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1. Some Thoughts of the
Misner-Sharp Mass

Contrary to intuitions, the mass (energy) of
a gravitational field is a very intricate prob-
lem, which is still left open for modern physi-
cists. Any efforts to ascertain the stress-energy
tensor of the gravitational fields will be futile.
The reason roots in the equivalence principle.
Base on this principle, a free-falling observer
senses a Minkowski spacetime locally, in which
the stress-energy of the gravitational field, and
thus the density of gravitational mass should
be zero. According the requirements of diffeo-
morphism invariance, the stress-energy should
vanish in frames of any observers. To evade
this strong constraint from equivalence princi-
ple, people turn to stress-energy pseudo ten-
sors, for example the Einstein-Tolman form, the
Landau-Lifshitz form, and the meller form, etc.
An obvious defect of these forms is that the
pseudo tensor is coordinates-dependent. They
must vanish for some observers, which contra-
dicts to our basic concept to the stress en-
ergy. Generally the existence of a stress energy
should not depend on the coordinates. On the
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other hand, the total mass of a gravitational
field seems a little easier problem. We have
well-defined ADM mass at spacelike infinity and
Bondi-Sachs mass at null infinity on an asymp-
totic flat manifold. However, only the concept
of total mass is not enough in the processes
in astrophysics. In the observations of gravi-
tational wave radiations from a compact star,
we must quantitatively show how many gravita-
tional energies are carried away by the gravita-
tional waves from the compact star. In the grav-
itational collapse, we must detect how many en-
ergies of the collapsing matter are transferred to
gravitational energies. In either case, it seems a
concept of local gravitational mass is necessary.
As we have mentioned, a covariant stress energy
for gravity field is impossible. As an unavoid-
able concession, we consider the quasi-local form
of gravitational mass, i.e., the mass inclosed a
two-surface.

After several decades’ studies, we now have
many different forms of quasi-local forms of
In this article we concen-
In fact, the
Misner and Sharp find some clues of the form of

gravitational mass.
trate on the Misner-Sharp mass.

the Misner-Sharp mass by exploring the trans-
formation from matter to gravitational field in

a collapsing model [1]. The explicit form of
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We re-
view it in a logic way rather than its historic

Misner-Sharp mass is presented in [2].

way. After collapsing, the mass of the baryons
in a Newtonian star vanishes. Based on the en-
ergy conservation law, we can reasonably infer
that the mass of the residue black hole space-
time is equal to the mass of the original star.
This idea is used to determine the mass param-
eter in black hole solutions. This argument im-
plies that we may define the mass of gravity field
through the mass of the source matters. In a
spacetime with stress energy Ty; and a timelike
Killing vector &,

V(Tw") =0, (1)
does not imply a conservation law of matters.
We clarify this point by a simple example.

In a general spherically symmetric static
spacetime in the area coordinates r,

ds* = —f(r)dt* + b= (r)dr? + r2dQ2%,  (2)
the mass of matter in a two-sphere r = r( reads,

To
Mo = —4n / dr TOh =22, (3)
0

el

while the conserved charge corresponding to the

and

0

ot

£ = (4)

conserved current Tabfb reads,

M= / #(Typ€®) = —4m /O " ar or%.  (5)

The conserved charge M is different from the
mass of matter inclosed in the two-surface r =
ro. The conserved charge M encodes not only
the mass of the matters, but also the mass of the
gravitational field. Thus a single My in (3) does
not obey the conservation law (1). One may
be impulsive to define the gravitational mass by
subtracting the matter mass My from the total

mass M,

Mgravity =M — MO- (6)
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Unfortunately, Mgravity is neither positive defi-
nite, nor a component of a conserved current.
To call it mass of gravity seems ineffectual.

The most useful concept in the above dis-
cussions is the total mass M, as a conserved
charge of the spacetime. In Einstein gravity we
have the relation between geometry and stress
energy,

Gap = 811y, (7)

where we set the Newton constant G = 1. By
using the Einstein equation (7), we rewrite (5)
as follows,

1

70
M:—Q/ dr G =L(—n).  (8)

0

Apparently, the above formula only depends on
the metric, which is called Misner-Sharp mass
as a quasi-local form of gravitational mass and
labeled as M,,s henceforth.

