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Abstract

Superstring theory is a unique known candidate for consistent unified theory including
gravitational interactions and has no theoretical inconsistency so far. It is known to be
defined in ten-dimensional spacetime (10D), and this predicts that there exist extra six
dimensions compactified on some compact space. It is also known that geometrical prop-
erties of compact six dimensions determine masses and couplings in the four-dimensional
effective field theory (4D EFT) after dimensional reductions.

We study magnetized 10D supersymmetric Yang–Mills theory appearing as the low-
energy effective field theory of type IIB superstring theory and assume that extra six
dimensions are compactificated on a product of multiple two dimensional tori, toroidal
orbifolds or their combination(s). Toroidal orbifold is the ‘mainifold’ with extra boundary
condition(s) in addition to toroidal periodic boundary conditions. Thanks to magnetic
fluxes in such compact spaces, chiral matters, their family replications and hierarchical
Yukawa couplings appear in the 4D EFT. Thus, it is quite important to be familiar
with geometrical properties of magnetized toroidal orbifolds, and also to reveal their
phenomenological aspects for the purpose of theoretical model buildings. Accordingly, we
pursuit the possibility of realizing promising phenomenological models, e.g., the standard
model (SM) of particle physics and the minimal supersymmetric standard model (MSSM),
which can lead to realizations of much more realistic observables.
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Chapter 1

Overture

The standard model (SM) of elementary particle physics has been completed by the
discovery of the Higgs boson [1, 2], and it is known that the SM is a quite successful
theory which can explain almost all of phenomena around the electroweak scale with
great accuracy.

The SM gauge group is SU(3)C × SU(2)L × U(1)Y , and their gauge theories can
describe the phenomena related to three types of forces, i.e., the strong force between
quarks in protons, the weak force in the beta decay and the electromagnetic force be-
tween electromagnetically charged matters. In spite of the brilliant success of the SM of
elementary particle physics, there are several phenomena which can not be explained in
the framework of the SM. For example,

• the dark matter: there is no candidate for the dark matter in the SM particles,

• the gauge hierarchy problem: the electroweak scale is not stable under large loop
corrections to the Higgs boson mass,

• the flavor puzzle: the origin of the flavor structures among the SM quarks and leptons
is still unrevealed,

and so forth. In order to solve the above problems, various phenomenological models have
been proposed and investigated constantly in a long history since the SM was proposed.
Also, there still exist several theoretical difficulties in the SM. In particular, it is difficult
to understand the origin(s) of the SM structures, e.g., the SM gauge group, the family
replications of quarks and leptons and the concrete values of the Yukawa coupling con-
stants. Indeed, the SM can describe almost all of phenomena among the three-generations
of quarks and leptons with great accuracy, however, the reason that there exist such “repli-
cas” of the SM quarks and leptons carrying the same charges under the SM gauge group
is still unknown within the framework of the SM. The mysterious replicas of quarks and
charged leptons have large hierarchical masses and non-trivial mixing angles between
their generations according to more recent experimental data [3]. In fact, almost all input
parameters in the SM of elementary particles are known to be coupling constants in the

1



Chapter 1. Overture 2

Yukawa-type interaction terms among quarks, leptons and the Higgs boson. Such Yukawa
coupling constants are directly incorporated into the mass matrices among the SM quarks
and leptons after the Higgs boson acquires its (non-zero) vacuum expectation value (VEV)
at the bottom of a wine-bottle-type Higgs potential, and the Yukawa coupling constants
should lead to the observed masses and mixing angles of quarks and leptons in the SM.
However, concrete structures in the mass matrices, i.e., the values of the Yukawa coupling
constants are still experimentally unrevealed and ambiguous so far. This is called “the
flavor puzzle” or “the flavor problem”. Indeed, there are many approaches to explain the
concrete structures in the mass matrices of the SM fermions in bottom-up approaches of
four dimensional (4D) spacetime.

For example, many people have studied the “texture zero” analysis and the flavor
symmetries and so on. In the former case, they assume the zeros in the mass matrices as
many as possible, e.g., four or five zeros. One famous ansatz of the texture zero analysis
is known as “the Fritzsch mass matrix” [4, 5] where we assume the zeros in (1, 1), (1, 3),
(2, 2) and (3, 1) entries of the mass matrices. In 1978, this marvelous parametrization
of the quark mass matrices was proposed by Fritzsch [4]. The Hermitian Fritzsch mass
matrix, has only minimal non-vanishing elements and also a strong predictability to the
quark flavor structure, i.e., the mass hierarchies of up-type and down-type quarks and
the small mixing angles. Indeed, it relates the quark mass hierarchies to the small quark
mixings due to the strong predictability, and it has been focused on by many researchers.
In 1993, the Fritzsch mass matrix was used to explain the lepton flavor structure [6].1 The
Fritzsch mass matrix explained also the lepton large mixings without any extension of the
original matrix. Subsequently, a few years later it was shown by numerical calculation
that the Fritzsch mass matrix can realize the hierarchy of charged lepton masses and the
large lepton mixing angles, simultaneously. However, many experiments have reported
the marvelous observations with great accuracy in the quarks, e.g., the Cabbibo angle
sin θ12 = 0.225 in the quark sector. According to the recent accurate experiments of the
quarks, the Fritzsch mass matrix has been ruled out only in the quarks (See the latest
results of the lepton sector in Ref. [10]).

Another famous ansatz for dealing with the flavor puzzle is to use the flavor symme-
tries. The flavor symmetries play an important role in revealing the origin of the flavor
structures of both the quarks and leptons. In 1978, Froggatt and Nielsen introduced a
U(1) flavor symmetry in the quark mass matrices [11]. By selecting appropriate U(1)
charge assignments among the different generations of the quarks, the quark mass hier-
archies and the Cabbibo–Kobayashi–Maskawa (CKM) matrix [12] were simultaneously
explained. The Froggatt–Nielsen mechanism was applied to the lepton sector in the long
history. As well as the (continuous) U(1) symmetry, “non-Abelian discrete flavor sym-
metries” have been focused on.2 In the early 2000’s, it turned out that some of the
non-Abelian discrete flavor symmetries can easily lead to the large mixing angles in the

1See also Refs. [7, 8, 9]
2See for review [13].
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lepton sector, e.g., tri-bimaximal (TBM) [14] and bimaximal (BM) mixing patterns.3 At
that time, people ardently liked and used the specific non-Abelian discrete flavor symme-
tries S3, D4, A4, S4,∆(27),∆(54) and so on in order to especially realize the TBM mixing
pattern. In accordance with such discrete symmetries, various model buildings have been
investigated before the discovery of the non-vanishing reactor angle θ13 in 2012 [16]. Some
people still study the discrete flavor symmetries in order to realize much more realistic
patterns of the lepton mixing angles. Furthermore, several extensions with/without the
non-Abelian discrete flavor symmetries are adapted in many works, e.g., “stitching the
Yukawa quilt” [17], “Occam’s razor” [18, 19, 20, 21] and “repressing anarchy” [22].

As the other directions in explaining the origin of the flavor structures, there are other
promising approaches toward the solutions to the flavor puzzle. One of them is a hypoth-
esis to assume “extra dimensions”. Then, total dimensions under consideration are 4+ d,
i.e., the 4D spacetime that we feel plus extra d (space) dimensions are assumed. It is
plausible that the extra d dimensions would be compactified on some compact space. The
reason can be seen as follows. If the extra dimensions spread out on infinite coordinates
like the three-dimensional space out of 4D Minkowski spacetime, we would directly rec-
ognize the presence of the extra dimensions. The extra dimensions still constitute one of
the hypotheses in the elementally particle physics. In the presence of compactified extra
spaces, their geometry and topology affect the phenomenological properties appearing in
the low energy effective action, e.g., chiral matters, their family structures and hierarchical
Yukawa couplings. Thus, it is important to study the structures of the extra dimensions
from the phenomenological point of view. For instance, the extra dimensional models
can solve the phenomenological problems in the SM and its extensions, for example, the
gauge hierarchy problem [23, 24], (non-vanishing) tiny neutrino masses [25] and the flavor
puzzle [26, 27] and so forth.

In addition to the possibilities of solving the flavor puzzle, it is also attractive to look at
the string theory. As is well known, the SM does not describe gravitational interactions of
the particles that affect the beginning of our universe. The superstring theory formulated
in ten dimensional (10D) spacetime is almost the only known candidate of the unified
theory including quantum gravitational interactions. Indeed, the supersymmetric Yang–
Mills (SYM) theory in higher dimensional spacetime appears as a low energy effective field
theory of the superstring theory. This is quite interesting from the phenomenological as
well as theoretical viewpoint. (See for a review, Ref. [28].) It is an interesting possibility
that the SM is embedded in one of such SYM theories, namely, the SM is realized as a
low energy effective theory of the superstring theory. In such string model buildings, it is
quite important to break higher dimensional supersymmetry (SUSY) in order to obtain
4D chiral spectra, e.g., the SM spectra. People usually consider nontrivial background
geometry for the extra-dimensional compact space and/or boundary conditions of fields
in it, with which, the N = 1 SUSY can be obtained in accordance with the partial
supersymmetry breaking as N = 4 into N = 0, 1 or 2 caused by them.

As well as the geometry and boundary condition(s), recently the assumption of non-

3The various mixings are summarized in Refs. [13, 15]
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vanishing magnetic fluxes in the extra dimensions has been attracted much attentions,
which can also break SUSY fully or partially in higher-dimensional SYM theories. Indeed,
various phenomenological studies with the magnetic fluxes have been done, for exam-
ple, computations of zero-mode wavefunctions and Yukawa coupling constants on a two-
dimensional (2D) torus T 2 [29], their extensions to toroidal orbifolds T 2/ZN (N = 2, 3, 4, 6)
[30, 31, 32], constructions of three-generation models [33], the minimal supersymmetric
standard model (MSSM) and its extended models [34], analysis of non-Abelian discrete
flavor symmetries [35, 36] and the other researches [37, 38, 39, 40, 41]. It is interesting that
the flavor puzzle can be also addressed within such a framework, by interpreting the SM
flavor structure in terms of the boundary conditions of fields and the existence of magnetic
fluxes on T 2. With respect to the non-vanishing magnetic fluxes, it is interesting that
the Yukawa couplings can be analytically calculated from the overlap integrals of zero-
mode wavefunctions on the 2D torus [29]. The recent studies [31, 32] have researched
that the viable informations on the 2D torus were extended to the toroidal orbifolds
T 2/ZN (N = 2, 3, 4, 6), The extensions involving the toroidal orbifolds are applicable to
the phenomenological model buildings.

One of subjects of this thesis is to comprehensively investigate a phenomenological
aspect of the Yukawa couplings on magnetized toroidal orbifolds. We will systematically
analyze the eigenvalues of mass matrices which are obtained in terms of the VEVs of the
Higgs fields. Then, we will reveal whether such Yukawa couplings can be suitable for the
model constructions including, e.g., quark-Higgs interactions.

This thesis is organized as follows. In the next chapter, we briefly review general
magnetized ten dimensional Yang–Mills theory compactified on a product of multiple
two dimensional tori, two dimensional toroidal orbifolds or their combination(s), and see
that the phenomenological ingredients appear via the existence of non-vanishing mag-
netic fluxes. Chapter 3 is based on Ref. [42]. In Chapter 3, we pursuit the possibility of
constructing three-generation models of the quarks and charged leptons on magnetized
toroidal orbifolds. We show the results by systematically searching all the allowed config-
urations of magnetic fluxes, Scherk–Schwartz twisting phases and ZN parities. Chapter 4
is based on Ref. [43]. In Chapter 4, we classify the mass hierarchies of the three-generation
models obtained in Chapter 3. Then, we examine whether sufficiently large hierarchies
between mass eigenvalues in the mass matrices are obtained or not. Chapter 5 is based
on Ref. [44]. In Chapter 5, we propose a phenomenological model by assuming an ap-
propriate configuration of magnetic fluxes on T 2/Z2 orbifold. Furthermore, we show new
textures of Yukawa couplings possessing the ability to explain the experimental data of
quarks and leptons, e.g., mass ratios and mixing angles. We investigate their dependences
on theoretical input parameters in order to discuss the validity of the Yukawa textures.
Chapter 6 is devoted to the summary. In Appendices A and B, we show some details for
the mode analysis and the model building, respectively, which are omitted in the main
chapters.



Chapter 2

Brief reviews of magnetic fluxes

2.1 Toroidal compactification and magnetic fluxes

In this section, we give a brief review of the toroidal compactification with magnetic
fluxes, mainly based on Ref. [42].

First of all, we start with higher dimensional supersymmetric Yang–Mills (SYM) the-
ory defined on ten dimensional (10D) spacetime, which consists of four dimensional (4D)
Minkowski spacetimeM4 and a product of three two dimensional (2D) tori T 2×T 2×T 2.1

An action of the 10D SYM theory is given as

S =

∫

M4

d4x

∫

(T 2)3
d6z
√
−GTr

[

−1
4
FMNF

MN +
i

2
λ̄ΓMDMλ

]

, (2.1)

where indices M and N run over 0, 1, 2, ..., 9, which can be decomposed into 4D part
µ = 0, 1, 2, 3 and extra dimensional parts i = 1, 2, 3. The 10D metric GMN consists of a
4D Minkowski metric and an extra dimensional metric whose the i-th 2D torus part is
expressed as

g(i) = (2πR(i))

(
1 Re τ (i)

Re τ (i) |τ (i)|2
)

, (2.2)

respectively, and G denotes a determinant of the 10D metric GMN . The i-th part of
the 10D metric includes a toroidal radius R(i) and a complex structure modulus τ (i),
respectively.2 The i-th two dimensional torus is expressed by a complex coordinate zi ≡
y2i+2+τ

(i)y2i+3 and its complex conjugation z̄i ≡ y2i+2−τ̄ (i)y2i+3 with totally six Cartesian
coordinates ym (m = 4, 5, 6, 7, 8, 9) of extra dimensions. Since we consider the toroidal
compactification of extra six dimensions, a geometry of extra dimensions should reflect on
toroidal periodicities for two directions, such that the complex coordinates are identified

1The superfield description of the higher dimensional SYM theories has been studied in Refs. [45, 46,
38]. However, in this thesis, we focus on the component action of the SYM theory.

2Note that the toroidal radius is associated with a compactification scale, MC ∼ 1/2πR(i).
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Chapter 2. Brief reviews of magnetic fluxes 6

as zi ∼ zi + 1 ∼ zi + τ (i). In the above expression of the SYM action, we define an
abbreviated notation d6z =

∏3
i=1 dzidz̄i. Note that the SYM action holds N = 1 SUSY

in 10D spacetime, corresponding to N = 4 in 4D spacetime, unless we put non-vanishing
magnetic fluxes on tori. As we will show later, a presence of non-vanishing magnetic flues
can break N = 4 SUSY into N = 0, 1 or 2 SUSY in 4D spacetime.

In the above expression of the SYM action, it is found that the SYM theory in the
10D spacetime consists only of a 10D vector field AM and its superpartner, i.e., a 10D
Majorana–Weyl spinor gaugino field λ. The definitions of covariant derivative and field
strength are explicitly written as

DMλ = ∂M − ig[AM , λ], (2.3)

FMN = ∂MAN − ∂NAM − ig[AM , AN ], (2.4)

where g denotes an only parameter in the SYM theory, i.e., a 10D gauge coupling constant.
Next, we expand the 10D vector and gaugino fields by Kaluza–Klein (KK) decompo-

sitions as

λ(x, {zi, z̄i}) =
∑

l,m,n

χlmn(x)⊗ ψ
(1)
l (z1, z̄1)⊗ ψ(2)

m (z2, z̄2)⊗ ψ(3)
n (z3, z̄3), (2.5)

AM(x, {zi, z̄i}) =
∑

l,m,n

ϕlmn,M(x)⊗ φ
(1)
l,M(z1, z̄1)⊗ φ

(2)
m,M(z2, z̄2)⊗ φ

(3)
n,M(z3, z̄3), (2.6)

where l,m, n are labels of KK-modes and ψ
(i)
l (φ

(i)
l,M) denotes a 2D Weyl spinor (a 2D

vector) expressing the l-the KK-mode on the i-th torus, respectively. In the following, we
only concentrate on massless zero-modes, i.e., l,m, n = 0, and suppress the KK indices
in the KK-expanded 10D fields in the following. It is important to be noted that the 2D
spinor carries a 2D chirality distinguished by + or −,

ψ(i) =

(

ψ
(i)
+

ψ
(i)
−

)

, (2.7)

where we adopt the gamma matrices,

Γ̃2i+2 =

(
0 1
1 0

)

, Γ̃2i+3 =

(
0 −i
i 0

)

. (2.8)

Now, we assume non-vanishing vacuum expectation values for AM ,

A(b)({zi, z̄i}) =
3∑

i=1

π

gIm τ (i)






M
(i)
1 Im[(z̄i + C̄

(i)
1 )dzi]1N1

. . .

M
(i)
n Im[(z̄i + C̄

(i)
n )dzi]1Nn






≡
3∑

i=1

(A(b)
zi
(z̄i)dzi + A

(b)
z̄i (zi)dz̄i), (2.9)
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where M
(i)
k (k = 1, 2, ..., n) denote magnetic fluxes on the i-th torus, and they must be

integers owing to the Dirac’s quantization condition that the Lagrangian compactified
on 2D tori should be single-valued for toroidal periodic boundary identifications zi ∼
zi + 1 ∼ zi + τ (i) (i = 1, 2, 3). Additionally, C

(i)
k (k = 1, 2, ..., n) denote the Wilson

line phases on the i-th torus. Note that the (continuous) Wilson line phases can take
arbitrary values on 2D tori. As we will explain later, when we treat toroidal orbifolds
T 2/ZN (N = 2, 3, 4, 6), then values of the Wilson line phases are restricted to several
specific discrete values. Note that for the other values of N , the toroidal periodicity is
inconsistent with extra-dimensional crystallography [47]. The above magnetic background
breaks the non-Abelian gauge group which the SYM theory possess into its subgroups
as U(N) → ∑n

k=1 U(Nk), where N =
∑n

k=1Nk. After the gauge symmetry breaking,
we obtain the following correlation conditions between toroidal periodic conditions and
gauge transformations of the vector potential A(b),

A(b)({zi + δij, z̄i + δij}) = A(b)({zi, z̄i}) + djχ1({zi}), (2.10)

A(b)({zi + δijτ
(j), z̄i + δij τ̄

(j)}) = A(b)({zi, z̄i}) + djχτ ({zi}), (2.11)

where χ1 and χτ are given by

χ1({zi}) =
3∑

i=1

χ1i(zi) ≡
3∑

i=1

π

gIm τ (i)






M
(i)
1 1N1

. . .

M
(i)
n 1Nn




 Im dzi, (2.12)

χτ ({zi}) =
3∑

i=1

χτi(zi) ≡
3∑

i=1

π

gIm τ (i)






M
(i)
1 1N1

. . .

