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Abstract

One of the primary goals in neutrino physics at the present moment is to make a mea-

surement of the neutrino oscillation parameter θ13. This parameter, in addition to being

unknown, could potentially allow for the introduction of CP violation into the lepton sec-

tor. The MINOS long-baseline neutrino oscillation experiment has the ability to make a

measurement of this parameter, by looking for the oscillation of muon neutrinos to elec-

tron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis

discusses the development of an analysis framework to search for this oscillation mode.

Two major improvements to pre-existing analysis techniques have been implemented

by the author. First, a novel particle ID technique based on strip topology, known as

the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a

multiple bin likelihood method is developed to fit the data. These two improvements,

when combined, increase MINOS’ sensitivity to sin2(2θ13) by 27% over previous analy-

ses. This thesis sees a small excess over background in the Far Detector. A Frequentist

interpretation of the data rules out θ13 = 0 at 91%. A Bayesian interpretation of the

data is also presented, placing the most stringent upper boundary on the oscillation

parameter to date, at sin2(2θ13) < 0.09(0.015) for the Normal (Inverted) Hierarchy and

δCP = 0.
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Chapter 1

Introduction

Some of the most exciting particle physics discoveries of the last few decades have come

from the study of neutrinos. These particles are present everywhere and arrive from

many different sources: the sun, cosmic rays, nuclear reactors, decays inside the earth,

supernovae, particle accelerators, and even the Big Bang. Despite this abundance of

neutrinos, little was known about the physics governing their behavior until the past

few decades. This is in large part due to the fact that neutrinos only interact with

matter via the weak force, and are therefore very difficult to detect.

The discovery of neutrino oscillations opened up a whole new avenue of scientific

inquiry. The fact that oscillations occur in nature at all means that neutrinos must

have non-zero mass, something not predicted in the current version of the Standard

Model. A decade’s worth of research by various experiments has made a good start on

quantifying these oscillations, and increasingly precise measurements have been made of

the parameters involved.

One major neutrino oscillation parameter remains unmeasured at this point: the

mixing angle θ13. Recent experimental results from T2K (see Appendix A) have hinted

that the value of this term is non-zero. Most measurements to date, however, have simply

set upper limits, suggesting that the value is small. Beyond simple curiosity, there are

compelling physics motivations for measuring this last mixing angle. In particular, a

non-zero value for θ13 would allow for the possible incorporation of CP violation in the

lepton sector. Consequentially, measuring θ13 is one of the top priorities of the neutrino

physics community at the moment, driving a new generation of oscillation experiments.

This thesis will attempt to make a measurement of θ13 using the MINOS long baseline

neutrino oscillation experiment. MINOS has the ability to measure θ13 by observing the

oscillation of muon neutrinos to electron neutrinos between its Near and Far Detectors.

This oscillation mode will only occur if θ13 is non-zero. MINOS, however, was not

1



2 Introduction

designed to look for electron neutrino interactions. A combination of poor detector

resolution and a high degree of background contamination will necessitate the use of

various sophisticated analysis techniques.

This thesis will begin with a description of the history of neutrinos and neutrino

oscillations, as well as a basic overview of the related physics concepts. A description

of the MINOS experiment itself will follow, including the neutrino beamline, the two

detectors, and the preparation of data for analysis. The main body of the document

will focus on the search for νµ → νe oscillations. It will describe the development of a

particle ID scheme, the prediction of backgrounds, and the fitting of the results. The

document will conclude with an interpretation of the Far Detector data.

The work in this thesis uses techniques developed for previous νe analyses, while also

attempting to improve on these methods wherever possible. Two major improvements

over previous MINOS νe → νµ searches will be highlighted. First, a particle ID tech-

nique known as the Library Event Matching (LEM) method was extensively studied and

optimized by the author. The work in this thesis has both increased the performance of

the particle ID and led to a better understanding of its behavior, so that LEM can be

used effectively and reliably to search for a νe appearance signal. Second, unlike previ-

ous versions of this analysis, which were counting experiments, this thesis will employ a

multiple bin likelihood fit to the shape of the LEM and energy distributions in order to

measure θ13.

The work in this thesis was conducted in parallel with the author’s work on the 2011

MINOS νe analysis. The results from this published analysis are described in Appendix

A. While much of the work performed for this thesis was also used in that analysis, the

author has also further expanded or optimized many of the techniques used.



Chapter 2

Neutrinos: Theory and Background

2.1 A Brief History of Neutrino Physics

The important role played by the neutrino in high energy physics today is perhaps ironic

given its origins as a “desperate remedy.” The particle was first proposed as an expla-

nation for anomalous results observed in 1914 by Chadwick [1], in the energy spectrum

of β decay. Both α and γ radiation produced a discrete spectrum of energy, equal to the

energy lost between the initial and final state of the atomic nucleus. The spectrum for

β decay was found to be continuous, with energy varying between zero and a maximum

value. Only a single electron was observed as the decay product, so it was unclear where

the remaining energy of the interaction had gone. Later calorimetric experiments by

Ellis and Woolsey in 1927 [2] confirmed that this continuous energy spectrum was a real

feature of β decay, rather than an experimental effect. This mounting experimental evi-

dence was worrying enough that Bohr even considered the potential violation of energy

conservation as an explanation.

In a letter in 1930, Wolfgang Pauli proposed a less drastic solution: the existence of

a particle (which he termed a “neutron”) with spin 1/2 and a light mass, which would

only interact via the weak force[3]. Turning β decay into a three body decay would solve

the energy conservation problem. Giving the particle these specific physics properties

would explain the lack of experimental detection. Enrico Fermi soon hypothesized a

mechanism for β decay: n → p + e− + ν. The β decay spectrum required the mass of

the neutrino to be very small [4].

The neutrino would not be directly detected until nearly 20 years later, in 1954, with

an experiment by Reines and Cowan[5]. A detector was placed near a nuclear reactor at

the Hanford Site, in Washington. Electron antineutrinos from the reactor would interact

with nucleons in the detector via the inverse beta decay reaction (ν̄e + p → n + e+).

3



4 Neutrinos: Theory and Background

The photons emitted in neutron capture were then used to detect the interaction. A

2σ excess of interactions was observed when the reactor was turned on, versus when it

was turned off. This was the first observation of a neutrino signal, and of the ν̄e. Two

other flavours of neutrino have since been discovered. Muon neutrinos were observed

in 1962 in an experiment at the Brookhaven AGS facility by Lederman, Schwartz, and

Steinberger [6]. Tau neutrinos were finally observed in 2001 in the DONUT experiment

[7] at Fermilab.

The phenomenon now known as neutrino oscillation was detected for the first time in

the Homestake experiment [8], although this result was not definitively identified as such

until some time later. This experiment, which was started by Ray Davis in 1965, was

designed to detect low energy (MeV scale) neutrinos produced by nuclear reactions in the

sun. Davis used a radio-chemical technique to detect neutrino interactions. The detector

consisted of a tank of Cl2C4 situated in the Homestake Mine in South Dakota. Electron

neutrinos entering the detector tank interacted with the Chlorine nuclei to produce an

unstable isotope of argon: νe+
37Cl→ e−+37Ar. The argon atoms were then counted

to determine the rate of neutrino interactions. When this rate was compared to the

predictions from Bahcall’s Standard Solar Model [9], a surprising discrepancy was seen:

the SSM predicted 8.1 ± 1.2 SNU1, but the Homestake experiment only observed 2.56

± 0.25 SNU, less than half the predicted flux. There were three possible explanations

for this discrepancy, which became known as the “Solar Neutrino Problem”: the Solar

Standard Model was wrong, the experiment was wrong, or something was happening to

the neutrinos in between.

Numerous sources of strong experimental evidence have since confirmed the Standard

Solar Model. Much of this proof comes from helioseismology: acoustic waves which

propagate through the sun are detected via Doppler shifted light and used to characterize

solar structure and dynamics. As an example of this evidence, the SSM prediction of

the velocity of these sound waves as a function of radial distance agrees with the data

to within 0.5% [10]. Certainly, no disagreement between the SSM prediction and data

has been found on a scale to explain the Solar Neutrino Problem.

Following Homestake, numerous other experiments gathered additional evidence for

the solar neutrino discrepancy, suggesting that the Homestake experiment itself was not

at fault. The Kamiokande-II water Cerenkov detector in Japan detected solar neutrinos

through the elastic scattering channel νe + e− → νe + e− and once again observed a

deficit, with 0.45±0.02 SNU observed versus 1.0±0.2 SNU expected [11]. The GALLEX

1SNU =10−26 neutrino interactions / target atom / s, a unit designed to accommodate the very low
event rates in these experiments.
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[12] and SAGE [13] experiments used a radio-chemical technique employing Gallium,

which allowed the two experiments to explore a much lower energy range of the solar

neutrino flux. Once again, a large deficit was found. As evidence for the soundness of

the Standard Solar Model mounted, and more experiments with different methodologies

showed evidence for there being a real deficit in the solar neutrino flux, explanations for

the Solar Neutrino Problem began to focus on the third possible source of discrepancy:

the neutrinos themselves. In particular, it was proposed that neutrinos could “oscillate”

between their weak eigenstates as they traveled between the Sun and Earth. This

possibility of this type of oscillation had first been suggested by Pontecorvo, in 1957

[14]. As will be described later in this chapter, neutrinos were finally shown to transition

between separate weak eigenstates in the SNO experiment in 2001, opening up a whole

new era of neutrino physics.

