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I. INTRODUCTION 

There has been a lot of interest in models or mechanisms which can produce large 

magnetic moment for neutrinos because of the anticorrelation of the solar neutrino flux 

with sun spot activity[l]. One of the problems of having a large magnetic moment 

is that, on general grounds, the model will induce a large neutrino mass as well. 

Therefore, the existing strong constraint on neutrino mass translates into a stringent 

upper bound on the magnetic moment. The magnetic moment that is required to 

produce sun spot anticorrelation is about lo-“pn[2]. Without looking into the details 

of any model, one expects the generic value for the magnetic moment, /.L”, to be 

roughly e$ x (loopfactor) where m, is neutrino mass and M is a typical mass scale 

in the loop. The loop factor can be estimated to be (A)” where n is the difference 

between the number of loops needed to obtain nv minus the number of loops needed 

to obtain m,. Ignoring the loop factor, for M = Mw = 80 GeV and n, = IOeV , pv 

is lo-“nn, too small for our purpose. 

Clearly one has to arrange some magic to overcome the general argument above. 

That is, one needs a model in which the ratio r = & is smaller as 10-a. If one prefers 

to have the neutrino masses in the range that will give rise to resonant oscillation, 

this number will have to be even smaller as we shall discuss later. In field theory, one 

natural way of producing a small number is to make use of a custodial symmetry. The 

symmetry has to suppress neutrino mass and allow magnetic moment. A very general 

scheme using an SU(2) symmetry was proposed by Voloshin[3]. Implementations of 

such symmetry in realistic models[3-61 ac hi eve only limited success. A class of them 

breaks this custodial symmetry spontaneously. Clearly, the central scheme of this 

approach is to avoid excessive fine tuning. One usually considers the model (or its 

fine tuning) more natural when the small ratio T can be related to the ratio of the 

custodial symmetry breaking scale v, over the electroweak breaking scale Vz. However 
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most of the models in the literature in this class fail to achieve this because various 

experimental or astrophysical constraints require the scale v, to be higher than V,. 

A variation of Voloshin’s scheme using discrete groups for custodial symmetry[7, S] 

makes it easier to achieve the above requirement via “minimal fine tuning”. However, 

such models have yet to face up to the potential domain wall problem. 

A more modest approach is to introduce an explicit soft breaking term for the 

custodial symmetry. The dimensionful coupling constant of this soft breaking term is 

then fine tuned to be small. This approach may avoid some of the physical constraints 

related to spontaneous breaking of symmetry, and therefore requires only a lesser fine 

tuning. However, it does not avoid the basic fine tuning questions mentioned above. 

Still another approach, which leads to the class of models that we wish to con- 

centrate on here, is to recognize the fact that in the standard model itself there are 

already some parameters which are experimentally magically small numbers in the 

theory. They include the electron and muon masses. No satisfactory theory has yet 

been constructed to explain their small values. Even though some intricate schemes 

have been constructed to generate small values for them, they are generally considered 

too complicated. Here we shall not concern ourselves with such questions. Instead, 

we wish to ask if one can relate the small number that we need for P to the smallness 

of electron and muon masses. Even though there is no need for custodial symmetry in 

general in such a scheme, the concept of such a symmetry as an approximate one can 

still be very useful in decoding the necessary ingredients for achieving such a goal. 

Clearly, one needs a theory in which, when the electron and muon masses are set 

to zero as a first approximation, the ratio r is zero automatically. That is, in that 

limit, one recovers a theory in which neutrino masses are zero but magnetic moments 

are not. This can be achieved most easily by requiring the existence of a custodial 

symmetry which emerges automatically in the limit of vanishing electron and muon 
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masses. This has the added advantage that one does not need to impose my artifical, 

spontaneously broken, global symmetry from the outset. In fact one does not have to 

look far for such a symmetry. As we shall see, the Voloshin symmetry can serve very 

well for this purpose. In the standard model, when the Yukaws couplings associated 

with electron and muon masses are set to zero, the theory automatically hss leptonic 

chiral SU(Z)xSU(2) symmetry. Therefore, the Voloshin symmetry seems very natural 

as an accidental approximate symmetry. Theoretically, it is certainly appealing to 

link the smallness of the neutrino masses relative to the magnetic moments to the 

smallness of the charged lepton masses relative to the gauge boson masses. This is the 

central scheme of the class of models which we wish to explore and exploit. Though, 

the custodial symmetry in such a scheme is not broken softly, but by the Yukawa 

couplings of charged leptons, it is still useful as a tool to analyze the model. 

We have chosen not to introduce any extra leptons or gauge bosom in our scheme. 

Clearly models that implement this scheme with extra Ieptons or extended gauge 

bosom are possible. However they are not necessary for the present purposes of 

illustrating the full complexity and subtlety the scheme. It also should be emphasized 

that while the scheme takes advantage of the known facts that the electron and muon 

masses are small it does not purport their explanation. It may be possible to extend 

the models to provide also an explanation of their smallness. However that will be 

beyond the scope of this paper and may confuse the issue at hand to attempt it here. 

