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1. Some Thoughts of the

Misner-Sharp Mass

Contrary to intuitions, the mass (energy) of

a gravitational field is a very intricate prob-

lem, which is still left open for modern physi-

cists. Any efforts to ascertain the stress-energy

tensor of the gravitational fields will be futile.

The reason roots in the equivalence principle.

Base on this principle, a free-falling observer

senses a Minkowski spacetime locally, in which

the stress-energy of the gravitational field, and

thus the density of gravitational mass should

be zero. According the requirements of diffeo-

morphism invariance, the stress-energy should

vanish in frames of any observers. To evade

this strong constraint from equivalence princi-

ple, people turn to stress-energy pseudo ten-

sors, for example the Einstein-Tolman form, the

Landau-Lifshitz form, and the mφller form, etc.

An obvious defect of these forms is that the

pseudo tensor is coordinates-dependent. They

must vanish for some observers, which contra-

dicts to our basic concept to the stress en-

ergy. Generally the existence of a stress energy

should not depend on the coordinates. On the
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other hand, the total mass of a gravitational

field seems a little easier problem. We have

well-defined ADM mass at spacelike infinity and

Bondi-Sachs mass at null infinity on an asymp-

totic flat manifold. However, only the concept

of total mass is not enough in the processes

in astrophysics. In the observations of gravi-

tational wave radiations from a compact star,

we must quantitatively show how many gravita-

tional energies are carried away by the gravita-

tional waves from the compact star. In the grav-

itational collapse, we must detect how many en-

ergies of the collapsing matter are transferred to

gravitational energies. In either case, it seems a

concept of local gravitational mass is necessary.

As we have mentioned, a covariant stress energy

for gravity field is impossible. As an unavoid-

able concession, we consider the quasi-local form

of gravitational mass, i.e., the mass inclosed a

two-surface.

After several decades’ studies, we now have

many different forms of quasi-local forms of

gravitational mass. In this article we concen-

trate on the Misner-Sharp mass. In fact, the

Misner and Sharp find some clues of the form of

the Misner-Sharp mass by exploring the trans-

formation from matter to gravitational field in

a collapsing model [1]. The explicit form of
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Misner-Sharp mass is presented in [2]. We re-

view it in a logic way rather than its historic

way. After collapsing, the mass of the baryons

in a Newtonian star vanishes. Based on the en-

ergy conservation law, we can reasonably infer

that the mass of the residue black hole space-

time is equal to the mass of the original star.

This idea is used to determine the mass param-

eter in black hole solutions. This argument im-

plies that we may define the mass of gravity field

through the mass of the source matters. In a

spacetime with stress energy Tab and a timelike

Killing vector ξb,

∇a(Tabξb) = 0, (1)

does not imply a conservation law of matters.

We clarify this point by a simple example.

In a general spherically symmetric static

spacetime in the area coordinates r,

ds2 = −f(r)dt2 + h−1(r)dr2 + r2dΩ2, (2)

the mass of matter in a two-sphere r = r0 reads,

M0 = −4π

∫ r0

0
dr T 0

0 h
−1/2r2, (3)

and

ξa =

√
h

f

(
∂

∂t

)a
(4)

while the conserved charge corresponding to the

conserved current Tabξ
b reads,

M =

∫
∗(Tabξb) = −4π

∫ r0

0
dr T 0

0 r
2. (5)

The conserved charge M is different from the

mass of matter inclosed in the two-surface r =

r0. The conserved charge M encodes not only

the mass of the matters, but also the mass of the

gravitational field. Thus a single M0 in (3) does

not obey the conservation law (1). One may

be impulsive to define the gravitational mass by

subtracting the matter mass M0 from the total

mass M ,

Mgravity = M −M0. (6)

Unfortunately, Mgravity is neither positive defi-

nite, nor a component of a conserved current.

To call it mass of gravity seems ineffectual.

