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Abstract: We present a framework that allows to find dynamical higher-spin gravity
solutions in three dimensions. The dynamics is provided by particles which are coupled
to the gravitational background. This coupling is performed in the language of gauge
theory, a possibility that arises in three dimensions due to the fact that gravity can be
recast in this specific case as a particular gauge theory known as Chern-Simons. The
key feature of this formulation is that it is conceivable to extend the gauge group, thus
passing from pure (spin-2) gravity to higher-spin gravity. Building on a setup that
mirrors the ones leading to certain models of gravitational collapse, we derive a set of
equations of motion for the gauge connections whose integrals correspond to dynamical
solutions, a characteristic absent in the higher-spin solutions known to date. Via the
gauge/gravity duality, the kind of dynamical gravity solutions we discuss are used to
describe progress towards thermalization of a field theory that has been injected some
energy. By investigating higher-spin generalizations of these solutions we therefore
hope to shed some light on further aspects of that very process.

Keywords: 3D gravity, Higher-spin black holes, Chern-Simons gravity, Vaidya
solution.
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Chapter 1

Introduction

A duality relating gravity theories on asymptotically Anti-de-Sitter (AdS) spacetimes to
conformal field theories (CFTs) was conjectured by the physicist Juan Maldacena near the
end of the 1990’s [1]. In this duality, dubbed AdS/CFT, a higher dimensional bulk – the
gravity theory – is mapped into a lower dimensional boundary – the CFT. In this sense, the
aforementioned duality is then a particular realization of the holographic principle, which in
the context of semi-classical considerations for quantum gravity asserts that the information
stored in a volume Vd+1 is encoded on its boundary area Ad measured in units of the
Planck area [2]. In its strongest version, AdS/CFT implies the complete physical equivalence
between the gravity theory and the quantum field theory in consideration, meaning that
the parameters of each theory are identified with those of the other for generic values of
those parameters. However, since different regimes of the parameters are usually associated
with perturbative or non-perturbative sectors of the theories, explicit computations are out of
reach for arbitrary ranges, particularly in the non-perturbative part. A possible simplification
consists in specializing to the weakly coupled regime of string theory, which corresponds to
a classical gravity theory (and some possible corrections thereof). It turns out that this
specialization can be done keeping the field theory in its strongly coupled regime. In this
particular, more tractable limit AdS/CFT then becomes an example of a strong-weak coupling
duality, providing a tool (the gravity theory) to gain new insights into the highly non-trivial
non-perturbative sector of the quantum field theory. This remarkable feature has allowed the
AdS/CFT correspondence to find domains of applicability ranging from hydrodynamics [3]
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to quark-gluon plasma [4], and to superfluidity and superconductivity [5], among others1.
Particularly interesting setups into which the AdS/CFT correspondence can offer new

insights are those involving dynamics. Examples of phenomena intrinsically related to the
presence of dynamics in the field theory side which have been addressed holographically
include thermalization, transport and chaos. For instance, the correspondence has been used
as a tool to probe the scale dependence of thermalization in two-dimensional strongly coupled
field theories which have been injected some finite energy [6]. Probes of thermalization can
be achieved by comparing the instantaneous values of non-local quantities such as two-point
functions or entanglement entropy with the values at thermal equilibrium2. While calculating
these quantities from first principles in the quantum field theory is challenging, they can be
computed relatively easily using holography. Through the AdS/CFT correspondence, the
approach to thermal equilibrium in the boundary is related to the process of black hole
formation in the bulk. This is so because states of finite temperature in the CFT correspond
to black hole solutions in the bulk, or at least to solutions sharing some of their characteristic
features [2]. A simple model of black hole formation by collapse in AdS which has offered
insight into the dynamics of two-dimensional strongly field theories is the one described by
the ingoing Vaidya metric in three dimensions:

ds2 = −F (r, v)dv2 + 2drdv + r2dϕ2, (1.1)

where F (r, v) =
(
1 + r2

`2 −M(v)
)
, ` is the AdS radius, v is the ingoing Eddington-Finkelstein

coordinate, and r and ϕ are the standard spherical coordinates. Vaidya metrics are solutions
to the Einstein equations with a null energy-momentum tensor of the form Tµν = M ′(v)

2r δvµδ
v
µ.

As we will see, these metrics are to be viewed as non-static generalizations of the Schwarzschild
1For a thorough and pedagogical introduction to Maldacena’s correspondence the reader can refer

to the recent book [2]. We shall not try to give a detailed exposition of the AdS/CFT correspondence
as its role in our considerations is of a more indirect, inspirational nature. Suffice it to say, for the
advanced reader, that in Maldacena’s seminal paper the map g2

YM = 2πgs and 2g2
YMN = L4/α′2 is

conjectured between the free parameters ofN = 4 Super Yang-Mills theory and of type IIB superstring
theory. The more tractable limit to which we have referred involves taking N →∞ and gs → 0. The
strongly coupled regime of the field theory corresponds to taking g2

YMN → ∞, which amounts to
considering the limit α′/L→ 0 in the string theory side.

2Notice that a local gauge invariant quantity such as the energy momentum tensor (Tµν) would not
provide information about progress towards thermalization. For instance, for spatially homogeneous
states of a weakly interacting massless scalar field, Tµν =

∫
dk
k0 k

µkνn(k), where n(k) denotes the
occupation number of a momentum mode of the scalar field. Tµν then does not tell us anything about
the particle distribution, unlike, for example, the equal-time two-point function, given by G(x) =∫
dk
k0 [n(k) + 1]exp(ik · x).
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solution to Einstein’s field equations, in which case M is constant (see [8] for a detailed
treatment of Vaidya metrics). A particular example of an ingoing Vaidya metric which will
play an important role in our explorations is that of a thin null shell falling along v = v0,
which corresponds to the mass profile M(v) = mΘ(v − v0), with m constant.

Via the AdS/CFT dictionary, the computation of the equal-time two-point function can
be reduced to some intrinsically geometrical bulk calculation. Indeed, following [9], equal-time
Green functions in CFT2 can be computed via a path integral as

〈O(t,x)O(t,x′)〉 =
∫
DPei∆L(P) ≈

∑
geodesics

e−∆L, (1.2)

where the paths, of proper length L(P), begin and end at the boundary points (t,x) and
(t,x′). The last expression is a saddlepoint approximation, effective for ∆� 1, in which L is
the length of geodesics connecting the boundary points. Here ∆ is a quantity known as the
conformal dimension of the operator O(t,x). It is given by ∆ = 1

2(d+
√
d2 + 4m2), where d

is the dimensionality of the CFT and m is the mass of the scalar field that is holographically
related to the operator O(t,x) [6].

In addition to the correlation function, a quantity that constitutes a powerful probe of
dynamics of a field theory is the entanglement entropy. Consider a quantum mechanical
system in a state |Φ〉 that consists of two disjoint parts A and B. The entanglement entropy
of the system restricted to A is given by the von Neumann entropy

S(A) = −trA(ρAlnρA), (1.3)

where ρA is the reduced density matrix obtained by taking a partial trace over the subsystem
B, i.e ρA = trB|Ψ〉〈Ψ|. The entanglement entropy provides us with a convenient measureof
the entanglement of a given wavefunction |Ψ〉 is3, and its time evolution has proved to
be a useful tool in the understanding of dynamics in CFTs, as illustrated by Cardy and
Calabrese in their remarkable work [10] (see [11] and references therein for computations
using holography). A proposal to compute holographically the entanglement entropy of a

3For illustration, consider a bipartite system with composite Hamiltonian HA ⊗HB . A pure state
in this system which can be written in the form |Ψ〉 = |φ〉A⊗|ϕ〉B is called separable and the reduced
states are simply ρA = |φ〉A〈φ|A, and similarly for ρB . If the state is not separable in the sense just
mentioned, then it is said to be an entangled state, and ρA, ρB are necessarily mixed. It is this mixture
that the von Neumann entropy measures. A characteristic feature of entanglement is that in this case
the von Neumann entropy of the global system is smaller than the sum of the von Neumann entropies
of the parts.
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region A was developed by Ryu and Takayanagi [14, 15]. Just as for the correlation function,
such computation rests on a geometrical quantity defined in the bulk. Explicitly, the Ryu-
Takayanagi prescription allows to compute the entanglement entropy SEE in a d-dimensional
CFT via

SEE = Area(γA)
4G(d+1)

N

(1.4)

where γ is the d− 1-dimensional minimal surface in AdSd+1 whose boundary is given by ∂A,
and G(d+1)

N is the d+ 1−dimensional Newton constant. The proposal (1.4) suggests a highly
non-trivial relation between entanglement and geometry that has inspired a number of works
aiming to understand whether the connectedness of the bulk spacetime emerges from the
entanglement of the boundary degrees of freedom [16].

In contrast to what happens in higher dimensions, there is a lot of analytic control over
two-dimensional conformal field theories. This makes of AdS3/CFT2 a particularly rich
arena allowing to explore both sides of the correspondence. Furthermore, AdS3 has the
remarkable property of being topological, meaning that it has no local propagating degrees
of freedom. A quick counting argument supports our claim: In d dimensions, the phase space
of general relativity is parametrized by a spatial metric at constant time, which has d(d −
1)/2 components, and its conjugate momentum, which has the same number of components.
However, d of the Einstein equations are not dynamical equations but constraints, and d

more degrees of freedom can be eliminated by coordinate choices [19]. This leaves us with
d(d− 1)− 2d = d(d− 3) degrees of freedom per point. If d = 4, we have the four phase space
degrees of freedom corresponding to the two gravitational polarizations and their conjugate
momenta. If d = 3, there are no local degrees of freedom.

As we shall see, many tasks are enormously simplified in three dimensions due to the
absence of local degrees of freedom. It should be pointed out, however, that this property
does not render the theory trivial, as was believed for many years. The major non-triviality
comes from the fact that, as shown by Bañados, Teitelboim and Zanelli [17], three-dimensional
gravity has a black hole solution. We mentioned before that black holes are dual to finite-
temperature states in the CFT. This means that the existence of this solution, known as the
BTZ black hole, is tantamount to the possibility of studying thermodynamic aspects of CFT2

via AdS/CFT. Such a possibility calls also for possible generalizations of the BTZ black hole
which would account for a corresponding generalization of the CFT scenario. In this thesis we
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will be mostly concerned with attempts at generalizing this solution to scenarios with higher-
spin. The key point that allows to attempt such a generalization is the realization that, as a
consequence of its topological nature, AdS3 turns out to be closely related to a gauge theory
known as Chern-Simons [18, 19]. The relation is established via the identification

SEH = k

4π

∫
M

Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)

= k

4π

∫
M

Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
− k

4π

∫
M

Tr
(
Ā ∧ dĀ+ 2

3Ā ∧ Ā ∧ Ā
)

(1.5)

where A ∈ so(2, 2), and k, called the Chern-Simons level, takes values in a discrete subgroup
of the real numbers4. In the last line we have made use of the fact that SO(2, 2) can be
written as SL(2,R)× SL(2,R), implying that A, Ā ∈ sl(2,R).

Among the various advantages of the gauge theory reformulation of 3D gravity of (1.5)
there is the striking fact that one can study gravity coupled to higher-spin fields by simply
promoting the gauge group from SL(2,R) to SL(N,R) [21]. A related interesting feature
of these SL(N) theories is that the number of higher-spin fields is controlled by the choice
of the rank of the group. In this respect these theories differ fundamentally from different
approaches to higher-spin solutions, where an infinite tower of spins is necessary to ensure
causality [13]5. When dealing with the SL(N)-type theories we have mentioned, something
important to note is that, while the spin-2 metric is invariant under sl(2,R) transformations
(diffeomorphisms), it is does not remain unchanged under sl(N,R) transformations. This is
so because, under these higher-spin transformations, the metric gets mixed with the higher
spin fields, which implies that intrinsically geometric notions such as black hole horizons or
geodesics are no longer gauge invariant. This last feature was investigated in e.g. [24], where
it was shown that a higher spin solution corresponding to a black hole metric in a given gauge
leads to a wormhole metric in another gauge.

If geometric notions are not gauge invariant in the SL(N) higher spin gravity theories,
then the prescriptions to holographically probe field theory dynamics that we discussed above
become useless. In particular, since different choices of gauge yield to different metrics, the
Ryu-Takayanagi formula (1.4) cannot be used to compute the entanglement entropy. In view
of this limitation, Ammon, Castro and Iqbal proposed in [25] a gauge invariant generalization

4See [20] for a review of general aspects of Chern-Simons theory.
5This could actually be a negative feature of the SL(N)-type theories, since from some string-

theory motivated considerations one expects an infinite tower of higher-spins. See [12] for some recent
comments on this issue.
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of Ryu-Takayanagi according to which the entanglement entropy of a single interval X (a
subdomain in the CFT) is

SEE = −log(WR(C)) = −log
(
trR(P exp

∫
C
A)
)
, (1.6)

where WR(C) is a bulk Wilson line in a (infinite-dimensional) representation R of the gauge
group SL(N,R) along a curve C that ends at the boundary at ∂X, and P denotes path
ordering. If this proposal generalizes the Ryu-Takayanagi formula, then it should reproduce
the latter in the SL(2,R) case, which corresponds to pure gravity. This means that in this
case (1.6) should encode information about, for example, the length of a geodesic, which is
the kind of quantity involved in the Ryu-Takayanagi formula. However, after a quick look at
the equation (1.6), it seems hopeless to find that kind of information encoded on the Wilson
line, in particular because the only geometrical element present, the path C, is actually
irrelevant (the result of the integral is the same regardless of the path C; only the endpoints
will matter). To see how the information about geodesics could be encoded on Eq. (1.6),
we must recall that these curves are nothing but the paths followed by probe particles in a
given geometry. So, if we manage to read from (1.6) some information about paths followed
by point particles, then we would have a way to understand how this equation reduces to the
Ryu-Takayanagi proposal in the SL(2,R) case. For this, of course, we first need to find out
where in (1.6) such particles would be presumably hiding.

The answer to the puzzle just posed above is in the choice of the representation R in (1.6).
Indeed, as is well known, infinite dimensional representations of certain groups can be built
using as a basis the Hilbert space of a free particle6. This means that if one chooses an infinite-
dimensional representation R, the probe particles could naturally arise from the auxiliary
fields U of the Hilbert space which would serve as a basis. This not only "explains" why
(1.6) reduces sensibly to the Ryu-Takayanagi proposal, but also provides a way to compute
the ‘tr’ in our infinite-dimensional representation7 by means of a trace over the Hilbert space
that defines the partition function in the Hamiltonian formalism8. For us, the important

6The canonical example is the representation of the Poincaré group on one-particle states. See
footnote 6 for more details.

