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1 Introduction and summary

In the context of string theory compactifications, a lot of recent attention has been focused

on the study of the so-called flux compactifications where the internal space contains fluxes

in addition to branes and orientifolds, see [1–3] for recent reviews. As a consequence, in

supersymmetric flux compactifications the internal space is generically not Calabi-Yau

(CY) and this complicates the identification of a low-energy effective theory.

In this context, a common approach in constructing the effective theories considers

fluxes (ordinary, geometric or non-geometric) and branes as ingredients added on top of

an underlying CY-like geometry that determines the low-energy spectrum. The effect of

fluxes then shows up through the appearance of a non-trivial potential and other new

interactions giving mass to the light fields. This approach can be justified generically

when these masses are small compared to the Kaluza-Klein scale of the underlying CY and

this assumption can be rephrased in the requirement that the backreaction of fluxes and

branes should be negligible. This requirement is also generically needed in order to justify

the constant warp-factor approximation, which is usually assumed as well.1 Clearly, even

if the traditional approach can give perfectly trustable results, it may be too restrictive

and exclude physically interesting settings, e.g. characterized by a non-trivial warping as

discussed for example in [5, 6].

In this paper I would like to suggest an alternative strategy to study the low-energy

effective theory of supersymmetric warped flux compactifications to flat space which is

more similar in the spirit to the traditional approach to purely CY vacua. In ordinary

CY compactifications, the low-energy spectrum is associated with the classical moduli de-

scribing the deformations of the ten-dimensional supergravity preserving the CY condition.

Although, these deformations are usually described microscopically by harmonic forms, a

lot of information on the low-energy theory depends on purely topological quantities, where

the harmonic forms describing the moduli can be safely substituted by any other represen-

tative in their cohomology classes. This feature clearly provides a great advantage, both

practical and conceptual, and ultimately originates from the supersymmetry itself of the

compactification, which implies that the space is CY, i.e. Kähler (which in turn implies

complex and symplectic) with trivial canonical bundle.

Thus, as a first step in order to extend this approach to warped flux compactifications

one would need to identify the available integrable structures dictated by the preserved

supersymmetry, analogous to the complex and Kähler structures of ordinary CY’s in the

fluxless case, which could provide an organizing framework in which to study the moduli

of flux compactifications. In particular, a desirable feature would be the existence of an

associated cohomology (similar to Dolbeault cohomology for CY spaces) that could allow

the identification of the moduli with different cohomology classes.

Indeed, as shown in [7], such a structure always exists for N = 1 type II compactifica-

tions to flat space with SU(3)×SU(3) structure group and it coincides with a generalized

CY structure, as defined by Hitchin in [8]. The existence of a generalized CY structure

1Reductions à la Scherk-Schwarz [4] are also possible in presence of enough symmetry of the internal

space, although they are generically consistent truncations rather then low-energy effective actions.
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implies the existence of a generalized complex structure, whose definition extends and uni-

fies the definitions of ordinary complex and symplectic structures. This in turn allows one

to define a generalized Dolbeault operator with an associated cohomology. (See e.g. [9, 10]

for a detailed discussion of these aspects.) These nice properties, although obviously in-

triguing, have not been concretely used so far in describing the low-energy supergravity

theory of these general flux compactifications, at least not to my knowledge. More results

in this direction are available if one restricts to the open string sector, whose 4D massless

chiral spectrum has been identified in terms of particular cohomology classes defined by the

background generalized complex structure [11], and in this paper I would like to provide

evidence that something analogous happens for the closed string sector.

In order to have a better idea of the nature of the cohomology classes arising in this

context, let us recall that one of the distinguishing features in this framework is the use of

polyforms, instead of forms of definite degree, as elementary objects. Then, in the presence

of a non-trivial Neveu-Schwarz (NS) H-field, the natural differential acting on polyforms

is given by the H-twisted exterior derivative

dH := d + H ∧ . (1.1)

Furthermore, the background generalized complex structure allows one to split dH as

∂H + ∂̄H , where ∂̄H is the generalized Dolbeault operator. As we will see, the low-energy

spectrum of the effective theory will be naturally described in terms of the twisted co-

homology classes of dH and ∂̄H . This is compatible with what results from the study of

topological sigma models with non-trivial H-field [12], analogously to what happens in

comparing the spectrum of physical D-branes in flux vacua [11] with the BRST spectrum

of topological generalized complex branes [13].

Unfortunately, a generalized CY structure contains, roughly speaking, only half of

the structure available in ordinary CY spaces and thus is much weaker. Furthermore,

its potential implications in the context of flux compactifications are still to be properly

developed (see [14] for previous work in this direction2 and also as a useful introduction

to this problem) and, on top of it, flux vacua with compact internal space generically

require the presence of orientifolds, which complicate even more the already complicated

mathematical problem. This will lead us to face a number of mathematical subtleties, like

for example the proof of the validity of the so-called ddJ -lemma (see appendix C) or the

proof of the non-degeneracy of some extremization problems (see appendix E). Although

we will not provide a definitive answer to these sophisticated mathematical problems, we

will adopt a pragmatical and physically motivated approach to circumvent them: the

existence of a well-defined N = 1 low-energy effective theory. This will naturally constrain

the allowed possibilities, suggesting what should be the answer to these ‘microscopical’

questions. Indeed, the interplay between ten-dimensional geometrical methods and four-

dimensional effective description will play a crucial role in the following discussions and

will eventually lead to a rather unique and unambiguous picture.

In this paper I will focus on closed string deformations, which can be encoded in two

complex polyforms Z and T , where Z defines the generalized CY structure (and thus

2See also [15, 16] for related discussions in the constant warping approximation.
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generalized complex structure) of the supersymmetric compactification. After reviewing in

section 2 the structure of the supersymmetric vacua considered in this paper, in sections 3

and 4 we will see how a natural finite-dimensional parametrization of the Z and T defor-

mations is given by appropriate H-twisted cohomology classes and will be associated with

4D chiral fields zI and ta, respectively. In short, one can split the dH-cohomology into

Hod
H (M) ⊕ Hev

H (M). Then zI and ta parametrize

MZ ≃ Hod
H (M ; R) and MT ≃ Hev

H (M) , (1.2)

respectively. An analogous characterization, discussed in section 5, is valid for the 4D

linear multiplets la dual to the chiral fields ta. This identification will survive the check

provided by the 4D effective coupling of different D-brane probes, which will be completely

topological in nature and will exhibit the expected dependence on the closed string moduli

— see section 6. It turns out that Z (and thus the zI chiral fields) must generically satisfy

additional restrictions derivable from a flux-generated superpotential Weff(z) and thus the

corresponding physical moduli space reduces to

Mflux
Z = {z ∈ MZ : dWeff(z) = 0} . (1.3)

On the other hand, in absence of D-terms generated by D-branes, the T -deformations

described by MT turn out to be (classically) unobstructed moduli. So, Z (or, more

precisely the associated generalized complex structure) will be kept fixed, and the attention

will be restricted to the T -moduli. This simplifying assumption will guarantee the existence

of a standard effective theory at sufficiently low energies and indeed it will be shown how

an effective 4D (warped) Kähler potential for the ta chiral fields can be easily obtained by

truncating the ‘microscopic’ Kähler potential derived in [17].3 This will be discussed in

section 7, where it will be shown how the resulting effective Kähler potential satisfies some

non-trivial consistency checks for which, remarkably, only the topological characterization

of the moduli in terms of twisted cohomology classes will be important. Further general

aspects related to the effective Kähler potential, like the interpretation of the 4D no-scale

condition in 10D terms or the moduli-lifting effects generated by possible D-terms induced

by D-branes, will be discussed in sections 8 and 9.

Some subcases with SU(3)-structure will be considered somewhat more explicitly in

sections 10 and 11. In particular, section 10 will be focused on the type IIB warped

CY compactifications [5, 20, 21]. In this case, by restricting ta to include the universal

modulus and other moduli corresponding to the B-field and the Ramond-Ramond (RR)

C2 , one can extract the explicit form of the corresponding (warped) Kähler potential, which

more generically is only implicitly defined and appears to depend on some microscopical

details of the compactifications. The result is in agreement with the Kähler potential

recently obtained in [22], and extends it to include also the B and C2 moduli. Notice

3The Kähler potential of [17] can be seen as a warped version of the Kähler potentials derived in [18, 19]

in the same framework provided by generalized geometry but in the constant warping approximation. These

papers and [1] contain also a useful discussion about the relation between these generalized Kähler potentials

and other (unwarped) Kähler potentials obtained in the literature on flux compactification.
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that the approaches followed here and in [22] are completely different. The derivation

of [22] is based on a detailed dimensional reduction (along the lines described in [23])

and does not use supersymmetry at all. On the other hand, in the derivation presented

here supersymmetry plays a crucial role and allows the use of topological arguments which

partly avoid the involvement of detailed microscopical conditions.

The appendices A), (B and C summarize some background material about the frame-

work used in this paper which could be useful for the non-expert reader before he starts

reading section 2 (see also [14]). In appendix D the effect of orientifolds, which is often

considered implicit in the paper, is discussed in some detail and, finally, appendix E dis-

cusses some Hitchin-like functionals which are extremized on (part of) the supersymmetry

conditions.

2 The structure of the N = 1 vacua

In this section I briefly summarize the general properties of the type II N = 1 vacua

considered in this paper. The formalism used for describing these flux vacua, which adopts

the language of generalized complex geometry, is essentially the one introduced in [7] but

the conventions and definitions follow [17]. More details about these background aspects

are given in appendix. See also appendix A of [24] for a complete description of the

supergravity conventions used here.

2.1 The bosonic configuration

We will consider the low-energy dynamics of general warped compactifications to flat four-

dimensional space of type II theories. The ten-dimensional space has the structure X10 =

X4 × M with coordinates xµ and ym on X4 and M , respectively. The ten-dimensional

metric splits as

ds2
X10

= e2Ads2
X4

+ ds2
M , (2.1)

where the warp factor A depends generically on ym. We take as independent RR field-

strengths only the internal ones, with all legs along M , and group them in a single polyform

F =
∑

k

Fk (2.2)

with 0 ≤ k ≤ 6 even/odd in IIA/IIB. They satisfy the Bianchi identity

dF = −j , (2.3)

where j is the current associated with the different D-branes and orientifolds. More explic-

itly, (in string units 2π
√

α′ = 1) we have

j =
∑

a∈D-branes

jD
a −

∑

b∈O-planes

τbj
O
b , (2.4)

– 5 –
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with τOp = 2p−5. For a D-brane wrapping a cycle Σa ⊂ M with U(1) field-strength Fa we

have4

jD
a = δ(Σa) ∧ e−Fa . (2.5)

Furthermore, in the presence of orientifolds, we consider M as the covering space of the

actual orientifolded space with fixed O-planes Ob and associated currents jO
b = δ(Ob). See

appendix D for further details on the orientifold projections. Notice that in the explicit

form for the localized currents we are for simplicity omitting the higher order curvature

corrections. They can be easily restated in all the expressions by replacing j → jnew =

j ∧ (curv.corr.).5

In this section and in most of the paper we use twisted polyforms which transform as

(. . .) → edλ ∧ (. . .) under the gauge transformation B → B + dλ — see appendix A for

further details. The natural differential acting on them is just the usual exterior derivative

d. Occasionally, when explicitly stated, we will use other equivalent pictures described in

appendix A, where the differential is twisted by the H-flux, as in (1.1).

The background RR field-strengths have external components given (in polyform no-

tation) by dvolX4 ∧(e4A∗B F ), where ∗B is the twisted six-dimensional Hodge-star operator

defined in (A.7). Notice that the equations of motion require that

d(e4A ∗B F ) = 0 . (2.6)

2.2 Pure spinors, N = 1 conditions and generalized complex structure

A generic warped flux compactification with 4D space-filling D-branes and orientifolds can

be completely characterized by two O(6,6) pure spinors Z and T (not to be confused with

T ), defining an SU(3)×SU(3)-structure. They are complex polyforms on M of opposite

parity

Z =
∑

k even/odd

Zk , T =
∑

l odd/even

Tl , (2.7)

with k even (odd) and l odd (even) in IIA (IIB) — see appendix B for more details about

them. In the twisted picture we are using here, Z and T contain the complete information

about the NS sector, i.e. internal metric, B-field, warping and dilaton, as well as information

about the reduced SU(3)×SU(3)-structure of the doubled spin structure of type II theories,

which will eventually be constrained by the supersymmetry condition.

Using these variables, the background supersymmetry conditions for compactifications

to four flat dimensions [7] can be divided into three parts.6 First, one needs to require that

dZ = 0 . (2.8)

4In our convention the delta-function is defined in terms of the Mukai pairing (see appendix A) by
R

M
〈ω, δ(Σ)〉 =

R

Σ
ω, for any form ω of degree equal to the dimension of Σ.

5For multiple coincident D-branes the currents should be further modified, for example by replacing

e−Fa with the Chern character ch(−Fa).
6In this paper we are focusing on very general backgrounds, where however the two internal spinors

describing the residual supersymmetry in [7] are assumed to have the same norm. In physical terms, this

is equivalent to requiring that these backgrounds admit the introduction of supersymmetric D-branes and

orientifolds or, in other words, which they are characterized by D-brane generalized calibrations [26].
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This means that the internal space is an integrable generalized Calabi-Yau as defined

in [8] and in turn implies that the associated generalized complex structure J is integrable

(cf. appendix B).

