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A theoretical description of the g factor of a muon bound in a nuclear potential is presented. One-
loop self-energy and multiloop vacuum polarization corrections are calculated, taking into account the
interaction with the binding potential exactly. Nuclear effects on the bound-muon g factor are also
evaluated. We put forward the measurement of the bound-muon g factor via the continuous Stern-Gerlach
effect as an independent means to determine the muon’s magnetic moment anomaly and mass. The scheme
presented enables the increase of the accuracy of the mass by more than an order of magnitude.
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I. INTRODUCTION

The physics of muons features puzzling discrepancies.
The disagreement between the experimental and theoretical
g factor of the free muon by 3σ represents the largest
deviation from the standard model observed in the electro-
weak sector [1–4]. Recently, high-precision spectroscopy
experiments with the muonic H atom yielded a value for the
proton radius which strongly disagrees with that obtained
from measurements on regular H [5,6] (see also [7]).
Experiments aiming at an improved determination of muon
properties can help clarify both issues and provide insight
into speculative new physics.
Fast progress in the theoretical understanding and experi-

mental precision of the bound-electron g factor (see e.g.,
[8–16] and references therein) has enabled the most accu-
rate determination of the mass of the electron in Penning
trap g-factor experiments by means of the continuous Stern-
Gerlach effect [8,17–20]. In this paper we put forward a
similar method for the extraction of the mass of the muon
by employing light muonic ions, by which we mean here
bound systems solely consisting of a nucleus and a muon
without further surrounding electrons. While there have
been theoretical [21,22] and experimental [23–25] studies
on the bound-muon g factor in muonic atoms, the absence
of shell electrons and the choice of light nuclei in our case

enable more accurate theoretical predictions. Also, for the
sake of simplicity both on the experimental and the
theoretical side, the nucleus is assumed to be spinless.
Since currently the mass of the muon is only known from
muonium spectroscopy [26,27] and to a fractional standard
uncertainty of 2.2 × 10−8 [28,29], alternative methods for
its determination are especially desirable.
When a muonic ion is subjected to a magnetic field of

strength B, the Larmor frequency between the Zeeman
sublevels depends on the magnetic moment μ of the muon
by the formula

ωL ¼ 2μ

ℏ
B ¼ g

2

e
mμ

B; ð1Þ

with e being the (positive) unit charge, and g and mμ the
bound-muon g factor and mass, respectively. Determining
the magnetic field at the location of the ion becomes
possible through a measurement of the cyclotron frequency
of the ion,

ωc ¼
Q
M

B; ð2Þ

where Q andM are the charge and mass of the muonic ion,
respectively. Thus, mμ can be expressed by M as

mμ ¼
g
2

e
Q
ωc

ωL
M; ð3Þ

where the theoretical value gtheo for the bound-muon g
factor is to be substituted. The quantity to be measured is
the ratio of the two frequencies, Γ ¼ ωL=ωc. For determin-
ingmμ with a given fractional uncertainty, all the quantities
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gtheo, Γ and M have to be known at the same level of
accuracy. For example, for the muonic 4Heþ ion, the total
mass M is given as follows: M ¼ mα þmμ − EB=c2, with
mα being the mass of the α particle, known to an excep-
tionally high relative accuracy of 1.6 × 10−11 in atomic
mass units [28], c is the speed of light, and EB the known
binding energy of the muon. Since M is dominated
by mα (mα ≈ 36mμ), M is known to a sub-ppb accuracy.
Alternatively, Eqs. (1) and (2) can be combined to yield an
experimental bound-muon g factor

g ¼ 2
mμ

M
Q
e
Γ: ð4Þ

Such a determination of g ¼ 2þ 2aμ þ Δgbind constitutes
an alternative access to the free muon’s magnetic anomaly
aμ at a level at which mμ is known from an independent
experiment, and provided the binding contribution Δgbind
can be calculated to sufficient accuracy.
In the following, we present the theory of the g factor of

muonic 4Heþ and show that a 9-digit fractional accuracy is
achievable, which corresponds to the same accuracy in the
extracted muon mass or magnetic anomaly, provided the

ratio of the Larmor and cyclotron frequencies can be
measured with matching precision.