We emphasize that M, is the total mass of
matter and gravity from its definition. In this
definition, gravity mass is always smuggled by
matter mass. In a vacuum region, for example
a shell dwelling at r; to 72 (0 < r; < r9) in
the Schwarzschild spacetime, the Misner-Sharp
mass is zero. The Misner-Sharp mass does not
change when more vacuum regions (without sin-
gularities) are included. This is a critical prop-
erty of the Misner-Sharp mass. Starting from
this property, we can obtain fairly rich informa-
tion of the spacetime metric in consideration.
Furthermore, this property is inherited in the
modified gravities. The reason is clear. In mod-
ified gravities with a timelike Killing vector, we
still define,

M :/*(Tabgb)- (9)

Therefore in any vacuum region without singu-
larity M = 0. The concept of Misner-Sharp
mass also has fairly wide applications in dy-
namical spaces. Generally there is no conserved
charge in a dynamical spacetime. However, in
some special cases with high symmetries we can
find a similar conserved charge. A typical case
is the spacetime with spherically (spatially flat,
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pseudo spherically) symmetry where a Kodama
vector K @ is permitted [3]. The property of the
Kodama vector is similar to the Killing vector,

ViaKp) =0, (10)

which also yields a conservation law,

VYT K°) =0, (11)

and the conserved charge,

Myps = / (T KY). (12)
Thus, a vacuum without singularity still implies
a vanishing M,,,;. We will see the significance of
this property.

2. Derivation of the Schwarzschild

Spacetime

The discussions in the above section is only
to display some thoughts of the Misner-Sharp
mass. Now, in a formal discussion, we try to
include a little more general cases. First, we
consider a static space with different topolo-
gies rather than the only spherically symmet-
ric cases. A static metric which permits a
two-dimensional maximally symmetric subspace
with three types of sectional curvatures k =

1, 0, —1 reads,

ds?

= —f(r)dt* + K (r)dr? +r2dQ3, (13)

in which f(r), h(r) are general functions of r,
5 denotes a unit two-sphere, two-cube, or two-
pseudo-sphere, depending on the sectional cur-
vature k = 1, 0, — 1, respectively. The corre-

sponding Misner-Sharp mass reads,

ro
/ dr Gr?.  (14)

0

1

Mms - /*(Tabgb) = 9

The result is similar to (8),
T
Mps = i(k —h). (15)

To explore the information hided in the Misner-
Sharp mass, we take (13) and (15) as our start-
ing point.
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As we have stressed in the last section, in
vacuum space the Misner-Sharp mass does not
depend on the radius 7 in the metric (13). In
thermodynamic language, this is equal to con-
sider an adiabatic Misner-Sharp system,

OMps = 0. (16)
Thus we obtain,
k—h—rh =0, (17)

where a prime denotes the derivative with re-
spect to r. Then immediately we reach,

n=(6-%).

where C' is an integration constant. To deter-
mine C, we back substitute A into (15) to obtain,

po @

- (18)

C = 2M,p,s. (19)
Here, we obtain h with 3 kinds of sectional cur-
vatures as a unity. One sees that only the prop-
erty that vacuum implies invariance of Misner-
Sharp mass is enough to determine a component
of the static metric. If we can determine f, we
obtain the complete vacuum solution.

We use surface gravity to determine f(r). In
spherically symmetric spacetime the geometric
surface gravity is adapted to the unified first law
[4].

gravi-thermodynamics. The black hole thermo-

The unified first law is a nice progress in

dynamics was set up on the global quantities of
the spacetime, which always depends on asymp-
totic behaviour of a manifold. It is not very
helpful to understand the realistic processes in
astrophysics. While only a patch of a mani-
fold is involved in the unified first law, which
can be applied to a realistic processes in astro-
physics when the knowledge of the whole man-
ifold is lack. Correspondingly we only need the
quasi-local quantities rather than global quan-
tities. Therefore it is no essential difficulties to
be used in dynamical spacetimes [5]. The energy
adapted to unified first law is just the Misner-
Sharp mass, which is critical to make our rea-

soning be self-consistent.
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In four dimensional spacetime, the geometric
surface gravity adapted to the unified first law
is,

Mms
Al Amrw, (20)
where the work term,
1 ab
w = —51 Tup, (21)
and
Iy = —fdt* + h™tdr?. (22)

T denotes the stress energy of the matter fields.
T = 0 in vacuum spacetime.