The second condition can be written in the form [14]

dReT = −J · F . (2.9)

Here J acts on polyforms as briefly described in appendix B (more details can be found

e.g. in [14]). Equivalently, using the decomposition (B.4) and the integrability of J , we

can write (2.9) as

F−1 = −i∂̄ReT , F−3 = 0 . (2.10)

The remaining background condition is

d(e2AImT ) = 0 . (2.11)

Notice that the conditions (2.10) and (2.11) automatically imply (2.6).

As discussed in [17] and briefly reviewed in the following sections, the conditions (2.8)

and (2.9) [or equivalently (2.10)] have a direct four-dimensional interpretation as F-flatness

conditions while the condition (2.11) can be interpreted as D-flatness condition associated

with the RR-symmetry C → C + dλ, which is gauged in the four-dimensional theory

(cf. appendix E).

In order to preserve supersymmetry, D-branes and orientifolds must be calibrated [25–

27]. This condition can in turn be split into two parts [26] which can be interpreted as

F-flatness and D-flatness [28] (see sections 3 and 9 below). The first, interpreted as an

F-flatness condition, says that supersymmetric D-branes and orientifolds wrap generalized

complex cycles as defined in [9], i.e.

j ∈ U0 ⇔ J · j = 0 . (2.12)

Notice that, by using the integrability of J , this condition also follows directly from (2.3)

and (2.9) since they imply that

ddJ ReT = j , (2.13)

where dJ is defined in (C.2). The second condition is

〈ImT, j〉 = 0 , (2.14)

and can be interpreted as a D-flatness condition.

It is important to stress that all the supergravity equations of motion are satifsfied once

the above supersymmetry conditions and the RR Bianchi identity (2.3) are imposed [27,

29, 30]. Furthermore, compact spaces will generically require orientifolds and thus M must

be rather considered as the covering space of the internal space. All the fields, polyforms

and the corresponding cohomology classes must satisfy appropriate projection conditions

that are discussed in detail in appendix D. In the following, in order not to overload the

– 7 –
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general discussion, the orientifold projection will often be considered as implicit and will

be explicitly mentioned only if necessary. In any case, the effect of O-planes can be easily

taken into account by applying the rules of appendix D and a more explicit example of

their effect is provided in the subcases discussed in sections 10 and 11.

3 Z-moduli and the superpotential

The conditions (2.8) and (2.10) can be derived as F-flatness conditions [17] from the su-

perpotential

W =

∫

M
〈Z, F + idReT 〉 . (3.1)

In the ‘microscopic’ untruncated four-dimensional picture adopted in [17],7 one must con-

sider as closed string chiral fields Z itself and

T := ReT − iC , (3.2)

where the RR gauge potential C is identified by splitting F = F 0 + dC for some reference

F 0. Indeed, Z and T contain the full information about the background configuration and

their complex fluctuations are given by

δZ ∈ U3 ⊕ U1 , δT ∈ U0 ⊕ U−2 . (3.3)

Imposing δT0W = δT−2W = 0 one gets (2.8), while δZ3W = δZ1W = 0 give (2.10).

The moduli space of the generalized CY structure defined by equation (2.8) has been

studied already in [8]. Assuming the ddJ -lemma [cf. appendix C], one can prove [8] (see

also [14] for a discussion in our context) that the space of solutions to (2.8) can be locally

identified with the H-twisted cohomology class

MZ ≃ Hod
H (M ; R) . (3.4)

Using (C.5), one can define the complex structure on MZ by identifying, at any point Z ∈
MZ , the (1, 0)-tangent bundle with H3

H(M) ⊕ H1
H(M). H3

H(M) gives an overall constant

rescaling of Z, which corresponds to the conformal compensator in the four-dimensional

superconformal effective theory, while H1
H(M) describes the infinitesimal deformations of

the generalized complex structure J defined by Z [9, 14, 31]. This can be directly seen by

using the ∂̄-cohomology and the fact that Hk
∂̄
(M) ≃ Hk

H(M).

Notice that the presence of cohomology classes on the right-hand side of (3.4) takes into

account the identification of configurations related by the action of the group of generalized

diffeomorphisms G. This can be defined as the group extension

0 → (B gauge transf.) → G → Diff0(M) → 0 (3.5)

and combines the ordinary diffeomorphisms with the B-field gauge transformation B →
B+dλ, acting on polyforms by wedge-product with edλ. Clearly, G is an infinite-dimensional

7See [18, 19] for previous work based on the same philosophy.
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symmetry group of our equations and relates different solutions which should be considered

as physically equivalent. The infinitesimal deformation of G acting on a twisted polyform

ω is given by δXω = LXω := d(X · ω) + X · (dω), where X ∈ Γ(E) is a generalized vector

field (cf. appendix A).

As discussed in [8], MZ has a natural special Kähler (ant thus complex) structure. We

may parametrize MZ as follows, along the lines of what is done for ordinary CY spaces

(see e.g. [33]). Let us first introduce a basis αI , β
J (with I, J = 0, . . . , n) for Hod

H (M ; R) (of

even real dimension 2n + 2) such that

∫

M
〈αI , β

J〉 = δI
J . (3.6)

Furthermore, we may assume αI and βJ to be integral, in the sense that

∫

Σ
αI |Σ ∧ eF ∈ Z ,

∫

Σ
βJ |Σ ∧ eF ∈ Z , (3.7)

where (Σ,F) is any generalized cycle [32].8 Then, one can expand

Z = zIαI − GJβJ , (3.8)

where

zI =

∫

M
〈Z, βI〉 , GJ =

∫

M
〈Z, αJ 〉 . (3.9)

Since MZ has complex dimension n + 1, in analogy with what happens for ordinary CY

spaces, it is natural to assume that zI are good local holomorphic coordinates for MZ ,9

so that GJ = GJ(z). Since ∂IZ ∈ U3 ⊕ U1, as in the CY case, we have

2GI(z) = ∂I(z
JGJ) (3.10)

so that GI = ∂IG(z) for a certain holomorphic prepotential G(z) which is homogeneous of

degree two and encodes the special Kähler structure of MZ . Notice that, although this

parametrization depends only on the cohomology of Z, the cohomology representatives of

αI and βJ in (3.8) are actually fixed (up to the generalized diffeomorphisms (3.5)) by the

requirement that Z is an O(6,6) pure spinor [8].

We can now go back to the superpotential (3.1) and try to integrate out the massive

modes contained in T by directly imposing (2.8) on it. The resulting effective superpoten-

tial is

Weff =

∫

M
〈Z, F 〉 . (3.11)

8In (3.7) curvature corrections

q

Â(TΣ)/Â(NΣ) have been omitted for notational simplicity. See com-

ment below (2.5).
9The zI ’s can also be considered as projective coordinates for the moduli of the generalized complex

structure J .

– 9 –
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Notice that the superpotential (3.11) also contains information about D-branes. Indeed we

can split

F = F back + θ , (3.12)

where dF back = 0 and θ is the generalized current of the form (2.5) associated with a

generalized chain [32] whose boundary coincides with the sum (with appropriate signs) of

the local sources, so that dθ = −j. Then one can split

Weff = Wback
eff + WD-branes , (3.13)

where Wback
eff has the same form as (3.11) but with F back instead of F , and we have isolated

the D-brane superpotential

WD-branes =

∫

M
〈Z, θ〉 = −

∫

Γ
Z|Γ ∧ eF̃ , (3.14)

where (Γ, F̃) is the generalized chain associated with the current θ, whose boundary contains

the D-brane generalized cycles. WD-branes coincides with the superpotential derived in [28]

directly from the D-brane effective action. By extremizing it with respect to the open string

degrees of freedom, one gets (2.12). Notice that the split (3.12) has an intrinsic ambiguity

under the simultaneous shift F back → F back+χ and θ → θ−χ, where χ defines any integral

class in Hev
H (M ; R). This ambiguity leads to an ambiguity in the separate definitions of

Wback
eff and WD-branes and only the full superpotential (3.11) is unambiguously defined.

For simplicity, in most of the following discussions we do not explicitly consider the D-

brane contribution to the complete superpotential (3.11) or, in other words, we assume that

we can always keep j ∈ U0. This condition is automatically satisfied if there are only O-

planes as localized sources. Thus, (3.11) reduces to a superpotential Weff(z) for n+1 chiral

fields zI of Weyl weight 3, which include the conformal compensator corresponding to their

overall rescaling. Notice that Weff(z) is a superpotential of a superconformal supergravity.

Once the compensator is eliminated by going to the Einstein-frame (see e.g. [34]), this gives

a usual Einstein-frame superpotential, which is a section of a line bundle over the moduli

space of the generalized complex structure J .

If for example we apply this formalism to a non-compact internal manifold with no

localized sources, which is a somewhat limiting case, then

Weff(z) = MIz
I − NJGJ(z) , (3.15)

where

MI =

∫

M
〈αI , F 〉 , NJ =

∫

M
〈βJ , F 〉 . (3.16)

However, when the internal space is compact and thus there are at least O-planes, the

application of the explicit expression (3.15) requires some caution, because the RR-flux F

does not straightforwardly identify a dH-cohomology class.10

10An expansion like (3.15) can be safely applied to Wback
eff in (3.13) but, as stressed above, only the

complete Weff is physically meaningful.
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In any case, the extremization of the superpotential Weff(z) potentially lifts all the zI

moduli, up to their overall rescaling corresponding to the four-dimensional compensator.

This can be understood at the ‘microscopical’ level as follows. First, F−3 clearly represents

a class in H−3
∂̄

(M). On the other hand, the ∂∂̄-lemma implies that we can write ∂F−3 =

∂∂̄β−2 and then from dF = −j ∈ U0 we see that F−1 −∂β−2 represents a class in H−1
∂̄

(M).

Now, by considering the infinitesimal deformations of Z as described by H3
∂̄
(M) and H1

∂̄
(M),

the extremization of Weff requires that Z must be ‘aligned’ in such a way that the classes

in H−3
∂̄

(M) and H−1
∂̄

(M) defined by F−3 and F−1 are trivial. This condition constrains Z
(but not its overall normalization) to lie on a subset of MZ . It is indeed necessary in order

for the 10D conditions (2.10) to admit a solution and it is natural to conjecture that, under

reasonable assumptions, it is actually sufficient too.

To summarize, we arrive at the following flux-modified Z-moduli space:

Mflux
Z = {z ∈ MZ such that dWeff(z) = 0} . (3.17)

In other words, the RR fluxes can in principle completely fix the generalized complex

structure J . In the following we will most of the time assume that it indeed happens,

writing

Z = Y 3Z0 , (3.18)

where Y is the conformal compensator of Weyl weight 1, and Z0 is a fixed-reference pure

spinor that does not transform under Weyl transformations. Notice that, having fixed Z
up to an overall rescaling, the symmetry group (3.5) is broken. More explicitly, the generic

infinitesimal deformation of Z under (3.5) is δZ = d(X · Z) = ∂(X · Z) + ∂̄(X · Z) with

∂(X · Z) ∈ U3 and ∂̄(X · Z) ∈ U1. Then one must impose ∂̄(X · Z) = 0 and thus also

∂∂̄(X · Z) = 0. But, using the ∂∂̄-lemma (C.4) this means that in fact δZ = d(X · Z) = 0

and then the residual symmetry of (3.5) is the subgroup GZ that leaves Z completely

unchanged:

GZ = {g ∈ G : g(Z) = 0} . (3.19)

In the following sections we will see how minimal N = 1 supersymmetry naturally requires

that H2
∂̄
(M) = 0. In this case, the residual symmetry is generated by generalized vector

fields X such that X · Z = d(fZ) for some function f .

Notice that the effective potential (3.11) does not exactly reproduce the Gukov-Vafa-

Witten superpotential [35]

WGVW =

∫

M
ΩCY ∧ (F3 + i e−ΦH) . (3.20)

in the subcase of warped IIB CY compactifications.11 The origin of this difference is that

we use H-twisted cohomologies, which already incorporate part of the effects of the H-field.

In particular, this makes the axion-dilaton disappear in the effective superpotential — see

section 10 for more comments on it.
11On the other hand, WGVW can be obtained from (3.1) by truncating it in the naive way. This is clearer

in the untwisted picture, where d is substituted with dH (cf. appendix A). Then, by replacing Z with the

CY holomorphic (3, 0)-form ΩCY in (3.1), but without assuming the stronger condition dHZ ≡ H∧ΩCY = 0,

one gets exactly (3.20).
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4 T -moduli and massless chiral multiplets

Let us now see how the generalized complex structure J allows an easy characterization

of the T -moduli. We will work at fixed Z, up to an overall rescaling corresponding to

the conformal compensator, as in (3.18). As discussed in section 3, the Z moduli-space

Mflux
Z can be potentially reduced to a discrete set (up to the compensator) by the super-

potential (3.11), and thus the T -moduli space MT will actually give the complete physical

closed string moduli space. Less generically, the full moduli space will be a fibration of

MT over Mflux
Z .

The polyform T contains information about the RR-potential C and the ‘stable’ [8]

polyform ReT , which must satisfy (B.5). The associated allowed closed string deformations

are thus given by δReT ∈ U0 and a generic RR-deformation δC = δC0 + (δC−2 + c.c.).