II. THEORETICAL APPROACH

The dominant Dirac value of the bound-muon g factor,
gD, corresponds to the tree-level Feynman diagram with
the assumption of a point-like nucleus [30]. For a Dirac
particle in the 1s state of an ion with a charge number
Z it is gD ¼ 2

3
þ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðZαÞ2

p
, where α is the fine-structure

constant. Its numerical value is given in the first row of
Table I. Various effects shift the bound-muon g factor:
First, due to the finite size of the nucleus, the interaction
potential between the muon and the nucleus deviates from
a pure Coulomb potential on the fm scale. Therefore,
the wave function of the bound muon and hence its g
factor is corrected. This finite size (FS) correction to the
bound-muon g factor can be expressed with the nuclear
root-mean-square radius rRMS by the approximate formula

[31] ΔgFS ¼ 8m2
μ

3
ðZαÞ4r2RMS, in numerical agreement with

[32]. As one can see on this formula, the FS correction for
bound muons is more than 4 orders of magnitude larger
than for bound electrons. The accuracy of ΔgFS is mostly

TABLE I. Various contributions to the g factor of μ4Heþ. The abbreviations are: “eVP”=“μVP”∶VP due to virtual
e−eþ=μ−μþ pairs. The estimated uncertainty of the nuclear size effect stems from the error bar of the root-
mean-square nuclear radius and the uncertainty of the nuclear charge distribution model. The uncertainty is
negligible, i.e., much less than 1 in the last digit, in the case of the terms for which none is indicated. In the last row,
the uncertainties due to the calculated and uncalculated (two-loop LBL) terms are given separately.

Effect Term Numerical value References

Dirac value 1.999 857 988 8 [28,30]
Finite nuclear size 0.000 000 094 6(4) [36]
Nuclear polarization 0.000 000 000 0(10)

One-loop SE ðZαÞ0 0.002 322 819 5 [28,37]
all-order binding 0.000 000 084 9(10)

One-loop VP eVP, Uehling −0.000 000 479 6 [38]
eVP, magnetic loop 0.000 000 127 2(4)
μVP, Uehling −0.000 000 000 1 [38]
hadronic VP, Uehling −0.000 000 000 1ð1Þ

Two-loop QED ðZαÞ0 0.000 008 264 4 [39,40]
SE-SE, ðZαÞ2—ðZαÞ5 −0.000 000 000 1 [16,41–43]
S(eVP)E, ðZαÞ2 0.000 000 000 4 [39–42]
Second-order Uehling −0.000 000 001 1ð4Þ
Källén-Sabry −0.000 000 003 5
magnetic loopþ Uehling 0.000 000 000 3
uncalculated LBL 0.000 000 000 0(50)

≥ Three-loop QED ðZαÞ0 0.000 000 610 6 [28,44–46]
Nuclear recoil ðmμ

M Þ1, all orders in Zα 0.000 006 038 2 [47]

ðmμ

M Þ2þ, ðZαÞ2 −0.000 000 488 7 [48]
radiative recoil −0.000 000 004 7 [49]

Weak interaction ðZαÞ0 0.000 000 003 1 [28,50]
Hadronic contributions ðZαÞ0 0.000 000 139 3(12) [28,51–53]