The most useful concept in the above dis-

cussions is the total mass M , as a conserved

charge of the spacetime. In Einstein gravity we

have the relation between geometry and stress

energy,

Gab = 8πTab, (7)

where we set the Newton constant G = 1. By

using the Einstein equation (7), we rewrite (5)

as follows,

M = −1

2

∫ r0

0
dr G0

0r
2 =

r

2
(1− h). (8)

Apparently, the above formula only depends on

the metric, which is called Misner-Sharp mass

as a quasi-local form of gravitational mass and

labeled as Mms henceforth.

We emphasize that Mms is the total mass of

matter and gravity from its definition. In this

definition, gravity mass is always smuggled by

matter mass. In a vacuum region, for example

a shell dwelling at r1 to r2 (0 < r1 < r2) in

the Schwarzschild spacetime, the Misner-Sharp

mass is zero. The Misner-Sharp mass does not

change when more vacuum regions (without sin-

gularities) are included. This is a critical prop-

erty of the Misner-Sharp mass. Starting from

this property, we can obtain fairly rich informa-

tion of the spacetime metric in consideration.

Furthermore, this property is inherited in the

modified gravities. The reason is clear. In mod-

ified gravities with a timelike Killing vector, we

still define,

Mms =

∫
∗(Tabξb). (9)

Therefore in any vacuum region without singu-

larity M = 0. The concept of Misner-Sharp

mass also has fairly wide applications in dy-

namical spaces. Generally there is no conserved

charge in a dynamical spacetime. However, in

some special cases with high symmetries we can

find a similar conserved charge. A typical case

is the spacetime with spherically (spatially flat,
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pseudo spherically) symmetry where a Kodama

vector K a is permitted [3]. The property of the

Kodama vector is similar to the Killing vector,

∇(aKb) = 0, (10)

which also yields a conservation law,

∇a(TabKb) = 0, (11)

and the conserved charge,

Mms =

∫
∗(TabKb). (12)

Thus, a vacuum without singularity still implies

a vanishing Mms. We will see the significance of

this property.

2. Derivation of the Schwarzschild

Spacetime

The discussions in the above section is only

to display some thoughts of the Misner-Sharp

mass. Now, in a formal discussion, we try to

include a little more general cases. First, we

consider a static space with different topolo-

gies rather than the only spherically symmet-

ric cases. A static metric which permits a

two-dimensional maximally symmetric subspace

with three types of sectional curvatures k =

1, 0, − 1 reads,

ds2 = −f(r)dt2 + h−1(r)dr2 + r2dΩ2
2, (13)

in which f(r), h(r) are general functions of r,

Ω2 denotes a unit two-sphere, two-cube, or two-

pseudo-sphere, depending on the sectional cur-

vature k = 1, 0, − 1, respectively. The corre-

sponding Misner-Sharp mass reads,

Mms =

∫
∗(Tabξb) = −1

2

∫ r0

0
dr G0

0r
2. (14)

The result is similar to (8),

Mms =
r

2
(k − h). (15)

To explore the information hided in the Misner-

Sharp mass, we take (13) and (15) as our start-

ing point.

As we have stressed in the last section, in

vacuum space the Misner-Sharp mass does not

depend on the radius r in the metric (13). In

thermodynamic language, this is equal to con-

sider an adiabatic Misner-Sharp system,

δMms = 0. (16)

Thus we obtain,

k − h− rh′ = 0, (17)

where a prime denotes the derivative with re-

spect to r. Then immediately we reach,

h =

(
k − C

r

)
, (18)

where C is an integration constant. To deter-

mine C, we back substitute h into (15) to obtain,

C = 2Mms. (19)

Here, we obtain h with 3 kinds of sectional cur-

vatures as a unity. One sees that only the prop-

erty that vacuum implies invariance of Misner-

Sharp mass is enough to determine a component

of the static metric. If we can determine f , we

obtain the complete vacuum solution.