2.2 Neutrinos in the Standard Model

The Standard Model of particle physics provides a complete description of the electro-

magnetic, weak, and strong force interactions, tying them together with the associated

force-carrying gauge bosons. The model also incorporates all of the known fundamen-

tal fermions, both quarks and leptons, in three generations of matter. Table 2.1 lists

the properties and forces associated with the gauge bosons, while Table 2.2 summa-

rizes the basic characteristics of the fermions. Quantum Chromodynamics (QCD) de-

scribes the strong force as a SU(3) gauge group, while the electromagnetic and weak

forces are described together under electroweak unification with a gauge symmetry of

SU(2)L ⊗ U(1)Y . Particles in the quark sector carry colour charge and can therefore

participate in the strong force, in addition to electromagnetic and weak interactions.

Electron, muon, and tau leptons carry electromagnetic charge, and can interact both

electromagnetically and weakly. The three neutrinos νe, νµ, and ντ comprise the final

three particles of the lepton section. They have no charge, and therefore only interact

via the weak force.

2.2.1 Neutrinos and the Weak Force

Fermi made the first attempt to describe weak force interactions by constructing a

“four point” model with a vector current very similar to that of the electromagnetic

interaction. There were several problems with this model. Firstly, when the cross-
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Boson Charge Spin Mass (GeV) Interaction

γ 0 1 0 Electromagnetic

W± ±1 1 80 Weak

Z0 1 1 91 Weak

Gluon (8) 0 1 0 Strong

Higgs 0 0 (Unknown) -

Table 2.1: Summary of the basic force-carrying bosons in the Standard Model,
with their charges, spins, and measured masses [15].

Lepton Mass (MeV) Charge Quark Mass (MeV) Charge

e 0.511 -1 u 1.7-3.1 2
3

νe ∼ 0 0 d 4.1-5.7 -1
3

µ 105.7 -1 c 1,290 2
3

νµ ∼ 0 0 s 100 -1
3

τ 1,776.8 -1 t 172,900 2
3

ντ ∼ 0 0 b 4,200 -1
3

Table 2.2: A summary of the charge and masses for Standard Model particles
in the lepton sector (left) and the quark sector (right). Values are taken from
[15]. The u, d, and s quark masses are current masses. The b and c masses are
the running masses. The t mass is from direct observation.

section for a “Charged Current” (CC) interaction (νe + n → p + e−) was calculated,

it was found to increase linearly with energy to infinity. Secondly, it was necessary

to provide a mechanism by which parity violation could be introduced into the weak

interaction.

The first problem, of the divergent cross-sections for the weak interaction, can be

solved by the introduction of a massive force propagator in the form 1/(M2
W − q2) to

the weak Charged Current interaction, to reduce the coupling strength of the force. The

electroweak unification theory of Glashow[16], Salam[17], and Weinberg[18] proposed the

existence of this massive W± boson, which governs Charged Current interactions. The

theory also theorized the existence of a second, neutral boson, the Z0 boson, which was

responsible for a form of weak scattering known as a “Neutral Current” (NC) interaction.

In the early 1980s, both bosons were observed in the UA1 and UA2 experiments [19] [20]

at the CERN pp̄ collider.
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Figure 2.1: LEP study [21] of the decay of the Z0 boson, showing the cross-
section for hadron production around the resonance. A curve showing the pre-
dicted values for two, three, and four neutrino species is given.

Studies of the Z0 boson have also allowed for a determination of the number of

neutrino generations which couple to the weak force. This is done by examining the

decay width of the Z0 boson to determine the number of decay modes. From this

measurement (see Figure 2.1), it was determined that only three neutrinos couple with

the Z0 boson [21]. This does not rule out the possibility of an additional neutrino more

massive than the Z0 boson.

The need to include parity violation in the weak force interaction came about from

experimental observations. A parity transformation performs a spatial inversion through

the origin. It is described by the operator P̂ , which, for a Dirac spinor ψ(t, x, y, z), is

the γ0 matrix:

ψ′(t′, x′, y′, z′) = P̂ψ(t, x, y, z) = γ0ψ(t, x, y, z) = ψ(t,−x,−y,−z) (2.1)

It can be shown that interactions in both QED and QCD conserve parity. The original

formulation of the weak interaction, with its vector field current, assumed the conserva-
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tion of parity as well. In 1956, an experiment by C.S. Wu [22] showed this assumption

to be wrong: the weak force in fact violates parity. Wu constructed an experiment in

which 60Co emitted β decay electrons. This emission occurred while the atoms were

in a magnetic field, causing their spin vectors to align. If parity is conserved, these

β electrons should have been emitted symmetrically with respect to the nuclear spin.

Instead, Wu observed that the β electrons were emitted preferentially in the direction

opposite to the spin. This asymmetry was evidence of parity violation.

Parity violation can be built into the Charged Current weak interaction by choos-

ing an alternate form for the interaction vertex. In addition to the vector interaction

(ψ̄γµφ), there can also be an axial vector component: ψ̄γµγ5φ (where γ5 = iγ0γ1γ2γ3).

Experiment has shown that the actual form of the weak interaction is V-A, with a

current of the form:

jµ ∝ ū(γµ − γµγ5)u = ūγµ(1− γ5)u (2.2)

While the separate vector and axial vector parts of the current each individually conserve

parity, the combination of them does not.

The V-A vertex also has important consequences for neutrino physics. Equation 2.2

contains the left-handed chiral projection operator, 1
2
(1− γ5):

ψ̄γµ 1

2
(1− γ5)φ = ψ̄γµφL (2.3)

Since ψ̄Rγ
µφL = 0, only the left-handed chiral components of a particle spinor (or

the right-handed components of an anti-particle spinor) can participate in the weak

interaction:

ψ̄γµ 1

2
(1− γ5)φ = ψ̄γµφL = (ψ̄L + ψ̄R)γµφL = ψ̄Lγ

µφL (2.4)

Neutrinos are ultra-relativistic particles, so that their helicity is equal to their chirality.

Therefore, only left-handed neutrinos and right-handed antineutrinos can participate

in the Charged Current weak interaction. In neutrino experiments, the neutrinos are

created via the weak Charged Current interaction, and are therefore all left-handed.

In addition to not conserving parity, the weak interaction also does not conserve

charge conjugation symmetry. The charge conjugation operator Ĉ transforms a particle

into its antiparticle. Applying this symmetry to an interaction which includes a left-

handed neutrino, such as π+ → µ+ + (νµ)L, results in a left-handed antineutrino, which

cannot be created in a CC interaction: π− → µ− + (νµ)L . The combination of these
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Charged Current Neutral Current 

νl l- 

W 

n p 

Z0 

ν ν 

N N 

Figure 2.2: Feynman diagrams for the weak Charged Current (left) and Neu-
tral Current (interactions). These particular examples are of a neutrino inter-
acting with a nucleon.

two symmetries (CP) can, however, be conserved, as CP symmetry turns the left left-

handed neutrino in the above interaction to a right handed antineutrino. CP violation

has already been observed in the quark sector. As will be explained later, it may exist

in the lepton sector as well.

2.2.2 Interaction Types

Neutrinos are detected either via the Charged Current or Neutral Current weak inter-

action. Examples of these two interactions are shown in Figure 2.2 for the case of a

neutrino interacting with a nucleon. Firstly, in the Charged Current interaction, an

electron neutrino, muon neutrino, or tau neutrino is converted to (respectively) an elec-

tron, muon, or tau via the emission of a W boson. A neutrino interacting with a nucleon

will produce a charged lepton of the same flavour, which can then be detected by exper-

iment. Secondly, the Neutral Current interaction is mediated by the Z0 boson. The Z0

boson couples fermion to fermion, without any transfer of charge, but with the ability to

couple to right handed chiral states. This proceeds as a scattering interaction, in which

the flavour of the original lepton is not detected.

In additional to these broad categories of Neutral Current and Charged Current

events, there are several different subcategories of interaction which can be observed

in experiment. Feynman diagrams for three such processes (Deep Inelastic Scattering,
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Figure 2.3: Feynman diagrams for three forms of Charged Current interaction:
Quasielastic, Resonance Production, and Deep Inelastic Scattering. Image from
[23].

Quasielastic, and Resonance Production interactions) are shown in Figure 2.3. The

cross-sections for the νµ CC interaction, νµ + N → µ− + X are shown in Figure 2.4

as a function of energy. Quasielastic interactions (QE) proceed as ν` + N → `− + p.

These interactions dominate the neutrino cross-section at low energy. QE interactions

are often the signal in a neutrino experiment, as the event topology is very simple and

thus it is easy to determine the original neutrino flavour. Deep Inelastic Scattering (DIS)

interactions dominate the cross-section at higher energies. In this case, a virtual W or

Z0 boson probes the structure of the nucleon. The nucleon is broken up, resulting in a

large number of daughter particles in a hadronic shower, which can obscure the lepton.

Resonance interactions (RES) occur at an intermediate energy. In the case shown, a ∆

resonance is created: ν` +N → ∆+ + `. The ∆ then decays, producing various daughter

particles such as pions. Finally, so-called Coherent Pion Production (COH) can occur

when the neutrino interacts coherently with the whole nucleus. This can produce a

single pion: a π+ for CC interactions and a π0 for NC interactions. This process is rare

and the cross-section poorly understood, but it can constitute an important background

for many neutrino experiments.