M
(i)
n 1Nn




 Im (τ̄ (i)dzi). (2.13)

The single-valuedness of the SYM action requires the gaugino field should satisfy the
following transformation laws under the toroidal periodic conditions,

λ(x, {zi + δij, z̄i + δij}) = U1j(zj)λ(x, {zi, z̄i})U1j(zj)
†, (2.14)

λ(x, {zi + δijτ
(j), z̄i + δijτ

(j)}) = Uτj(zj)λ(x, {zi, z̄i})Uτj(zj)
†, (2.15)

for j = 1, 2, 3. Unitary matrices U1i(zi) and Uτi(zi) associated with the gauge transfor-
mation are defined by

U1i(zi) ≡ eigχ1i
(zi)+2πiα(i)

, (2.16)

Uτi(zi) ≡ eigχτi
(zi)+2πiβ(i)

, (2.17)

where α(i) and β(i) denote the Scherk–Schwartz phases related to compactification twists,
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whose definitions are given as

α(i) ≡






α
(i)
1 1N1

. . .

α
(i)
n 1Nn




 , (2.18)

β(i) ≡






β
(i)
1 1N1

. . .

β
(i)
n 1Nn




 . (2.19)

These Scherk–Schwartz phases α
(i)
k and β

(i)
k (k = 1, 2, ..., n) can take arbitrary continuous

values on 2D tori, like the Wilson line phases. On toroidal orbifolds T 2/ZN (N = 2, 3, 4, 6),
possible values of the Scherk–Schwartz (SS) phases are also restricted to several discrete
values, as we see in the next section.

In the remainder of this section, we explain explicit examples of how to use magnetic
fluxes in phenomenological model buildings. For simplicity, we show in detail a specific
example of flux background,

A(b)({zi, z̄i}) =
3∑

i=1

π

gIm τ (i)

(

M
(i)
a Im[(z̄i + C̄

(i)
a )dzi]1Na

0

0 M
(i)
b Im[(z̄i + C̄

(i)
b )dzi]1Nb

)

.

(2.20)

Thanks to this two-block diagonal flux, the non-Abelian gauge group in the SYM theory
breaks into its subgroups as U(N)→ U(Na)×U(Nb). Accordingly, the 10D gaugino field
splits into four parts as follows,

λ(x, {zi, z̄i}) =
(

λaa(x, {zi, z̄i}) λab(x, {zi, z̄i})
λba(x, {zi, z̄i}) λbb(x, {zi, z̄i})

)

. (2.21)

Since we KK-expand the 10D gaugino field in a direct-product form (2.6), the decomposed
2D Weyl parts of the 10D gaugino field are also separated into four parts,

ψ(i)(x, {zi, z̄i}) =
(

ψ(i)aa({zi, z̄i}) ψ(i)ab({zi, z̄i})
ψ(i)ba({zi, z̄i}) ψ(i)bb({zi, z̄i})

)

. (2.22)

The diagonal parts λaa and λbb correspond to gaugino fields under the unbroken gauge
groups U(Na) × U(Nb), respectively. On the other hand, the off diagonal parts λab and
λba behave as bi-fundamental representations (Na, N̄b) and (N̄a, Nb) under the unbroken
gauge groups. Thus, we obtain bi-fundamental representations thanks to inputting non-
vanishing magnetic fluxes. For the above separated parts, we can write down zero-mode
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equations which zero-modes of λaa (λab, λba, λbb) should satisfy respectively:

(

∂z̄iψ
(i)aa
+ [∂z̄i +

π
2Im τ (i)

(M
(i)
ab zi + C

(i)
ab )]ψ

(i)ab
+

[∂z̄i +
π

2Im τ (i)
(M

(i)
ba zi + C

(i)
ba )]ψ

(i)ba
+ ∂z̄iψ

(i)bb
+

)

= 0, (2.23)

(

∂ziψ
(i)aa
− [∂zi − π

2Im τ (i)
(M

(i)
ab z̄i + C̄

(i)
ab )]ψ

(i)ab
−

[∂zi − π
2Im τ (i)

(M
(i)
ba z̄i + C̄

(i)
ba )]ψ

(i)ba
− ∂ziψ

(i)bb
−

)

= 0, (2.24)

for i = 1, 2, 3, where we have introduced abbreviations of notations,M
(i)
ab ≡M

(i)
a −M (i)

b and

C
(i)
ab ≡ C

(i)
a −C(i)

b and so forth. One can easily find that the diagonal gaugino fields ψ(i)aa

and ψ(i)bb are not affected by magnetic fluxes and Wilson line phases, while only the off
diagonal bi-fundamental fields ψ(i)ab and ψ(i)ba receive additional terms dependent on the
magnetic fluxes as well as the Wilson-line phases in their zero-mode equations. Note that
the difference between the equations (2.23) and (2.24) is originated from a 2D chirality
(+ or −) on the i-th torus. When we try to solve the zero-mode equations, it should
be important to take into account boundary conditions on the tori. Since the toroidal
periodic conditions are connected with the gauge transformations of flux background each
other, by using (2.14) and (2.15) with the two block-diagonal flux, we easily write down
boundary conditions for separated spinor fields,

ψ
(i)aa

s(i)
(zi + 1, z̄i + 1) = ψ

(i)aa

s(i)
(zi, z̄i), (2.25)

ψ
(i)bb

s(i)
(zi + 1, z̄i + 1) = ψ

(i)bb

s(i)
(zi, z̄i), (2.26)

ψ
(i)ab

s(i)
(zi + 1, z̄i + 1) = e

i πs(i)

Im τ(i)
Im (M

(i)
ab

zi+C
(i)
ab

)+2πiα
(i)
abψ

(i)ab

s(i)
(zi, z̄i), (2.27)

ψ
(i)ba

s(i)
(zi + 1, z̄i + 1) = e

i πs(i)

Im τ(i)
Im (M

(i)
ba

zi+C
(i)
ba

)+2πiα
(i)
baψ

(i)ba

s(i)
(zi, z̄i), (2.28)

and

ψ
(i)aa

s(i)
(zi + τ (i), z̄i + τ̄ (i)) = ψ

(i)aa

s(i)
(zi, z̄i), (2.29)

ψ
(i)bb

s(i)
(zi + τ (i), z̄i + τ̄ (i)) = ψ

(i)bb

s(i)
(zi, z̄i), (2.30)

ψ
(i)ab

s(i)
(zi + τ (i), z̄i + τ̄ (i)) = e

i πs(i)

Im τ(i)
Im (M

(i)
ab

zi+C
(i)
ab

)+2πiβ
(i)
ab ψ

(i)ab

s(i)
(zi, z̄i), (2.31)

ψ
(i)ba

s(i)
(zi + τ (i), z̄i + τ̄ (i)) = e

i πs(i)

Im τ(i)
Im (M

(i)
ba

zi+C
(i)
ba

)+2πiβ
(i)
ba ψ

(i)ba

s(i)
(zi, z̄i), (2.32)

where we define abbreviations of notations, α
(i)
ab ≡ α

(i)
a −α(i)

b and β
(i)
ab ≡ β

(i)
a −β(i)

b and s(i)

denotes a 2D chirality on the i-th torus, i.e., s(i) = ±1.
The solutions of the zero-mode equations including non-vanishing magnetic fluxes are

characterized by both magnitudes and signs of them. First, let us consider a case ofM
(i)
ab >

0. Only ψ
(i)ab
+ and ψ

(i)ba
− possess (convergent) normalizable zero-mode wavefunctions. On

the other hand, ψ
(i)ba
+ and ψ

(i)ab
− can not be convergent and not normalizable, thus we

regard that ψ
(i)ba
+ and ψ

(i)ab
− possess no zero-mode wavefunctions in our scenario. Then, by
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solving the zero-mode equations including magnetic fluxes with the above pseudo periodic
boundary conditions, we find that analytic forms of the zero-mode wavefunctions are given
as

ψ
(i)ab
+ (zi) = Θ

(I+α
(i)
ab

,β
(i)
ab

)

M
(i)
ab

,a
(i)
ab

(zi, τ
(i)), (2.33)

ψ
(i)ba
− (z̄i) = Θ

(I+α
(i)
ba

,β
(i)
ba

)

M
(i)
ba

,ā
(i)
ba

(z̄i, τ̄
(i)), (2.34)

for I = 0, 1, ...,M
(i)
ab − 1, where the Wilson line phase is divided by magnetic fluxes for

later convenience, i.e., a
(i)
ab ≡ C

(i)
ab /M

(i)
ab , and each of the zero-mode wavefunctions can be

expressed in terms of the Jacobi theta function as

Θ
(I+α

(i)
ab

,β
(i)
ab

)

M
(i)
ab

,a
(i)
ab

(zi, τ
(i)) = Nab · eiπM

(i)
ab

(zi+a
(i)
ab

)
Im(zi+a

(i)
ab

)

Im τ(i) · ϑ





I+α
(i)
ab

M
(i)
ab

−β(i)
ab



 (M
(i)
ab (zi + a

(i)
ab ),M

(i)
ab τi),

(2.35)

Θ
(I+α

(i)
ba

,β
(i)
ba

)

M
(i)
ba

,ā
(i)
ba

(z̄i, τ̄
(i)) = Nba · eiπM

(i)
ba

(z̄i+ā
(i)
ba

)
Im(z̄i+ā

(i)
ba

)

Im τ̄(i) · ϑ





I+α
(i)
ba

M
(i)
ba

−β(i)
ba



 (M
(i)
ba (z̄i + ā

(i)
ba ),M

(i)
ba τ̄i),

(2.36)

with normalization factors of the zero-mode wavefunctionsNab andNba. As will be shown,
the normalization factors are determined by the normalization and orthogonal condition
of zero-mode wavefunctions. The Jacobi theta function is analytically defined by

ϑ

[

a

b

]

(ν, τ) =
∞∑

l=−∞
eπi(a+l)2τe2πi(a+l)(ν+b). (2.37)

Note that the Jacobi theta function possesses four arguments, a, b, ν and τ . The param-
eters a and b take real values, and ν and τ are complex parameters. It should be noted
that this elliptic function only converges if Im τ > 0, otherwise this function is not well
defined. The Jacobi theta function possesses quasi-periodic properties among a and b,

ϑ

[

a+ 1

b

]

(ν, τ) = ϑ

[

a

b

]

(ν, τ), (2.38)

ϑ

[

a

b+ 1

]

(ν, τ) = e2πia ϑ

[

a

b

]

(ν, τ), (2.39)

and ν,

ϑ

[

a

b

]

(ν + 1, τ) = e2πia ϑ

[

a

b

]

(ν, τ), (2.40)

ϑ

[

a

b

]

(ν + τ, τ) = e−2πi(b+ν+τ/2) ϑ

[

a

b

]

(ν, τ). (2.41)
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These periodic properties in the Jacobi theta function can be interpreted as the remnant
of the toroidal periodic boundary conditions. It is easily found that bi-fundamental fields
ψ

(i)ab
+ (zi) and ψ

(i)ba
− (z̄i) have (degenerate) |M (i)

ab | zero-mode solutions. This degeneracy of
the zero-mode wavefunctions corresponds to nothing but the family replication of matter
fields, e.g., three-generations among the SM quarks and leptons. This implies that we can
realize the three-generation structure of a matter field (Na, N̄b) by imposing |M (i)

ab | = 3.

Next, we consider a case ofM
(i)
ab < 0. Then opposite modes of the 2D spinor fields survive

as

ψ
(i)ba
+ (zi) = Θ

(I+α
(i)
ba

,β
(i)
ba

)

M
(i)
ba

,a
(i)
ba

(zi, τ
(i)), (2.42)

ψ
(i)ab
− (z̄i) = Θ

(I+α
(i)
ab

,β
(i)
ab

)

M
(i)
ab

,ā
(i)
ab

(z̄i, τ̄
(i)). (2.43)

The wavefunctions of ψ
(i)ba
+ (zi) and ψ

(i)ab
− (z̄i) are expressed in the same way as the case

of M
(i)
ab > 0. Finally, in a case of M

(i)
ab = 0, also the off diagonal parts are not affected

by magnetic fluxes, then, all of ψ
(i)aa
± , ψ

(i)ab
± , ψ

(i)ba
± and ψ

(i)bb
± should be constantly located

on the i-th torus and independent of the torus coordinates zi and z̄i. The normalization
factors Nab and Nba are detemined by the orthonormality conditions for a complete set of
the zero-mode wavefunctions on the torus,

∫

d2zi

(

Θ
(I+α

(i)
ab

,β
(i)
ab

)

M
(i)
ab

,a
(i)
ab

(zi, τ
(i))

)∗
Θ

(J+α
(i)
ab

,β
(i)
ab

)

M
(i)
ab

,a
(i)
ab

(zi, τ
(i)) = δIJ (M

(i)
ab > 0), (2.44)

∫

d2zi

(

Θ
(I+α

(i)
ba

,β
(i)
ba

)

M
(i)
ba

,ā
(i)
ba

(z̄i, τ̄
(i))

)∗
Θ

(J+α
(i)
ba

,β
(i)
ba

)

M
(i)
ba

,ā
(i)
ba

(z̄i, τ̄
(i)) = δIJ (M

(i)
ba < 0). (2.45)

The same holds for the other zero-mode wavefunctions. This is ensured by the following
useful relation for M

(i)
ab > 0,

(

Θ
(I+α

(i)
ab

,β
(i)
ab

)

M
(i)
ab

,a
(i)
ab

(zi, τ
(i))

)∗
= Θ

(−I+α
(i)
ba

,β
(i)
ba

)

M
(i)
ba

,ā
(i)
ba

(z̄i, τ̄
(i)). (2.46)

This relation is applicable for M
(i)
ab < 0 in the same way. Now that there are three tori

under consideration, then the total number of zero-modes in the 4D low energy effective
theory is given by a product of the number of the zero-modes on each of tori, i.e.,

3∏

i=1

|M (i)
ab |, (2.47)

except forM
(i)
ab = 0. Also, the same holds for a case ofM

(i)
ab < 0 and the other cases. Thus,

thanks to magnetic fluxes, family replications of matters, i.e., generation structures like
three-generation quarks and leptons in the SM, are generated in the torus compactification
with non-trivial magnetic fluxes.
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Before finishing this section, we would like to show three-point interaction constants,
called Yukawa coupling constants, on magnetized torus. The Yukawa coupling constants
are completely free parameters from the 4D bottom-up point of view. However, in magne-
tized SYM theory, we can obtain analytical forms of the Yukawa couplings, whose forms
are written by the functions of moduli parameters. First, let us consider the U(8) gauge
group as a gauge group which the SYM theory possesses. In the presence of non-vanishing
three-block diagonal magnetic fluxes, we assume the gauge group symmetry breaking into
the Pati–Salam gauge group as U(8)→ U(4)C×U(2)L×U(2)R. Here, U(4)C corresponds
to the Pati–Salam color gauge group and on the other hand, U(2)L and U(2)R correspond
to the left and right gauge symmetries, respectively. It is very useful to use the Pati–
Salam gauge group and its supermultiplets under the Pati–Salam group in order to obtain
the matter contents of the minimal supersymmetric standard model (MSSM). Hence, this
is why we focus on the Pati–Salam gauge group in the remainder of this section. On
magnetized tori, we can analytically calculate the explicit form of the Yukawa couplings
which are expressed as the overlap integrations of the zero-mode wavefunctions [29],

YI,J ,K =
3∏

i=1

λ
(i)

I(i),J(i),K(i) , (2.48)

λ
(i)

I(i),J(i),K(i) =

∫

d2ziΘ
(I(i)+α

(i)
I

,β
(i)
I

)

M
(i)
I

,a
(i)
I

(zi, τ
(i))Θ

(J(i)+α
(i)
J

,β
(i)
J

)

M
(i)
J

,a
(i)
J

(zi, τ
(i))

(

Θ
(K(i)+α

(i)
K

,β
(i)
K

)

M
(i)
K

,a
(i)
K

(zi, τ
(i))

)∗
.

(2.49)

Note that calligraphic index I runs from 0 to
∏3

i=1 |M
(i)
ab | − 1 and the same holds for the

other calligraphic indices J and K. Here and hereafter, the calligraphic indices denote
family labels for the three sectors, and the italic symbols “I”, “J” and “K” denote
the three sectors which interact with each other via the three-point Yukawa couplings.
As explained in the previous paragraphs, since the zero-mode wavefunctions are changed
under the gauge transformations, there exists a condition that the above Yukawa couplings
should not be projected out. The condition can be interpreted as the gauge invariance
conditions for the magnetic fluxes, the Scherk–Schwartz phases and the Wilson line phase,
i.e.,

M
(i)
I +M

(i)
J =M

(i)
K , (2.50)

α
(i)
I + α

(i)
J = α

(i)
K , (2.51)

β
(i)
I + β

(i)
J = β

(i)
K , (2.52)

M
(i)
I a

(i)
I +M

(i)
J a

(i)
J =M

(i)
K a

(i)
K . (2.53)
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A useful formula of the Jacobi’s theta function is known as

ϑ

[

r/N1

0

]

(z1, N1τ)× ϑ

[

s/N2

0

]

(z2, N2τ) =
∑

m∈ZN1+N2

ϑ

[
r+s+N1m
N1+N2

0

]

(z1 + z2, (N1 +N2)τ)

×ϑ
[

N2r−N1s+N1N2m
N1N2(N1+N2)

0

]

(N2z1 −N1z2, N1N2(N1 +N2)τ), (2.54)

which is available under the above gauge invariance conditions (2.50)–(2.53). Here, we
assume r, s ∈ R, N1, N2 ∈ Z and z1, z2, τ ∈ C. By using this useful formula for the
Jacobi theta function (2.54) and the orthogonality conditions, we consequently find that
the analytical form of the Yukawa couplings on the two dimensional torus in terms of the
Jacobi’s theta functions needs as

λ
(i)

I(i),J(i),K(i) = exp

(
iπ

Im τ (i)
(a

(i)
I Im (M

(i)
I a

(i)
I ) + a

(i)
J Im (M

(i)
J a

(i)
J )− a

(i)
K Im (M

(i)
K a

(i)
K ))

)

×
∑

m∈Z
M

(i)
K

δ
I(i)+α

(i)
I

+J(i)+α
(i)
J

+mM
(i)
I

,K(i)+α
(i)
K

+lM
(i)
K

× ϑ





M
(i)
J

(I(i)+α
(i)
I

)−M(i)
I

(J(i)+α
(i)
J

)+mM
(i)
I

M
(i)
J

M
(i)
I

M
(i)
J

M
(i)
K

0



 (X, Y ), (2.55)

where we define X ≡M
(i)
I β

(i)
J −M

(i)
J β

(i)
I +M

(i)
I M

(i)
J (a

(i)
I −a

(i)
J ) and Y ≡ τ (i)M

(i)
I M

(i)
J M

(I)
K ,

and l denotes a possible integer. Indeed, in the above expression of the Yukawa couplings,
we can omit the Wilson line phases, because those can be absorbed into the Scherk–
Schwartz phases without loss of generality, and vice versa [31]. Hereafter, we set all of

the Wilson line phases to be zero, i.e., a
(i)
X = 0 for all of i = 1, 2, 3 and X = I, J,K.

2.2 Extensions to toroidal orbifolds

In this section, we investigate the SYM theory on magnetized toroidal orbifolds T 2/ZN (N =
2, 3, 4, 6). Namely, we apply the discussions in the previous section to the orbifolded cases.