We use surface gravity to determine f(r). In

spherically symmetric spacetime the geometric

surface gravity is adapted to the unified first law

[4]. The unified first law is a nice progress in

gravi-thermodynamics. The black hole thermo-

dynamics was set up on the global quantities of

the spacetime, which always depends on asymp-

totic behaviour of a manifold. It is not very

helpful to understand the realistic processes in

astrophysics. While only a patch of a mani-

fold is involved in the unified first law, which

can be applied to a realistic processes in astro-

physics when the knowledge of the whole man-

ifold is lack. Correspondingly we only need the

quasi-local quantities rather than global quan-

tities. Therefore it is no essential difficulties to

be used in dynamical spacetimes [5]. The energy

adapted to unified first law is just the Misner-

Sharp mass, which is critical to make our rea-

soning be self-consistent.

32



THE UNIVERSE Vol. 3, No. 1 January-March 2015 Invited Review

In four dimensional spacetime, the geometric

surface gravity adapted to the unified first law

is,

κ =
Mms

r2
− 4πrw, (20)

where the work term,

w = −1

2
IabTab, (21)

and

Iab = −fdt2 + h−1dr2. (22)

T denotes the stress energy of the matter fields.

T = 0 in vacuum spacetime.

We see that the surface gravity κ in (20) is

independent on the sectional curvature of k. As

usual, we calculate the surface gravity as a prod-

uct of the magnitude of the four-acceleration of

a motionless particle at the static coordinates

and (−g00)1/2. In coordinates (13), the world

line of a rest particle is,

Xµ = (t, r0, θ0, φ0), (23)

where (θ, φ) are the coordinates of the two-

dimensional inner space and a subscript 0 de-

notes that the corresponding quantity is a con-

stant. The four-velocity for this particle Uµ

Uµ =
dXµ

dτ
, (24)

where τ denotes the proper time of this particle.

Then the 4-acceleration for this particle reads,

Aµ = Uν∇νUµ. (25)

The magnitude of Aµ,

a =
√
|gµνAµAν |. (26)

Thus the surface gravity κ is calculated by

κ = a
√
−g00 = a

√
f =

1

2
(f/h)−1/2f ′. (27)

The surface gravity obtained in this way,

which we called “dynamical surface gravity”,

should be equal to the geometric surface gravity

in (20),

1

2
(f/h)−1/2f ′ =

Mms

r2
. (28)

This equation is easy to integrate using (18),

f =

[(
k − 2Mms

r

)1/2

+D

]2

, (29)

where D is an integration constant. D can be

derived by the Newtonian condition. A basic

requirement of any reasonable metrics is to de-

generate to the Newtonian gravity in the weak

field limit. As usual, the Newtonian metric for

a spherically metric (k = 1) reads,

ds2 = −(1+2φ)dt2 +(1−2φ)dr2 +r2dΩ2
2, (30)

where φ = −M/r denotes the Newtonian poten-

tial and M marks the central mass. An impor-

tant property of the Misner-Sharp mass is that

it is exactly the Newtonian mass M in a spher-

ically symmetric case [4]. Expanding f at large

r limit, we obtain

f = 1− 2Mms(1 +D)

r
+ 2D +D2. (31)

Then it is clear,

φ = −2Mms(1 +D)

r
+ 2D +D2. (32)

The correct Newtonian limit requires D = 0 for

the case k = 1. For the cases k = 0, −1 we have

no corresponding Newtonian limits. Locally we

treat the cases k = 0, − 1 as analytic prolon-

gations of the case k = 1. Thus they share

a unified D = 0. We complete the derivation

of Schwarzschild solution (including the three

cases of different topologies) from the Misner-

Sharp mass form by thermodynamic considera-

tions.