2.2.3 Neutrino Mass

The current form of the Standard Model assumes a massless neutrino. The phenomenon

of neutrino oscillation, however, strongly suggests that neutrinos have mass. The mass

of the three neutrinos is known from experiment to be extremely small. The current best

upper limits [15] on the neutrino masses from decay experiments are mνe < 2 eV, mνµ <

0.19 MeV, and mντ < 18.2 MeV. Studies of the Cosmic Microwave background from the

most recent WMAP results, combined with distance information from supernovae and

Baryon Acoustic Oscillations (BAO), place an upper limit on the total sum of neutrino
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Figure 2.4: NEUGEN-v3[74] cross-section for νµ Charged Current interactions
as a function of neutrino energy. Cross-sections shown include QE, RES, and
the inclusive cross-section (which includes DIS). The shaded band shows the
uncertainty on the cross-section. Cross-sections are for an isoscalar target. Data
from past experiments (compiled by [24]) are shown as well. Image from [53].

masses, at
∑
mν < 0.67 eV (at 95% CL) [28].

The so-called “Seesaw” Mechanism provides a means of introducing a non-zero, but

still very small neutrino mass into the current theoretical framework. For the fermions

in the Standard Model, one can write a Dirac mass term:

LD = −mD(νLνR + νRνL) (2.5)

All quarks and charged leptons are Dirac particles, with mass arising from the Higgs

mechanism and Yukawa couplings. If one assumes the existence of a right-handed neu-

trino field, this method can be used to describe the nonzero mass arising from a Dirac

neutrino:

LD = −fνφνLνR = −fν〈φ〉νLνR = −fνV νLνR (2.6)

where fν is a Yukawa coupling constant, φ is the neutral Higgs field, and V is the vacuum

expectation value, 246 GeV [15]. To produce a neutrino mass of the expected size, the

coupling constant must be on the order of 10−13, as compared to that of the charged

leptons, 10−4. While this is not impossible, there is no reason that fν should be so
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comparatively small. Some additional mechanism must be found to explain the small

observed mass.

In addition to the above Dirac mass term, one can also write down a Majorana [25]

mass term, constructed solely out of the left-handed field:

LML
= −1

2
mL

M(νLν
c
L + νc

LνL) (2.7)

Here, ν is a neutrino field (either left handed L or right handed R) and νc is the charged-

conjugated field: νc = CνT = Cγ0ν
∗. Unfortunately, Equation 2.7 violates gauge

invariance, requiring that LML
= 0. However, there are no such restrictions on a right-

handed Majorana mass term, LMR
, once one assumes the existence of a right-handed

neutrino field:

LMR
= −1

2
mR

M(νRν
c
R + νc

RνR) (2.8)

For a particle to be a Majorana particle, it must be identical to its own antiparticle,

a feature which is impossible if the particle possesses charge. Neutrinos are the only

fermions in the Standard model which are electrically neutral and therefore the only

fermions which could be Majorana particles. Notably, the Majorana mass term in 2.8

also violates lepton number, a feature beyond the current Standard Model.

Various forms of Grand Unified Theory, however, do permit both the violation of

lepton number. Under these GUTs, right handed neutrinos can exist, and neutrinos

can therefore be (massive) Majorana particles. Gell-Mann, Ramond, and Slansky [26],

as well as Yanigada [27], therefore proposed the See-Saw Mechanism to account for the

small observed neutrino mass. Under this mechanism, the mass terms LD and LMR
can

be combined together to form a general mass term in matrix form:

L = −1

2

(
νL νc

R

)  0 mD

mD mR
M

 νc
L

νR

 + h.c. (2.9)

The matrix in the above expression is known as the “seesaw matrix.” Diagonalizing this

matrix results in two eigenvalues:

m± =
1

2
mR

M ± 1

2

√
(mR

M)2 + 4m2
D (2.10)
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If mR
M � mD, the two corresponding eigenstates are approximately:

ν+ ≈ (νR + νc
R) +

mD

mR
M

(νL + νc
L) (2.11)

ν− ≈ (νL − νc
L) +

mD

mR
M

(νR + νc
R) (2.12)

From this mR
M � mD assumption, there is first one “heavy” state N = ν+, which is

dominated by the sterile right handed term, with mass mN ≈ mR
M . Second, there

is a “light” state ν = ν− with mass mν ≈
m2

D

mR
M

. With a Dirac mass mD of the same

approximate size as the charged leptons (MeV scale), and a right handed Majorana mass

MR
M just below the GUT scale (1015 eV), the light mass mν will be on the order of 1

meV. This is the neutrino observed in experiment. The heavy right handed partner N has

never been observed, but could have potentially been created in the early universe and

then decayed during cooling. This model is easily adapted to three neutrino generations,

with many different theoretical variations.

Support for the above mechanism can come from a variety of different experimen-

tal studies. Neutrino oscillations, as will be explained, provide concrete evidence for

a non-zero neutrino mass, as well as a measurement of the size of the difference be-

tween those masses (squared). Other experiments are currently attempting to make a

direct measurement of neutrino mass using the spectrum of β decay electrons. In the

presence of a non-zero neutrino mass, the slope of this spectrum will change, and the

maximum allowed decay energy will shift. Using this method for tritium decay, the

Mainz experiment has placed the current best limit on the νe mass, at < 2.3 eV [29].

Finally, experiments searching for neutrino-less double beta decay can both measure

the neutrino mass, and determine if neutrinos are a Majorana particle. In regular two-

neutrino double beta decay, the decay proceeds as (Z,A) → (Z + 2, A) + 2e− + 2νe.

This is a rare process, with a very long half life. The existence of a massive neutrino,

however, also allows for “neutrino-less” double beta decay: (Z,A) → (Z + 2, A) + 2e−.

This process, which violates lepton number, occurs when a neutron emits a right-handed

antineutrino, which is then re-absorbed by another neutron as a left-handed neutrino.

This can only occur if a neutrino is a Majorana particle, i.e. if it both has mass and

is its own anti-particle. In addition to being an important physics result in its own

right, observing this interaction would allow for a direct measurement of neutrino mass,

as the rate of this interaction is a function of the effective mass2. The controversial

2Using the mixing matrix format introduced in the oscillation section, the effective neutrino mass is
defined as mee ≡

∑
i

U2
eimi
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2004 Heidelberg-Moscow result [30] claims a 4σ discovery of this process, with neutrino

effective mass < 0.35 eV. A new generation of experiments will soon test this claim.

2.3 Neutrino Oscillations

Neutrinos are produced and interact with matter in three separate weak eigenstates: νe

νµ and ντ . However, they also propagate through space and time via three separate

mass eigenstates: ν1, ν2, and ν3. If the masses of these eigenstates are non-zero, and if

the mass eigenstates are not equivalent to the three weak eigenstates, the phenomenon

of neutrino oscillation can occur.

2.3.1 Oscillation with Two Neutrinos

The basic physics of neutrino oscillation can be described with the simple case of only

two neutrinos, which have weak eigenstates |να〉 and |νβ〉 and mass eigenstates |ν1〉 and

|ν2〉. A neutrino produced in weak eigenstate |να〉 is also a superposition of the two mass

eigenstates:

|Ψ(0)〉 = |να〉 = Uα1|ν1〉+ Uα2|ν2〉 (2.13)

where Uα1 and Uα2 are constants. These mass eigenstates, in turn, propagate as free-

particle plane waves:

|ν1(t)〉 = |ν1〉ei~p1 · ~x−iE1t, |ν2(t)〉 = |ν2〉ei~p2 · ~x−iE2t (2.14)

These expressions can be further simplified by defining a phase φ1 = iE1t− ~p1 · ~x:

|ν1(t)〉 = |ν1〉e−iφ1 , |ν2(t)〉 = |ν2〉e−iφ2 (2.15)

The two weak eigenstates can be described in terms of the mass eigenstates with a 2× 2

unitary matrix, parametrized by a “mixing” angle, θ:να

νβ

 =

 cos θ sin θ

− sin θ cos θ

 ν1

ν2

 (2.16)
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One can now write an expression for the wave function of |Ψ(0)〉 = |να〉, after it has

propagated distance L:

|Ψ(L)〉 = cos θ|ν1〉e−iφ1 + sin θ|ν2〉e−iφ2 (2.17)

Converting back to the weak eigenstate basis yields the following expression:

|Ψ(L)〉 = (cos2 θe−iφ1 + sin2 θe−iφ2)|να〉+ (cos θ sin θ)(e−iφ2 − e−iφ1)|νβ〉 (2.18)

If φ1 = φ2, the neutrino will continue to propagate in its original weak eigenstate, i.e.

|Ψ(L)〉 = |να〉. If φ1 6= φ2, the neutrino will propagate as a superposition of two weak

eigenstates. There is now a non-zero probability of observing the neutrino in the νβ

eigenstate:

P (να → νβ) = |〈νβ|Ψ(L)〉|2 = sin2(2θ) sin2

(
φ2 − φ1

2

)
(2.19)

The phase difference φ2−φ1 can be rigorously derived with a proper wave packet treat-

ment. However, the same final result can be obtained by assuming p1 = p2 = p, t ≈ L

(in natural units), and p� m1,2:

φ2 − φ1 = (E2t− pL)− (E1t− pL) = (E2 − E1)t

=

[
p

(
1 +

m2
2

p2

) 1
2

− p

(
1 +

m2
1

p2

) 1
2

]
t

≈ m2
2 −m2

1

2p
L =

∆m2
21

2p
L ≈ ∆m2

21

2E
L (2.20)

