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NON-EXISTENCE OF BIANCHI TYPE IV

SPACE-TIME IN MODIFIED GRAVITY
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Abstract: We have investigated non-diagonal Bianchi type IV space-time filled with perfect

fluid in the framework of f(R, T ) gravity, where R is the Ricci scalar and T is the trace of

the energy-momentum tensor. We have considered two cases of f(R, T ) gravity: f(R, T ) =

R + 2f(T ) and f(R, T ) = f1(R) + f2(T ). In both the cases, it is found that the perfect fluid

does not survive and the space-time turns out to be flat in f(R, T ) theory of gravity.
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1. Introduction

Einstein’s general theory of relativity generalizes relativity and gravity, giving
combined knowledge of gravity as a geometric property of the space-time and
is the basis for most of the known gravitational phenomena. But the recent
cosmological data brings a new understanding on cosmology. It indicates to us
that the universe is expanding with constant acceleration (Riess et al. 1998;
Perlmutter et al. 1999 and Bennet et al. 2003) and ’Dark Energy’ is believed
to be its source whose origin is still a mystery in modern cosmology. Dark
energy dominates the universe and is the component with negative pressure
constituting 68.3 % of the critical density. The most appropriate candidate
for explaining the cosmic acceleration is ”The Cosmological Constant”, but
it faces many problems due to large discrepancies between observations and
theory(Copeland et al. 2006; Nojiri and Odintsov 2007).
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New data-sets such as Cosmic Microwave Background Radiation (CMBR)
and supernovae surveys indicate that the energy composition of the universe
is as follows: 68.3% Dark energy, and 4.9% ordinary baryonic matter and the
remaining is the dark matter(Riess et al. 2004; Eisenstein et al. 2005; Astier et
al. 2006; Spergel et al. 2007). Hence, recently dark energy models are created
by modifying the geometrical part of the Einstien-Hilbert action of general rel-
ativity.Some of the theoretical models proposed to explain the dark energy and
accelerated expansion of the universe are Chaplygin gas (Kamenshchik et al.
2001; Bento et al. 2002), f-essence, k-essence, phantom energy (Caldwell 2002;
Nojiri and Odintsov 2003), quintessence (Sahni and Starobinsky 2000; Sahni
2004; Padmanabhan 2008). Among all these models of dark energy, f(R) theory
of gravity(Caroll et al. 2004) and f(G) Gauss-Bonnet gravity are the modified
gravity theories. In recent years these theories are gaining more attraction.
f(R,T ) gravity and f(T ) gravity(where T is trace of the energy momentum
tensor) are other approaches to modified gravity theory.Some of the authors
who have worked on f(R) gravity models are Chiba et al. (2007), Nojiri and
Odintsov (2007), Multamaki and Vilja(2006,2007) and Shamir(2010).This mod-
ified gravity approach has been verified in successfully explaining the unification
of early time inflation and late-time accelerated expansion of the universe.

Isotropic, homogeneous and expanding nature of the physical universe is
confirmed by the analysis of the microwave background fluctuations and is
well represented within the framework of the isotropic Friedman-Robertson-
Walker(FRW) cosmology. In contrary other analysis reveal inconsistency. The
WMAP data analysis supports the fact that the universe has a preferred di-
rection and it should reach a slightly anisotropic geometry, making the study
of anisotropic Bianchi models important. Thus making the investigations of
Bianchi type models in f(R,T ) gravity an area of importance. Nojiri and
Odintsov (2006) developed a general scheme for f(R) reconstruction from real-
istic FRW cosmology. Adhav (2012) obtained Biachi type-I cosmological model
in f(R,T ) gravity.Reddy et al (2012a) have discussed Bianchi Type-III cos-
mological model in f(R,T ) gravity whereas Reddy et al. (2013a),Reddy and
Shanthikumar (2013a) studied Bianchi type-III dark energy model and some
anisotropic cosmological models in f(R,T ) gravity,respectively. Mishra and Sa-
hoo (2014) also discussed Bianchi type V Ih perfect fluid cosmological model in
f(R,T ) theory. Sahoo et al.(2014) have studied the dynamics of five dimen-
sional Kaluza-klein metric for a perfect fluid distribution in the frame work of
modified gravity. Out of this, Bianchi type-IV space-time in f(R,T ) gravity
has not been considered in the literature.

Motivated by the above discussion and investigations in modified theories
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of gravity, in this paper, we propose to study Bianchi type-IV space time in
f(R,T ) gravity by considering f(R,T ) = R + 2f(T ) and f(R,T ) = f1(R) +
f2(T ), where f1(R) = λR and f2(T ) = λT . This paper has been organized
as follows: In Section 2 gravitational field equations in f(R,T ) gravity are
derived,. Section 3 formulates the field equations for Bianchi type-IV space-
time in f(R,T ) gravity for both the cases and showing its non existence. Finally
conclusions are summarized in the last Section 4.

