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We discuss the double-spin asymmetries ATT (QT ) in transversely polarized Drell-Yan
process at small transverse momentum QT of the produced dilepton. Soft gluon radia-
tions relevant for small QT are resummed to all orders in αs, up to the next-to-leading
logarithmic accuracy. We show that the soft gluon contributions to polarized and un-
polarized cross sections mostly cancel in the asymmetries, but significant corrections
still remain. We propose a novel asymptotic formula for ATT (QT ) at small QT , which
provides a new approach to extract the transversity δq(x) from the experimental data.

Transversly polarized Drell-Yan (tDY) process, p↑p↑ → l+l−X , is one of the processes
where we can measure the chiral-odd transversity distributions, δq(x). The NLO cross
sections of tDY, with the transverse momentum QT of the final dilepton unobserved (inte-
grated), has been studied at RHIC kinematics in [2], and it turned out that the corresponding
double transverse-spin asymmetries ATT are small because, at RHIC, the sea-quark distribu-
tions are probed at small partonic momentum fraction x. Here, we consider the double-spin
asymmetries ATT (QT ) for the QT -observed case, especially at small QT , where the bulk of
dileptons is produced. For QT smaller than the invariant mass Q of the dilepton, soft gluon
emissions contributing as αns logm(Q2/Q2

T )/Q2
T (m ≤ 2n− 1) bring dominant corrections in

each order in αs. We perform all-order resummation of them at the next-to-leading loga-
rithmic (NLL) accuracy, i.e., of the LL (m = 2n− 1) and NLL (m = 2n− 2, 2n− 3) terms.
The parton distributions at the low scale QT can participate in ATT (QT ), while ATT in [2]
is determined solely by the distributions at the scale Q; ATT (QT ) may be larger than ATT .

The spin-dependent part of the QT -differential cross section can be expressed as [3, 4]
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where
√
S and y denote the energy of the the incoming protons and rapidity of dilepton in the

proton-proton CM system, and φ is the azimuthal angle of one of the outgoing leptons with
respect to the proton’s spin axis. The first term ∆T X̃

NLL denotes the NLL resummed cross
section which is given by the integral over the impact parameter b, according to the general
formalism of Collins-Soper-Sterman [5] combined with varous kinds of elaboration [3, 4, 6]:
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where x0
1,2 =

√
Q2/Se±y is the Drell-Yan scaling variables, J0(bQT ) is a Bessel function,

b0 = 2e−γE with the Euler’s constant γE , and

δH(x1, x2;µ2) =
∑

q e
2
q

[
δq(x1, µ

2)δq̄(x2, µ
2) + δq̄(x1, µ

2)δq(x2, µ
2)
]
. (3)

Using λ = β0αs(Q
2) log(Q2b2/b20+1) ≡ β0αs(Q

2)L̃ with β0 = (11Nc−2Nf )/(12π), the large

logarithmic corrections are resummed into the Sudakov factor eS(b,Q) = eh
(0)(λ)/αs(Q

2)+h(1)(λ),

where h(0)(λ) = (A
(1)
q /2πβ2

0)[λ+ log(1−λ)] with A
(1)
q = 2CF = (N2

c −1)/Nc collects the LL
contributions, and h(1)(λ) corresponds to the NLL contributions; the explicit form of h(1)(λ),

as well as another perturbatively calculable function ∆TC
(1)
qq (z), is found in [3, 4]. L̃ plays

a role of the large logarithmic expansion parameter in the b space, as b ∼ 1/QT . We have

introduced the Gaussian smearing factor e−gNP b
2

in (2), with a nonperturbative parameter
gNP [5], to take care of the long-distance behavior in the extremely large |b| region. For the
detail of elaboration of (2) beyond CSS, including the choice of the b-integration contour
C, see [3, 4]. The second term in (1), ∆T Ỹ , is of O(αs), and does not contain the singular
terms to be resummed, such as ∼ log(Q2/Q2