We see that the surface gravity < in (20) is
independent on the sectional curvature of k. As
usual, we calculate the surface gravity as a prod-
uct of the magnitude of the four-acceleration of
a motionless particle at the static coordinates
and (—goo)"/?. In coordinates (13), the world
line of a rest particle is,

X" = (t,r0, 00, ¢0), (23)

where (6, ¢) are the coordinates of the two-
dimensional inner space and a subscript 0 de-
notes that the corresponding quantity is a con-
stant. The four-velocity for this particle U,

dxe
- odr’

where 7 denotes the proper time of this particle.

U#

(24)

Then the 4-acceleration for this particle reads,

AF = UV, U". (25)
The magnitude of A*,
a = \/lguArar]. (26)

Thus the surface gravity « is calculated by

k= av/ =g = ay/T = S (F/m)2f. (2D

The surface gravity obtained in this way,
which we called “dynamical surface gravity”,
should be equal to the geometric surface gravity
in (20),

1 ~1/2 g _ Mms
Sy = e (o)
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This equation is easy to integrate using (18),

2

oM. 1/2
f= [(k— ms) +D| , (29
where D is an integration constant. D can be
derived by the Newtonian condition. A basic

requirement of any reasonable metrics is to de-
generate to the Newtonian gravity in the weak
field limit. As usual, the Newtonian metric for
a spherically metric (k = 1) reads,

ds® = —(142¢)dt> + (1 —2¢)dr* +12d3, (30)

where ¢ = —M /r denotes the Newtonian poten-
tial and M marks the central mass. An impor-
tant property of the Misner-Sharp mass is that
it is exactly the Newtonian mass M in a spher-
ically symmetric case [4]. Expanding f at large
r limit, we obtain

2M,ns(1+ D
f:1—M+2D+D2. (31)
T
Then it is clear,
2M,ns(1+ D
¢:—M+2D+D2. (32)

The correct Newtonian limit requires D = 0 for
the case k = 1. For the cases k = 0, —1 we have
no corresponding Newtonian limits. Locally we
treat the cases k = 0, — 1 as analytic prolon-
Thus they share

a unified D = 0. We complete the derivation

gations of the case k£ = 1.

of Schwarzschild solution (including the three
cases of different topologies) from the Misner-
Sharp mass form by thermodynamic considera-
tions.

3. Solutions with Matter Sources

The vacuum solutions with different topolo-
gies have been derived by a variation of the
Misner-Sharp mass with respect to r in an adi-
abatic system. An improvement of this demon-
stration is to introduce the generalized forces at
the right hand of (16) to include the effects of
matter fields. The validity of this method is not
obvious from the properties of the Misner-Sharp



Invited Review

mass, as discussed in the Sec. 1. However, we
will show that it is really valid in discussing the
solutions with matter source. First, we discuss
dS/AdS space. The metric assumption (13) and
the Misner-Sharp mass (15) take the same in
this case. When a pressure term is introduced,
(16) becomes

OMp,s = —PdV, (33)
where P =constant (dS/AdS depends on the
sign of P) is the pressure and V' is the volume
in consideration. It is easy to obtain h(r) for

this asymptotical dS/AdS,

(34)

According to the customs, we use the cosmolog-
ical constant to replace the pressure,

A= —8rP. (35)

We obtain the Minser-Sharp mass for dS/AdS
by back instituting (34) into (15),
C A,

-+ =

Mmsd = 9 6

(36)

Interestingly, this result does not depend on the
sectional curvature k.
Now the corresponding work term appears,

(37)

=—A
v 81

And the geometric surface gravity (20) becomes,

C

202

Ar
T

(38)
While the dynamical surface gravity (27) does
not depend on the concrete forms of f and h.
The equality of the geometric surface gravity
and the dynamical surface gravity is written as,

Ar

Smey = B (3

We obtain the form of f by direct integration,

, (40)
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where D; labels an integration constant. Simi-
lar to the vacuum case, we obtain D; = 0 by us-
ing the Newtonian limit under A = 0 and large
r approximation.