Sum of terms calculated 2.002 195 193 4ð20Þcalcð50Þuncalc
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limited by the uncertainty of rRMS. The correction due
to the deformation of the nuclear charge distribution
was estimated using the method described in [32] and
nuclear data from [33], and was found to be negligible.
For the nuclear polarization correction [34,35] we
assume the uncertainty to be twice the FS uncertainty.
The leading quantum electrodynamic (QED) corrections

correspond to the one-loop Feynman diagrams shown on
Fig. 1. These diagrams represent the electric and magnetic
loop vacuum polarization (VP) corrections [Fig. 1(a) and (b),
respectively] and the self-energy (SE) wave function and
vertex corrections [Fig. 1(c) and (d), respectively]. We apply
the method outlined in Ref. [54] for obtaining expressions
for the individual terms.
The fermion loop in the VP electric loop diagram

modifies the nuclear potential at distances on the scale
of the Compton wavelength of the loop particle. In the
free-loop approximation, this leads to the radial Uehling
potential VUehðrÞ [55]. The effect of the Uehling term was
evaluated in different ways. First, the g factor contribution
of the first-order Uehling diagram can be calculated as

ΔgUeh ¼ −
8mμ

3
hajVUehjδai; ð5Þ

where jai is the bound-muon Dirac wave function and jδai
is the wave function linearly perturbed by the magnetic
interaction. For a pointlike nucleus, jδai is known ana-
lytically [56]. Since the Uehling potential does not depend
on the mass of the bound particle, but only on the mass of
the particle in the loop, the Uehling term can also be
computed as

ΔgUeh ¼ −
4

3mμ
haj ∂VUeh

∂r jai; ð6Þ

according to the method described in [31,57]. In the
pointlike nuclear model, the results were also compared
to the exact analytical formula [38]. Values with electrons
(muons) as loop particles are given as “eVP (μVP),
Uehling” in Table I. We note that Zα expansion results
derived for electronic atoms cannot be straightforwardly
applied to the case of muonic atoms, since they assume the
loop particle to be identical to the bound particle.
Furthermore, electronic VP effects would be largely over-
estimated by Zα expansion formulas, thus they need to be
calculated to all orders in this parameter even at low Z.
The higher-order term of the electric loop VP diagram,

the Wichmann-Kroll contribution, was calculated with
the method of Ref. [58] and was found to be negligible.
Hadronic Uehling VP corrections were estimated from
themuonicUehling term, followingRef. [59], asΔghad;VP ¼
0.671ð15ÞΔgμVP.
Second-order Uehling corrections, shown in Fig. 2(a),

were evaluated by including the Uehling potential in the
radial Dirac equation, and calculating the corresponding
bound-muon wave function numerically in a B-spline
representation [60], as described in Ref. [61]. Finally,
the Källén-Sabry two-loop VP correction [62], illustrated
in Fig. 2(b), was evaluated employing B-splines, with the
effective potential given in Refs. [63,64].
The lowest-order term in the expansion of the magnetic

loop VP diagram [Fig. 1(b)] corresponds to the diagram
with the Coulomb-Dirac propagator replaced by the free
Dirac propagator, and it does not contribute to the g factor.
Higher-order contributions to this diagram, such as the
virtual light-by-light (LBL) scattering term, are finite. We
evaluate the LBL scattering term as it was performed in
Refs. [65,66], with the difference that we include the finite
nuclear size effect in the muon wave function. Also, we

FIG. 1. Furry-picture Feynman diagrams depicting the one-loop
QED corrections to the bound-muon g factor: (a) the electric and
(b) magnetic loop vacuum polarization corrections, and (c) the self-
energy wave function and (d) self-energy vertex correction terms.
A double external line represents a muonic Coulomb-Dirac wave
function, and the wave line terminated by a triangle stands for the
interaction with the external magnetic field. An internal wave line
represents a photon propagator, and an internal double line depicts
a Coulomb-Dirac muon propagator; in vacuum polarization loops,
it may also represent an electron-positron propagator.