First of all, pure RR moduli are given by closed finite shifts ∆C. Taking into account

the local RR-gauge symmetry ∆C → ∆C + dΛ, the physically inequivalent RR-shifts are

identified by

[∆C] ∈ Hev
H (M ; R) , (4.1)

which must be further modded out by Hev
H (M ; Z) since [∆C] ∈ Hev

H (M ; Z) is physically

equivalent to the zero class.12 Thus, the RR-shifts parametrize a torus

MRR ≃ Hev
H (M ; R)/Z

bev (4.2)

of dimension bev := dim Hev
H (M ; R).

Notice that, using the ddJ -lemma we can split [cf. appendix C]

Hev
H (M) = H2

H(M) ⊕ H0
H(M) ⊕ H−2

H (M) . (4.3)

In particular, we can parametrize the RR moduli just in terms of H−2
H (M) and the real

elements in H0
H(M). However, H−2

H (M) has a quite different nature from H0
H(M) since the

RR-shifts in H−2
H (M) do not naturally combine with the NS degrees of freedom contained

in ReT ∈ U0 to give 4D chiral fields. As we will recall in section 7, the N = 1 Kähler

potential for our vacua can depend in a direct way only on the NS degrees of freedom [17]

and thus the chiral fields associated with the possible moduli H−2
H (M) would not find a nat-

ural 4D interpretation in a strictly minimal (i.e. N = 1) supersymmetric setting. One way

to understand this from a microscopical point of view is to notice that H−2
H (M) originates

from fluctuations that transform in the 3 or 3̄ representation of the SU(3)×SU(3) structure

group underlying the N = 1 compactification and are thus not ‘natural’ if supersymmetry

is minimal.13 This is also consistent with experience from ordinary CY orientifold compact-

ifications [36], where RR moduli are always completed into 4D chiral fields by NS moduli.

These observations suggest that N = 1 supersymmetry implies that

H−2
H (M) = 0 [⇔ H2

H(M) = 0] . (4.4)

12Here possible torsion contributions to Hev
H (M ; Z) are ignored.

13See [18, 19] for analogous arguments in the untruncated formulation of those papers.

– 12 –



J
H
E
P
0
5
(
2
0
0
9
)
0
2
7

This property is analogous to the well known fact that h2,0 = h3,1 = 0 for ordinary CY

spaces (with strict SU(3)-holonomy).14 In the following, (4.4) will always be assumed to

hold. See sections 10 and 11 for additional discussion on this point, based on more concrete

examples.

Let us now consider the infinitesimal deformations δReT of ReT . They must sat-

isfy (2.9) and thus there must exist a compensating RR deformation δC such that

dδReT + J · dδC = 0 . (4.5)

This is possible if and only if

ddJ δReT ≡ 2i∂∂̄δReT = 0 , (4.6)

which can be obtained directly from (2.13). Indeed, by the ddJ -lemma (C.3), (4.6) implies

that we can write dJ δReT = ddJ χ, for some real χ ∈ U1 ⊕ U−1, and such a deformation

can be compensated by an RR-deformation δC = J · dχ, up to an additional closed form

that can be considered as part of the pure RR moduli. Notice that (J · dχ)0 = 0 and so

the RR compensating shift belongs to U2 ⊕ U−2. More explicitly δC = 2i(∂χ1 − ∂̄χ−1).

One can easily see that, by defining

δ̂ReT := δReT − J dJ χ = δReT − 2(∂χ1 + ∂̄χ−1) (4.7)

we are led to

dδ̂ReT = 0 (4.8)

and this condition is left unchanged under

δReT → δReT + (dΛ)0 (4.9)

for generic real Λ ∈ U1⊕U−1. Indeed, (4.9) corresponds to χ → χ−Λ/2 (up to a ddJ -closed

term) and thus

δ̂ReT → δ̂ReT + dΛ . (4.10)

Thus the deformations δReT satisfying (4.6), modded out by the symmetry (4.9) of the

equation (2.9), are identified by real elements of H0
H(M ; R) or, using (4.4), by Hev

H (M ; R).

A key point is that the symmetry (4.9) is generically violated by the condition (2.11).15

This is consistent with the interpretation of (2.9), and thus (4.8), as F-flatness condi-

tion and (2.11) as D-flatness condition associated exactly to the RR gauge transforma-

tions (4.17) [17], since the symmetry (4.9) can be seen as the imaginary extension of the

14Something similar to (4.4) happens in the somewhat different context of flux compactifications to AdS4

spaces (which have no integrable generalized complex structure) studied in [37–39], where the truncation

on nilmanifolds and coset spaces is considered.
15Actually, this statement requires some reasonable non-degeneracy conditions, as can be seen from the

argument given in appendix E. However, as shown below, this assumption seems to be indirectly ensured

by the requirement of having a consistent low-energy effective theory.
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RR gauge transformation — see below. Thus, following the usual approach in N = 1

supersymmetric field theories, the D-flatness condition is taken into account by modding

out the symmetry (4.9) and thus the ReT deformations can be identified with Hev
H (M ; R).

Notice that all the equations we are considering are preserved by the group of general-

ized diffeomorphisms GZ ⊂ G [see (3.19) and (3.5)], which generates deformations of ReT

which are trivial in H0
H(M ; R). Thus, the D-flatness condition does not completely fix the

representatives of the classes in H0
H(M ; R) describing the deformations of ReT .

From the four-dimensional point of view, the deformations of ReT combine with the

RR moduli, giving the lowest component of chiral fields. Consistency with an effective

N = 1 low-energy description then implies that, since the RR moduli are unobstructed, the

NS infinitesimal deformations δReT are unobstructed too. Thus, the finite deformations

of ReT can be identified with an open subset of

MT ≃ Hev
H (M ; R) , (4.11)

at least in absence of D-branes that can gauge the RR axionic shift and generate D-terms

for the ReT moduli — see section 9. Combining (4.11) and (4.2), we conclude that the

T -moduli space can be locally identified as

MT ≃ Hev
H (M) , (4.12)

or better as a torus fibration

0 → MRR → MT → MT → 0 . (4.13)

To emphasize the complex structure of MT , we can revisit its derivation given above

in terms of real polyforms directly in terms of the complex polyform T . Let us consider

the complex T -fluctuations defined in (3.3). From (2.10) we see that they must satisfy the

conditions

∂̄δT0 + ∂δT−2 = 0 , ∂̄δT−2 = 0 . (4.14)

Using (4.4) and the second condition in (4.14), one can write ∂δT−2 = ∂∂̄χ−1. Then,

defining

δ̂T0 := δT0 − ∂χ−1 , δ̂T−2 := δT−2 (4.15)

we can write the above conditions as

∂̄δ̂T0 = 0 , ∂̄δ̂T−2 = 0 . (4.16)

As above, to identify the physically inequivalent fluctuations, one has to mod out the

RR gauge transformations and impose the D-flatness condition (2.11). In this complexified

language, an RR gauge transformation16

δΛC−2 = ∂̄Λ−1 , δΛC0 = ∂Λ−1 + ∂̄Λ1 , with Λ−1 = Λ∗
1 , (4.17)

16Starting from a generic gauge transformation C → C +Λ, with Λ any polyform (of appropriate parity),

then δΛC−2 = ∂Λ−3 + ∂̄Λ−1 and δΛC0 = ∂Λ−1 + ∂̄Λ1, where Λ−1 = Λ∗

1 . But using the ∂∂̄-lemma we have

∂Λ−3 = ∂̄∂α−2 and thus we can rewrite the most generic gauge transformation as in (4.17). Instead of the

∂∂̄-lemma, we could also use only the condition H−2
∂̄

(M) = 0 to write ∂Λ−3 = ∂̄α−1. Also in this case,

the residual symmetry generated by Λ−3 would not affect the conclusions obtained by considering just the

symmetry (4.17).
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acts on δ̂T in the following way

δ̂T0 → δ̂T0 − i∂̄Λ1 , δ̂T−2 → δ̂T−2 − i∂̄Λ−1 . (4.18)

Notice that, although the RR gauge transformation corresponds to a real Λ := Λ1 + Λ−1,

the conditions (2.10) are in fact invariant for arbitrary complex Λ. In particular, a purely

imaginary Λ → iΛ (with Λ real) corresponds to the transformation (4.9) and directly shows

the above statement that (4.9) can be considered as the imaginary extension of an RR

gauge transformation. As above, the moduli space is given by the deformations preserving

the F-flatness conditions (4.16), modded out by the gauge transformations (4.17), with

Λ complex. Thus, using (4.4), in this complexified formulation we get MT ≃ H0
∂̄
(M),

and thus (4.12). Notice that this second derivation suggests that explicit use of the ∂∂̄-

lemma could be avoided. Thus it is conceivable that, under suitable conditions, the ∂∂̄-

lemma could be relaxed without substantially changing the conclusions of our analysis.

Nevertheless, for simplicity, we will continue assuming it in the following.

We see that the condition (4.4) allows a completely topological characterization of the

T -moduli and thus of the corresponding chiral fields. More explicitly, we can fix a certain

reference T 0 and write T = T 0 + ∆T where ∆T is a finite deformation associated with

a certain twisted cohomology class [∆̂T ] in Hev
H (M), which is the integrated finite version

of (4.15). The 4D chiral fields ta are identified by expanding

[∆̂T ] = ta[ωa] , (4.19)

where [ωa] is a certain moduli-independent basis for Hev
H (M ; R). We can then split

ta = sa + ica , (4.20)

where ca are the RR moduli and sa can be identified with the NS moduli encoded in ReT .

5 The dual picture: linear multiplets

We have identified the chiral multiplets ta of the 4D effective description with the defor-

mations of the polyform T , which contains the moduli of ReT and C. However, one can

look for a dual parametrization of the degrees of freedom contained in ReT in terms of the

polyform ImT , which indeed contains the same information [8]. From (2.11) we know that

e2AImT must be closed and so it is natural to guess that the space of allowed deforma-

tions is still given by Hev
H (M ; R). (Actually, in the presence of orientifolds, [e2AImT ] has

orientifold parity opposite to [∆̂T ], cf. appendix D.) This can be made more precise by

saying that the U0-representative in Hev
H (M ; R) must be fixed by (2.9) or (2.13), up to the

action of the symmetry group (3.19). This was already suggested in [14], which presented

an argument based on a Hitchin-like functional, and an analogous argument is described

in appendix E. Thus, let us expand

[e2AImT ] = la[ω̃
a] , (5.1)
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where [ω̃a] is a basis for Hev
H (M ; R). In particular, we can choose a basis [ω̃a] dual to the

basis [ωa] introduced in the previous section, i.e. such that

∫

M
〈ωa, ω̃

b〉 = δa
b . (5.2)

The parameters la can be seen as 4D scalar fields belonging to linear multiplets. The

other bosonic fields in these linear multiplets are given by 4D two-forms Ba obtained by

expanding the RR-gauge potentials with two 4D indices in appropriately defined harmonic

representatives of ω̃a ∈ Heven
H (M ; R).

Recall our assumptions that the zI moduli (up to the conformal compensator Y ) are

completely lifted by the fluxes and D-branes do not play any role. Then, splitting the ta

moduli as in (4.20), we generically have

la = la(Y, Ȳ , sb) = |Y |2 l̂a(sb) , (5.3)

where we have also explicitly indicated how la depends on the conformal compensator Y ,

which is fixed by the fact that the chiral fields ta have Weyl weight zero. As we will

see, knowing l̂a(s
b) allows us to write a set of equations determining the Kähler potential.

Unfortunately, the computation of the explicit functional dependence of l̂a(s
b) may be

cumbersome.

Notice that the function la(Y, Ȳ , sb) (or equivalently l̂a(s
b)) is not necessarily invertible

to sa = sa(la/|Y |2). Indeed, no-scale models [40] are characterized by a non-invertible

relation [41], as we will discuss in more detail in section 7.

6 Domain walls, strings, instantons and holomorphic couplings

The above characterization of the parameters zI , ta, la extracted from Z, T and e2AImT

in terms of H-twisted cohomology classes agrees very well with the 4D interpretation of

different D-brane configurations. In particular, the use of H-twisted cohomologies together

with the condition (4.4) is crucial in order to get a completely topological characterization

of the dependence on the closed string moduli of tensions, charges and couplings of the 4D

effective objects.

Let us start with a BPS domain wall, obtained by wrapping a D-brane on an internal

generalized cycle (Σ,F). Then, in our units 2π
√

α′ = 1, the tension of the domain wall is

given by [26, 28]

τDW = 2π

∣

∣

∣

∣

∫

M
〈Z, jDW〉

∣

∣

∣

∣

, (6.1)

where jDW is the generalized current associated with (Σ,F) as in (2.5). It defines an integral

element of Hod
H (M ; R) and thus we can expand [jDW] = nIαI + mJβJ and the domain wall

tension is

τDW = 2π|mIz
I + nIGI(z)| . (6.2)
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We see that its dependence on zI can be completely identified in terms of real twisted

cohomology classes, without the need of any additional structure.

An analogous discussion can be repeated for D-strings γ ⊂ X4 obtained by wrapping

a D-brane on an internal BPS generalized cycle, for which we can write [jstring] = naωa.

The associated 4D effective action is [26, 28]

Sstring = −2π na

∫

γ
d2σ la

√

− det g(4)|γ + 2π na

∫

γ
Ba , (6.3)

where Ba is the 4D two-form belonging to the same linear multiplet as la. Notice that the

BPS condition imposes jstring ∈ U0. Thus, had we not assumed (4.4), we would have lost

the possibility to characterize the D-string action purely in terms of the topology of (Σ,F)

wrapped by the D-brane.