Then, we consider a system with an electro-
magnetic field. The first law in an adiabatic

Misner-Sharp system is modified to
OMps = Pdg, (41)

where ® = ¢/r labels the electric potential and
q represents the electric charge at » = 0. Then
we reach,

(42)

We calculate the Misner-Sharp mass M,,sq with
an electromagnetic field,

C ¢
Mmsq — 5 - 5, (43)
and the work term becomes,
2
q
= ) 44
— (44)
Thus the geometric surface gravity,
C 7

The equality of dynamical surface gravity and
geometric surface gravity presents

2
q
=

k-S4
T

(46)
where we have imposed the proper Newtonian
limit.

4. Modified Gravities

We always have two perspectives on the cos-
mological constant about its physical property.
The first one is that it is matter, whose stress en-
ergy satisfies that energy density equals negative
pressure. This property is exactly satisfies the
requirement of vacuum in quantum field theory.
In this sense we call it vacuum energy in a lot of
cases. The second one is that the cosmological
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constant is a geometric property of the space-
time, which belongs to the gravity sector in the
field equation. In the deduction of of the last
This is
because in the definition of Misner-Sharp mass

section, we take the first perspective.

(8), we have used the Einstein equation without
cosmological constant Gy, = 87T,,. Hence the
cosmological constant must be treated as form
of matter at the right hand side of the equa-
tion. While in the second perspective, the field
equation becomes,

Gab + Agab = STFGTab. (47)

We still define the Misner-Sharp mass as in (9).
For a more general discussion, we work in an
n-dimensional spacetime M=T7 x K,

1

ds* = — f(r)dt* + G

dr? + ry;jdz'dz? ) (48)

where (IC, v) is an (n — 2)-dimensional max-
imally symmetric submanifold embedded in
(M, g).

Then we obtain the Misner-Sharp mass for
Einstein gravity with a cosmological constant
for the above metric within radius r by a direct
integration of (9),

MmS
foﬂ”f?’ n—2 ab r2A
= e 5 (k—1 aarﬁbr)—n_l ,
(49)

where V¥ , denotes the volume of a unit sub-
space K with different sectional curvatures k,
I represents the induced metric on Z, and the
indexes a, b =0, 1. For n =4, it reduces to

Vzkr b Ar?
ms — S~ —I° a I
G (k 0T 0Opr) 3

(50)
We call a system Misner-Sharp system, if its to-
tal energy is defined as its Misner-Sharp mass.
Supposing the Misner-Sharp system in radius r
is in adiabatic state in four dimensional space-
time, and making a variation with respective to
r in (50), we arrive at,

A 2
k—h—3r2:r<h’+3Ar>. (51)
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The solution reads,

h=k

o /;r? (52)

Substituting (52) into (50), we obtain the
Misner-Sharp mass for this system,

C
Mf,ns = 5 (53)

2
which is different from the result in the first
perspective, in which M,,; = % + %7“3, as

shown in (36). This difference is not difficult
to explain: A belongs to the gravitational back
ground and has been subtracted in (50) in the
second perspective, while in the first perspective
A is treated as a matter field, which has been
considered in the Misner-Sharp mass.

Following the discussions in the above sec-
tions, we should then compare the dynamical
surface gravity with the geometric surface grav-
ity to determine f. However, unfortunately a
proper definition of surface gravity in modified
gravity as an extension of (20) is still absent.
Thus we have to switch to the first perspective,
i.e., to treat the cosmological constant as a vac-
uum matter with density and pressure,

A
=_— 4
P= g (54)
A
P= %G (55)

The following procedure exactly mimics what
we done in Sec. 3. The resulted f is

A
f:k:—g——r2.
T 3

It is not worthy of switching between the two

(56)

perspectives if we only want to derive dS/AdS
solution. This method will play important role
in the discussions of more complicated modified
gravities. In cosmology, the two perspectives of
modified gravities have been studied long. In
the first perspective, all the terms other than
the Einstein tensor is casted to the right hand
side of the field equation and treated as effective
“matters”. This is also called Einstein interpre-
tation of the field equation. In the second per-
spective, all the geometric sectors are treated as
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gravity. The matter energy stress only contains
realistic matters. This is the natural perspective
of modified gravity. DS/AdS is a simple but in-
structive example, which is easy to understand
for the switching between the two perspectives.
In fact the switching between two perspectives
is critical in search for solution in modified grav-
ities via thermodynamic considerations.

