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Resumen

En este trabajo, proponemos una definición operacional de la temperatura local de un

campo cuántico usando detectores Unruh-DeWitt, de forma similar a la empleada en

los efectos Unruh y Hawking. Con esta definición, un sistema cuántico inhomogéneo

en equilibrio puede tener diferentes temperaturas locales, en analogía con el teorema de

Tolman-Ehrenfest en relatividad general. Hemos estudiado la distribución de la temperatura

local en el estado fundamental de un sistema fermiónico con términos de hopping en un

espacio curvo. La temperatura observada tiende a cero conforme el acoplo termómetro-

sistema, g, disminuye. Además, para valores pequeños pero finitos de g, mostramos que el

producto de la temperatura local observada y el logaritmo de la velocidad local de la luz es

aproximadamente constante. Nuestras predicciones son susceptibles de comprobación en

sistemas de átomos ultrafríos.



Abstract

We propose an operational definition for the local temperature of a quantum field em-

ploying Unruh-DeWitt detectors, as used in the study of the Unruh and Hawking effects.

With this definition, an inhomogeneous quantum system in equilibrium can have different

local temperatures, in analogy with the Tolman-Ehrenfest theorem from general relativ-

ity. We have studied the local temperature distribution on the ground state of hopping

fermionic systems on a curved background. The observed temperature tends to zero as the

thermometer-system coupling, g, vanishes. Yet, for small but finite values of g, we show

that the product of the observed local temperature and the logarithm of the local speed of

light is approximately constant. Our predictions should be testable on ultracold atomic

systems.
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1 Introduction

Recently, quantum simulators built upon ultracold atomic gases [1] have been designed

in order to explore the very interesting interplay between quantum mechanics and curved

space-time [2], including the effects of dimensionality [3] or unusual topology [4]. More-

over, a detailed proposal for a quantum simulator to explore Unruh physics in cold atoms

has been put forward [5]. The idea behind all the proposed quantum simulators on curved

space-times [1–5] is the following: a static metric with an inhomogeneous time-lapse

function |g00(x)|1/2 for fermionic systems can be simulated by tuning the local hopping

amplitudes between the cells of an optical lattice. This relation can be also understood in

reverse: an inhomogeneity in the hopping amplitudes may be read as a non-trivial space-

time metric. This idea has sparked interest in the low energy states of these inhomogeneous

spin chains and fermionic hopping models, which can be understood as dynamics on a

curved metric. For example, it has been shown how a modulation of the metric can give

rise to ground states (GS) which present extremely long-range correlations, such as the

rainbow state [6, 7]. The entanglement entropy of the GS of local quantum systems usually

follows the area law [8, 9], but in a curved metric we can have a strong violation, with

a volumetric growth of the block entropies. This led to a thermal interpretation of the

rainbow state [10], which can be viewed as a thermo-field double. Thus we see that, in

some situations, it makes sense to attach a non-zero temperature to a quantum ground state.

One of the most surprising results in thermodynamics on curved space-times was stated

by Richard Tolman and Paul Ehrenfest in 1930 [11, 12]: the temperature of an equilibrium

system in a static space-time may vary from point to point, and it is inversely proportional

to the local lapse function,

T (x) · |g00(x)|1/2 = const. (1)

The result is of thermodynamical nature, and can be proved without any assumptions

on the dynamics [13]. It can be applied to the study of the Unruh effect: an accelerated

observer travelling through a Minkowski vacuum must feel a thermal bath of particles

at a temperature proportional to its acceleration [14, 15]. Due to the principle of equiv-

alence, such an observer can be considered to be at rest in Rindler space-time, which is

characterized by a lapse function which increases linearly with the distance to a horizon,

|g00(x)|1/2 ∝ x. Then, the Tolman-Ehrenfest theorem predicts that the local temperature
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must decay as the inverse of that same distance, T (x) ∝ x−1 [16, 17]1. It is relevant to

notice that the Unruh effect is defined in an operational way [12, 15]: an Unruh-DeWitt

detector is defined as a simple quantum system with a local monopolar interaction with the

field. The temperature will manifest itself in the quantum fluctuations within the detector2.