7The particular infinite-dimensional representations used by Ammon, Castro and Iqbal are known
as the highest-weight representations of SL(N,R). See [25] for details

8More precisely, we want to replace the quantum mechanical trace over R in (1.6) by a path
integral over the auxiliary field U which is attached to the curve C and coupled to the connection
A as a background field, so that schematically WR(C) =

∫
DUe[−S(U ;A)C ], with S the action of the

system. The realization that the Wilson line can be computed in this way was actually the original
motivation to introduce the auxiliary quantum mechanical system, and it constitutes one of the many
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bit of this discussion is the presence of the probe particles and the possibility of coupling
them to the background connections. As we shall see, in the SL(2,R) (pure gravity) case,
this coupling has a natural general relativity-like realization (one simply adds the action of
the particle to the Einstein Hilbert action). This general relativity-inspired coupling can be
generalized to scenarios with higher spins. In any case, the key point is that, as proposed in
[41], the action of this particle can be written in the language of group manifolds in terms
of our SL(N,R)-valued field U and its (algebra-valued) "conjugate momentum" P . As we
shall see, this all follows from the fact that the metric of a manifold M of Lie group G can
be written as

gµν = Tr(U−1∂µUU
−1∂νU), (1.7)

where U ∈ G.
With these particles at hand, one could imagine (minimally) coupling to our Chern-

Simons gravity a shell of matter formed by an infinite number of them. If this shell follows null
geodesics (i.e. collapses at the speed of light), then this would exactly mirror the kind of setup
that leads to the Vaidya-like solutions (1.1), as we shall review in detail. Moreover, since, as
we discussed, we can extend the gauge group to any SL(N,R) we like, these particles could
carry higher-spin charges as determined by the values of the Casimirs of the representation9.
The question then arises as to the possibility of building in this way Vaidya-like solutions with
non-zero higher spin charge. Since the Vaidya metric is non-static, in this way we would be
building higher-spin solutions which, being Vaidya-inspired, are dynamical, a feature absent
in all the higher-spin solutions known to date. To address this question is the purpose of this
thesis.

The presentation of our explorations regarding the dynamics of higher-spin gravity
theories is divided into four main parts. A first part, condensed in Chapter 2, is devoted to the
aforementioned special features of gravity in three dimensions. We review the considerations
leading to the recast of 3D gravity as a Chern-Simons theory and we present a number

gems of [22]. Our way of introducing the Hilbert space was mostly guided by the necessity of the
probe particles, but both approaches are of course intrinsically related.

9A Casimir operator is an operator that commutes with all the generators of a given algebra. The
eingenvalues of the Casimirs label the representation and are associated with the spin charges that
arise in the system under study. For example, in the (total) angular momentum algebra, J2 is a
quadratic Casimir and its eigenvalues are related to the total angular momentum quantum numbers.
In analogy to the square one, the cubic, quartic,... Casimirs control the value of the higher spin
charges. See footnote 6 for some further comments.
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of known three-dimensional gravity solutions, including the BTZ black hole as well as a
higher-spin example. Chapter 3 contains the second part of this work, which deals with the
possibility of adding dynamics by considering probes following geodesics in a Chern-Simons
background. We do this building on the example of a shell sourcing the Vaidya metric. As we
said, the translation of this example into the gauge theory language demands that we recast
the action of the particle in a group-theoretical fashion; we review how this is done starting
from (1.7). The equations of motion of the total action obtained by coupling the particle
action thus obtained to the Einstein-Hilbert one are also derived in this chapter. Possible
ways of solving these very equations is the subject we address in Chapter 4, which contains
the main original contributions of this thesis. Specifically, we see how to recover the Vaidya
metric from our gauge-theoretical equations, and we initiate the study of solutions carrying
non-zero spin-3 current. Our presentation concludes with a final chapter devoted to a general
discussion of our results.



Chapter 2

2 + 1− dimensional gravity as a
Chern-Simons theory

2.1 The vielbein formalism
A smooth manifoldM comes naturally with its tangent spaces Tp, which can be identified with
the space of directional derivative operators along curves through points p of the manifold.
Intuitively, one says that the tangent spaces contain the possible "directions" at which one can
tangentially pass through the points p. If one considers a coordinate chart with coordinates
xµ, then there is an obvious set of directional derivatives at a given point, namely the partial
derivatives ∂µ, which form a particular basis for the tangent space Tp. Nothing prevents
us, however, from setting up different sets of bases. In particular, one can conceive an
orthonormal basis ê(a) defined by the orthonormality condition

g(ê(a), ê(b)) = ηab, (2.1)

or equivalently

gµν = e a
µ e

b
ν ηab, (2.2)

where ηab is the canonical form of the metric (e.g. Minkowski in a Lorentzian space) and e a
µ ,

known as the vielbeins, are the matrices that take us from the old to the new basis, i.e.

ê(µ) ≡ ∂µ = e a
µ ê(a). (2.3)
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A notion associated with the one of the tangent space is that of the cotangent space T ∗p , which
is defined as the set of linear maps ω : Tp → R. The elements of the cotangent space are
known as one-forms. The canonical example of a one-form is the gradient of a function df .
Indeed, given a coordinate chart, the most natural basis for the cotangent space is provided
by the gradients dxµ, since in this case one has dxµ(∂ν) = ∂xµ

∂xν = δµν . This last expression is
precisely what defines in general the duality condition between the basis of the tangent space
and that of the cotangent space.

Because the gradients dxµ of the coordinate functions are a natural coordinate basis for
the cotangent space T ∗p , the vielbeins can be thought of as the components of a (1, 1) tensor
of the form:

e = e a
µ dxµ ⊗ ê(a) (2.4)

Note that, as long as the orthonormality condition (2.1) is satisfied, the orthonormal basis
can be changed independently of the coordinates. The transformations that leave the flat
metric ηab invariant are, according to its signature, orthogonal or Lorentzian transformations
of the form

Λaa′Λbb′ηab = ηa′b′ (2.5)

A mixed tensor transforms then as follows:

T a
′µ′

b′ν′ = Λa′a
∂xµ

′

∂xµ
Λbb′

∂xν

∂xν′
T aµbν (2.6)

As in a coordinate basis, the covariant derivative of a tensor written in the orthonormal basis
is given by its partial derivative plus connection terms:

∇µXa
b = ∂µX

a
b + ω a

µ cX
c
b − ω c

µ bX
a
c, (2.7)

where the ω a
µ b, known for historical reasons as the spin connections, are the equivalent, in the

non-coordinate basis, of the Christoffel symbols Γλµν . A relation between the spin connection,
the vielbeins, and the Christoffel symbols can then be found by writing ∇X in different bases.
In the coordinate basis one has:

∇X = (∂µXν + ΓνµλXλ)dxµ ⊗ ∂ν , (2.8)

whereas in a mixed basis this becomes:
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∇X = (∇µXa)dxµ ⊗ ê(a)

= (∂µ(e a
ν X

ν) + ω a
µ be

b
λ X

λ)dxµ ⊗ (eσa∂σ)

= (∂µXν + eνa∂µe
a
λ X

λ + eνae
b
λ ω

a
µ bX

λ)dxµ ⊗ ∂ν .

Equating both expressions leads to the relation

Γνµλ = eνa∂µe
a
λ + eνae

b
λ ω

a
µ b, (2.9)

or equivalently

ω a
µ b = e a

ν e
λ
bΓνµλ − eλb∂µe a

λ . (2.10)

The map between the coordinate and noncoordinate bases allows us to rewrite any quantity
we like in terms of the vielbeins and spin connections. For example, for the torsion and
curvature (Riemann tensor) one has1

T a = dea + ωab ∧ eb (2.11)

and

Rab = dωab + ωac ∧ ωcb (2.12)

where the exterior derivative d allows us to differentiate p-form fields to obtain p + 1-form
fields. It is defined as the following normalized, antisymmetrized partial derivative:

(dA)µ1···µp+1 = (p+ 1)∂[µ1Aµ2···µp+1] (2.13)

where the pair of square brackets denotes antisymmetrization. For example:

T[abc] = 1
3!(Tabc − Tacb + Tbca − Tbac + Tcab − Tcba) (2.14)

The wedge product A ∧B is defined as the antisymmetrized tensor product:

(A ∧B)µ1···µp+q = (p+ q)!
p!q! A[µ1···µpBµp+1···µp+q ] (2.15)

1For illustration, let us check that one recovers the usual expression of the torsion in the coordinate
basis: T λ

µν = eλaT
a

µν = eλa(∂µe a
ν − ∂νeaµ + ω a

µ be
b
ν − ω a

ν be
b
µ ) = Γλµν − Γλνµ, which is precisely the

expression we were looking for.
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The two equations (2.11) and (2.12) are known as the Cartan structure equations. In practice,
the torsion-free condition

dea + ωab ∧ eb = 0 (2.16)

is the most convenient way to find the spin connection from the expressions of the vielbeins,
as we will see later on.

2.2 Einstein-Hilbert as a Chern-Simons action
The action in Lagrangian form which leads to the Einstein field equations in vacuum is of
course the Einstein-Hilbert action2:

SEH = 1
16πGN

∫
d3x
√
g

(
R+ 2

`2

)
(2.17)

where ` is related to the cosmological constant Λ via Λ = −1/`2. Indeed, extremization of
this action with respect to the spacetime metric gµν yields

Rµν −
1
2gµν

(
R+ 2

`2

)
= 0, (2.18)

which, in three dimensional space, determines the full Riemann tensor as

Rµνλρ = − 1
`2

(gµλgνρ − gνλgµρ), (2.19)

describing a symmetric space of constant negative curvature.
With the vielbein formalism at hand, it is natural to extend our map and rewrite the

Einstein-Hilbert action in terms of objects in the noncoordinate basis. Such procedure goes
as follows [39]:

2Note that we are omitting possible surface terms. For a discussion on boundary terms and
asymptotic symmetries in AdS3 see [40].
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SEH = 1
16πGN

∫
d3x

√
|g|
(
R+ 2

`2

)
= 1

16πGN

∫
d3x |e|

(1
2ελµνε

λρσRµνρσ
2
`2

)
= 1

16πGN

∫
d3x εabc e

a
λe
b
µe
c
ν

(1
2ε

λρσRµνρσ + ελµν
2

3!`2
)

= 1
16πGN

∫
d3x εabc e

a ∧
(
Rbc + 1

3`2 e
b ∧ ec

)
. (2.20)

Here |e| = 1
3!ε

µνρεabce
a
µe
b
νe
c
ρ denotes the determinant of eaµ, which is also equal to

√
|g|.

Recall that Rab = dωab + ωac ∧ ωcb, and so the last line implies that, if we interpret e
and ω as gauge fields, we should compare this to a gauge action

∫
(AdA+A ∧A ∧A).

Remarkably, forms of this kind do appear in the context of gauge theories, specifically in
what is known as Chern-Simons theories [20]. This then suggests that we treat the vielbein
and the spin connection as gauge fields, but a more precise translation will require some
further considerations3.

The connection between (2.20) and Chern-Simons theory is most easily seen after
introducing the definition

ωa = 1
2ε

a
bcω

bc, (2.21)

in terms of which the action can be recast as

SEH = 1
16πGN

∫
d3x

(
2eadωa + εabce

a ∧
(
ωb ∧ ωc + 1

3`2 e
b ∧ ec

))
(2.22)

Define now

Aa = ωa + 1
`
ea, Āa = ωa − 1

`
ea (2.23)

This implies
3As pointed out by Witten [19], in 3 + 1 dimensions the rewriting of the Einstein-Hilbert action

in terms of the vielbein and spin connection gives something of the form
∫
A ∧A ∧ (dA+A2), where

A denotes collectively e and ω, which are treated as gauge fields. As it turns out, this action is not
invariant under iso(3, 1) (Poincaré), so(3, 2) (AdS) or so(4, 1) (dS). Actually, it can be shown that no
action can be built in four dimensions which is invariant under some of the aforementioned gravity
groups. See [26, 27] for some further comments and a detailed discussion on the gauge realization of
gravity in the case of odd dimensions. See also [28] for some recent progress in the attempts to build
a Chern-Simons gravity action in four dimensions.
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2eadωa = `

2
(
AadAa − ĀadĀa − d(AaĀa)

)
(2.24)

where the last term, a total derivative, can be dropped.
On the other hand,

εabc e
a ∧

(
ωb ∧ ωc + 1

3`2 e
b ∧ ec

)
= `εabc

8
(
Aa − Āa

)
∧
(

(Ab + Āb) ∧ (Ac + Āc) + 1
3(Ab − Āb) ∧ (Ac − Āc)

)
= `εabc

6 (Aa ∧Ab ∧Ac − Āa ∧ Āb ∧ Āc) (2.25)

Thus, combining these two last expressions we get

SEH = `

32πGN

∫
d3x

((
AadA

a + 1
3εabcA

a ∧Ab ∧Ac
)
−
(
ĀadĀ

a + 1
3εabcĀ

a ∧ Āb ∧ Āc
))

(2.26)
We have then managed to recast the Einstein-Hilbert action as something that has the form∫

(AdA+A ∧A ∧A), which we said to be an action appearing in the context of gauge theory.
Actions of this form have been particularly useful in the study of geometric invariants4, as
well as in various problems of interest in condensed matter theory [20]. More precisely, the
action appearing in these contexts – known as the Chern-Simons action – is defined as

SCS [A] = k

4π

∫
Tr
(
AdA+ 2

3A ∧A ∧A
)
. (2.27)

where k is a constant known as the Chern-Simons level.
To see that the terms of (2.26) are indeed of the form (2.27), one must think of Aa as

the components of a gauge field A expanded in the basis of the generators of the algebra, i.e.
A = AaJa (and similarly for Ā). As we will review later on, the Lie algebra associated with
AdS3 is so(2, 2) = sl(2,R) × sl(2,R), implying that both A and Ā are elements of sl(2,R).
For reasons that will become clear as we go on, we will work in the following representation
of sl(2,R)

J0 = 1
2

 0 1
−1 0

 , J1 =

0 0
1 0

 , J2 = 1
2

1 0
0 −1

 , (2.28)

4See, for example, the seminal paper [22] by Witten, where it is shown that Chern-Simons theory
in 2 + 1 dimensions gives a natural framework for understanding some aspects of knot theory.
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where one has

tr(JaJb) = 1
2


−1 1 0
1 0 0
0 0 1

 = 1
2ηab. (2.29)

The generators then satisfy

[Ja, Jb] = εabcη
cdJd, tr(JaJb) = 1

2ηab, tr(JaJbJc) = 1
4εabc, (2.30)

where ‘tr’ denotes trace over the matrix indices. The Tr of (2.27) is in general defined by the
matrix trace in some irreducible representation multiplied by a constant c, so as to provide
an inner product given by the Killing form ηab appearing in (2.30). That is,

Tr(JaJb) ≡ ηab = 2tr(JaJb)

Tr(JaJbJc) = 2 tr(JaJbJc) = 1
2εabc

and so in our case c = 25. Thus, for example, the quadratic part of (2.27) then becomes

∫
Tr(AaJa ∧ d(AbJb)) = Tr(JaJb)

∫
(Aa ∧ dAb) = ηab

∫
(Aa ∧ dAb). (2.31)

All this in turn implies that the terms of (2.27) have the following component representation:

A ∧ dA = 1
3!A

a
[µ∂νA

b
ρ] JaJb dxµ ∧ dxν ∧ dxρ, (2.32)

A ∧A ∧A = 1
3!A

a
[µA

b
νA

c
ρ] JaJbJc dxµ ∧ dxν ∧ dxρ. (2.33)

It is now easy to see that (2.23) is recovered from the combination6

5This constant depends on the representation because different inequivalent representations will
give invariant bilinear forms differing by a multiplicative factor. See [29] for different examples of
this. Note also that the metric on the Lie algebra should be non-degenerate so that the Chern-Simons
action contains a kinetic energy for all components of the gauge fields.

