-Øs)dz (16) 

b 

cos ( βλ + Ø-Øs)dz (16) 

We obtain 
= - y (17) = -bτ (17) 

where 

γ= -
πkWλ 

· 

sin Ø (18) γ= - β 
· 

cos Øs 
(18) 

Here 
wλ = eE0Tλ cos Øs (19) wλ = mc2 (19) 

is the parameter introduced by Alvarez3), equal 
to the relation of the energy increment of the syn
chronous particle on the wavelength λ to the rest 
energy; 

E0 = 
Ε ∫ h(z)dz E0 = kβλ 

∫ h(z)dz E0 = kβλ 
b 

h(z)dz 

is the average amplitude of the accelerating field; 
Τ is the transit-time factor; k is the acceleration 
period multiplicity. The para- meter γ determines 
the defocusing action of the gaps at a given phase 
of passage of the centre of the gap by the particle. 
The minus sign in the righthand part of Equation (18) 
is due to the fact that the phases Ø are counted from 
the maximum value of the fields ο that the stable 
phase of the equilibrium particle is negave,i Øs < 0. 
The same parameter γ, obtained owing to somewhat 
different considerations has been used in papers by 
Smith and Gluckstern2) and Teng4). Thus in the 
indicated approximation Q1 = —γ/bτ in the acceler
ating gap, and Q1 = 0 outside the gap. 
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The integration of Equations (1), (2) will be mater
ially simplified if we introduce a special assumption 
regarding the law of particle distribution in the 
phase space; namely, if we choose such a dependence 
of phase density upon the integrals of motion that 
the Equations (1), (2) become linear in the separated 
variables. As we shall show, a function similar 
to the micro-canonic distribution proves to be this 
dependence. 
Let us consider Equation (1). If it is linear with 

regard to the function x(τ), then it is possible to 
choose a pair of complex-conjugated fundamental 
solutions 

xx(τ) = δx(x)·eiψx(τ) 

x*x(τ) = δx(τ)·e-iψx(τ)} (20) 

which make it possible to express any real solution 
with arbitrary initial conditions: 

x(τ) = Ax · δx(x)· cos [ψx(τ) + θx] (21) 

The Wronskian of the functions xx, xx* is a well 
known a constant value. Let us put: 

Xx 
dx*x -x*x dxx = -2i. (22) Xx dτ -x

*
x dτ = -2i. (22) 

It follows from Eq. (22) that 
dψΧ = 1 (23) dτ 

= 
δx2 (23) 

The solution of the equation (2) has the analogous 
form 

y(τ) = Ayδy(τ) cos [ψy(τ) + θy 
dψy = 1 
dτ = δy2 

} 

(24) 

The values Ax, Ay, θΧ, θy depend only upon the 
initial conditions,and consequently are the integrals 
of motion. The phases of the transversal oscilla
tions of particles θx, θy are cyclic functions of the 
initial coordinates and velocities. It is natural to 
suppose that the function of density distribution η 
depends only upon the integrals of motion Ax, Ay 
which are characteristic of the transversal oscilla
tion intensity. The oscillation phases θx, 9y may be 
of arbitrary value. We shall obtain the expressions 
for the integrals Ax, Ay by eliminating from the 
functions x (τ), dx and y (τ), dy the phases θx, θy: functions x (τ), dτ and y (τ), dτ the phases θx, θy: 

(δx ) 2 + ( X )2 =A2
Χ (25) (δx ) 2 + ( δx 

)2 =A2
Χ (25) 

(δy)2 + ( y )2 = Αy
2 (26) (δy)2 + ( δy 

)2 = Αy
2 (26) 

Let us now assume that the particle distribution 
density in phase space depends upon the integrals 
of motion in the following way: 

n = n0·δ(F-F0), (27) 
where in a general case 

F = Ax2 + s·A2y (28) 
and δ is the usual δ-function. 
Inasmuch as there are no grounds to expect in the 

majority of practical cases that the phase volumes 
of the particles in the planes x, and y, should 
differ, we shall assume further on that s = 1; so 
we get 

F = A2
x + A2y = Fo (29) 

where F0 is a certain constant. Its numerical value 
will be determined further on. Thus, due to the 
assumption, all the particles in a four-dimensional 
phase space x, y, , are situated on the surface 
of the ellipsoid 

( δ x - x x ) 2 + ( X )2 +(δy - y ) 2 + ( 
y 

)2 = F 0 (30) ( δ x - x x ) 2 + ( 
δx 
)2 +(δy - y ) 2 + ( δy 

)2 = F 0 (30) 

The projections of the representing.points on the 
plane x, and y, fill up the corresponding ellipses 

( δ x - x x ) 2 + ( 
X 
)2 =Ax2max (31) ( δ x - x x ) 2 + ( 

δx 
)2 =Ax2max (31) 