A great amount of theoretical work has been devoted to the locality-of-temperature

problem, i.e., to find under which conditions a subsystem of a global system at temperature

T can be considered to be again in a thermal state at the same temperature [22–24]. In

general terms, the answer is that this is possible when a certain measure of the energy

contained in the correlations is lower than the physical temperature, T . Thus, this work

will explore the opposite limit, when T = 0, so quantum correlations can create non-trivial

local thermal effects. Thus, one may ask how small a thermometer can be in order to

make sensible measurements. Quantum thermometry is indeed an area undergoing a rapid

growth. The idea of using a single qubit as a thermometer has been put forward recently by

several groups [25–28]. In this case, the fluctuations in the temperature estimate should be

taken into account [29–31], which are expected to follow the Landau relation, ∆T ∼ T 2/C,

where C is the heat capacity of the system.

This work proposes to explore local quantum thermometry on the ground state of

inhomogeneous free fermionic Hamiltonians by observing the quantum fluctuations of a

single-qubit Unruh-DeWitt detector, locally linked to our system. The long term average

of the occupation provides an estimate of the local temperature, while its frequency

dependence provides further information about the system. We show that, for finite

couplings between the detector and the system, the observed local temperature and the

time-lapse are related via a modification of the Tolman-Ehrenfest relation. Nonetheless,

when the coupling tends to zero, the temperature vanishes, at it should on a ground state.

The reason to employ free systems is that we will focus on the interplay between geometry

1 There are some important caveats when attempting to apply the Tolman-Ehrenfest theorem to the Unruh
effect, see [16, 17].

2 The Unruh effect predicts moreover that the quantum fluctuations of such a detector will follow a
Fermi-Dirac distribution for a free fermionic field and Bose-Einstein for a free bosonic field, as long as the
spatial dimension is odd, or the opposite if it is even [12]. The Unruh effect has not been properly measured
in the laboratory yet [18], although there are some promising directions [19]. Nonetheless, a relevant indirect
test was highlighted by Bell and Leinaas in 1983 [20, 21], related to the Sokolov-Ternov effect: if an electron
beam is accelerated in a synchrotron under a strong magnetic field it will self-polarize, but this polarization
will not be complete. This can be explained in two ways, leading to the same predictions. The most usual
is using the relativistic transformations of the interaction between the magnetic field and the spin. But,
alternatively, we can consider the electron spin as an Unruh-DeWitt detector in a thermal bath due to its
acceleration as it moves on curved paths through the Minkowski vacuum.
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and thermal effects, and we leave the effects of interaction for further work. Notice that,

despite of our use of the Unruh-DeWitt detector, our measurement does not bear relation

to the Unruh effect.

There have been other proposals to define effective and local temperatures for non-

equilibrium and/or inhomogeneous systems in the literature. Some of the most relevant are

based either on the fluctuation-dissipation theorem [32–34] or the connection to a thermal

bath with a vanishing heat flow [35–40]. We will comment on the relation to our approach

at the end of this work.

This work is organized as follows. In section 2 we describe our physical model, an

Unruh-DeWitt detector locally attached to the ground state of a fermionic system on

a curved background. The methodological issues are discussed in section 3, and the

numerical results are shown in section 4. Section 5 is devoted to a variational general study

of the physics of single-qubit detectors in interaction with free fermionic systems. Finally,

in section 6 we present a summary of the conclusions and suggestions for further work.
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2 Unruh-DeWitt Thermometry

Let us consider a system of spinless fermions on L sites characterized by a Hamiltonian HS,

and let c†
i denote the creation operator at site i. We introduce a new site, the Unruh-DeWitt

detector or thermometer, with label 0 and a chemical potential µ > 0, whose Hamiltonian

is:

HD = µc†
0c0. (2)

Let H0 ≡ HS +HD, and let us cool the system into its ground state, which will contain

L/2 fermions (half-filling) in the system while the detector will be empty. We now quench

the system by attaching the detector to site p of the system via an interaction term of the

form

HI = g
(

c†
0cp +h.c.