We add another identification of the orbifolding projections to the toroidal periodic
boundary conditions, i.e., zi ∼ zi + 1 ∼ zi + τ (i). The toroidal orbifolds are defined by
dividing the two dimensional torus by ZN rotations,

zi ∼ ωzi, (2.56)

with

ω ≡ e2πi/N . (2.57)
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With the orbifolding identifications, two-dimensional extra spaces are totally identified as

zi ∼ ωzi +m+ nτ (i) (m,n ∈ Z), (2.58)

for N = 2, 3, 4, 6. It is known that for N = 2, the value of the complex structure modulus
parameter is not constrained except for Im τ > 0, and also that for N = 3, 4 and 6 cases,
τ = ω must be satisfied due to the consistency condition of crystallography [47, 31].
In association with the orbifolding identification for N = 2, 3, 4 and 6, the ZN twisting
manipulation of the 10D gauge and gaugino fields in non-Abelian SYM gauge theories are
assigned as

Aµ(x, {ωzi, ω̄z̄i}) = PAµ(x, {zi, z̄i})P−1, (2.59)

Azi(x, {ωzi, ω̄z̄i}) = ω̄PAzi(x, {zi, z̄i})P−1, (2.60)

Az̄i(x, {ωzi, ω̄z̄i}) = ωPAz̄i(x, {zi, z̄i})P−1, (2.61)

λ+(x, {ωzi, ω̄z̄i}) = Pλ+(x, {zi, z̄i})P−1, (2.62)

λ−(x, {ωzi, ω̄z̄i}) = ωPλ−(x, {zi, z̄i})P−1, (2.63)

with a projection operator P . The operator P has to satisfy P ∈ U(N) and PN = 1N .
Since it is useful to treat the simple form of the orbifolding operator P without using the
most general form, and we focus only on the following form,

P =






η11N1

. . .

ηn1n




 , (2.64)

where ηj ∈ {1, ω, ..., ωN−1} (j = 1, 2, ..., n). In the two-block diagonal example as shown
in the previous section, in accordance with the gauge symmetry breaking U(N) →
U(Na) × U(Nb), the bi-fundamental matter fields ψ

(i)ab
+ and ψ

(i)ba
+ appear, for instance.

Then, the bi-fundamental fields vary under the ZN transformation (2.62) and (2.63), such
as ψ(i)ab → ηaη̄bψ

(i)ab and ψ(i)ba → ηbη̄aψ
(i)ba. Note that the diagonal adjoint parts, e.g.,

ψ
(i)aa
+ and ψ

(i)bb
+ , receive no effects from the ZN transformation. In the following, we call

the transformation coefficient as the ZN parity. On the toroidal orbifolds, the representa-
tions of the adjoint and bi-fundamental matter fields are the same as those on the torus.
However, the family replication and the analytic form of the zero-mode wavefunctions are
changed by the additional boundary conditions in Eqs. (2.59)–(2.63). Let us consider a

sector in a positive-chirality spinor ψ
(i)
+ where we assume the magnetic fluxM (i) (> 0), the

Scherk–Schwartz phases α(i) and β(i), and the Wilson line phase a(i) and the ZN parity
η(i) on the i-th torus, respectively. Then, the formal solution of the zero-mode equation
(2.23) with the orbifolding identification (2.59)–(2.63) is easily found as

ψ
(i)

+,η(i)
(zi) =

|M(i)|−1
∑

I(i)=0

Θ̃
(I(i)+α(i),β(i))

M(i),a(i);η(i)
(zi, τ

(i)), (2.65)
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where Θ̃
(I(i)+α(i),β(i))

M(i),a(i);η(i)
(zi, τ

(i)) can be calculated easily by the general recipes as

Θ̃
(I(i)+α(i),β(i))

M(i),a(i);η(i)
(zi, τ

(i)) =
1

N

N−1∑

x=0

(η̄(i))xΘ
(I(i)+α(i),β(i))

M(i),a(i)
(ωxzi, τ

(i)). (2.66)

It is quite straightforward to confirm that this form of the formal solution is invariant
under the orbifolding transformation zi → ωzi up to the ZN parity η(i), such that,

Θ̃
(I(i)+α(i),β(i))

M(i),a(i);η(i)
(ωzi, τ

(i)) = η(i)Θ̃
(I(i)+α(i),β(i))

M(i),a(i);η(i)
(zi, τ

(i)). (2.67)

As well as in the case of M (i) > 0, we can straightforwardly obtain the zero-mode wave-
functions in a case of M

(i)
ab < 0 only by replacing zi → z̄i, τi → τ̄i and a

(i) → ā(i). In the
following discussions, we set the Wilson line phase to be zero for simplicity. As pointed
out in the above, the Wilson line phase is able to be absorbed into the Scherk–Schwartz
(SS) phases. Without loss of generality, we select the basis as

a(i) = 0. (2.68)

In practice, Eq. (2.66) is not so useful. It is naively expected that some of zero-mode
wavefunctions spanning a complete set is projected out by the ZN orbifolding identifi-
cation. However, from the formal solution (2.66), it is quite hard to count the number
of independent zero-mode wavefunctions on the magnetized T 2/ZN . Hence, we need to
rewrite the formal solution in terms of the original coordinate zi, not in terms of the ZN

manipulated coordinate ωxzi. By using the orthogonal conditions of the zero-modes on
the magnetized torus, in principle we can calculate expansion coefficients as

C
(ωx)

I(i)J(i) ≡
∫

d2zi

(

Θ
(I(i)+α(i),β(i))

M(i),0
(zi, τ

(i))
)∗
Θ

(J(i)+α(i),β(i))

M(i),0
(ωxzi, τ

(i)). (2.69)

Indeed, it is almost impossible to analytically perform this integration of a product of the
rotated and unrotated zero-modes from the technical point of view, since the definition of
the Jacobi’s theta function includes an infinite summation. Then, the authors in Ref. [32]
utilized “operator formalism” where they treated the quantum mechanics in the 2D flat
spaces compactified on a 2D torus and finally succeeded in obtaining the analytic forms of
the expansion coefficients (2.69) [32].3 The analytic formulae of the expansion coefficients
are written in Appendix A. By utilizing the analytical formulae for the coefficient matrices,
the rotated zero-mode wavefunctions can be expanded in terms of the unrotated zero-mode
wavefunctions as

Θ
(I(i)+α(i),β(i))

M(i),0
(ωxzi, τ

(i)) =

|M(i)|−1
∑

J(i)=0

C
(ωx)

I(i)J(i)Θ
(J(i)+α(i),β(i))

M(i),0
(zi, τ

(i)). (2.70)

3Note that we can numerically obtain the expansion coefficients without performing analytic cal-
culations. Indeed, by using such numerical results, the number of the zero-mode wavefunctions on
T 2/ZN (N = 2, 3, 4, 6) was classified in Ref. [31].
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By inserting this expression into the formal solution in Eq. (2.66), we consequently find the
relation between the zero-mode wavefunctions on T 2 and those on T 2/ZN (N = 2, 3, 4, 6),

Θ̃
(I(i)+α(i),β(i))

M(i),0;η(i)
(zi, τ

(i)) =

|M(i)|−1
∑

J(i)=0

M
(ZN ;η(i))

I(i)J(i) Θ
(J(i)+α(i),β(i))

M(i),0
(zi, τ

(i)), (2.71)

where we define a rotation matrix for the zero-mode wavefunctions as

M
(ZN ;η(i))

I(i)J(i) ≡ 1

N

N−1∑

x=0

(η̄(i))xC
(ωx)

I(i)J(i) . (2.72)

As one can easily find, the zero-mode wavefunctinons on T 2/ZN are expressed by the
linear combination of the zero-mode wavefunctions on T 2. It is important to mention
how many zero-modes on the left-hand side are independent each other. According to the
knowledge in the linear algebra, the degeneracy of the zero-mode wavefunctions is given
as

Rank
[
M

(ZN ;η(i))

I(i)J(i)

]
, (2.73)

since the zero-modes on T 2 can be regarded as the basis which forms a complete set. In
general, the total number of linearly independent zero-modes on T 2/ZN is reduced by the
orbifold identification projection,

Rank
[
M

(ZN ;η(i))

I(i)J(i)

]
≤ |M (i)|. (2.74)

In order to know the number of the zero-modes on T 2/ZN , all we have to do is to investigate

the matrix rank of M
(ZN ;η(i))

I(i)J(i) . Indeed, the numbers of the zero-modes for T 2/ZN were
systematically investigated in Ref. [31]. We show the results in Appendix A. The number
of the linearly independent zero-modes on T 2/ZN can be regarded as the number of
physical states for a matter field in the sector, after dimensional reduction. Thus, for

T 2/ZN cases, the matrix rank of M
(ZN ;η(i))

I(i)J(i) gives the family replication number of the
matter field in the 4D low energy effective theory.

In addition to the family replication number, the operator formalism brings us with
the information about the kinetic terms in the 4D low energy effective theory. On T 2, the
kinetic terms are inevitably on a diagonal basis of kinetic terms due to the orthogonality
condition in Eqs. (2.44) or (2.45). On the other hand, this is not correct on T 2/ZN , since
the zero-mode basis is non-trivially rotated into the physical basis with the non-trivial
linear combination of the zero-modes. Accordingly, the kinetic mixing appears as

K(ZN ;η(i))

I(i)J(i) =

∫

d2zi

(

Θ̃
(I(i)+α(i),β(i))

M(i),0;η(i)
(zi, τ

(i))
)∗
Θ̃

(J(i)+α(i),β(i))

M(i),0;η(i)
(zi, τ

(i)). (2.75)

Indeed, as shown in Ref. [32], the kinetic matrix K(ZN ;η(i))

I(i)J(i) can be rewritten as the coeffi-
cient matrix of the zero-mode eigenstates after some straightforward calculations,

K(ZN ;η(i))

I(i)J(i) =M
(ZN ;η(i))

J(i)I(i)
. (2.76)
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This directly means that the kinetic terms are not diagonal at this step. Thus, when we
investigate phenomenological observables, i.e., the Yukawa couplings on the magnetized
T 2/ZN , changing the basis also for the kinetic terms by means of a unitary matrix U

(ZN ;η(i))

is required so as the kinetic terms to be diagonal,

K(ZN ;η(i))

I(i)J(i) →
(

U (ZN ;η(i)
)†
K(ZN ;η(i))

I(i)J(i) U (ZN ;η(i)) = diag ( 1, ..., 1
︸ ︷︷ ︸

Rank [M(ZN ;η(i))]

, 0, ..., 0). (2.77)

By taking into account the mixing effect from the non-diagonal kinetic matrix, we find the

physical zero-mode eigenstates whose index is given by I ′(i) = 0, 1, ...,Rank
[
M

(ZN ;η(i))

I(i)J(i)

]
−1

as

|M(i)|−1
∑

I(i)=0

Θ̃
(I(i)+α(i),β(i))

M(i),0;η(i)
(zi, τ

(i))
(

U (ZN ;η(i))
)

I(i)I′(i)
. (2.78)

Hereafter, we refer to the above expression of the zero-mode wavefunctions as the physical
zero-modes or the physical eigenstates on T 2/ZN and so forth.

We are ready to analytically write down the three-point Yukawa couplings for three
matter sectors in the physical eigenstates. Now that we have the analytic forms of the
physical zero-mode eigenstates (2.78), all we have to do is to calculate the overlapping of
a product of the physical zero-mode wavefunctions. Some specific forms of the analytic
Yukawa couplings are shown in the following chapters.





Chapter 3

Classification of three-generation

models

3.1 Strategy for classification

This chapter and the following sections are mainly based on the results in Ref. [42].
In this part, we show the results of the classification for the possibility to construct

three-generation models such as the SM of quarks and leptons, on the basis of the mag-
netized toroidal orbifolds. First of all, we explain a breaking pattern of the non-Abelian
gauge group in detail in the 10D SYM theory. We start with the U(N) SYM theory on
the magnetized T 2/ZN (N = 2, 3, 4, 6). Then, we turn on the three-block diagonal fluxes,

A(b)({zi, z̄i}) =
3∑

i=1

π

gIm τ (i)

×







M
(i)
a Im[(z̄i + C̄

(i)
a )dzi]1Na

0 0

0 M
(i)
b Im[(z̄i + C̄

(i)
b )dzi]1Nb

0

0 0 M
(i)
c Im[(z̄i + C̄

(i)
c )dzi]1Nc






.

(3.1)

As explained in the previous chapters, thanks to the (Abelian) three-block diagonal
fluxes, the U(N) gauge group is broken down into its subgroups as U(N) → U(Na) ×
U(Nb)× U(Nc) with N = Na +Nb +Nc. In accordance with the gauge symmetry break-
ing, the six off diagonal parts of the 10D gauge and gaugino fields appear except for
the three diagonal parts under the Pati–Salam gauge group. The off diagonal parts
are bi-fundamental matter fields, e.g., λab, λbc, λca, λba, λcb, λac, whose representations are
(Na, N̄b), (Nb, N̄c), (N̄a, Nc), (N̄a, Nb), (N̄b, Nc), (Na, N̄c), respectively. Here and hereafter,
as treated before, we set N = 8, Na = 4, Nb = 2 and Nc = 2, namely, the Pati–Salam
gauge group U(4)C × U(2)L × U(2)R. Then, λab of the gaugino correspond to the left-
handed quark and lepton doublets in the SM, λca correspond to the right-handed quarks

19
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and leptons and λbc correspond to the up-type and down-type Higgsinos as in the MSSM.
Note that the superpartner scalars of λab, λca and λbc via the 10D vector field and the su-
perpartner fields λbc are nothing but the Higgs fields that acquire the vacuum expectation
values via radiative electroweak symmetry breaking. As we will see in the following, we
have to prepare three-generations of the matter fields in ab- and ca-sectors. Then, we fo-
cus only on the left-handed, right-handed matters and the up- and down-type Higgs fields
λab, λca and λbc, and assume that the zero-modes of λab, λca and λbc are only normalizable
and the other zero-modes are massive or non-normalizable.

Here, we reconsider the conditions that the Yukawa couplings on the toroidal orbifolds
are non-vanishing. On the torus, the Yukawa couplings are non-vanishing and gauge in-
variant when the four conditions in Eqs. (2.50)–(2.53) are simultaneously satisfied. In
addition to Eqs. (2.50)–(2.53), the Yukawa couplings on the toroidal orbifolds are con-
strained by an additional condition for the ZN parities of each of zero-mode wavefunctions.
Namely, the five conditions characterize the Yukawa couplings on the toroidal orbifolds,

M
(i)
I +M

(i)
J =M

(i)
K , (3.2)

α
(i)
I + α

(i)
J = α

(i)
K , (3.3)

β
(i)
I + β

(i)
J = β

(i)
K , (3.4)

M
(i)
I a

(i)
I +M

(i)
J a

(i)
J =M

(i)
K a

(i)
K , (3.5)

η
(i)
ab η

(i)
bc η

(i)
ca = 1. (3.6)

The case with the vanishing SS phases and Wilson line phases has been investigated in
Ref. [33]. As pointed out in Refs. [31, 32], the degrees of freedom of the Wilson line phases
are absorbed into the SS phases and vice versa. For example, the configuration of the
vanishing Wilson line phase and the non-vanishing SS phases,

α 6= 0, β 6= 0, Ma = 0, (3.7)

corresponds to the case of the non-vanishing Wilson line phase and the vanishing SS
phases,

α̃ = 0, β̃ = 0, Mã 6= 0. (3.8)

This correspondence is given by the relationship between the Wilson line phase ã, the SS
phases α, β and the complex structure modulus τ ,

Mã = ατ − β. (3.9)

Thus, in the following procedure, we consider only the non-vanishing SS phases, and set
the Wilson line phases to be zero.

In the following, we denote the zero-mode wavefunctions of the left-handed and right-
handed fermions and the Higgs bosons as ψLi

(z), ψRj
(z) and φHk

(z). We symbolically
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express the Yukawa coupling constants for three matters as the form of the overlapping
zero-mode wavefunctions, Yijk,

Yijk =

∫

d2zψLi
(z)ψRj

(z)φHk
(z), (3.10)

up to an overall factor. Here, we allow multiple family replications of the Higgs fields in
general. As we will understand in the following part, it tends to be seen that the multiple
replication of the Higgs fields, e.g., two or five Higgs bosons, appears in the toroidal and
orbifold compactification with magnetic fluxes. This is why we add the index k = 0, 1, 2, ...
to the symbol “H”. When the zero-modes of the left-handed and right-handed matters
are (quasi-)localized on two different tori, then, the Yukawa couplings are written by the
factorized form,

Yijk = aikbjk. (3.11)

A Yukawa coupling matrix for this factorized form inevitably gives a zero eigenstate.
Hence, this type of the Yukawa couplings is not suitable for quark and lepton mass
matrices since they are massive. On the other hand, let us consider the case in which
all of flavors, i.e., the left-handed, the right-handed matters and the Higgs fields, appear
only on a single torus. Then, the Yukawa couplings are symbolically written as

Yijk = a
(1)
ijka

(2)a(3). (3.12)

In the above expression, a(2) and a(3) are just overall factors derived from the tori which do
not affect the flavor structures of the left-handed, the right-handed matters and the Higgs
fields. In this case, the Yukawa couplings generally lead to three non-zero eigenvalues,
which are suitable for the mass matrices of quarks and leptons. It is easily found by
Eq. (3.12) that the contribution from the first torus determines the properties of the
total Yukawa couplings. In the following classification, we focus only on a single torus
where all of flavors, i.e., the left-handed (ab-sector), the right-handed (ca-sector) matters
and the Higgs fields (bc-sector), are generated by the effects of magnetic fluxes. We also
focus on the ab-, bc- and ca-sectors which are characterized by the configurations of the
several parameters and the five constraints in Eqs. (3.2) and (3.6). Then, the vector-like
sectors, i.e., the ba-, cb- and ac-sectors are automatically determined by the corresponding
configurations after the configurations of the main three sectors are fixed. We will not
treat the vector-like sectors, and assume that the zero-modes in the vector-like sectors are
all eliminated by the chiral projections of magnetic fluxes and/or the boundary conditions
on the other two tori which we do not focus on. In the following part, we focus on the
single torus associated with the flavors and suppress the torus index i.

We are now going to classify possibilities of obtaining three-generation models. In this
respect, we would like to mention about the signs of magnetic fluxes in each of the three
sectors. Equation (3.2) implies that the sign of one of magnetic fluxes is opposite to those
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of the other two magnetic fluxes. In other words, two patterns of the signs are possible,

Mab < 0, Mca < 0, (3.13)

Mab < 0, Mca > 0. (3.14)

In the other two patterns with opposite signs of magnetic fluxes, i.e., Mab > 0, Mca > 0
and Mab > 0, Mca < 0 , the possibilities of obtaining three-generation models are exactly
the same as the above two patterns. Accordingly, we impose an additional condition,

|Mab| ≤ |Mca|. (3.15)

Note that the opposite case |Mab| ≥ |Mca| can be obtained just by changing the role of
the two sectors. Hence, it is sufficient to focus on the case of Eq. (3.15). By imposing
Eq. (3.15), we can evade double countings of the combinations of the magnetic fluxes.
Therefore, we comprehensively search the combinations of the magnetic fluxes and the
other free parameters under the Eqs. (3.2)–(3.6), (3.13) or (3.14), and (3.15).