In order to generate magnetic moments for the neutrinos, one has to break lepton 

number. However, to suppress neutrino masses one has to make sure this breaking 

preserves the custodial symmetry. In some models even this suppression factor is 

not enough to suppress the neutrino mass difference which has to be as small aa 

An’ = IO-'eV'[9]. In that case, additional symmetry such as ZKM[lO] symmetry 

may be needed to obtain a realistic model. Here, by ZKM symmetry, we mean elec- 
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tron number minus muon number, L, - L,. The symmetry will only allow flavor 

off-diagonal entries in the neutrino majorana mass matrix. Therefore, the mass dif- 

ference is zero to all orders. To summarize, the above arguments indicate that one 

may generate a reasonably successful model by keeping the following principles. (a) 

One must make sure the breaking of custodial symmetry is confined to the coupling 

constants which are either known to be small experimentally, such as the Yukawa cou- 

plings that give masses to the electron and muon, or, is in a sector which is remote 

from the leptonic sector. An example of the latter are the quartic self couplings of 

the Higgs fields. Such symmetry breaking couplings generally have negligible effects 

because it usually takes multi-loop diagrams for the these couplings to be effective in 

the leptonic sector. (b) The lepton number symmetry breaking must be confined to 

the sector in which the custodial symmetry is preserved. (c) One must either impose 

ZKM symmetry or implement the spectrum such that ZKM symmetry is automatic. 

The ZKM symmetry may be an exact symmetry, or, it can be broken softly. In the 

spirit of avoiding imposing global symmetry mentioned earlier, one certainly prefers 

the symmetry to be automatic. 

In the following we shall first illustrate these ideas using the model of Zee [ll] 

and then discuss a number of other models which may be simpler or may contain 

some significant phenomenological improvements. In section II, we show that the 

Zee model belongs to this class of models, and how the general principles above 

are realized in the model. The Zee model example also exposes important tecb.nical 

issues associated with the mechanism. Some simple variations of the model including 

the one proposed by Barr, Freire and Zee [12] are also discussed. In section III, we 

discuss another source of contribution to the magnetic moment in the model which 

can dominate over the previous ones. In Section IV, we discuss another model, the 

Triplet model, which exhibits automatic ZKM symmetry in the two generation case. 
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The ZKM symmetry can in general be kept unbroken so that the neutrino mass 

difference will be zero to all orders. However, aspects of neutrino propagation in so- 

lar matter may make the soft breaking case more attractive. Nevertheless, since the 

unbroken case is not definitely ruled out by the experiments, we shall simplify the 

issues by assuming that the ZKM symmetry is unbroken until Section V. The impli- 

cations for the different implementations of ZKM symmetry including soft breaking 

are discussed in section V. 

Unless we specify otherwise, we will incorporate only two generations of leptons 

in these models. The third generation can be decoupled easily by imposing the 

corresponding lepton number symmetry. Complications that can arise if the third 

generation does not decouple will be discussed in section V or briefly commented on 

wherever else it is appropriate. 

Our aim is not to advocate any specific model, but to emphasize the effectiveness 

of the principles listed above. 

II. THE ZEE MODEL 

The Zee model[ll] is a simple extension of the Standard Model Higgs sector by 

the addition of a charged SU(2)r. singlet, h +. The singlet can couple to the leptons 

as follows: 

f&#&h+ 

where 

Llr, = v=L , La= = 

0 eL 

(1) 
(2) 

(u and b are lepton flavor indices). The coupling matrix fob must be antisymmet- 

ric. Adhering to our recipe given in the introduction, the singlet scalar is the most 

6 



promising way to transfer lepton number to the Higgs sector while preserving the cus- 

todial symmetry. If the two lepton doublets themselves form an SLr(2)~ doublet, Eq. 

(1) remains invariant because the antisymmetric combination of fields transforms as a 

singlet. We shall use this SLT(2)n Voloshin type symmetry as the custodial symmetry 

discussed in the introduction[l3]. 

Without introducing new gauge interactions or new leptons, the only other way 

to introduce a lepton number carrier is to couple the leptons to an SU(2)r. triplet 

(3) 

with a flavor symmetric coupling. This coupling does not respect the SU(2)a global 

symmetry mentioned above, and such models of neutrino magnetic moment can be 

troublesome[l4]. Therefore we shall not pursue this line of inquiry. 

A model which adds only the singlet hf to the usual doublet in the Higgs scalar 

spectrum conserves lepton number. Therefore, additional structures should be added 

to produce neutrino mass or magnetic moment. One such structure, proposed by 

Zee[ll], is an additional Higgs doublet which permits the coupling 

&h-(4&) 

where 

(4) 

and i is a Higgs doublet generation index. For this interaction to be gauge invariant, 

it will require that the coupling Mij be antisymmetric. When no discrete symmetry 

is imposed on the Higgs fields, without loss of generality one can choose a basis in 



which (&) # 0 and (4s) = 0. We shall analyze the model for this case and comment 

on the case with discrete symmetry later. 

