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We first write down a mean-field hamiltonian H in terms of electron an- 
nihilation (creation) operators ako(aL, ) which satisfy the ant i -commutat ion 
relation: 

{aka,at,a,} = 61ck,,tSaa,. (1) 

and which incorporates (apart  from the kinetic energy term HKE) singlet 
superconductivity (Hsv), charge-density (HcDw) and spin-density wave 
(HsDw) terms. Thus 

H = H~:E + Hsc + HCDW + HsDw 

where 

lIKE = ~.e(k)atkoaka (3) 

Hsc = ~ A * a k ? a _ k ~  + h.c. (4) 

HCDW = ~'7oat+Qaak~, + h.c. (5) 

gsDw = ~at+q~ • a__ak + h.c. (6) 

Here expressions 3-6 are s tandard,  with Q = 2kF (kF is the wave vector of 
the fermi level) a characteristic wave vector for density wave order. [Sum- 
mation ~ over repeated indices and over implied spin indices in (6).] With 
the additional simplification that  there is no contribution from terms for 
which Ik] > Q, we may write H as a direct sum, g = @ ~ g ( k ) ;  H(k) is a 
hermit ian bilinear in Bi(k), where (writing k = k - Q) 

a ? • a ? k , ,  ? {Bi(k)} = {akT,at__k~,a-~T, _-~,a~, a-~,a -~?} (7) 

As in (1), {Bi, BJ} = ~il and the bilinears Xii =- B]Bj generate the Lie 
algebra g/(8); the hermit ian combinations occurring in the hamil tonian 1 
which in addition has zero trace - -  may be shown to generate the whole 
of su(8)[1]. A physical consequence of this mathemat ical  property is that, 
among others, triplet superconductivity terms are generated [2]. 

This su(8) model incorporates the mean field hamil tonian necessary for a 
discussion of coexistence of any of these phases (superconducting or density 
wave). However, a more tractable model which nonetheless encapsulates the 
essential features may be obtained by choosing only specified components 
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of the density wave terms in (5) and (6) (q0 purely imaginary, real A and % 
with ~ along the third axis, and assuming the so called "nesting" condition, 
e(k) + e(k) --- 0). The resulting hamiltonian H may be written as 

H : @ ~ H ( k ) ,  

where 

g(k )  : e(attakt + atk$a_k~ 4- atla~ -t- atkta-kt) 

-~(a~ta-~t + at ~a_~  + a~a-~ + at-~ta_-~t 
_ A ( a t a t k ~ +  t t t t a~ta -~ - ak~a kt -- a~la[-~T ) + h.c. 

1 t + ~ ( ~ T a ~ T  + ~ _ , ~ [ ~  - ~ i ~  - ~_~at_~) + h.c. 

1. t +~,,0(a,Ta~t -- ~ _ ~ t ~  + 4 ~ a ~  -- ~ _ , ~ t ~ )  + b.c. 

We define operators L a , K  ~ (a ---~ or ~) as follows: 

1 
L~ : ~(a~.~a~t + aL~a_~ - atta~t -at -~a_-~.)  

L~ - 1, t t t t -~(a~ta_~ + a~ta_-~) + h.c. 

K~ = ~(a~ta~t + a _ J _ ~ )  + h.c. 

: + 

With similar expressions for _L~,K ~ with the spins reversed. 
takes the form 

n ( k ) = H t ( k ) + H ~ ( k )  

Where 

(8) 

Then H(k) 

With 

A~ = ( -2~ ,o ,2~ ) ;  ~t : (~ , -~o ,O);  

A~ : (2~,o,2~); _~ : ( -~3, -~o,O) .  



312 

Introducing operators L~, K~ as 

L~ ira t at t t = _ a~Ta_-~ ) ~t k~ -k~ - +h .c .  