As stated in the previous chapter, the Wilson line phases and the SS phases cannot
take arbitrary continuous values. Indeed, the allowed values of them are limited in some
discrete values [31]. This is originated from the connections between the boundary condi-
tions associated with the orbifolding identifications and the gauge transformations derived
from the input magnetic fluxes. In this thesis, we systematically search all the allowed
discrete values of the SS phases.

According to Ref. [31], the numbers of the magnetic fluxes which can generate three
replications of the matter field are given as

• |Mab|, |Mca| = 4 – 8 on T 2/Z2,

• |Mab|, |Mca| = 6 – 12 on T 2/Z3,

• |Mab|, |Mca| = 8 – 16 on T 2/Z4,

• |Mab|, |Mca| = 12 – 24 on T 2/Z6.

In addition, the allowed discrete values of the SS phases are similarly given as

• On T 2/Z2, (αXY , βXY ) = (0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2),

• On T 2/Z3, (αXY , βXY ) = (0, 0), (1/3, 1/3), (2/3, 2/3) for even numbers of the flux,
(αXY , βXY ) = (1/6, 1/6), (1/2, 1/2), (5/6, 5/6) for odd numbers of the flux,

• On T 2/Z4, (αXY , βXY ) = (0, 0), (1/2, 1/2),

• On T 2/Z6, (αXY , βXY ) = (0, 0) for even numbers of the flux, (αXY , βXY ) = (1/2, 1/2)
for odd numbers of the flux,

where XY = ab, bc, ca. The ZN parities are also similarly given as
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• ηab, ηca = ±1 on T 2/Z2,

• ηab, ηca = 1, ω, ω2 for ω ≡ e2πi/3 on T 2/Z3,

• ηab, ηca = ±i,±1 on T 2/Z4,

• ηab, ηca = 1, ω, ω2, ω3, ω4, ω5 for ω ≡ e2πi/6 on T 2/Z6.

In the classification, we systematically take into account of all the values of the above
parameters in the ab- and ca-sectors. Note that the parameters in the bc-sector (the Higgs
sector) are automatically determined by the gauge invariant constraints (3.2)–(3.6). Also,
this implies that on the magnetized orbifolds the number of the generations of the Higgs
fields can be predicted by the requirements for three-generations of quarks and leptons.

3.2 Results of the classification

The results of the classification are shown in Tables 3.1 on T 2/Z2, 3.2 on T 2/Z3, 3.3
on T 2/Z4, 3.4 on T

2/Z6. Tables 3.1, 3.2, 3.3 and 3.4 show the numbers of the possible
candidates for three-generation models after systematically searching the magnetic fluxes
and the SS phases. Then, the numbers of the emerging Higgs pairs are also shown in the
tables. We distinguish one Higgs pair with Mbc 6= 0 from that with Mbc = 0. The situ-
ation is that we distinguish a Higgs pair of the constant zero-mode wavefunctions which
universally spread on T 2/ZN from another Higgs pair of localized zero-mode wavefunc-
tions. The discrimination of the former and latter cases is made by “1 (trivial)” and “1”
in the column of Tables 3.1, 3.2, 3.3 and 3.4. The former and latter cases of one Higgs
pair should be different from each other in the 4D effective theory. This is the reason why
we count the cases of Mbc = 0. The label “Without the SS phases” represents the clas-
sification for all the vanishing SS phases, while the label “General cases” represents the
exhaustive classification for both the vanishing and non-vanishing SS phases. It should
be noted that the result in “Without the SS phases” on T 2/Z2 in Table 3.1 has been
already analyzed in Ref. [33]. Thus, there are 217+558+798+999 = 2572 candidates for
three-generation models on the magnetized toroidal orbifolds. We summarize the explicit
combinations of the free parameters on T 2/Z2 in Appendix B of this thesis, and those on
T 2/ZN (N = 3, 4, 6) in Appendix B of Ref. [42].

We show the histogram for the numbers of the Higgs pairs on T 2/ZN (N = 2, 3, 4, 6) in
Figure 3.1. The result on T 2/Z2 (Z3, Z4, Z6) is depicted by the blue (orange, gray, yellow)
histogram bins, respectively. Figure 3.1 manifests that three-generations of the Higgs pairs
can not be constructed on the magnetized orbifolds in any case. It is also concluded that
two and four generations of the Higgs pairs are possible except for T 2/Z2. We understand
that one and multi (e.g., five or six) generations of the Higgs pairs are predominantly
favored statistically. In the next chapters, we will argue whether the Yukawa couplings
with the one- and multi-generation Higgs fields can lead to sufficient large mass hierarchies
and suitable mixing angles simultaneously or not.
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General cases

Mab < 0,Mca < 0 # of the Higgs pairs Mab < 0,Mca > 0 # of the Higgs pairs

41 5 16 1 (trivial)

56 6 65 1

30 7

8 8

1 9

136 + 81 = 217 in total

Without the SS phases

Mab < 0,Mca < 0 # of the Higgs pairs Mab < 0,Mca > 0 # of the Higgs pairs

5 5 4 1 (trivial)

2 6 5 1

2 8

1 9

10 + 9 = 19 in total

Table 3.1: The numbers of the candidates for three-generation models and the Higgs pairs
on T 2/Z2. The result of “General cases” includes both the vanishing and non-vanishing
SS phases, while the result of “Without the SS phases” is restricted to cases with the
vanishing SS phases.
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General cases

Mab < 0,Mca < 0 # of the Higgs pairs Mab < 0,Mca > 0 # of the Higgs pairs

11 4 17 1 (trivial)

83 5 142 1

190 6 21 2

83 7

11 8

378 + 180 = 558 in total

Without the SS phases

Mab < 0,Mca < 0 # of the Higgs pairs Mab < 0,Mca > 0 # of the Higgs pairs

1 4 9 1 (trivial)

6 5 27 1

7 6

6 7

1 8

21 + 36 = 57 in total

Table 3.2: The numbers of the candidates for three-generation models and the Higgs pairs
on T 2/Z3. The result of “General cases” includes both the vanishing and non-vanishing
SS phases, while the result of “Without the SS phases” is restricted to cases with the
vanishing SS phases.



Chapter 3. Classification of three-generation models 26

General cases

Mab < 0,Mca < 0 # of the Higgs pairs Mab < 0,Mca > 0 # of the Higgs pairs

9 4 24 1 (trivial)

128 5 228 1

254 6 18 2

120 7

17 8

528 + 270 = 798 in total

Without the SS phases

Mab < 0,Mca < 0 # of the Higgs pairs Mab < 0,Mca > 0 # of the Higgs pairs

3 4 12 1 (trivial)

37 5 60 1

59 6 6 2

27 7

10 8

136 + 78 = 214 in total

Table 3.3: The numbers of the candidates for three-generation models and the Higgs pairs
on T 2/Z4. The result of “General cases” includes both the vanishing and non-vanishing
SS phases, while the result of “Without the SS phases” is restricted to cases with the
vanishing SS phases.
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General cases

Mab < 0,Mca < 0 # of the Higgs pairs Mab < 0,Mca > 0 # of the Higgs pairs

14 4 24 1 (trivial)

156 5 282 1

326 6 27 2

150 7

20 8

666 + 333 = 999 in total

Without the SS phases

Mab < 0,Mca < 0 # of the Higgs pairs Mab < 0,Mca > 0 # of the Higgs pairs

4 4 12 1 (trivial)

45 5 73 1

76 6 8 2

36 7

10 8

171 + 93 = 264 in total

Table 3.4: The numbers of the candidates for three-generation models and the Higgs pairs
on T 2/Z6. The result of “General cases” includes both the vanishing and non-vanishing
SS phases, while the result of “Without the SS phases” is restricted to cases with the
vanishing SS phases.
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Figure 3.1: The histogram for the numbers of the Higgs pairs on T 2/ZN (N = 2, 3, 4, 6).
The result on T 2/Z2 (Z3, Z4, Z6) is depicted by the blue (orange, gray, yellow) histogram
bin.



Chapter 4

Systematic analysis of Yukawa

hierarchies

4.1 Motivation for investigating Yukawa hierarchies

In the previous chapter, we analyzed the possibilities of obtaining three-generation models
of the quarks and leptons in the framework of the magnetized orbifolds T 2/ZN (N =
2, 3, 4, 6). We see that there are quite many possibilities that such models appear with a
single and multiple Higgs doublet pairs. Among such possibilities, how should we select
promising combinations of the magnetic fluxes, the SS phases and the ZN parities for
the model buildings ? For realistic model buildings, in general we need to prepare the
four sectors including the Yukawa couplings in the SM with the neutrino extension, i.e.,
the up- and down-quark sectors, the charged lepton sector and the neutrino sector. In
particular, the up- and down-quark sectors and the charged lepton sector are required
to have hierarchical eigenvalues of their mass matrices. To be more concrete, we know
experimentally large hierarchies of the masses existing,

mu

mt

= O(10−5), mc

mt

= O(10−2), (4.1)

for the up-type quark sector,

md

mb

= O(10−3), ms

md

= O(10−2), (4.2)

for the down-type quark sector, and

me

mτ

= O(10−4), mµ

mτ

= O(10−1), (4.3)

for the charged lepton sector, as shown in Ref. [3]. Thus, the large hierarchy of O(10−5) is
at least required for the construction including the up-type quark sector. Hence, we sys-
tematically and comprehensively classify the hierarchies between the smallest and largest

29
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eigenvalues in the effective mass matrices. Based on this classification, we will know the
possible candidates of the Yukawa couplings for the realistic model buildings. For that
reason, we focus on the hierarchies in the effective mass matrices in the 4D low energy
effective theory after dimensional reductions.

In the comprehensive classifications, we focus on the one and two Higgs pairs in the
three-generation models of the quarks and leptons which are exhaustively investigated in
the previous chapter. The one and two Higgs pairs are always generated by the fluxes of
the opposite sign (Mab < 0 and Mca > 0). On the other hand, the multiple Higgs with
more than three pairs are given by the fluxes with the same sign (Mab < 0 and Mca < 0).
In the latter case, the Gaussian form of the mass matrices are obtained by assuming
suitable combinations of the non-vanishing Higgs VEVs. The multiple Higgs with more
than three pairs are the main subject in the next chapter. In the multiple Higgs cases,
there are many free parameters unless we concretely construct and analyze the Higgs
potential among the multiple Higgs pairs. Then, the VEVs of the Higgs pairs are literally
free input parameters in calculating the mass eigenvalues of the SM fermions. Namely,
there are as many free parameters as the number of the Higgs doublets. The mass matrices
dependent on many free parameters consequently reduce to the flavor puzzle, because of
the ambiguity in the mass matrices.

In addition, we would like to comment on the contributions of the non-vanishing SS
phases. In the pre-existing studies [33, 44], the Yukawa hierarchies are derived only by
the proper configurations of the Higgs VEVs. In this chapter, we also treat the patterns
including the non-vanishing SS phases. In particular, the SS phase in the sixth direction,
i.e., β, appears in the argument “a” of the definition of the Jacobi theta function. This
implies that there are possibilities in modifying the mass hierarchies of the mass matrices,
thanks to the SS phases. As well as the one and two Higgs pairs, the multiple Higgs cases
with more than three pairs are likely affected by them.

Before closing this section, we would like to refer to the values of the complex structure
modulus τ . On T 2/Z2, its value is arbitrary, as shown in the previous chapters. Hence,
the complex structure modulus can be a free parameter on the T 2/Z2 orbifold. However,
on the other hand, the values of the complex modulus on the other orbifolds are restricted
to specific values,

τ = e2πi/N (N = 3, 4, 6), (4.4)

due to the consistency condition. Thus, we are not allowed to freely scatter the values of
the complex modulus on the T 2/ZN (N = 3, 4, 6). It is easily found that the imaginary
part of the complex structure modulus τ appears in the argument of the Jacobi theta
function as

yijk ∼ e−cijk×Im τ (4.5)

with a constant cijk dependent on the indices i, j, k, where we roughly approximate the
Jacobi theta function by extracting the term of l = 0. The magnitude of the imaginary
part Im τ directly affects the eigenvalues of the mass matrices. Therefore, the orbifolds
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T 2/ZN (N = 3, 4, 6) have strong predictabilities for the mass eigenvalues from this point
of view.

4.2 One-Higgs-pair case

At first, we focus on the one Higgs cases. For the one Higgs cases, the general form of the
mass matrices is given in the 4D effective theory as

Mij = yijv, (4.6)

where v = 174 GeV is the VEV of the Higgs doublet and we suppress the index k = 0.
As pointed out in the previous chapter, we have no parameter except for the T 2/Z2

orbifold. Only on the T 2/Z2 orbifold, we can treat the complex modulus parameter as a
free parameter.

Before showing the results of the comprehensive analyses, we would like to show an
illustrating pattern for T 2/Z2 case and its predictions. On T 2/Z2 with non-trivial orb-
ifolding twists, namely with non-trivial SS phases, we show the analytic expression of the
Yukawa couplings. Also in this chapter, we adopt the basis where the Wilson line phases
are gauged out and only the SS phases are non-trivial. With respect to the zero-mode
wavefunctions on T 2 and T 2/Z2, we know the relationship between them. Thus, all we
have to do is to rotate the basis of the zero-mode wavefunctions from T 2 to T 2/Z2. In-
deed, the analytic Yukawa couplings (λI,J,K on T 2 and λ̃I,J,K on T 2/Z2) obtained from
the overlapping integral are given as

λI,J,K =

∫

d2zΘ
(I+αI ,βI)
MI ,0

(z, τ)Θ
(J+αJ ,βJ )
MJ ,0

(z, τ)
(

Θ
(K+αK ,βK)
MK ,0 (z, τ)

)∗
, (4.7)

λ̃I,J,K =

∫

d2z Θ̃
(I+αI ,βI)
MI ,0;ηI

(z, τ)Θ̃
(J+αJ ,βJ )
MJ ,0;ηJ

(z, τ)
(

Θ̃
(K+αK ,βK)
MK ,0;ηK

(z, τ)
)∗
. (4.8)

As explained before, the Yukawa couplings on T 2 are written by eliminating the Wilson
line phases in Eq. (2.55) as

λI,J,K =
NMI

NMJ

NMK

∑

m∈ZMK

δI+αI+J+αJ+mMI ,K+αK+lMK

× ϑ

[
MJ (I+αI)−MI(J+αJ )+MIMJm

MIMJMK

0

]

(X, Y ), (4.9)

where we use the definitions X ≡ MIβJ −MJβI and Y ≡ MIMJMKτ . By taking into
account of the diagonalization for the kinetic terms, we consequently find the desired
Yukawa couplings,

λ̃′I′,J ′,K′ =

|MI |−1∑

I=0

|MJ |−1∑

J=0

|MK |−1∑

K=0

λ̃I,J,K
(

UZ2;ηI
)

I,I′

(

UZ2;ηJ
)

J,J ′

(

UZ2;ηK
)∗
K,K′

. (4.10)
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The index I ′ (J ′ andK ′) runs over I ′ = 0, 1, ...,Rank[M (Z2;ηI)]−1 (J ′ = 0, 1, ...,Rank[M (Z2;ηJ )]−
1 and K ′ = 0, 1, ...,Rank[M (Z2;ηK)] − 1). In this basis, the kinetic terms are individually
diagonalized for the three sectors which construct the Yukawa interactions. Consequently,
the expression of the Yukawa couplings on T 2/Z2 in Eq. (4.10) is exactly the desired one.
In general, the diagonalizing matrices UZN ;ηI on T 2/ZN orbifolds, are not diagonal, and
provide the Yukawa couplings with mixing effects. However, we can set the diagonalizing
matrices on T 2/Z2 case as a diagonal form,

(

UZ2;ηI
)

I,I′
→ δI,I′ . (4.11)

For the other orbifolds T 2/ZN (N = 3, 4, 6), some contributions from the non-diagonal
unitary matrices are generated and it is plausible that their effects disturb the structures
of the Yukawa couplings.1 In the comprehensive analyses, we will take into account of
such mixing effects on T 2/ZN (N = 3, 4, 6).

Let us consider the one-pair Higgs example on T 2/Z2 which is generated by the fol-
lowing magnetic fluxes, SS twist phases and Z2 parities,

(Mbc,Mca,Mab) = (−2,−4,+6), (4.12)

(αbc, αca, αab) = (0, 0, 0), (4.13)

(βbc, βca, βab) = (1/2, 0, 1/2), (4.14)

(ηbc, ηca, ηab) = (+1,+1,+1), (4.15)

for the Yukawa couplings between the up-type quarks and the up-type Higgs doublet and

(Mbc′ ,Mc′a,Mab) = (−1,−5,+6), (4.16)

(αbc′ , αc′a, αab) = (0, 0, 0), (4.17)

(βbc′ , βc′a, βab) = (1/2, 0, 1/2), (4.18)

(ηbc′ , ηc′a, ηab) = (+1,+1,+1), (4.19)

for those between the down-type quarks and the down-type Higgs doublet, where we
assume that the U(2)R is broken down to its subgroups. Note that here we set all the
Wilson line phases to be vanishing, as chosen in the previous chapter. The bi-fundamental
representation in the ab-sector corresponds to the left-handed quark doublets. Similarly,
the matter fields in the ca-sector (c′a-, bc- and bc′-sectors) are the right-handed up-type
quarks (right-handed down-type quarks, the up-type Higgs doublet and the down-type
Higgs doublet). By plugging the above configurations of the fluxes, SS twists and Z2

parities with specific replacements, e.g., Mab → MI , we obtain the analytic expression
of the Yukawa couplings. However, the analytic expression is quite clumsy. Hence, we
focus only on the approximated form of the Yukawa matrices. At first, we define useful

1See, e.g., Ref. [43].
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functions which will appear in the Yukawa matrices,

η
(u)
N ≡ ϑ

[

N/Mu

0

]

(−2,Muτ), (4.20)

η
(d)
N ≡ ϑ

[

N/Md

0

]

(−5/2,Mdτ), (4.21)

where Mu ≡ MabMbcMca = 48 and Md ≡ MabMbc′Mc′a = 30. The definitions of these
functions are slightly different from those defined in Refs. [33, 44]. In fact, the above
definitions can be rewritten as

η
(u)
N = e

2πi
N
Mu

(−2) × ϑ

[

N/Mu

0

]

(0,Muτ), (4.22)

η
(d)
N = e

2πi
N
Md

(−5/2) × ϑ

[

N/Md

0

]

(0,Mdτ), (4.23)

by using the formula of the Jacobi theta function (2.54). From these rewritten functions,
we find that the non-vanishing SS twist phases just provide phase factors in front of
η
(u)
N and η

(d)
N . By plugging the above fluxes, SS twists and Z2 parities into the Yukawa

couplings in the Z2 case, we finally obtain the Yukawa matrices for the up- and down-type
quarks,

λ̃
′(u)
I′,J ′ ∼







η
(u)
0 0 η

(u)
12

0 η
(u)
2 0

η
(u)
8 0 η

(u)
4






, (4.24)

λ̃
′(d)
I′,J ′ ∼







η
(d)
0 η

(d)
6 η

(d)
12

η
(d)
5 η

(d)
1 η

(d)
23

η
(d)
10 η

(d)
4 η

(d)
2






. (4.25)

Here, we approximate each of the Yukawa coupling elements by using a formula of the
Jacobi theta functions [33],

η
(u,d)
N < η

(u,d)
N ′ (N > N ′). (4.26)

By diagonalizing the above Yukawa matrices, we show sample values of the one-pair Higgs
model in Table 4.1. In numerical calculation, we have only a single free parameter, i.e., an
imaginary part of the complex structure modulus. In Table 4.1, theoretical sample values
are given by Im τ = 10. It is found that the setup with the above magnetic fluxes, SS twist
phases and Z2 parities can lead to only the observed mass hierarchies among the up- and
down-type quarks. However, the setup gives tiny mixing angles which are inconsistent
with the observed mixing angles of the quarks. The other cases of the magnetic fluxes, SS
phases and Z2 parities are similar to the results in Table 4.1. Even if we can realize the
suitable mass hierarchies of the quarks, we never obtain the largest mixing angles in the
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CKM mixing matrix, i.e., |(VCKM)12| ≃ 0.23. We can conclude that the one-pair Higgs
models on T 2/Z2 are not suitable in constructing flavor models.