)
, (3)

where g is a (small) coupling constant. The total Hamiltonian of the system is now given

by

H = H0 +HI = HS +HD +HI, (4)

see figure 1 for an illustration. If the detector is in the extreme, the system presents some

similarity to a Kondo lattice, but it remains a pure hopping Hamiltonian, non-interacting.

Figure 1: We set up a fermionic chain with L sites in its ground state (blue), plus a
thermometer site or Unruh-DeWitt detector (red), initially empty and uncoupled. At time
t = 0 we establish a local hopping between them (dashed line), and trace the evolution
of the expected occupation of the thermometer as a function of time, n0(t). Since the
occupied and empty states have different energies, we can infer a temperature from the
long term behavior of n0(t). The inferred temperature may depend on the position of the
thermometer, as illustrated in the panels.
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After the quench, we observe that the expected value of the occupation of the detector

is a function of time, ⟨n0(t)⟩, and we can define n0 to be its long-term time average,

n0 ≡ lim
τ→∞

1
τ

∫ τ

0
dt ⟨n0(t)⟩ , (5)

if this limit exits. Since the energy difference between the empty and the occupied states

of the detector is µ , which we assume to be sufficiently above the Fermi energy of the

system, we can give a thermal interpretation to that magnitude:

n0 ≡
1

1+ exp(β µ)
, (6)

from which we can infer a local temperature T = 1/β , associated to site p. If the energy

provided by the coupling, ∼ g, is small, we can assume that we are not perturbing the

system noticeably and, therefore, we are measuring an intrinsic property of the quantum

system. Of course, the proper value of the temperature should always be taken as g → 0.

For finite values of g, we will speak of observed values of the local temperature.

Notice that this procedure bears a strong similarity to the operational definition of the

Unruh temperature [15], the main difference being that our detector is at rest.
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3 Computing the thermometer occupation

For concreteness, let us consider our system to be a 1D free fermion lattice with L sites

and a position-dependent hopping amplitude:

HS =−∑
i

tic
†
i ci+1 +h.c. , (7)

where the ti are the hopping amplitudes, encoding the geometry. If they are slowly varying,

they can be understood as a local time-lapse function |g00(x)|1/2 of a static metric [2]:

ds2 =−t2(x)dt2 +dx2, (8)

where we assume xi = i∆x and t(xi) ≈ ti/∆x. We can also think of t(x) as a local speed

of light in an optical metric. Notice that the restriction to a 1D non-interacting system

is only made for convenience. An important property of the Hamiltonian (7) is that its

single-particle spectrum presents particle-hole symmetry. Thus, for the ground state at

half-filling, the particle density ⟨ni⟩= 1/2 is always homogeneous.

Let us compute the local temperature defined by Eq. (6). Before the quench the

Hamiltonian is H0 = HS +HD, and after the quench it is H = H0 +HI . Both Hamiltonians

are free, thus their eigenstates can be obtained in terms of single-body energies and orbitals:

H0 →
{

εk, b†
k = ∑

i
Bkic

†
i

}
, (9)

H →
{

ηl, d†
l = ∑

i
Dlic

†
i

}
. (10)

The linear transformations among the single-body orbitals b†
k , d†

k and c†
i are all unitary.