Substituting this into Equation 2.19 yields:

P (να → νβ) = sin2(2θ) sin2

(
∆m2

21

4E
L

)
(2.21)

Thus, if the two mass eigenstates have different masses and are distinct from the weak

eigenstates (via the above neutrino mixing matrix), there is a non-zero probability that

a neutrino produced in weak eigenstate |να〉 will be observed as |νβ〉 after some distance

of propagation. This phenomenon is known as neutrino oscillation.
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2.3.2 Oscillation with Three Neutrinos

While this shows the basic mechanism of neutrino oscillation, a full picture must account

for the existence of three types of neutrino: weak eigenstates |νe〉, |νµ〉, and |ντ 〉, and

mass eigenstates |ν1〉, |ν2〉, and |ν3〉. This section will describe the physics of a neutrino

traveling in a vacuum; the case of a neutrino traveling through matter will be discussed

later. The relationship between the mass and weak eigenstates is again parametrized by

a unitary matrix: 
νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 (2.22)

so that a given weak eigenstate is written as follows:

|να〉 =
3∑

i=1

Uαi|νi〉 (2.23)

Using methods similar to before, one can derive the probability of one weak eigenstate

να oscillating to νβ:

P (να → νβ) = |〈νβ|Ψ(L)〉|2 = |Uα1U
∗
β1e

−iφ1 + Uα2U
∗
β2e

−iφ2 + Uα3U
∗
β3e

−iφ3|2

=
∑
ij

UβiU
∗
αiU

∗
βjUαje

−i(φi−φj) =
∑
ij

UβiU
∗
αiU

∗
βjUαje

−i
∆m2

ij
2E

L (2.24)

This equation can be further simplified by exploiting a few of its mathematical features.

First, the unitarity of the 3 × 3 mixing matrix means that
∑3

i=1 UβiU
∗
αi = δαβ. Ad-

ditionally, term ij is equal to the complex conjugate of term ji, so that only the real

components for i>j need be summed. The probability can be rewritten as:

P (να → νβ) = δαβ + 2
∑
i>j

<[UβiU
∗
αiU

∗
βjUαj(e

−i
∆m2

ij
2E

L − 1)]

= δαβ − 4
∑
i>j

<[UβiU
∗
αiU

∗
βjUαj] sin

2

(
∆m2

ij

4E
L

)

+2
∑
i>j

=[UβiU
∗
αiU

∗
βjUαj] sin

2

(
∆m2

ij

2E
L

)
(2.25)
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In addition to describing three-neutrino oscillations, this expression has important

physics implications. In particular, it allows for the possibility of neutrino oscillation

exhibiting CP violation. If CP symmetry is conserved, then P (να → νβ) = P (να → νβ).

Similarly, if oscillations conserve time reversal symmetry (T), then: P (να → νβ) =

P (νβ → να). Neutrino oscillations are expected to conserve the combined CPT sym-

metry: P (να → νβ) = P (νβ → να). Therefore, either both CP and T are conserved,

or both are violated. Time reversal symmetry can be broken if any of the elements

of the 3 × 3 mixing matrix are complex3, so that for the probability in Equation 2.25,

P (να → νβ) 6= P (νβ → να). In order to preserve CPT, neutrinos must then also exhibit

CP violation: P (να → νβ) 6= P (να → νβ).

CP violation has already been observed in the quark sector, via the mechanism of the

CKM matrix. It is natural to expect to observe it in the lepton sector as well. In fact,

several theories in particle physics depend on this possibility. In the theory of leptogen-

esis [31], neutrinos are Majorana particles, with a heavy right handed neutrino partner.

This partner existed in the earlier universe and then decayed to left handed neutrinos

or right handed antineutrinos, plus Higgs bosons (which then further decay into heavy

quarks). If CP violation occurred in this decay process, favoring one decay mode over

another (even to a small degree), it could help to explain the observed matter/antimatter

asymmetry of today’s universe. Observing CP violation in the oscillation of today’s light

neutrinos would first step in studying this asymmetry in the lepton sector.

2.3.3 The PMNS Mixing Matrix

The 3 × 3 mixing matrix in Equation 2.22 is formally known as the Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) mixing matrix[32][33]. The PMNS mixing matrix is parametrized

with three separate rotation or “mixing” angles, θ12, θ23, θ13, and a complex phase δ.

The matrix can be written in the following convenient parametrization, with cij ≡ cos θij

3Note that the mixing matrix can have an overall complex phase without causing time reversal
asymmetry. Rather, the asymmetry is brought about, for instance, by an element having a different
complex phase than the other elements.
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and sij ≡ sin θij:

U =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

 (2.26)

U =


1 0 0

0 c23 s23

0 −s23 c23

×


c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13

×


c12 s12 0

−s12 c12 0

0 0 1

 (2.27)

U = U23 × U13 × U12 (2.28)

Each of these “sub-matrices” affects different types of neutrino oscillation, depending

on the length L and energy E of oscillation. Solar neutrino oscillations are observed in

neutrinos either from the sun (L ∼ 108 km) or reactors (E ∼ 1 MeV), and therefore have

a larger L/E. These oscillations are mostly dominated by the U12 part of the matrix and

the mass splitting term ∆m2
12 ≈ 8×10−5eV2. So-called atmospheric neutrino oscillations

are instead dominated by the U23 part of the matrix, with ∆m2
32 ≈ 3× 10−3eV2. These

oscillations occur for neutrinos produced either in cosmic rays or accelerator beams, with

a relatively short baseline (L < 104 km) and large energy (∼ 1 GeV), for a smaller value

of L/E. The middle matrix, U13, is the least well-explored by experiment. It is also

extremely important, as it couples to a complex phase factor δ, which could potentially

introduce CP violation into neutrino oscillation.

2.3.4 Solar Neutrino Oscillations

As described in Section 2.1, the first evidence for neutrino oscillations came from the

study of solar neutrinos. Another solar neutrino experiment, SNO [34], was the first

experiment to confirm that neutrinos can change flavour. The first generation of so-

lar neutrino oscillation experiments (Homestake, Super-Kamiokande, GALLEX, SAGE)

were only able to detect neutrinos via the Charged Current interaction. These experi-

ments operated at low energies, in the range of <30 MeV, well below the energy threshold

needed to produce a muon or tau in a CC interaction. Oscillation was therefore observed

as a deficit in the expected νe CC interaction rate, rather than the appearance of a sec-

ond flavour. Neutral Current interactions have no such threshold problem. Unlike the

earlier solar experiments, SNO was able to observe these NC interactions in addition to

the CC mode. This allowed for a measurement of the overall neutrino flux, regardless
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of flavour.

SNO consisted of a 1 kiloton tank of heavy water (D2O instead of H2O) situated 2 km

underground in a salt mine in Sudbury, Ontario. SNO was a water Cerenkov detector,

and was capable of observing three main channels of neutrino interaction:

• Charged Current: νe+d(n, p) → p+p+e−. Because of energy threshold require-

ments, only νe undergoes this interaction. This interaction provides a measurement

of the νe flux: Rate(CC) ∝ φ(νe).

• Elastic Scattering: ν+ e− → ν+ e−. All three flavours of neutrino undergo this

interaction via Neutral Current interactions. However, νe can also interact this

way via a Charged Current interaction: Rate(ES) ∝ φ(νe) + 0.15(φ(νµ) + φ(ντ )).

• Neutral Current: ν + d(n, p) → n + p + ν. All three flavours undergo this

interaction, so the rate is proportional to the overall flux: Rate(NC) ∝ φ(νe) +

φ(νµ) + φ(ντ ).

When the rates of all three interaction types were measured, the total neutrino flux was

found to be consistent with the Solar Standard Model, with the flux of the remaining

two neutrinos accounting for the deficit observed in the νe flux. This is clear evidence

for neutrino flavour transitions.

Other experiments have confirmed the SNO result. The KamLAND [35] experi-

ment investigates neutrino oscillation at the solar oscillation scale by studying electron

antineutrinos from reactors throughout Japan. The νe have energies between approxi-

mately 1 and 10 GeV. The effective baseline L0 of the KamLAND experiment, i.e., the

flux-weighted average, is 180 km. The antineutrinos oscillate rapidly as they propagate,

and are detected when they interact in the KamLAND detector via inverse beta decay

in liquid scintillator. The antineutrino survival probability measured in KamLAND as

a function of L0/E is consistent with a specific hypothesis of neutrino oscillation.

Both solar neutrino experiments and KamLAND place limits on the solar oscillation

parameters θ12 and ∆m2
12. These limits are shown in Figure 2.5. When the results from

both solar neutrino experiments and KamLAND are combined, the following best fits

[15] for the solar oscillation parameters are found:

∆m2
12 = (7.59± 0.21)× 10−5eV2, sin2(2θ12) = 0.861+0.026

−0.022 (2.29)

The discussion of neutrino oscillation so far has assumed oscillation in a vacuum. A

full understanding of the solar results requires a consideration of the effects of matter

on neutrino oscillation - a phenomenon known as the Mikheyev-Smirnov-Wolfenstein

(MSW) effect [46] [47]. Electron neutrinos produced in the core of the Sun must first
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Figure 2.5: Allowed values for solar neutrino oscillation parameters (θ12 and
∆m2

12. Limits from KamLAND (colour) and solar neutrino experiments (black
and white) are shown [35].
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pass through the Sun’s dense outer layers, interacting weakly with matter along the way.