Indeed, there are other patterns of one-pair Higgs models on T 2/Z2 besides the pattern
in the previous paragraph. The Yukawa hierarchies in the patterns are corresponding to
the mass hierarchies, because of the one-pair Higgs models. The ratios between three
eigenvalues of the Yukawa matrices are shown in Figures 4.1, 4.2 and 4.3. The difference
among Figures 4.1, 4.2 and 4.3 is the value of the complex structure modulus. We set
Im τ = 1 in Figure 4.1, Im τ = 5 in Figure 4.2 and Im τ = 10 in Figure 4.3. Note that
we can freely choose the values of the complex structure modulus in the T 2/Z2 case, as
pointed out previously. The yellow (blue) bins show the ratio between the smallest and
largest (the smallest and second largest) eigenvalues, namely, m1/m3 (m2/m3). Then, the
mass ordering is m1 ≤ m2 ≤ m3. We find that the mass hierarchies become larger as Im τ
becomes larger. In some patterns with Im τ = 10, the sufficient hierarchy, i.e., O(10−5),
can be realized by setting a large value of Im τ .

Next, we investigate the cases of the one-pair Higgs models on T 2/ZN (N = 3, 4, 6).
Note that the values of the complex structure modulus should be τ = e2πi/N on T 2/ZN (N =
3, 4, 6). This implies that we have no free parameter in the one-pair Higgs models on
T 2/ZN . In Figures 4.4, 4.5 and 4.6, we can not find the promising patterns which lead to
the sufficient hierarchy (O(10−5)). The reason is that we can not choose the large value
of Im τ in these cases. Although we need Im τ ∼ 10 on T 2/Z2, Im τ = sin(2πi/N) < 1 on
T 2/ZN (N = 3, 4, 6) is too small to realize the sufficient hierarchy.

Sample values Observed values

(mu,mc,mt)/mt (9.9× 10−6, 2.8× 10−2, 1) (1.5× 10−5, 7.5× 10−3, 1)

(md,ms,mb)/mb (5.0× 10−3, 1.6× 10−2, 1) (1.2× 10−3, 2.3× 10−2, 1)

|VCKM|











0.99 3.1× 10−8 0

3.1× 10−8 0.99 2.6× 10−13

0 2.6× 10−13 0.99





















0.97 0.23 0.0035

0.23 0.97 0.041

0.0087 0.040 1.0











Table 4.1: Theoretical sample values of the one-pair Higgs model on T 2/Z2.
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Figure 4.1: The ratios between three eigenvalues of the Yukawa matrices on T 2/Z2. Here,
we set Im τ = 1.

2 22

12

44

10

4

1

10

4

2 2

4

2

4

2
1
2

8

4

2

10

2

4

8

6

2

0.001 0.005 0.010 0.050 0.100 0.500 1
0

5

10

15

20

/ =

Figure 4.2: The ratios between three eigenvalues of the Yukawa matrices on T 2/Z2. Here,
we set Im τ = 5.



Chapter 4. Systematic analysis of Yukawa hierarchies 36

22 2

12

2

6

2

8

4

1

6

4

222

4

2 2
3
2 22

12

2

10

2

4

12

4

10-5 10-4 0.001 0.010 0.100 1
0

5

10

15

20

/ =

Figure 4.3: The ratios between three eigenvalues of the Yukawa matrices on T 2/Z2. Here,
we set Im τ = 10.

4

1

3

5

7

5

9

20

7

2
3
2

6

3

1
2 2

1

6

23

32

2

10

0.01 0.05 0.10 0.50 1
0

5

10

15

20

25

30

35

/

Figure 4.4: The ratios between three eigenvalues of the Yukawa matrices on T 2/Z3



37 4.2 One-Higgs-pair case

11

3

6

3
444

2

44

9

1

11

14

5
6

10

13

4

21

7
6

2
3

1

3

10

13

8

13

20

26

31

14

0.01 0.05 0.10 0.50 1
0

5

10

15

20

25

30

35

/

Figure 4.5: The ratios between three eigenvalues of the Yukawa matrices on T 2/Z4

1 21

6

2 111212 1 11
32

6
8

5

1212

151614

7

211
334

6

9

25

45

28

10
-4 0.001 0.010 0.100 1

0

10

20

30

40

50

/

Figure 4.6: The ratios between three eigenvalues of the Yukawa matrices on T 2/Z6



Chapter 4. Systematic analysis of Yukawa hierarchies 38

4.3 Two-Higgs-pair case

In this chapter, we try to investigate the mass hierarchy in the two-pair Higgs models.
Note that the two generations of the Higgs doublets are possible except for T 2/Z2. Then,
values of the complex structure modulus must be discretized, as mentioned already. For
the two Higgs doublet cases, the mass matrix is given in terms of the two VEVs as

Mij = yij1v1 + yij2v2, (4.27)

where v1 and v2 denote the VEVs of the two Higgs doublets. The VEVs satisfy

v21 + v22 = v2 = (174GeV)2. (4.28)

In the two Higgs cases, the eigenvalues of the mass matrix in Eq. (4.27) are affected by
the ratio of the two VEVs. Hence, the ratio of the VEVs, i.e., v1/v2, is considered as an
only free parameter. In numerical studies, step sizes of the ratio v1/v2 are chosen as 0.001
from 0.001 to 1 and 0.1 from 1 to 1000.

Figure 4.7 shows distributions of the mass hierarchies on T 2/Z3. We easily find that
specific tunings of the VEV ratio can lead to mild hierarchies of the mass eigenvalues.
However, a sufficient ratio O(10−5) can not be reached. Figures 4.8 and 4.9 also show the
results on T 2/Z4 and T

2/Z6. By rough estimations, the hierarchies between eigenvalues as
large as 5×10−2 for T 2/Z2 and 5×10−3 for T 2/Z4 and T

2/Z6 are found. These hierarchies
do not explain the observed mass ratio between the up and top quarks mu/mt = O(10−5).
Thus, we can conclude that the two-pair Higgs models are not suitable for model buildings
including the quark flavors.

Before closing this chapter, we would like to point out the reason of less hierarchical
structures in the two-pair Higgs models. For example, let us consider an example of the
following configuration of the magnetic fluxes, SS twist phases and Z6 parities for T

2/Z6,

{Mab, αab, sab} = {−15, 1/2, 0}, (4.29)

{Mca, αca, sca} = {+24, 0, 5}, (4.30)

{Mbc, αbc, sbc} = {−9, 1/2, 1}. (4.31)

Here, we use a charge of the Z6 parity, e.g., ηab ≡ e2πisab/6. The same holds for the ca- and
bc-sectors. It is easily confirmed that this configuration leads to three generations of the
left-handed and right-handed fermions and two generations of the Higgs doublets. (The
mass ratios in this configuration are shown in the second panel from the upper right in
Fig. 4.7.) By plugging the possible value of the complex modulus parameter τ = e2πi/6,
we can eventually obtain the numerical expression of the mass matrix,

Mij = yij1v1 + yij2v2, (4.32)
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where,

yij1 =




−0.204991− 0.0796877i 0.00942303 + 0.09068i 0.0519518 + 0.0517703i
0.0763198 + 0.0222452i −0.00676905− 0.017782i −0.0077252− 0.00374813i
−0.0507492− 0.0180038i 0.0683165 + 0.0433135i −0.0157981− 0.12252i



 ,

(4.33)

yij2 =




0.00505039 + 0.0102538i 0.00941751 − 0.180948i −0.0776918− 0.115464i
−0.00982989− 0.00704602i 0.00161259 + 0.0544036i 0.0166123 + 0.0174854i
0.0133678 − 0.0127981i 0.0383659 − 0.114777i −0.00590916 + 0.172257i



 .

(4.34)

The hierarchy in each of the matrix elements in Eqs. (4.33) and (4.34) is found as O(10−2).
This is due to the mixing effects from the kinetic mixing and the basis changing from the
torus zero-mode eigenstates to the orbifold zero-mode eigenstates. Thus, such mixing
effects disturb the hierarchical structure in the mass matrix on the original torus zero-
mode basis. This smearing effect appears also in the other configuration of the fluxes and
so on. Thus, we can conclude that the two-pair Higgs models are not suitable for the
quark sector.
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Figure 4.7: The values of the mass hierarchies on T 2/Z3. In these figures, ratios of
eigenvalues of the mass matrix, m1/m3,m2/m3, are plotted as functions of the ratio of
Higgs VEVs v1/v2, which is varied with the step size 0.001 from 0.001 to 1 and with the
step size 0.1 from 1 to 1000.
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Figure 4.7: (Continued.) The values of the mass hierarchies on T 2/Z3. In these figures,
ratios of eigenvalues of the mass matrix, m1/m3,m2/m3, are plotted as functions of the
ratio of Higgs VEVs v1/v2, which is varied with the step size 0.001 from 0.001 to 1 and
with the step size 0.1 from 1 to 1000.
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Figure 4.8: The values of the mass hierarchies on T 2/Z4. In these figures, ratios of
eigenvalues of the mass matrix, m1/m3,m2/m3, are plotted as functions of the ratio of
Higgs VEVs v1/v2, which is varied with the step size 0.001 from 0.001 to 1 and with the
step size 0.1 from 1 to 1000.
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Figure 4.9: The values of the mass hierarchies on T 2/Z6. In these figures, ratios of
eigenvalues of the mass matrix, m1/m3,m2/m3, are plotted as functions of the ratio of
Higgs VEVs v1/v2, which is varied with the step size 0.001 from 0.001 to 1 and with the
step size 0.1 from 1 to 1000.





Chapter 5

Gaussian Froggatt–Nielsen

mechanism

In this chapter, we propose a promising texture of mass matrices derived from the mag-
netized orbifold background [44]. We show that such a texture can realize some of the
experimental data of quarks and charged leptons, i.e., mass hierarchies and quark mixing
angles. Furthermore, we construct a concrete model with the promising texture on the
basis of ten-dimensional supersymmetric Yang–Mills theory with non-vanishing magnetic
fluxes.

5.1 Supersymmetry

The ten-dimensional SYM theory has N = 4 4D-supersymmetries (SUSY), that is, it con-
tains four 4D supercharges. However, the flux configurations satisfying a certain condition
can preserve only a part of supersymmetries, i.e., N = 1 4D SUSY. Then, we can derive
the MSSM-like supersymmetric models from the 10D SYM theory. The SUSY preserving
condition is given by

1

A(1)
〈F45〉+

1

A(2)
〈F67〉+

1

A(3)
〈F89〉 = 0, (5.1)

as mentioned in Refs. [38, 46]. Here A(i) denotes an area of the i-th torus. This condition
restricts model-building strongly.

The authors of Ref. [38] tried to construct a model satisfying this condition. As a
result, they obtained a single model that has realistic spectra with the low-scale SUSY
breaking scenario on the 2D torus. In their model, three-generation structure is generated
without an orbifold projection and the Pati–Salam magnetic fluxes break the U(8) group
down to U(4)×U(2)×U(2), i.e., the Pati–Salam gauge group, which is usually broken by
Wilson-lines. Without orbifoldings, the flux configuration which is adopted in the model
is a unique ansatz to generate three-generations because of the strict SUSY condition.

45
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If the three-generation structure is given by degenerate zero-modes reduced by orbifold
projections, then, the four-block texture of fluxes is required to make a difference between
the SM quarks and leptons. However, the SUSY preserving condition can not be satisfied
with such flux configurations [40]. Magnetized orbifold models that entail to preserve
N = 1 SUSY can not be realized within the 10D SYM theory.

It may seem that various orbifold models can be realized with high-scale SUSY break-
ing scenario, where all the SUSY are broken entirely by magnetic fluxes at the compact-
ification scale. However, that is not easy because we owe to Wilson-lines the success of
the previous model in terms not only of gauge symmetry breaking but also of Yukawa
hierarchies. The Wilson-lines shift the localization points of the zero-mode wavefunctions
and we could control the magnitude of the overlaps of them, directly. Namely, the Wilson-
lines were the key degrees of freedom to realize experimental data of masses of quarks
and leptons and CKM mixings in the model.

In this chapter, we try to construct an SM-like non-supersymmetric model with a
magnetized and orbifold background, which can realize mass hierarchies and mixings.
Then, we also discuss the effects of high-scale SUSY breaking.

5.2 Model construction

The three-generation structures are necessarily generated only on a torus, since we require
full-rank Yukawa matrices derived from such Yukawa couplings at the tree level in order
to obtain three non-zero masses. The configurations of magnetic fluxes on the other two
tori must be so determined to leave the MSSM field contents unchanged and to eliminate
extra fields, i.e., so-called exotic-modes. As we mentioned in the previous chapter, the
introduced magnetic fluxes are not restricted by the D-term SUSY preserving condition
(5.1), because it is impossible to satisfy the condition (5.1) and we left the low-scale
SUSY breaking scenario for that at the high-scale in the magnetized orbifold models.
Since the structures of the other two tori must not change or spoil the three-generation
structures of quarks and leptons, the second and third parts of Yukawa couplings, a(2)

and a(3) in Eq. (3.12), can not possess the flavor index if the three-generation structures
are generated on the first two-dimensional orbifold T 2/Z2, that is, Yukawa couplings in
the four-dimensional effective theory are given by

YIJK = λ
(1)
IJKλ

(2)λ(3), (5.2)

where Yukawa couplings λ(2) and λ(3) are O(1) global factors.
For the moment, we concentrate on the orbifold T 2/Z2 where three degenerate zero-

modes are generated, and discuss the entire extra dimensions later. Three degenerate
zero-modes are given by four types of magnetic fluxes in T 2/Z2 orbifold models, i.e.,
M = 4, 5 for even-modes (η = +1) and M = 7, 8 for odd-modes (η = −1). The magnetic
fluxes that a Higgs sector feels are automatically determined because of gauge symmetry
and other consistency if the fluxes of the left-handed and the right-handed sectors are
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fixed. Twenty configurations of magnetic fluxes yielding the three-generation models and
the degeneracy of Higgs fields on such configurations are listed in Ref. [35], if there are
no non-trivial SS twist phases. The authors also studied the quark masses and mixings
numerically in a sample model. We focus on the other configuration of magnetic fluxes,
and analyze the Yukawa-coupling textures obtained from such a flux configuration. In
this section, we construct a model containing the three-generations of quarks and leptons,
which can realize (semi-)realistic patterns of masses and mixings simultaneously, even
though we do not use the Wilson-line phases in such orbifold models.

We start from a ten-dimensional U(8) SYM theory with the following flux configuration
on the first torus with the coordinates (y4, y5),

F45 ∝









0× 13

1× 11

5× 12

−7× 12









, (5.3)

which is nothing but a four-block flux. The magnetic flux breaks the U(8) gauge group
down to SU(3)C × SU(2)L × SU(2)R up to U(1)s. There exists the remaining SU(2)R
gauge group and it is difficult to break the SU(2)R gauge group by the the magnetic fluxes
and orbifold projections. We show the configuration of the magnetic fluxes which each
sector feels and the Z2 boundary conditions in Table 5.1.

left-handed field right-handed field Higgs field
quark-sector −5 (even) −7 (odd) +12 (odd)
lepton-sector −4 (even) −8 (odd) +12 (odd)

Table 5.1: The values of magnetic fluxes and the Z2 boundary conditions for quarks and
leptons on the first orbifold T 2/Z2.

We can see that the flux configuration generates the three-generations of quarks and
leptons and five-generations of Higgs multiplets from Table 5.1. The first column on
the right in the table shows the magnetic fluxes and the Z2 boundary conditions of the
Higgs sector. It is important that the Z2 boundary condition in the Higgs sector is
determined by that in the left- and the right-handed sectors to obtain the non-vanishing
Yukawa couplings. The integrand of non-vanishing Yukawa couplings, i.e., a product of
three orbifold zero-modes is a totally even-function and the sum of three magnetic fluxes
in each sector is zero because of the gauge invariance, i.e., Mab +Mbc +Mca = 0. We
select different flux configurations between quark and lepton sectors in order to realize the
experimental data of quarks and leptons. If we select the same configurations between
quarks and leptons, i.e., we use the three-block (Pati–Salam) flux, theoretical sample
values of quark and leptons are the same such that the model predicts the degenerate
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masses of quarks and leptons. Taking into account of such a requirement, SU(2)R gauge
group remains and the SU(2)R gauge group breaking sector (or mechanism) is required.
We can always consider such an additional sector as an extension of our model. Since
we are focusing on the structures of Yukawa matrices here, we just assume the SU(2)R
gauge group breaking that gives the different vacuum expectation values to the up- and
down-sector of Higgs fields. In the model, the four types of Yukawa matrices (the up- and
down-sectors in quarks and those in leptons) possess different structures by introducing
two different types of the magnetic fluxes, orbifold boundary conditions and the VEVs of
Higgs fields.

We show all the zero-mode wavefunctions given by the above flux configurations in
Table 5.2 and Table 5.3.

Generation Q u, d Hu, Hd

0 ψ0,5 1√
2
(ψ1,7 − ψ6,7) 1√

2
(φ1,12 − φ11,12)

1 1√
2
(ψ1,5 − ψ4,5) 1√

2
(ψ2,7 − ψ5,7) 1√

2
(φ2,12 − φ10,12)

2 1√
2
(ψ2,5 − ψ3,5) 1√

2
(ψ3,7 − ψ4,7) 1√

2
(φ3,12 − φ9,12)

3 — — 1√
2
(φ4,12 − φ8,12)

4 — — 1√
2
(φ5,12 − φ7,12)

Table 5.2: Zero-mode wavefunctions of the left-handed quarks Q, the right-handed quarks
u, d and the up- and down- Higgs fields Hu, Hd.