Following the general arguments in the previous section, we should first analyze 

the model in the approximation that the small ordinary Yukawa couplings associated 

with bi are negligible. Since lepton number breaking is necessary to generate magnetic 

moment one should examine the flow of lepton number in the Lagrangian in that 

limit in order to identify the essential elements of the model. To understand why 

the magnetic moment is suppressed it is helpful to define an approximate lepton 

number symmetry so that the breaking effects are as far removed from the neutrinos 

sa possible. In that spirit, two units of lepton number can be assigned to h+. Since 

(4s) = 0 , the cubic coupling Mis in Eq(4) suggests that two units of lepton number 

should be assigned to 4s and none to 4 1. This pushes the potential lepton number 

breaking interactions further away from the neutrino sector. In fact, lepton number 

is broken by the Higgs quartic self-interaction of the form #&&$l where A is the 

coupling constant. Note that this quartic coupling is consistent with the assumption 

about vacuum expectation values made above. Alternative sources of lepton number 

breaking are the couplings of 42 to the quark sector, or to exotic fermions. This 

mechanism will be explored in the next section. In addition, one should be reminded 

that, in the neutrino sector of the whole theory, the leptonic Yukawa couplings which 

we proposed to ignore earlier also break this particular version of lepton number. 

However they are numerically small as commented before. 

One can now proceed to evaluate the ratio of neutrino mass to magnetic moment. 

Figure 1 shows one loop AL = 2 processes which contribute to neutrino mass and 

magnetic moment. Note that these graphs are proportional to the empirically small 

lepton masses and small Yukawa couplings of 4s. For the magnetic moment the 

presence of these factors are one loop artifacts. We can escape these suppressive 
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factors by going to two loops as shown in Figure 2. In these diagrams, one can blame 

the the lepton number breaking on the quartic couplings, A, of the Higgs fields which 

generate a cubic term after symmetry breaking. However, the crucial point is that, 

in the case of the contributions to the neutrino masses, the suppressive factors of 

Yukawa couplings and masses can not be avoided by going to higher loop diagrams. 

To understand this one has to analyze the approximate custodial symmetry mentioned 

in the introduction. 

In the limit that the ordinary leptonic Yukawa couplings are ignored, the two 

generation theory has an automatic sum symmetry which transforms only the 

two leptonic L%(Z), multiplets as a doublet. Therefore, the remaining lepton number 

breaking interactions mentioned above are all SU(2)8 invariant. Since the SU(2)a 

forbids neutrino mass, one concludes that the small Yukawa couplings have to be 

invoked in the diagram to generate nonzero masses . Since the fob coupling is also 

needed to have lepton number breaking in the diagram, the chirality of the neutrino 

mass operator implies that additional mass insertion has to be present in the diagram 

too. We therefore conclude that, to generate neutrino mass, the one loop suppressive 

factors mentioned earlier can not be avoided by using higher loop diagrams. Note 

that our argument is independent of the specific diagrams that can contribute. For 

the subset of diagrams that has the general structure shown in Fig. 3, this effect was 

interpreted as the result of a “spin-polarization mechanism” in Ref. [12]. In the Zee 

model and the extension provided in Ref. [12] it is easy to show that the 0thr.r two 

loop diagrams that do not have the structure of Fig. 3 are also suppressed by charged 

lepton masses. However, such a mechanism won’t be sufficient for diagrams at even 

higher loop level. In Section IV, we will show a model in which the spin-polarization 

argument is not sufficient even at the two loop level. 

The one-loop contribution to neutrino masses estimated from Fig. 1 is 
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l--loop _ 1 fe,Y,,~~2ma 
m” -- 

16x2 M: 
“ln(Mh/Ma). (6) 

Here, Y,,,? is the Yukawa coupling of ~$1 to the muon and its neutrino. If one 

ignores the potential source of lepton number breaking due to the scalar couplings 

to the quarks, the two loop contributions to the masses and magnetic moments from 

diagrams in Fig. 2 can conservatively be estimated[l2] (for Ma > Mw )to be 

a--l-P = J- m” 
1 fedV~W~~;ln~~~ 

120 (16xs)s M,?M; (7) 

2-bl - L 
P” 

1 ferrgaeV$AAh 
- 60 (16xs)s M,fM,1 (8) 

where V. m (41) and MS is the mass of the second Higgs doublet (we assume the 

mass of the charged and neutral components to be roughly equal). The surprising 

factors of & and $ are the result of cancellations between various diagrams[l5]. To 

obtain a numerical value for these quantities we assume the following natural v&es 

of Vd - 250 GeV, Ma E Ma N Mis - 100 GeV, f.,, N X N 0.1, gs N 0.41. With these 

inputs we find ml-‘- ” - Y,, x 60eV, mz-‘“p - 9x lo-‘eV, and &‘w - 5 x lo-“px. 