3. Solutions with Matter Sources

The vacuum solutions with different topolo-

gies have been derived by a variation of the

Misner-Sharp mass with respect to r in an adi-

abatic system. An improvement of this demon-

stration is to introduce the generalized forces at

the right hand of (16) to include the effects of

matter fields. The validity of this method is not

obvious from the properties of the Misner-Sharp
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mass, as discussed in the Sec. 1. However, we

will show that it is really valid in discussing the

solutions with matter source. First, we discuss

dS/AdS space. The metric assumption (13) and

the Misner-Sharp mass (15) take the same in

this case. When a pressure term is introduced,

(16) becomes

δMms = −PdV, (33)

where P =constant (dS/AdS depends on the

sign of P ) is the pressure and V is the volume

in consideration. It is easy to obtain h(r) for

this asymptotical dS/AdS,

h =

(
k − C

r
+

8πP

3
r2

)
. (34)

According to the customs, we use the cosmolog-

ical constant to replace the pressure,

Λ = −8πP. (35)

We obtain the Minser-Sharp mass for dS/AdS

by back instituting (34) into (15),

Mmsd =
C

2
+

Λ

6
r3. (36)

Interestingly, this result does not depend on the

sectional curvature k.

Now the corresponding work term appears,

w =
1

8π
Λ. (37)

And the geometric surface gravity (20) becomes,

κ =
C

2r2
− Λr

3
. (38)

While the dynamical surface gravity (27) does

not depend on the concrete forms of f and h.

The equality of the geometric surface gravity

and the dynamical surface gravity is written as,

1

2
(f/h)−1/2f ′ =

C

2r2
− Λr

3
. (39)

We obtain the form of f by direct integration,

f =

[(
1− C

r
− Λ

3
r2

)1/2

+D1

]2

, (40)

where D1 labels an integration constant. Simi-

lar to the vacuum case, we obtain D1 = 0 by us-

ing the Newtonian limit under Λ = 0 and large

r approximation.

Then, we consider a system with an electro-

magnetic field. The first law in an adiabatic

Misner-Sharp system is modified to

δMms = Φdq, (41)

where Φ = q/r labels the electric potential and

q represents the electric charge at r = 0. Then

we reach,

h =

(
k − C

r
+
q2

r2

)
. (42)

We calculate the Misner-Sharp mass Mmsq with

an electromagnetic field,

Mmsq =
C

2
− q2

2r
, (43)

and the work term becomes,

w =
q2

8πr4
. (44)

Thus the geometric surface gravity,

κ =
C

2r2
− q2

r3
. (45)

The equality of dynamical surface gravity and

geometric surface gravity presents

f = k − C

r
+
q2

r2
, (46)

where we have imposed the proper Newtonian

limit.

4. Modified Gravities

We always have two perspectives on the cos-

mological constant about its physical property.

The first one is that it is matter, whose stress en-

ergy satisfies that energy density equals negative

pressure. This property is exactly satisfies the

requirement of vacuum in quantum field theory.

In this sense we call it vacuum energy in a lot of

cases. The second one is that the cosmological
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constant is a geometric property of the space-

time, which belongs to the gravity sector in the

field equation. In the deduction of of the last

section, we take the first perspective. This is

because in the definition of Misner-Sharp mass

(8), we have used the Einstein equation without

cosmological constant Gab = 8πTab. Hence the

cosmological constant must be treated as form

of matter at the right hand side of the equa-

tion. While in the second perspective, the field

equation becomes,

Gab + Λgab = 8πGTab. (47)

We still define the Misner-Sharp mass as in (9).

For a more general discussion, we work in an

n-dimensional spacetime M=I × K,

ds2 = −f(r)dt2 +
1

h(r)
dr2 + r2γijdz

idzj , (48)

where (K, γ) is an (n − 2)-dimensional max-

imally symmetric submanifold embedded in

(M, g).

Then we obtain the Misner-Sharp mass for

Einstein gravity with a cosmological constant

for the above metric within radius r by a direct

integration of (9),

Mms

=
V k
n−2r

n−3

8πG

[
n− 2

2
(k − Iab∂ar∂br)−

r2Λ

n− 1

]
,

(49)

where V k
n−2 denotes the volume of a unit sub-

space K with different sectional curvatures k,

I represents the induced metric on I, and the

indexes a, b = 0, 1. For n = 4, it reduces to

Mms =
V k

2 r

8πG

[
(k − Iab∂ar∂br)−

Λr2

3

]
. (50)

We call a system Misner-Sharp system, if its to-

tal energy is defined as its Misner-Sharp mass.