Generation L e, ν Hu, Hd

0 ψ0,4 1√
2
(ψ1,8 − ψ7,8) 1√

2
(φ1,12 − φ11,12)

1 1√
2
(ψ1,4 − ψ3,4) 1√

2
(ψ2,8 − ψ6,8) 1√

2
(φ2,12 − φ10,12)

2 ψ2,4 1√
2
(ψ3,8 − ψ5,8) 1√

2
(φ3,12 − φ9,12)

3 — — 1√
2
(φ4,12 − φ8,12)

4 — — 1√
2
(φ5,12 − φ7,12)

Table 5.3: Zero-mode wavefunctions of the left-handed leptons L, the right-handed
charged leptons e, the neutrinos ν and the up- and down- Higgs fields Hu, Hd.

We can calculate all the Yukawa couplings analytically. For a simple description, we
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define the following function,

ηN = ϑ

[

N/M

0

]

(0,Mτ). (5.4)

We use this function to represent the Jacobi theta function in the elements of the Yukawa
couplings. A complex structure parameter τ in Eq. (5.4) denotes τ (1) in the previous
chapter and M is a product of three fluxes, 5 × 7 × 12 = 420 for the quark-sector and
4× 8× 12 = 384 for the lepton-sector.

We have five generations of Higgs fields, and the Yukawa couplings are written as

YIJKHK(QL)I(QR)J = (YIJ0H0 + YIJ1H1 + YIJ2H2 + YIJ3H3 + YIJ4H4) (QL)I(QR)J .
(5.5)

Note that mass matrices of quarks and leptons are given by a linear combination of the
five Yukawa matrices. A certain linear combination of the five Higgs fields corresponds to
the SM Higgs field. The five Yukawa matrices are written in terms of the η-function. For
the quark-sector, we obtain

YIJ0 =
1√
2





√
2 (η5 − η65)

√
2 (η185 − η115)

√
2(η55 + η125)

η173 − η103 − η187 + η163 η67 − η137 − η53 + η17 η113 − η43 − η127 + η197
η79 − η149 − η19 + η89 η101 − η31 − η199 + η151 η139 − η209 − η41 + η29



 ,

(5.6)

YIJ1 =
1√
2





√
2 (η170 − η110)

√
2 (η10 − η130)

√
2(η50 + η190)

η2 − η142 − η58 + η82 η178 − η38 − η122 + η158 η62 − η202 − η118 + η22
η166 − η26 − η194 + η94 η74 − η206 − η46 + η94 η106 − η34 − η134 + η146



 ,

(5.7)

YIJ2 =
1√
2





√
2 (η75 − η135)

√
2 (η165 − η45)

√
2 (η15 − η195)

η173 − η33 − η117 + η93 η3 − η207 − η123 + η87 η183 − η27 − η57 + η153
η9 − η201 − η51 + η81 η171 − η39 − η129 + η81 η69 − η141 − η111 + η99



 ,

(5.8)

YIJ3 =
1√
2





√
2 (η100 − η140)

√
2 (η80 − η200)

√
2 (η160 − η20)

η68 − η208 − η128 + η152 η172 − η32 − η52 + η88 η8 − η148 − η188 + η92
η184 − η44 − η124 + η164 η4 − η136 − η116 + η164 η176 − η104 − η64 + η76



 ,

(5.9)

YIJ4 =
1√
2





√
2 (η145 − η205)

√
2 (η95 − η25)

√
2 (η85 − η155)

η107 − η37 − η47 + η23 η73 − η143 − η193 + η157 η167 − η97 − η13 + η83
η61 − η131 − η121 + η11 η179 − η109 − η59 + η11 η1 − η71 − η181 + η169



 .

(5.10)
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Similarly, for the lepton-sector, we obtain

YIJ0 =





yb 0 −yl
0 1√

2
(ye − yi) 0

−yf 0 yh



 ,

YIJ1 =





0 yc − yk 0
1√
2
(yb − yh) 0 1√

2
(yf − yl)

0 0 0



 ,

YIJ2 =





−yj 0 yd
0 1√

2
(ya − ym) 0

yd 0 −yj



 ,

YIJ3 =





0 0 0
1√
2
(yf − yl) 0 1√

2
(yb − yh)

0 yc − yk 0



 ,

YIJ4 =





yh 0 −yf
0 1√

2
(ye − yi) 0

−yl 0 yb



 ,

where

ya = η0 + η96 + η192 + η96,

yb = η4 + η100 + η188 + η92,

yc = η8 + η104 + η184 + η88,

yd = η12 + η108 + η180 + η84,

ye = η16 + η112 + η176 + η80,

yf = η20 + η116 + η172 + η76,

yg = η24 + η120 + η168 + η72,

yh = η28 + η124 + η164 + η68,

yi = η32 + η128 + η160 + η64,

yj = η36 + η132 + η156 + η60,

yk = η40 + η136 + η152 + η56,

yl = η44 + η140 + η148 + η52,

ym = η48 + η144 + η144 + η48.

Note that a difference between the up and down sectors is given by the VEVs of the two
types of Higgs fields, Hu and Hd.
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5.3 Gaussian Froggatt–Nielsen mechanism

The model under consideration can lead to a (semi-)realistic pattern, as we will see later.
Then, it is necessary that the YIJ3 and the YIJ4 dominate the others, that is, the VEVs
of the fourth and fifth Higgs fields, 〈H3〉 and 〈H4〉, are much larger than the others. The
specific ratios are not so important, since such a (semi-)realistic pattern can be realized
within a wide parameter region around the above input parameters. To explain this, we
focus on the analytical structures of the Yukawa matrices. We go back to Eq. (5.4),

ηN = ϑ

[

N/M

0

]

(0,Mτ) =
∑

l∈Z
e−π(Im τ)(N2/M+2Ml+Ml2), (5.11)

where M = 420 for quarks and M = 384 for leptons. For such large Ms (∼ O(100)),
higher-modes with l 6= 0 are strongly suppressed and we can use the following approxi-
mation,

ηN ≃ e−π(Im τ)N2/M . (5.12)

Then, we find that the function ηN is more dominant than ηN ′ for N < N ′. By using this
approximation, we can rewrite the five Yukawa matrices up to overall factors. For the
quark sector, we obtain

YIJ0 ≃





η5 −η115 η55
−η103 −η53 −η43
−η19 −η31 η29



 , (5.13)

YIJ1 ≃





−η110 η10 η50
η2 −η38 η22
−η26 −η46 −η34



 , (5.14)

YIJ2 ≃





η75 −η45 η15
−η33 η3 −η27
η9 −η39 η69



 , (5.15)

YIJ3 ≃





η100 η80 −η20
η68 −η32 η8
−η44 η4 −η64



 , (5.16)

YIJ4 ≃





η145 −η25 η85
η23 η73 −η13
η11 η11 η1



 , (5.17)

and the dominant part of the Yukawa matrices in the above example is given by

yquark = YIJ3 + YIJ4 ≃





η100 −η25 η20
η23 −η32 −η8
η11 η4 η1



 , (5.18)

where ηN is given approximately in Eq. (5.12) and we find that the effective Yukawa
matrix has a Froggatt–Nielsen-like (FN-like) structure with Gaussian functions. Although
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it is different from the original FN structure [11] where the Yukawa couplings are given by
exponential functions, it is important to note that the quantum numbers corresponding to
the FN charges are already determined by the magnetic fluxes. Furthermore, the lighter
a particle is, the larger the FN charges are. That is, ai > ai+1 and bj > bj+1 if the Yukawa
couplings are given by the following form,

yij ∼ e−(ai+bj)
2

, (5.19)

where ai and bj are the FN charges 1. Therefore, we obtain the FN-like texture of Yukawa
couplings derived from the magnetized orbifold model. This type of the parameterization
in the Yukawa matrix

Y
(G)
ij = e−c(ai+bj)

2

, (5.20)

is similar to the FN parameterization [11],

Y
(FN)
ij = e−c

′(a′i+b′j), (5.21)

up to overall coefficients in front of the Yukawa elements. The FN parametrization has
been exhaustively investigated for long years after the proposition.

In the remnant of this section, we consider the phenomenological aspects of the Gaus-
sian FN mass matrices. First, we look at the FN case with the 2×2 matrix, for simplicity,

Y
(FN)
exmple =





Y
(FN)
22 Y

(FN)
23

Y
(FN)
32 Y

(FN)
33



 . (5.22)

Here, we assume Y
(FN)
22 ≤ Y

(FN)
23 , Y

(FN)
32 ≤ Y

(FN)
33 . Indeed, this is also justified by the

Gaussian parametrization (5.20) if a2 + b2 ≤ a2 + b3, for instance. By diagonalizing this
2× 2 matrix

V †Y
(FN)
exmpleV = diag(m2,m3), (5.23)

the ratio of two mass eigenvalues is calculated approximately as

m2

m3

∼ Y
(FN)
23 Y

(FN)
32

(

Y
(FN)
33

)2 , (5.24)

1We can identify the FN charges in the quark-sector,

yquark ∼ e−π(Im τ)(ai+bj)
2/420,

ai = {20, 10, 0},
bj = {10, 5, 0}.
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and the (2, 3) element in the diagonalization matrix (V ) is also given as

V23 ∼
Y

(FN)
23

Y
(FN)
33

. (5.25)

In the FN parametrization, since the elements in the Yukawa matrix are explicitly ex-
pressed by the FN charges a′i (i = 2, 3) and b′j (j = 2, 3), now we can estimate the suitable
FN charges and an overall constant c′. In the CKM mixing matrix, the observed value is
known as Vcb ≃ 0.04, and thus we require the first constraint,

Y
(FN)
23

Y
(FN)
33

∼ 0.04. (5.26)

In addition, we also need additional constraints on the mass ratios,

Y
(FN)
23 Y

(FN)
32

(

Y
(FN)
33

)2 ∼ Vcb
Y

(FN)
32

Y
(FN)
33

∼
(

mc

mt

)

observed

∼ 0.007, (5.27)

for the charm and top quarks, and

Y
(FN)
23 Y

(FN)
32

(

Y
(FN)
33

)2 ∼ Vcb
Y

(FN)
32

Y
(FN)
33

∼
(

ms

mb

)

observed

∼ 0.03, (5.28)

for the strange and bottom quarks. Thus, we eventually find Y
(FN)
32 /Y

(FN)
33 ∼ 0.2 for the

up sector and Y
(FN)
32 /Y

(FN)
33 ∼ 1 for the down sector. These constraints on the Yukawa

elements are splendidly satisfied by a well-known value, i.e., λ = 0.225. (This value can
originate from the Cabbibo angle λ = sin θ12.) Indeed, suitable parameterizations in both
the up and down sectors are known as

Y
(FN)
example ∼

(

λ3 λ2

λ 1

)

, (5.29)

for the up sector and

Y
(FN)
example ∼

(

λ2 λ2

1 1

)

, (5.30)

for the down sector up to O(1) coefficients in front of each element. The extension to
realistic 3× 3 Yukawa matrices among totally six quarks is straightforward. It is known
that the quark sector can be well parametrized by the Cabbibo angle through the FN
mechanism, even if we add the first generation of the quarks, that is, the up and down
quarks.
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Next, we focus on the Gaussian FN case. It is important to note that there is a
different point between the usual FN and the Gaussian FN mechanisms. In the usual FN
case, a (rough) relationship

Y
(FN)
ii Y

(FN)
33

Y
(FN)
i3 Y

(FN)
3i

∼ 1, (5.31)

is found for i = 1, 2. This relationship is easily seen in the above example (5.29) and
(5.30). However, in the Gaussian FN case, such a relationship does not hold:

Y
(G)
ii Y

(G)
33

Y
(G)
i3 Y

(G)
3i

≪ 1, (5.32)

for i = 1, 2. Except for this point, the Gaussian FN case is almost the same as the usual
FN case. Before considering the concrete mass matrices via the Gaussian FN mechanism,
we consider the SU(2)R gauge symmetry. As stated in the previous section, the model
possesses an additional SU(2)R gauge symmetry in addition to the SM gauge symmetry.
The SU(2)R gauge symmetry forces the same VEVs for the up- and down-type Higgs
fields. Then, the diagonalizing matrices in the up- and down-type quark mass matrices are
equivalent to each other, and the CKM mixings are vanishing. In this chapter, we assume
that an existence of non-perturbative effects or higher-dimensional corrections which may
be derived from the superstring theories can break the SU(2)R gauge symmetry. If the
existence of such effects breaks the SU(2)R symmetry, it is naively expected that the VEVs
of the five generations of the Higgs fields are differently configured. In the following part,
the Higgs VEVs are denoted by vui ≡ 〈Hui〉 (i = 0, 1, ..., 4) and vdj ≡ 〈Hdj〉 (j = 0, 1, ..., 4).
As explained in the above paragraph, the Yukawa matrices for the fourth and fifth Higgs
fields are used to work the Gaussian FN mechanism. Thus, we assume that the fourth
and fifth non-vanishing VEVs of the Higgs fields are dominant compared with the other
ones. In addition, we need an additional non-vanishing VEV in the down Higgs sector
because of a realization of the mass hierarchy for the charged leptons. Hence, we assume
the following configuration of the non-vanishing Higgs VEVs in total,

vu3 ∼ vu4, vd3 ∼ vd4, vd2 ≪ vd4. (5.33)

In terms of these Higgs VEVs, the mass matrices of the up and down type quarks are
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written as

M (u) ≃





η100vu3 −η25vu4 −η20vu3
η23vu4 −η32vu3 η8vu3
η11vu4 η4vu3 η1vu4



 (5.34)

= vu4





η100ρu −η25 −η20ρu
η23 −η32ρu η8ρu
η11 η4ρu η1



 , (5.35)

M (d) ≃





η100vd3 −η25vd4 η15vd2 − η20vd3
η23vd4 η3vd2 − η32vd3 η8vd3

η9vd2 + η11vd4 η4vd3 η1vd4



 (5.36)

= vd4





η100ρd −η25 η15ρ
′
d − η20ρd

η23 η3ρ
′
d − η32ρd η8ρd

η9ρ
′
d + η11 η4ρd η1



 , (5.37)

where we define three VEV ratios,

ρu ≡
vu3
vu4

, ρd ≡
vd3
vd4

, ρ′d ≡
vd2
vd4

. (5.38)

Let us focus on the (2 × 2) lower right parts of the mass matrices. We will see that
ρu 6≃ ρd is required. When ρu ≃ ρd with a negligibly small value of ρ

′
d, the mass ratios are

expected to be almost similar, mc/mt ≃ ms/mb. Actually, in the above (2× 2) example,
the mass ratios and mixing angle are estimated as

mc

mt

∼ η4η8(ρu)
2, (5.39)

ms

mb

∼ η3ρ
′
d, (5.40)

Vcb ∼ η8(ρu − ρd). (5.41)

Here we know η1 ≃ 1. In addition to this, we numerically estimate η32 = 1.0 × 10−5,
η3 ∼ 0.9, η4 ∼ 0.8 and η8 ∼ 0.5 for τ = 1.5i. By plugging these numerical values, the
realistic patterns of the mass ratios and mixing angle can be realized by the following
VEV ratios,

ρ′d = O(0.01)−O(0.1), ρu = O(0.1), ρu − ρd = O(0.01)−O(0.1). (5.42)

Similary, we focus on all the other matrix elements. Suppose that η15ρ
′
d − η20ρd is

positive, then the mixing angle Vus including the Cabbibo angle is given by

Vus ∼
η15
η8

ρ′d
ρd
. (5.43)

In terms of numerical values η8 ∼ 0.5 and η15 ∼ 0.08, Vus = O(0.1) can be realized for
ρ′d
ρd

= O(0.1)−O(1). (5.44)
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Moreover, we consider the determinants of the quark mass matrices, and then obtain two
mass constraints,

detM (u) ∼ (vu4)
2η23η25 = (mumcmt)observed, (5.45)

detM (d) ∼ (vd4)
2η3η11η15(ρ

′
d) = (mdmsmb)observed. (5.46)

Thus, we find

mu

mt

∼ η23η25
η4η8(ρu)2

, (5.47)

md

mb

∼ η11η15ρ
′
d. (5.48)

With η25 ∼ 0.0009, η23 ∼ 0.003, η15 ∼ 0.08 and η11 ∼ 0.3 for τ = 1.5i, the realistic mass
ratios require (ρu)

2 = O(0.1) and ρ′d = O(0.1). The promising parameter ranges of ρu, ρd
and ρ′d are found.

Now, we can numerically calculate the above Yukawa matrices, depending on the
values of Higgs VEVs and an imaginary part of complex structure parameter, Im τ 2. In
particular, we calculate the mass ratios of the quarks and charged leptons and the CKM
mixing matrix at the compactification scale, e.g. GUT scale. If we try to realize the tiny
neutrino masses simultaneously, the Majorana mass terms are required. The Majorana
mass terms are expected to be induced by the non-perturbative effects of Euclidean-
branes [48, 49]. However, we do not treat the Majorana masses. The reason is that
the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix depends on the texture
of the Majorana masses. Although we can take account of the renormalization group
equation (RGE) flows, the effects depend on the models including the SU(2)R breaking
sector and we study it here without them.3 We show sample spectra in Table 5.4 where
Im τ = 1.5 and the VEVs of five Higgs fields are chosen as

ρu = 0.29. ρd = 0.38, ρ′d = 0.1. (5.49)

In Table 5.4, the sample values of the mass ratios and mixing angles in the quarks are
shown.

2A real part of τ gives physical phases and we do not study them in this thesis. Other parameters
give O(1) global factors.

3Indeed, the RGE changes the values of mass hierarchies and the elements of CKM matrix slightly
[50].
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sample values observed

(mu,mc,mt)/mt (1.7× 10−5, 5.7× 10−3, 1) (1.5× 10−5, 7.5× 10−3, 1)

(md,ms,mb)/mb (2.0× 10−3, 6.8× 10−2, 1) (1.2× 10−3, 2.3× 10−2, 1)

(me,mµ,mτ )/mτ (2.7× 10−4, 5.9× 10−2, 1) (2.9× 10−4, 6.0× 10−2, 1)

|VCKM|











0.96 0.29 0.01

0.29 0.96 0.07

0.01 0.07 1.0





















0.97 0.23 0.0035

0.23 0.97 0.041

0.0087 0.040 1.0











Table 5.4: Mass ratios of the quarks and the charged leptons and values of the CKM
matrix VCKM elements. The experimental data are quoted from Ref. [3].