Furthermore, we define

d†
l ≡ ∑

k
Ulkb†

k = ∑
k,i

DliB̄ikb†
k . (11)

The initial state is the ground state of H0:

|Ψ0⟩= ∏
k∈K

b†
k |0⟩ , (12)
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where K is the set of occupied levels in the initial system, i.e.: those whose energy εk < 0

(we will assume it to be non-degenerate, so there are no zero modes). Let us express the

time evolution in the Heisenberg image, making the operators evolve. Thus, we need to

obtain

n0(t)≡ ⟨Ψ0|c†
0(t)c0(t) |Ψ0⟩ . (13)

The orbitals of H evolve as d†
k (t) = d†

k e−iηkt , where d†
k (0) = d†

k . The evolution of the

on-site c†
i (t) operators is given by:

c†
0(t) = ∑

l
D̄0ld

†
l e−iηkt . (14)

Putting all together, we obtain

n0(t) = ∑
l,l′

D̄0lD0l′e
iηlte−iηl′ t ⟨Ψ0|d†

l dl′ |Ψ0⟩ (15)

= ∑
l,l′

D̄0lD0l′e
−i(ηl−ηl′)t ∑

k∈K
UlkŪl′k. (16)

From here we read that the Fourier transform of the temporal fluctuations of the detector

occupation, n̂0(ω), has peaks at frequencies ωll′ ≡ ηl −ηl′:

n̂0(ω) = ∑
l,l′

Wll′ δ (ω −ωll′), (17)

with weights given by the expression:

Wll′ = ∑
k∈K

D̄0lD0l′UlkŪl′k. (18)

Assuming that the ηl are all different, we can read the expression for the long-term

average of the expectation value of the occupation, (5), as the zero-frequency component:

n0 = ∑
l

Wll = ∑
l

∑
k∈K

|D0l|2|Ulk|2. (19)

For a finite system, expression (19) always makes sense and converges to the long

term average of the occupation as long as there are no degeneracies in the single-particle

spectrum of H, {ηl}. A relevant question in practice is what does long term mean exactly.
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The answer is: long enough for all non-zero frequencies in expression (17) to average out,

which will require a time inversely proportional to the slowest non-zero value of ηl −ηl′ .
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4 Numerical Results

We have performed numerical simulations in order to explore the relation between the

local temperature, the thermometer occupation and the local properties of the state. In all

cases, unless otherwise specified, we choose the thermometer chemical potential µ = 0.5

and g = 0.1.

In figure 2 we show the time evolution of the expected value of the occupation of

the thermometer ⟨n0(t)⟩ when it is attached to different sites of a L = 500 fermionic

Rindler-like chain with couplings of the form ti = t0+ i∆t (t0 = 0.6 and ∆t = 0.4) and open

boundaries. Notice that the different values of the long-time average are easy to spot from

the beginning, and rather marked. The periodic bursts are related to the time taken by the

perturbation created by the quench to bounce back at the boundaries and return.
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Figure 2: Time evolution of the expected value of ⟨n0(t)⟩, i.e., the occupation of the
thermometer site, for a fermionic inhomogeneous hopping model with Rindler-like metric
and L = 500 and couplings ti = 0.6+ 0.4(i/L), using µ = 0.55 and g = 0.6. The inset
shows the same values for shorter times. Notice that the initial values, ⟨n0(0)⟩= 0 in all
cases, but it jumps to a high level in a very short time.

Figure 3 shows the inverse of the long term average of the occupation of the ther-

mometer when attached at different sites, n0(x)−1, obtained using Eq. (19), for different

background geometries, which we will describe from top to bottom. (A) A constant
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hopping term, ti = 1, both with open and periodic boundary conditions (OBC and PBC)

for a system with L = 500. For PBC, the occupation is homogeneous due to the translation

invariance. For OBC, the average value of n−1
0 is the same as for PBC, but we observe

large fluctuations due to the boundaries. (B) Rindler chain,

ti = i∆t, (20)

with fixed ∆t and open boundaries. The left extreme of the system, t ∼ 0, behaves similarly

to a horizon. We use also L = 500, ∆t = 0.005, 0.01 and 0.02, and g = 0.1. In this case,

the result is more surprising: we observe that n0(x)−1 ∼ x, in similarity to the growth of

the hopping term. Thus, we can assert our main conjecture:

n0(x)−1 ∼ t(x), (21)

where the proportionality constant between them may depend on the parameters of the

thermometer, g and µ . This expression, nonetheless, is only approximate. Moreover, the

local occupation of the thermometer presents strong parity oscillations. (C) Rainbow chain,

ti = α |i−L/2|, (22)

with α ∈ (0,1], i.e., the hoppings fall exponentially from the center. The ground state

of this system presents volumetric growth of the entanglement [6, 7, 10], and can be

interpreted as a thermo-field state. In this case, using L = 40 and α = 0.9 and 0.7, we also

observe the conjectured form (21) to hold approximately. In this case, no parity oscillations

appear, but we can see that the occupation saturates when we move away from the center.

(D) Sinusoidal chain,

ti = 1+Asin(2πi/L), (23)

which we explore for L = 500 and A = 0.5 and 1. The first case follows our conjectured

form (21) very accurately. The second, A = 1 presents a horizon at i = 3L/4, and around

its neighbourhood our conjecture is less accurate.

The local relation between occupation n0 and hopping t is further explored in the top

panel of figure 4, which plots g2n0 vs t for different Rindler systems, varying g, and the
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Figure 3: Inverse of the average local thermometer occupation, n0(x)−1 for different
background geometries. When suitable, the hopping distribution is shown in dotted lines.
(A) Homogeneous system with open and periodic boundary conditions (OBC and PBC)
and two different values of g, for a system with L = 500 sites and µ = 0.5. (B) Rindler
geometry, Eq. (20) with L = 500, µ = 0.5 and g = 0.1, using ∆t = 0.005, 0.01 and 0.02.
(C) Rainbow geometry, Eq. (22), with L = 40, µ = 0.5, g = 0.1 and two values of α = 0.9
and 0.7. (D) Sinusoidal geometry, Eq. (23), with L = 500, µ = 0.5, g = 0.1 and t0 = 1,
with two different amplitudes: A = 1 and A = 1/2.
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sine and rainbow systems. The data seem to collapse to a straight line, which amounts to

an improvement of our previous relation (21) to

n0(x)−1 ∼ t(x)/g2. (24)

The physical reason for the g2 factor will be explained in the next section. Furthermore,

assuming Eq. (24) to be true, we may also conjecture that the local inverse temperature

β (x)≡ T−1(x) will behave like

β (x)∼ log(t(x)/g2), (25)

and this expression is tested in figure 4, which shows the local hopping in the horizontal

axis, in logarithmic scale, and β (x) in the vertical one, for most of the systems used in

figure 3, using always g = 0.1. For large t the relation between β and t is shown to be

approximately logarithmic, and for the whole range of values considered they seem to

collapse to a single curve. The effect of varying g on the inverse temperature is shown in

the inset: it amounts to a vertical additive shift, as it should be apparent from Eq. (25).

The fluctuations in the thermometer occupation can be analysed beyond their long-term

average value. The full spectral decomposition of ⟨n0(t)⟩ can be studied using Eq. (17). In

figure 5 we show the frequency decomposition of the quantum noise on the thermometer,

| ⟨n̂0(ω)⟩ | for a Rindler system with ti = i/L and L = 500, g = 0.1 and µ = 0.5, when the

Unruh-DeWitt detector is placed at different sites. Notice that the central peak, which

corresponds to the long-term average n0, is relatively isolated. The active frequencies

correspond to a block which gets broader as we move away from the horizon.