2. f(R,T) Gravity

The f(R,T ) modified theory of gravity is another extension of standard Gen-
eral Relativity, where the gravitational Lagrangian is given by an arbitrary
function of Ricci scalar R and of the trace of stress-energy tensor. In f(R,T )
gravity, Hilbert-Einstien type variational principle yields the gravitational field
equations.The f(R,T ) modified gravity action as considered by Harko et al.
(2011)is given by

S =
1

16π

∫

f(R,T )
√
−gd4x+

∫

Lm

√
−gd4x, (1)

where f(R,T ) is an arbitrary function of Ricci scalar R, T being the trace of
the stress-energy tensor (Tij) of the matter and Lm is the matter Lagrangian
density. The stress-energy tensor of matter is defined as

Tij =
−2
√
−g

δ(
√
−gLm)

δgij
(2)

We assumed here that the dependence of matter Lagrangian is on the metric
tensor gij rather than its derivatives.

The trace of the energy tensor of matter is given by

T = gijTij (3)

So in this case the stress-energy tensor of matter is

Tij = gijLm − 2
∂Lm

∂gij
(4)

Varying the action S of the gravitation field with respect to the metric tensor
components gij , the field equations of f(R,T ) gravity are obtained as follows

f(R,T )Rij −
1

2
f(R,T )gij + (gij�− ▽i▽j)fR(R,T )
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= 8πTij − fT (R,T )Tij − fT (R,T )θij (5)

where

θij = −2Tij + gijLm − 2gαβ
∂2Lm

∂gij∂gαβ
(6)

Now here fR(R,T ) = ∂f(R,T )
∂R

, fT (R,T ) = ∂f(R,T )
∂T

, � ≡ ▽
i
▽i where ▽i is the

covariant derivative and Tij is the standard matter energy-momentum tensor.
Contraction of (5)yields

fR(R,T )R + 3�fR(R,T )− 2f(R,T ) = 8πT − fT (R,T )(T + θ) (7)

where θ = θii. The above equation (7) gives a relation between the trace T of
energy-momentum tensor and Ricci scalar R.

It can be seen that when f(R,T ) ≡ f(R), eqn (5) yields the field equations
of f(R) gravity.

Now using (6), we get the variation of stress-energy. As there is no unique
definition of matter Lagrangian, the matter Lagrangian can be taken as Lm = p.
Now using the Lagrangian Lm, the stress-energy tensor of matter is given by

Tij = (ρ+ p)uiuj + pgij (8)

where ui=(0,0,0,1) is the four velocity vector in the co-moving coordinate sys-
tem such that uiui = 1 and ui▽jui = 0, ρ and p are energy density and pressure
of the fluid respectively.

Then using eqn. (6),we obtain the variation of Stress-energy of perfect fluid
as

θij = −2Tij − pgij (9)

On the physical nature of the matter field,the field equations also depend
through the tensor θij.

Hence in the case of f(R,T ) gravity depending on the nature of matter
source. several theoretical models for different matter contributions for f(R,T )
gravity are available in literature. Harko et al (2011) gave three classes of model
as

f(R,T ) =











R+ 2f(T )

f1(R) + f2(T )

f1(R) + f2(R)f3(T )

(10)

Here we focus on the first two cases i.e. f(R,T ) = R+2f(T ) and f(R,T ) =
f1(R) + f2(T ) where f(T ) is an arbitrary function of Stress-Energy tensor of
matter. Now from (5) we get the field equations of f(R,T ) gravity as

Rij −
1

2
Rgij = 8πTij − 2f ′(T )Tij − 2f ′(T )θij + f(T )gij (11)
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where prime denotes differentiation with respect to the argument.
In perfect fluid the field equations become

Rij −
1

2
Rgij = 8πTij + 2f ′(T )Tij + [2pf ′(T ) + f(T )]gij (12)

3. Field Equations and its solutions

We have considered a non diagonal Bianchi type IV space-time of the form

ds2 = −dt2 +A2dx2 +B2e2xdy2 + c2e2x[xdy + dz]2 (13)

where A(t),B(t) and C(t) are three anisotropic directions of the space and
functions of cosmic time only.

These functions are not equal due to radial asymmetry. The matter tensor
can be defined as

θij = −2Tij − pgij = (ρ,−p,−p,−p) (14)

3.1. Case I

As a first case we consider the functional f(R,T ) in the form f(R,T ) = R +
2f(T ). Again, we chose f(T ) = λT where λ is a constant. The field equations
for Bianchi type IV space-time in f(R,T ) gravity are obtained as

B̈

B
+

C̈

C
+

ḂĊ

BC
−

1

A2
+

C2

4A2B2
= (8π + 3λ)p− λρ (15)

2Ȧ

A
−

Ḃ

B
−

Ċ

C
= 0 (16)

C2x2[
2

A2x
+

1

4A2x2
+

Ä

A
+

B̈

B
+

ȦḂ

AB
−

1

A2
−

3C2

4A2B2
] +B2[

Ä

A
+

C̈

C
+

ȦĊ

AC
−

1

A2
]

= [B2 + C2x2][(8π + 3λ)p − ρ] (17)

Ä

A
+

B̈

B
+

ȦḂ

AB
−

1

A2
−

3C2

4A2B2
= (8π + 3λ)p − λρ (18)

1

A2x
−

1

A2
−

3C2

4A2B2
+

Ä

A
+

B̈

B
+

ȦḂ

AB
= (8π + 3λ)p− λρ (19)

ȦḂ

AB
+

ḂĊ

BC
+

ȦĊ

AC
−

3

A2
−

C2

4A2B2
= −(8π + 3λ)ρ+ λp (20)
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where an overhead dot represents differentiation with respect to cosmic time
′t′.

