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We study the quantum mechanics of three-index Majorana fermions ψabc governed by a quartic
Hamiltonian with OðNÞ3 symmetry. Similarly to the Sachdev-Ye-Kitaev model, this tensor model has a
solvable large-N limit dominated by the melonic diagrams. For N ¼ 4 the total number of states is 232, but
they naturally break up into distinct sectors according to the charges under the Uð1Þ × Uð1ÞCartan subgroup
of one of the O(4) groups. The biggest sector has vanishing charges and contains over 165 million states.
Using a Lanczos algorithm, we determine the spectrum of the low-lying states in this and other sectors. We
find that the absolute ground state is nondegenerate. If the SOð4Þ3 symmetry is gauged, it is known from
earlier work that the model has 36 states and a residual discrete symmetry. We study the discrete symmetry
group in detail; it gives rise to degeneracies of some of the gauge singlet energies. We find all the gauge
singlet energies numerically and use the results to propose exact analytic expressions for them.
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Introduction.—In recent literature there has been con-
siderable interest in the quantum mechanical models where
the degrees of freedom are fermionic tensors of rank 3 or
higher [1,2]. Similarly to the Sachdev-Ye-Kitaev (SYK)
model [3–5], these models have solvable large-N limit
dominated by the so-called melonic diagrams [6–8]. In this
limit they become solvable with the use of Schwinger-
Dyson equations as were derived earlier for the SYK-like
models [2,4,5,9–12]. While this spectrum of eigenstates is
discrete and bounded for finite N, the low-lying states
become dense for a large N leading to the (nearly)
conformal behavior where it makes sense to calculate
the operator scaling dimensions. In the SYK model, the
number of states is 2NSYK=2, and numerical calculations of
spectra have been carried out for rather large values of
NSYK [13–15]. They reveal a smooth distribution of energy
eigenvalues, which typically has no degeneracies and is
almost symmetric under E → −E.
The corresponding studies of spectra in the tensor

models of [1] and [2] have been carried out in [16–23],
but in these cases the numerical limitations have been
more severe—the number of states grows as 2N

3=2 in the
OðNÞ3 symmetric model of [2] and as 22N

3

in the OðNÞ6
symmetric Gurau-Witten (GW) model [1]. The results have
shown an interesting structure. For example, for the
N ¼ 2 GW model the exact values of the 140 SOð2Þ6

invariant energies were found [22]. Due to the discrete
symmetries, there are only five distinct E < 0 eigenvalues
and each one squares to an integer (the singlet spectrum
also contains 50 zero-energy states).
The OðNÞ3 model [2], has the Hamiltonian

H ¼ ψabcψab0c0ψa0bc0ψa0b0c −
1

4
N4; ð1:1Þ

fψabc;ψa0b0c0 g¼δaa
0
δbb

0
δcc

0
; a;b;c¼0;1;…;N−1: ð1:2Þ

where, compared to [2,23], we have set the overall
dimensionful normalization constant g to 4 in order to
simplify the equations. For N ¼ 2 there are only two gauge
singlet states with E ¼ �8. For N ¼ 3, as for any odd N,
there are none [23]. While the complete spectra of Eq. (1.1)
can be calculated for N ¼ 2 and 3 using a laptop, this is no
longer true for N ¼ 4, where the total number of states is
232. However, they split into smaller sectors according to
the charges ðQ0; Q1Þ of the Uð1Þ × Uð1Þ Cartan subgroup
of one of the SO(4) groups. The most complicated and
interesting is
the (0,0) sector; it is the part of the 32 qubit spectrum at
the “half-half filling”, i.e., where the first 16 qubits contain
eight 0s and eight 1s, and the same applies to the remaining
16 qubits. In particular, all the SOð4Þ3 invariant states are in
this subsector; their number, 36, was found using the
gauged version of the free fermion theory [23]. Since there
are over 165 million states at half-half filling, the spectrum
cannot be determined completely. However, using a
Lanczos algorithm, we will be able to determine a number
of low-lying eigenstates. We will also be able to find the
complete spectrum of the 36 gauge singlet states, including
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their transformation properties under the residual discrete
symmetries of the model where the SOð4Þ3 symmetry is
gauged. Thus, our work reveals the spectrum of a finite-N
system without disorder, which is nearly conformal and
solvable in the large-N limit, and identifies the discrete
symmetries crucial for efficient numerical studies of such
finite systems.
Using our numerical results we are able to infer the exact

expressions for all the singlet eigenvalues. In particular, the
ground state energy,which is numericallyE0 ≈ −160.140170,

agrees well with E0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð447þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