Consider now a D-brane instanton. Also in this case, the BPS condition implies that

jinst ∈ U0 [17] and the on-shell action is given by

Sinst = 2π

∫

M
〈T , jinst〉 . (6.4)

Since djinst = 0, writing T = T 0 + ∆T for some fixed T 0, we can actually substitute ∆T
with ∆̂T (defined in (4.15)) in Sinst. Clearly Sinst depends only on the class of ∆̂T in

H0
∂̄
(M) ≃ Hev

H (M). Expanding [jinst] = na[ω̃
a] and [∆̂T ] as in (4.19), the on-shell instanton

action can be written as

Sinst = S0
inst + 2π nat

a , (6.5)

where S0
inst does not depend on ta. As expected, the corresponding contribution

∼ e−2π nata (6.6)

to the path integral breaks the axial symmetry ta → ta + iαa.

Finally, in the internal space a space-filling BPS D-brane is identical to a BPS instan-

ton [17, 26]. The associated (classical) 4D holomorphic coupling f(t) is identical to the

instanton action (6.5), i.e.

f(t) = 2π

∫

M
〈T , jspace-filling〉 = f0 + 2π nat

a . (6.7)

As for D-brane instantons, the condition (4.4) and the use of H-twisted cohomologies is

crucial to have a fully topological characterization of the dependence of f(t) on the closed

string moduli.

7 The Kähler potential

In the previous sections we have characterized the low-energy spectrum of massless chiral

fields ta, and their dual linear multiplets la, in purely geometrical/topological terms. In

particular, the non-exhaustive control over the analytical properties of the internal geom-

etry has been supplied by four-dimensional consistency arguments. I would now like to

– 17 –



J
H
E
P
0
5
(
2
0
0
9
)
0
2
7

complete the above results by discussing the effective Kähler potential of the low-energy

effective action. This will also give further support to the above picture.

As stressed in [17], warped flux compactifications are very naturally described in terms

of 4D superconformal theories. The reason is that in this formulation one can use directly

the 4D-metric ds2
X4

appearing in (2.1) as the dynamical one, without having to rescale it

from the beginning to go to the Einstein frame. This permits a more direct comparison

between the four-dimensional and ten-dimensional pictures.

Let us continue working with the simplifying assumption that we have only mod-

uli/chiral fields ta and no D-branes. Then, at the classical level, the scalar sector of the

effective theory must be completely specified in terms of a conformal Kähler potential

N (Y, Ȳ , t, t̄), where Y is the conformal compensator. Let us recall what are its basic

features, derived from purely 4D arguments (see e.g. [34] for more details). The supercon-

formal Lagrangian is given by

L = −3

∫

d4θN , (7.1)

where d4θ is a formal way of writing the full superspace measure in supergravity. This

produces an Einstein term of the form

L =
1

2
N R + . . . . (7.2)

Since N must have Weyl weight two and the chiral fields ta have Weyl weight zero, the

dependence of N on Y is fixed to be of the form

N = |Y |2N̂ (t, t̄) . (7.3)

Then, the usual Einstein-frame Kähler potential is given by

K = −3 log N̂ (t, t̄) . (7.4)

The Einstein-frame action is obtained by gauge-fixing the superconformal action, in

particular by imposing the condition Y = MPeK/6 (where MP is the 4D Planck mass),

which breaks the complexified Weyl invariance. From (7.2) it is clear that this condition

leads to the Einstein frame since it corresponds to imposing N = M2
P.

For our purposes it is important to recall how linear multiplets are obtained by a

duality transformation in the superconformal framework [42]. First, one has to assume

that the Kähler potential has the form

N = N (Y, Ȳ , s) (7.5)

where sa = (ta + t̄a)/2. Then, the dual linear multiplets la are given by a Legendre

transformation

la =
3

4π

∂N
∂sa

, (7.6)

which can be formally considered not only as a full superfield equation but also as its lowest

component involving bosonic scalar fields, as we will do in the following.
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Let us now go back to our flux compactifications and their moduli, as described in

the previous sections. First, the conformal Kähler potential is univocally determined by

dimensionally reducing the 10D supergravity action and comparing it with (7.2). The

resulting N depends only on the NS fields and thus can be expressed in terms of the pure

spinors Z and T as follows [17]:

N =
iπ

2

∫

M
〈Z, Z̄〉1/3〈T, T̄ 〉2/3 . (7.7)

This expression is completely fixed by supersymmetry and, in fact, can be considered a

sort of microscopical Kähler potential giving, together with the superpotential (3.1), the

full set of 10D supersymmetry equations (including those for AdS4-compactifications) [17].

Once we have N , in order to obtain the usual Einstein-frame Kähler potential as described

above, one has first to isolate a conformal compensator Y from Z by choosing a reference

Z0 as in (3.18). Then

K = −3 log N̂ = −3 log

(

iπ

2

∫

M
〈Z0, Z̄0〉1/3〈T, T̄ 〉2/3

)

. (7.8)

The problem is now that, in order to consider (7.7) and (7.8) as effective low-energy Kähler

potentials for the massless moduli, one needs to extract the explicit dependence of N on

ta and t̄a. This is not trivial since N does not have a simple interpretation in terms of

the topological data characterizing the moduli, differently from what happens for the usual

Kähler potentials in ordinary Calabi-Yau compactifications.

However, the situation is better if one considers the derivatives of N . First, notice

that the conformal Kähler potential (7.7) depends only on NS fields and thus can depend

on ta only through its real part sa = (ta + t̄a)/2. The first order variation of N under a

general variation of δReT ∈ U0 is given by

δN =
4π

3

∫

M
〈δReT, e2AImT 〉 . (7.9)

Now, we can restrict to moduli deformations discussed in section 4. They are given by

deformations δReT satisfying (4.6), which allow to define the closed form δ̂ReT as in (4.7).

Shifting δ̂ReT by an exact polyform corresponds to the transformation (4.9), which is

eventually fixed by the D-flatness condition (2.11). The key-point is that, because of (2.11)

and the fact that e2AImT ∈ U0, we need only care about the class of δ̂ReT in Hev
H (M ; R).

More explicitly, if we write

[δ̂ReT ] = δsa[ωa] (7.10)

then

∂N
∂sa

=
4π

3

∫

M
〈ωa, e

2AImT 〉 =
4π

3
la(Y, Ȳ , s) , (7.11)

where in the last equality we have used the expansion (5.1) with the choice (5.2). Thus,

we see that the Kähler potential (7.7) and the characterization of the moduli in terms of
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chiral and linear multiplets given in sections 4 and 5, are in perfect agreement with (7.6),

which is expected from purely 4D arguments.

These results suggest an alternative way to extract from (7.7) the explicit dependence

of the effective conformal Kähler potential on sa = (ta + t̄a)/2. One should first find the

explicit functional dependence of la(Y, Ȳ , s), which encodes the dependence of the twisted

cohomology class defined by e2AImT in terms of the twisted cohomology class defined

by ReT . This must be computed from the specific six-dimensional internal geometry as

described in sections 4 and 5. Then, since the dependence of N on Y has the form (7.3),

by integrating (7.11) one can obtain N up to an additional integration constant which

can be fixed by evaluating (7.7) on the specific configuration corresponding to the initial

conditions. Isolating the compensator as in (7.3), on can obtain the Einstein-frame Kähler

potential (7.4).

Finally, notice that although we have for simplicity assumed that all the Z-moduli

zI , apart for the compensator Y , are lifted by the superpotential (3.11), the expres-

sions (7.7) and (7.8) are generically valid even in presence of residual moduli zi (which

would parametrize Z0). In particular, (7.11) is still valid but now on the right-hand side

one has la = la(z, z̄, s) and thus the linear multiplets also depend on the Z-moduli. Again,

computing la = la(z, z̄, s) from the internal geometry provides a way to clarify the structure

of N , and thus of K, by integrating (7.11). However, in this case, the integration ‘constant’

would generically depend on the Z-moduli zI and its explicit form needs to be determined

by other means.

At this point, it may be clarifying to discuss the limit in which one assumes a constant

warp-factor. First of all, considering e2A constant, from (B.2) one can easily see that the

conformal Kähler potential (7.7) can be factorized as follows

Nunwarped =
πi

2

(

i

∫

M
〈Z, Z̄〉

)1/3(

i

∫

M
〈T, T̄ 〉

)2/3

. (7.12)

If we set Z = Y 3Z0, we are led to the Kähler potential (up to an additional constant)

Kunwarped = − log

(

i

∫

M
〈Z0, Z̄0〉

)

− 2 log

(

i

∫

M
〈T, T̄ 〉

)

. (7.13)

In the SU(3)-structure case, Kunwarped is the generalized Kähler potential obtained in [19],

which can be seen as an orientifold truncation of the N = 2 Kähler potentials of [18], where

Z0 and T belong to vector- and hyper-multiplets, respectively. However, notice that the

factorization of Nunwarped into (7.12), which leads to the split of Kunwarped typical of an

underlying N = 2 structure, seems possible only if the warping is constant.

Indeed, in the unwarped approximation, the results of [17] we started from reproduce

those of [18, 19], which in turn provide a unifying formulation of different results present in

the literature on unwarped compactifications. A detailed discussion can be found e.g. in [1].

So, let us just briefly comment on it. We are interested in low-energy effective potentials,

where very massive modes are integrated out. Using the untwisted picture [cf. appendix A]

for clarity, the external Einstein and dilaton equations imply that

∇m(e−2Φ∇me4A) = e4AF 2 + ρloc , (7.14)
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where ρloc is the energy density associated with the localized sources. Thus, in order to

consider the warping as approximately constant one needs the right-hand side of (7.14) to

be very-small or, in other words, the RR-fluxes may be considered as a small perturbation,

let us say of order ε, of some underlying supersymmetric vacuum. Let us assume that it is

the case and try to expand all the equations in ε.

First, supersymmetry imposes that [27]

e4A−2Φ ∗ H = −e3A[σ(F ) ∧ ReT ]3 + d(. . .) , (7.15)

where the operator σ is defined below (A.8). Then on a compact manifold, since we are

assuming dH = 0, H must be vanishing at zeroth order in ε. This implies that at zeroth

order the pure spinors satisfy the equation

dZ = 0 , dT = 0 . (7.16)

and thus describe a vacuum with (at least) N = 2 supersymmetry and no H-field.17 In

the SU(3)-structure case, we have

IIA : T = e−Φ Ω , Z = e3A−ΦeiJ+B ,

IIB : T = e−Φ eiJ+B , Z = e3A−ΦΩ , (7.17)

and then (7.16) imply that Ω and J describe an ordinary CY manifold with constant

dilaton. In this case the condition (4.4) is indeed automatically satisfied and the spectrum

discussed in this paper (at zeroth order, i.e. for H = 0) boils down to the orientifolded

scalar spectrum of [36]. In this approximation, the H-twisting is a perturbative effect and

shows up in an effective potential.18 The same is true for other perturbative effects, like

the so-called ‘geometric’ fluxes that describe the deviation, measured by torsion classes, of

the metric from the Ricci-flat one. The Kähler potential (7.13) gives exactly the Kähler

potential obtained in [36]. See [1] for more details.

8 No-scale models

As already stressed, in the superconformal approach, the dependence of the linear mul-

tiplets la(Y, Ȳ , sa) (with sa = Reta) on the dual chiral multiplets ta is not generically

required to be invertible in terms of the sa and in fact the interesting case of no-scale

supergravities [40] is obtained when it is not or, in other words, when the matrix

hab = − ∂2N
∂sa∂sb

(8.1)

is degenerate [41, 43]. Indeed, using (7.3) and (7.4) one can easily compute

hab =
1

3
N
(

Kab −
1

3
KaKb

)

, (8.2)

17Using the terminology of [9], Z and T satisfying (7.16) define a generalized CY metric.
18For example, the (untwisted) T -moduli generically get D-terms and F-terms. The first are produced by

the gauging of the (untwisted) RR shift symmetry that involves [H ]-exact forms. The latter can be obtained

directly from (3.1), rewritten in untwisted picture by replacing d with dH and truncated according to the

zeroth-order truncation.
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where we are considering K as a function of the real coordinates sa, ∂aK := ∂K/∂sa and

Kab := ∂2K/(∂sa∂sb). Then, denoting with Kab the inverse of Kab, we have

det hab = det

(

1

3
NKab

)(

1 − 1

3
KcKcdKd

)

, (8.3)

and imposing degeneracy of hab leads to the well-known no-scale condition

Ka Kab Kb = 3 . (8.4)

Let us for example consider the case in which we can identify one of the chiral fields ta,

let us call it ρ = r + icr and denote with φα the remaining chiral fields, such that ∂2
rN = 0

and ∂r∂αN = 0. Then, we can write

K = −3 log[ρ + ρ̄ + f(φ + φ̄)] + const. (8.5)

At the level of twisted cohomology classes, the no-scale property can be interpreted

as the existence of a trajectory in Hev
H (M ; R), parametrizing the deformations of ReT ,

which leaves the class of e2AImT in Hev
H (M ; R) unchanged. As we will see in section 10,

an explicit example of this mechanism is provided by the well known type IIB warped CY

compactifications [5, 20, 21]. It would be interesting to clarify the relation between the

10D interpretation given above of the 4D no-scale condition and the 10D conditions for the

class of generalized non-supersymmetric vacua found in [24].