Due to these interactions, the energy E of the neutrino state becomes E + V , where

V is an interaction potential. Some of this potential will come from Neutral Current

interactions:

V NC
m =

∓1√
2
GFnn (2.30)

where GF is the Fermi Constant and nn is the density number of neutrons. All three

neutrino flavours undergo this scattering with the same strength. V NC
m therefore does

not affect the phase of the weak eigenstates, and there is no impact on oscillations. Some

of the potential also comes from Charged Current interactions with electrons:

V CC
m = ±

√
2GFne (2.31)

where ne is the density number of electrons. This interaction will only occur for νe, as

the energy threshold is too high for νµ and ντ . Because only one of the three weak states

is affected, V CC
m introduces a phase difference in the weak eigenstates, which will have

an effect on neutrino oscillations.

The impact of matter effects can be demonstrated using a two-neutrino case, where

only one weak state |να〉 is affected by potential Vα. In a vacuum, the Hamiltonian

operator H for a neutrino can be written as follows in terms of H0 (removing any terms

proportional to the identity matrix) and the PMNS mixing matrix U :

U =

 cos θ sin θ

− sin θ cos θ

 , H0 =
1

2E

m2
1 0

0 m2
2

 =

0 0

0
∆m2

21

2E

 (2.32)

H = UH0U
† (2.33)

The presence of potential Vα results in a modified Hamiltonian, H ′:

H ′ = H + V = UH0U
† +

Vα 0

0 0

 =
∆m2

21

2E

sin2 θ + 2E
∆m2

21
Vα − sin θ cos θ

− sin θ cos θ cos2 θ

 (2.34)

The new Hamiltonian H ′ can now be diagonalized, to form a matrix with a new “effec-

tive” mixing angle θm, with eigenvalues λ1 and λ2 (where any terms proportional to the
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identity matrix are again removed):

H ′ =
∆m2

21

2E
U(θm)

λ1 0

0 λ2

U †(θm) =
∆m2

21

2E
U(θm)

0 0

0 λ2 − λ1

U †(θm) (2.35)

This now resembles the vacuum oscillation expression. Solving for the eigenvalues above

yields both the effective mixing angle θm and the effective mass splitting term ∆m2
m:

sin 2θm =
sin 2θ√

sin2 2θ + (cos 2θ − 2E
∆m2

21
Vα)2

, (2.36)

∆m2
m = ∆m2

21

√
sin2 2θ +

(
cos 2θ − 2E

∆m2
21

Vα

)2

(2.37)

which can be inserted into a new two-neutrino oscillation equation:

Pm(να → νβ) = sin2(2θm) sin2

(
∆m2

m

4E
L

)
(2.38)

These equations have a few important features. First, the size of the new mixing angle is

now dependent on the sign of ∆m2
21. Second, as Vα → 0, θm → θ and ∆m2

m → ∆m2
21, and

the expression for vacuum oscillation is obtained. However, as Vα → ∞, sin 2θm → 0,

and there is no oscillation. Finally, for some values of potential Vα, sin 2θm → 1, and

oscillation will be maximal, regardless of the vacuum oscillation properties. These values

are known as MSW “resonances.”

The MSW effect has a large impact on the oscillation of neutrinos from the Sun.

The potential Vα = V CC
m (from Equation 2.31) is proportional to the solar electron num-

ber density ne, which varies with solar radius. The oscillation of neutrinos is initially

suppressed in the dense core of the Sun, where V CC
m is very high. Lower energy solar

neutrinos (< 2 MeV), in fact, will effectively not oscillate at all inside the Sun, instead

oscillating as they propagate through the vacuum between the Sun and Earth. Higher

energy neutrinos (> 5 MeV) will initially not oscillate, but as the value of ne drops with

solar radius, the conditions will briefly be met for resonance and maximal oscillation.

These neutrinos will consequentially undergo matter-enhanced νµ → νe oscillations be-

fore they leave the Sun. This transition between low energy vacuum oscillations and

higher energy MSW oscillations, and the resulting characteristic energy dependence of

oscillations, was the final detail needed to explain the experimental results seen in dif-
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ferent solar neutrino experiments.

2.3.5 Atmospheric Neutrino Oscillations

Cosmic rays interacting in the earth’s upper atmosphere produce large showers of par-

ticles. Atmospheric neutrinos are produced in several decay chains in these showers.

Pions decay to form muon neutrinos and muons. These muons subsequently decay and

produce electron neutrinos. Contributions to this neutrino flux at higher energies can

come from kaons as well. These atmospheric neutrinos are produced everywhere in the

earth’s atmosphere and can easily travel through the Earth, so that a detector positioned

on the Earth’s surface will receive neutrinos arriving from all directions. These neutrinos

will have traveled anywhere between 15 km and 13,000 km and are more energetic than

solar neutrinos, with an average energy on the order of 1 GeV. In models of atmospheric

neutrino production, there is a large (∼ 20%) uncertainty on the overall neutrino flux.

However, the uncertainty on the relative νµ and νe flux is small (<2%), with an expected

νµ to νe ratio of 2 to 1 [36].

In 1988, the Kamiokande experiment [37] attempted to make a measurement of the

relative fluxes of νµ and νe. The electron neutrino flux was found to match experimental

predictions. However, the muon neutrino flux was ∼60% lower than expected. This

deficit was soon observed by other experiments (IMB [38], MACRO [39], and Soudan-2

[40]) and became known as the “Atmospheric Neutrino Anomaly.” In 1998, the upgraded

Super-Kamiokande experiment confirmed that the deficit was caused by neutrino oscil-

lation [41]. Super-Kamiokande’s water Cerenkov detector allowed for the reconstruction

of the direction from which the incoming neutrino had entered. Interaction rates for

νµ and νe events could therefore be plotted as a function of zenith angle, as shown in

Figure 2.6. The νe flux agreed well with predictions, but the νµ flux deficit was found to

be heavily dependent on the zenith angle - essentially, on the distance that the neutrino

had traveled since its production. This observed νµ disappearance was consistent with

the oscillation of νµ → ντ .

The MINOS experiment, the focus of this thesis, has both confirmed these results

and tightened the limits on the U23 atmospheric mixing parameters. The MINOS ex-

periment uses an accelerator-produced neutrino beam to study neutrino oscillations at

the ∆m2
32 scale. In this case, L is fixed, at 735 km, with an average energy E of 3 GeV

(in a wideband spectrum). MINOS is designed to detect mainly νµ Charged Current

interactions. The experiment measures sin2(2θ23) and ∆m2
32 by looking for muon neu-

trino disappearance. The two-neutrino approximation for νµ survival can be written as
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Figure 2.6: Results for the Super-Kamiokande atmospheric neutrino oscillation
study [37]. Number of events observed (black data markers) versus number of
events predicted in the absence of oscillations (hatched region). The solid black
line gives the best fit (assuming νµ disappearance oscillations). The events are
plotted in groups of νe-like and νµ-like events, in different energy regimes, as a
function of zenith angle.

follows:

P (νµ → νµ) ≈ 1− sin2(2θ23) sin2

(
1.27∆m2

32L

E

)
(2.39)

Oscillation is measured by comparing the unoscillated νµ CC rate at a Near Detector (at

Fermilab) to the oscillated rate at a Far Detector (in a mine in Soudan, Minnesota). The

MINOS results [42], shown in Figure 2.7, are consistent with a hypothesis of νµ → ντ

oscillation. The results have also placed the tightest limits to date on ∆m2
32 and θ23. The

oscillation appears to be maximal, with sin2(2θ23) consistent with 1.0 (i.e., θ23 = 45◦):

∆m2
32 = (2.32+0.12

−0.08)× 10−3 eV2, sin2(2θ23) > 0.90 (90% CL). (2.40)

2.4 The experimental search for θ13

As described above, there is now ample evidence for the oscillation of neutrinos. Most

of the focus on the U12 and U23 matrices is now on making precision measurements of

the parameters involved. In the case of the U13 matrix, and θ13, much work remains
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Figure 2.7: The latest (2010) results from the MINOS experiment for νµ dis-
appearance oscillations[42]. The left hand plot shows the unoscillated prediction
versus data, with a best fit assuming νµ → ντ oscillations. The right hand plot
shows the resulting limits on the oscillation parameter values ∆m2

32 and θ23, with
constraints given from Super-Kamiokande as well.

to be done4. Recent results from the T2K [145] experiment (described in Appendix A)

have hinted at a non-zero value for this parameter. However, most measurements to

date have yielded only upper limits, and it is clear that θ13 will be small compared to

the other two angles, even if it is non-zero. However, even a small non-zero θ13 can

potentially introduce CP violation via the term δ in Equation 2.26. Measuring θ13 has

therefore become one of the most important goals in neutrino physics today.