We notice that the one-loop contribution to the neutrino mass is much larger 

than the two-loop contribution as expected. In fact, the natural value for m~-‘~ ex- 

ceeds the experimental bound on the electron neutrino. However, since the magnetic 

moment is insensitive to the Yukawa coupling, Y,,, of &, we can suppress the one 

loop contribution to neutrino mass by making this coupling one order of magnitude 

smaller than its natural value, Yrr - 1. This is of course due to the fact that the 

coupling is both lepton number and S.!J(2) a rea n as required for neutrino mass. b ki g 

More seriously, since ~j are in general not flavor diagonal, the natural mass 

square difference for the two neutrino flavors should be about the same as the mass 

square. The large mass difference creates a barrier that is too great for the magnetic 

10 



spin-flip oscillation to be effective. It can also give rise to dangerous flavor changing 

effects such as n -+ e + 7. The easiest way to avoid both problems is to impose the 

ZKM-type [IO] symmetry L. - L,. (When tau is included in the analysis the ZKM 

symmetry can involve L, as well). The triplet model described in the next section 

provides an example in which the ZKM symmetry arises automatically. 

Alternatively, one can try to use additional symmetry to suppress the one loop 

contributions to masses. The model of Barr, Freire, and Zee (BFZ) with three Higgs 

doublets allows one to get rid of the one loop contribution by discrete symmetry. In 

the basis in which only one of the Higgs doublets has a VEV, a discrete symmetry 

is imposed on the other two Higgs doublets to totally remove their couplings to the 

leptons. As a result, the lepton number violating effect can be localized in the quartic 

self coupling of Higgs such as &s+4[&5!&. Thi s removes the one-loop processes such 

as those in Fig. 1. In this case the leading contribution to neutrino mass is coming 

from the two loop diagrams as in Fig. 2. BFZ choose the value of the product AMI 

to be large enough to get a magnetic moment of IO-“,uB. However, even in this case 

the neutrino masses (and their difference) , as estimated earlier, are still not small 

enough. Fortunately the two-loop masses and the two-loop magnetic moments have 

different dependence on Riggs boson masses. If the Higgs boson masses are chosen so 

that the mass difference between the charged and neutral components of the Higgs 

doublets are small, the two-loop neutrino mass can be further suppressed. 

As in the BFZ case, the two doublet Zee model also requires some adjustment to 

increase the size of the magnetic moment. Following Ref. (121, to reach py - 10-“pB, 

one can raise the value of the product AMI, by one to two orders of magnitude. 

The side effect of this fine tuning will be an increase in the two-loop neutrino mass 

contribution to about IO-‘eV. Lim, Marciano, and Akhmedov[S] have shown that a 

neutrino mass square difference of about IO-‘eV1 is required to permit resonance in 
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the convection layer of the Sun. We can in principle arrange the masses of the Riggs 

bosons such that the neutrino mass square difference is suppressed, as proposed by 

BFZ. Alternatively one can impose the ZKM symmetry and give up the possibility 

of resonance in the solar interior (see section V). 

With ZKM symmetry to remove neutrino mass difference, and discrete symmetry 

such as the one used by BFZ to remove the one-loop mass, this model has a natural 

ratio R E m~-‘~/p~-‘* - mE/e. This implies an automatic suppression of mass 

to magnetic moment at two loops, so that for JL” - lO-rl/lg, m, N lo-rev. This 

relation is a general result of this class of models when one succeeds in eliminating 

the one loop contribution to masses. 

III. MODELS WITH FERMION LOOPS 

There is another important source of contribution which can arise in the Zee 

model when the Higgs doublets are allowed to couple to the quark sector or to an 

exotic fermion sector. In that case these Yukawa couplings become the source of 

lepton number breaking. With no exotic fermions, a typical two-loop contribution 

to magnetic moment with a quark loop is shown in Figure 4. The advantage of this 

contribution is that the accidental suppressive combinatorial/cancellation factors of 

& or & in equations (7) and (8) can be avoided, giving them one or two orders of 

magnitude advantage. However, both mass and magnetic moment are enhanced. 

For the contribution due to the quark loop[l6], the two-loop mass and magnetic 

moment can be estimated to be 

l-kv N m” 
1 fe,i7%mtm;V+M~~ 

(16n’)r M;M; 
ln( “‘) 

Mw 
(9) 

~--loop _ P, 
1 fe,dYtbmtV+Mn 

(167rr)r M,1M,: (10) 
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For mt - i&, - M+ - Ml, - 100 GeV and the charged Higgs Yukawa coupling 

I;b - 1, these estimates give rnt-‘q - O.leV and &‘~ - 10-‘“(m~-‘~/eV)~n - 

lo-“px. These values can be further suppressed by choosing a smaller k;b which 

is not directly related to quark masses. These estimates show that the two-loop 

AL = 2 processes proceeding through a fermion loop can be the leading contribution, 

and reach pv - lo-“/~ with no fine tuning. 

Of course the two loop contribution to neutrino mass is significant only when the 

one-loop contribution can be suppressed either by some mild fine tuning or by adding 

an extra Higgs doublet a la BFZ. The potentially dangerous tree level flavor changing 

neutral current can easily be avoided by imposing discrete symmetry[l6]. 