Finally, notice that by defining sA := (s0, sa), with s0 := log |Y |2, and lA := (3/4π)∂AN ,

then lA(sB) is required to be invertible, as follows from the 4D requirement that the

metric obtained from N must be non-degenerate [34]. Performing a duality transformation

involving also the conformal compensator would lead to a new-minimal supergravity [44]

involving only linear multiplets, as for example discussed in [45] in the context of the

effective five-brane theory on CY spaces.

9 D-term moduli-lifting from D-brane gauging

In most of the above discussions we have for simplicity assumed no space-filling D-branes,

arguing that the T -moduli remain classical unobstructed. This section is intended to

add some comments on the effect of D-branes on the T -moduli, leaving a more detailed

discussion for the future.

The presence of space-filling D-branes changes the story and not only because they

enter the superpotential (3.11) as described in section 3. Indeed, it is well known that

D-branes can introduce D-terms for part of the closed string moduli, giving them a mass

by the Stückelberg mechanism. Let us see how this works in our general setting.

Supersymmetric D-branes must obey the condition (2.14). Let us introduce a new cur-

rent ̂D-brane which has orientifold parity opposite to jD-brane and expand it in cohomology

as [̂D-brane] = na[ωa]. Then integration of (2.14) over the internal manifold produces the
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condition19

nala(Y, Ȳ , t + t̄) = 0 . (9.1)

This condition implies that the presence of D-branes naturally leads to a lifting of the ta

moduli. Notice that in no-scale models the dependence of la on ta is not invertible and

thus there will be at least one remaining modulus ta unlifted.

It is easy to see that (9.1) can be interpreted as the D-flatness condition coming from

the gauging of an RR axionic symmetry under the D-brane U(1) gauge group. Indeed,

from the Bianchi identity (2.3) one can see that a D-brane U(1) gauge transformation

parametrized by λ induces a shift of the RR-potential C → C − λ̂D-brane.
20 Its imaginary

extension is given by ReT → ReT +λ̂D-brane and produces a D-term which, using standard

4D supergravity formulas (see e.g. [34]), takes the form

Dλ = −3

2
δλN = 2π

∫

M
λ〈e2AImT, ̂D-brane〉 . (9.2)

This exactly reproduces the D-term found in [28] starting from the D-brane effective action.

Notice that all the factors are completely fixed and then this nontrivial matching is possible

only thanks to the peculiar 2/3-power of 〈T, T̄ 〉 appearing in (7.7). Clearly, since λ is a

generic function on the internal cycle wrapped by the D-brane, by imposing Dλ = 0 one

gets the condition (2.14).

One can write Dλ =
∫

Σ λD, using the D-term density

D = 2π
[

(e2AImT )|Σ ∧ eF
]

top
, (9.3)

where (Σ,F) is the internal generalized cycle wrapped by the D-brane. One the ways [28]

to see that D can be identified with a D-term density is by expanding the D-brane action

around a supersymmetric vacuum, obtaining an untruncated D-like term

VD =
1

4π

∫

Σ

D2

[

ReT |Σ ∧ eF
]

top

. (9.4)

Notice now that, for λ constant, the transformation C → C−λ̂D-brane is not associated

with a D-brane gauge transformation but can be seen as a gauging of the RR-axionic shift

ta → ta + iλna . (9.5)

The associated D-term is just

D = D(Y, Ȳ , t, t̄) = 2π

∫

M
〈e2AImT, ̂D-brane〉 = −3

2
na∂aN , (9.6)

19The choice of ̂D-brane hides a subtlety. Indeed, using jD-brane in (2.14) would give, after integration, an

empty equation. The point is that the D-flatness condition (2.14) is local and must be satisfied by both the

D-brane and its orientifold image. Thus, in the covering space, one has to replace the D-brane image with

the anti-brane image to get the correct result. This is confirmed by the derivation of the D-term from the

gauging of the RR-axion given later in this section.
20This can be seen as follows. Using the current θ introduced in (3.12), we have d(F − θ) = 0 and thus

the RR gauge potential C is defined by dC = F − θ. On the other hand, under a world-volume U(1) gauge

transformation A → A + dλ, we have δλθ = d(λ̂D-brane) and thus δλC = −λ̂D-brane.
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which, imposing D = 0, gives exactly the D-flatness condition (9.1). Moreover, by substi-

tuting in (9.4) the zero-mode ansatz

D → D dvolΣ
∫

Σ dvolΣ
,
[

ReT |Σ ∧ eF
]

top
→ (Ref) dvolΣ

2π
∫

Σ dvolΣ
(9.7)

where dvolΣ can be any volume form on the internal cycle and f is the D-brane holomorphic

coupling given in (6.7), one gets the expected effective 4D formula for the D-brane induced

D-term potential for the ta moduli:

VD =
1

2
(Ref)−1D2 . (9.8)

10 A subcase: IIB warped CY compactifications

As an example, let us consider the subcase of IIB warped CY compactifications [5, 20, 21].

In addition to the obvious physical interest in this class of vacua, the motivation for this

choice is simple: in this case there is an underlying CY structure which allows a considerable

simplification of the analysis, in particular disentangling the reciprocal dependence of ReT

and e2AImT when they are imposed to solve the supersymmetry equations. On the other

hand, this class of vacua has the non-trivial feature of having a non-vanishing H and thus

allows an explicit application of the H-twisted cohomology classes that are at the base of

the formalism presented in this paper.

In this section, it will be convenient to pass to the untwisted picture where one consid-

ers polyforms that are gauge-invariant under B-field gauge transformations and uses the

twisted differential dH := d + H∧. In this case, the associated twisted cohomology can be

computed by considering first ordinary de Rham cohomology and then, in a second step,

the [H]-cohomology associated with the operator [H]∧ acting on the de Rham cohomology

classes.21 Notice that, as will be clearer from the following discussion, this approach is

quite different in nature from the one usually adopted in the literature on warped CY

compactifications, where the H field is treated on the same footing as the RR fuxes and

the relevant cohomology classes are the ones of the underlying CY space.

In these vacua the metric has the form

ds2 = e2Adxµdxµ + gs e−2Ads2
CY3

, (10.1)

where gs = eΦ, and the axion-dilaton τ = C0 + i/gs is constant. The H flux must be

primitive with H0,3 = 0 and the RR fluxes are given by the conditions gsF3 = − ∗ H and

gsF5 = −4 ∗ dA. The underlying CY space is completely specified by the holomorphic

(3, 0)-form ΩCY and the Kähler form JCY. In particular, we choose the normalization of

ΩCY to be fixed by the condition

ΩCY ∧ Ω̄CY =
4i

3
gs JCY ∧ JCY ∧ JCY . (10.2)

21Actually, in general, this procedure could hide subtleties related to the ‘formality’ of the manifold.

See [10] for a detailed discussion.
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Finally, a compact background must include O3-planes.

Let us start with the Z pure spinor, which is simply given by

Z = ΩCY . (10.3)

The generalized Hodge decomposition of the polyforms reads

U3 = Λ3,0 , U2 = Λ2,0 ⊕ Λ3,1 , U1 = Λ2,1 ⊕ Λ1,0 ⊕ Λ3,2 ,

U0 = Λ0,0 ⊕ Λ1,1 ⊕ Λ2,2 ⊕ Λ3,3 , (10.4)

and the others U−k (with k > 0) are obtained by complex conjugation U−k = Uk. In this

case, the generalized Dolbeault operator is given by

∂̄H = ∂̄ + H1,2∧ , (10.5)

where ∂̄ is the ordinary Dolbeault operator associated with the CY complex structure. The

∂̄H -cohomology is isomorphic to the [H1,2]-cohomology applied to the standard Dolbeault

cohomology:

Hk
H(M) ≃

⊕

r−t=k

Hr,t
H , with Hr,t

H :=
ker[H1,2] : Hr,t → Hr+1,t+2

Im[H1,2] : Hr−1,t−2 → Hr,t
. (10.6)

Notice that h0,2 = h1,3 = 0 because of the underlying CY geometry, and thus the condi-

tion (4.4) is automatically satisfied.22

Le us first consider the Z-moduli space. It is easy to see that

MwCY
Z ≃ Hod

H (M ; R)+ ≃ H3,0
− ⊕ (H2,1

− )H , (10.7)

where H3,0 parametrizes the overall constant rescaling of ΩCY, while (H2,1
− )H parametrizes

the complex structure deformations that do not violate the condition H0,3 = 0.23

The effective superpotential (3.11) becomes

Weff =

∫

M
〈ΩCY, F3 〉 , (10.8)

22There could be vacua of this kind where the underlying CY space has actually reduced holonomy but

the fluxes are still sufficient to break the supersymmetry to N = 1. In this case h0,2 and h1,3 could be non-

vanishing and the condition (4.4) should be an effect of the H-twisting. A simple class of vacua of this kind is

described in [46] (see also [47]), where explicit examples on the T 6/Z2 orientifold with O3-planes are given, in

which h0,2
−

= 0 but h1,3
+ = 3. Although these models would require a separate discussion, because of their rich

cohomological structure, it is interesting to see how (H1,3
+ )H vanishes for N = 1 solutions of this kind, while it

does not vanish for examples with supersymmetry enhanced to N = 2. Strictly N = 1 solutions given in [46],

based on factorized T 6 = T 2×T 2×T 2, have H1,2 ∼ ǫijkdzi∧dz̄j∧dz̄k, where zi are the complex coordinates

on the three two-tori. Then, in these cases we clearly have H1,3
+ = [H1,2] ∧ H0,1

−
and thus (H1,3

+ )H = 0. On

the other hand, the explicit N = 2 example provided in [46] has H1,2 ∼ (dz1 ∧ dz̄2̄ ∧ dz̄3̄ + dz2 ∧ dz̄3̄ ∧ dz̄1̄)

and in this case we see that dim(H1,3
+ )H = 1 since the element dz3∧dz̄1̄∧dz̄2̄∧dz̄3̄ ∈ H1,3

+ is not [H1,2]-exact.
23In the T 6/Z2 orientifold models discussed in footnote 22 we still have MZ ≃ H3,0

−
⊕(H2,1

−
)H . Indeed, the

O3 projection imposes ι∗Z = σ(Z) (see appendix D) and thus possible deformations of Z along Λ1,0 ⊕Λ3,2,

which would correspond to the so-called β- and B-deformations, are associated to the [H ]-twisting of H1,0
+

and H3,2
+ , which both vanish on T 6/Z2.
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where Weff should be thought of as a holomorphic function on MwCY
Z . Since the Mukai

pairing is non-degenerate, it is immediate to see that imposing dWeff = 0 in MwCY
Z is

equivalent to imposing that the complex structure is such that [F 0,3] = 0 and F 1,2 is trivial

in ∂̄H -cohomology. This means that (in ordinary cohomology) [F 1,2] = c[H1,2] for some

constant c, which will eventually be identified with i/gs.

The other pure spinor T takes the form

T = g−1
s exp(igse

−2AJCY + B) , (10.9)

where B is a (1, 1)-form.24

Recalling that in this case the O3 projection acts as ι∗T = σ(T ) and ι∗ImT =

−σ(ImT ) (see appendix D), the corresponding cohomology classes Hev
+ (M) and Hev

− (M)

are given by

[∆̂T ] ∈ Hev
H (M)+ ≃ (H0,0

+ ⊕ H1,1
− ⊕ H2,2

+ ⊕ H3,3
− )H ≃ H1,1

− ⊕ H2,2
+ ,

[e2AImT ] ∈ Hev
H (M)− ≃ (H0,0

− ⊕ H1,1
+ ⊕ H2,2

− ⊕ H3,3
+ )H ≃ H1,1

+ ⊕ H2,2
− . (10.10)

Notice that ∆̂T6 already vanishes in (orientifolded) cohomology, while ∆̂T0 does not van-

ish in ordinary cohomology but is ‘non-closed’ in [H]-cohomology. Thus in our approach

∆̂T0 , which would be the axion-dilaton modulus in an ordinary Calabi-Yau compacti-

fication, is removed from the spectrum of the H-twisted cohomology. This is why the

axion-dilaton is not present in the effective superpotential (10.8), differently from what

happens in the Gukov-Vafa-Witten superpotential (3.20). On the other hand, H3,3
+ is not

present in Hev
H (M)−, because it is trivial in the [H]-cohomology. The simplest way to see

this is by noticing that (H3,3
+ )H is Poincaré dual to (H0,0

+ )H , which vanishes.

We can expand the T -moduli as follows

[∆̂T ] = φa[χa] + tA[ωA] ∈ H1,1
− ⊕ H2,2

+ , (10.11)

where χa and ωA are bases for H1,1
− and H2,2

+ , respectively. On the other hand, we can

expand e2AImT in the dual cohomology basis as follows

[e2AImT ] = vA[ω̃A] + la[χ̃
a] ∈ H1,1

+ ⊕ H2,2
− . (10.12)

Thus, in our description, (φa, tA) are the chiral multiplets, while (vA, la) are the linear

multiplets. Finally, in order to identify the conformal compensator Y we have to fix a

certain holomorphic (3, 0)-form Ω0
CY and write

ΩCY = Y 3Ω0
CY . (10.13)

The φa-moduli clearly correspond to d-closed shifts of the B and C2 fields. If we write

[∆B] = ba[χa] and [∆C2 ] = −ca[χa], then

φa =
1

gs
ba + ica . (10.14)

24To be precise, in order to keep track of the B-field degrees of freedom, here we are actually using

a ‘mixed-twisted’ picture where one splits H = H0 + dB and uses the twisted differential dH0
, whose

cohomology is however isomorphic to the one computed from dH .
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This deformation must be compensated by a corresponding deformation of e−4AJCY ∧JCY

in H2,2
+ of the kind discussed below, in order to guarantee that [∆̂T4 ] = 0. By construction,

this deformation automatically satisfies the condition dH [∆(e2AImT )] = 0.