On integration equation (17) yields

A2 = k(BC) (21)

without loss of generality we take k = 1,subsequently equation (22) reduces to

A2 = BC (22)

Now from equations (19) and (20), we get

1

A2x
= 0 (23)

which leads to inconsistency for both the cases A is very large or x = ∞.
Neither of the cases is acceptable under geometrical and physical ground. Thus
the f(R,T ) gravity is not compatible in Bianchi type IV space-time.

3.2. Case II

In this case, we consider f(R,T ) in the form

f(R,T ) = f(R) + f(T ) (24)

where f(R) and f(T ) are some functions of the Ricci scalar R and the stress
energy tensor T . In principle one can chose any functional form for f(R) and
f(T ) to get viable cosmological solutions. Our interest in the present work is
to investigate whether or not the present gravity model can be sustained for
Bianchi type IV (BIV) metric. We have already shown that in the first case, the
present modified gravity model is incompatible for BIV metric. In view of this
we chose simple forms of f(R) and f(T ) such as f(R) = αR and f(T ) = αT .
Here α is a constant.

Now the corresponding field equations for the non-diagonal Bianchi type
IV space-time are obtained as:

B̈

B
+

C̈

C
+

ḂĊ

BC
−

1

A2
+

C2

4A2B2
=

(

8π + α

α

)

p+ Λ (25)

2Ȧ

A
−

Ḃ

B
−

Ċ

C
= 0 (26)

C2x2[
2

A2x
+

1

4A2x2
+

Ä

A
+

B̈

B
+

ȦḂ

AB
−

1

A2
−

3C2

4A2B2
] +B2[

Ä

A
+

C̈

C
+

ȦĊ

AC
−

1

A2
]
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= [B2 + C2x2]

[(

8π + α

α

)

p+ Λ

]

(27)

Ä

A
+

B̈

B
+

ȦḂ

AB
−

1

A2
−

3C2

4A2B2
=

(

8π + α

α

)

p+ Λ (28)

1

A2x
−

1

A2
−

3C2

4A2B2
+

Ä

A
+

B̈

B
+

ȦḂ

AB
=

(

8π + α

α

)

p+ Λ (29)

ȦḂ

AB
+

ḂĊ

BC
+

ȦĊ

AC
−

3

A2
−

C2

4A2B2
=

(

8π + α

α

)

ρ− Λ (30)

where Λ = ρ−p
2 .

One can note from equations (29) and (30), a similar situation as that
of case-I is obtained. The field equations lead to quite unphysical situation
implying an infinitely large value for either the metric potential A or x. This
leads to a cosmological inconsistency.

It is not that, the two cases that we have considered in the work, with
the specific forms of f(R) and f(T ) in the given modified gravity model as
proposed by Harko et al. and a specific matter field lead to inconsistent cos-
mological solutions with BIV metric. This is true for whatever matter field we
will consider to get some cosmological implications. This is quite clear from
equation (12), where one can see that for some coordinates, the right hand side
becoming the same and in the left hand side there will be an extra term like
1

A2x
in one equation. This appearance of an extra scale dependent term leads to

the inconsistency. It is worth to mention here that, Harvey et al.(1977) have in-
vestigated BIV metric with a different spatial geometry in general relativity for
perfect fluid distribution and found that only vacuum solution can be possible
for this metric. they also extended their work with the inclusion of electromag-
netic contribution to get similar results. In an earlier work (Mishra2015), we
have investigated the compatibility of the BIV metric in general relativity to
show that the model is quite incompatible. The present result obviously warns
of proper care while cosmological implications are sought with BIV metric.

4. Conclusions

We have intended to develop the f(R,T ) gravity in a space-time governed by a
non-diagonal Bianchi type IV metric. However, this gravity is not compatible
in Bianchi type IV space-time. This may be due to the fact that the geometry
of the space-time is governed by non-diagonal metric. Harvey and Tsoubelis
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(1977)have considered a different form of Bianchi type IV metric and they sug-
gested that only vacuum solution can be obtained from it. However, in our case,
we can not even obtain the vacuum solution also. The field equations lead to
completely unphysical states because of the term 1/(A2x). The outcome is sim-
ilar as one of our previous study on dark energy[Mishra et al., 2015].Therefore
this study may be pursued further to understand the development of f(R,T )
gravity in non-diagonal space-time in general. Moreover, the reason need to
be found out why f(R,T ) gravity is showing this kind of behaviour in this
space time i.e whether it is the problem of the space time or the formulation of
f(R,T ) gravity.
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