Supposing the Misner-Sharp system in radius r

is in adiabatic state in four dimensional space-

time, and making a variation with respective to

r in (50), we arrive at,

k − h− Λ

3
r2 = r

(
h′ +

2

3
Λr

)
. (51)

The solution reads,

h = k − C

r
− Λ

3
r2. (52)

Substituting (52) into (50), we obtain the

Misner-Sharp mass for this system,

M ′ms =
C

2
, (53)

which is different from the result in the first

perspective, in which Mms = C
2 + Λ

6 r
3, as

shown in (36). This difference is not difficult

to explain: Λ belongs to the gravitational back

ground and has been subtracted in (50) in the

second perspective, while in the first perspective

Λ is treated as a matter field, which has been

considered in the Misner-Sharp mass.

Following the discussions in the above sec-

tions, we should then compare the dynamical

surface gravity with the geometric surface grav-

ity to determine f . However, unfortunately a

proper definition of surface gravity in modified

gravity as an extension of (20) is still absent.

Thus we have to switch to the first perspective,

i.e., to treat the cosmological constant as a vac-

uum matter with density and pressure,

ρ =
Λ

8πG
, (54)

p = − Λ

8πG
. (55)

The following procedure exactly mimics what

we done in Sec. 3. The resulted f is

f = k − C

r
− Λ

3
r2. (56)

It is not worthy of switching between the two

perspectives if we only want to derive dS/AdS

solution. This method will play important role

in the discussions of more complicated modified

gravities. In cosmology, the two perspectives of

modified gravities have been studied long. In

the first perspective, all the terms other than

the Einstein tensor is casted to the right hand

side of the field equation and treated as effective

“matters”. This is also called Einstein interpre-

tation of the field equation. In the second per-

spective, all the geometric sectors are treated as
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gravity. The matter energy stress only contains

realistic matters. This is the natural perspective

of modified gravity. DS/AdS is a simple but in-

structive example, which is easy to understand

for the switching between the two perspectives.

In fact the switching between two perspectives

is critical in search for solution in modified grav-

ities via thermodynamic considerations.

Next, we start to discuss an important mod-

ified gravity, the Guass-Bonnet gravity, by ther-

modynamical method. In higher dimensional

spacetime, one can find a proper combination

of R2-type or higher derivative terms in the La-

grangian which does not yield higher than two

order derivatives with respect to metric in the

field euqation [6]. In five dimensional space-

times, this combination is Gauss-Bonnet term

RGB

RGB = RµνγδR
µνγδ − 4RµνR

µν +R2, (57)

where Rµνγδ, Rµν , and R denote Reimann ten-

sor, Ricci tensor, and Ricci scalar, respectively.

More general Lovelock gravity permits combina-

tions of more higher order power of R, such as

R4-type terms, which can also evade higher than

two order derivatives with respect to the metric

in more higher dimensional spacetimes [6]. A

spherically symmetric static solution in Gauss-

Bonnet gravity is derived in [7]. This result has

been extended with introducing a cosmological

constant [8]. We derive this Boulware-Deser-Cai

solution via thermodynamic method.

We will work in the metric form (48) on M.

The Misner-Sharp mass for this metric is given

by an direct integration (9) [9], see also [10],

Mms

=
V k
n−2r

n−3

8πG

[
n− 2

2
(k − Iab∂ar∂br)

− Λ

n− 1
r2 +

n− 2

2
α̃r−2(k − Iab∂ar∂br)2

]
,

(58)

which corresponds to the action of an Einstein-

Hilbert term with an Gauss-Bonnet correction,

S

=
1

16πG

∫
M
dnx

√
−det(g) (R− 2Λ + αRGB) ,

(59)

in which

α̃ = α(n− 3)(n− 4). (60)

There are some constraints on α when we treat

the Gauss-Bonnet gravity as a reduction from

other theories, for example string/M theory.