Next, we start to discuss an important mod-
ified gravity, the Guass-Bonnet gravity, by ther-
modynamical method. In higher dimensional
spacetime, one can find a proper combination
of R?-type or higher derivative terms in the La-
grangian which does not yield higher than two
order derivatives with respect to metric in the
field euqation [6].
times, this combination is Gauss-Bonnet term

In five dimensional space-

Rap

RGB = RMVWSRWMS - 4RMVRW + R27 (57)

where R,,5, Ry, and R denote Reimann ten-
sor, Ricci tensor, and Ricci scalar, respectively.
More general Lovelock gravity permits combina-
tions of more higher order power of R, such as
R*-type terms, which can also evade higher than
two order derivatives with respect to the metric

A

spherically symmetric static solution in Gauss-

in more higher dimensional spacetimes [6].

Bonnet gravity is derived in [7]. This result has
been extended with introducing a cosmological
constant [8]. We derive this Boulware-Deser-Cai
solution via thermodynamic method.

We will work in the metric form (48) on M.
The Misner-Sharp mass for this metric is given
by an direct integration (9) [9], see also [10],

Mms
vk o3 [n—2
_ n— k— Iab )
3y B ( 0, T’ab’l“)
A o n=2__, ab 2
—" 5 O (k — I?0qr0pr)~ |,

(58)

which corresponds to the action of an Einstein-
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Hilbert term with an Gauss-Bonnet correction,

S
_ Mi . /M "/~ det(g) (R — 2A + aRep),
(59)
in which
a=a(n—3)(n—4). (60)

There are some constraints on o when we treat
the Gauss-Bonnet gravity as a reduction from
other theories, for example string/M theory.
Phenomenologically, it is treated as a free pa-
rameter in this work. Consider an adiabatic
Misner-Sharp system,

OMps = 0. (61)
Using (58), we have,
n=3( 2r2A +d(k—h)2 o
r 2 —3n+mn? 72
_ 4r A 2a/(k — h)? Y
2 —3n+n? r3
2a(k — h)h
+T. (62)
By direct integration, we obtain
h
r? 8aA 4a62C
=k+—=11 1
o ( 3F¢ T = e

where C' is an integration constant. Comparing
with the Schwarzschild case, we guess that C is
a mass parameter. But it is not equal to mass
here. Substituting (63) into (58), we find that
C' is proportional to mass,

aC(n —2)VFk ,

M. . —
ms 167G

(64)

We can confirm that M,,; reduces to the mass
in the Newtonian sense at the limits A — 0 and
a — 0. Therefore, in this sense the Misner-
Sharp mass seems a reasonable extension of the
Newtonian mass in the Guass-Bonnet gravity.
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Then we need to deal with f. One encounter
a similar problem as that in the case of cos-
mological constant: we have no accurate defini-
tion of surface gravity in modified gravities. We
also have two perspectives in modified gravity
theories. The first perspective (Einstein inter-
pretation) has been extensively studied in the
researches of the cosmic acceleration [11]. As
we have seen, the Misner-Sharp mass in the sec-
ond perspective (modified gravity perspective)
is critical to obtain h. Now we switch to the
first perspective (Einstein interpretation). The
effective stress energy T'(¢) in the first perspec-
tive is presented in [8],

T\e)

1 (0% QL
—5- |20(RRuw — 2RuaR," — 2R PRuows
(6
+R”a67Ruaﬂfy) - §Q}LI/RGB + Agw/} ) (65)

where the curvature tensors are calculated by
the metric (48).
its original form in this perspective,

The Misner-Sharp mass takes

3n_

2

vk,

n—
n—2oT

8rG

2

Mms

(k — I%%0,rdyr), (66)

which is no more constant, because the “matter
field” (65) is included. Mimicking the case of
real matter fields, we define the work term

1
w = —ifabT;b. (67)

With these preparations, the surface gravity can
be defined in n-dimensional (n > 3) spacetime