2.4.1 Current Knowledge: Reactor Experiments

The best previous limits on the value of θ13 have come from the CHOOZ reactor experi-

ment [43] in France. CHOOZ attempted to measure θ13 by looking for the disappearance

of reactor electron antineutrinos. The two-neutrino approximation for νe oscillation

survival is written as follows:

P (νe → νe) ≈ 1− sin2(2θ13) sin2

(
1.27∆m2

32L

E

)
(2.41)

4The third mass difference term, ∆m2
31, is approximately equal to ∆m2

32
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The CHOOZ detector was located 1 km from a nuclear reactor which provided O(MeV)

electron antineutrinos. The detector volume itself was liquid scintillator, doped with

Gadolinium. The reactor νe interacted with the protons in the detector via inverse beta

decay: νe +p→ e+ +n. PMTs detected photons from positron annihilation, followed by

a delayed photon signal from neutron capture on the Gadolinium. CHOOZ found a νe

rate which was consistent with the unoscillated prediction. Nonetheless, the experiment

placed an upper limit5 [15] on the value of θ13.

sin2(2θ13) < 0.16 (90% CL) (2.42)

Until new MINOS and T2K results appeared in 2011, this was the best limit on θ13. It

will therefore often be quoted as such throughout this thesis.

In addition to electron antineutrino disappearance, θ13 can also be measured via a

second oscillation mode: νµ → νe. The approximate two-neutrino probability for this

oscillation is:

P (νµ → νe) ≈ sin2(2θ13) sin2(θ23) sin2

(
1.27∆m2

32L

E

)
(2.43)

MINOS, T2K, and other accelerator experiments can therefore attempt to measure θ13

by looking for the appearance of electron neutrinos after some distance of oscillation.

The search for this mode of oscillation in MINOS will be the focus of this thesis.

2.5 Summary

Neutrinos occupy a somewhat unusual place in the Standard Model. Chargeless, colour-

less, and only interacting via the weak force, they are also very difficult to observe. Until

recently, neutrinos were also presumed massless. Oscillation, in addition to explaining

observed deficits in solar and atmospheric neutrino flux, provides evidence that they do

indeed have mass. The as-yet-unmeasured mixing angle θ13, if it is non-zero, may also

provide an avenue for introducing CP violation into the lepton sector. This thesis will

describe an attempt to measure θ13, by searching for the oscillation of νµ → νe in the

MINOS experiment.

5Note: this value is after including the current MINOS best limit [42] on ∆m2
32, and recent reevalu-

ations of reactor flux [44] [45].



Chapter 3

The MINOS Experiment

The Main Injector Neutrino Oscillation Search (MINOS) experiment was built with the

goal of studying neutrino oscillations at the atmospheric ∆m2
32 scale. A source of mainly

muon neutrinos is provided by the NuMI (Neutrinos at the Main Injector) beamline at

Fermilab. Two MINOS detectors observe the neutrinos from this beamline. A first Near

Detector (ND), at Fermilab, measures neutrinos prior to oscillation. The Far Detector

(FD), located at an on-axis beamline distance of 735 km, then measures the neutrinos

after they have traveled and potentially oscillated. The detectors themselves are mag-

netized tracking calorimeters which have been optimized for the study of muon neutrino

Charged Current (CC) events. Using these two operationally equivalent detectors per-

mits a much more precise understanding of the behavior of the beamline, as systematic

effects such as flux mismodeling and cross-section uncertainties largely cancel out in any

physics analysis. A detailed description of the MINOS detectors and their construction

can be found in [52], and of the NuMI beamline in [53].

3.1 The NuMI beamline

3.1.1 Producing a Neutrino Beam

The NuMI beamline is part of the larger Fermilab Accelerator complex. A map of the

components of this beamline is shown in Figure 3.1. The beam begins when the Booster

sends protons to the Main Injector, where the protons are accelerated from 8 GeV to

120 GeV. The protons are accelerated in six batches per cycle: five or six are sent to

the NuMI Target Hall, with any remaining batches going to the Tevatron. During the

first year of running, the MI typically provided 2.1×1013 protons-on-target (POT) every

2.2−2.4 seconds. This intensity has since been improved to 2.5× 1013 POT.

27
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In the Target Hall, the protons from the Main Injector collide with a target to produce

a shower of hadrons, most of which are pions and kaons. The target itself is a 6.4 mm

× 15 mm× 940 mm rectangular rod made of graphite. It consists of 47 longitudinal

segments called fins and is protected upstream by a collimating baffle. The particles

produced in the target collision are focused by two sets of magnetic horns (Figure 3.2)

[54]. The two magnetic horns are separated by 10 m and each contain a parabolic

inner conductor, to which a pulsed current is provided in time with beam spills. This

current produces a magnetic field, which focuses or separates particles based on their

charge and momentum to form a parallel beamline. The greater the momentum of a

charged particle, the longer the focal length of the focusing. The toroidal field has been

measured to fall off in a manner consistent with 1/r to within 1%. The current in the

horn is known to within ±0.5%, with less than a 0.2% variation during data taking

[53]. NuMI is designed to focus pions, which produce neutrinos in the desired oscillation

energy range. Normally, the beam is run with the horn current in “forward” mode, to

focus π+ and K+ and produce a neutrino beam. The beam can also be run with the horn

current in a “reverse” mode to focus π− and K− and produce an antineutrino beam.

Only neutrino data is used in this thesis.

After the pions and kaons are focused, they pass into a 675 m long by 2 m wide

decay pipe, which is sealed with two aluminium windows. During the first two years of

running, the interior of the tube was a 0.5 Torr vacuum. Helium gas was later pumped

into the tube for safety reasons. The length of the tube was chosen to be of the order of

the decay length of a 10 GeV pion. As both the pions and kaons pass through this tube,

they decay to produce neutrinos and other secondary particles. The beam is mainly

composed of muon neutrinos from the decay π+ → µ+ + νµ. At the end of this decay

pipe, the remaining hadrons are screened out with an absorber of cooled aluminium,

followed by a layer of steel and concrete and then 250 m of rock. The beam is angled

downwards at −3◦ with respect to horizontal at the Near Detector. It then passes

through the Earth’s surface, and enters the Far Detector at an angle of +3◦.

The beam intensity and quality are monitored in several different locations. The

intensity of the initial proton beam is determined to within ±1% using a series of toroidal

beam current transformers, while the size and position of the beam are also determined

to be stable to within ±50 µm by a series of beam position monitors [55]. Downstream

from the decay pipe, three muon monitors in the rock measure the alignment of the NuMI

beamline. From these monitors, the angle of the beam is known to within 20 µrad. The

intensity of the neutrino beam is relatively stable, with charge per spill per protons on

target (POT) varying by ±2% in the first two years of running [53].
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Figure 3.1: Plan of the components of the NuMI beamline from a top view
(top) and from a side view (bottom). Image from [53].
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Figure 3.2: Schematic of the two NuMI magnetic focusing horns. The config-
uration is shown in standard mode, with the target and baffle upstream of the
two horns (which are separated by 10 m). The vertical scale here is shown to
four times that of the horizontal scale. Image from [53].
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3.1.2 Characterizing the NuMI Beamline

The components of the NuMI beamline were designed to produce a beam consisting

of nearly all muon neutrinos, in an energy range favorable for oscillations. NuMI is

a wideband beam, with a large neutrino flux and and a relatively broad spectrum of

energy. The energy range can be adjusted by altering both the position of the target

and the current in the magnetic focusing horns. The target is mounted on a 2.5 m long

rail-drive system. When the target is at its furthest position downstream (position =

250 cm), it is 65 cm inside the first horn. The maximum possible horn current is 200

kA, which produces a 3 T toroidal field. For most data-taking, the beam is run in Low

Energy mode (LE10/185kA). In this configuration, the target is placed 10 cm from its

default position inside the first focusing horn. The magnetic focusing current is run

at 185 kA. This produces a beam with a peak in intensity at 3.3 GeV (with an RMS

spread of 1.1 GeV). While the beam can be run in other modes, this configuration is

the main setting of NuMI, with an energy optimized for the detection of atmospheric-

scale muon neutrino oscillations. A plot of the shape and relative flux of several NuMI

configurations can be seen in Figure 3.3. The total protons on target (POT) exposure

of the beam to date (2005-2011) for the various modes is presented in Figure 3.4.

The branching ratios for π+ and K+ decay are very favorable for the production of

muon neutrinos, with the decay π+ → µ+ + νµ occurring 99.99% of the time [15]. The

vast majority of the neutrinos in the beam originate from pion decay. In the Low Energy

mode, 87% of muon neutrinos were produced by the decay of π+s, with the remaining

13% coming from K+s. There is also a small contamination of electron neutrino events

in the beamline. Because of the large fraction of pions produced in the target, most

of these electron neutrinos are produced through secondary muon decay, with a smaller

fraction fromK+ decay. The decay ofKLs also provides a tiny remaining fraction of both

the νµ and νe flux, as well as a small anti-neutrino component. Some negative particles

are still focused by the horn, leading to additional antineutrinos. For the standard Low

Energy mode, the beam contains 92.9% νµ, 5.8% νµ and 1.3% νe + νe.

The Far Detector data analyzed in this document were collected in a series of runs

between May 2005 and July 2010. The total exposure for standard neutrino beam

running during this time was 8.2×1020 POT. For analysis purposes, this data is often

split up into three discrete chunks: Run 1 (1.2×1020 POT), Run 2 (1.9×1020 POT), and

Run 3 (actually runs 3, 4, 5, and 6, for a total 5.0×1020 POT). These divisions were

made based on the beam conditions during each time period. For example, helium was

added to the decay pipe for Run 3 and later.
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Figure 3.3: Projected rate of Near Detector νµ Charged Current interac-
tion resulting from three separate NuMI configurations (from [53]): low en-
ergy (LE10/185kA), high energy (LE250/200kA), and medium energy mode
(LE100/200kA). These rates are calculated from Monte Carlo.
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Figure 3.4: Total exposure of the NuMI beamline from May 2005 to June
2011. The green area indicates beam run in standard LE010/185kA neutrino
mode. The orange indicates beam run in LE010/185kA reverse horn current
antineutrino mode. The red indicates alternate configurations, such as the high
energy (LE250/200kA) mode. The blue line shows the total integrated exposure.
Image from [56].