Phenomenologically, it is treated as a free pa-

rameter in this work. Consider an adiabatic

Misner-Sharp system,

δMms = 0. (61)

Using (58), we have,

n− 3

r

(
k − 2r2Λ

2− 3n+ n2
+
α̃(k − h)2

r2
− h
)

=
4rΛ

2− 3n+ n2
+

2α̃(k − h)2

r3
+ h′

+
2α̃(k − h)h′

r2
. (62)

By direct integration, we obtain

h

= k +
r2

2α̃

(
1∓

√
1 +

8α̃Λ

(n− 2)(n− 1)
+

4α̃2C

rd−1

)
,

(63)

where C is an integration constant. Comparing

with the Schwarzschild case, we guess that C is

a mass parameter. But it is not equal to mass

here. Substituting (63) into (58), we find that

C is proportional to mass,

Mms =
α̃C(n− 2)V k

n−2

16πG
. (64)

We can confirm that Mms reduces to the mass

in the Newtonian sense at the limits Λ→ 0 and

α → 0. Therefore, in this sense the Misner-

Sharp mass seems a reasonable extension of the

Newtonian mass in the Guass-Bonnet gravity.
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Then we need to deal with f . One encounter

a similar problem as that in the case of cos-

mological constant: we have no accurate defini-

tion of surface gravity in modified gravities. We

also have two perspectives in modified gravity

theories. The first perspective (Einstein inter-

pretation) has been extensively studied in the

researches of the cosmic acceleration [11]. As

we have seen, the Misner-Sharp mass in the sec-

ond perspective (modified gravity perspective)

is critical to obtain h. Now we switch to the

first perspective (Einstein interpretation). The

effective stress energy T (e) in the first perspec-

tive is presented in [8],

T (e)
µν

= − 1

8π

[
2α(RRµν − 2RµαR

α
ν − 2RαβRµανβ

+R αβγ
µ Rναβγ)− α

2
gµνRGB + Λgµν

]
, (65)

where the curvature tensors are calculated by

the metric (48). The Misner-Sharp mass takes

its original form in this perspective,

Mms =
V k
n−2r

n−3

8πG

n− 2

2
(k − Iab∂ar∂br), (66)

which is no more constant, because the “matter

field” (65) is included. Mimicking the case of

real matter fields, we define the work term

w = −1

2
IabT eab. (67)

With these preparations, the surface gravity can

be defined in n-dimensional (n ≥ 3) spacetime

κ ≡ 8π(n− 3)

(n− 2)V k
n−2

Mms

rn−2
− 8π

n− 2
rw. (68)

It is easy to confirm that when n = 4, this gen-

eral form degenerates to (20). In this section

we suppose n ≥ 5 without special notations be-

cause we are discussing the Gauss-Bonnet grav-

ity. Here, we would like to note that the above

equation is valid for all the cases of n ≥ 3. The

three dimensional case is of special significance.

κ vanishes for three dimensional pure Einstein

gravity, which confirms the essential result in :

Black holes with nontrivial geometries do not

exist in three-dimensional Einstein gravity.

The geometric surface can be derived by sub-

stituting (66) and (67) into the above equation,

κ =
1

2G
(n− 3)

1− h
r

+
4πr

n− 2
IabT eab . (69)

The equality of dynamical surface gravity and

geometric surface gravity presents the equation

for f , (
1− 2

√
f

h

)
hf ′ + fh′ = 0. (70)

h has been derived in (63). We thus obtain f ,

f =
1

2

(
h−D ±

√
h2 − 2Dh

)
, (71)

where D is the integration constant. D can be

determined by studying some limit of f . It is

clear that only D = 0 in the “+” branch reduces

to correct Schwarzschild limit. The “−” branch

should be treated to be an extraneous solution

emerged in the thermodynamic method. Thus

we write f ,

f = h

= k +
r2

2α̃

(
1∓

√
1 +

8α̃Λ

(n− 2)(n− 1)
+

4α̃2C

rd−1

)
.