125601
p Þ

q
(for some

results on the ground states in the SYKand relatedmodels, see
Refs. [13,14,24]). Other gauge singlet energies either have
similar expressions or are simply square roots of integers. This
suggests that the Hamiltonian can be diagonalized exactly
analytically.
Discrete symmetries acting on the gauge singlets.—For

any even N, if we gauge the SOðNÞ3 symmetry, there
remain some gauge singlet states [23], which are annihi-
lated by the symmetry charges

Qaa0
1 ¼ i

2
½ψabc;ψa0bc�; Qbb0

2 ¼ i
2
½ψabc;ψab0c�;

Qcc0
3 ¼ i

2
½ψabc;ψabc0 �: ð2:1Þ

These states may still have degeneracies due to the residual
discrete symmetries. Indeed, each OðNÞ group contains a
Z2 parity symmetry, which is an axis reflection. For
example, inside OðNÞ1 there is parity symmetry P1, which
sends ψ0bc → −ψ0bc for all b, c and leaves all other
components invariant. The corresponding generator is

P1 ¼ P†
1 ¼ 2N

2=2
Y

bc

ψ0bc: ð2:2Þ

One can indeed check that

P1ψ
abcP†

1 ¼ ð−1Þδa;0þN2

ψabc: ð2:3Þ

Similarly, there are Z2 generators P2 and P3 inside OðNÞ2
and OðNÞ3.
It is also useful to introduce unitary operators Pij

associated with permutations of the OðNÞi and OðNÞj
groups:

P23 ¼ P†
23 ¼ inðn−1Þ=2

Y

a

Y

b>c

ðψabc − ψacbÞ;

P12 ¼ P†
12 ¼ inðn−1Þ=2

Y

c

Y

a>b

ðψabc − ψbacÞ; ð2:4Þ

where n ¼ N2ðN − 1Þ=2 is the number of fields in the
product. They satisfy

P23ψ
abcP†

23 ¼ ð−1ÞN2ðN−1Þ=2ψacb;

P12ψ
abcP†

12 ¼ ð−1ÞN2ðN−1Þ=2ψbac: ð2:5Þ

These permutations flip the sign of H [23,25]:

P23HP†
23 ¼ −H; P12HP†

12 ¼ −H: ð2:6Þ

This explains why the spectrum is symmetric under
E → −E.
We now define the cyclic permutation operator P ¼

P12P23 such that

PψabcP†¼ψcab; PHP† ¼H; P3 ¼ I: ð2:7Þ

Thus, P is the generator of the Z3 symmetry of the
Hamiltonian. Applying the Z3 symmetry to the parity
reflections Pi, we see that

PP1P†¼P2; PP2P† ¼P3; PP3P†¼P1: ð2:8Þ

Forming all the possible products of I; P; P1; P2; P3,
we find that the full discrete symmetry group contains
24 elements. Using the explicit representation [Eq. (2.2)]
for P1, and the analogous ones for P2 and P3, we note that
the three parity operators commute with each other.
Furthermore,

½Π; P� ¼ 0; Π ¼ P1P2P3; Π2 ¼ I: ð2:9Þ

Therefore, Π commutes with all the group elements, so that
the group has a Z2 factor with elements I and Π. The
symmetry group turns out to be A4 × Z2, and the 12
elements of the alternating group A4 are

I; P1; P2; P1P2; P; P2; P1P;P2P;

P1P2P; P1P2; P2P2; P1P2P2: ð2:10Þ

Each of them can be associated with a sign preserving
permutation of four ordered elements, and the action is