6While it seems that by writing SEH in terms of the Chern-Simons connection one is not doing
anything more than a mere translation between different languages, there is an important subtlety
to consider. Recall that the vielbeins were defined by the relation gµν = e a

µ e
b
ν ηab. Since in general

relativity the metric is supposed to be non-degenerate, this relation implies that the vielbeins should
be invertible. However, if we take the Chern-Simons-like action that we got for SEH and forget all
reference to its metric version, there is not a priori any reason to require the invertibility of the vielbein.
This extension turns out to have very important implications in the analysis of the renormalizability
of three-dimensional gravity, as pointed out by Witten [19].
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SEH = SCS [A]− SCS [Ā] (2.34)

provided we make the identification k = `
4GN .

It is important to note that the values of the Chern-Simons level k are constrained to
be integers by gauge invariance of the quantum amplitude eiS , which implies that `/GN is
also quantized. To see how this remarkable feature comes out, let us perform the gauge
transformation

A→ g−1(A+ d)g, (2.35)

where g is an element of the gauge group. This gives:

SCS →
k

4π

∫
Tr
(
g−1(A+ d)g ∧ d(g−1(A+ d)g) + 2

3g
−1(A+ d)g ∧ g−1(A+ d)g ∧ g−1(A+ d)g

)
= k

4π

∫
Tr
(
A ∧ dA+ 2

3A ∧A ∧A− g
−1Adgg−1dg + dgg−1dA− 1

3g
−1dgg−1dg g−1dg

)
= SCS −

k

4π

∫
Tr
(
d(g−1Adg) + 1

3g
−1dg g−1dgg−1dg

)
.

The gauge invariance is then spoiled by the two last terms in the last equation. We can get
rid of the first of these terms –a total derivative– by fixing appropriate boundary conditions
on the field A. The case for the second term is a bit more subtle, but it involves the winding
number

w(g) ≡ 1
24π2Tr(g

−1dg g−1dgg−1dg), (2.36)

whose integral can be shown to be an integer under suitable boundary conditions [20]. We
conclude that the action is not gauge invariant, but changes by 2πkw(g). However, the only
extra terms arising from a gauge transformation that can be tolerated are integer factors of
2π, which implies that k must be an integer. This is so because it is only in that scenario that
the amplitude eiS remains gauge invariant, which must be the case in order for quantities
like 〈O〉 to be well defined, as is clear, for example, from the functional representation 〈O〉 =
Z−1 ∫ DAO(A) exp(iS(A)) [23].

2.2.1 Isometries of AdS3

In the previous section we rewrote the Einstein-Hilbert action in the language of the vielbein
formalism and recognized a Chern-Simons-like form in the expression thus obtained. It is
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clear, however, that if our Chern-Simons theory is to be interpreted as gravity, it must retain
the structure of the latter under diffeomorphisms and Lorentz transformations7. Luckily, to
ensure this, all we need to do to is to choose the right Lie algebra for the Chern-Simons
connections A and Ā. We already saw that (2.34) could be obtained when the algebra is
sl(2,R). To understand why this is the case, let us develop a bit more.

Anti-de Sitter space is the maximally symmetric solution of Einstein’s equation with
a negative cosmological constant. It can be realized as a hyperboloid embedded in a 4-
dimensional geometry [31] :

− v2 − u2 + x2 + y2 = −`2, (2.37)

with metric:

ds2 = −du2 − dv2 + dx2 + dy2 (2.38)

Here the radius ` is the same appearing in (2.18), which was said to be related to the
cosmological constant by Λ = −1/`2, as can be seen by finding the induced metric on the
hyperboloid and plugging it into Einstein’s equations. To find intrinsic coordinates on AdS3,
one just needs to solve (2.37). This can be done by setting

u = ` cosh ρ sinλ

v = ` cosh ρ cosλ

` sinh ρ =
√
x2 + y2

Going to polar coordinates (x = ` sinh ρ cosφ, y = ` sinh ρ sinφ) we obtain:

ds2 = `2(− cosh2 ρ dλ2 + dρ2 + sinh2 ρdθ2) (2.39)

The signature of λ indicates that it acts as a timelike coordinate. However, λ is clearly
periodic, so when we refer to AdS3 we will actually mean the space in which that coordinate
is unwrapped, i.e. λ ∈ (−∞,∞), which the hyperboloid’s universal covering (otherwise we
would have a closed timelike curve). It is convenient to set λ = t

` and introduce the coordinate
r = ` sinh ρ. This leads us to what is conventionally referred to as AdS3:

7See section 2.1 of [19] for detailed discussion on this subject.
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ds2 = −
(
r2

`2
+ 1

)
dt2 +

(
r2

`2
+ 1

)−1

dr2 + r2dθ2 (2.40)

Another set of coordinates commonly used to write Anti-de Sitter spacetime are the Poincaré
coordinates, defined as

z = `

u+ x
, β = y

u+ x
, γ = −v

u+ x
, (2.41)

in terms of which the line element reads:

ds2 = `2

z2

(
dz2 + dβ2 − dγ2

)
. (2.42)

Now to the isometries. The group of transformations that leave the metric (2.38) invariant
is denoted as SO(2, 2). Here, (2, 2) stands for the signature of the metric and SO stands for
‘special orthonormal’, meaning that its matrix representations are of determinant 1. That
SO(2, 2) is the isometry group of AdS3 can also be explicitly seen by finding the six Killing
vectors of AdS and checking that three of them obey the sl(2,R) algebra under Lie brackets,
and that the other three form the same algebra and commute with the first three Killing
vectors (see [31] for details). This means that the isometry group is indeed SL(2,R) ×
SL(2,R) = SO(2, 2). Note, however, that this split is a special feature of AdS3 since the
isometry group of AdSD is SO(D − 1, 2), which splits only for D = 3.

2.2.2 Equations of motion

Since we will be studying gravity in the Chern-Simons language we just described, let us
see explicitly what form the equations of motion take in this new language. Clearly, these
equations will correspond to Einstein field equations as we have done nothing but a rewriting
of the Einstein-Hilbert action.

For small variations δA, the corresponding variation of the Chern Simons functional is

δSCS [A] = k

4π

∫
M

Tr (δA ∧ dA) + k

4π

∫
M

Tr (A ∧ dδA) + 2k
4π

∫
M

Tr (δA ∧A ∧A)

= k

4π

∫
M
dTr (A ∧ δA) + 2k

4π

∫
M

Tr (δA ∧ (dA+A ∧A))

= k

4π

∫
∂M

Tr (A ∧ δA) + 2k
4π

∫
M

Tr (δA ∧ (dA+A ∧A)) ,

(2.43)
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where in the last step the Stokes formula has been used.
Imposing the appropriate boundary conditions, one obtains

δSCS [A] = k

4π2
∫

Tr (δA ∧ (dA+A ∧A))

= k

4π2
∫

dx3ερµνTr
{
δAρ

[1
2 (∂µAν − ∂νAµ) + 1

2 [Aµ, Aν ]
]}

(2.44)

So,

δSCS [A]
δAρ

= k

4π

∫
dx3ερµνFµν , (2.45)

and analogously,

δSCS [Ā]
δĀρ

= k

4π

∫
dx3ερµνF̄µν , (2.46)

with8

Fµν ≡ (∂µAν − ∂νAµ) + [Aµ, Aν ] , F̄µν ≡
(
∂µĀν − ∂νĀµ

)
+
[
Āµ, Āν

]
(2.47)

The equations of motion are then

F = 0, F̄ = 0 (2.48)

When building our dynamical solution, these equations will be slightly modified to include a
source (we will take into account the backreaction of particles following geodesics). For the
moment, let us see what are some of the already known solutions in AdS3.

2.3 Some solutions in 2 + 1-dimensional gravity

2.3.1 The BTZ black hole

In [17] it was pointed out that the metric

ds2 = −(N⊥)2dt2 + (N⊥)−2dr2 + r2(dφ+Nφdt)2, (2.49)
8F and F̄ are nothing but non-Abelian versions of the field strength tensor familiar from

electrodynamics.
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with

N⊥ =
(
−M + r2

`2
+ J2

4r2

)1/2

, Nφ = − J

2r2 (2.50)

is an exact solution of the Einstein field equations with negative cosmological constant Λ =
−1/`2. When M > 0 and |J | ≤M`, this solution has an outer event horizon9 at r = r+ and
an inner horizon at r = r−, where

r± = M`2

2

1±
[
1−

(
J

M`

)2
]1/2

 , (2.51)

which implies that

M =
r2

+ + r2
−

`2
, J = 2r+r−

`
, (2.52)

which can be shown to correspond to the mass and angular momentum of the black hole [31].
The BTZ black hole shares many features with the "standard" black hole solutions in four

dimension, such as the existence of an event horizon and some thermodynamic properties.
However, this black hole presents the particular feature of not having a curvature singularity
at the origin. Instead, the BTZ black hole posesses at that point what is called a ‘causal
singularity’, in the sense that continuing past r = 0 would bring in closed timelike lines (see
[31] for details). On the other hand, given that it has constant negative curvature, this black
hole must be isometric to AdS3, at least locally. This can be seen, for the region r > r+, by
performing the simple coordinate change

x =
(
r2 − r2

+
r2 − r2

−

)1/2

cosh
(
r+
`2
t− r−

`
φ

)
exp

(
r+
`
φ− r−

`2
t

)

y =
(
r2 − r2

+
r2 − r2

−

)1/2

sinh
(
r+
`2
t− r−

`
φ

)
exp

(
r+
`
φ− r−

`2
t

)

z =
(
r2 − r2

+
r2 − r2

−

)1/2

exp
(
r+
`
φ− r−

`2
t

)
,

for which the metric becomes

ds2 = `2

z2 (dx2 − dy2 + dz2) (2.53)

9Note that the radius of curvature ` provides the length scale necessary to have a horizon in a
theory in which the mass is dimensionless [17]
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Eq. (2.53) is nothing but the standard Poincaré metric for anti-de Sitter space that we
presented before in (2.42).

Using (2.52), the Euclidean version of BTZ can be written as

ds2 =
(r2 − r2

+)(r2 − r2
−)

r2`2
dt2E + `2r2

(r2 − r2
+)(r2 − r2

−)
dr2 + r2

(
dφ+ r+|r−|

`2r2 dtE

)2
, (2.54)

where tE is the Euclidean time obtained by Wick-rotating t→ −itE .
Another common form for this metric is

ds2 = dρ2 + 8πG`(Ldw2 + L̄dw̄2) + (`2e2ρ/` + (8πG)2LL̄e−2ρ/`)dwdw̄ (2.55)

where w = φ + it/`, w̄ = φ − it/` are complex coordinates on the boundary, located at
eρ/` =: `r → ∞. The BTZ is recovered for L = 1

2π
(r+−r−)2

16G` , L̄ = 1
2π

(r++r−)2

16G` . However, the
interesting bit of this last form is that one can see that it solves the Einstein field equations
for any L = L(w) and L̄ = L̄(w̄).

We can of course write the (Euclidean) BTZ black hole in the Chern-Simons language.
For this, let us choose an explicit basis for the sl(2,R) algebra. We take

L1 =

 0 0
−1 0

 , L−1 =

0 1
0 0

 , L0 =

1/2 0
0 −1/2

 , (2.56)

which satisfy

[Li, Lj ] = (i− j)Li+j (2.57)

These are related to the more standard generators (2.30) through

J0 = 1
2(L1 + L−1), J1 = 1

2(L1 − L−1), J2 = L0 (2.58)

It can then be checked that, in units ` = 1, the BTZ metric is reproduced starting from the
connections

A = (eρL1 −
2πL
k
e−ρL−1)dw + L0dρ

Ā = (eρL−1 −
2πL̄
k
e−ρL1)dw̄ − L0dρ. (2.59)
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We mentioned before that a pair of connections in which L = L(w) and L̄ = L̄(w̄) can also
be shown to solve the Einstein field equations. These coefficient functions turn out to be
components of the boundary stress tensor,

Tww = L(w), Tw̄w̄ = L̄(w̄). (2.60)

This fact can be understood by analyzing asymptotic properties of generic solutions of pure
gravity with negative cosmological constant with a boundary term. Imagine that we write
the line element of such a solution in a form analogous to (2.55):

ds2 = dρ2 + gij(xk, ρ)dxidxj , i, j = 1, 2. (2.61)

If we demand that gij takes the Fefferman-Graham [7] form as ρ→∞,

gij(xk, ρ)dxidxj = eρ/`g
(0)
ij (xk) + g

(2)
ij (xk) + · · · , (2.62)

then g
(0)
ij defines the conformal boundary metric. In the context of the AdS/CFT

correspondence, the CFT is said to live on a space with this metric. The boundary stress
tensor works out to be

Tij = 1
8πG`

(
g

(2)
ij − Tr(g(2))g(0)

ij

)
(2.63)

where the trace is taken with g(0)
ij .

From (2.55) we read g(0)
ww = 0 = g

(0)
w̄w̄ and gww̄ = 1/2. The asymptotic symmetry group

(i.e. the symmetry group of the CFT on the boundary) is obtained by considering coordinate
transformation that leave the form of g(0)

ij unchanged. This is the case for the infinitesimal
transformations [37]

w → w + ε(w)− `2

2 e
−2ρ/`∂2

w̄ ε̄(w̄)

w̄ → w̄ + ε̄(w)− `2

2 e
−2ρ/`∂2

w ε̄(w)

ρ→ ρ− `

2 (∂wε(w) + ∂w̄ ε̄(w̄)) (2.64)

where ε(w), ε̄(w̄) are arbitrary functions. These transformations act nontrivially in g(2)
ij , and

so the stress tensor transforms as [35]
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Tww → Tww + 2∂wε(w)Tww + ε(w)∂wTww −
c

24π∂
3
wε(w) (2.65)

and analogously for Tw̄w̄. This is the transformation law for a stress tensor in a two-
dimensional conformal field theory, with c = 3`/2G the central charge. If one decomposes
the stress tensor into modes, Ln =

∮
dw e−inwTww, it follows that the generators obey the

Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + c

12(m3 −m)δm+n. (2.66)

To see that L, L̄ are the components of the boundary stress tensor, we then need to verify
that they transform as in (2.65). Let us check this for the coefficient L in the connection A
of (2.59). Infinitesimal gauge transformations act on this connection as

δA = dΛ + [A,Λ]. (2.67)

The form of A is preserved if we take

Λ = b−1
[
ε(z)L1 − ∂zε(z)L0 +

(1
2∂

2
z ε(z)−

2π
k
Lε(z)

)
L−1

]
b, b = eρL0 , (2.68)

which acts as

δL = ε(z)∂zL+ 2∂zε(z)L −
k

4π∂
3
z ε(z). (2.69)

Comparing with (2.65), we see that L is indeed transforming as a stress tensor under
conformal transformations.

2.3.2 Higher spin solutions

We have emphasized that the advantage of writing gravity solutions in terms of Chern-Simons
connections is the possibility of a straightforward generalization to the case of higher-spins.
Let us see how such a generalization actually takes place.