FIG. 2. Feynman diagrams of two-loop VP corrections to the
bound-muon g factor: (a) second-order electric-loop VP (Uehling
and Wichmann-Kroll) terms, and (b) the Källén-Sabry diagrams.
A single internal line represents a free Dirac propagator, and the
wave line terminated by a cross stands for the interaction with the
nuclear potential.
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calculate the mixed magnetic and electron loop effect by
repeating the above calculation with the inclusion of the
effect of the Uehling potential in the bound-muon wave
function. The corresponding two-loop contribution (given
in Table I as “magnetic loopþ Uehling”) is below the
uncertainty at which we aim. We note that further two-loop
corrections evaluated very recently for electronic ions,
such as two-loop LBL scattering terms [16,67] may also
contribute significantly. Their calculation can be extended
to the case of muons in a straightforward manner employ-
ing the methods of Ref. [67] or [68]. While the uncertainty
due to these terms cannot be reliably given, in the table we
estimate this uncertainty from the one-loop magnetic loop

correction ΔgML as 10ΔgML
Δg2−loop½ðZαÞ0�
Δg1−loop½ðZαÞ0�.

In the calculation of the SE wave function correction
[Fig. 1(c)], the muon propagator between the magnetic
interaction and the SE loop can be expressed as a spectral
sum over all eigenfunctions jni of the Coulomb-Dirac
Hamiltonian as

X
n

jnihnj
Ea − En þ sgnðEnÞi0

; ð7Þ

with the En being the eigenenergies of the jni and Ea being
the eigenenergy of the reference state jai. The diagram
needs to be split into the irreducible (En ≠ Ea) and the
reducible (En ¼ Ea) part. The g-factor correction of the
irreducible part can be expressed using the SE operator Σ as

ΔgSE;wf;irred ¼ −
8mμ

3
hδajγ0ΣðEaÞjai: ð8Þ

Here, γ0 is the time-like Dirac matrix. The irreducible part
can be separated into the zero-potential contribution (free
internal muon line), the one-potential contribution (free
internal muon line with one interaction with the nuclear
potential) and the many-potential contribution (two and
more interactions with the nuclear potential). The zero-
potential contribution can be written as

Δg½0�SE;wf;irred ¼ −
8mμ

3
hδajγ0Σ2jai: ð9Þ

Here, Σ2ðpÞ is the SE function of the free muon and using
dimensional regularization in d ¼ 4 − ϵ dimensions, it can
be expressed as [69]

Σ2ðpÞ ¼ δm −
α

4π
Δϵð=p −mμÞ þ ΣRðpÞ; ð10Þ

with δm ¼ 3αmμ

4π ðΔϵ þ 4
3
Þ and Δϵ ¼ 2

ϵ − γE − lnm2
μ þ ln 4π.

The cancellation of UV divergences in the one-loop SE
correction to the g-factor has been analyzed in detail in the
literature (e.g., [17,69]). For numerical calculations, it is
sufficient to take into account the finite remainders of

the one-loop functions defined here and in the following,
since all UV divergent quantities mutually cancel. The
renormalized zero-potential contribution is defined as

Δg½0�SE;wf;irred;ren ¼ −
8mμ

3
hδajγ0ΣRjai; ð11Þ

while the one-potential contribution is

Δg½1�SE;wf;irred ¼ −
8mμ

3
hδajγ0Γ0

2Vjai; ð12Þ

with V being the interaction potential of the nucleus.
Γν
2ðp0; pÞ (ν ∈ f0; 1; 2; 3g) is the vertex function for free

fermions and can be separated into a divergent and a regular
part as [69]