Before considering the h2,2
+ chiral fields corresponding to T4 , it is convenient to first

analyze the dual linear multiplets vA associated with [e2AImT ] ∈ H1,1
+ , which can be

clearly interpreted as the Kähler moduli of the underlying CY. On the other hand, one

must impose (10.2), obtaining

vAvBvC IABC = 6|Y |6Vol0CY(M) , (10.15)

where

IABC :=

∫

M
ω̃A ∧ ω̃B ∧ ω̃C , Vol0CY(M) := − i

8gs

∫

M
Ω0

CY ∧ Ω̄0
CY . (10.16)

From (10.15) we see how the absolute value of the conformal compensator can be seen

as a function of the CY Kähler moduli vA. This means that only h1,1
+ − 1 of them give

physically relevant deformations. Infinitesimally, they can be for example identified with

the fluctuations δvA such that

vAvB δvC IABC = 0 , (10.17)

which correspond exactly to the primitive deformations. On the other hand, the universal

Kähler structure deformation given by an overall rescaling of JCY can be seen as a Weyl

(i.e. pure gauge) transformation. This in turn implies that the linear multiplets can depend

only on h1,1
+ − 1 of the h2,2

+ = h1,1
+ chiral multiplets associated with [∆̂T ] ∈ H2,2

+ . Let us

now check this explicitly in the dual picture.

Indeed, at the infinitesimal level, the T deformation dual to the unphysical linear

multiplet corresponds to the infinitesimal deformation

δReT4 = −1

2
gsr |Y |−4JCY ∧ JCY , (10.18)

which is generated by a shift e−4A → e−4A + r|Y |−4 (where the compensator appears

to make r of Weyl weight zero), which can always be integrated to a finite deformation

since e−4A is completely determined by the supersymmetry conditions up to an arbitrary

additional constant. From (10.9) it is clear that the corresponding deformation of e2AImT

is a 6-form and thus it vanishes in dH -cohomology. So, the linear multiplets do not depend

on the universal T -modulus

ρ = r + icr , (10.19)

where cr gives the RR-shift [∆C] = (gs/2)|Y |−4cr[JCY ∧ JCY], while they depend on the

remaining h1,1
− +h2,2

+ −1 T -moduli. However, extracting the explicit form of this dependence

appears difficult since the split of the h2,2
+ -moduli into universal and non-universal ones

depends on JCY. Furthermore, the h2,2
+ − 1 non-universal deformations generically require

compensating deformations of the B-field and the RR-fields.
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Thus, it does not seem to be possible to extract the Kähler potential in general in

an explicit closed form by following the procedure indicated in section 7 and one has

to study it case by case. This could be expected since already in the unwarped non-

backreacted approximation in general an explicit form is not known [36]. However, as in

that approximation, the general analysis simplifies drastically if we assume h1,1
+ = h2,2

+ = 1.

In this case, we can take the generators of H1,1
+ and H2,2

+ to be

ω̃ = J0
CY , ω = − J0

CY ∧ J0
CY

6Vol0CY(M)
, (10.20)

where J0
CY is the Kähler form that satisfies (10.2) with respect to Ω0

CY, so that JCY =

|Y |2J0
CY. Then, the unique CY Kähler modulus can be identified with the compensator,

i.e. v = |Y |2, and we can write

[e2AImT ] = |Y |2([ω̃] + ba[ω̃ ∧ χa]) , (10.21)

while

[∆̂ReT ] =
1

gs
ba[χa] + 3gsr Vol0CY(M)[ω] , (10.22)

with corresponding chiral fields φa and ρ given by

[∆̂T ] = φa[χa] + 3gsρVol0CY(M)[ω] . (10.23)

Furthermore, at fixed ba, we can identify the modulus r by splitting

e−4A = (e−4A0
+ r)/|Y |4 . (10.24)

Using (10.21), we are led to identify the linear multiplets as follows

v = |Y |2 , la = |Y |2Iabb
b (10.25)

where

Iab :=

∫

M
χa ∧ χb ∧ J0

CY . (10.26)

The equations (7.6) become in this case

v =
1

4πgsVol0CY(M)

∂NwCY

∂r
, la =

3gs

4π

∂NwCY

∂ba
, (10.27)

which can be easily integrated to give

NwCY =
4π

3
|Y |2

[

3gsVol0CY(M) r +
1

2gs
Iabb

abb + C
]

, (10.28)

where C is a constant. This constant can be determined by evaluating the complete ex-

pression (7.7) at r = ba = 0, obtaining

C =
gs

2

∫

M
e−4A0

J0
CY ∧ J0

CY ∧ J0
CY . (10.29)
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Up to an additional constant, the resulting Einstein-frame Kähler potential is thus given

by

KwCY = −3 log

[

ρ + ρ̄ +
1

2
Îab(φ

a + φ̄a)(φb + φ̄b) + Ĉ
]

, (10.30)

with

Ĉ =
2
∫

M e−4A0
J0

CY ∧ J0
CY ∧ J0

CY
∫

M J0
CY ∧ J0

CY ∧ J0
CY

, Îab :=

∫

M χa ∧ χb ∧ J0
CY

∫

M J0
CY ∧ J0

CY ∧ J0
CY

. (10.31)

By setting φa = 0 in (10.30) one obtains the Kähler potential for the universal modulus

found in [22].25 The derivation presented in [22] is based on a careful direct dimensional

reduction in which supersymmetry does not play any particular role. On the contrary,

here the interplay between 10D and 4D supersymmetry is crucial, allowing the above

simple derivation of (10.30) which keeps also the φa moduli in the spectrum. As in [22],

in (10.30) one can re-absorbe Ĉ in a shift of r, obtaining an expression which coincides

with the unwarped one [36]. However, as stressed in [22], this shift could be physically

non-innocuous and, for example, it can affect non-perturbative and α′-corrections.

Above we have identified the deformations ∆̂T with representatives of H1,1
− ⊕ H2,2

+ .

However, a key point is that generically one should consider them as classes of the H-

twisted cohomology class Hev
H (M)+, via the isomorphism (10.10). The same can be said

about the use of H1,1
+ ⊕H2,2

− for e2AImT , which should rather be considered as Hev
H (M ; R)−.

This means that for example the basis elements χa and ωA of Hev
H (M ; R)+ should be more

generically considered as dH-closed and defined up to a dH-exact terms. (This implies

that the generic representatives of [χa] and [ωA] do not contain only two-forms and four-

forms, respectively.) The relevance of this observation can be understood if for example one

tries to write the instanton correction (6.6) (or the holomorphic coupling (6.7)) associated

with a E3-brane (or D7-brane) wrapping a holomorphic four cycle Σ. Since H 6= 0, (in

the untwisted picture) one must generically consider a non-vanishing (1, 1) and primitive

gauge-invariant world-volume field-strength F := B|Σ + F (such that dF = H|Σ) [26, 51].

The instanton action (or D7-brane coupling) can be written as

SE3 = S0
E3 + 2πmaφ

a + 2πnAtA (10.32)

where, in the untwisted picture used in this section, the integrals

ma :=

∫

Σ
χa|Σ ∧ eF , nA :=

∫

Σ
ωA|Σ ∧ eF (10.33)

can be considered as purely topological quantities (constant under generic deformations of

Σ and F), only if χa and ωA are properly considered as classes of Hev
H (M ; R)+, and not

of H1,1
− ⊕ H2,2

+ . An analogous example regarding Hev
H (M ; R)− vs H1,1

+ ⊕ H2,2
− is obtained by

25See [6, 23, 48, 49] for previous related work, and [50] for a proposal, based on a probe D7-brane analysis,

of warped Kähler potential including open string modes which reduces to the Kähler potential (10.30) with

φa = 0 once applied to the single universal closed string modulus.

– 29 –



J
H
E
P
0
5
(
2
0
0
9
)
0
2
7

considering the coupling of D-string to the linear multiplets or the D-terms on space-filling

D7-branes.

Let us briefly comment on the constant warping approximation. The pure spinors (10.3)

and (10.9) reduce to the ones given in (7.17) if gsJCY = e2AJ and gsΩCY = e3AΩ, where

J and Ω describe the actual (non-rescaled) internal CY metric. Then, in this limit, the

universal modulus (10.24) corresponds to a constant rescaling of the warping. This corre-

sponds to a rescaling of the actual Kähler form J (at fixed JCY) and thus coincides with

the usual universal modulus.

Finally, observe that the action of a E3-brane wrapping a divisor Σ depends on the

universal modulus ρ as follows

SE3 = 2πnρ + . . . , (10.34)

where n = −(1/2)gs

∫

Σ J0
CY ∧ J0

CY, independently on the possible world-volume flux F .

Thus, the corresponding non-pertubative superpotential involving the universal modulus

does not depend on F as well. The same is analogously true for the holomorphic coupling

of space-filling D7-branes and thus for the non-perturbative superpotential arising from

gaugino condensation on a stack of them. As an example of a possible consequence of this

observation, several aspects of the KKLT proposal [52] should not depend on the possible

world-volume flux F on E3/D7 branes, which was assumed to be vanishing in that paper.26

11 Other subcases with SU(3)-structure

One can consider other backgrounds with SU(3)-structure (see e.g. [53–55]) and the simplest

ones correspond to IIB backgrounds with O5-planes (and D5-branes) and IIA backgrounds

with O6-planes (and D6-branes). In these cases there is not an underlying CY or even

Kähler metric surviving and thus it is difficult to describe microscopically the moduli and

hence the Kähler potential. Furthermore, the tadpole condition generically requires the

introduction of D-branes, which add new chiral fields mixing with the T moduli and U(1)-

gauge fields which can gauge the RR axial symmetry, producing D-terms as discussed in

section 9. Nevertheless we can still state what our general arguments predict about the

T spectrum ignoring these additional features. These backgrounds may be thought of as

flux and brane deformed CY manifolds and, as a check, we will see that the spectrum

coincides with the one obtained in the unwarped un-backreacted approximation [36]. A

more detailed study of these predictions is left for the future.

26For example, assuming that this non-perturbative superpotential for the universal modulus can be used

in presence of a supersymmetry-breaking flux H0,3 6= 0, adding it to the expectation values 〈WGVW〉 of the

GVW superpotential (3.20) produces, together with the Kähler potential (10.30) (with φa ≡ 0), the same

condition given in eq. (13) of [52], which relates 〈WGVW〉 and 〈ρ〉. A similar result was obtained in section

6.1 of [17] by considering the 10D supersymmetry conditions modified by smeared E3/D7. A simple way

to smear the E3/D7, proposed and discussed in detail in [17], leads to a dependence of 〈WGVW〉 on 〈ρ〉

which, in presence of F 6= 0, differs by a factor from the one given in eq. (13) of [52]. Thus, in order for the

10D approach of [17] to be in agreement the above 4D result, one should smear the E3/D7 in a different

way. The possibility of different smearings was already suggested in [17], although the details were not

developed.
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11.1 IIB SU(3)-structure vacua with O5-planes

In this case,27 taking into account orientifold projections (cf. appendix D)

Z = e3A−ΦΩ ∧ eB , T = −ie−ΦeiJ+B , (11.1)

where (Ω, J) defines an SU(3)-structure on the internal manifold. From the condition

dZ = 0 we get a Calabi-Yau holomorphic structure

ΩCY = e3A−ΦΩ . (11.2)

On the other hand from d(e2AImT ) = 0 we get eΦ = gse
2A with constant gs, H = 0 and

d(J ∧ J) = 0 . (11.3)

The remaining condition is

∂̄(e−ΦJ) = iF 1,2 , (11.4)

which says that the space is actually not Kähler or, more precisely, does not have a Kähler

structure naturally induced by the background supersymmetry.

The superpotential (3.11) and its splitting into (3.13) now reads

Weff =

∫

M
ΩCY ∧ F3 =

∫

M
ΩCY ∧ F back

3 +

∫

Γ3

ΩCY , (11.5)

where Γ3 is a three-chain such that ΣD5
2 ⊂ ∂Γ3. The superpotential (11.5) can be studied

along the lines described in [57].

The generalized Hodge decomposition coincides with the one given in (10.4) but, since

the space is not required to be Kähler, the ∂∂̄-lemma must be considered as an additional

condition. However, thinking of these vacua as deformations of CY spaces induced by

mutually supersymmetric O5-planes, D5-branes and fluxes, it is natural to consider the

complex structure as unchanged by this deformation and the ∂∂̄-lemma with it. Since

H = 0, this leads to the usual Hodge decomposition of cohomology and the condition (4.4)

implies that

h3,2 = h1,0 = 0 , (11.6)

as for standard SU(3)-holonomy manifolds.