The main difference that arises when considering fields with spin higher than 2 is that now
the connections are expanded in terms of generators of the corresponding sl(N,R) algebra.
Explicitly, this means that, in a given representation, we now have
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A = AaJa +Aa1···as−1Ta1···as−1 (2.70)

Ā = ĀaJa + Āa1···as−1Ta1···as−1 (2.71)

where the Ta1···as−1 generate the higher-spin algebras.
For concreteness, let us consider the example of the spin-3 case. Here one can introduce

a basis of generators Ja and Tab which obey the following non-Abelian algebra [40]

[Ja, Jb] = εabcη
cdJd,

[Ja, Tbc] = ηmnεna(bTc)m, (2.72)

[Tab, Tcd] = −
(
ηa(cεd)bm + ηb(cεd)am

)
ηmnJn,

where the Tab are traceless and symmetric in a, b. Clearly, the generators Ja in the above
equation obey the sl(2,R) algebra that we encountered before in (2.30). The sl(2,R) is
then said to be embedded in the sl(3,R) algebra (2.72). Other embeddings can of course
be conceived in which different combinations of three of the generators solve (2.30). The
particular embedding of (2.72) is known as the principal embedding10.

The representation (2.72) can be built by defining the Tab generators as

Tab =
(
J(aJb) −

2
3ηabJcJ

c
)
, (2.73)

as fixed by tracelessness and symmetry (see e.g. [32]). The Ja appearing in this last equation
are the generators of the sl(2,R) algebra in the three-dimensional representation, since the
generators Tab are three by three matrices in the fundamental representation. The particular
conventions and matrix representation of sl(3,R) that we will be using are summarized in
Appendix A.

Following (2.70), the sl(3,R) connections can then be expanded as

A = A(2) +A(3) = AaJa +AabTab (2.74)

Ā = Ā(2) + Ā(3) = ĀaJa + ĀabTab. (2.75)

10This will be the embedding we will be considering throughout our discussions. For examples of
uses of a different embedding in the context of higher-spin black holes, see [38].
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An obvious way of extending (2.59) to a higher-spin version would consist in adding terms
of the form AabTab. However, we must make sure that the terms we add actually give rise to
non-zero spin-3 currents. To understand why there might be this kind of subtlety, consider
the connections of the BTZ black hole (2.59). Since the BTZ black hole is a solution of pure
gravity (spin-2), it does not carry any higher-spin charge. This is reflected by the fact that
ABTZ , ĀBTZ are expanded in terms of Ja, Jb, which are generators of sl(2,R). However, these
generators can be thought of as the generators of the sl(2,R) subalgebra embedded in sl(3,R)
in a given representation (as in (2.72)). This means that we can think of ABTZ and ĀBTZ
as elements of sl(3,R) (or sl(N,R), for that purpose) in which the higher-spin components
are zero, i.e.

ABTZ = A
(2)
BTZ +A

(3)
BTZ︸ ︷︷ ︸
=0

(2.76)

and similarly for ĀBTZ . Seen as elements element of sl(3,R), ABTZ and ĀBTZ are then
higher-spin gravity solutions. Indeed, in a sl(3,R) theory, the connections ABTZ and ĀBTZ
will be subject to sl(3,R) gauge transformations which will leave them globally untouched
but which will mix the spin-2 part with the spin-3. That is,

ABTZ → A′BTZ = A
(2)′
BTZ︸ ︷︷ ︸

6=A(2)
BTZ

+A
(3)′
BTZ︸ ︷︷ ︸
6=0

= ABTZ . (2.77)

It seems then that full-fledged higher-spin gravity solutions can be constructed by simply
taking embeddings of sl(2,R) in higher-rank algebra. It should be obvious, however, that
this is a rather artificial way of building a higher-spin solution as we are not adding any new
physics whatsoever. Indeed, as we will see, all we have done is to construct a higher-spin
solution which does not carry higher-spin current11. The question then arises as to how one
may build solutions carrying non-zero higher-spin charge.

The answer to the above question resides in the kind of asymptotic analysis that led
us to the conclusion that the coefficient functions L, L̄ in (2.59) are actually components of
the boundary stress tensor. If we perform an analysis of that kind and identify the kind of

11This claim can also be understood if one considers the eingenvalues of the Casimirs of the
representations, which encode the mass, the spin, and the higher-spin charges of the particles sourcing
the solutions. The eigenvalues of the Casimirs are invariant under gauge transformations. This implies
that a solution with no higher-spin will remain uncharged, no matter whether the gauge we pick is
such that the connections have (as in (2.77)) or have not (as in (2.76)) higher-spin components. We
will have some further comments on this later in this thesis.
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higher-spin component that leads to non-zero spin-3 current in the boundary CFT, then we
would be in conditions to construct a full-fledged higher-spin solution. This is precisely what
was done in [36], where it was pointed out that the connections

A =
(
eρL1 −

2πL
k
e−ρL−1 −

π

2ke
−2ρW(w)W−2

)
dw + L0dρ

Ā =
(
eρL−1 −

2πL̄
k
e−ρL1 −

π

2ke
−2ρW̄(w̄)W−2

)
dw̄ − L0dρ (2.78)

yield to a charged higher-spin black hole12. These connections reduce to the BTZ ones
for W, W̄ = 0. The new coefficient functions W, W̄ can be shown to correspond to spin-3
currents. This is done by first identifying the asymptotic symmetry group, i.e. by identifying
the most general gauge transformation preserving the asymptotic form of the connections,
as in (2.64) or (2.68), for example. Such transformations do not change the form of the
connections but act non-trivially on the functions L, L̄,W, W̄. These variations can be
compared to what is expected for stress tensors and spin-3 operators in the CFT language13,
which allows to conclude thatW is indeed a spin-3 operator. The authors of [36] extended this
analysis so as to include chemical potentials µ, µ̄ for the spin-3 operators in the connections
(2.78):

A =
(
L1 −

2πL
k
L−1 −

π

2kW(w)W−2

)
dw

− µ
(
W2 −

4πL
k
W0 + 4π2L2

k2 W−2 + 4πW
k

L−1

)
dw̄

Ā =
(
L−1 −

2πL̄
k
L1 −

π

2kW̄(w̄)W−2

)
dw̄

− µ̄
(
W−2 −

4πL̄
k
W0 + 4π2L̄2

k2 W2 + 4πW̄
k

L1

)
dw. (2.79)

Here the following basis is being used that allows to recognize the asymptotic symmetry
group straightforwardly:

12The relation between the generators L1, L−1,W−2, . . . and the generators in (2.72) will be specified
below.

13This is done by translating the variations of these functions into what is known as the operator
product expansion (OPE) for the symmetry currents. From this OPE one can read the dimension of
the corresponding operators, and thus the spin (see e.g. [34] for details).
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[Li, Lj ] = (i− j)Li+j

[Li,Wm] = (2i−m)Wi+m

[Wm,Wn] = −1
3(m− n)(2m2 + 2n2 −mn− 8)Lm+n

where −1 ≤ i, j ≤ 1 and −2 ≤ m,n ≤ 2. This can be related to our basis in (2.72) via the
isomorphism

J0 = 1
2(L1 + L−1), J1 = 1

2(L1 − L−1), J2 = L0, (2.80)

and

T00 = 1
4(W2 +W−2 + 2W0), T01 = 1

4(W2 −W−2),

T11 = 1
4(W2 +W−2 − 2W0), T02 = 1

2(W1 +W−1),

T22 = W0, T12 = 1
2(W1 −W−1).

The considerations that led us to (2.79) constitute the standard approach to the construction
of higher-spin solutions. The approach we will follow will differ in several respects. Since
we are interested in dynamical solutions, we will have to lay aside pure gravity, which is
topological. This implies that we will be dealing with an action that includes sources coupled
to gravity. Based on [41] and [25], we will now present a framework which will allow us not
only to achieve this coupling, but also to have control on the value of the spin charges by
means of constraints on the values of the Casimir operators.



Chapter 3

A dynamical setup

In the previous chapter we presented a Chern-Simons-like formulation of pure three-
dimensional gravity. We also saw that the gauge theory language of the new formulation
allowed us to easily extend the pure gravity scenario to one involving gravity coupled to a
finite tower of higher spin fields. This coupling was achieved by means of a change of the
gauge group from SL(2,R) (pure gravity) to SL(N,R) (gravity plus higher-spin fields), a
procedure with no obvious analogue in the metric language. While the higher-spin fields
modify the theory in a non-trivial way, in particular by preventing strictly geometric notions
to be gauge invariant (under a SL(N,R) transformation, the higher-spin fields mix with the
spin-2 field, i.e., with the metric), in all these cases the variation of the action led to the
flatness condition

F = 0, F̄ = 0, (3.1)

meaning that no actual sources are added in this way. In this chapter we will see how to
extend our treatment in order to consistently include sources in the right hand side of the
equations (3.1). To do this, we will make use of a formulation due to Jorjadze, O’Raifeartaigh
and Tsutsui [41] in which the action of a free particle is rewritten in an explicit group-
theoretical fashion. As we mentioned in the introduction, this formulation played a crucial
role in the recent work by Ammon, Castro and Iqbal [25], where a gauge theory version
(i.e. involving quantities defined using the gauge connections rather than, say, geodesics or
minimal surfaces) of the Ryu-Takayanagi formula (1.4) was proposed (see Eq. (1.6) and
successive comments). As we saw, a gauge theory version of a geometric quantity has the
advantage of allowing possible generalizations to higher-spins by means of a simple extension
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of the gauge group. Our immediate goal is then to build an action for the sources which is
written in the appropriate language of gauge theories.

Before building our group theoretical action, however, let us understand in the first place
why we want to include sources in (3.1). The main reason why we need to do this is that pure
three-dimensional gravity is topological, as was implied by the simple counting argument we
presented in the introduction. This means that, if we are to build dynamical (time-dependent)
solutions, we will need to add propagating degrees of freedom (which would in turn source a
time-dependent energy momentum tensor). The role of the sources is then clearly to provide
us with such degrees of freedom. To see explicitly how one may obtain a dynamical solution
from the coupling just described, let us consider the example of the Vaidya metric.

3.1 The Vaidya metric
The Vaidya metric is a simple non-static generalization of the Schwarzschild metric. In 3 + 1
dimensions, it describes the non-empty external spacetime of a spherically symmetric and
non-rotating star which is either emitting or absorbing null dust, and thus serves as a model
to describe black hole formation by gravitational collapse, for example1. To see this, recall
that the Schwarzschild metric is the most general spherically symmetric vacuum solution of
the Einstein field equations, which for negative cosmological constant are given by

Gµν − 1
`2
gµν = 0 (3.2)

In three dimensions, the Schwarzschild metric, solution of (3.2), can be written in spherical
coordinates as

ds2 = −
(

1 + r2

`2
−M

)
dt2 +

(
1 + r2

`2
−M

)−1

dr2 + r2dϕ2, (3.3)

where M is a positive constant. The singularity at the Schwarzschild radius rs = `
√
M − 1

can be removed by coordinate change, but it signals the fact that the Schwarzschild metric
can describe black holes, since rs actually happens to be the position of an event horizon,
as is well known [8]. Thanks to this property, the Schwarzschild metric can be used to
describe the empty exterior of both stars and black holes of mass M , according to whether

1See [8] for an extensive review on properties of Vaidya-like metrics. A detailed discussion on
gravitational collapse can be found in [42].
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the radius of the object is smaller or grater than rs. However, the fact that this metric
is static prevents us from treating dynamical scenarios such as the black holes formed by
matter that collapses to below the Schwarzschild radius. To overcome this drawback, let us
first rewrite our Schwarzschild metric in a form suited for the description of ingoing geodesics
– and therefore for the description of an infalling shell, as in gravitational collapse.

From (3.3) we see that radial (i.e., dϕ = 0) null geodesics are given by

0 = ds2 = −
(

1 + r2

`2
−M

)
dt2 +

(
1 + r2

`2
−M

)−1

dr2

⇒
(
dr

dt

)2
=
(

1 + r2

`2
−M

)2

.

The positive root of the last equation will represent outgoing null geodesics, whereas the
negative root will represent ingoing null geodesics. A form adapted to the description of
ingoing geodesics can be obtained by substituting the time t with a coordinate v defined as

dv = dt+ dr(
1 + r2

`2 −M
) , (3.4)

since in this case ingoing null geodesics would simply correspond to v = const. In terms of
the coordinate v, known as the ingoing Eddington-Finkelstein coordinate, the Schwarzshild
metric reads

ds2 = −
(

1 + r2

`2
−M

)
dv2 + 2dvdr + r2dϕ2. (3.5)

A sensible non-static generalization of this metric might be obtained by making M = M(v),
which, for example, reflects the fact that the mass of a radiating star is not constant. The
metric thus obtained

ds2 = −F (r, v)dv2 + 2drdv + r2dϕ2, (3.6)

with F (r, v) =
(
1 + r2

`2 −M(v)
)
, is what is known as the Vaidya metric, after the name

of the author who first proposed it [43]. It is important to note that by modifying the
Schwarzschild metric we have obtained a metric that is no longer a solution of the vacuum
Einstein equations. Rather, the metric (4.1) will be sourced by a non-zero energy momentum
tensor which manifests the presence of the shell.
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To understand why this simple generalization might describe properly the kind of
dynamical solution we would like to obtain, let us consider gravity in three dimensions with a
negative cosmological constant coupled to a single particle moving along a trajectory denoted
by Xµ(s). The action of this system is

S = SEH + Sp = 1
16πGN

∫
dx3√g

(
R+ 2

`2

)
+∫

dx3√g
∫
ds

(
− 1

4λ(s)gµν
dxµ

ds

dxν

ds
− λ(s)m2

)
δ(3)(xµ −Xµ(s))

√
g

(3.7)

The variation of this action gives

1√
−g

δS

δgµν
= 0 = − 1

16πGN
(Gµν − 1

`2
gµν)− 1

4
√
−g

∫
dsλ−1dx

µ

ds

dxν

ds
δ(3)(xµ −Xµ(s)), (3.8)

δS

δλ
= 0 = 1

4λ2 gµν(X)dX
µ

ds

dXν

ds
−m2 (3.9)

Note that the more familiar form Sp = −m
∫
ds
√
gµν ẋµẋν can be recovered by plugging

Eq. (3.9) – the equation of motion of the Lagrange multiplier λ(s) – back into (3.7). The
introduction of a Lagrange multiplier is in this case a standard practice to get rid of the
square root in Sp = −m

∫
ds
√
gµν ẋµẋν and deal instead with the more comfortable quadratic

form of Sp appearing in (3.7).
The reparametrization symmetry of the worldline s allows us to set λ(s) in (3.8) to a

constant2. If we set λ(s) = 1, Eq. (3.8) implies

1
16πGN

(
Gµν − 1

`2
gµν

)
= − 1

4
√
|g|

∫
ds
dxµ

ds

dxν

ds
δ(3)(xµ −Xµ(s)). (3.10)

Since we are interested in the Vaidya solution, let us take our metric Ansatz to be of the form
(4.1). From this we read

Gµν − 1
`2

= 1
2rM

′(v)δrµδrν (3.11)

2This reparametrization symmetry is of course nothing else than manifestation of the fact that
a geodesic can be parametrized by any monotonic function that maps points on the geodesic to
unique values of the parameter. Consider the geodesic equation d2xb

ds2 + Γbcd dx
c

ds
dxd

ds = 0. Suppose now
that we change the parameter in an arbitrary way v = v(s). The geodesic equation then becomes
d2xb

dv2 + Γbcd dx
c

dv
dxd

dv = d2v/ds2

(dv/ds)2
dxb

dv . An affine parameter is that for which the right hand side of the last
equation is zero. The parameter v is then said to be affinely related to s if σ(s) = d2v/du2

(dv/du)2 is zero.
We stress, however, that non-affine parameters can also be chosen.