For comparison, the inset of figure 5 shows the same spectral decomposition | ⟨n̂0(ω)⟩ |
for the quantum noise of the detector at any point of a homogeneous system. The shape is

rather similar to the response functions for Rindler space: the isolated central peak plus

the continuous block of frequencies.
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Figure 4: Top: Plot of g2n0(x)−1 versus the hopping t(x), for different geometries and
values of g, showing the approximate linear relationship. Concretely: Rindler system with
∆t = 0.02 and g = 0.05, 0.1 and 0.2, and the rainbow and sinusoidal systems shown in
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systems shown in figure 3, always using g = 0.1. The hopping axis is shown in log-scale,
in order to highlight the nearly logarithmic behavior of the relation between β (x) and t(x)
for large t, see Eq. (25). Notice the approximate data collapse to a single curve. The dotted
line is 10+2log(t). Inset: effect of g, shown plotting also β vs t in logarithmic scale, for
a Rindler system with ∆t = 0.02 and 500 sites, for three values of g: 0.05, 0.1 and 0.2.
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5 Single Qubit Detectors 15

5 Single Qubit Detectors

Let us discuss how the the single-body spectrum of a free fermionic system changes when a

new site is attached to site p, as shown in Eq. (3), which we will call a single qubit detector

(SQD), see figure 1 for an illustration. Let the unperturbed system be characterized by a

set of single-body orbitals
{

ψk
i
}

, with energies Ek.

A simple yet very accurate study can be done using a two-level variational approach,

in which each deformed single-body state is obtained minimizing the energy within the

subspace spanned by the original orbital and the state localized in the new site. For each

unperturbed orbital, k, we propose an ansatz of this form:

|Ψ⟩k = αk |1⟩k ⊗|0⟩D +βk |0⟩k ⊗|1⟩D , (26)

where {|0⟩k , |1⟩k} denote the states in which mode k is either empty or occupied, and the

same reads for {|0⟩D , |1⟩D} and the detector. The effective Hamiltonian of this two-level

system can be written as:

He f f =

 Ek gψk
p

ḡψ̄k
p µ

 . (27)

Notice that only ψk
p is relevant in this approach. The energy shift for the orbital will be

given by

Ẽk =
1
2

(
Ek +µ ±

√
(Ek −µ)2 +4g2|ψk

p|2
)

(28)

≈ Ek +
g2|ψk

p|2
Ek −µ

. (29)

Notice that the expression presents a pole at Ek = µ , although we will stay safe: µ

is always chosen to be sufficiently above the Fermi energy, which is zero in our case.

Correspondingly, the probability of finding the fermion in the new site is now

|βk|2 ≈
(Ẽk −Ek)

2

(Ẽk −Ek)2 +g2|ψk
p|2

≈
g2|ψk

p|2
(Ek −µ)2 . (30)

The astonishing validity of this approximation can be seen in figure 6, where we

compare the exact and the two-level variational results with the exact calculation.
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Figure 6: Checking the validity of the two-level variational approach to single qubit
detector physics. A hopping model with L = 50 sites and open boundaries is attached to a
thermometer at site p = 4 (blue line) and p = 25 (red line). Top: theoretical estimate for
the shift in the mode energy ∆Ek = Ẽk −Ek due to the presence of the thermometer, as a
function of Ek and divided by g2, Eq. (29). The points are the exact values for g = 0.05,
0.1 and 0.25, which are seen to collapse very accurately away from the region E ∼ µ .
Bottom: theoretical estimate for the occupation of the thermometer site |βk|2 as a function
of the unperturbed energy Ek, divided also by g2, Eq. (30). The points are again the exact
values for g = 0.05, 0.1 and 0.25.

Returning to expression (19) we can state that |D0l|2 = |βl|2 and, approximately,

Ukl ≈ δlk, thus obtaining

n0 ≈ ∑
k∈K

g2|ψk
p|2

(Ek −µ)2 . (31)

Notice that the local occupation (and, therefore, the local temperature) is related to the

form of the orbitals and the energy content at the site to which the detector is attached. The

long-term average occupation always depends quadratically with the coupling constant,

n0 ∼ g2, for low enough g. Let us remark again that in order to define a proper local

temperature one should always take the limit g → 0. As we mentioned before, strictly

speaking one should distinguish between the observed local temperature, at finite g, and

the actual limit value, which is zero everywhere for a ground state.
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6 Conclusions and Further Work

In this work, we have presented an operational definition of the local temperature of a quan-

tum system, via the interaction with a single qubit Unruh-DeWitt detector characterized

as a two-level system with a (large enough) energy gap µ and a (small enough) coupling

constant g. The main observable is the long-term average occupation of the detector, which

is shown to have a mild dependence on µ if it is sufficiently above the Fermi energy3.