In this case, applying the orientifold projections of appendix D, our general arguments

predict the following spectrum of chiral fields

[∆̂T ] ∈ H1,1
+ ⊕ H2,2

− ⊕ H3,3
+ . (11.7)

On the other hand, the dual space of linear multiplets is given by

[e2AImT ] ∈ H0,0
+ ⊕ H1,1

− ⊕ H2,2
+ . (11.8)

27An extended discussion of vacua of this kind can be found in [56].
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Hence, we get exactly (part of) the massless field content obtained in the unwarped approx-

imation [36], in which it corresponds to the NS deformations of Kähler structure, dilaton

and B-field, completed into chiral multiplets by associated RR-moduli. However, let us

stress again that in the backreacted picture these deformations could develop a different

microscopical description (like for the universal modulus in the warped CY case) and could

require to be accompanied by additional compensating deformations in order to solve the

full coupled system of supersymmetry conditions, as for example it is evident from the fact

that the internal space is not Kähler anymore.

11.2 IIA SU(3)-structure vacua with O6-planes

In this case, in terms of the SU(3)-structure (Ω, J) we have

Z = e3A−ΦeiJ+B , T = e−ΦΩ ∧ eB . (11.9)

Then, from dZ = 0, one gets H = 0, eΦ = gse
3A and dJ = 0, i.e. J defines an ordinary

symplectic structure. Indeed, the generalized complex structure defined by J is just the

B-transform of

J =

(

0 J−1

−J 0

)

(11.10)

which has the canonical form corresponding to a standard symplectic structure, in this case

defined by J . The only non-vanishing RR-flux is F2 and the classical superpotential (3.11)

reduces to

Weff =
1

2gs

∫

M
F2 ∧ Jc ∧ Jc , (11.11)

where Jc = J − iB. Hidden in (11.11) there is also a contribution of the form (3.14)

generated by D6-branes [28], which however is trivial at very low-energies since, even in

the presence of fluxes, D6-branes wrap special Lagrangian cycles [26], which are classically

unobstructed [58, 59].

In order to compute the ∂̄-cohomology, let us work in the untwisted picture, where the

B-field appearing in Z is ‘rotated’ away. Then, in this case, the dJ is given by

dJ = [Λ,d] =: δ , (11.12)

where Λ is the operator that contracts forms with the bivector −J−1. One can show [10]

that in this case the generalized Hodge decomposition (B.4) is isomorphic to the ordinary

grading of forms through the isomorphism

ϕ : Λn−kT ∗
M → Uk , ϕ(ωk ) = eiJe−

i
2
Λωk . (11.13)

Under this isomorphism the generalized Dolbeault operators ∂̄ and ∂ are just d and δ:

∂̄ϕ(α) = ϕ(dα) , ∂ϕ(α) = ϕ(δα) . (11.14)
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Thus, the generalized Dolbeault cohomology classes are isomorphic to the standard de

Rham cohomology

Hk
∂̄(M) ≃ H3−k

dR (M ; C) . (11.15)

In this case, the ddJ -lemma is equivalent to the so-called Lefschetz property (see e.g. [10])

and we see that the condition (4.4) is equivalent to

H1
dR(M ; C) ≃ H5

dR(M ; C) = 0 . (11.16)

From (11.15) and the orientifold projections given in appendix D, we see that the spectrum

of chiral multiplets is given by

[∆̂T ] ∈ H3
dR(M)+ , (11.17)

while the linear multiplets are given by

[e2AImT ] ∈ H3
dR(M)− . (11.18)

Again, we find agreement with the spectrum obtained for unbackreacted CY’s with O6-

planes and fluxes on top of them [36], where H3
dR(M)+ corresponds to deformations of

the dilaton and the CY complex-structure moduli, complexified by associated C3 -moduli.

Again, the microscopic description of these deformations generically changes once the back-

reaction is taken into account, since for example the fluxes break the integrability of the

complex structure.

12 Discussion and outlook

This paper has suggested a new approach, based on the framework provided by general-

ized complex geometry, for investigating the low-energy effective theory describing type II

warped flux compactifications to flat space.

However, the results obtained represent only a first step in this direction. Indeed,

only the T closed string moduli have been explicitly included in the low-energy effective

theory, while open string moduli or other closed string moduli encoded in Z have not

been explicitly considered. Notice that, if one can guarantee a standard effective low-

energy description (for example by restricting to exactly flat Z and D-brane moduli),

supersymmetry imposes that the full Kähler potential should still be given by (7.7), where

the D-brane dependence would enter essentially through equation (2.13). However, even

in the simplifying assumptions of the present work, the resulting effective Kähler potential

is only implicitly defined and appears to generically depend on the microscopic details of

the specific models. For this reason, it would be important to work out other examples

besides the one discussed in section 10, where explicit functional dependence of the Kähler

potential can be extracted.

As discussed in section 9, the inclusion of D-branes will generically generate D-terms

for (some of) the T moduli. It would be interesting to understand better in which regimes
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these D-terms can be directly included in the low-energy effective description. A similar

question arises if one considers the possibility of including all or part of the Z moduli

that are lifted by the superpotential (3.11), directly adding the superpotential itself to the

effective action. Notice that, as for the Kähler potential (7.7), the superpotential (3.11)

automatically includes the open string superpotential (3.14). In any case, the chiral fields

describing D-brane deformations will generically combine in a non-trivial way with both the

Z and T moduli and a unifying fully coupled picture should consistently combine the results

of [11] with the closed string picture suggested in this paper. Furthermore, the complete

effective theory will also include vector multiplets, which have not been discussed here.

Going beyond the classical level, as briefly mentioned in section 6 the formalism developed

seems to naturally allow the inclusion of non-perturbative effects arising from Euclidean

D-branes. It would be interesting to see if it can also be helpful in the computation of

the fermionic zero modes, along the lines of what happens for the bosonic zero-modes of

space-filling D-branes [11]. I hope to come back to these points in future work.

The emerging physical picture rises a number a questions at the mathematical level as

well. First of all, most of the derivations have been greatly simplified by assuming the ddJ -

lemma (cf. appendix C), which is actually a property that could or could not be satisfied

by a generalized complex manifold (counter-examples in which it is not satisfied could be

provided by compactifications on nilmanifolds28 [56, 60, 61]). It would be interesting to

see under which conditions the ddJ -lemma can be relaxed without substantially changing

the results of this paper and, thus, preserving the encouraging self-consistency provided by

their physical interpretation. Other physically motivated assumptions that would require

a better mathematical inspection are the condition (4.4) on the generalized Dolbeault

cohomology of strictly minimally supersymmetric N = 1 vacua and, more importantly,

the non-degeneracy of the variational problems described in appendix E. On top of these

difficulties, the unavoidable inclusion of orientifolds complicates further a more complete

understanding of the geometry of these vacua, which constitutes by itself a challenging and

still quite unexplored subject.
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A Polyforms and H-twist in different pictures

This paper adopts the paradigm of generalized geometry [8, 9] which uses as fundamental

objects polyforms

ω =
∑

k even/odd

ωk (A.1)

rather than differential forms of fixed degree. These polyforms can be seen as O(6,6)

spinors, and the associated Clifford algebra can be identified with the generalized vectors

X = X +ξ, with X ∈ TM and ξ ∈ T ∗
M , whose Clifford action is given by X ·ω = ιXω+ξ∧ω.

In particular even and odd polyforms can be seen as O(6,6) spinors of opposite chirality.

The use of polyforms gives the possibility to use an H-twisted differential dH := d + H∧
acting on them. However, one can use different equivalent descriptions with corresponding

different natural differentials — see [62] for a related discussion in terms of gerbes. For the

purposes of this paper, we can distinguish between the following three main ‘pictures’.

Untwisted picture. In this picture the generic polyform ω of definite parity does not

transform under the B-field gauge transformations B → B+dλ and the natural differential

is the H-twisted one

dHω =
∑

k even/odd

(dωk + H ∧ ωk−2 ) . (A.2)

In this picture, at least in the way it arises in string theory, the physical information

about the B-field (and its field-strength H) can be encoded in the twisted differential dH .

Furthermore, the generalized vector fields X are global sections of TM ⊕ T ∗
M . Finally, the

six-dimensional Hodge-∗ operator is defined as follows

∗ (ea1 ∧ . . . ∧ eak) =
1

(6 − k)!
ǫb1···b6−k

ak...a1eb1 ∧ . . . ∧ eb6−k , (A.3)

where ea is a vielbein for the internal space M . Notice that this Hodge-∗ does not coincide

with more usual ones because of a possible different degree-dependent overall sign. The

definition (A.3) is particularly convenient when dealing with polyforms since ∗2 = −1

independently on the degree of the form it is acting on.

Twisted picture. In this picture the generic polyform ω of definite parity transforms

under the B-field gauge transformation B → B + dλ as follows

ω → edλ ∧ ω . (A.4)

In this case, in the presence of a non-trivial H-field, a twisted polyform is represented on

different patches by ordinary polyforms that are related by transformations (A.4). The

natural differential is the ordinary exterior derivative d, which indeed commutes with the

gauge transformation (A.4). In this picture the generalized vector fields X are sections of

the extension bundle

0 → T ∗
M → E → TM → 0 . (A.5)
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They can be locally written as X = X + ξ, with X ∈ TM and ξ ∈ T ∗
M , and transform as

X + ξ → X − ιXdλ + ξ under (A.4). The advantage of this picture is that it allows to

encode the B-field degrees of freedom in twisted polyforms, as discussed in appendix B for

our physical setting. One can go from the untwisted to the twisted picture (and vice-versa)

by writing H = dB locally and then defining

ωtwisted = eB ∧ ωuntwisted . (A.6)

Clearly dωtwisted = eB ∧ dHωuntwisted. In the twisted picture the natural Hodge operator is

the B-twisted one

∗B := eB ∗ e−B . (A.7)

Mixed-twisted picture. In this picture one fixes a certain reference flux H0 in the

cohomology class of H and writes H = H0 + dB with B now globally defined. In short,

in this picture the polyforms are twisted with respect to the cohomologically trivial flux

∆H = dB and the natural differential is dH0 .

Most of this paper uses the twisted picture. The only exceptions are sections 10 and 11,

where the untwisted and half-twisted picture are also used.

In all pictures there is a natural antisymmetric pairing, called the Mukai pairing, which

associates with a pair of polyforms ω and χ the top-form

〈ω, χ〉 := [ω ∧ σ(χ)]top , (A.8)

where the involution σ acts as σ(ωk ) = (−)k(k−1)/2ωk on a k -form ωk . Since

〈eB ∧ ω, eB ∧ χ〉 = 〈ω, χ〉 , (A.9)

the Mukai pairing is picture-independent.

Finally, in all three pictures the (un)twisted differentials define elliptic differential

complexes with associated twisted cohomology groups which are all isomorphic and are

denoted with H•
H(M) (writing H•

H(M ; R) if one restricts to real polyforms). We can split

H•
H(M) as

H•
H(M) = Hev

H (M) ⊕ Hod
H (M) , (A.10)

where, for later convenience, we identify Hev
H (M) with the cohomology group represented

by odd polyforms in IIA and even polyforms in IIB, while Hod
H (M) is represented by even

polyforms in IIA and odd polyforms in IIB. If [ω] and [χ] are classes in H
ev/odd
H (M), then

the integral

∫

M
〈ω, χ〉 (A.11)

gives a well-defined non-degenerate antisymmetric pairing for H
ev/odd
H (M), thus providing

a generalized Poincaré duality.
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B O(6,6) pure spinors and integrable generalized complex structure

Supersymmetric type II flux compactifications with SU(3)×SU(3) structure can be charac-

terized in terms of a pair of complex polyforms Z and T that are O(6,6) pure spinors [7].29

Using the twisted picture, Z and T encode the complete information about the NS sector

as well as the internal spinors η1 and η2 defining the SU(3)×SU(3) structure. By using

the Clifford isomorphism associating bi-spinors to polyforms, Z and T can be explicitly

identified as follows:

e−B ∧ Z ≃ − 8i

|a|2 e3A−Φη1 ⊗ ηT
2 , e−B ∧ T ≃ − 8i

|a|2 e−Φη1 ⊗ η†2 , (B.1)

where |a|2 := ||η1||2 = ||η2||2. Using Z and T as the fundamental variables, the metric (and

thus the volume form dVol6) and the B-field do not depend on an overall point-dependent

re-scaling of Z and T , whose normalizations determine the dilaton and warping through

e−2Φ =
〈T, T̄ 〉
dVol6

, e6A =
〈Z, Z̄〉
〈T, T̄ 〉 . (B.2)

Furthermore, let us recall that the independent degrees of freedom contained in a pure

spinor can be identified with its real (or equivalently imaginary) part, which must be a

‘stable’ polyforms [8]. By this result, it follows that the complete NS plus spin-structure

information is contained in Z and ReT .30 We recall that the compatibility condition

defining the SU(3) × SU(3)-structure can be written as

〈Z, X · ReT 〉 = 0 ∀X ∈ E , (B.3)

that is indeed identically satisfied by (B.1).