(δ y-,y) 2+( y )2 =A 2
y m a x (32) (δ y-,y) 2+( δy 

)2 =A 2
y m a x (32) 

At the same time, according to Eq. (29) 

A 2
x m a x = A 2

y m a x = F 0. (33) 

By introducing the distribution function (27) into 
the expression (12), which determines the space 
charge density in the beam, we shall obtain 

Ρ = en0 

+∞ +∞ 

δ(F-F 0)dd (34) Ρ = en0 
∫ ∫ 

δ(F-F 0)dd (34) Ρ = en0 
-∞ -∞ 

δ(F-F 0)dd (34) 
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or after replacing the variables of integration in the 
function F: 

δx — δxx = α cos Ψ ; δy — yy = α sin Ψ ; 

ρ = 
en0 

2π ∞ 

δ[α2 - (F0 -
x2 - y2 )] αdαdΨ = πen0 

. 
ρ = 

en0 ∫ ∫ δ[α2 - (F0 -
x2 - y2 )] αdαdΨ = πen0 

. 
ρ = δxδy 

∫ ∫ δ[α2 - (F0 -δx2 
-

δy2 
)] αdαdΨ = δxδy 

. 
ρ = δxδy 

0 0 

δ[α2 - (F0 -δx2 
-

δy2 
)] αdαdΨ = δxδy 

. 

Thus the function of particle distribution Eq. (27) 
corresponds to the uniform distribution of the charge 
in every section of the beam; the space charge density 
does not depend upon x, y and is a function of time 
only : ρ = ρ(τ). Any cross-section of the beam 
in the xOy plane, according to Eq. (30), is of an 
elliptical shape. 
The potential of the field of the beam space charge 

is determined with Eq. (9) by the equation : 
δ2 UK(x,y,τ) + δ

2 UK(x,y,τ) = -4π·ρ(τ) (35) δx2 + 
δy2 

= -4π·ρ(τ) (35) 

Inasmuch as the beam has an elliptical cross-section, 
the function Uk(x,y,τ) may be approximately 
determined as the potential of the field of a uniformly 
charged elliptical cylinder. If the cross-section half 
axes are rx(τ) and ry(τ), respectively, it can be shown 
that 

UK(x,y,τ) = -π·ρ(τ)·[x2 + y2 -
rx - ry (x2 - y2)].(36) UK(x,y,τ) = -π·ρ(τ)·[x2 + y2 -rx + ry 

(x2 - y2)].(36) 
According to Eq. (13) 

ρ(τ) = J , (37) ρ(τ) = πrxryνs 
, (37) 

from which we get 

UK(x,y,τ) = -
J x2 + y2 -rx -ry (x2 - y2)].(36a) UK(x,y,τ) = -rxryνs 

x2 + y2 -rx + ry 
(x2 - y2)].(36a) 

It is of interest that the sign of the quadrupole (pro
portional to x2 — y2) member in the potential coincides 
with the sign of the external quadrupole member 
Q2, since in the x-focusing magnetic lenses rx > ry. 
It can be said, in this sense, that the Coulomb inter
action, far from having a screening effect, even 
increases to a certain extent the external quadrupole 
field. 
By substituting Eq. (36a) into Equations (1), (2) 

and by introducing the notation 

r0 = λ√ 2eJ (38) r0 = λ√ mc3β 
(38) 

we shall arrive at the following motion equations 
of each individual particle : 

d2x + Qx(τ) - 2r2a ] x = 0 (39) dτ2 + Qx(τ) -rx(rx + ry) ] x = 0 (39) 

d2y + [Qy(τ) - 2r2a ] y = 0 (40) dτ2 + [Qy(τ) -ry(ry + rx) ] y = 0 (40) 

If the initial conditions for all the particles have been 
chosen in accordance with the distribution function 
Eq. (27) then the solutions of Equations (39) and 
(40) are self-consistent. 
Let us assume that ng is the number of accelerating 

gaps in one focusing period. Then the length of 
the focusing period S in cm is S = kng βλ. The 
duration of the focusing period on the τ axis is equal 
to St = S/βλ = kng and is constant along the accel
erator axis. Thus, the functions Qx, Qy determined 
by the equalities (Eq. (4) to (7)) are periodical (if the 
phase Φ is constant) with a period of kng. If the 
channel with strong focusing does not have accele
rating gaps we may merely assume that kng = 1 
and that λ = S/β. 
If the Coulomb forces in the beam are negligibly 