3.1 The Vaidya metric 32

which is also the energy-momentum tensor up to a constant factor, as follows from Einstein
equations.

In the massless case, the constraint (3.9) requires

−
(

1 +
(
Xr

`

)2
+M(Xv)

)(
dXv

ds

)2
+ 2dX

r

ds

dXv

ds
+
(
Xr dX

ϕ

ds

)2
= 0 (3.12)

This is solved by the radial null path Xv(s) = v0, Xϕ(s) = ϕ0, with v0, ϕ0 constants. With
this at hand, the geodesic equation implies

dXr

ds
+ Γrρσ(X)dX

ρ

ds

dXσ

ds
= dXr

ds
+ Γrrr(X)dX

r

ds

dXr

ds
= 0. (3.13)

Furthermore, from the expression Γrrr = 1
2g
rσ(∂rgσr + ∂vgσr − ∂σgrr) it immediately follows

that Γrrr = 0. Our null radial geodesic is then given by

v(s) = v0, r(s) = r0 + c0s, ϕ(s) = ϕ0 (3.14)

with v0, r0, c0 and ϕ0 constants.
Plugging the trajectory (3.14) in (3.10) gives

Gµν − 1
`2
gµν = −16πGN

4r

∫
ds
dxµ

ds

dxν

ds
δ(v − v0)δ(ϕ− ϕ0)δ(r − (r0 + c0s)), (3.15)

and equating this to (3.11) results in

1
2rM

′(v) = −16πGN
4r

∫
ds
dxµ

ds

dxν

ds
δ(v − v0)δ(ϕ− ϕ0)δ(r − (r0 + c0s))

⇒M ′(v) = −8πGN |r0|δ(v − v0)δ(ϕ− ϕ0).

In order to source the Vaidya solution, it remains to take a shell of particles instead of a
single particle. This can be achieved by smearing the particle over the sphere, i.e. by taking

M ′(v) = −8πGNδ(v − v0)
N∑
j=1
|cj |δ(ϕ− ϕj). (3.16)

Distributing uniformly over the sphere: |cj | = |C|2πN and ϕ = 2πj
N , and taking the continuous

limit N →∞ we finally obtain

M ′(v) = −8πGNδ(v − v0)|C|
∫ 2π

0
dφδ(ϕ− φ) = −8π|C|GNδ(v − v0) (3.17)
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Our collapsing shell then sources an energy momentum tensor of the form Tµν ∝
1
2rM

′(v)δrµδrν ∝ δ(v−v0)
r δrµδrν , which certainly presents dynamics. Note in passing that

the overall constants of integration condensed in |C| should be determined by the total mass
of the black hole.

Returning to our problem of sourcing (3.1) so as to get gauge connections which would
correspond to an appropriate dynamical setup, it is now clear that we should proceed in
analogy to the considerations that led us to the Vaidya metric with mass profile (3.17). To
do this, we will need to rewrite the action (3.7) in an explicit group theoretical manner. In
the previous chapter we learned how to write the Einstein-Hilbert action in the language of
gauge theory. It then remains to write Sp in this language. For this, it will be convenient to
recast the action Sp as follows:

Sp =
∫
ds

(
pµ
dxµ

ds
+ λ(s)

(
pµpνg

µν(x)−m2
))

(3.18)

where pµ is the momentum conjugate to xµ. It is easy to check that if we integrate out pµ,
we get back our by now familiar action

Sp =
∫
ds

(
− 1

4λgµν(x)ẋµẋν − λm2
)
. (3.19)

The form (3.18) was used in [41] as the starting point towards the quantization of a relativistic
particle on the SL(2,R) manifold via the method of Hamiltonian reduction. The key feature
of this method is precisely that one constructs a system out of a much simpler Hamiltonian
system by a reduction using constraints. In (3.18) the constraint is the mass-shell condition
p2 = m2, as is clear by varying the action with respect to λ. Note that the Hamiltonian that
corresponds to the action (3.19) is given by3

H = −λ(gµνpµpν −m2), (3.20)

and so our constraint is equivalent to demanding that H be zero4.
As we will see, from the form (3.18) it is possible to find a straightforward generalization

that will allow us to consider particles carrying higher-spin charges. This generalization was
first proposed and played a crucial role in [25], whose presentation we now partially follow.

3Recall that the Hamiltonian can be obtained from a Lagrangian L(q, q̇) by means of a Legendre
transform: H = q̇ ∂L∂q̇ − L.

4See [44] for details regarding he Hamiltonian reduction method, as well as its uses in the study of
constrained systems.
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Before obtaining such a generalization, however, we still need to find the appropriate group
theory formulation of (3.18) that would allow us to couple it to (2.34). We will now show how
this can be achieved by making some simple considerations in the context of group manifolds.

3.2 The action of a relativistic particle in the

language of group manifolds
To understand how we can eventually rewrite (3.18) in the framework of group manifolds, let
us first come back to our considerations on the vielbein formalism. In Section 2.1 we saw that
the vielbeins eaµ are matrices which take us from a coordinate basis ∂µ to a locally defined
basis through the relation

gµν = e a
µ e

b
ν ηab, (3.21)

where ηab is a flat metric in its canonical form. This means that if we pick a local coordinate
system ya for the new basis, then the matrices e a

µ will be given by

e a
µ = ∂ya

∂xµ
, (3.22)

which is of course the transformation matrix coming from the usual coordinate transformation
∂µ = ∂ya

∂xµ∂a.
If gµν is the metric defined on a manifold of a Lie group G, then the local metric ηab of

(3.21) will be precisely the same "metric" appearing in the commutation relations that define
the algebra G associated with G. For instance, in the commutation relation

[Ja, Jb] = εabcη
cdJd, (3.23)

which defines the algebra sl(2,R), η plays the role of the local metric (in the sense of (3.21))
of the sl(2,R) manifold, and the generators Ja expand a vector basis5. This is more clearly
seen if we consider an explicit example of an element U ∈ G parametrized in terms of the
exponential map

U = ey
aJa (3.24)

5An introductory exposition on the subject of Lie groups seen as manifolds can be found in [46].
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As an element of a Lie group, U depends in a continuous and differentiable way on the set of
real parameters ya – this is actually the reason why a Lie group is at the same time a group
and a differentiable manifold. The parameters ya can then be interpreted as the components
of a vector in an expansion in terms of the local vector basis Ja, i.e. as the parameters ya

appearing in (3.22). Now, from (3.24) we see that

U−1∂µU = ∂ya

∂xµ
Ja =

(3.22)
e a
µ Ja (3.25)

which means that we can rewrite (3.21) as follows:

gµν = ηabe
a
µ e

b
ν ≡ Tr(e a

µ Jae
b
ν Jb) = Tr(U−1∂µUU

−1∂νU), (3.26)

where Tr denotes contraction with the metric ηab (thus, for example, for an element P ∈ G,
TrP 2 = ηabP

aP b).
Using (3.26), the action (3.18) can now be rewritten as

S[U,P, λ] =
∫
ds
(
Tr(PU−1U̇) + λ(TrP 2 − c2)

)
. (3.27)

Here P ∈ G is the equivalent of the conjugate momentum pµ in (3.18), and, as indicated in
[25], c2 = m2 turns out to be the value of the quadratic Casimir characterizing the infinite
dimensional representation that naturally corresponds to our massive particle6.

This action has a global symmetry group SL(2,R)× SL(2,R) that acts as

U(s)→ LU(s)R, P → R−1P (s)R, (3.28)

with L,R ∈ SL(2,R).
The equations of motion are

U−1dU

ds
+ 2λP = 0, dP

ds
= 0, TrP 2 = c2 (3.29)

6This is exactly analogous to representations of the Poincaré group using as a basis the Hilbert
space of a free particle. In this case, the states of a free particle with momentum p are denoted as
|p, s〉, where s labels all the quantum numbers. Since p is a continuous and unbounded variable,
this base space is infinite-dimensional. By Wigner’s theorem, the generators J i,Ki, P i and Hi are
represented by Hermitian operators. A simple operator commuting with all the generators is PµPµ,
which has the value m2 on a one-particle state. Therefore, the m appearing in our relation c2 = m2 is
indeed the mass of the particle as it appears in (3.18). See sections 2.4 and 2.5 of [47] for more details
of on representations of the Poincaré group on one-particle states.
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3.2.1 Coupling

With a gauge theory formulation of both SEH and Sp at hand, all we need to do now is
to perform the minimal coupling between the fields A, Ā and U by promoting the global
symmetry (3.28) to a local symmetry. We then require the action to be invariant under

U(s)→ L(xµ(s))U(s)R(xµ(s)), P → R−1(xµ(s))P (s)R(xµ(s)). (3.30)

This can be done by substituting d
dsU in the action with

DsU = d

ds
U +AsU − UĀs, As ≡ Aµ

dxµ

ds
. (3.31)

where As ≡ Aµẋµ

The coupled action is then given by

S(U,P ;A, Ā) =
∫
ds(Tr(PU−1DsU) + λ(s)(Tr(P 2)− c2))

=
∫
ds
(
TrPU−1U̇ + TrPU−1AsU − TrPPĀs + λ(TrP 2 − c2)

)
, (3.32)

whose variation with respect to U and P leads to

d

ds
P +

[
Ās, P

]
= 0, U−1DsU + 2λP = 0 (3.33)

where P is subject to the constraint Tr(P 2) = c2, as can be immediately seen by varying
with respect to λ.

The variation with respect to A gives:

δSprobe
δAρ

= δ

δAρ

∫
ds

(
Tr
(
PU−1Aλ

dxλ

ds
U

))

=
∫
ds
dxλ

ds

δ

δ(Aρ)ij

(
P ab(U−1)bc(Aλ)cdUda

)
=
∫
ds
dxρ

ds

(
P ab(U−1)bc δci δ

j
dU

d
a

)
(3.34)

=
∫
ds
dxρ

ds

(
U jaP

a
b(U−1)bi

)
=
∫
ds
dxρ

ds
UPU−1

The same procedure leads to the following result for the variation with respect to Ā:
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δSprobe

δĀρ
=
∫
ds
dxρ

ds
P (3.35)

Thus, the variation of the total action

S = SCS [A]− SCS [Ā] + S(U,P ;A, Ā) (3.36)

with respect to A leads to the equation of motion:

δS

δAρ
= k

4π

∫
d3x ερµνFµν +

∫
ds
dxρ

ds
UPU−1

=
∫
d3x

(
k

4πε
µνρFµν(x) +

∫
ds
dxρ

ds
δ(3)(x− x(s))UPU−1

)
= 0, (3.37)

where we have used (2.45) and (2.46) combined with the results for the variation of the action
of the probe. Multiplying the expression we just obtained by εαβρ gives:

k

2πFαβ = −
∫
ds
dxρ

ds
εαβρδ

(3)(x− x(x))UPU−1, (3.38)

i.e.

k

2π ((∂µAν − ∂νAµ) + [Aµ, Aν ]) = −
∫
ds
dxρ

ds
εµνρδ

(3)(x− x(x))UPU−1 (3.39)

and similarly for Ā:

k

2π
((
∂µĀν − ∂νĀµ

)
+ [Āµ, Āν ]

)
= −

∫
ds
dxρ

ds
εµνρδ

(3)(x− x(x))P (3.40)

These two last equations, together with (3.33), the constraint Tr(P 2) = c2 and the trajectory
(4.21) define the setup we will dealing with. In general, this set of equations is highly non-
trivial, and its precise form depends strongly on the choice of the path xµ(s). However, from
the point of view of the equations of motion, U acts as a gauge transformation on A7, and
so, as realized in [25], one may attempt to simplify a bit by picking the "gauge" U = 1. In
this case, the first of the equations of motion (3.33) reads

d

ds
(A− Ā)µ

dxµ

ds
= [Aµ, Āν ]dx

µ

ds

dxν

ds
= 0, (3.41)

7Indeed, the term U−1DsU that appears repeatedly in our equations is nothing but U−1 dU
ds U +

U−1AsU − Ās
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where we have substituted the value of P coming from the second of the equations (3.33).
For a given pair of connections A, Ā, Eq. (3.41) appears as a differential equation for the
path. To see this more explicitly, let us rewrite the connections in terms of the vielbein and
the spin connection. Eq. (3.41) then becomes

d

ds
(2eµ

dxµ

ds
) = (ωaµ + eaµ)(ωbν − ebν)[Ja, Jb]

dxµ

ds

dxν

ds

= (ωaµ + eaµ)(ωbν − ebν)εabcJc
dxµ

ds

dxν

ds

= −2ωaµebνεabcJc
dxµ

ds

dxν

ds
(3.42)

= −2ωµcbebνJc
dxµ

ds

dxν

ds

If we use (2.10), our equation now reads

d

dt

(
eµ
dxµ

dt

)
= −eρΓρµν

dxµ

ds

dxν

ds
+ d

ds
eν
dxν

ds

= −eρΓρµν
dxµ

ds

dxν

ds
+ d

ds

(
eν
dxν

ds

)
− eν

d2xν

ds2 ,

which is actually the familiar geodesic equation

d2xρ

ds2 + Γρµν
dxµ

ds

dxν

ds
= 0. (3.43)

This means that as long as we choose geodesic paths, we can consistently set U = 1. Since we
are interested in sources following the path (3.14), which is a geodesic, this fact will simplify
enormously our task of solving the set of equations we found. Note, however, that there is a
subtlety when we consider general sl(N,R) algebras instead of sl(2,R). The main difference
comes from the fact that sl(2,R) has three generators, whereas the higher-rank algebras will
have in general more than three. While this seems to be irrelevant in (3.42), it is actually
crucial that there be only three generators. This is so because, for given connections A, Ā,
the Eq. (3.42) is meant to solve for the three unknowns xµ(s), but this equation actually
condenses as many independent equations as there are generators. If there are more than
three generators, our system of equations is then overconstrained, implying that in this case
it is not consistent to consider geodesic paths and set U = 1 at the same time [25].



Chapter 4

Vaidya Chern-Simons

In Chapter 3 we presented a setup that would in principle allow us to build dynamical
higher-spin gravity solutions in three dimensions. The key feature of our framework was the
possibility of deriving equations of motion in the language of gauge theory, thus permitting
extensions of the gauge group in a very natural and simple way. To have actual dynamics,
we saw that it was necessary to couple particles to gravity, and we studied an explicit way
of doing this using the example of the Vaidya metric. Now we would like to use our gauge
theory equations to find the equivalent of the Vaidya metric in the Chern-Simons language.
If we manage to extend the connections thus obtained to the higher-spin case, we would be
achieving our goal of building dynamical higher-spin gravity solutions.