Γν
2ðp0; pÞ ¼ α

4π
Δϵγ

ν þ Γν
Rðp0; pÞ: ð13Þ

For details of the renormalization procedure and for
expressions of ΣRðpÞ and Γν

Rðp0; pÞ see Ref. [69]. The
regularized one-potential term is then defined as

g½1�SE;wf;irred;ren ¼ −
8mμ

3
hδajγ0Γ0

RVjai: ð14Þ

The many-potential contribution was evaluated using
methods described in Refs. [69,70]. It is straightforward
to generalize the calculation of the Lamb-shift diagram to
the many-potential contribution of the g-factor SE diagram.
The integration over the virtual photon frequency required
in the many-potential contribution was split into a low-
energy and a high-energy part. The partial-wave expansion
of the low-energy part converges rapidly and does not
require any extrapolation. The high-energy term converges
slower. The series was computed up to Dirac angular
momentum quantum numbers jκj ≈ 40, and the remainder
of the series was estimated using the Richardson extrapo-
lation method [71].
The g-factor contribution of the reducible SE diagram

is calculated as the energy derivative of the Lamb-shift
matrix element:

gred ¼ gD
∂
∂E hajγ0ΣðEÞjaij

E¼Ea

: ð15Þ

It can be again split into the zero- and many-potential
contributions. While the zero-potential contribution is UV
divergent, the one-potential part is finite and can therefore
be included in the many-potential term.
The SE vertex correction [Fig. 1(d)] can be expressed as

ΔEver ¼ −ehajγ0Γ ·Ajai, with Γ being the 3-vector com-
ponent of the vertex function. This expression can also be
split into the zero- and many-potential contributions.
The renormalized zero-potential contribution can be calcu-
lated in momentum space, using the magnetic vector
potential Aðp0 − pÞ ¼ − i

2
ð2πÞ3B ×∇pδðp0 − pÞ, and can

be expressed as [13]
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Δg½0�ver ¼ −2im
Z

d3p
ð2πÞ3

Z
d3p0āðpÞ

× ð∇p0δðp − p0Þ × ΓRðp; p0ÞÞzaðp0Þ: ð16Þ

This can be further evaluated using integration by parts. For
further details see Ref. [13]. We note that our numerical
results for the SE terms, given at “One-loop SE” in Table I,
agree well with Zα expansion formulas [14,41,43].
The two-loop contribution to the free-muon g-factor

[i.e., those of order ðZαÞ0] can be found in Ref. [28].
Binding corrections to the two-loop self-energy diagrams
were determined up to order ðZαÞ5 using formulas from
Refs. [14,16,41–43]. Finally, there is a two-loop diagram
with a VP loop inserted in the virtual photon line of the
one-loop vertex diagram (S(eVP)E in Table I); its ðZαÞ0
contribution is included in the free g-factor, and binding
corrections of order ðZαÞ2 were computed according to
Refs. [41,42].
QED corrections with three or more loops, and weak and

hadronic effects can be treated in the free-muon approxi-
mation, i.e., at order ðZαÞ0 (see Table I for references).
Their leading binding corrections are ðZαÞ2=6 times
smaller [41,42] and thus can be neglected here.
The calculations so far have been performed in the Furry

picture [72], i.e., using a static external field to describe the
nucleus. The nuclear recoil contribution is the correction
to the g factor due to the finiteness of the nuclear mass.
Formulas derived for bound electrons [47–49] are appli-
cable also to the case of muonic ions.

III. CONCLUSIONS

As Table I shows, the QED binding and recoil effects
treated in this work can be calculated with a 10−9 fractional
accuracy for 4Heþ. We anticipate that this uncertainty can
be also reached for the so far unknown two-loop LBL
scattering terms with existing methods [67,68]. This will
allow for the improvement of the muon mass, or a
determination of the free muon magnetic anomaly by
subtracting theoretical binding effects from the measured
bound-muon g factor. Such experiments are challenging
due to the short lifetime of the muon and several exper-
imental problems with the production and trapping of
muonic ions need to be solved. Nevertheless, in light of
recent advances in the creation and precision spectroscopy
of light muonic atoms [5,6,73] and Penning-trap techniques
such as phase-sensitive cyclotron frequency measurements
[11,74], this method may serve in the future as an
independent muon mass or magnetic anomaly measure-
ment technique, and along with corresponding experimen-
tal developments, will improve the mass uncertainty by
more than an order of magnitude.
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