small 
ra , 

ra K 
rx 
, 

ry 

K 

then the Equations (39), (40) are reduced to the 
equations of Mathieu-Hill with the given periodical 
coefficients Qx, Qy. It is possible to find by regular 
methods the Floquet functions of these equations 
fully describing the transversal particle oscillations 
by arbitrary initial conditions. However, if the 
Coulomb members in the Equations (39), (40) are 
not small, these equations cannot be solved directly 
because they incorporate the functions rx(τ), ry(τ) 
which are thus far unknown and which represent 
the envelopes of the beam in the corresponding 
planes xOz and yOz. Essentially speaking, the 
principal problem is to calculate the envelopes 
rx(τ), ry(τ) with the given functions of Qx, Qy and the 
given "Coulomb radius" ra or, on the contrary, 
to calculate the maximum permissible "Coulomb 
radius" ra at a given aperture of the channel 
(rx max,ry max) and the chosen parameters Κ, γ, which 
ensure a sufficient stability reserve for transversal 
oscillations. When the envelopes rx(τ), ry(τ) are found, 
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it is possible, by using the Equations (39), (40), to 
appreciate the main characteristics of the movement 
which are necessary for the calculation of design 
tolerances. 

III. EQUATIONS FOR BEAM ENVELOPES 

If we make a special choice of the fundamental 
solutions of Equations (39) (40), then the envelopes 
rx, ry prove to be connected in a simple way with the 
modules of these fundamental functions. This 
enables us to obtain a system of equations for 
rx, ry proceedind girectly from Equations (39), (40). 
Let us take on a phase plane x, an ellipse 

surrounding the projections of the representing 
points of all particles at a certain time moment τ0. 
Let us choose the values δx(τ0), x(τ0) and A x so 
that the ellipse (25) coincides with the border ellipse 
given on the plane x, . Then the integral of motion 
A x for all the points on the border ellipse will have 
the same value equal to its maximum value 
Ax max = √F0. Since at any moment of time the 
oscillation phases θx of different particles may be 
of any value, then it follows from the expression 
(21) that the beam envelope in the x O z plane is 
determined by an equality 

rx(τ) = Ax max · δx(τ) = √F0 δx(τ) (41) 
In a similar way we shall obtain for the envelope 
in the y O z plane : 

ry(τ) = Ay max . δy(τ) = √F0.δy(τ) (42) 
Let us assume that the big and small half axes of the 
ellipse which restricts the phase volume on the x. plane are M x and Nx, respectively, while the inclina
tion angle of the big half axes to the Ox axis is αx 
(Fig. 1). Then, as can be easily shown by trans
forming the ellipses (31), (32) to the canonic axes, 

F0 = M x • N x = M y•N y (43) 

rx = √Mx2 cos2 αx + Nx2 sin2 αx (44) 

drx = 
1 (Mx2 - N2x)sm 2αx (45) dτ = 2rx 
(Mx2 - N2x)sm 2αx (45) 

The expressions for ry, 
dry are obtained from Eq. The expressions for ry, dτ are obtained from Eq. 

(44), (45) by replacing the indices. The value F0 
which is proportional to the area of the ellipses on 

the planes x, and y, will be called later on, for 
convenience sake, the beam phase volume. 
By substituting the fundamental functions 

√F0. (τ) = rxeiΨx, √F0.y (τ) = ryeiΨy, into the 
Equations (39) and (40) and by making use of the 
condition (22) we obtain the following system of 
equations for the envelopes 

d2rx + Qx(τ).rx -
F20 - 2ra2 = 0 (46) dτ2 + Qx(τ).rx - rx3 

- rx + ry 
= 0 (46) 

d2ry + Qy(τ) ry -F0
2 
- 2ra2 = 0 (47) dτ2 + Qy(τ) ry - ry3 - rx + ry 

= 0 (47) 

The initial conditions for solving these equations 
can be determined if we proceed from the initial 
phase volumes on the x, and y, planes by means 
of Eq. (44), (45). 
It is expedient to make several preliminary remarks 

with regard to the system of Equations (46), (47). 
1. At a zero phase volume (Nx = Ny = 0) we 

have F0 = 0 and the Equations (46), (47) are reduced 
to the following : 

d2rx + Qxrx -
2r2a = 0 

} 

. (48) 
dτ2 + Qxrx -

rx + ry 
= 0 

} 

. (48) 
d2ry + Qyry -

2r2a = 0 

} 

. (48) 

dτ2 + Qyry -rx + ry 
= 0 

} 

. (48) 

In the absence of the Coulomb forces (ra = 0) the 
equations for the envelopes are the same as the 
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equations for the trajectories of the individual 
particles. Thus, in case of a zero phase volume 
and in the absence of space charge the particle which 
was on the surface of the beam is always the external 
one. 
The Equations (48), in the far-fetched assumption 

that the beam in the strong focusing channel always 
has a circular cross-section (rx ≡ ry), are reduced 
to an equation obtained in the paper by Mendel5) 
for the trajectory of the "external" particle. 
2. Let us suppose that when ra = 0 the Equations 