4.1 Vaidya-like connections
In Chapter 3 we saw that the Vaidya metric is a non-static generalization of the Schwarzschild
metric. In terms of the ingoing Eddington-Finkelstein coordinate v, the Vaidya metric is of
the form

ds2 = −F (r, v)dv2 + 2drdv + r2dϕ2, (4.1)

where we now leave F (r, v) unspecified.
From our discussion in section 2.1, it is clear the the vielbeins corresponding to the Vaidya

metric can be obtained from

ds2 = ηabe
a ⊗ eb. (4.2)



4.1 Vaidya-like connections 40

The form of the metric (4.1) suggests that we use the following flat metric1

ηab =


−1 1 0
1 0 0
0 0 1

 , (4.3)

From (4.1) and (4.3) one reads2

e0 = F 1/2dv

e1 = F−1/2dr (4.4)

e2 = rdϕ.

At the end of section 3.1 we claimed the torsion-free condition

ωab ∧ eb = −dea (4.5)

would allow us to find straightforwardly the spin connections from the vielbeins. For this we
need to compute the exterior derivatives of the latter. They are given by

de0 = 1
2F
−1/2

[
∂F
∂r dr + ∂F

∂v dv
]
∧ dv

= 1
2F
−1/2 ∂F

∂r dr ∧ dv = −1
2F
−1/2 ∂F

∂r e
0 ∧ e1

de1 = −1
2F
−3/2

[
∂F
∂r dr + ∂F

∂v dv
]
∧ dr (4.6)

= −1
2F
−3/2 ∂F

∂v dv ∧ dr = −1
2F
−3/2 ∂F

∂v e
0 ∧ e1

de2 = dr ∧ dφ = F 1/2

r e1 ∧ e2

The computation of the antisymmetric spin connections ωab from Eq. (4.5) is carried out
explicitly in appendix B. It yields

ω0 = F 1/2 dϕ

ω1 = 0 (4.7)

ω2 = −1
2

(
F−1∂F

∂v
− ∂F

∂r

)
dv − 1

2F
−1∂F

∂r
dr

1Since our spacetime is Lorentzian, this metric is obviously the Minkowski metric written in a
non-standard basis.

2Notice that the choice e0 = −F 1/2dv, e1 = −F 1/2dr is also possible. Our conclusions won’t be
affected in any way by switching to this other possibility.
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where ωa ≡ 1
2ε
a
bcω

bc.
The reason why we have computed the vielbeins and the spin connection is of course that

we wish to find the SL(2,R) connections A and Ā corresponding the metric (4.1). They are
given by

A =
(
ωa + 1

`
ea
)
Ja, Ā =

(
ωa − 1

`
ea
)
Ja (4.8)

where Ja are generators of the sl(2,R) algebra. In section 2.2 we introduced a representation
of this algebra and we alleged that that particular representation would prove useful for later
considerations. Let us reproduce here that representation

J0 = 1
2

 0 1
−1 0

 , J1 =

0 0
1 0

 , J2 = 1
2

1 0
0 −1

 , (4.9)

which satisfy

tr(JaJb) = 1
2


−1 1 0
1 0 0
0 0 1

 = 1
2ηab. (4.10)

It is now clear that the reason why we picked this representation is that its Killing form
ηab = 2tr(JaJb) coincides with the local frame metric (4.3). It is important that this be the
case so as to raise and lower indices conveniently in expansions of the form AaJa. Recall that
Aa was built from vielbeins and spin connections that were constructed using the local-frame
metric (4.3), and so its index is raised or lowered using that metric. On the other hand, the
index of Ja is naturally raised or lowered by the Killing form, and so AaJa = AaJ

a when the
latter coincides with the local metric (4.3).

From (4.4) and (B.9) we finally obtain the following for the connections:

A =
(
F 1/2 dϕ+ 1

`
F 1/2dv

)
J0 +

(1
`
F 1/2

)
J1 (4.11)

+
[1

2

(
∂F

∂r
− F−1∂F

∂v

)
dv − 1

2F
−1∂F

∂r
dr + 1

`
rdϕ

]
J2,

Ā =
(
F 1/2 dϕ− 1

`
F 1/2dv

)
J0 −

(1
`
F 1/2

)
J1 (4.12)

+
[1

2

(
∂F

∂r
− F−1∂F

∂v

)
dv − 1

2F
−1∂F

∂r
dr − 1

`
rdϕ

]
J2 .
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These connections can be written as A = Aµdx
µ and Ā = Āµdx

µ. From (4.11) and (4.12)
one reads:

Av = 1
`
F 1/2J0 + 1

2

(
∂F

∂r
− F−1∂F

∂v

)
J2, (4.13)

Ar = 1
`
F−1/2J1 −

1
2F
−1∂F

∂r
J2, (4.14)

Aϕ = F 1/2J0 + 1
`
rJ2, (4.15)

and

Āv = −1
`
F 1/2J0 + 1

2

(
∂F

∂r
− F−1∂F

∂v

)
J2, (4.16)

Ār = −1
`
F−1/2J1 −

1
2F
−1∂F

∂r
J2, (4.17)

Āϕ = F 1/2J0 −
1
`
rJ2. (4.18)

We have then managed to find the gauge connections corresponding to (4.1). Our next step
will be to substitute these connections in the equations of motions we found in the previous
chapter and solve for F (r, v). We will do this following the setup that led us to determine
mass profile (3.17), corresponding to a thin null shell that sources a Vaidya-like metric.

4.2 The spin-2 case
We have already seen that the variation with respect to A and Ā of the total action (3.36)
leads to

k

2π [(∂µAν − ∂νAµ) + [Aµ, Aν ]] = −
∫
ds
dxρ

ds
εµνρδ

(3)(x− x(s))UP (s)U−1, (4.19)

and

k

2π
[
(∂µĀν − ∂νĀµ) +

[
Āµ, Āν

]]
= −

∫
ds
dxρ

ds
εµνρδ

(3)(x− x(s))P (s), (4.20)

where x(s) is the trajectory of the probe particle. Since we are interested in dust shells that
follow null geodesics, we choose the following trajectory parametrized by s:
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v(s) = v0, r(s) = r0 + c0s, ϕ(s) = ϕ0 (4.21)

which we showed to be the trajectory followed by a probe particle in the massless limit in
the AdS background (see (3.14)).

According to our discussion at the end of Chapter 3, such a choice of trajectory (a
geodesic) allows us to set, in the spin-2 case, U = 1. Making use of this simplification
and substituting the geodesic trajectory, Eq. (4.19) becomes

k

2π [(∂rAϕ − ∂ϕAr) + [Ar, Aϕ]] = 0 (4.22)

k

2π [(∂vAr − ∂rAv) + [Av, Ar]] = 0 (4.23)

k

2π [(∂vAϕ − ∂ϕAv) + [Av, Aϕ]] = −
∫
ds
dr

ds
εvϕrδ

(3)(x− x(s))P (s) (4.24)

In Appendix C we have worked out the explicit expressions of the left-hand sides of these
equations. The final results are

(∂rAϕ − ∂rAϕ) + [Ar, Aϕ] =F−1/2
( 1
`2
r − 1

2
∂F

∂r

)
J1 (4.25)

(∂vAr − ∂rAv) + [Av, Ar] =
(

1
`2
− 1

2
∂2F

∂r2

)
J2 (4.26)

(∂vAϕ − ∂ϕAv) + [Av, Aϕ] =
(
− 1
`2
F 1/2r + 1

2F
1/2∂F

∂r
− 1

2F
−1/2∂F

∂v
+ 1

2F
−1/2∂F

∂v

)
J0

+
(
− 1
`2
F 1/2r + 1

2F
1/2∂F

∂r
− 1

2F
−1/2∂F

∂v

)
J1. (4.27)

Applying the equations of motion (4.22) and (4.23) in Eqs. (4.25) and (4.26) implies:

F (v, r, ϕ) = c+ r2

`2
+ f(v), (4.28)

where c is a constant. We see that the r-dependence is already as in the Vaidya metric. The
function f(v) is to be determined using Eqs. (4.24) and (4.27), the last of which now reads:

(∂vAϕ − ∂ϕAv) + [Av, Aϕ] = −1
2F
−1/2 df

dv
J1. (4.29)

So,
k

2π
1
2F
−1/2 df

dv
J1 =

∫
ds
dr

ds
εvϕrδ

(3)(x− x(s))P (s) (4.30)
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with

δ(3)(x− x(s)) = δ(v − v(s))δ(r − r(s))δ(ϕ− ϕ(s))√
|g|

(4.31)

and

εµνρ =
√
|g| [µ, ν, ρ], (4.32)

where |g| = r2 denotes the determinant of the metric (4.1), and

[µ, ν, ρ] =


1 if the argument is an even permutation of vrϕ
−1 if the argument is an odd permutation of vrϕ
0 if two or more arguments are equal

.

Eq. (4.30) then reduces to

k

2π
1
2F
−1/2 df

dv
J1 = δ(v − v(s))δ(ϕ− ϕ(s))

∫
drδ(r − r(s))P (s)

⇒ kF−1/2 df

dv
J1 = 2δ(v − v(s))

∫
drδ(r − r(s))P (s). (4.33)

where we have "smoothed" the angular variable as in (3.17), i.e. we are considering a shell of
particles instead of a single one.

In order to find P (s) one must solve the equations of motion (3.33). Recall that P
plays the role of the momentum of the particle, and so we expect that its equation encodes
information about the mass of the particle. More precisely, we expect that the Casimir tr(P 2)
"knows" something about our choice of trajectory, namely a null geodesic, which is followed
uniquely by massless particles. For U = 1 the first of equations (3.33) reads

Aµ
dxµ

ds
− Āµ

dxµ

ds
+ 2λP = 0 (4.34)

For radial geodesics (ϕ̇ = 0) this equation reduces to

P = −1
2λ

(
(Av − Āv)

dv

ds
+ (Ar − Ār)

dr

ds

)
= − 1

λ`

(
F 1/2J0

dv

ds
+ F−1/2J1

dr

ds

)
, (4.35)

where we have used eqs. (4.13) to (4.17) for the expressions of the components of the
connections. In particular, for an ingoing null geodesic (v̇ = 0, ṙ = c0) this equation implies
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P = − c0
λ`
F−1/2J1 = c1F

−1/2J1 (4.36)

where c1 ≡ − c0
λ` is a constant3.

With the trajectory being that of an ingoing null geodesic, the first of the equations of
motion (3.33) gives:

d

ds
P + (ĀrP − PĀr)

dr

ds
= d

ds
P −

[1
`
F−1/2J1 + 1

2F
−1∂F

∂r
J2, P

]
c0 = 0. (4.37)

If P = P 1J1 eq. (4.37) can be recast in the form:

d

ds
P 1J1 −

c0
2 F

−1∂F

∂r
P 1[J2, J1] =

(C.3)

d

ds
P 1J1 + c0

2 F
−1∂F

∂r
P 1J1 (4.38)

=

∂P 1

∂r �
�
��
c0

dr

ds
+ ∂P 1

∂v �
�
��
0

dv

ds

 J1 + c0
2 F

−1∂F

∂r
P 1J1 (4.39)

= c0
∂P 1

∂r
J1 + c0

2 F
−1∂F

∂r
P 1J1 (4.40)

which is solved by P 1 = c1F
−1/2, meaning that our solution is consistent with both equations

of motion, as it should be.
It only remains to see what the implications of the constraint TrP 2 = c2 are. We get:

TrP 2 = P aP bηab = −(P 0)2 + 2P 0P 1 + (P 2)2 = 0 = c2 (4.41)

i.e. the probe is massless, as is expected from the fact that it follows ingoing null geodesics.
Plugging (4.36) in (4.33) gives

kF−1/2 df

dv
J1 = 2 c1δ(v − v(s))J1

∫
drδ(r − r(s))F−1/2, (4.42)

which implies that
df

dv
= 2c1

k
δ(v − v(s)) = −8GNc0

`2λ
δ(v − v(s)) (4.43)

Comparing with (3.17), we see that (4.43) is precisely what we wanted to obtain. The
connections (4.11) and (4.12) are then the connections corresponding to the Vaidya metric
such as we introduced it in 3.1.

3While λ can be a function of s, the residual reparametrization symmetry of the world-line
coordinate s allows us to set λ(s) to a constant. See footnote 2.
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Integrated, the mass profile is of the form

f(v) = mΘ(v − v0) (4.44)

where m is a constant to be determined by the total mass of the black hole4

In view of this positive realization, we will now attempt to use our setup in a higher-spin
scenario, namely the SL(3,R) case.

4.3 The higher-spin case
In Section 2.3.2 we saw that the main difference that arises when considering fields with spin
higher than 2 is that the connections are expanded in terms of generators of the corresponding
sl(N,R) algebra. In the sl(3,R), we introduced a base such that the connections are expanded
as follows

A = A(2) +A(3) = AaJa +AabTab

= A0J0 +A1J1 +A2J2 (4.45)

+A00T00 +A01T01 +A02T02 +A11T11 +A12T12

Ā = Ā(2) + Ā(3) = ĀaJa + ĀabTab

= A0J0 +A1J1 +A2J2 (4.46)

+A00T00 +A01T01 +A02T02 +A11T11 +A12T12

where the Ja generate the sl(2,R) subalgebra and the five generators Tab (recall that they
are symmetric and traceless in the indices a, b) are the higher-spin generators. The explicit
form of this representation can be found in Appendix A. The first thing to note is that now
the Killing form is given by (A.2)5, and so, for example,

4Presumably in terms of the ADM formalism[45].
5Note that now we have tr(JaJb) = 2 ηab. So, compared to (2.30), we now have a factor 2 where

before there used to be a factor 1/2. Of course, there is nothing wrong with this, as it just reflects
the fact that the constant c in tr(JaJb) = cTr(JaJb) depends on the specific representation, as we said
before.
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c2 = Tr(P 2) =− (P 0)2 + 2P 0P 1 + (P 2)2

+ 1
3
(
4(P 00)2 − 8P 00P 01 + (P 01)2 − 3(P 02)2 + 12P 00P 11 + 6P 02P 12

)
.

(4.47)

That is, the higher spin components of P also source the mass. Since now we are in a higher-
spin algebra, we can ask ourselves what the equivalent of this would be for the higher-spin
charge. As we have emphasized, the spin charges are related to the values of the Casimirs.
The spin-3 charge is related to the value of the cubic Casimir. The latter can be built in
a similar way as the quadratic one, namely by finding a fully symmetric invariant trilinear
form (see [25] for details):

hlmn ∝ tr(T(lTmTn)) (4.48)

where the indices l,m, n run from 1 to 8, and the Tm denote collectively the eight generators
{J0, J1, J2, T00, T01, T02, T11, T12} in the order implied. The parentheses in T(lTmTn) denote
symmetrization.