T )/Q2
T and 1/Q2

T ; ∆T Ỹ is determined [3] such
that the expansion of (1) to O(αs) reproduces the LO cross section for finite QT , which is
of O(αs). Accordingly, we refer to (1) as the “NLL+LO” cross section. The NLL+LO cross
section for unpolarized DY process is obtained similarly as (1), with X̃NLL and Ỹ as the
counterparts of ∆T X̃

NLL and ∆T Ỹ , so that the NLL+LO asymmetry reads [4]
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2
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Figure 1: The asymmetries at RHIC, using√
S = 200 GeV, Q = 5 GeV, y = 2 and φ = 0.

In the following Figs. 1 and 2, we show
the asymmetries ATT (QT ) for φ = 0, using
a model of the NLO transversity distribu-
tions constructed as in [2], and gNP = 0.5
GeV2 for the nonperturbative parameter of
(2). Figure 1 shows [4] the asymmetries at
RHIC kinematics,

√
S = 200 GeV, Q = 5

GeV, and y = 2. The solid line shows
the NLL+LO result (4), the dot-dashed line
shows the NLL result ANLL

TT (QT ), obtained
by omitting ∆T Ỹ and Ỹ in (4), and the
two-dot-dashed line shows the LL result
ALL
TT (QT ), which is obtained by retaining

only the LL terms in ANLL
TT (QT ):

ALL
TT (QT ) =

cos(2φ)

2

δH(x0
1, x

0
2;Q2)

H(x0
1, x

0
2;Q2)

, (5)

where H is obtained from δH of (3) by replacing δq(x, µ2) with the density distributions
q(x, µ2), and (5) is independent of QT [4]. The dashed line shows the LO asymmetry as the
ratio of the LO cross sections. The NLL+LO result is flat and close to ANLL

TT (QT ) in the
small QT region around QT ' 1 GeV: in this region, the NLL+LO cross section (1) and the
corresponding unpolarized one are dominated by the resummed contributions ∆T X̃

NLL and
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Figure 2: The NLL+LO asymmetries (4) for φ = 0 at (a) RHIC kinematics with
√
S = 200

GeV and y = 2, and (b) J-PARC kinematics with
√
S = 10 GeV and y = 0.

X̃NLL, and form a well-developed peak [3, 4]; moreover, the Sudakov factor eS(b,Q) of (2) due
to soft gluon resummation is universal up to the NLL level, so the dominant contributions
cancel between ∆T X̃

NLL and X̃NLL in ANLL
TT (QT ). However, remarkably, some effects at the

NLL level survive the cancellation, and raise ANLL
TT (QT ) at small QT significantly compared

with ALL
TT (QT ) that coincides with the conventional asymmetry ATT [2] using QT -integrated

cross sections, up to the NLO (O(αs)) corrections. On the other hand, the LO result is much
smaller than the other asymmetries and decreases as QT increases, indicating that the soft
gluon resummation is crucial for the prediction of the asymmetries.

The NLL+LO asymmetries ATT (QT ) of (4) at RHIC kinematics,
√
S = 200 GeV, y = 2,

and various values of Q, are presented in Fig. 2 (a), which shows that ATT (QT ) increases
for increasing Q. This Q dependence is a result of the small-x behavior of the relevant
parton distributions, in particular, the steep rise of the unpolarized sea-distributions for
small x0

1,2 =
√
Q2/Se±y, which enhances the denominator of (4) for small Q. Figure 2

(b) is same as Fig. 2 (a), but for possible polarized pp experiment at J-PARC,
√
S = 10

GeV, y = 0, and Q = 2, 2.5, 3.5 GeV, where the distributions at moderate x are probed
and ATT (QT ) at the flat region are around 15%, irrespective of the value of Q. We find [4]
that all cases of Figs. 2 (a) and (b) in fact obey the similar mechanism as shown in Fig. 1,
resulting in the values of ATT (QT ) larger by 20-30% than the corresponding NLO ATT .