(46), (47) have a stable stationary solution which 
is not on the edge of the stability region. If the 
channel aperture is not limited, then, generally 
speaking, a certain stable stationary solution will be 
present at any value of ra > 0, since the total of 
rx + ry is always reaching a sufficiently big value 
when the Coulomb members in the equations will 
not disrupt the stability conditions. 
3. There are always some initial conditions for 

which the solutions of the Equations (46), (47) are 
periodical. These solutions correspond to the period
ical envelope of the beam with the period equal to 
the focusing field period. In this case the equations 
of individual trajectories (39), (40) turn into the 
equations of Mathieu-Hill type at ra > 0 also, while 
the functions 

δx = 

rx . δy = 
ry 

δx = √F0 . δy = √F0 
become the modules of the corresponding Floquet 
functions. When ra = 0 the Floquet functions com
pletely describe the maximum beam cross-section. 
Indeed due to the absence of interaction between the 
particles, any other ellipses enclosing the representing 
points on the planes x, and y, "rotate" within the 
surrounding Floquet ellipses, When ra > 0, though, 
the Equations (39), (40) in case of non-periodical 
envelopes are not Mathieu-Hill equations and for 
them the Floquet ellipses do not exist in general. 
Therefore, in contrast to the case when ra = 0, 
at ra > 0 we cannot restrict ourselves merely to the 
consideration of the periodical solutions of the 
Equations (46), (47). 
4. The value ra in the Equations (46), (47) depends 

on the longitudinal velocity of particles β. The 
value γ, which is incorporated in the functions Qx, Qy, 

depends upon β and the phase of the particles Φ. 
This is why the values ra and y are generally speaking 
functions of τ, in the presence of an accelerating 
field in the strong focusing channel. We suppose, 
however, that β and Φ alternate slowly along the 
accelerator axis. To appreciate the influence of 
Coulomb forces and the defccusing in the gaps, 
upon the beam sizes, the values ra and γ may be 
left constant in the equations. One may attribute 
to them different values along the accelerator axis 
in the final solutions. 

IV. THE CASE OF " S M O O T H " ENVELOPES 

The system of Equations (46), (47) may be approxi
mately integrated in the case of weak lenses (K 1), 
with small idle intervals when the modulation of 
the envelopes with the period of the focusing field 
is small, and the period of the transversal oscillations 
of the particles is substantially bigger than the focus
ing field period. 
Suppose 

rx(τ)=x(τ) + ξ(τ) } (49) ry(τ) = y(τ) + η(τ) } (49) 
where x, y are the constant components of the 
functions rx and ry in each period of focusing; 
ζ, η are the terms which oscillate with the frequency 
of the focusing field Ω =2π/Sτ. The functions x and 
y are the "slow" functions of τ. Their frequency 
ω is much smaller than Ω. Furthermore, ζ, η x, y. 
Following Landau and Lifshits6), let us introduce 

the expressions (49) in the Equation (46)., If we put 
Qx•ξ = + κx, 

where κx is the oscillating part with the frequency 
Ω, we get in the first approximation (considering 
ξ/x, η/y as small): 
d2.x + d

2ξ 
+ Q x x + + KX - F20 

1 - 3ξ/x -dτ2 + dτ2 + Q x x + + KX - F20 
x
3 -

-2r
2
a(1 - ξ + η/x + y) = 0 -

x + y 
= 0 

Separating in the last equation the slow and the 
rapid oscillating members and neglecting the small 
oscillating members we arrive at the following equa
tions : 
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d 2
x + -F0

2 
— 2r2a = 0 (50) dτ2 + -

x
3 — 

x + y 
= 0 (50) 

d2ξ + δxx = 0. (51) dτ2 + δxx = 0. (51) 

Let us introduce the periodical functions qx(τ) and 
qy(t) (with the frequency Ω) in the following way: 

d2qx = -Qx(τ); d2qy = - Qy(τ). (52) dτ2 = -Qx(τ); dτ2 = - Qy(τ). (52) 

Then the function ξ(τ) = qx(τ)•rx(τ) will be the 
approximate solution of the Equation (51). Indeed, 
by the order of value 
dqx ~ — Qx ; qx ~ 

Qx 
; 

d x 
~ ω x ; 

d 2
x ~ - ω2x dτ 

~ — 
Ω ; qx ~ Ω2 ; dτ ~ ω x ; dτ2 ~ - ω2x 

and 
d2ξ = d

2qx 
x + 2 dqx 

. d x + qX 
d 2

x ≈ 
dτ2 = dτ2 x + 2 dτ 

. 

dτ + qX dτ2 
≈ 

≈ - Q x x -
ω 
(2 + 

ω 
)Qxx ≈ - Q x x -Ω (2 + Ω 
)Qxx 

The function ξ = qx x satisfies the Equation (51) 
approximately since ω Ω Ω. From which it follows 
that : 