The role played by the quark in the inner loop can be replaced by exotic vector- 

like quarks with a few advantages. One of such choices can be readily found in most 

of the superstring inspired Es models with vectorial fermions which have the same 

charge as the down quark. The singlet Higgs h+ also appears naturally as the E6 

partner of the usual Higgs bosons in such models. The vectorial fermions have the 

same gauge quantum numbers as right-handed down quarks. The fermionic couplings 

can be written as 

f&i&@ + fdGd&’ + fhi&h- 
- (11) 

MDDLDR+M,&& 

where QL is the doublet of left-handed quarks, D L,R are the VeCtOrid fermious, fd is 

the usual Yukawa coupling, fD is the exotic Yukawa coupling, and Md and MD are 

bare masses. For simplicity we used only one pair of DL,R. Since DR and dR have 

the same quantum numbers, in general they will mix. Without loss of generality, 

we can choose the basis such that the bare mass & is zero. If one assumes that 

the D quarks couple with roughly the same strength to all three d quarks, then the 

strongest constraint on the mixing parameter Q = e can be obtained from the 
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values of K - R or B - B mixing due to the Z boson mediated flavor changing 

neutral current. In this case the limit on a is about 10-3.[17] However if one assumes 

the D quarks in question couple mainly or exclusively to the third generation, then 

the best bound, for relatively heavy D quarks, can be obtained from the precision 

measurement of the ratio gv/g4 in Z decay. It places only a mild constraint on a to 

be less than 0.3[16]. Since the lighter d quark generations have nothing to do with 

our mechanism, we shall take the last assumption for numerical estimates later. 

Since the scalar singlet h+ couples to the quarks directly and breaks lepton num- 

ber, one no longer needs the second doublet. This is the first advantage. A conse- 

quence of this is that is that these models have automatic ZKM symmetry because the 

Yukawa couplings of a single Higgs doublet can be made lepton flavor diagonal with- 

out loss of generality. As a result, many dangerous flavor changing leptonic processes 

are suppressed. A second advantage is that lepton number violation will not occur 

until the two-loop level, so there is no one-loop neutrino mass. A third advantage is 

that the suppressive combinatorial/cancellation factors in equations (7) and (8) may 

be avoided just as in the case of quark loops. 

In this “one-doublet Zee model”, a two loop contribution to the magnetic moment 

is shown in Fig. 5. In such models, the lepton number violation can be blamed on 

the coupling fD. From Fig. 5 we estimate the two-loop mass and magnetic moment 

to be 

l-loop N 
m, 

1 f*efDfh!?mtm~v+L 

(16ns)’ MDM~’ 

a-1-P - 
P” 

1 f.rfDefhg’mt&L’ 

(169 MDM~ 

(12) 

(13) 

where L, L’ are logarithmic functions of ratios of masses which we take to be of order 

unity. Give* fep - fD - fh - 0.1, MD - 300 GeV and mt - Mh N 100 GeV we 
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find rnr-‘~ Y - 10-3eV and &‘w - lO-‘s/1~. Though this magnetic moment is too 

small, a larger value can be achieved by choosing a larger values for the three couplings 

fD, few and fh. Since this model has automatic ZKM symmetry, the neutrino mass 

difference is zero to all orders. 

Before moving on to discuss the three generation schemes, we describe another 

variant of the Zee model to further illustrate our arguments. 

IV. THE TRIPLET MODEL 

In place of the second Higgs doublet in Zee Model, we can use a real Higgs triplet, 

T= (14) 

with hyperchruge zero. The triplet allows the coupling of the doublet to the scalar 

singlet: 

C&-(T+(4 @ 4)) + h.c. (15) 

An immediate consequence of the model, when the third neutrino is decoupled, is an 

automatic ZKM symmetry just as the one-doublet model in Section III. The ZKM 

symmetry remains intact even after spontaneous symmetry breaking. 

The size of the VEV (TO) is constrained by the measured ratio of the charged 

and neutral gauge boson masses[l9] Mw ’ = M~cosBw 
,1+8vT’ 

%f 
06) 

where VT s (To) and Vd E a(#‘). Th e experimental limit, p = 1.003 f 0.004[20] 

means that VT 5 8 GeV. Unfortunately, this small VT will suppress lepton number 

violating amplitudes. 
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If (T”) is nonzero, one immediately obtains a one-loop contribution to mass as 

shown in Figure 6. The interaction in Eq. (15) induces a mixing between h+, and d+ 

or T+. Since T does not couple to fermions we are forced to use the mixing between 

h+ with 4+ and pick up a factor of VT. The contribution to the mass can be estimated 

to be (for h&, > M+) 

Mom-r,, = 16al 
ifpc;Tm: q!$ (17) 

For the natural values of M,, - MQ - 100 GeV and Cr - f, - 0.1, one obtains the 

Dirac mass of the ZKM neutrinos to be M--i,, - leV which, unlike the Zee model, 

escapes the experimental bound on neutrino mass without fine tuning. As expected, 

it is proportional to the Yukawa coupling which provides three orders of magnitude 

suppression. 