The value of the cubic Casimir is then given by6

c3 = TrP 3 = hlmnP
lPmPn. (4.49)

The first terms of the expression above are

c3 = 32
3 (P 00)3 + 4

3(P 01)3 + 12P 01(P 02)2 − 36(P 02)2P 11 + · · · . (4.50)

The full expression can be found in Appendix A. The key point is that, as was to be expected,
the spin-2 components of P do not source the spin-3 charge. On the other hand, not all
combinations of spin-3 components will lead to a non-zero spin-3 charge. To see this, let us
come back to our discussion of 2.3.2. There we pointed out that there is a very easy way of
adding higher-spin components "by hand". The example we used was the BTZ black hole,
whose connections are sl(2,R)-valued. We said that if we considered these connections to
be actually sl(3,R)-valued connections in a particular gauge in which the spin-3 component
happen to be zero, then we could add a non-zero spin-3 component just by picking a different

6In the last equality there should be the proportionality constant between Tr and tr but we have
omitted it since it is not crucial for our considerations.
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gauge. This is precisely what we wanted to illustrate in Eqs. (2.76) and (2.77), after which
we commented that this was an artificial way of building a higher-spin solution and that no
actual physics was added by doing this. At this stage that claim simply means that c3 is
gauge invariant (recall that P transforms according to (3.30)). Even if from (4.50) it seems
that we just need some appropriate higher-spin components to make c3 non-zero, the fact
is that gauge transformations leave the value of c3 invariant, and so zero remains zero. In
particular, it would be impossible to go from a gauge where all the higher-spin components
of P are zero to one where its only non-zero higher spin component is P 00, say.

Having discarded the "easy" way of finding higher-spin solutions, the question in then how
do we find solutions with c3 non-zero. The answer to this question was found by Ammon,
Castro and Iqbal [25]. They proposed that for this one should generalize the action (3.32) to
the form

S[U,P ;A, Ā] =
∫
ds(Tr(PU−1DsU) + λ2(Tr(P 2)− c2) + λ3(Tr(P 3)− c3)), (4.51)

where λ2 and λ3 are Lagrange multipliers. The possibility of adding higher-spin charges by
means of this simple generalization is actually the whole point of working with the constrained
system that led us to (3.32). One can of course add as many higher-spin charges as one wants
just by introducing the corresponding Lagrange multipliers. Now that we have gotten the
appropriate action, let us see what the equations of motion look like.

The variation of (4.51) with respect to P and u gives

d

ds
P + [Ās, P ] = 0 (4.52)

U−1DsU + 2λ2P + 3λ3(P × P ) = 0 (4.53)

where P × P ≡ habcT
aP bP c and P is subject to the constraints TrP 2 = c2 and TrP 3 = c3.

The variation with respect to A and Ā leads to the same equations as before, namely

k

2π ((∂µAν − ∂νAµ) + [Aµ, Aν ]) = −
∫
ds
dxρ

ds
εµνρδ

(3)(x− x(x))UPU−1 (4.54)

and

k

2π
((
∂µĀν − ∂νĀµ

)
+ [Āµ, Āν ]

)
= −

∫
ds
dxρ

ds
εµνρδ

(3)(x− x(x))P. (4.55)
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We commented at the end of Chapter 3 that in the higher-spin case it is not consistent to set
U = 1 and choose a geodesic path at the same time. This means that the field U must now
reappear in all our equations, and we shall see that this will constitute a great complication
of our task.

Let us write Eq. (4.54) with the connections expanded in the basis of sl(3,R) generators:

k

2π
[
(∂µA(2)

ν − ∂νA(2)
µ ) +

[
A(2)
µ , A(2)

ν

]]
+

k

2π
[
(∂µA(3)

ν − ∂νA(3)
µ ) +

[
A(2)
µ , A(3)

ν

]
+
[
A(3)
µ , A(2)

ν

]
+
[
A(3)
µ , A(3)

ν

]]
=−

∫
ds
dxρ

ds
εµνρδ

(3)(x− x(s))UP (s)U−1

For ρ = v, ϕ the right-hand side of this last equation is zero when one chooses the trajectory
(4.21). Furthermore, if we choose the spin-2 component to match exactly what we found in
the sl(2,R) case7, then the first line also vanishes for ρ = v, ϕ (see (4.22),(4.23)). One is then
left with the equations:

k

2π
[
(∂rA(3)

ϕ − ∂ϕA(3)
r ) +

[
A(2)
r , A(3)

ϕ

]
+
[
A(3)
r , A(2)

ϕ

]
+
[
A(3)
r , A(3)

ϕ

]]
= 0 (4.56)

k

2π
[
(∂vA(3)

r − ∂rA(3)
v ) +

[
A(2)
v , A(3)

r

]
+
[
A(3)
v , A(2)

r

]
+
[
A(3)
v , A(3)

r

]]
= 0 (4.57)

k

2π
[
(∂vA(2)

ϕ − ∂ϕA(2)
v ) +

[
A(2)
v , A(2)

ϕ

]]
+

+ k

2π
[
(∂vA(3)

ϕ − ∂ϕA(3)
v ) +

[
A(2)
v , A(3)

ϕ

]
+
[
A(3)
v , A(2)

ϕ

]
+
[
A(3)
v , A(3)

ϕ

]]
(4.58)

= −
∫
ds
dr

ds
εvϕrδ

(3)(x− x(s))UP (s)U−1

= δ(v − v0)δ(ϕ− ϕ(s))
∫
drδ(r − r(s))P(s)

where P(s) ≡ UP (s)U−1. The first three terms of the left-hand side of Eqs. (4.56) and (4.57)
are proportional to the generators Tab. The algebra (2.72) indicates that that cannot be the

7In principle, this need not be the case. However, it seems natural to impose that when we turn
off the higher-spin components of the connections, one recovers the spin−2 connections (4.11) and
(4.12). That is for example the case for the higher-spin black hole that we presented in (2.79), which
reduces to BTZ for W = 0 and µ = 0
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case for the last term of the left-hand side of these equalities. This means that one must deal
with the independent equations

• (∂rA(3)
ϕ − ∂ϕA(3)

r ) +
[
A(2)
r , A(3)

ϕ

]
+
[
A(3)
r , A(2)

ϕ

]
= 0 (4.59a)

•
[
A(3)
r , A(3)

ϕ

]
= 0 (4.59b)

• (∂vA(3)
r − ∂rA(3)

v ) +
[
A(2)
v , A(3)

r

]
+
[
A(3)
v , A(2)

r

]
= 0 (4.60a)

•
[
A(3)
v , A(3)

r

]
= 0 (4.60b)

On the other hand, Eq. (4.58) implies:

k

2π
[
(∂vA(2)

ϕ − ∂ϕA(2)
v ) +

[
A(2)
v , A(2)

ϕ

]
+
[
A(3)
v , A(3)

ϕ

]]
= −

∫
ds
dr

ds
εvϕrδ

(3)(x− x(s))PaJa

(4.61)

and

k

2π
[
(∂vA(3)

ϕ − ∂ϕA(3)
v ) +

[
A(2)
v , A(3)

ϕ

]
+
[
A(3)
v , A(2)

ϕ

]]
= δ(v − v0)δ(ϕ− ϕ(s))

∫
drδ(r − r(s))PabTab. (4.62)

A similar argument holds for (4.20), which leads to the following equations:

• (∂rĀ(3)
ϕ − ∂ϕĀ(3)

r ) +
[
Ā(2)
r , Ā(3)

ϕ

]
+
[
Ā(3)
r , Ā(2)

ϕ

]
= 0 (4.63a)

•
[
Ā(3)
r , Ā(3)

ϕ

]
= 0 (4.63b)

• (∂vĀ(3)
r − ∂rĀ(3)

v ) +
[
Ā(2)
v , Ā(3)

r

]
+
[
Ā(3)
v , Ā(2)

r

]
= 0 (4.64a)

•
[
Ā(3)
v , Ā(3)

r

]
= 0 (4.64b)

and for the v, ϕ components:
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k

2π
[
(∂vĀ(2)

ϕ − ∂ϕĀ(2)
v ) +

[
Ā(2)
v , Ā(2)

ϕ

]
+
[
Ā(3)
v , Ā(3)

ϕ

]]
= −

∫
ds
dr

ds
εvϕrδ

(3)(x− x(s))P aJa

(4.65)

k

2π
[
(∂vĀ(3)

ϕ − ∂ϕĀ(3)
v ) +

[
Ā(2)
v , Ā(3)

ϕ

]
+
[
Ā(3)
v , Ā(2)

ϕ

]]
= δ(v − v0)δ(ϕ− ϕ(s))

∫
drδ(r − r(s))P abTab. (4.66)

We see that, compared to the equations for A, these last equations are much simpler in the
sense that it is P who appears rather than P. Looking back at (4.52), we see that we can
solve for P without having to solve for U , whose equation of motion (4.53) is much more
complicated (and requires to first solve for P , in any case.) Note that if we solve for P , then
we could hope to find Ā, since the two differ just by an integration over a delta function (see
(4.55)). Let us then try and solve the equation (4.52).

4.3.1 Solving for the momentum

Split into its spin−2 and spin−3 components, Eq. (4.52) implies

d

ds
P (2) + c0[Ā(2)

r , P (2)] + c0[Ā(3)
r , P (3)] = 0 (4.67a)

d

ds
P (3) + c0[Ā(2)

r , P (3)] + c0[Ā(3)
r , P (2)] = 0 (4.67b)

We want to find connections whose spin−2 part coincides with (4.11), (4.12), and that are
sourced by a non-zero higher-spin charge. This means that we must find a P such that
c3 = TrP 3 6= 0. Many different Ansätze for P would lead to a non-zero higher-spin charge.
For example, for the choice P = P 00T00 one has c2 = 4P 002

3 and c3 = 32P 003

3
8. However, this

Ansatz is inappropriate for several reasons; in particular, such a choice would lead to more
than one independent equation coming from (4.67b) for the one unknown P 00. One can see
that, in general, the system of equations for the components of P will be overconstrained for
simple Ansätze of P such as the aforementioned.

8While it may seem strange to even consider a solution with c2 6= 0 for the trajectory we have
been using, it is not inconsistent to do so. The reason is that the interpretation of our trajectory as
a geodesic is no longer valid in the presence of the higher-spin field. Massive probes can then follow
such a trajectory just as massless probes can be "forced" to follow non-null trajectories by applying a
SL(3,R) gauge transformation.
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In order to find a consistent P , let us use the gauge freedom to simplify Eqs. (4.67a) and
(4.67a) by assuming that we have fixed the gauge in such a way that Ā(3)

r = 0. This choice is
not as arbitrary as it may seem. Indeed, recall that (4.63b), (4.64b) must hold, and so Ā(3)

r

cannot have any value. With this choice, Eq. (4.67a) becomes

d

ds
P (2) + c0[Ā(2)

r , P (2)] = 0 (4.68)

which is nothing but Eq. (4.37), whose solution was found to be

P (2) = P 1J1, (4.69)

with P 1 = c1F
−1/2. That the spin-2 part of P is precisely what was found in the SL(2,R) case

is of course consistent with the fact that we are demanding the spin-2 part of the SL(3,R) Ā
connection to coincide with what was found before. Note, however, that this last requirement
does not lead necessarily to the identification we just mentioned. Indeed, if Ā(3)

r were not
zero, we would have gotten a completely different solution for P (2).

Eq. (4.67b) now reads

d

ds
P (3) + c0[Ā(2)

r , P (2)] = 0. (4.70)

Reading Ā(2)
r = −1

`F
−1/2J1 − 1

2F
−1 ∂F

∂r J2 from (4.17), this equation implies:

dP 00

ds
+ 2c0Ā

2
rP

00 = 0 (4.71)

dP 01

ds
+ 3c0Ā

1
rP

02 + 2c0Ā
2
rP

00 = 0 (4.72)

dP 02

ds
− 2c0Ā

1
rP

00 + c0Ā
2
rP

02 = 0 (4.73)

dP 11

ds
+ c0Ā

1
rP

02 + c0Ā
1
rP

12 + c0Ā
2
rP

01 − 2c0Ā
2
rP

11 = 0 (4.74)

dP 12

ds
− c0Ā

1
rP

01 − c0Ā
2
rP

12 = 0 (4.75)

When solving these equations one must eventually integrate over s. However, since r =
r0 + c0s, the variable s can be changed to r. For example,

∫ s

0
ds′Ā2

r = 1
c0

∫ r

r0
dr′Ā2

r(r′) = − 1
2c0

log(`2F )
∣∣∣r
r0

= − 1
2c0

log
(
F

Fr0

)
(4.76)

with Fr0 = F |r=r0
= c+ r2

0
`2 +mΘ(v − v0).
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The solutions are:

P 00 = P
00

Fr0
F (4.77)

P 01 = P01 + 3P02

`F
1/2
r0

r + 4P00

3`3F 3/2
r0

r2 (4.78)

P 02 =
(
F

Fr0

)1/2
(
P02 + 2P00

`F
1/2
r0

r

)
(4.79)

P 11 =
(
F

Fr0

)−1
(
P11 + 1

`F
1/2
r0

(P12 + P
02

Fr0
(c+mΘ(v − v0)))r + P00

`2F 2
r0

(c+mΘ(v − v0))r2
)

+
(
F

Fr0

)−1
(

5P02

6`3F 3/2
r0

r3 + 7P00

`4F 2
r0

r4
)

(4.80)

P 12 =
(
F

Fr0

)−1/2
(
P12 − P01

`F
1/2
r0

r − 3P02

2`2Fr0
r2 − 4P00

3`3F 3/2
r0

)
(4.81)

where the P’s are integration constants. The connections Ā can be obtained following (4.65)
and (4.66). As we mentioned, the situation for the connection A is more complicated as we
would have to solve for U in (4.53). While some simplifications of the type we did for Ā are
conceivable, finding a solution to this equation requires great computational power; for the
moment, we leave this as an open problem. The major complications come from the number
of unknowns we have to deal with. Indeed, treated as a matrix, U (or any of the fields) is a
three by three matrix and so it has 9 elements. Treated as an element of the group written
in the exponential map, the expression for U is even more complicated for computational
purposes. In this case U is of the general form eU

0J0+U1J1+···+U11T11+U12T12 , and even taking
the exponential can prove computationally very demanding. A wiser approach than brute
force at solving Eq. (4.53) and eventually Eq. (4.54) must be taken. In the next, final chapter
we will further comment on this.