We have studied the behavior of the detector occupation and the associated local

temperature on the ground state of free fermionic systems in 1D with inhomogeneous

hopping parameters t(x), which can be understood as the time-lapse, t(x) ∼ |g00(x)|1/2,

of a background static geometry (or local speed of light). Since we operate at zero

temperature, the energy to excite the detector must come only from the coupling between

the thermometer and the system, measured by the coupling constant g. Indeed, the local

thermometer occupation is always proportional to g2 and tends to zero as g → 0. Thus,

properly speaking, the measured temperature is always zero. Yet, for small but finite

values of g we find an approximate inverse proportionality between the long-term average

occupation of the detector and the time-lapse, n−1
0 ∼ t(x)/g2. Thus, for finite g, the

observed local temperatures are larger where the local speed of light is smaller, bearing

similarity to the Tolman-Ehrenfest theorem from thermodynamics on curved space-time,

which states that for a system in thermal equilibrium on a static metric, T (x) · t(x) is a

constant. Yet, in opposition to it, we find that, for finite g, Tg(x) · log t(x) ∼ const. Our

result does not contradict the Tolman-Ehrenfest theorem because the limit of Tg(x) for

vanishing coupling g is zero.

Our main claim, n0(x)−1 ∼ t(x)/g2, seems to remain approximately valid for a wide

variety of inhomogeneities: linear (Rindler), exponential (rainbow) or sinuosidal hoppings.

Nonetheless, a theoretical explanation and a discussion of its validity are left for further

work. It is relevant to ask whether it remains valid in higher dimensions, in different

topologies, or in the presence of interactions.

The most relevant question is how our technique will work in the case of equilibrium

states at a finite temperature or non-equilibrium systems. In that case, there are some

relevant approaches in the literature to define local and effective temperatures. A well
3 We would like to stress that, despite of our use of Unruh-DeWitt detectors, our measurement is not of

an Unruh temperature.
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tested procedure is to attach a local thermal reservoir at temperature T0 locally to the system,

and find the value of T0 for which the heat flow between the bath and the system vanishes

[35–40]. This approach is operational, like ours, and will also yield zero temperature for

the ground state. The main advantage of our approach is that it explores the possibility

of measuring the temperature without a thermal bath, and thus it is better suited for pure

quantum environments, such as ultracold atomic gases. Another tested approach is based

on the fluctuation-dissipation theorem [33]. The temperature is defined from the relation

between the response to an impulse perturbation and the correlation function. Thus, as

opposed to the previous case, it is not an operational definition, and it presents several

technical issues in the quantum regime [34]. Nonetheless, one of the most relevant insights

from the technique is that the temperature can be frequency-dependent, a feature that

can be obtained from our full frequency occupation n̂0(ω), Eq. (17). A good extension

of the definition of temperature should respect the principles of thermodynamics. Both

approaches mentioned above are known to respect the second principle, but for our

technique this is still to be proved.

Although our procedure is inspired by the Unruh-DeWitt detector, it is also important

to stress the difference between the local temperature measured and the Unruh temperature.

In order to observe the Unruh effect, an observer will move with constant acceleration

through the Minkowski vacuum. From her point of view, this motion will translate into a

change of her metric, which will become Rindler. Thus, as opposed to our case, she will

observe the Minkowski vacuum through the lens of a Rindler Hamiltonian, as shown in

[5].

As a last remark, we would like to stress that our proposal for the definition of the

local temperature is operational, and therefore it can lead to experimental observation. An

interesting setting would be using ultracold atoms on an optical lattice.
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