= ; = 
If the parameter γ is sufficiently small, it can be 
easily shown that the average values of the periodical 
functions qx·Qx and qy·Qy during the period are 
similar: 

= = ω02 (53) 
In the accepted approximation we have 

ω0 = μ (54) ω0 = kng (54) 

where μ is the phase increment of the Floquet function 
in the focusing period for the given focusing field 
when ra = 0. The number of the focusing periods 
for one period of transversal oscillations at ra = 0 
is 2π/μ. The value μ (expressed in the same way) 
has been used in the paper by Smith and Gluckstern2). 
By introducing Eq. (53) into the Equation (50), 

we shall obtain finally the following equation for 
the slow component of the envelope : 

d2 
+ ω02 -F0

2 
- 2r2a = 0 (55) dτ2 + ω0

2 - -
+ 

= 0 (55) 

From Equation (47) we shall obtain in a similar 
way 

d2rr + ω02 -F0
2 
- 2r2a = 0 (56) dτ2 + ω0

2 - - + 
= 0 (56) 

Finally, by introducing the above-found expressions 
for ξ, η into the equalities (49), we obtain 

rx(τ)=[1+qx(τ)]·(τ) 
}. (57) 

ry(τ) = [1 + qy(x)].(τ) 
}. (57) 

The functions (57) are the first approximation to 
the solution of the Equations (46), (47), the functions 
qx, qy are directly known from the equalities (52), 
while the functions , should be found from the 
system of equations (55), (56). 
The Equations (55), (56) are more simple than the 

initial Equations (46), (47) since they are autonomous, 
and the first integral can be derived for them immed
iately. To simplify the subsequent calculation, let 
us assume that the beam of particles which enters 
the strong focusing channel is symmetrical so that 
the initial conditions for the averaged functions and are similar. Then, due to the complete 
symmetry of the Equations (55), (56), (τ) = (τ) 
later on too. By denoting = = R(τ) we shall 
obtain instead of two equations (55), (56), one, 
namelv 

d2R 
+ ω02R -

F02 - ra
2 
= 0 (58) dτ2 + ω0

2R -R3 - R = 0 (58) 

while the solutions (57) will be expressed as 
rx(τ) = [1 + qx(τ)]•R(τ) 

(59) 
ry(τ) = [1 + qy(τ)]•R(τ). 

In this case the "slow" components of the envelopes 
have the same phase while the "rapid components" 
differ by their phase. Since Κ 1 and γ 1 we 
find that |qx|, |qy| 1. 
Let us discuss the Equation (58). The first integral 

of this equation (the analogue of the energy integral) 
is 

( 
dR )2 + V(R) = C, (60) 
( dτ 

)2 + V(R) = C, (60) 

where the function 

V(R) = ω02R2 + F0
2 - r2a ln ( ω0R )2 (61) V(R) = ω02R2 + R2 - r2a ln ( ra )

2 (61) 
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Fig. 2 Integral curves determined by the equation of the 
"slow" component of the envelopes. 

is the analogue of the potential energy. Fig. 2 shows 
the behaviour of the function V (R) and the family 
of the integral curves of the Equation (58) on the 
plane R, dR/dτ. The equilibrium state R = Rk, = 0 is determined from the condition dV/dR = 0: 

RK = √ 
r2a + √r4a + 4ω2

0F2
0 (62) RK = √ 2ω20 

(62) 

The state of equilibrium and the periodical motions 
in the plane R, are stable (after Lyapunov) for 
arbitrary values of the parameters, provided ω20 > 0. 
However, the maximum swing of the envelope at 
the given initial conditions depends materially upon 
ra. Suppose (0) = 0. Then, if R (0) > Rk, the 
maximum value of the slow envelope component 
in the subsequent motion of the beam in the system 
of quadrupole lenses does not exceed R (0). However, 
when R(0) < Rk, then the maximum value of the 
envelope surpasses the initial value of R(0) and 
exceeds it the more, the less R0 is compared with 
the "critical radius" Rk. If R(0) = Rk, (0) = 0, 
then R(τ) = Rk and the envelopes (59) are periodical 

with the frequency Ω of the focusing field; at any 
other initial conditions the maximum value of R(τ) 
surpasses Rk. With the given initial values of 
R(0) = R0, (0) = , the extremal values of the 
function R(τ) are determined by the equation 

V(R) = + V(R0) (63) 
It follows from the expression (62) that in case 

we have a sufficiently great phase volume √2ω0F0 ra 
we can neglect the space charge of the beam; in this 
case 

RK = √ F0 (64) RK = √ ω0 
(64) 

If the current of the beam is great ra √2ω0F0 
it is possible to assume that the beam has the zero 
phase volume; in this case 

RK = Ra = 
ra (65) RK = Ra = ω0 

(65) 