(72)

So the Boulware-Deser-Cai solution in Gauss-

Bonnet gravity is derived by thermodynamic

considerations.

Divergence is a famous difficult problem in

gravity theory. It has been found that the di-

vergences are significantly alleviated if higher

order derivatives are included [12]. The higher

order terms are not something “put by hand”.

Such terms always come when quantum effects

is considered [13] or some unified theory, for ex-

ample string/M theory is taken into account

[14]. F (R) gravity is one of the most ex-

tensively explored theory in the higher order

derivatives theories. F (R) gravity has some dis-

tinctive properties. First of all, it is the unique

one which successfully extricates from the cat-

actrophic Ostrogradski instability amongst all

higher derivative gravity theories [15]. Sec-

ond, it is simple enough to handle, at the same
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time complicated enough to encode the princi-

ple framework of higher derivative theories.

All the above only reproduced the exist-

ing results. To display the power of this new

method, we apply it to F (R) gravity to get a

class of new solution. The Misner-Sharp mass

for F (R) gravity in four-dimensional spherically

symmetric spacetime is presented in [16]. This

result is extended to the case of F (R) grav-

ity n-dimensional spacetime with three types

of (n − 2)-dimensional maximally symmetric

submanifold [17]. Our starting point is still

a Misner-Sharp system. We work on this n-

dimensional manifold (M, g) of (48) with an

(n − 2)-dimensional maximally symmetric sub-

manifold (K, γ), on which the Misner-Sharp

mass can be written as,

Mms =
V k
n−2r

n−3

8πG

[n− 2

2
(k − Iab∂ar∂br)FR +

1

2(n− 1)
r2(F − FRR)− rIab∂aFR∂br

]
+
V k
n−2

16πG

∫
dr
[
rn−2h′ + (n− 2)rn−3(h− k) +

rn−1

n− 1
R
]
FR,r, (73)

which corresponds to the action,

S =
1

16πG

∫
M
dnx

√
−det(g) F (R) + Sm, (74)

where Sm is the action for the matter fields, and FR = ∂F (R)/∂R. Considering the vacuum case

Sm = 0, in which the Misner-Sharp system is adiabatic, we have

δMms = 0. (75)

Then, from (73), we obtain,

r2dR3 + (1 + d)(n− 2)R2
[
3− n+ (n− 3)h+ rh′

]
+ 2d(d2 − 1)r2hR′2

+ d(1 + d)rR
[
rh′R′ + 2h

(
(n− 2)R′ + rR′′

)]
= 0, (76)

where we take F (R) = Rd+1 , and the Ricci scalar is given by

R =
(n− 3)(n− 2)

r2
(k − h)− n− 2

r

(
h′ +

hf ′

f

)
+

1

2f

(
hf ′2

f
− h′f ′ − 2hf ′′

)
. (77)

After carefully observing (77), we present an ansatz,

R = −kL
r2
, (78)

where L is a constant, k = 0, ± 1. With this ansatz, (76) is tractable. The solution is

h =
6− 5n+ n2 + d

(
6 + L− 5n+ n2

)
(1 + d) (6 + 8d2 − 4d(n− 3)− 5n+ n2)

(
k + Cr3+2d+

2d(1+2d)
2+2d−n

−n
)
. (79)

Similar to the case of Gauss-Bonnet gravity, we switch to the first perspective (Einstein inter-

pretation). The effective stress energy is presented in [18],

T eµν =
1

8πGFR

[1

2
gµν(F −RFR) +∇µ∇νFR − gµν�FR

]
. (80)
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The geometric surface gravity κ in (69) becomes really involved. From (77) and (78), we arrive at,