One may ask if it is possible to suppress the neutrino mass further by eliminating 

the one loop contribution. This can be achieved if one can manage to have VT = 0 

naturally. However it turns out to be very difficult in this model. The Higgs potential 

contains the term 

MT+T+(~ 8 4) + h.c. P-3) 

which can induce a nonzero VEV for T of order (To) = v even if the tree level 

mass of T, M;, is chosen to be positive. Thus, if MT+ # 0, we must have (2’) # 0. If 

we remove the t&near coupling, MT+, by some discrete symmetry, it is easy to see 

that all the remtining couplings, except the small leptonic Yukawa coupling which we 

wish to avoid, break the lepton number symmetry by four units and therefore can not 

give rise to magnetic moment or mass. One could replace the MT~ interaction with a 

cubic coupling of the triplet, but, to do this, more than three real (or, two complex) 

triplet fields are required. We shall not complicate the model further here. From this 
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point on we consider only the case (2’) # 0. The size of (T) however can be made 

smaller than the previous estimate if the tree level mass for 2’ becomes negative. 

We now assign lepton numbers to the fields to study the lepton number breaking. 

Choosing L(h+) = 2, L(q5) = 2, and L(T) = 0 one observes that the lepton number 

breaking can be blamed on the quartic self coupling of the doublet. After gauge 

symmetry breaking the quartic coupling will become an effective cubic coupling for 

the doublet. This allows lepton number violation even when the Yukawa couplings 

are ignored. The resulting two-loop contributions to magnetic moment are shown in 

Fig. 7. The magnetic moments are estimated to be (for Mh > M4) 

2-l-P _ P" 
1 f.dGVrv~ 

(167rr)” M;M$ l*($) (19) 

where X is the doublet quartic self coupling of the doublet. For f.,, = 0.1, X N 1, and 

Mh - Mb - 100 GeV this gives py N lo-'" ~8. The similar two loop contributions 

to the neutrino mass give 

a-4-P N m, 
1 f,dG%VQlm~ IntiKl 

(16nr)r MiMi MO 

which has the numerical value rnE-‘q N lo-rev. 

Just as the two-doublet Zee model, the natural value for magnetic moment in 

the triplet model is slightly too small. The value however can be increased in size by 

using larger value for Cr or X so that p, N lO-“p~ and rnz-‘w N O&V. 

This model also provides a very good illustration of the insufficiency of the “spin- 

polarization mechanism” argument which we mentioned earlier. In addition to the 

two-loop contribution in Figure 7, there are other two- loop contributions to magnetic 

moment such as the one in Figure 8. The estimate of this contribution to magnetic 

moment gives the same order of magnitude as in Eq. (19). However, in this case, the 

spin-polarization argument is ineffective in detecting that the contributions to neu- 

trino mass still will carry the usual suppression factor of multiple Yukawa couplings 
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(or light lepton masses). The fact that such suppression factors are not avoidable for 

neutrino masses can be easily implied from the general symmetry argument that we 

described in the introduction. In fact in Ref.[l2], such arguments were resorted to in 

order to assert such factors in three or higher loop diagrams. 

V. ‘ZKM SYMMETRY AND THREE GENERATION MODELS 

When exploring models with lepton number violation one should keep a watchful 

eye on the process Jo -+ ey which is strongly constrained experimentally. The Zee 

model can have a large contribution to this decay through the h+-mediated graph 

in Fig. 9[11]. Due to the antisymmetry of fob, sll three generations are required for 

this process to take place, i.e., the amplitude is proportional to f,,lfi.. Therefore the 

experimental bound on p -+ ey gives a very strong constraint on fp7fi.. To suppress 

these couplings we can either impose a symmetry such as tau number conservation, 

or fine tune the h+ couplings to the tau to be tiny (frrfie < lo-s(M~/150GeV)r)[ll]. 

A natural way to satisfy this constraint is to have a ZKM symmetry so that at least 

one of the two couplings, fp7 or fr., is naturally small or vanishing. The ZKM can 

be broken softly so as to control the size of the effect of the breaking. Therefore we 

shall discuss the three generation case only in that context. 

To study different choices of ZKM symmetry in the three generation case, we 

shall first recsll some aspects of the theory of neutrino oscillations. The neutrino 

oscillation problem has been studied by several authors[9,21,22]. 

In the ultrarelativistic approximation to the Dirsc equation, the Hamiltonian has 

the form M,f/E where E is the energy of the neutrino. For the purposes of oscillation 

dynamics, one can subtract a multiple of the unit matrix from the Hamiltonian, 

and hence, one can remove the mass matrix if Mz/E is proportional to the unit 

matrix. In a magnetic field B, the Hamiltonian has additional off-diagonal elements 
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due to terms of the form -pYB which will cause a “precession” between neutrinos of 

different flavors. The exact amount of neutrino flux reduction is difficult to predict. 

It depends on the details of the variation of the magnetic field in the sun. The 

magnetic moment is required to be large enough to bring the oscillation length down 

to the size of the solar convection zone where the strength of the magnetic field is 

believed to be correlated with the sunspot cycle. Thus we require pyBx - 1, which for 

e-..dim - 1O’scm and B = 1 Tesla gives the previously quoted necessary magnetic 

moment pV - lO-“p~. 