Similarly, for the lepton sector, we obtain

YIJ0 ≃





η0 0 −η44
0 η16 0
−η20 0 η28



 , (5.50)

YIJ1 ≃





0 η8 0
η4 0 η20
0 0 0



 , (5.51)

YIJ2 ≃





−η36 0 η12
0 η0 0
η12 0 −η36



 , (5.52)

YIJ3 ≃





0 0 0
η20 0 η4
0 η8 0



 , (5.53)

YIJ4 ≃





η28 0 −η20
0 η16 0
−η44 0 η4



 . (5.54)

Then, by assuming the non-vanishing VEV ratios ρd and ρ
′
d like in the down-type quarks,

we find the charged lepton mass matrix via the Gaussian FN mechanism,

M (l) ≃ vd4





η28 0 η12ρ
′
d − η20

η20ρd ρ′d + η16 η4ρd
η12ρ

′
d − η44 η8ρd η4



 . (5.55)

The numerical results in the charged leptons are shown also in Table 5.4. We can see a
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similar charge relation (except for (1, 2) and (3, 1) elements) as in the quark sector.4

We would like to mention about the stability for the input VEV parameters. The
results are shown in Figures 5.1 and 5.2. In Figure 5.1, the input VEV ratio parameters
ρu and ρd are randomly chosen in the range from 0 to 0.5. In the top (middle and
bottom) panel of Figure 5.1, ρ′d is set to be 0.01 (0.05 and 0.1). Six colors among the dots
distinguish the values of the complex modulus parameter τ , that is, Im τ =1.5 (red), 1.6
(orange), 1.7 (yellow), 1.8 (green), 1.9 (blue) and 2.0 (purple), respectively. The dots in
the figures represent promising ratios of our numerical samples that brings us with the
experimentally observed (center) values within a range from 1/5 to 5. These figures tell
that a relatively wide parameter range for ρd is allowed. The promising parameter sets
are within O(0.1) ranges of widths. This implies that the corresponding VEVs for the
Higgs fields are allowed over O(1) [GeV] or more larger for

tan β =
vMSSM
u

vMSSM
d

≡
√

v2u3 + v2u4
v2d2 + v2d3 + v2d4

= 1. (5.56)

Even for tan β = 50, the allowed range of the VEVs can be distributed within a range of
O(0.1) [GeV] widths. The number of trials for each parameter set (ρd, Im τ) is 104. For
Im τ = 1.4 and 2.1, we did not find any allowed region for two VEV ratio parameters
(ρu, ρd).

Next, we would like to show another plane of the allowed parameter space. In Fig-
ure 5.2, a horizontal axis corresponds to the value of ρ′d and a vertical axis corresponds to
the value of ρd. The values of ρd and ρ

′
d are also randomly chosen in a range from 0 to 0.5

with 104 trials. We draw the dots when the parameter set can provide the promising ratios
of our numerical samples with the experimentally observed values within a range from 1/5
to 5, similarly to Figure 5.1. The other parameters are chosen as (ρu, Im τ) = (0.3, 1.45)
in the top panel and (ρu, Im τ) = (0.2, 1.95) in the bottom panel. These figures tell that
the Gaussian FN mechanism with input VEV parameters can provide more realistic flavor
patterns among the quarks and charged leptons without any fine tuning.

4The FN charges are obtained by the following expression,

ylepton ∼ e−π(Im τ)(ci+dj)
2/384,

ci = {20, 5, 0},
dj = {15, 5, 0}.
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Ρu0.0
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Figure 5.1: Allowed parameter regions of theoretical VEV input parameters. In the top
(middle and bottom) panel ρ′d is set to be 0.01 (0.05 and 0.1). Six colors among the dots
distinguish the values of the complex modulus parameter τ , that is, Im τ =1.5 (red), 1.6
(orange), 1.7 (yellow), 1.8 (green), 1.9 (blue) and 2.0 (purple), respectively. The dots in
the figures provide the promising ratios of our numerical samples with the experimentally
observed (center) values within a range from 1/5 to 5.
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Figure 5.2: Allowed parameter regions of theoretical VEV input parameters. The other
parameters are chosen as (ρu, Im τ) = (0.3, 1.45) in the top panel and (ρu, Im τ) =
(0.2, 1.95) in the bottom panel.

5.4 10D embedding and D-term contributions

There are the 10D vector field and the 10D Majorana–Weyl spinor field in the 10D SYM
theory. We can decompose the 10D vector field into the 4D vector field and three complex
fields. Each of the three complex fields has a vector index on one of three tori (T 2)3. Also,
the 10D Majorana–Weyl spinor field is decomposed into four 4D Weyl spinor fields, i.e.,
λ+++, λ+−−, λ−+− and λ−−+, where ± denotes the chirality on each torus. We will derive
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the SM contents from them while eliminating extra massless modes, i.e., so-called exotic-
modes, by the magnetic fluxes and orbifold projections.

The chirality projection caused by magnetic fluxes is as follows. On a torus, the
positive chirality spinor fields and the vector fields have (normalizable) well-defined wave-
functions with positive fluxesMab > 0. Then, the conjugate representations are vanishing.
There is a constant zero-mode in the case with Mab = 0. Then, the chirality projection
does not work and the conjugate representation also remains.

On the orbifold T 2/Z2, the fields are transformed as follows under the Z2 orbifold
twist, z1 → −z1,

Aµ(−z1) = +PAµ(z1)P
−1, (5.57)

Am(−z1) = −PAm(z1)P
−1, (5.58)

ψ±(−z1) = ±Pψ±(z1)P−1, (5.59)

for m = 4, 5, where P is a projection operator (P 2 = 18). The number of degenerate
zero-modes is reduced (or vanished), corresponding to the parity.

We show a sample embedding of our Yukawa coupling textures into the 10D SYM
theory, taking the two types of orbifold projections into consideration. We introduce the
following magnetic fluxes on the second and the third tori as

F67 = 2π





0× 14 0 0
0 −1× 12 0
0 0 −1× 12



 , (5.60)

F89 = 2π





0× 14 0 0
0 1× 12 0
0 0 1× 12



 . (5.61)

One can easily find that the SUSY condition (5.1) can not be satisfied with the fluxes
Eqs. (5.3), (5.60) and (5.61). Here, we impose the two Z2 projections. The first one is
defined as,

(z1, z2, z3)→ (−z1,−z2, z3), (5.62)

with the projection operator,

P =





−1× 14 0 0
0 1× 12 0
0 0 1× 12



 . (5.63)

The second one is defined as,

(z1, z2, z3)→ (z1,−z2,−z3), (5.64)

with the same projection operator as Eq. (5.63). The magnetic background is consistent
with the Table 5.1, and does not change the promising flavor structures mentioned in
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the previous section. We summarize all the matter contents induced by the magnetic
background in Table 5.5.

particles SM contents superpartners assignment

gluons, W/B bosons one generation massless Aµ, λ+++

Q three generations massive (heavy) A6, A7, λ−+−

u, d three generations massive (heavy) A8, A9, λ−−+

L three generations massive (heavy) A6, A7, λ−+−

ν, e three generations massive (heavy) A8, A9, λ−−+

Hu, Hd five generations massive A4, A5, λ+−−

exotics none none —

Table 5.5: All the contents included in the model.

We obtain all the SM contents. Amazingly, we can eliminate all the extra fields, e.g.,
exotic modes, vector-like matters and diagonal adjoint fields, so-called open string moduli.
The existence of such extra massless fields is known as a notorious open problem in the
string phenomenology. Indeed, there necessarily remain some extra massless fields in the
previous works [38, 40]. Since the magnetic background as we mentioned corresponds to
the D-term SUSY breaking, the soft scalar mass terms arise while fermionic superpartners
remain massless. These shift the spectra of scalars and zero-modes become massive or even
tachyonic. Here, we give a short review of spectra of scalars and vectors on a magnetized
torus [51]. Note that, if we consider on the first T 2/Z2 orbifold, the coordinates of which
are (y4, y5), parts of the 10D vector AM M = 6, 7, 8, 9 are scalar fields and AM M = 4, 5
are vector fields on the orbifold. In Ref. [51], the squared mass of a scalar field on the
orbifold is given by

M2
scalar = 2π

|Mab|
A(1)

. (5.65)

As for the vector fields, there are additional mass terms between A4 and A5. Their masses
are given by

M2
± = 2π

|Mab|
A(1)

± 4π
Mab

A(1)
. (5.66)

We can easily find that one becomes massive with the compactification scale and the other
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is tachyonic with the same scale. Accordingly, we can calculate the scalar masses,

m2
Q̃
= 2π

(

5

A(1)
+

1

A(2)
± 2

1

A(2)
+

1

A(3)

)

, (5.67)

m2
L̃
= 2π

(

4

A(1)
+

1

A(2)
± 2

1

A(2)
+

1

A(3)

)

, (5.68)

m2
ũ, d̃

= 2π

(

7

A(1)
+

1

A(2)
+

1

A(3)
± 2

1

A(3)

)

, (5.69)

m2
ẽ, ν̃ = 2π

(

7

A(1)
+

1

A(2)
+

1

A(3)
± 2

1

A(3)

)

. (5.70)

We find that they can become massive with proper ratios of the volumes of three tori.
Finally, we calculate the Higgs masses at the compactification scale,

m2
H = 2π

(

12

A(1)
± 2

12

A(1)

)

. (5.71)

The lightest scalar mode of the Higgs sector becomes tachyonic at the compactification
scale. In any models with various 10D embeddings which do not induce the extra massless
fields, at least one tachyonic mode inevitably remains. Then, we have to assume non-
perturbative effects or higher-dimensional operators to make them massive. As another
possibility, it is known that Wilson lines without magnetic fluxes also induce the massive
modes. We can introduce the Wilson lines on the third torus if we undo the second
Z2 projection (5.64) in the above 10D embedding. The Higgs sector has non-vanishing
Wilson lines without magnetic fluxes and obtains a certain mass on the third torus.
They make the Higgs fields heavy or probably massless. Although the (MS)SM contents
shown in Table 5.5 are unchanged, there also remains the massless Wilson line moduli.
Furthermore, we have to make them massive somehow.

5.5 The other configurations for the Gaussian FN

mechanism

In this model, we use the four-block flux given as

F45 ∝









MC13 0 0 0
0 MC′11 0 0
0 0 ML12 0
0 0 0 MR12









. (5.72)



Chapter 5. Gaussian Froggatt–Nielsen mechanism 64

Indeed, we can extend this block structure into more segmentalized one, i.e., a five-block
flux,

F45 ∝













MC14 0 0 0 0
0 MC′11 0 0 0
0 0 ML12 0 0
0 0 0 MR11 0
0 0 0 0 MR′11













, (5.73)

where MC ,MC′ ,ML,MR,MR′ take different values from each other. If we consider the
case with M

(i)
R = M

(i)
R′ , the five-block flux reduces to the four-block flux. It is easily seen

that the five-block flux breaks the gauge symmetry as U(8)→ U(3)× U(2)× U(1)3. As
mentioned in the beginning of this chapter, there are two equations for magnetic fluxes,
and two free parameters, i.e., the ratios of the volumes of tori. Hence, in general the SUSY
preserving condition can be satisfied, if we choose the rations of the volumes. However,
for segmentalized fluxes, i.e., four-block and five-block fluxes, in general the supersymme-
try preserving condition can not be satisfied without an accidental compatibility of the
magnetic fluxes.

In the five-block fluxes, the quantized fluxes MC ,MC′ ,ML,MR and MR′ are different
from each other. This is apparently difficult, however, in practice this is possible. We
find four patterns in the five-block fluxes without the SS twist phases,













0× 14 0 0 0 0
0 −1× 11 0 0 0
0 0 4× 12 0 0
0 0 0 −5× 11 0
0 0 0 0 −8× 11













,













0× 14 0 0 0 0
0 1× 11 0 0 0
0 0 5× 12 0 0
0 0 0 −4× 11 0
0 0 0 0 −7× 11













,













0× 14 0 0 0 0
0 −1× 11 0 0 0
0 0 4× 12 0 0
0 0 0 −8× 11 0
0 0 0 0 −5× 11













,













0× 14 0 0 0 0
0 1× 11 0 0 0
0 0 5× 12 0 0
0 0 0 −7× 11 0
0 0 0 0 −4× 11













.
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When we use these five-block fluxes for the model construction, there appear three-
generation structures of the quarks and leptons and their superpartners in addition to
five generations of the MSSM-like Higgs pair. The concrete model construction in terms
of the five-block flux is left for the future work.





Chapter 6

Coda

In this thesis, we have arranged an infrastructure for phenomenological model buildings.
First, we have considered the higher-dimensional SYM theory compactified on a two-
dimensional torus where a non-trivial magnetic background is assumed. Then, there
appear several phenomenologically important ingredients for realistic model constructions.
For example, the chiral matter spectra, the family replications of bi-fundamental matters
and the interaction constants among the quarks or leptons to the Higgs boson (called
Yukawa interactions) were actually realized in the framework of SYM on magnetized
two-dimensional torus.

The varieties of such phenomenological properties have been confirmed on the toroidal
orbifolds T 2/ZN (N = 2, 3, 4, 6) involving the Abelian magnetic fluxes. We have explored
the phenomenological aspects of the magnetized toroidal orbifolds by comprehensively
investigating the flavor structures of quarks and charged leptons. Indeed, the magnetic
fluxes quantized by the Dirac quantization condition, the Scherk–Schwartz twist phases
and the ZN parities under the ZN orbifold identifications explicitly characterize the de-
tailed proprieties of the Yukawa coupling constants after naive dimensional reduction. By
focusing on this, we developed systematic classifications for the possible configurations
where the three generations of (general) left-handed and right-handed bi-fundamental
matter fields can survive in the low energy effective theory. Then, it turned out that
there are approximately 2600 possibilities of realizing the three-generation quarks and
leptons, and also that there can exist multiply degenerate Higgs doublet models as well
as single Higgs doublet models like in the SM of particle physics.

Among such enormous possibilities, we have tried to pick up promising candidates
which we can use to construct the flavor models that allow to derive the experimental
quark and lepton observables. We gave a theoretical proof that single Higgs doublet
models, i.e., models with one generation of the Higgs doublet and two Higgs doublet
models can not be suitable for the flavor model constructions. The reason is that slightly
overlapped zero-mode wavefunctions localized on the toroidal orbifolds lead to degenerate
values in the Yukawa coupling elements, and then mass eigenvalues are also degenerate,
leading to unhierarchical to each other. We have found that the multiple-generations of
the Higgs fields more than two are required to describe the quark mass hierarchies in the
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framework of the magnetized toroidal orbifolds.
In addition, we have concretely constructed the model which is similar to the standard

model (where almost all of the superpartner fields of the standard model particles become
much heavier than the standard model particles with the Kaluza–Klein compactification
momentum). In the model, we have discovered a certain mechanism which can generate
large mass hierarchies and small mixing angles simultaneously. The mechanism is that
the effective mass matrices after the Higgs doublets acquiring their non-zero vacuum
expectation values are explicitly written by Gaussian functions of the sum of “effective
flavor charges” assigned to three generations of quarks and leptons. It is found that the
Gaussian structures are suitable for describing the flavor properties of the quarks and
the charged leptons, and are considerably stable under the variation of input vacuum
expectation values of the Higgs fields. In order to derive realistic Gaussian mass textures,
we assumed the favorable Higgs potentials by hand. I hope to revisit such an assumption
in the near future.



Appendix A

Explicit expressions of the expansion

coefficients

In this chapter, we show the analytic forms of the expansion coefficients in Eq. (2.69),
based on Ref. [32]. The expansion coefficients are obtained by so-called “operator formal-
ism” where the relationship between quantized (KK) momenta and wavefunction local-
ization points in the extra directions by means of the 2D quantum mechanics.

A T 2/Z2

First of all, we show the T 2/Z2 case and define η ≡ ±1 for later convenience. On the
magnetized T 2/Z2, the SS phases are restricted and their allowed values are only four
combinations,

(α, β) = (0, 0), (1
2
, 0), (0, 1

2
), (1

2
, 1
2
). (A.1)

The elements of expanson coefficients are analytically written as

C
(ω)
jk = e2πi·

2β
M

(j+α)δ−2α−j,k. (A.2)

The expansion matrix which rotates the torus zero-mode basis into the orbifold physical
zero-mode basis is also given as

M
(Z2;η)
jk =

1

2

(

δj,k + ηC
(ω)
jk

)

. (A.3)

On T 2/Z2 orbifold with or without the SS twist phases, the independent zero-mode
physical states on the orbifold can be easily counted by means of the floor function [x]
[32]. Here, the floor function is defined as

[x] ≡ max {n ∈ Z | n ≤ x}. (A.4)
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A.1 (α, β) = (0, 0) case

In this case, the number of the independent zero-mode physical states on the orbifold is
expressed as

(# of the independent zero-mode physical states for η = +1) =

[

M

2

]

+ 1, (A.5)

(# of the independent zero-mode physical states for η = +1) =

[

M − 1

2

]

, (A.6)

A.2 (α, β) = (12 , 0) case

In this case, the number of the independent zero-mode physical states on the orbifold is
expressed as

(# of the independent zero-mode physical states for η = +1) =

[

M + 1

2

]

, (A.7)

(# of the independent zero-mode physical states for η = +1) =

[

M

2

]

, (A.8)

A.3 (α, β) = (0, 12) case

In this case, the number of the independent zero-mode physical states on the orbifold is
expressed as

(# of the independent zero-mode physical states for η = +1) =

[

M + 1

2

]

, (A.9)

(# of the independent zero-mode physical states for η = +1) =

[

M

2

]

, (A.10)

A.4 (α, β) = (12 ,
1
2) case

In this case, the number of the independent zero-mode physical states on the orbifold is
expressed as

(# of the independent zero-mode physical states for η = +1) =

[

M

2

]

, (A.11)

(# of the independent zero-mode physical states for η = +1) =

[

M + 1

2

]

, (A.12)
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B T 2/Z3

On T 2/Z3, the allowed discrete values of the SS twist phases are known as

α = β =







0, 1
3
, 2
3

(M = even),

1
6
, 1
2
, 5
6

(M = odd).
(A.13)

The expansion matrix is given as

M
(Z3;η)
jk =

1

3

2
∑

x=0

η̄2C
(ωx)
jk , (A.14)

by means of

C
(ω)
jk =

1√
M
e−i

π
12

+i
3πα2

M ei
π
M

k(k+6)+2πi
j·k
M , (A.15)

C
(ω2)
jk =

1√
M
ei

π
12
−i3πα

2

M e−i
π
M

j(j+6)−2πi j·k
M . (A.16)

The complex modulus parameter is fixed as ω = e2πi/3.

The number of the independent zero-mode physical states on the orbifold is shown in
Tables A.1, A.2, A.3 and A.4. Hereafter, we assume M > 0.

M 2 4 6 8 10 12 14

η
1 1 1 3 3 3 5 5
ω 0 2 2 2 4 4 4
ω̄ 1 1 1 3 3 3 5

Table A.1: The relation between the number of the independent zero-modes on T 2/Z3

and the magnetic flux M = even, the SS phases (α, β) = (0, 0) and the Z3 parity η.

M 2 4 6 8 10 12 14

η
1 1 2 2 3 4 4 5
ω 1 1 2 3 3 4 5
ω̄ 0 1 2 2 3 4 4

Table A.2: The relation between the number of the independent zero-modes on T 2/Z3

and the magnetic flux M = even, the SS phases (α, β) = (1
3
, 1
3
), (2

3
, 2
3
) and the Z3 parity

η.
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M 1 3 5 7 9 11 13

η
1 1 1 2 3 3 4 5
ω 0 1 2 2 3 4 4
ω̄ 0 1 1 2 3 3 4

Table A.3: The relation between the number of the independent zero-modes on T 2/Z3

and the magnetic flux M = odd, the SS phases (α, β) = (1
6
, 1
6
), (5

6
, 5
6
) and the Z3 parity η.

M 1 3 5 7 9 11 13

η
1 0 2 2 2 4 4 4
ω 1 1 1 3 3 3 5
ω̄ 0 0 2 2 2 4 4

Table A.4: The relation between the number of the independent zero-modes on T 2/Z3

and the magnetic flux M = odd, the SS phases (α, β) = (1
2
, 1
2
) and the Z3 parity η.