P1ða0; a1; a2; a3Þ ¼ ða1; a0; a3; a2Þ;
P2ða0; a1; a2; a3Þ ¼ ða2; a3; a0; a1Þ;
P3ða0; a1; a2; a3Þ ¼ ða3; a2; a1; a0Þ;
Pða0; a1; a2; a3Þ ¼ ða0; a3; a1; a2Þ: ð2:11Þ

The degenerate SOðNÞ3 invariant states of a given
nonzero energy form irreducible representations of
A4 × Z2. For even N we can choose a basis where all
the wave functions and matrix elements of the Hamiltonian
are real. In this case we should study the representation of
the symmetry group over the field R. The degrees of the
irreducible representations of A4 over that field are 1,2,3.
The Z2 factor does not change the degrees since both
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irreducible representations of Z2, the trivial one and the
sign one, have a degree of 1.
Let us discuss the representations of A4 in more detail.

Using a reference eigenstate jψ0i not invariant under the Z3

subgroup I; P; P2, we can form a triplet of states

jψ0i; Pjψ0i; P2jψ0i: ð2:12Þ
If the parities ðP1; P2; P3Þ of the state jψ0i are the same,
then we can form a linear combination that transforms
trivially under the Z3,

jψi ¼ 1ffiffiffi
3

p ð1þ Pþ P2Þjψ0i; Pjψi ¼ jψi; ð2:13Þ

while the remaining two linear combinations form the
degree 2 representation of Z3,

Pjψ1i ¼ jψ2i; Pjψ2i ¼ −jψ1i − jψ2i; ð2:14Þ

where jψ1i ¼ ð1= ffiffiffi
3

p Þjψ0i − jψi. Because of this, some
eigenstates have degeneracy of 2.
If the parities ðP1; P2; P3Þ of the state jψ0i are

not equal, then the triplet representation [Eq. (2.12)] of
the full discrete group is irreducible. For example for
ðP1; P2; P3Þ ¼ ðþ;þ;−Þ, i.e.,

P1jψ0i¼ jψ0i; P2jψ0i¼ jψ0i; P3jψ0i¼−jψ0i; ð2:15Þ

we find that the parities of the states Pjψ0i and P2jψ0i
are given by the cyclic permutations of ðþ;þ;−Þ. Indeed,
using Eq. (2.8), we find that the parities of the state
Pjψ0i are
P1Pjψ0i ¼ −Pjψ0i; P2Pjψ0i ¼ Pjψ0i;
P3Pjψ0i ¼ Pjψ0i: ð2:16Þ
Thus,eachofthestatesinthetriplet[Eq.(2.12)]hasadistinctsetof
parities.Then it is impossible to form linear combinations,which
are eigenstates of the parities, and we have an irreducible
representation of A4 of degree 3. In this situation we find that
an energy eigenvalue has degeneracy of 3.
We also note the relations

P23P1P
†
23 ¼ ð−1ÞNðN2−1Þ=2P1;

P12P1P
†
12 ¼ ð−1ÞNðN2−1Þ=2P2;

P13P1P
†
12 ¼ ð−1ÞNðN2−1Þ=2P3 ð2:17Þ

and their cyclic permutations. Since an operator Pij maps
an eigenstate of energy E into an eigenstate of energy-E, we
see that such mirror states have the same parities when N=2
is even, but opposite parities when N=2 is odd.
For the states at zero energy, the discrete symmetry

group is enhanced to 48 elements because the permutation
generators Pij map them into themselves. Using the
relations [Eq. (2.17)] we find

P12ΠP
†
12 ¼ ð−1ÞNðN2−1Þ=2Π; ð2:18Þ

which implies that Π ¼ P1P2P3 commutes or anticommutes
with other elements depending on the value ofN. Focusing on
the case where NðN2 − 1Þ=2 is even and the sign above is
positive (this includes N ¼ 4, which is our main interest in
this Letter), we find that Π commutes with all other
generators, so that the group has a Z2 factor with elements
I and Π. The symmetry group for E ¼ 0 turns out to be
S4 × Z2, which is the full cube group. Its subgroup S4 is
formed out of the products of I; P1; P2; P12; P23; P13. The
parity generators are realized in the sameway as in Eq. (2.11),
while the permutations act by the natural embedding S3 ⊂ S4:

P12ða0; a1; a2; a3Þ ¼ ða0; a2; a1; a3Þ;
P23ða0; a1; a2; a3Þ ¼ ða0; a1; a3; a2Þ;
P13ða0; a1; a2; a3Þ ¼ ða0; a3; a2; a1Þ: ð2:19Þ

The degrees of the irreducible representations of S4
are 1,1,2,3,3.
Diagonalization of the Hamiltonian.—The Majorana

fermions ψabc may be thought of as generators of the
Clifford algebra in N3-dimensional Euclidean space [26].
Restricting to the cases where N is even, the dimension of
the Hilbert space is 2N

3=2, and the states may be represented
by series of N3=2 “qubits” jsi, where s ¼ 0 or 1. It is
convenient to introduce operators [20,23]

c̄abk ¼
1ffiffiffi
2

p ½ψabð2kÞ þ iψabð2kþ1Þ�;

cabk ¼
1ffiffiffi
2

p ½ψabð2kÞ − iψabð2kþ1Þ�;

fcabk; ca0b0k0 g ¼ fc̄abk; c̄a0b0k0 g ¼ 0;

fc̄abk; ca0b0k0 g ¼ δaa0δbb0δkk0 ; ð3:1Þ

where a; b ¼ 0; 1;…; N − 1, and k ¼ 0;…; 1
2
N − 1. In this

basis, the OðNÞ2 × UðN=2Þ symmetry is manifest, and the
Hamiltonian is [20,23]

H ¼ 2ðc̄abkc̄ab0k0ca0bk0ca0b0k − c̄abkc̄a0bk0cab0k0ca0b0kÞ: ð3:2Þ

If we number the qubits from 0 to 1
2
N3 − 1, then operators

cabk; c̄abk correspond to qubit number N2kþ Nbþ a.
In the basis [Eq. (3.1)], the parity operators Pi corre-

sponding to ith group OðNÞ are

P1 ¼
YN−1

b¼0

YN=2−1

k¼0

½c̄0bk; c0bk�; P2 ¼
YN−1

a¼0

YN=2−1

k¼0

½c̄a0k; ca0k�;

P3 ¼
YN−1

a¼0

YN−1

b¼0

ðc̄ab0 þ cab0Þ: ð3:3Þ

PHYSICAL REVIEW LETTERS 122, 011601 (2019)

011601-3



The operator P3 implements charge conjugation on the
k ¼ 0 operators; i.e., it acts to interchange c̄ab0 and cab0.
This conjugation is a symmetry ofH. In fact, for each k the
Hamiltonian is symmetric under the interchange of c̄abk
and cabk.
The Uð1ÞN=2 subgroup of the UðN=2Þ symmetry is

realized simply. The corresponding charges,

Qk ¼
X

a;b

1

2
½c̄abk; cabk�; k ¼ 0;…;

1

2
N − 1; ð3:4Þ

are the Dynkin labels of a state of the third SOðNÞ group,
and the spectrum separates into sectors according to their
values. The oscillator vacuum state satisfies

cabkjvaci ¼ 0; Qkjvaci ¼ −
N2

2
jvaci; ð3:5Þ

and other states are obtained by acting on it with some
number of c̄abk.
For N ¼ 4 the total number of states is