8m(n —3) Mps

(n—2)Vy, =2

8
n—2

k= rw. (68)
It is easy to confirm that when n = 4, this gen-
eral form degenerates to (20). In this section
we suppose n > 5 without special notations be-
cause we are discussing the Gauss-Bonnet grav-
ity. Here, we would like to note that the above
equation is valid for all the cases of n > 3. The
three dimensional case is of special significance.
k vanishes for three dimensional pure Einstein
gravity, which confirms the essential result in :
Black holes with nontrivial geometries do not
exist in three-dimensional Einstein gravity.
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The geometric surface can be derived by sub-
stituting (66) and (67) into the above equation,

_ L
- 2G

1—-h

— 4
(n—3)T+ il

abrpe

K (69)

The equality of dynamical surface gravity and
geometric surface gravity presents the equation

for f,
<1—2\/Z> hf' + fh = 0. (70)

h has been derived in (63). We thus obtain f,

f:%(h—Di\/hQ—QDh>,

where D is the integration constant. D can be

(71)

determined by studying some limit of f. It is
clear that only D = 0 in the “+” branch reduces
to correct Schwarzschild limit. The “—” branch
should be treated to be an extraneous solution
emerged in the thermodynamic method. Thus

we write f,
f=nh
r? 8aA 462C
= k+— (1 1
+2&< ]F\/ N CED e

So the Boulware-Deser-Cai solution in Gauss-
Bonnet gravity is derived by thermodynamic
considerations.

Divergence is a famous difficult problem in
gravity theory. It has been found that the di-
vergences are significantly alleviated if higher
order derivatives are included [12]. The higher
order terms are not something “put by hand”.
Such terms always come when quantum effects
is considered [13] or some unified theory, for ex-
ample string/M theory is taken into account
[14].
tensively explored theory in the higher order

F(R) gravity is one of the most ex-

derivatives theories. F'(R) gravity has some dis-
tinctive properties. First of all, it is the unique
one which successfully extricates from the cat-
actrophic Ostrogradski instability amongst all
higher derivative gravity theories [15]. Sec-

ond, it is simple enough to handle, at the same
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time complicated enough to encode the princi-
ple framework of higher derivative theories.

All the above only reproduced the exist-
ing results. To display the power of this new
method, we apply it to F'(R) gravity to get a
class of new solution. The Misner-Sharp mass
for F(R) gravity in four-dimensional spherically
symmetric spacetime is presented in [16]. This
result is extended to the case of F(R) grav-

J
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ity m-dimensional spacetime with three types
of (n — 2)-dimensional maximally symmetric
submanifold [17].
a Misner-Sharp system. We work on this n-
dimensional manifold (M, g) of (48) with an
(n — 2)-dimensional maximally symmetric sub-
manifold (I, ), on which the Misner-Sharp
mass can be written as,

Our starting point is still

VEk =3 p —2 1
My, = 2= — 19,70y Fp + ————12(F — FrR) — rI®°9,F
3rCa [ 5 (k OqrOpr)FRr + 2(n — 1)7“ ( rR) —rI*0 Rabr]
Vi 2,7 3 !
n n= - 27" (h — Fr,
R dr[r Wt (n— 2 3(h — k) + n_lR] s (73)
which corresponds to the action,
1
= d"z+/—det(g) F M 4
S e /M x et(g) F(R)+ S (74)

where S, is the action for the matter fields, and Fr = OF (R)/0R. Considering the vacuum case
S = 0, in which the Misner-Sharp system is adiabatic, we have

OMpms = 0. (75)
Then, from (73), we obtain,
r?dR® + (14+d)(n—2)R* [3—n+ (n—3)h + k] +2d(d* — 1)r*hR"
+ d(1+d)rR[rK'R +2h ((n—2)R +rR")] =0, (76)
where we take F'(R) = R! | and the Ricci scalar is given by
(n—3)(n—2) n—2/(, hf 1 (hf”? I gt "
=— - *(k—h)— h+ — — —h'f'—2h .
R 5 (k—h) = — AT f'=2nf (77)
After carefully observing (77), we present an ansatz,
kL
R = 2 (78)
where L is a constant, k = 0, £ 1. With this ansatz, (76) is tractable. The solution is
- 6 —5n+n*+d(6+ L —5n+n?) o Oy M\ (79)
(14d) (6 +8d? —4d(n — 3) — 5bn + n?)