The pure spinor Z defines a generalized almost complex structure J : E → E whose

+i-eigenspace LJ annihilates Z, i.e. LJ · Z = 0.31 J can be used to define the following

decomposition of the space of polyforms [9]

Λ•T ∗
M ⊗ C =

3
∑

k=−3

Uk with Uk := L̄3−k
J · Z , (B.4)

where Uk = U−k and Z ∈ Γ(U3). The Uk space can be alternatively defined as the ik-

eigenspace of J , which naturally acts on polyforms (see e.g. [14]). This characterization

may be used to give an alternative definition of this action of J on polyforms. Using the

decomposition (B.4), the compatibility condition (B.3) can be rewritten as follows

ReT ∈ U0 . (B.5)

29See [17] for more details about the definitions used here, up to renaming t there with T here and going

to the twisted picture, and the appendix of [24] for additional background material about conventions and

notation.
30One could equivalently use the stable form ReZ instead of Z, but the latter automatically gives the

natural complex complex structure on its moduli-space.
31The same can be done by using the pure spinor T which defines a different generalized almost complex

structure, which however results not integrable because of the RR-fluxes and thus not directly relevant for

this paper.
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The supersymmetry condition (2.8) says that Z defines an integrable generalized

Calabi-Yau structure [8]. This in turns implies that the generalized complex structure

J is integrable. Roughly, this means that it locally defines hybrid complex-symplectic

coordinates [9]. Thus, J can define as limiting cases ordinary symplectic (in IIA) or com-

plex (in IIB) structures. For example, this happens when the supersymmetry has ordinary

SU(3)-structure, i.e. η1 ∝ η∗2 in IIA and η1 ∝ η2 in IIB.32

The integrability of J can be equivalently characterized by the requirement that the

ordinary differential d (acting on twisted polyforms) splits as [9]

d = ∂ + ∂̄ , (B.6)

where ∂ : Γ(Uk) → Γ(Uk+1) and ∂̄ : Γ(Uk) → Γ(Uk−1).
33

C Generalized Dolbeault cohomology and ddJ (or ∂∂̄)-lemma

The operator ∂̄ can be seen as a generalized Dolbeault operator that defines an elliptic

complex, with associated cohomology

H•
∂̄(M) =

3
⊕

k=−3

Hk
∂̄(M) . (C.1)

In order to relate the generalized Dolbeault cohomology (C.1) and the twisted coho-

mology (A.10), one needs to assume that the generalized complex manifold satisfies the

so-called ddJ -lemma (which is actually a property). Let us first introduce the following

real differential

dJ := −i(∂ − ∂̄) . (C.2)

Notice that we can equivalently write dJ = [d,J ], where J must be considered as an oper-

ator acting on polyforms, as discussed in appendix B. Then, the ddJ -lemma is satisfied if

ker d ∩ ImdJ = ker dJ ∩ Im d = Im ddJ . (C.3)

Working with complex polyforms, one can equivalently say that a generalized complex

manifold satisfies the (generalized) ∂∂̄-lemma if

ker ∂̄ ∩ Im ∂ = ker ∂ ∩ Im ∂̄ = Im ∂∂̄ . (C.4)

Assuming (as always in this paper) that the ddJ -lemma is valid, it is possible to

show [10] that the twisted cohomology H•
H(M) = Hod

H (M) ⊕ Hev
H (M) can split as follows

Hod
H (M) ≃ H3

H(M) ⊕ H1
H(M) ⊕ H−1

H (M) ⊕ H−3
H (M) ,

32One can find the explicit expression of the pure spinors Z and T for the SU(3)-structure case in appendix

A.3 of [24], taking into account that Z = e3A−ΦeB ∧Ψ2 and T = e−ΦeB ∧Ψ1, where Ψ1,2 are the untwisted

pure-spinors used in that paper.
33In the untwisted picture we write dH = ∂H + ∂̄H .
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Hev
H (M) ≃ H2

H(M) ⊕ H0
H(M) ⊕ H−2

H (M) , (C.5)

where Hk
H(M) can be defined as the cohomology classes in H•

H(M) that can be represented

by elements of Uk in the decomposition (B.4). Furthermore, one can prove that

Hk
H(M) ≃ Hk

∂̄(M) , (C.6)

and thus (C.5) can be seen as a generalized Hodge decomposition of the twisted cohomology

in generalized Dolbeault cohomologies.

Finally, the pairing given by (A.11) splits into well-defined pairings on Hk
H(M) ×

Hl
H(M), or equivalently Hk

∂̄
(M) × Hl

∂̄
(M), which respect the isomorphism (C.6) and are

non-vanishing and non-degenerate only if k = −l.

D The orientifold action

In order to get consistent compactifications, orientifolds are required. They are described

by an involution O which is the combination of a background involution ι : M → M ,

a world-sheet parity Ω and possibly a factor (−)FL , which is sometimes needed to ensure

O2 = 1. Requiring the fields to be invariant under O, for O(3+n)-planes (with n = 0, . . . , 6)

one obtains the conditions [17, 27]34

ι∗Z = (−)
n(n+1)

2 σ(Z) , ι∗T = (−)
n(n−1)

2 σ(T ) , ι∗F = (−)
n(n+1)

2 σ(F ) . (D.1)

Furthermore, we have that ImT must satisfy the projection condition

ι∗ImT = −(−)
n(n−1)

2 σ(ImT ) . (D.2)

Consistency with (2.3) then requires that the total current associated with space-filling

D-branes and orientifolds must satisfy the projection condition

ι∗j = −(−)
n(n−1)

2 σ(j) . (D.3)

The generalized complex structure J defined by Z satisfies the following projection

condition

ι∗J = IJ I−1 , (D.4)

where I maps a generalized vector X = X + ξ to I(X) = X − ξ. Notice that the O-plane

generalized tangent bundle TO-plane, as defined in [9], is given by

TO-plane = {X ∈ E|O-plane : ι∗X = IX} ⊂ E , (D.5)

where, since we are at the O-plane locus, ι∗ acts on X only as an algebraic operator. Clearly,

if X ∈ TO-plane then J ·X ∈ TO-plane, since ι∗(J ·X) = ι∗J · ι∗X = I(J ·X), and so O-planes

are generalized complex submanifolds, i.e. they solve the condition (2.12). On the other

34The NS bosonic fields satisfy the usual projector conditions ι∗g = g, ι∗B = −B and ι∗Φ = Φ.
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hand, (2.14) is implied by the projection condition. Thus O-planes wrap calibrated cycles

by construction, as was already shown in [27] by spinorial methods.

We can split the twisted cohomologies in even and odd parts under the orientifold invo-

lution as follows. Let us first split the spaces entering the generalized Hodge decomposition

as

Γ(Uk) = Γ+(Uk) ⊕ Γ−(Uk) (D.6)

with ω+
k ∈ Γ+(Uk) and ω−

k ∈ Γ−(Uk) satisfying

ι∗ω±
k = ±(−)

n(n+1)
2 σ(ω±

k ) for k odd ,

ι∗ω±
k = ±(−)

n(n−1)
2 σ(ω±

k ) for k even . (D.7)

We can then write (D.1), (D.2) and (D.3) as

Z, F ∈ Γ+(Uodd) , T ∈ Γ+(Ueven) , ImT, j ∈ Γ−(Ueven) , (D.8)

where Γ±(Uodd) := Γ±(U3) ⊕ Γ±(U1) ⊕ Γ±(U−1) ⊕ Γ±(U−3) and Γ±(Ueven) := Γ±(U2) ⊕
Γ±(U0) ⊕ Γ±(U−2). Going to cohomology, we then define

Hod
H (M)± = Γclosed

± (Uodd)/dΓ±(Ueven) ,

Hev
H (M)± = Γclosed

± (Uev)/dΓ∓(Uodd) ,

Hk
∂̄(M)± = Γ∂̄-closed

± (Uk)/∂̄Γ±(Uk+1) for k odd ,

Hk
∂̄(M)± = Γ∂̄-closed

± (Uk)/∂̄Γ∓(Uk+1) for k even . (D.9)

As in (C.5), we can split Hod
H (M)± and Hev

H (M)± as

Hod
H (M)± ≃ H3

H(M)± ⊕ H1
H(M)± ⊕ H−1

H (M)± ⊕ H−3
H (M)± ,

Hev
H (M)± ≃ H2

H(M)± ⊕ H0
H(M)± ⊕ H−2

H (M)± , (D.10)

where Hk
H(M)± ≃ Hk

∂̄
(M)±.

From (D.1), (D.2) and (D.3) we see that in presence of orientifolds one has the following

projection conditions on the main cohomology classes discussed in this paper

[Z] ∈ Hod
H (M)+ , [∆̂T ] ∈ Hev

H (M)+ , [e2AImT ] ∈ Hev
H (M)− . (D.11)

Notice that the integral (A.11) on the orientifold covering space is not vanishing

only when the two polyforms belong to Γ±(Uodd) × Γ±(Uodd) or Γ±(Ueven) × Γ∓(Ueven).

Then (A.11) defines non-degenerate pairings on Hk
H(M)± × H−k

H (M)± for k odd and

Hk
H(M)± × H−k

H (M)∓ for k even, while in the other cases it vanishes.

Finally, the space of sections Γ(E) of the extension bundle E defined in (A.5) splits

into Γ+(E) ⊕ Γ−(E), where

Γ±(E) = {X ∈ Γ(E) : ι∗X = ±IX} . (D.12)

In particular, the generalized diffeomorphisms (3.5) in presence of the orientifolded space

are generated by sections of Γ+(E). From (D.5), this implies that the sections of Γ+(E)
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are tangent (in a generalized sense) to the orientifolds and thus the associated generalized

diffeomorphisms leave the O-planes untouched (see [11, 28] for a description of the defor-

mations of D-branes in the language of generalized complex geometry). Furthermore, the

generalized diffeomorphisms generated by Γ+(E) are compatible with the orientifolded co-

homology groups (D.9), in the sense that they do not change the corresponding cohomology

classes.

E Hitchin-like functionals

First consider the supersymmetry condition (2.11). This can be obtained as a D-flatness

condition from the conformal Kähler potential N defined in (7.7) [17]. In our language, this

means the following. Fix a certain ReT 0 that satisfies the F-flatness conditions (2.9). Then

consider the functional N evaluated on the orbit generated by symmetry (4.9), i.e. take

ReT = ReT 0+(dΛ)0 for generic real Λ ∈ Γ(U1⊕U−1) and consider N = N (Λ). From (7.9)

one can easily see that N (Λ) is extremized exactly at a point Λ where (2.11) is satisfied.

The existence of a unique Λ extremizing N (Λ), up to the residual symmetry group (3.19),

requires a non-degeneracy condition analogous to the one discussed by Hitchin in [8], which

he called ddJ -lemma (which does not coincide with the ddJ -lemma of appendix C, but is

actually implied by the latter [14]). More concretely, the Hessian is

δ2N (α1, α2) =
4π

3

∫

M
e2A

(

〈dα1, J · dα2〉 −
4

3

〈dα1, ImT 〉〈dα2, ImT 〉
〈ReT, ImT 〉

)

(E.1)

where J is the complex structure for polyforms introduced by Hitchin in [8], which can

be defined as follows. Use the generalized almost complex structure defined by T (which

together with J defines a generalized almost Kähler structure) to expand U0 into U0,3 ⊕
U0,1 ⊕U0,−1 ⊕U0,−3 [9]. Then J takes value −i on U0,3 ⊕U0,1 and i on U0,−1 ⊕U0,−3. The

Hessian (E.1) is required to be non degenerate, up to the residual symmetry group (3.19),

i.e. it is required to vanish for any α1 only if dα2 is generated by an infinitesimal symmmetry

transformation (3.19). Although the direct mathematical proof of such non-degeneracy

appears difficult at the present time, its validity is strongly supported by the requirement of

having a consistent supersymmetric four-dimensional effective theory. Indeed, as discussed

in this paper, for the latter to appear sensible the moduli encoded in ReT should be counted

exactly by Hev
H (M ; R).

Viceversa, following [14]35 an analogous argument exists to argue that one can identify

e2AImT with its cohomology class [e2AImT ] in Hev
H (M ; R), since its representative is fixed

by (2.13), which derives from (2.9). Let us define the pure spinor ρ = −ie2AT , fix a

cohomology class [Reρ] in Hev
H (M ; R) ≃ H0

H(M ; R) and thus write the generic representative

of [Reρ] in U0 as Reρ = Reρ0+ddJ α, with real α ∈ U0. Then we can consider the functional

H(α) =
i

8

∫

M

〈ρ, ρ̄〉2
〈Z, Z̄〉 −

∫

M
〈α, j〉 . (E.2)

35See also [15] for a similar discussion in the unwarped approximation.
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Under a general variation of δα, we have

δH(α) = −
∫

M
〈δα,ddJ (e−2AImρ) + j〉 =

∫

M
〈δα,ddJ ReT − j〉 , (E.3)

showing that the functional (E.2) is extremized exactly for α such that (2.13) is satisfied.

The Hessian is now given by

δ2H(α1.α2) =

∫

M
e−2A

(

〈ddJ α1, J · ddJ α2〉 + 2
〈ddJ α1, Imρ〉〈ddJ α1, Imρ〉

〈Reρ, Imρ〉

)

(E.4)

As above, the non-degeneracy of the Hessian up to the symmetry group (3.19) appears

difficult to prove. Nevertheless, the existence of a consistent 4D effective theory seems to

indirectly require such non-degeneracy, since the moduli encoded in Reρ should correspond

to the scalar component of 4D linear multiplets and should be identified with Hev
H (M ; R).

Finally, as in the bulk of the paper, these arguments can be extended to explicitly keep

into account the presence of orientifolds as described in appendix D, by taking for example

Λ ∈ Γ−(U1 ⊕ U−1) and α ∈ Γ+(U0).
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