(n− 3)(n− 2)

r2
(k − h)− n− 2

r

(
h′ +

hf ′

f

)
+

1

2f

(
hf ′2

f
− h′f ′ − 2hf ′′

)
= −kL

r2
. (81)

To obtain f , we then substitute h in (79),

f = r
− 2d(1+2d)

1+d−n/2

(
k + Cr

6+8d2−4d(n−3)−5n+n2

2+2d−n

)
, (82)

and rewrite h

h =
(3− n)(n− 2− 2d)2

(2 + 4d+ 4d2 − n) (6 + 8d2 − 4d(n− 3)− 5n+ n2)

(
k + Cr

6+8d2−4d(n−3)−5n+n2

2+2d−n

)
. (83)

Here all the integration constants and L have

been calibrated by the Clifton-Barrow solution

[19],

L = −(n− 3)(n− 2)d(d+ 1)

1/2− n/4 + d(d+ 1)
. (84)

It is easy to check that this solution reduces

to the Clifton-Barrow solution when n = 4. We

can confirm that the above solution satisfies the

vacuum field equation of F (R) gravity by direct

calculation,

FRRµν−
1

2
Fgµν−∇µ∇νFR+gµν�FR = 0. (85)

The physics of higher dimensional case of

this solution certainly need to further study.

Now we first present some property of the three-

dimensional case of this solution. One may

think that this solution is trivial because both

h and R vanish. However, a special case with

d =
1

2

(
−1±

√
2
)
, (86)

is none trivial. Under this condition, f and h

become,

f = kr2 + Cr
√

2, (87)

h = k + Cr−2+
√

2. (88)

This represents a black hole with true singular-

ity, which is completely deviate from the case

of three-dimensional Einstein gravity, where the

geometries are always trivial. A more general

three-dimensional black hole solution in F (R)

theory has been obtained in our recent work

[20]. The above solution is a special case of this

more general solution.

5. Conclusion

In recent works we present a new view

on gravi-thermodynamics [21]. We find that

the spherically symmetric (more generally, an

n−dimensional spacetime with an (n − 2)-

dimensional maximally symmetric submanifold)

solutions can be derived in an adiabatic Misner-

Sharp system in addition with an equality of ge-

ometric surface gravity and dynamical surface

gravity. In this work we make a simple review

of this approach. We first discuss the essential

properties of Misner-Sharp mass, both in Ein-

stein gravity and in modified gravity. In the

discussions we explain our motivation to treat

the Misner-Sharp mass within a radius r as an

adiabatic system. In the vacuum case, it is a di-

rect result of the definition of the Misner-Sharp

mass. While when we extend this method to a

system with matter fields, we must regard it as a

principle (hypothesis). We first derive the most

important solution in general relativity and as-

trophysics, the Schwarzschild solution. Then we

derive some solutions with matter fields, includ-

ing dS/AdS and RN solutions. We also make

some explorations to this method for modified

gravity theories. With the same definitions of

Misner-Sharp mass by stress-energy, we can ob-
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tain h directly in Gauss-Bonnet gravity. To ob-

tain f , we need a proper extension of the defi-

nition of geometric surface gravity to the higher

dimensional case. We find such a definition, and

then apply it to the Gauss-Bonnet gravity. We

successfully find f through this thermodynam-

ical manner. Furthermore, we find a new class

solution via this method in F (R) gravity. This

new solution reduces to Clifton-Barrow solution

in four dimensional F (R) gravity, and to a spe-

cial case of a solution in three dimensional F (R)

gravity in our recent work.

Principally the new thermodynamic method

opens a new window to gravi-thermodynamics,

which shows that the quasilocal mass form, es-

pecially the Misner-Sharp mass, may encode

rich information of the gravity field. Practica-

bly, it launch a new method to solve the grav-

ity field equations. As seen in this article, the

differential equations emerged in this thermody-

namic demonstration are usually the first order

equation. It is easier to solve than to solve the

field equation directly, which is always at least

the second order equation.
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