3.2 The MINOS Detectors

The Near and Far MINOS detectors are as similar as possible, to allow for an accu-

rate comparison of their observed neutrino spectra. Both detectors have been primarily

designed for measurements of muon neutrino Charged Current (νµ CC) events. A de-

scription of the two detectors, and their basic operation, follows.

3.2.1 Basic components: Steel, Scintillator System, and Mag-

netic Fields

Both MINOS Detectors consist of alternating planes of steel and solid scintillator. The

steel planes form the target mass (95% of total mass) of the experiment. Neutrinos from

the NuMI beamline interact with nuclei in these planes to produce secondary particle

tracks and showers. In both detectors, the steel planes are 2.54 cm thick. The steel itself

is low-carbon, low-radioactivity steel.

Between each steel plane there is a second layer constructed from strips of extruded

polystyrene scintillator. These scintillator planes actively detect the particles produced

by these neutrino interactions and allow for calorimetry and event reconstruction. These
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Figure 3.5: Schematic of a scintillator strip and wavelength shifting fibre in
the MINOS detector. The top part of the image shows the basic setup of the
individual strips, with the WLS fibre inserted into a groove on the top surface of
the scintillator strip, and sealed in with a reflective seal. The bottom image shows
how light is collected. Energy from an incident ionizing particle is absorbed and
re-emitted as light within the scintillator strip. This light is then repeatedly
reflected off the side of the strip and absorbed by the WLS, which then carries
it to the end of the strip, to the readout system. Image from [52].

strips are 4.1 cm wide, 1.0 cm thick, and have a maximum length of 8.0 m. The

scintillator strips themselves are covered in a reflective titanium dioxide layer which

both aids light yield and prevents damage.

A normally incident minimum ionizing particle (MIP) passing through the strip will

produce scintillator light. This is collected using wavelength shifting (WLS) fibres, which

are polystyrene doped with Y11, with an outer cladding of acrylic and polyfluor. These

fibres absorb light at a peak of 420 nm and then re-emit it at 470 nm, to prevent self-

absorption. Each scintillator strip contains a single WLS fibre, which sits on the wide

surface at the top of each strip. A cutaway drawing of the WLS/scintillator system is

shown in Figure 3.5.

In both detectors, the strips and WLS fibres are grouped into independent modules,

consisting of a layer of parallel scintillator strips which are glued together and held

in place between two layers of aluminium. This aluminium provides both structural

support and light shielding. At the end of each module, the WLS are bundled together

into a bulk optical cable and connected to clear plastic cables, which transport the light
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Figure 3.6: Diagram showing the readout system by which a light signal in the
MINOS detector is recorded. The original signal is picked up in the scintillator
strips in the plane shown on the far right. This light is then carried by the
wavelength shifting fibres out of the module to a clear plastic cable. The clear
plastic cable carries the signal to the PMT enclosure and the surface of the PMT
itself. Image from [52].

to photomultiplier tubes (PMTs). In each detector, the PMTs are housed in light-tight

boxes which shield them from light, magnetic fields, and electronics noise. The Near

Detector employs 64-anode (M64) Hamamamtsu PMTs, with a single PMT in each

enclosure. The Far Detector employs 16 anode (M16) Hamamamtsu PMTs, with three

to an enclosure. The PMT signal is digitized, and the hits are recorded by the data

acquisition system in units of ADCs. A schematic of the full scintillator and readout

system can be seen in Figure 3.6.

From these readouts, one can construct a full three dimensional picture of an event

in MINOS. The plane number gives information about the event in the longitudinal z

direction, parallel to the beamline. The readout of the individual scintillator strips gives

information about the event in the transverse direction. All the strips in a single plane

are oriented in the same direction. The strip orientations in alternating planes, however,

are orthogonal to one another, at +45◦ (the u direction) and −45◦ (the v direction).

This provides a stereoscopic picture of the event as it travels through the detector and

allows for a full three-dimensional reconstruction. The u and v coordinates can then be
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translated back into x (horizontal) and y (vertical) coordinates.

Both MINOS detectors are magnetized. A toroidal magnetic field is produced by the

current in a magnetic coil threaded through a “coil hole” in the center of each detector

module. The magnetic field curves the path of muon tracks from νµ CC interactions,

both better containing the tracks inside the detector, and allowing for the determination

of muon momentum and charge sign from track curvature. The strength of the magnetic

fields is similar between the two detectors, with an average field of 1.28 T in the Near

Detector, and 1.42 T in the Far Detector.

3.2.2 The Near Detector

Interactions in the Near Detector are used to characterize the neutrino flux before oscil-

lation has occurred. The Near Detector sits 1040 m from the NuMI target, in a cavern

on the Fermilab site at a depth of 100 m, with 225 meters water equivalent (mwe) of

rock on top. A schematic of the Near Detector can be seen in Figure 3.7. Due to its

proximity to the start of the beamline, there is a high rate of neutrino interaction in

the Near Detector. During each 10 µs beam spill, an average of 16 neutrino interactions

typically occur in the detector. Data acquisition is triggered in both a “spill-gate mode”

and a “dynode mode.” The spill-gate mode is used for standard data taking. The beam

timing triggers a 13 µs window during which hits are continuously digitized, beginning

1.5 µs before the delivery of the beam spill. The dynode mode triggers digitization on a

PMT activation threshold, and is used for taking out-of-spill cosmic ray data. Because

of the high event rate at the Near Detector, this trigger is designed to operate without

dead time.

Due to this high neutrino flux, the Near Detector requires a smaller fiducial volume

than the Far Detector. The Near Detector contains 282 planes and has a total mass of 980

metric tonnes. The steel planes have a 6.2 m wide by 3.8 m high “squashed octagon”

shape. The magnetic coil is offset from the center of the plane to create a 2 meter

diameter fiducial area through which the beam passes. The Near Detector is separated

into both a Calorimeter and a Spectrometer region. The first 120 upstream planes of the

Near Detector comprise the Calorimeter region, designed to make precise measurements

of neutrino interaction topology and energy. Planes in this region are all active (i.e., are

all read out by PMTs). This region contains two types of plane: partially instrumented

planes, which only span the fiducial region, and fully instrumented planes which also span

the coil hole. Plans of these two plane types are shown in Figure 3.8. The Calorimeter

planes are arranged in a 10-plane pattern, with each fully instrumented plane followed by
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Figure 3.7: Schematic of the Near Detector setup. A shows the (front) steel
plane of the Near Detector. B shows the magnetic coil, leading into the detector.
C shows an electronics rack on an elevated walkway. Images from [52].

four partially instrumented planes. During each beam spill, approximately half of the ND

neutrino events will occur in the Calorimeter region and will therefore be reconstructed.

The remaining Near Detector planes 121-282 comprise the Spectrometer region, which

is responsible for tracking downstream muons. In this section, only every fifth plane

is instrumented, with alternating u and v fully-instrumented views, and no partially

instrumented planes in between.

The Near Detector scintillator system modules differ from the Far in that only one

side of the scintillator strip is read out. This results in a lower overall light level in the

detector (i.e., a smaller amount of light is detected from the same deposited charge).

Strips in the upstream Calorimeter region are all read out individually. Strips in the

downstream Spectrometer region are read out with anode pads linked in parallel in

groups of four, to reduce the number of readout electronics (the four strips are chosen to

be approximately a meter apart, to allow for easy discrimination). The PMTs are each

operated at a voltage of approximately 800 V to reach a required minimum average gain

of 0.8× 106.

3.2.3 The Far Detector

The MINOS Far Detector measures the rate of neutrino interaction after the neutrinos

have propagated and hopefully oscillated. A location was chosen 753.3 km northwest of

the NuMI target, in an iron mine in Soudan, Minnesota. The detector is located in a



The MINOS Experiment 37

Figure 3.8: Configuration of the Near Detector scintillator strip modules. The
views on the left are oriented in the u direction, and the views on the right in the
v direction. The top two images show two “partially instrumented” planes. The
bottom two images show two “fully instrumented” planes. The beam is aimed
in the center of the region to the left of the coil hole, which has full coverage by
scintillator modules. Image from [52].

cavern 705 m underground (with a rock overburden of 2070 mwe). A schematic of the

detector is shown in Figure 3.9. The Far Detector is significantly larger than the Near

Detector, with a total mass of 5400 metric tonnes. The planes are octagonal, with a

diameter of 8 meters. The detector was constructed in two separate “supermodules,”

separated by a 1.15 m gap. The first supermodule is 14.78 m long with 249 planes, and

the second supermodule is 14.10 m long with 237 planes. Each of the supermodules

has a separate magnet coil, which is threaded directly through the center of the plane.

Unlike the Near Detector, the Far Detector scintillator strips fully cover the surface of

each plane, with 192 scintillator strips to a plane. The layout of the modules is shown

in Figure 3.10. As in the Near Detector, the strip orientation is rotated 90◦ from plane

to plane.