Similar to the case of Gauss-Bonnet gravity, we switch to the first perspective (Einstein inter-
pretation). The effective stress energy is presented in [18],
1 1

T° (F — RFp) + V,V, Fr — gWDFR] .

_ - 80
= RrGFR L2 Guv (80)

38
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The geometric surface gravity  in (69) becomes really involved. From (77) and (78), we arrive at,

(n—3)(n—2) n—2/(., hf 1 [(hf? ) s\ kL
r2(k—h)—f<h+f>+< 7 —hf—2hf)_—r2. (81)

To obtain f, we then substitute A in (79),

_ 2d(142d) 6+8d2 —4d(n—3)—5n+n2
f =y 1+d—n/2 <k‘ + Cr 2+2d—n > , (82)
and rewrite h
B3—n)(n—2-— 2d)2 64842 —4d(n—3)—5n+n?
h= k+C 242d—n 83
2 +4dt 4 —n) (6482 —4d(n—3) sntn2) "7 (83)

(

Here all the integration constants and L have three-dimensional black hole solution in F(R)
been calibrated by the Clifton-Barrow solution  theory has been obtained in our recent work
[19], [20]. The above solution is a special case of this
more general solution.

(n—3)(n—2)d(d+1)
C1/2-n/d+d(d+1)

L= (84)

It is easy to check that this solution reduces 5. Conclusion

to the Clifton-Barrow solution when n = 4. We In recent works we present a new view

can confirm that the above solution satisfies the | gravi-thermodynamics [21. We find that

vacuum field equation of F(R) gravity by direct 4} . spherically symmetric (more generally, an

calculation, n—dimensional spacetime with an (n — 2)-
dimensional maximally symmetric submanifold)

1
FRRW_iFg”U_v“v”FR+g“”DFR =0. (85) solutions can be derived in an adiabatic Misner-

The physics of higher dimensional case of Sharp system in addition with an equality of ge-

this solution certainly need to further study. ometric surface gravity and dynamical surface

Now we first present some property of the three- gravity. In this work we make a simple review

dimensional case of this solution. One may of this approach. We first discuss the essential

think that this solution is trivial because both ~ PrOPerties of Misner-Sharp mass, both in Ein-

h and R vanish. However, a special case with stein gravity and in modified gravity. In the
discussions we explain our motivation to treat

d— 1 (_1 1+ V2 ) : (86) the Misner-Sharp mass within a radius r as an

adiabatic system. In the vacuum case, it is a di-

is none trivial. Under this condition, f and h  rect result of the definition of the Misner-Sharp
become, mass. While when we extend this method to a
system with matter fields, we must regard it as a

f=kr?+ CT\/E> (87) principle (hypothesis). We first derive the most

important solution in general relativity and as-

hek+ Cr—2+V2, (88) trophysics, the Schwarzschild solution. Then we

derive some solutions with matter fields, includ-

This represents a black hole with true singular-  ing dS/AdS and RN solutions. We also make
ity, which is completely deviate from the case some explorations to this method for modified
of three-dimensional Einstein gravity, where the  gravity theories. With the same definitions of
geometries are always trivial. A more general = Misner-Sharp mass by stress-energy, we can ob-
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tain h directly in Gauss-Bonnet gravity. To ob-
tain f, we need a proper extension of the defi-
nition of geometric surface gravity to the higher
dimensional case. We find such a definition, and
then apply it to the Gauss-Bonnet gravity. We
successfully find f through this thermodynam-
ical manner. Furthermore, we find a new class
solution via this method in F'(R) gravity. This
new solution reduces to Clifton-Barrow solution
in four dimensional F'(R) gravity, and to a spe-
cial case of a solution in three dimensional F'(R)
gravity in our recent work.

Principally the new thermodynamic method
opens a new window to gravi-thermodynamics,
which shows that the quasilocal mass form, es-
pecially the Misner-Sharp mass, may encode
rich information of the gravity field. Practica-

THE UNIVERSE Vol. 3, No. 1

January-March 2015

bly, it launch a new method to solve the grav-
ity field equations. As seen in this article, the
differential equations emerged in this thermody-
namic demonstration are usually the first order
equation. It is easier to solve than to solve the
field equation directly, which is always at least
the second order equation.
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