In a general case 

RK = Ra. √ 
1 + √1 + 4/p4 (66) RK = Ra. √ 2 

(66) 

where the parameter p is determined by the relation 
between the values of the phase volume, beam 
current and the lens power : 

p = 
ra (67) p = 

√ω0F0 
(67) 

By making use of Eqs. (65), (67), we obtain from the 
expression (61): 

V1(R) = 
V(R) 

= ( 

R )2 + 1 
( 
Ra )2 - ln ( R )2 (68) V1(R) = ra2 = ( Ra )2 + p4 ( R )2 - ln ( Ra )

2 (68) 

The function V1 of the variable R/Ra depends only 
upon one parameter p. According to Eq. (63), 
when = 0 and R0 = Rmin < Rk the maximum 
swing Rmax of the envelope R(τ) is determined by 
the equation V1 (Rmax) = Vx (Rmin). Fig. 3 shows the 
diagrams which present the relation of the maximum 
beam size to its initial radius Rmax/Rmin versus the 
relative value of the initial radius Rmin/Ra for the 
different values of p when = 0 and R0 = Rmin < Rk. 
For example, let us consider a channel without 

accelerating gaps when β = 0.04, the focusing period 
S =20 cm and cos μ = 0.99 (ω0 = 0.144). The 
parameters of the input beam are : R0 = 0.5 cm, 
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Fig. 3 The dependence of the relation of the maximum beam 
radius to the initial one upon the relative magnitude of the 
initial radius (for the case of the "smooth" envelope). 

= 0; the angular spread ± 10-3 radian. Then 
M = 0.5 cm; Ν = 0.02 cm; F0 = 0.01 cm2. When 
the beam current is I = 100 mA we have p = 5.3 
and Rk ≈ Ra ≈ 1.4 cm; this beam grows wider in 
the channel, its radius reaching 2.6 cm. A beam 
with a current within 12 m A may be let through 
practically without widening. 
The solution corresponding to the "smooth" 

envelope for the case F0 = 0 and R0 ≈ Ra has been 
obtained in the paper by Clogston and Heffner7). 
This solution corresponds to the results presented 
in this section. 

V. RESULTS OF NUMERICAL INTEGRATION OF 
EQUATIONS FOR ENVELOPES 

Those cases when the modulation of the envelopes 
with the field focusing period is not small are the 
most interesting for linear proton accelerators. 
In this general case, the Equations (46), (47) were 
integrated numerically by means of an electronic 
computer. 
For numerical integration, it is expedient to 

diminish the number of independent parameters in 

the Equations (46), (47), passing to dimensionless 
envelopes. 

δx = 
rx ; δy = 

ry (69) δx = √F0 
; δy = 

√F0 
(69) 

The current values of functions δx(τ) and δy(τ) 
do not depend upon the absolute value of the phase 
volume of the particles F0. By introducing the expres
sion (69) into (46), (47) we obtain: 

d2δx + Qx(τ) -
1 - 2δa2 = 0 

}(70) dτ2 + Qx(τ) -δx3 
-

δx + δy 
= 0 

}(70) 
d2δy + Qy(τ)•δy -

1 - 2 δ 2
a = 0 

}(70) 

dτ2 + Qy(τ)•δy -δy3 
-

δx + δy 
= 0 

}(70) 

Here the parameter 

δa = 
ra (71) δa = √F0 (71) 

represents a dimensionless "Coulomb radius." 
The initial conditions for the solutions of the 

system of Equations (70) follow from the relations 
(43) to (45): 

δx = √ηxcos2 αx + 
1 sin2 αx 

} (72) 

δx = √ηxcos2 αx + 
ηx 

sin2 αx 

} (72) dδx = 
1 
(ηx -

1 ) sin 2αx } (72) 
dτ = 2δx (ηx -ηx 

) sin 2αx } (72) 

ηx = 
M x 

} (72) 

ηx = Nx 

} (72) 

The expressions for δy, and ηy are obtained from 
Eq. (72) by changing the indices. 
The numerical solution of the equation system 

(70) has been carried out for an idealised focusing 
period represented by its functions Qx and Qy in 
Fig. 4. 
As has been shown by numerical calculations 

the solutions of the Equations (70) restricted at 
δa = 0, remain limited at any value δa > 0. When 
<50 = 0, the stability region of the solutions for the 
given channel are within the following limits : when 
γ = 0, 0 < Κ < 1.98 and when γ = 0.326, 
1.27 < Κ < 2.09. The value cos μ = 0 corresponds 
to the following values of Κ .: Κ = 1.72 (when γ = 0) 
and K = 1.82 (when γ = 0.326). 
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Fig. 4 Diagram of functions Qx(τ) and Qy(τ), used in the 
numerical integration of the equations for the envelopes. 