Note that the ZKM symmetry typically gives rise to a neutrino mass matrix which 

is traceless and singular in the Zee model and its variants. This implies that the mass 

eigenstatea in the three generation case are one massless Majorana neutrino and 

one massive Dirac neutrino. If the ZKM symmetry is such that Majorana eigenstate 

decouples, there will be no transition magnetic moment between the massless neutrino 

and the Dirac neutrino. Generally, the spin precession is most important for the 

Dirac neutrino, since the mass degeneracy between left and right handed components 

presents the no barrier to magnetic precession. Unless the Dirac mass is very small, 

the massless Majorana neutrino will not spin-precess in vacuum. 

In the medium, matter effects will induce masses for all of the neutrino flavors, and 

give an additional charged current contribution to the electron neutrino mass. The 

matter induced masses will contribute to the diagonal elements of the mass matrix 

in the flavor basis, so there need not be a massless eigenstate nor a pure Dirac state 

in the solar medium. In stars, the neutral current interactions are flavor-independent 

and therefore not relevant for oscillation. However, the charged current interactions 

differ due to the net electron density in the medium. The ordinary weak interaction 

gives rise to a net positive effective mass to the electron neutrino only. In the Zee 

model, additional interactions mediated by the h+ can have interesting implications 
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as we will see later. 

There are several choices of ZKM symmetry for the three generation case. The 

simplest ones are L.-L, and L. -L,. In these cases, v, or v,, automatically decouples 

and we need to focus on only two of the generations. Here we consider the L. - L, 

symmetric system. The result for the case of L.-L, is similar. Assuming the one-loop 

contribution to neutrino mass is eliminated, one can write 

0 fe,m$T 0 

MtJ = I 
fe,m;G 0 0 

0 0 0 i 
(21) 

0 fe,eGO 
P" = 

i I 
-fere9 0 0 (22) 

0 0 0 

where 9, with dimension l/M, represents other factors appearing in the two-loop 

calculation. 

Here we have a pure Dirac neutrino in vacuum, so there is no barrier to precession. 

In the solar medium, a mass splitting will arise, and this will damp the oscillation. 

As long as the matter induced mass splitting is smaller than pi? the oscillation will 

still be effective. The two energies happen to be comparable in the convection zone 

of the Sun, where GF~. N pB[22]. Given the uncertainty of our understanding of 

the convection zone, it is possible that the precession is still effective even with the 

damping. Such damping can be avoided if a soft breaking of the ZKM symmetry 

can be arranged. In that case, the mass of the muon neutrino can be made slightly 

heavier than the electron neutrino (say, by lo-‘eV). This allows for the possibility of 

resonant mixing inside a non-zero electron density[9]. For models discussed earlier, 

it is easy to implement soft breaking of ZKM symmetry with minimal extensions of 

20 



Higgs sectors without altering the main features we were exploring. While one may 

need to fine tune the soft breaking parameter to arrange a resonant solution, such 

fine tuning is usually considered technically natural due to the ZKM symmetry. 

The other choices of ZKM symmetry which forbid ,u + ey are L. - L, & L,. 

In the case of L. - L, + L,, fTc is zero. The neutrino mass and magnetic moment 

matrices become 

I 

0 fe,m,3 0 

Mu = fepm, ai2 0 f&49 

0 f,,m:G 0 

(23) 

0 fe,eG 0 

PY = I -fere8 0 fw7eG 0 -f&G 0 1 (24) 

In principle, both the electron-muon and the muon-tau oscillations can occur in the 

presence of a magnetic field. For natural values of the model parameters, M,,, will 

be two orders of magnitude larger than A&,,. This implies that the massless neutrino 

is mostly electron flavor. In this case, the oscillation in vacuum would be mainly 

between muon and tau neutrinos. 

Within the solar medium, the electron neutrino will increase in mass due to the 

net electron density in the medium. One may wonder whether this charged current 

induced mass that contributes to the (Mz),, component can compensate for the 

vacuum mass difference (Mz),, - (M,1).. and lead to a resonance precession involving 

the electron neutrino. Unfortunately, the small electron density in the convection zone 

can only overcome small mass gaps of order IO-‘eV[22]. The mass gap associated 

with Eq. (23) is ((Mz),, - (M&)/E = (M,,7)a/E, which has a natural value of 

(f,l/0.1)2 X lo-i4 GeV, far greater than fiyB = (~~/lO-“pn) x (B/Tesla) x 6 x lo-‘s 
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GeV or the typical induced mass G~(rz. - (1/6)n,) y lo-r5 GeV (convection zone). 

Thus, to achieve the resonance behaviour will require much higher densities, such as 

those in supernova cores. Alternatively, fine tuning f,,7 will reduce the mass of the 

Dirac neutrino and permit a resonance in the solar medium. One may wish consider 

such fine tuning to be due to a soft breaking of L. - L, symmetry. 