Chapter 5

Conclusions and perspectives

Inspired by the kind of setups that leads to the Vaidya metric, the simplest non-static
generalization of the Schwarzschild solution, we have established a framework that allows
us to look for dynamical higher-spin gravity solutions in three dimensions from a given set of
equations of motion. These equations of motion were derived from an action corresponding
to a particle carrying higher-spin charge coupled to gravity. The key feature of this action,
first presented in [41] and further studied in [25], is that it is written in an explicit group-
theoretical language, which allows for generalizations to higher-spin by means of an extension
of the gauge group. In the specific spin-3 case that we treated in this thesis, that action is of
the form

S[U,P ;A, Ā] =
∫
ds(Tr(PU−1DsU) + λ2(Tr(P 2)− c2) + λ3(Tr(P 3)− c3)). (5.1)

As we saw, the Langrange multipliers λ2 and λ3 serve to impose constraints on the mass and
spin-3 charge of the particle, making them tunable parameters. When both c2 and c3 are
zero, the particle follows ingoing geodesics, and we used this fact to form a collapsing shell
composed of an infinite number of these particles. This exactly mirrors the Vaidya setup,
and so one might expect that the connections obtained from our set of equations are actually
the connections corresponding to the Vaidya metric. A comparison between the two metrics
(the Vaidya metric and the one obtained from our connections), allowed us to see that this
intuition is indeed realized, and so the claim follows that
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A =
(
F 1/2 dϕ+ 1

`
F 1/2dv

)
J0 +

(1
`
F 1/2

)
J1 (5.2)

+
[1

2

(
∂F

∂r
− F−1∂F

∂v

)
dv − 1

2F
−1∂F

∂r
dr + 1

`
rdϕ

]
J2,

Ā =
(
F 1/2 dϕ− 1

`
F 1/2dv

)
J0 −

(1
`
F 1/2

)
J1 (5.3)

+
[1

2

(
∂F

∂r
− F−1∂F

∂v

)
dv − 1

2F
−1∂F

∂r
dr − 1

`
rdϕ

]
J2,

with F (r, v) =
(
1 + r2

`2 +mΘ(v − v0)
)
, are the Vaidya connections (up to some integration

constants).
However, the comparison between the two metrics is only available in the spin-2 scenario,

since it is in that case that there is a direct map between the metric and the connections via
the definitions of vielbein e and spin connection ω. For our purposes, the more interesting
scenarios were those involving higher-spin, were such a map does not exist (at least not
obviously). This means that one can no longer recur to the metric/gauge connection map to
check whether or not there is dynamics. Nevertheless, there exists a natural way to ensure that
one is constructing dynamical higher-spin solutions, namely by demanding that, if we turn
off the higher-spin charges, they reduce to (5.2), (5.3), which are certainly dynamical. This
is the kind of generalization we considered. We saw that, provided one picks the appropriate
gauges, in this case some of the equations of motion are perfectly tractable. For example,
we were able to find the momentum P of a solution carrying higher-spin charge (see Eqs.
(4.77) to (4.81)). Moreover, integrating these equations over a delta function allows us to
find straightforwardly the connections Ā.

Notwithstanding, there is one equation of motion which poses more difficulties – that of
U . As we commented, the equations for U should not be treated brutally, since they require
great computational power. One possible way to overcome these difficulties would be to make
the most of the gauge invariance of the action. Indeed, it is conceivable that, for some specific
gauges, our equations could take a simple, tractable form. In fact, as we stressed above, this
is precisely how we eventually solved for the momentum P . The question remains whether
or not the same can be done for U . We will now explore some ideas and partial results in
this direction.

A particular feature of our setup that could be used to simplify the equations is the fact
that the shell is localized. As it turns out, this implies that the stress tensor is of the form
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Tµν ∝ δ(v−v0)
r δrµδrν , which is non-zero only along the shell. That the shell is localized is also

reflected by the Dirac delta appearing in our equations:

k

2π ((∂µAν − ∂νAµ) + [Aµ, Aν ]) = −
∫
ds
dxρ

ds
εµνρδ

(3)(x− x(x))UPU−1 (5.4)

and

k

2π
((
∂µĀν − ∂νĀµ

)
+ [Āµ, Āν ]

)
= −

∫
ds
dxρ

ds
εµνρδ

(3)(x− x(x))P. (5.5)

Thus, if we consider the spacetime outside or inside the shell, we are in a region where the
connections are flat. It might seem surprising that we even consider flat connections at all.
After all, part of the point of introducing the shell was the need for non-flat connections.
However, what we are contemplating here is not a mere stepping back. Indeed, it is
conceivable that appropriate matching conditions would eventually allow us to connect the
solutions in the flat regions so as to account for the shell1. Let us then see in what sense flat
connections could simplify our task.

Looking back at (2.35), we see that flat connections are in general related to A = Ā = 0
via

A = LdL−1, Ā = R−1dR, (5.6)

with L,R elements of the algebra in consideration. For U and P this reads:

U(s) = L(s)U0R(s), P (s) = R−1(s)P0R(s), (5.7)

where U0 and P0 are the solution of (4.53), (4.52) for A = Ā = 0. To see how this simplifies
everything, consider the equivalent of these equations in the spin-2 case, Eq. (3.33). Because
in that case we could set U = 12, we never needed to worry about solving the equation for
U . The fact is, however, that even without such a simplification we could found all the same
have any solution corresponding to flat gauge connections. All that would have been needed
is to use (5.7), where U0 and P0 are solutions of (3.33) for A = Ā = 0, i.e

U0(s) = u0e
−2P0

∫
dsλ(s), P0 = const. (5.8)

1This is actually a very standard practice when treating shells in general relativity. See e.g. [50]
for details.

2See discussion at the end of Chapter 3.
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where u0 is a constant. This procedure of finding U and P for flat connections by relating
them to their values when A = Ā = 0 is what in [25] was called the ‘nothingness trick’. By
extending this trick to the spin-3 case, one could then hope to find flat connections satisfying
the appropriate junction conditions along the shell, thus potentially allowing us to find the
full, non-flat connections. To further develop these ideas will be our guiding goal in the
immediate future.

Finally, it should be pointed out that a recent work by Perlmutter [12] casts some doubt
on the ultimate physical consistency of the putative CFT duals of the SL(N) theories at
finite N we have discussed. The argument builds on the fact that they seem to violate a
bound on chaos [48] that is intimately related to causality [49]. It would be nice if these
claims could be explicitly tested using a higher-spin solution. Such a test would naturally
require solutions that are dynamical. Our work could then provide a starting point in this
direction.
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Appendix A

SL(3,R) conventions

Here we present our conventions for the algebra (2.72). We work in the following
representation:

J0 =


0 1 0
−1

2 0 1
0 −1

2 0

 , J1 =


0 0 0
1 0 0
0 1 0

 , J2 =


1 0 0
0 0 0
0 0 −1

 ,

T00 =


1
3 0 2
0 −2

3 0
1
2 0 1

3

 , T01 =


−1

3 0 0
0 2

3 0
−1 0 −1

3

 , T02 =


0 1 0
−1

2 0 −1
0 1

2 0

 ,

T11 =


0 0 0
0 0 0
2 0 0

 , T12 =


0 0 0
1 0 0
0 −1 0

 , (A.1)

The quadratic Killing form is

ηmn = 1
2tr(TmTn) = 1

2



−2 2 0 0 0 0 0 0
2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 8

3 −8
3 0 4 0

0 0 0 −8
3

2
3 0 0 0

−2 2 0 0 0 −2 0 2
0 0 0 4 0 0 0 0
0 0 0 0 0 2 0 0



(A.2)
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where the Tm denote collectively the generators {J0, J1, J2, T00, . . . , T12}.
The values of the Casimirs used in the main text are obtained in this representation

through the definitions

c2 ≡ Tr(P 2) =− (P 0)2 + 2P 0P 1 + (P 2)2

+ 1
3
(
4(P 00)2 − 8P 00P 01 + (P 01)2 − 3(P 02)2 + 12P 00P 11 + 6P 02P 12

)
and

3
4c3 =8(P 00)3 + (P 01)3 + 9P 01(P 02)2 − 27(P 02)2P 11

+ 9(P 00)2(2P 00 − 2P 01 + 3P 11) + (P 00)2(−24P 01 + 36P 11) + 9P 01P 02P 12

+ 27P 02P 1P 2 − 9P 01(P 2)2 − 9P 0(4P 00P 1 − P 01P 1 + 3P 02P 2 − 3P 12P 2)

+ 3P 00(5(P 01)2 − 3(P 02)2 + 9(P 1)2 − 12P 01P 11 + 6P 02P 12 − 9(P 12)2 + 3(P 2)2)

as can be explicitly checked.



Appendix B

The Vaidya spin connections

In this appendix we use (4.4) and (4.6), together with equation (4.5) to solve for the spin
connections that enter in the gauge connection we build for the Vaidya metric. The results
of the computation developed here are reported in Eq. (4.7) in the main text.

Let

ωab =


0 α β

−α 0 γ

−β −γ 0

 , (B.1)

where α, β and γ are one-forms to be determined, then

ωab = ηacωcb =


0 1 0
1 1 0
0 0 1




0 α β

−α 0 γ

−β −γ 0

 =


−α 0 γ

−α α β + γ

−β −γ 0

 (B.2)

Substituting this into (4.5) leads to:
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ω0
b ∧ eb =ω0

0 ∧ e0 + ω0
1 ∧ e1 + ω0

2 ∧ e2 = 1
2F
−1/2∂F

∂r
e0 ∧ e1

⇒


ω0

0 = −α = −α0e
0 + (−1

2F
−1/2∂F

∂r
)︸ ︷︷ ︸

−α1

e1 −��* 0α2 e2

ω0
2 = γ ∝ e2 ⇒ γ0, γ1 = 0

(B.3)

ω1
b ∧ eb =ω1

0 ∧ e0 + ω1
1 ∧ e1 + ω1

2 ∧ e2 = 1
2F
−3/2∂F

∂v
e0 ∧ e1

⇒


α1 e

0 ∧ e1 + α0 e
0 ∧ e1 = 1

2F
−3/2 ∂F

∂v e
0 ∧ e1 ⇒ α0 = 1

2F
−3/2 ∂F

∂v −
1
2F
−1/2 ∂F

∂r

ω1
2 = β + γ =

(B.3)
β + γ2e

2 ∝ e2 ⇒ β0, β1 = 0

(B.4)

ω2
b ∧ eb =ω2

0 ∧ e0 + ω2
1 ∧ e1 + ω2

2 ∧ e2 = −F
1/2

r
e1 ∧ e2

⇒


ω2

0 = −β ∝ e0 ⇒ β1, β2 = 0 ⇒
(B.4)

β = 0

ω2
1 = −γ =

(B.3)
−γ2e

2 = F 1/2

r e2
(B.5)

So we have

ωab =


−α 0 γ

−α α γ

0 −γ 0

⇒ ωab =


0 −α γ

α 0 γ

−γ −γ 0

 , (B.6)

with

α =
(1

2F
−3/2∂F

∂v
− 1

2F
−1/2∂F

∂r

)
e0 + 1

2F
−1/2∂F

∂r
e1, (B.7)

= 1
2

(
F−1∂F

∂v
− ∂F

∂r

)
dv + 1

2F
−1∂F

∂r
dr

γ =− F 1/2

r
e2 = −F 1/2 dϕ. (B.8)

What enters in the Chern-Simons connections is ωa ≡ 1
2ε
a
bcω

bc, with εabc = ηaeεebc. Using
the expression for the inverse of (4.3) it is easy to see that
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ε001 = −ε010 = η02ε201 = 0

ε002 = −ε020 = η01ε102 = −1

ε012 = −ε021 = η00ε012 = 0

ε101 = −ε110 = η12ε201 = 0

ε102 = −ε120 = η11ε102 = −1

ε112 = −ε121 = η10ε012 = 1

ε201 = −ε210 = η22ε201 = 1

ε202 = −ε220 = η21ε102 = 0

ε212 = −ε221 = η20ε012 = 0

With this we get

ω0 = 1
2ε

0
bcω

bc = ε002ω
02 = −γ = F 1/2 dϕ

ω1 = 1
2ε

1
bcω

bc = ε102ω
02 + ε112ω

12 = 0 (B.9)

ω2 = 1
2ε

2
bcω

bc = ε201ω
01 = −α = −1

2

(
F−1∂F

∂v
− ∂F

∂r

)
dv − 1

2F
−1∂F

∂r
dr



Appendix C

Equations of motion for the Vaidya
A connection

In this appendix we work out the explicit expressions of the left-hand sides of (4.22), (4.23)
and (4.24).

Let us first differentiate the components (4.14) to (4.18):

∂rAϕ = 1
2F
−1/2∂F

∂r
J0 + 1

`
J2 (C.1a)

∂ϕAr = 0 (C.1b)

∂vAr = − 1
2`F

−3/2∂F

∂v
J1 + 1

2F
−2∂F

∂r

∂F

∂v
J2 (C.1c)

∂rAv = 1
2`F

−1/2∂F

∂r
J0 + 1

2

(
∂2F

∂r2 + F−2∂F

∂r

∂F

∂v

)
J2 (C.1d)

∂vAϕ = 1
2F
−1/2∂F

∂v
J0 (C.1e)

∂ϕAv = 0 (C.1f)

For the commutators one finds:
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[Ar, Aϕ] = 1
`

[J1, J0] + 1
`2
F−1/2r[J1, J2]− 1

2F
−1/2∂F

∂r
[J2, J0] (C.2a)

= −1
`
J2 + 1

`2
F−1/2rJ1 −

1
2F
−1/2∂F

∂r
(J0 + J1),

[Av, Ar] = 1
`2

[J0, J1]− 1
2`F

−1/2∂F

∂r
[J0, J2] + 1

2`F
−1/2

(
∂F

∂r
− F−1∂F

∂v

)
[J2, J1] (C.2b)

= 1
`2
J2 + 1

2`F
−1/2∂F

∂r
(J0 + J1)− 1

2`F
−1/2

(
∂F

∂r
− F−1∂F

∂v

)
J1

[Av, Aϕ] = 1
`2
F 1/2r[J0, J2] + 1

2F
1/2
(
∂F

∂r
− F−1∂F

∂v

)
[J2, J0] (C.2c)

= 1
`2
F 1/2r(J0 + J1) + 1

2F
1/2
(
∂F

∂r
− F−1∂F

∂v

)
(J0 + J1)

= −1
2F
−1/2∂F

∂v
(J0 + J1),

where Eq. (2.30) has been used to compute the commutators of the corresponding generators:

[J0, J1] = −[J1, J0] = ε012
(
η20J0 + η21J1 + η22J2

)
= J2

[J0, J2] = −[J2, J0] = ε021
(
η10J0 + η11J1 + η12J2

)
= −(J0 + J1) (C.3)

[J1, J2] = −[J2, J1] = ε120
(
η00J0 + η01J1 + η02J2

)
= J1,

with ε012 ≡ 1.
Combining (C.1) with (C.2) leads to:
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(∂rAϕ − ∂rAϕ) + [Ar, Aϕ] =
(1

2F
−1/2∂F

∂r
− 1

2F
−1/2∂F

∂r

)
J0

+
( 1
`2
F−1/2r − 1

2F
−1/2∂F

∂r

)
J1 +

(1
`
− 1
`

)
J2 (C.4)

=F−1/2
( 1
`2
r − 1

2
∂F

∂r

)
J1

(∂vAr − ∂rAv) + [Av, Ar] =
(
− 1

2`F
−1/2∂F

∂r
+ 1

2`F
−1/2∂F

∂r

)
J0

+
(
− 1

2`F
−3/2∂F

∂v
+ 1

2`F
−1/2∂F

∂r
− 1

2`F
−1/2∂F

∂r
+ 1

2`F
−3/2∂F

∂v

)
J1

+
(

1
`2
− 1

2
∂2F

∂r2

)
J2 (C.5)

=
(

1
`2
− 1

2
∂2F

∂r2

)
J2

(∂vAϕ − ∂ϕAv) + [Av, Aϕ] =
(
− 1
`2
F 1/2r + 1

2F
1/2∂F

∂r
− 1

2F
−1/2∂F

∂v
+ 1

2F
−1/2∂F

∂v

)
J0

(C.6)

+
(
− 1
`2
F 1/2r + 1

2F
1/2∂F

∂r
− 1

2F
−1/2∂F

∂v

)
J1
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