For every combination of the values of the para
meters δa and Κ, γ (which are within the region of 
stability) it is possible to find periodical solutions 
for the envelopes with the period of the focusing 
field. These solutions take place at definite initial 
conditions which depend on the values of the para
meters K, γ and δa. The initial conditions according 
to Eq. (72) may be taken either as the values δx, 

Fig. 5 The dependence of the matched initial conditions upon 
the dimensionless "Coulomb radius". The relations of the 
half axes of phase ellipses. 

Fig 6 The dependence of the matched initial conditions upon 
the dimensionless "Coulomb radius". The angles of inclination 
of the phase ellipses. 

δy, , , which describe directly the initial beam 
envelope at a given phase volume F0, or by the rela
tions of half axis of the ellipses ηx, ηy and the angles 
of inclination of the ellipses αx, αy on the planes 
x, and y, (Fig. 1). The dependence of the values 
ηx, ηy, αx, αy upon δa at different parameters of the 
channel is shown in Fig. 5 and 6. If the relations of 
half axes and the angles of inclination of the projec
tions of the phase volume on the planes x, and 
y, correspond to the periodical solutions for the 
envelopes of the beam, then this phase volume is 
called further on "matched" with the channel 
and the beam is called a "matched" beam. 
With a small beam current and a big phase volume 

(ra √F0) the matched volume does not depend 
upon ra/√F0 and corresponds to the case when the 
space charge is absent. In another extreme case 
when the beam current is great and the phase volume 
value is small (ra √F0), the angles of inclination 
of the ellipses αx, αy as formerly do not depend upon 
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ra/√F0 (but have different characteristic values); 
as to the half axes of the matched ellipses, they grow 
proportionally to the square of ra/√F0. Thus, the 
smaller the phase volume F0 is, compared with the 
"Coulomb radius" square ra2, the more elongated 
the matched ellipses ε on the planes x, and y, are. In other words, the greater the beam current 
(with a given value of the phase volume) is, the 
smaller the scattering of the transversal velocities 
of the particles in the "matched" input beam should 
be. 

The maximum values of rx and ry in the focusing 
period for the "matched" beam are the same. In 
Fig. 7 the relation of the maximum transversal size 
rmax of the envelopes of the "matched" beam to 
√F0δmax = rmax/√F0 is plotted on the axis of ordinates. 
The presented diagrams help to trace the dependence 
of rmax upon the "Coulomb radius" ra at any fixed 
value of the phase volume F0. Fig. 8 shows the 
dependence of rmax/ra = δmax/δa for the "matched" 
beam upon the value √F0/ra = 1/δa. It follows from 
the diagrams given in both figures that if ra √F0 
the transversal sizes of the "matched" beam do 
not depend upon the beam current but depend 
linearly upon √F0, while when ra √F0 the transversal 
sizes of the "matched" beam do not depend on the 
phase volume value and depend linearly upon the 
"Coulomb radius" ra. 

Fig. 7 The dependence of the maximum size of the matched 
beam upon "Coulomb radius" (with a fixed phase volume value). 

Fig. 8 The dependence of the maximum size of the matched 
beam upon phase volume (with a fixed value of "Coulomb 
radius"). 

If the biggest beam size rmax is given, then the 
diagrams on Fig. 7 for the accepted channel charac
teristic help to determine ra/√F0 depending upon 
rmax/F0. Consequently, with a known value of the 
phase volume F0, it becomes possible to determine 
the maximum permissible value of the "Coulomb 
radius" ra. If the phase volume F0 is small it is 
more convenient to use the diagrams of the type 
shown in Fig. 8 which make it possible to determine 
the maximum permissible value of ra at a given 
rmax and at any F0 (including F0 = 0). 

Let us discuss an example. Suppose β = 0.04, 
λ = 200 cm, Κ =1.50, rmax = 0.5, F0 = 4 × 10-3 cm2. 
Then δmax = 7.9 which, at γ = 0, gives δa = 3.4. 
This gives us for the maximum permissible "Coulomb 
radius" the value of ra = 0.21 cm or for the beam 
current I = 725 mA. The "matched" beam is 
determined by the following initial conditions : 
ηx = 58, ηy = 22, αx ≈ 4.5°, αy ≈ -9°. In the absence 
of a space charge, the beam with the same phase 
volume matches when ηx = 3.2, ηy = 1.2, αx = 5.5°, 
αy = — 36° and has the maximum size rmax = 0.1 cm. 
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Fig. 9 The oscillations of the main maxima of the unmatched 
beam envelope. 