If instead we choose the symmetry L. - L, - L,, and again take natural values of 

the model parameters, the massless neutrino is mostly v, flavor with a small mixture 

of v,. Y. pairs up with the remainder of v, and v,, to form a Dirac neutrino. Matter 

effects will split the degeneracy of the Dirac neutrino components. As with the L.-L, 

symmetry, the induced mass splitting becomes comparable to the magnetic moment 

energy in the convection zone of the Sun. Therefore, the phenomenology will be very 

similar to the case with L. - L, symmetry. 

To summarize, it appears that in the absence of fine tuning or soft breaking, the 

extended ZKM symmetry, L. - L, + L,, is not effective to generate solar neutrino 

depletion, while the cases of L. - L,, L. - L, and L. - L, - L, symmetries all can 

give sizable depletions. 

There is still another intriguing new interaction we have not explored. The h+ 

mediated flavor changing currents which exist in the Zee model can lead to new 

neutrino scattering processes such as the one depicted in Pig. 10. One may ask 

whether these processes can serve as surrogate mass differences for the purposes of 

an MSW oscillation or simply for cancellation of the matter effects which could damp 

the magnetic oscillations within the Sun. The possibility of using new interactions 

for this purpose has been discussed by Guzzo, Masiero, and Petcov[23]. 

There are two questions to be answered on this track. The first concerns the sign 

of the effective mass generated by the h+ mediated neutrino scattering compared 

to the positive effective mass of I.J. by the ordinary weak contribution in the solar 
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medium[21,24]. Secondly, is the size of the contribution large enough to affect the 

resonance phenomenology inside the Sun ? Note that the hf mediated scattering 

depends only on the electron density N., but not on the smaller neutron density N,,. 

The four fermion operator generated from the h+ mediated diagram is similar to the 

one generated by the W+. However the gauge boson propagator and Higgs boson 

propagator differ by a minus sign, and the anti-particle nature of P,, picks up another 

minus sign. Therefore we find out that, interestingly, the h+ mediated interaction in 

Fig. 10 also contributes a positive effective mass to fi,, (or I&,, in the case of L.- L,-L, 

symmetry). 

In the the Standard Model, the W+ and 2 interactions give positive effective 

masses a, and a,* to V. and D,, respectively, as defined in Ref. 191. The h+ interaction 

adds a positive e N (B/g’)f$,M$/M,1 contribution to a,+, 

G. = (GF/x’$(~N. - X), au,, = (G~/fi)(eNe +&). 

The nontrivial resonance occurs at N,,/N. = (1 - e/2). However, the ratio NJN. 

inside the sun varies from 0.15 at the convective zone to 0.5 at the core. So, unfor- 

tunately, the condition requires c larger than one. Such a large value of e has been 

ruled out by the experimental constraints from p and r lepton decays. Therefore, the 

h+ mediated interaction is not likely to emulate the MSW resonance or remove the 

matter induced damping of magnetic precession in practice. 

VI. CONCLUSION 

We have defined a general class of models that can give relatively large magnetic 

moments to neutrinos while keeping their masses within experimental limits. We 

have also illustrated the way one can go about constructing such a theory. We are 

not trying to pinpoint one particularly successful model. Instead, we tried to bring 

out the simple symmetry principles behind success of such a class of models. In this 
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class of model the small numbers are blamed on the smallness of the Yukawa couplings 

associated with electron or muon masses. No attempt is made to explain the size of 

electron or muon masses. If the anticorrelation of the solar neutrino defficiency with 

the sunspot cycle persists in future data, one may attempt a satisfactory theory that 

can explain the smallness of electron and muon masses and large magnetic moments 

of their neutrinos at one stroke. 
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FIGURES 

FIG. 1. The one-loop contribution to the neutrino mass in the minimal Zee Model, 

which has a pair of Higgs doublets 41.2 and a charged singlet h+. The same diagram also 

gives rise to the transitional magnetic moment of the neutrino with the understanding that 

the external photon is attached to any charged line. 

FIG. 2. The two-loop contribution to the neutrino magnetic moment in the minimal 

Zee Model. The lepton number nonconservation occurs via the Higgs quartic coupling. 

FIG. 3. A generic class of diagrams which give a large contribution to magnetic mo- 

ment through the “spin-polarization mechanism”. 

FIG. 4. The two-loop contribution to the magnetic moment in a model where the 

lepton number violation occurs via the quark coupling. 

FIG. 5. The two-loop contribution to the magnetic moment in a model with only one 

Riggs doublet 4, and an additional D vector quark. 

FIG. 6. The one-loop contribution to the neutrino mass in a model with a triplet 

T(Y = 0). 
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FIG. 7. The two-loop contribution to the neutrino magnetic moment in a model with 

a triplet T(Y = 0). These diagrams are typical ones which fall into the class of “spin- 

polarization mechanism” enhancement. 

FIG. 8. The two-loop contribution to the neutrino magnetic moment in a model with 

a triplet T(Y = 0). These diagram are important, but do not fall into the class of “spin- 

polarization” enhancement. 

FIG. 9. A diagram for the process p -+ el. 

FIG. 10. The h+ mediated four fermion process vHre + v,,,+ 
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