1 
K~ --- ~(a~Ta?_~ ~ - a-kla-~,) + h.c. 

and analogous expressions for L~, K~, the system of operators L" , / (~  closes 
under the commutat ion relations of so(4) @ so(4): 

[ i~ , i~ ]  = i6'~el,,.~L~ 

Z a [ e ,K~]  = i6"~elm, n~ e, rn, n 1,2,3 

It follows immediately, on use of. the two invariants ~2 + 1¢2 and ~ • ~; asso- 
ciated with SO(4), that  the energy spectrum of the system has the values 

= ~[4e(k) ~ + ~g + (2A =t= E±(k)  "/3)2]~. 0)  

The hamil tonian H(k) may be rotated to a sum of the Caf tan  elements 
(L'~,K~) of the algebra by the rotation R(k) ,  

R(k)  = exp{i¢2(L~ - L~)}exp{iCs(K~ - K~)}exp{ i¢ , (K~ + Kx~)} (10) 

with 

¢1 = tan-X(~o/2e) 

¢2 = - ( l / 2 ) t a n - ~ { 4 A ( 4 J  + wo )½t(4  + vo + - 4zx )} 

Cs = (1/2)tan-l{2~s(4e 2 +~/g)~/(4e 2 + % 2 _ ~  +4A2)}  (11) 

[The index k is suppressed in (11).] 
In addition to this inner automorphism of so(4)~so(4), a further rotation 
R0, which is an element of SU(8) but an outer automorphism of so(4)~so(4), 
is necessary in order to send the Caftans into a sum of number  operatOrS 
B~B~, thus diagonal in Fock space. (In the basis (7) R0 may be chosen to 

i r  be exp-4-(r0 x r a x  r2).) 
The ground state ( temperature T = 0) properties of this model were 

discussed in reference [2]: we now proceed to a discussion of the thermodY" 
namics. 
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The thermodynamics  of the system H = (gH(k) is part icularly straight-  
forward. Thus the part i t ion function Z may be wri t ten 

Z =_ T r e x p ( - f l H ) =  Trexp(- f lEH(h))  = [ I Z ( k )  
k 

[Z = ( a . T ) - ' ]  

where Z(k) = t r(exp - f3H(k))  is the part i t ion function restricted to the k- 
system. (Tr is the trace over all states, tr over the k-states only.) Similarly 
for an operator  Q = ~ Q(k), we may easily see tha t  

((Q))~ -- T r e x p ( - f l H ) Q / Z - -  ~ ( ( Q ( k ) ) } ~ .  
k 

If under the diagonalizing rotat ion - -  valid even in the su(8) case - -  

8 

H(a) , ~ E,~, 
i = l  

8 

Q(k) ' ~_,l.*,ni + (non-diagonal terms) 
i = 1  

(where the ni are fermion number  operators for the k-state) then one may 
evaluate readily 

In the 

8 

((Q(k)))~ = ~ , , ( e  zE' + 1) -1. 
i=1  

so(4)$so(4) case, we have 

Vchere 

{Ei} = { E + , E - , - E + , - E - ; E + , E - , - E + ,  - E - }  

E :~ are given in (9). Similarly, for the rotated Q(k) 

{ ~ }  = { ~ + , ~ _ , - ~ + , - ~ _ ; ~ + , # _ , - ~ + , - ~ - }  

so that  in general we have 
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In the same way, the average total energy of the system may be written 

({H(k))}t~ = - 2 { E  + tanh ~/~E + + E-  tanh ~flE-}.  

Choosing the negative square root values in (9), we see that the zero- 
temperature limit (fl ~ c~) is given by 

{(H(k)})oo = 2(E + + E-) .  

This corresponds to a filled Fermi sea ground state. The analogous zero- 
temperature order parameters are 

= 2( ,+  + ,_). 

All 12 operators in so(4)~so(4) may be identified with physical pro- 
cesses; six have zero-thermodynamic expectation at all temperatures. In 
the appended table we give the thermodynamic and ground state (fl = oo) 
expectations for the six non-vanishing operators; the latter values are in 
complete accord with the zero-temperature calculations of reference [2]. 
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