232 ¼ 4 294 967 296, but they break up into 172 ¼ 289
smaller sectors due to the conservation of the Uð1Þ × Uð1Þ
charges Q0 and Q1. The biggest sector is ðQ0; Q1Þ ¼
ð0; 0Þ; it consists of ½ð16!Þ2=ð8!Þ4� ¼ 165 636 900 states.
The next biggest are the four sectors ð�1; 0Þ and ð0;�1Þ;
each of them contains 147 232 800 states. The smallest four
sectors are ð�8;�8Þ, and each one consists of just one
state; each of these states has E ¼ 0. In general, the
spectrum in the ðq; q0Þ sector is the same as in ðq0; qÞ
due to the symmetry ofH under interchange of the cab0 and
cab1 oscillators.
Let us first study the (0,0) sector. These states are

obtained by acting on jvaci with eight raising operators
c̄ab0 and eight raising operators c̄ab1. In the qubit notation,
both the first 16 qubits, and the second 16 qubits, have
equal number, eight, of 0s and 1s. Clearly, all the SOð4Þ3
invariant states are in this sector (there are additional
constraints on the gauge singlet wave functions, but we
will not discuss them explicitly here). While the numbers of
such “half-half-filled" states is still very large, they turn out
to be tractable numerically because the matrix we need to
diagonalize is rather sparse. This has allowed us to study
the low-lying eigenvalues of H, which occur in various
representations of SOð4Þ3. To find the gauge singlet
energies, we study the operator proportional to
H þ 100

P
3
i¼1 C

i
2, where the quadratic Casimir of the

SOðNÞ1 symmetry is C1
2 ¼ 1

2
Qaa0

1 Qaa0
1 , and analogously

for SOðNÞ2 and SOðNÞ3. The Lanczos algorithm allows us
to identify the lowest eigenvalues of this operator, which all
correspond to SOð4Þ3 invariant states; the nonsinglets
receive large additive contributions due to the second term.
In Table I, we list the energies and parities of all 36

SOð4Þ3 invariant states. In order to identify the values of Pi,
we calculated the low-lying spectrum of operator

H þ 100
X3

i¼1

Ci
2 þ

X3

i¼1

aiPi; ð3:6Þ

where ai are unequal small coefficients. (The states at
�39.191836 are doubly degenerate and have identical
parities; these states form the degree 2 representation of
the Z3 subgroup of A4. To split such double degeneracies
we added a small amount of noise to the Hamiltonian.)
The biggest degeneracy is found for the E ¼ 0 states; it
corresponds to the 23 independent choices of the three
parities. Since the discrete group acting on the E ¼ 0 states
is S4 × Z2, which is the full cube group, we find two
different irreducible representations of S4: the trivial one of
degree 1 and the standard one of degree 3. We may
associate the eight E ¼ 0 states with the vertices of a
cube. The energies of the gauge singlet states and their
degeneracies are plotted in Fig. 1.

TABLE I. The list of all the SOð4Þ3 invariant states, including
their parities Pi.

E P1 P2 P3 E P1 P2 P3

−160.140 170 1 1 1 160.140 170 1 1 1
−97.019 491 1 1 −1 97.019 491 1 1 −1
−97.019 491 −1 1 1 97.019 491 −1 1 1
−97.019 491 1 −1 1 97.019 491 1 −1 1
−88.724 292 −1 −1 −1 88.724 292 −1 −1 −1
−54.434 603 1 1 1 54.434 603 1 1 1
−50.549 167 1 1 −1 50.549 167 1 1 −1
−50.549 167 −1 1 1 50.549 167 −1 1 1
−50.549 167 1 −1 1 50.549 167 1 −1 1
−39.191 836 1 1 1 39.191 836 1 1 1
−39.191 836 1 1 1 39.191 836 1 1 1
−38.366 652 1 −1 −1 38.366 652 1 −1 −1
−38.366 652 −1 1 −1 38.366 652 −1 1 −1
−38.366 652 −1 −1 1 38.366 652 −1 −1 1

0.000 000 1 1 1 0.000 000 −1 −1 −1
0.000 000 −1 1 1 0.000 000 1 −1 −1
0.000 000 1 −1 1 0.000 000 −1 1 −1
0.000 000 1 1 −1 0.000 000 −1 −1 1