C T 2/Z4

On T 2/Z4, the allowed discrete values of the SS twist phases are kwown as

α = β = 0, 1
2
. (A.17)

The expansion matrix is given as

M
(Z4;η)
jk =

1

4

3
∑

x=0

η̄xC
(ωx)
jk , (A.18)

by means of

C
(ω)
jk =

1√
M
e2πi

α2

M e2πi
j·k
M

+2πi 2α
M

k, (A.19)

C
(ω2)
jk = e−2πi

2α
M

(α+j)δ−2α−j,k, (A.20)

C
(ω3)
jk =

1√
M
e−2πi

α2

M e−2πi
j·k
M
−2πi 2α

M
k. (A.21)

The complex modulus parameter is fixed as ω = e2πi/4.

The number of the independent zero-mode physical states on the orbifold is shown in
Tables A.5 and A.6. Hereafter, we assume M > 0.
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M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

η

+1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5
+i 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4
−1 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
−i 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4

Table A.5: The relation between the number of the independent zero-modes on T 2/Z4

and the magnetic flux M , the SS phases (α, β) = (1
2
, 1
2
) and the Z4 parity η.

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

η

+1 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4
+i 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
−1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4
−i 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4

Table A.6: The relation between the number of the independent zero-modes on T 2/Z4

and the magnetic flux M , the SS phases (α, β) = (1
2
, 1
2
) and the Z4 parity η.

D T 2/Z6

On T 2/Z6, the allowed discrete values of the SS twist phases are kwown as

α = β =

{

0 (M = even)
1
2

(M = odd).
(A.22)

The expansion matrix is given as

M
(Z6;η)
jk =

1

6

5
∑

x=0

η̄xC
(ωx)
jk , (A.23)

by means of

C
(ω)
jk =

1√
M
ei

π
12

+i π
M

α2

e−i
π
M

k2+2πi α
M

k+2πi j·k
M , (A.24)

C
(ω2)
jk =

1√
M
e−

π
12

+i 3πα2

M
+i π

M
j2+2πi α

M ei
4πα
M

k+2πi j·k
M , (A.25)

C
(ω3)
jk = e−i

4πα2

M
−i 4πα

M δ−2α−j,k, (A.26)

C
(ω4)
jk =

1√
M
e

π
12
−i 3πα2

M
−i π

M
k2−2πi α

M e−i
4πα
M

k−2πi j·k
M , (A.27)

C
(ω5)
jk =

1√
M
e−i

π
12
−i π

M
α2

ei
π
M

j2−2πi α
M

j−2πi j·k
M . (A.28)
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The complex modulus parameter is fixed as ω = e2πi/6.
The number of the independent zero-mode physical states on the orbifold is shown in

Tables A.7 and A.8. Hereafter, we assume M > 0.

M 2 4 6 8 10 12 14 16 18 20 22 24 26

η

1 1 1 2 2 2 3 3 3 4 4 4 5 5
ω 0 1 1 1 2 2 2 3 3 3 4 4 4
ω2 1 1 1 2 2 2 3 3 3 4 4 4 5
ω3 0 0 1 1 1 2 2 2 3 3 3 4 4
ω4 0 1 1 1 2 2 2 3 3 3 4 4 4
ω5 0 0 0 1 1 1 2 2 2 3 3 3 4

Table A.7: The relation between the number of the independent zero-modes on T 2/Z6

and the magnetic flux M = even, the SS phases (α, β) = (0, 0) and the Z6 parity η.

M 1 3 5 7 9 11 13 15 17 19 21 23 25

η

1 0 1 1 1 2 2 2 3 3 3 4 4 4
ω 1 1 1 2 2 2 3 3 3 4 4 4 5
ω2 0 0 1 1 1 2 2 2 3 3 3 4 4
ω3 0 1 1 1 2 2 2 3 3 3 4 4 4
ω4 0 0 0 1 1 1 2 2 2 3 3 3 4
ω5 0 0 1 1 1 2 2 2 3 3 3 4 4

Table A.8: The relation between the number of the independent zero-modes on T 2/Z6

and the magnetic flux M = odd, the SS phases (α, β) = (1
2
, 1
2
) and the Z6 parity η.



Appendix B

The full results of systematic search

on the T 2/Z2 orbifold

In this Appendix, we show the full results of the systematic search on T 2/Z2. The following
table tells all the information of allowed configurations of the magnetic fluxes, SS twist
phases and Z2 parities. As mentioned in the main chapters, we use the “SS basis” where
the Scherk–Schwartz twist phases are non-trivial, while all the Wilson lines are vanishing.
The basis where all the Scherk–Schwartz twist phases are vanishing, while all the Wilson
line phases are non-trivial can be straightforwardly obtained by the field definitions [43].

In the following results, we abbreviate the information of the bc-sector (the Higgs
sector), since they can be straightforwardly extracted by the other sectors and the gauge
invariance conditions,

Mab +Mca =Mbc,

αab + αca = αbc,

βab + βca = βbc,

ηab + ηca = ηbc.

as used in the systematic analyses. We separately show the two kinds of the full results,

Mab < 0, Mca < 0, (B.1)

or

Mac < 0, Mca > 0, (B.2)

Note that the symbol “ 1 ” denotes the one-generation of the Higgs doublet field (in the
bc-sector) generated by a vanishing magnetic flux Mbc = 0. On the other hand, the plain
number “1” denotes the one-generation of the Higgs double field generated by Mbc 6= 0.
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Table B.1: The results of parameter configurations on T 2/Z2 with Mab < 0, Mca < 0.

T 2/Z2 with Mab < 0, Mca < 0
ab-sector ca-sector bc-sector

Mab ωi
ab αab βab Mca ωi

ca αca βca # of Higgs
−4 0 0 0 −4 0 0 0 5
−4 0 0 0 −5 0 0 0 5
−4 0 0 0 −5 0 0 1/2 5
−4 0 0 0 −5 0 1/2 0 5
−4 0 0 0 −5 1 1/2 1/2 5
−5 0 0 0 −5 0 0 0 6
−5 0 0 0 −5 0 0 1/2 5
−5 0 0 0 −5 0 1/2 0 5
−5 0 0 1/2 −5 0 0 1/2 6
−5 0 0 1/2 −5 0 1/2 0 5
−5 0 1/2 0 −5 0 1/2 0 6
−5 0 0 0 −5 1 1/2 1/2 5
−5 0 0 1/2 −5 1 1/2 1/2 5
−5 0 1/2 0 −5 1 1/2 1/2 5
−5 1 1/2 1/2 −5 1 1/2 1/2 6
−4 0 0 0 −6 0 0 1/2 5
−4 0 0 0 −6 0 1/2 0 5
−4 0 0 0 −6 0 1/2 1/2 5
−4 0 0 0 −6 1 0 1/2 5
−4 0 0 0 −6 1 1/2 0 5
−4 0 0 0 −6 1 1/2 1/2 5
−5 0 0 0 −6 0 0 1/2 6
−5 0 0 0 −6 0 1/2 0 6
−5 0 0 0 −6 0 1/2 1/2 5
−5 0 0 1/2 −6 0 0 1/2 6
−5 0 0 1/2 −6 0 1/2 0 5
−5 0 0 1/2 −6 0 1/2 1/2 6
−5 0 1/2 0 −6 0 0 1/2 5
−5 0 1/2 0 −6 0 1/2 0 6
−5 0 1/2 0 −6 0 1/2 1/2 6
−5 0 0 0 −6 1 0 1/2 5
−5 0 0 0 −6 1 1/2 0 5
−5 0 0 0 −6 1 1/2 1/2 6
−5 0 0 1/2 −6 1 0 1/2 5
−5 0 0 1/2 −6 1 1/2 0 6
−5 0 0 1/2 −6 1 1/2 1/2 5
−5 0 1/2 0 −6 1 0 1/2 6
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T 2/Z2 with Mab < 0, Mca < 0
ab-sector ca-sector bc-sector

Mab ωi
ab αab βab Mca ωi

ca αca βca # of Higgs
−5 0 1/2 0 −6 1 1/2 0 5
−5 0 1/2 0 −6 1 1/2 1/2 5
−5 1 1/2 1/2 −6 0 0 1/2 5
−5 1 1/2 1/2 −6 0 1/2 0 5
−5 1 1/2 1/2 −6 0 1/2 1/2 5
−5 1 1/2 1/2 −6 1 0 1/2 6
−5 1 1/2 1/2 −6 1 1/2 0 6
−5 1 1/2 1/2 −6 1 1/2 1/2 6
−6 0 0 1/2 −6 0 0 1/2 7
−6 0 0 1/2 −6 0 1/2 0 6
−6 0 0 1/2 −6 0 1/2 1/2 6
−6 0 1/2 0 −6 0 1/2 0 7
−6 0 1/2 0 −6 0 1/2 1/2 6
−6 0 1/2 1/2 −6 0 1/2 1/2 7
−6 0 0 1/2 −6 1 0 1/2 5
−6 0 0 1/2 −6 1 1/2 0 6
−6 0 0 1/2 −6 1 1/2 1/2 6
−6 0 1/2 0 −6 1 0 1/2 6
−6 0 1/2 0 −6 1 1/2 0 5
−6 0 1/2 0 −6 1 1/2 1/2 6
−6 0 1/2 1/2 −6 1 0 1/2 6
−6 0 1/2 1/2 −6 1 1/2 0 6
−6 0 1/2 1/2 −6 1 1/2 1/2 5
−6 1 0 1/2 −6 1 0 1/2 7
−6 1 0 1/2 −6 1 1/2 0 6
−6 1 0 1/2 −6 1 1/2 1/2 6
−6 1 1/2 0 −6 1 1/2 0 7
−6 1 1/2 0 −6 1 1/2 1/2 6
−6 1 1/2 1/2 −6 1 1/2 1/2 7
−4 0 0 0 −7 0 1/2 1/2 5
−4 0 0 0 −7 1 0 0 5
−4 0 0 0 −7 1 0 1/2 5
−4 0 0 0 −7 1 1/2 0 5
−5 0 0 0 −7 0 1/2 1/2 6
−5 0 0 1/2 −7 0 1/2 1/2 6
−5 0 1/2 0 −7 0 1/2 1/2 6
−5 0 0 0 −7 1 0 0 5
−5 0 0 0 −7 1 0 1/2 6
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T 2/Z2 with Mab < 0, Mca < 0
ab-sector ca-sector bc-sector

Mab ωi
ab αab βab Mca ωi

ca αca βca # of Higgs
−5 0 0 0 −7 1 1/2 0 6
−5 0 0 1/2 −7 1 0 0 6
−5 0 0 1/2 −7 1 0 1/2 5
−5 0 0 1/2 −7 1 1/2 0 6
−5 0 1/2 0 −7 1 0 0 6
−5 0 1/2 0 −7 1 0 1/2 6
−5 0 1/2 0 −7 1 1/2 0 5
−5 1 1/2 1/2 −7 0 1/2 1/2 5
−5 1 1/2 1/2 −7 1 0 0 6
−5 1 1/2 1/2 −7 1 0 1/2 6
−5 1 1/2 1/2 −7 1 1/2 0 6
−6 0 0 1/2 −7 0 1/2 1/2 7
−6 0 1/2 0 −7 0 1/2 1/2 7
−6 0 1/2 1/2 −7 0 1/2 1/2 7
−6 0 0 1/2 −7 1 0 0 6
−6 0 0 1/2 −7 1 0 1/2 6
−6 0 0 1/2 −7 1 1/2 0 7
−6 0 1/2 0 −7 1 0 0 6
−6 0 1/2 0 −7 1 0 1/2 7
−6 0 1/2 0 −7 1 1/2 0 6
−6 0 1/2 1/2 −7 1 0 0 7
−6 0 1/2 1/2 −7 1 0 1/2 6
−6 0 1/2 1/2 −7 1 1/2 0 6
−6 1 0 1/2 −7 0 1/2 1/2 6
−6 1 1/2 0 −7 0 1/2 1/2 6
−6 1 1/2 1/2 −7 0 1/2 1/2 6
−6 1 0 1/2 −7 1 0 0 7
−6 1 0 1/2 −7 1 0 1/2 7
−6 1 0 1/2 −7 1 1/2 0 6
−6 1 1/2 0 −7 1 0 0 7
−6 1 1/2 0 −7 1 0 1/2 6
−6 1 1/2 0 −7 1 1/2 0 7
−6 1 1/2 1/2 −7 1 0 0 6
−6 1 1/2 1/2 −7 1 0 1/2 7
−6 1 1/2 1/2 −7 1 1/2 0 7
−7 0 1/2 1/2 −7 0 1/2 1/2 8
−7 0 1/2 1/2 −7 1 0 0 7
−7 0 1/2 1/2 −7 1 0 1/2 7
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T 2/Z2 with Mab < 0, Mca < 0
ab-sector ca-sector bc-sector

Mab ωi
ab αab βab Mca ωi

ca αca βca # of Higgs
−7 0 1/2 1/2 −7 1 1/2 0 7
−7 1 0 0 −7 1 0 0 8
−7 1 0 0 −7 1 0 1/2 7
−7 1 0 0 −7 1 1/2 0 7
−7 1 0 1/2 −7 1 0 1/2 8
−7 1 0 1/2 −7 1 1/2 0 7
−7 1 1/2 0 −7 1 1/2 0 8
−4 0 0 0 −8 1 0 0 5
−5 0 0 0 −8 1 0 0 6
−5 0 0 1/2 −8 1 0 0 6
−5 0 1/2 0 −8 1 0 0 6
−5 1 1/2 1/2 −8 1 0 0 6
−6 0 0 1/2 −8 1 0 0 7
−6 0 1/2 0 −8 1 0 0 7
−6 0 1/2 1/2 −8 1 0 0 7
−6 1 0 1/2 −8 1 0 0 7
−6 1 1/2 0 −8 1 0 0 7
−6 1 1/2 1/2 −8 1 0 0 7
−7 0 1/2 1/2 −8 1 0 0 8
−7 1 0 0 −8 1 0 0 8
−7 1 0 1/2 −8 1 0 0 8
−7 1 1/2 0 −8 1 0 0 8
−8 1 0 0 −8 1 0 0 9
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Table B.2: The results of parameter configurations on T 2/Z2 with Mab < 0, Mca > 0.

T 2/Z2 with Mab < 0, Mca > 0
ab-sector ca-sector bc-sector

Mab ωi
ab αab βab Mca ωi

ca αca βca # of Higgs

−4 0 0 0 4 0 0 0 1
−4 0 0 0 5 0 0 0 1
−4 0 0 0 5 0 0 1/2 1
−4 0 0 0 5 0 1/2 0 1
−4 0 0 0 5 1 1/2 1/2 1

−5 0 0 0 5 0 0 0 1

−5 0 0 1/2 5 0 0 1/2 1

−5 0 1/2 0 5 0 1/2 0 1

−5 1 1/2 1/2 5 1 1/2 1/2 1
−4 0 0 0 6 0 0 1/2 1
−4 0 0 0 6 0 1/2 0 1
−4 0 0 0 6 0 1/2 1/2 1
−4 0 0 0 6 1 0 1/2 1
−4 0 0 0 6 1 1/2 0 1
−4 0 0 0 6 1 1/2 1/2 1
−5 0 0 0 6 0 0 1/2 1
−5 0 0 0 6 0 1/2 0 1
−5 0 0 1/2 6 0 0 1/2 1
−5 0 0 1/2 6 0 1/2 1/2 1
−5 0 1/2 0 6 0 1/2 0 1
−5 0 1/2 0 6 0 1/2 1/2 1
−5 0 0 0 6 1 1/2 1/2 1
−5 0 0 1/2 6 1 1/2 0 1
−5 0 1/2 0 6 1 0 1/2 1
−5 1 1/2 1/2 6 1 0 1/2 1
−5 1 1/2 1/2 6 1 1/2 0 1
−5 1 1/2 1/2 6 1 1/2 1/2 1

−6 0 0 1/2 6 0 0 1/2 1

−6 0 1/2 0 6 0 1/2 0 1

−6 0 1/2 1/2 6 0 1/2 1/2 1

−6 1 0 1/2 6 1 0 1/2 1

−6 1 1/2 0 6 1 1/2 0 1

−6 1 1/2 1/2 6 1 1/2 1/2 1
−4 0 0 0 7 0 1/2 1/2 1
−4 0 0 0 7 1 0 0 1
−4 0 0 0 7 1 0 1/2 1
−4 0 0 0 7 1 1/2 0 1
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T 2/Z2 with Mab < 0, Mca > 0
ab-sector ca-sector bc-sector

Mab ωi
ab αab βab Mca ωi

ca αca βca # of Higgs

−5 0 0 0 7 0 1/2 1/2 1
−5 0 0 1/2 7 0 1/2 1/2 1
−5 0 1/2 0 7 0 1/2 1/2 1
−5 0 0 0 7 1 0 1/2 1
−5 0 0 0 7 1 1/2 0 1
−5 0 0 1/2 7 1 0 0 1
−5 0 0 1/2 7 1 1/2 0 1
−5 0 1/2 0 7 1 0 0 1
−5 0 1/2 0 7 1 0 1/2 1
−5 1 1/2 1/2 7 1 0 0 1
−5 1 1/2 1/2 7 1 0 1/2 1
−5 1 1/2 1/2 7 1 1/2 0 1
−6 0 0 1/2 7 0 1/2 1/2 1
−6 0 1/2 0 7 0 1/2 1/2 1
−6 0 1/2 1/2 7 0 1/2 1/2 1
−6 0 0 1/2 7 1 1/2 0 1
−6 0 1/2 0 7 1 0 1/2 1
−6 0 1/2 1/2 7 1 0 0 1
−6 1 0 1/2 7 1 0 0 1
−6 1 0 1/2 7 1 0 1/2 1
−6 1 1/2 0 7 1 0 0 1
−6 1 1/2 0 7 1 1/2 0 1
−6 1 1/2 1/2 7 1 0 1/2 1
−6 1 1/2 1/2 7 1 1/2 0 1

−7 0 1/2 1/2 7 0 1/2 1/2 1

−7 1 0 0 7 1 0 0 1

−7 1 0 1/2 7 1 0 1/2 1

−7 1 1/2 0 7 1 1/2 0 1
−4 0 0 0 8 1 0 0 1
−5 0 0 0 8 1 0 0 1
−5 0 0 1/2 8 1 0 0 1
−5 0 1/2 0 8 1 0 0 1
−5 1 1/2 1/2 8 1 0 0 1
−6 0 0 1/2 8 1 0 0 1
−6 0 1/2 0 8 1 0 0 1
−6 0 1/2 1/2 8 1 0 0 1
−6 1 0 1/2 8 1 0 0 1
−6 1 1/2 0 8 1 0 0 1
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T 2/Z2 with Mab < 0, Mca > 0
ab-sector ca-sector bc-sector

Mab ωi
ab αab βab Mca ωi

ca αca βca # of Higgs
−6 1 1/2 1/2 8 1 0 0 1
−7 0 1/2 1/2 8 1 0 0 1
−7 1 0 0 8 1 0 0 1
−7 1 0 1/2 8 1 0 0 1
−7 1 1/2 0 8 1 0 0 1

−8 1 0 0 8 1 0 0 1
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