The NLL+LO asymmetry (4) in the flat region as in Figs. 1, 2 can be generically approx-
imated, to good accuracy, as ATT (QT ) ≈ ANLL

TT (QT = 0), which is completely expressed
by ∆T X̃

NLL and X̃NLL at QT = 0. The b-integration in those quantities can be evaluated
analytically by the saddle-point method: for (2) at QT = 0, we get [4]
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2
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)
,

(6)

where ζ(λ) = −λ/(β0αs(Q
2)) − h(0)(λ)/αs(Q

2) + (gNP b
2
0/Q

2)eλ/(β0αs(Q
2)), and bSP =

(b0/Q)eλSP/(2β0αs(Q
2)), with λSP satisfying ζ ′(λSP ) = 0, i.e.,
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√
S = 200 GeV, y = 2

√
S = 10 GeV, y = 0

Q 2GeV 5GeV 8GeV 15GeV 20GeV 2GeV 2.5GeV 3.5GeV
SP-I 4.3% 5.4% 6.6% 8.7% 9.8% 14.1% 14.5% 14.8%
SP-II 7.3% 8.7% 9.8% 11.8% 12.7% 14.7% 14.8% 14.2%

Table 1: ANLL
TT (QT = 0) for φ = 0 using the saddle-point formula (8).

Here (6) gives the saddle-point formula in the NLL accuracy, and corresponds to extension
of that in the LL level in the literature [5]: the solution of (7) formally determines the saddle

point at the LL level combined with the contribution due to the Gaussian factor e−gNP b
2

in (2), but we find [4] that the “shift” of the saddle point at the NLL level from λSP
yields only the NNLL corrections to (6); note that the NNLL contributions are of O(αs),
according to the counting of the relevant logarithms in the region QT ≈ 0 (see also [5]). The
saddle-point formula for X̃NLL(0, Q2, y) can be obtained similarly, and the result is given by
the above result (6) with the replacement δH(x0

1, x
0
2; b20/b

2
SP ) → H(x0

1, x
0
2; b20/b

2
SP ). The

common factor, in the parentheses of (6), involves “very large perturbative effects” due to
the universal Sudakov factor, but this factor cancels out for the asymmetry. We get [4]

ANLL
TT (QT = 0) =

cos(2φ)

2

δH
(
x0

1, x
0
2; b20/b

2
SP

)

H (x0
1, x

0
2; b20/b

2
SP )

, (8)

which is exact up to the NNLL (O(αs)) corrections for QT ≈ 0. This clarifies the mechanism
discussed in Fig. 1: the contributions surviving the cancellation in (8) are entirely absorbed
into the unconventional scale b0/bSP for the relevant distribution functions. Compared with
(5), participation of the new scale b0/bSP is the effect at the NLL level, and, remarkably,
b0/bSP using (7) depends weakly on Q, as b0/bSP ' 1 GeV for all cases in Figs. 1 and 2 [4].
This explains why ATT (QT ) at small QT is always larger than (5), or the NLO ATT in [2].
Also ANLL

TT (QT ) does not approach to ALL
TT (QT ) even in the Q→∞ limit.

In Table 1, both “SP-I” and “SP-II” showANLL
TT (QT = 0) using (8) with (7), but these two

cases differ by the contributions at the NNLL level, reflecting mismatch to classify the terms
between NLL and NLO (for the detail of SP-I, II, see [4]). SP-I reproduces ATT (QT = 0) in
the flat region in Fig. 2 to the 10% accuracy, i.e., to the canonical size of O(αs) corrections
associated with the NLL accuracy. However, SP-II overestimates for RHIC, demonstrating
that certain NNLL corrections would grow at the small-x region, the edge region of the phase
space, beyond the canonical size. To this accuracy, our simple formula (8) is applicable in
order to extract the NLO transversity distributions directly from the data.
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