To estimate the beam sizes when the phase volume 
is unmatched with the channel we have considered 
a case when a parallel beam of circular cross-section 
arrives at the inlet of the strong focusing channel 
(Fig. 4) : ηx = ηy = η, αx = αy = 0. In all the cases, 
the channel began from the middle of x-focusing lens 

Fig. 10 The dependence of the first main maximum in the 
xOz plane upon the dimensionless "Coulomb radius". 
The case when Κ = 1.50, γ = 0. 

as is shown in Fig. 4. The only exception is the 
estimate of the oscillations of the main maximums 
(Fig. 9); in this estimate, due to immaterial technical 
reasons, the channel began from the middle of the 
idle interval before the x-focusing lens. 
As has been shown by numerical calculations, 

in the case of unmatched initial conditions, the 
local maxima of the envelopes which take place 
practically in every period of the focusing field (in 
some of the periods the maximum may be absent) 
vary with a certain period which is very slightly 
dependent upon the value δa. For briefness sake 
we shall call further on the greatest values of the 
local maxima in each period of oscillations of these 
maxima—the main maxima. In a long channel, 
the main maxima, in their turn, alternate with a big 
period. This complex pattern of oscillations is 
shown in Fig. 9 where the numbers of the focusing 
periods are plotted along the absciss axis and the 
main maxima of the functions δx(τ) are plotted 
along the ordinate axis. The diagrams are given 

Fig. 11 The dependence of the first main maximum in the yOz 
plane upon the dimensionless "Coulomb radius". The case 
when K = 1.50, γ = 0. 
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Fig. 12 The dependence of the first main maximum in the 
xOz plane upon the dimensionless "Coulomb radius". The 
case when Κ = 1.20, γ = 0. 

for the case when Κ = 0.6, γ = 0, η = 2.5 at different 
values of δa. The functions δy (τ) are shifted by 
half a period; a dotted line in Fig. 9 shows the behav
iour of the main maxima of the function δy(τ) for 

δa = 1/2. 
In practical cases, the length of the strong focusing 

channel is usually much below the period of the 
main maxima. One should also bear in mind that 
in linear accelerators the length within which the 
values δa and γ remain approximately constant 
are, ordinarily, substantially less than the length 
of the accelerator. This is why the value of the 
first main maximum describes sufficiently well the 
maximum beam size in the channel at the given 
channel-parameters. 
In Figs. 10 to 13 the diagrams show the dependence 

of the first main maximum of the functions δx(τ) 
and δy(τ) upon the parameter δa for γ = 0, with the 
two values of Κ = 1.20, Κ = 1.50 and four values 
of η. The dotted curves show the dependence of the 

Fig. 13 The dependence of the first main maximum in the 
yOz plane upon the dimensionless "Coulomb radius". The 
case when Κ = 1.20, γ = 0. 

maximum values of δx, δy upon the parameter δa  
for the phase volume matched in each case. It follows 
from these diagrams that for each combination of 
the values of parameters K, γ, δa the maximum size 
for the matched beam is smaller than for the "un
matched" beams while the phase volume F0 remains 
the same. This conclusion fully coincides with 
similar conclusions known for the beam in the absence 
of the space charge and those obtained in the previous 
section for the beam with a "smooth" envelope. 
Further, when the parameter δa has small values, 
the beams with a small value of η are closer to the 
"matched" beams. As the parameter δa grows 
the beams with increased values of η are closer to 
the "matched" one. It should be noted that when 
δα 1, the beam with a given value of η may be 
close to the "matched" one only in a short interval 
of the parameter δa alternation; in other words, 
at big beam currents, the matching of the phase 
volume requires greater accuracy than in the case 
of weak currents. 
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The maximum size of the unmatched beam at 
the same values of the current and the phase volume 
may surpass substantially the size of the "matched" 
beam. So, with the conditions of the previous example 
(β = 0.04, λ = 200 cm, Κ = 1.50, γ = 0 and 
F0 = 4 × 10-3cm2) when ηx = ηy = 62.5, αx = αy = 0 
and when the beam current is I = 725 mA, we have 
rmax=0.8 cm. For this beam we would have rmax=0.5 cm 
with a current of I = 62mA. This indicates how 
expedient it is to prepare the beam by a system 
of matching lenses which should becalculated taking 
into account the Coulomb repulsion. 
In conclusion we shall note that since at δa 1 

the beam cross-sections are practically independent 

of the phase volume, the quantitative appreciations 
for this case will be approximately the same for 
any assumption regarding the law of particle distribu
tion in phase space. 
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DISCUSSION 

SYMON: I would like to ask Vladimirskij how close the 
calculated currents agree with those found in actual accelerators, 
when one takes into account the space-charge effects? 
VLADIMIRSKIJ: Unfortunately, we do not yet have an actual 

accelerator. 
SEIDL: I would like to report about a kind of space-charge 

instability observed in toroidal electron beams.(*) 

BLEWETT, J. P.: Could Vladimirskij summarize the graphs 
by saying how much current one can get through a 1 cm 
aperture in a linear accelerator? 
VLADIMIRSKIJ: The maximum current in our type of accel

erator is about 300 mA. 

(*) This contribution is fully reported on p. 327 of the Proceedings. 