–150 –100 –50 0 50 100 150
0

2

4

6

8

E

de
ge

ne
ra

cy

FIG. 1. Spectrum of gauge singlets in the Oð4Þ3 model.
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Some of the energies agree within the available precision
with square roots of integers: 8

ffiffiffiffiffi
23

p
≈ 38.366 652,

8
ffiffiffiffiffi
24

p
≈ 39.191 836, and 8

ffiffiffiffiffiffiffiffi
123

p
≈ 88.724 292. Further-

more, the four eigenvalues with parities (1,1,1),
�160.140 170 and �54.434 603, are approximations to

the analytic expressions �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð447� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

125 601
p Þ

q
, while

the triplet eigenvalues, �97.019 491 and �50.549 167, are

approximations to �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð187� ffiffiffiffiffiffiffiffiffiffiffiffiffi

11 481
p Þ

q
. To demystify

these exact results, we note that there are only two SOð4Þ3
invariant states with P1 ¼ P2 ¼ P3 ¼ −1 (see Table I).
Since the Hamiltonian has symmetry under E → −E, the
eigenvalue equation in this subsector must have the form of
the second order even polynomial: E2 − A1 ¼ 0. This
explains why some of the eigenvalues are simply square
roots. On the other hand, there are four SOð4Þ3 invariant
states with P1 ¼ P2 ¼ P3 ¼ 1. Thus, the eigenvalue equa-
tion in this subsector must have the form

E4 þ 2A2E2 þ A3 ¼ 0; ð3:7Þ
and this explains why some of the energies satisfy
E2 ¼ −A2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
2 − A3

p
. Similar symmetry considerations

explain the form of all the gauge singlet energies in terms of
the square roots. We leave exact derivation of the param-
eters Ai for future work.
The list of all the low-lying energy levels in the (0,0)

sector, singlets and nonsinglets, and the corresponding
values of quadratic Casimir invariants Ci

2, is shown in
Table II. In order to identify the values of Ci

2, we have
calculated the low-lying spectrum of H þP

3
i¼1 aiC

i
2

where ai are unequal small coefficients. When the Ci
2

are not all equal, there are also states of the same energy

with their values obtained by a cyclic permutation. For
example, at E ¼ −136.559 039 we find states with
ðC1

2; C
2
2; C

3
2Þ ¼ ð0; 4; 8Þ; ð4; 8; 0Þ; ð8; 0; 4Þ.

Absent from the list in Table II is the lowest possible value
of the quadratic Casimir, C2 ¼ 3, which corresponds to the
ð1=2; 0Þ þ ð0; 1=2Þ i.e., fundamental representation 4 of SO
(4). Let us proceed to the sectors adjacent to one-particle and
one-hole sectors, ð�1; 0Þ and ð0;�1Þ, which contain some
of the additional representations, including the (4,4,4) of
SOð4Þ3. The refined bound [23] for this representation gives
jEð4;4;4Þj < 72

ffiffiffi
5

p
≈ 160.997, while the actual lowest state in

this representation has E ≈ −140.743885. The low-lying
states in the sectors ð�1; 0Þ and ð0;�1Þ are given in
Table III. We have also calculated the energies in other
charge sectors. We find that the absolute ground state lies in
the (0,0) sector: as the magnitudes of charges increase, the
energies tend to get closer to 0.
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TABLE II. The low-lying energies in the (0,0) sector, i.e., at
half-half filling, including the values of the quadratic Casimir
invariants of each SOðNÞ group. When the Ci

2 are not all equal,
there are additional states of the same energy with their values
obtained by a cyclic permutation.

C1
2 C2

2 C3
2

E

0 0 0 −160.140 170
0 4 8 −136.559 039
0 0 12 −136.417 554
0 0 24 −128.490 197
4 4 4 −122.553 686
0 0 12 −121.606 040
4 8 8 −121.552 284
4 8 8 −120.699 077
4 8 8 −119.685 636
0 8 12 −119.659 802
0 12 8 −119.204 505
0 8 4 −118.699 780
0 4 16 −118.541 049
4 4 4 −116.774 758

TABLE III. The low-lying states in the sectors ð�1; 0Þ and
ð0;�1Þ, i.e., with one extra hole (h) or particle (p) added to half-
half filling The energies are the same within the accuracy shown,
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