The underground location of the Far Detector was chosen to block most surface

radiation, including the cosmic ray muons which still dominate detector activity at an

interaction rate of 0.8 Hz. Due to the Far Detector’s distance from the target, the rate

of beam neutrino interactions/kg is a factor of 106 smaller than in the Near Detector

(several neutrino interactions per day, rather than several per spill).

The Far Detector strips are read out from both ends. The signal is routed from the

end of the module to 484 light-tight boxes which each contain three PMTs. Eight clear



38 The MINOS Experiment

Figure 3.9: Schematic of the Far Detector setup. A shows the (front) steel
plane of the Far Detector. B shows the muon veto shield. C shows the mag-
netic coil, leading into the detector. D shows an electronics rack on an elevated
walkway. Images from [52].

fibres are attached to a single PMT pixel, where the signal is optically summed. The

placement of these fibres is such that the readout strips are separated by at least 1 m.

A “demultiplexing” algorithm [57] is used to reconstruct the original pattern of strip

hits in the detector. This pattern helps to reduce the effects of PMT crosstalk in the

reconstruction.

The recording of FD Data is triggered by both spill time and PMT activation. A

GPS timestamp is sent from the Near Detector the Far Detector to indicate that a beam

spill has occurred. Data are then recorded from a several second buffer in a 100 µs

window. In order to reduce electronics dead time, hits are only digitized if two or more

PMTs in the same vicinity reach the 0.25 PE digitization threshold at the same time.

3.2.4 Calibration Detector

A Calibration detector [60] (often referred to as the CalDet) was also built for MINOS.

This detector was exposed to a test beam of muons, hadrons, electrons, at the CERN

PS facility. The calibration detector was smaller than both the Near and Far Detectors,

with a total of 60 1 m × 1 m planes of steel and scintillator, and no magnetic field. The

detector read out events using electronics from both the Near and Far detectors. The

data from this detector are used to determine the absolute calibration of the MINOS
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Figure 3.10: Diagram of the configuration of the separate Far Detector scin-
tillator strip modules. The left image is oriented in the “U” direction, and the
right image in the “V” direction. WLS fibres are read out by the PMT MUX
box at the end of each module. Image from [52].

detector response.

3.3 Reconstruction

To identify neutrino interactions in MINOS, one must first glean basic information about

event topology and energy. This is the purpose of the MINOS event reconstruction

algorithm. Prior to reconstruction, event information is stored as digitized strip hits

(ADCs) measured in individual electronics channels. These data include information

about strip location, pulse height, and hit timing.

The cluster of data found in a beam spill is known as a snarl. In the Far Detector,

where the neutrino flux is much lower, a snarl contains one or zero neutrino events.

In the Near Detector, a single snarl will contain multiple events. The first task of the

reconstruction is to break down a snarl into different candidate events, called slices.

This is done by grouping the snarl hits both by physical location and by the timing

of their energy deposition. Once the hits have been grouped into potential events,

the reconstruction attempts to find particle tracks and showers in each interaction. νµ

Charged Current interactions are characterized by a long particle track, produced by

a muon. At the neutrino interaction vertex, the νµ CC event will usually also have a

cluster of hits from a hadronic shower. Neutral Current and νe CC interactions typically

produce only showers, although these events can sometimes contain smaller particle
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Figure 3.11: Side-view of two types of event in the MINOS Detector: νµ

charged current (left) and Neutral Current (right). Darker pixels indicate a
larger pulse height in a hit. The x axis is parallel to the beam line, and the y
axis is transverse position. Image from [53].

tracks. Figure 3.11 shows examples of these event topologies.

A pattern recognition algorithm is applied to identify hits which make up the seg-

ments of a track. These segments are then chained together into larger track, which is

fitted using a Kalman Filter algorithm. The momentum of the resulting track is deter-

mined in two separate ways. For muons which stop in the detector, track range is used

to determine the momentum. If the muon track exits the detector, the curvature of the

muon in the detector’s magnetic field is used to determine the momentum. The range

method has a 5% resolution for momentum, and the curvature method a 10% resolution

[53]. The neutrino interaction vertex is identified from the earliest plane of the track.

After any tracks have been identified, the remaining hits are sorted into showers,

based on their relative positions in space and time. The shower energy is determined

based on the summed pulse-height of the hits (determined from the calibration, which

will be described in the next section). Some strip hits will contain both a shower and

a track. In this case, the estimated pulse height of the track is subtracted. In the

longitudinal direction, the shower vertex is identified as the first plane in the series of

contiguous planes in an event. In the transverse direction, the shower vertex is calculated

from the energy-weighted mean position of the event strips.

3.4 Calibration

Searching for νe appearance requires a precise understanding of shower energy in MI-

NOS. The calibration determines this shower energy by first calculating the detector
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Figure 3.12: Flow chart of the two separate branches of the detector calibra-
tion, with (left to right) the rationale, the variable, and the method. The energy
deposition branch is shown on the left, and the photoelectron production branch
on the right. Image from [61].

response and then performing a relative and absolute calibration to reconstruct the

original deposited energy. For the detector response, two separate chains of calibration

are employed in MINOS: an “Energy” chain which converts the raw digitized signal (in

ADCs) into real deposited energy, and a “Photoelectron” chain which turns the signal

into photoelectron units. The individual steps in each calibration chain are shown in

Figure 3.12, along with the associated MINOS variables.

The Energy Chain is the primary chain used for the calibration of MINOS. This chain

starts with a raw ADC pulse height which can be described as a quantityQraw(i, t, x, s, d),

dependent on readout channel i, interaction time t, strip s, interaction position x, and

detector d (ND or FD). The goal of the calibration is to turn Qraw(i, t, x, d) into Qcorr,

the actual energy deposited in the detector, via several stages of corrections:

Qcorr = Qraw(i, t, x, s, d)×D(d, t)× L(d, s,Qraw)× S(d, s, t)× A(d, s, x)×M(d)

(3.1)

The first three steps, the drift correction D(d, t), linearity correction L(d, s,Qraw), and

strip-to-strip correction S(d, s, t) are carried out prior to event reconstruction. The

attenuation correction A(d, s, x) is carried out following the reconstruction. Finally,

cosmic ray muons which stop in the detector are used to set the inter-detector relative

energy scale, and data from the Calibration Detector are used to normalize the detector
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response. This relative and absolute calibration are step M(d).

Several sets of tools are employed in the calibration in Equation 3.1. First, all three

detectors - Near, Far, and Calibration - contain a Light Injection (LI) system [63] [64]

to assess the response of the detector readout. This system consists of a series of pulser

boxes, each containing 20 or 40 UV LEDs which send a light signal to the WLS at the

edge of the detector. This light imitates a signal produced in the scintillator, but has

a known intensity which is monitored by PIN photodiodes. This system can be both

used to monitor the response of the detector channels over time and to characterize the

linearity of the response.

Second, through-going cosmic ray muons provide a good way of monitoring the re-

sponse of the scintillator system. These muons are taken from out-of-spill cosmic rays.

In the Near Detector, these muons have a typical average energy of 55 GeV with a rate

of approximately 10 Hz. In the Far Detector, they have a mean energy of 200 GeV with

a rate of approximately 0.8 Hz. A small portion of cosmic ray muons also stop in the

Near and Far Detectors. This “stopping muon” sample will be used to calibrate the

inter-detector energy scale.

Third, data from a Module Mapper are also used throughout the calibration. During

the construction of the detectors, a 5 mCi 137Cs γ-ray source enclosed in a lead pig

was precision-guided along the length of each scintillator module to create a standard

ionizing signal. This ionizing signal was then measured with optical fiber cables and

used to map the scintillator response throughout the module.

3.4.1 Drift Correction

The first stage in energy calibration is the drift correction D(d, t), which accounts for

changes in detector response over time. This correction can be made using either the

Light Injection system or through-going cosmic rays. The LI system accomplishes this

by pulsing approximately 300 (for the Far Detector) or 1000 (for the Near Detector)

times per hour, for an average pulse of about 50 PE per PMT pixel. From this response,

one can determine the average ADC count per photoelectron in each channel (the gain).

This gain data is monitored over time and is used throughout the reconstruction. Envi-

ronmental conditions in the MINOS caverns are relatively stable, causing the detectors’

response to vary by less than 4% over the course of a given year [52].

While this LI technique measures the response of the readout electronics and PMTs,

it does not monitor the response of the scintillator and wavelength shifting fibres. To

account for this, cosmic ray muons are used to make the drift correction instead. The
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overall flux of these muons, and the median energy deposited in the detector, should

remain constant with time. The distribution of energy per plane is plotted daily, and

the median of the distribution is recorded. The drift of this median with respect to a

standard time t0 is used to make the drift correction:

D(d, t) =
Median Response(d, t0)

Median Response(d, t)
(3.2)

Because of the aging of the scintillator and other MINOS detector elements, the response

of the detector has slowly dropped over time. This drift is typically no more than 2%

per year [52].

3.4.2 Linearity Correction

The Light Injection system can also be used to characterize the linearity of the readout

response. Both the PMTs and the Far Detector electronics exhibit nonlinearity on

the order of 5-10% when the light signal is over 100 photoelectrons [65] [66]. PMT

nonlinearity is measured and then corrected for by determining readout response versus

true illumination. The LI system LED box pulses 1000 times over a broad range of light

levels. This LED light signal is monitored by a pair of PIN diodes, one with a high

gain, and one with a low gain. The resulting PMT response is then parametrized as a

function of light level. The calibration applies this linearity correction to determine the

true illumination produced by the signal.

3.4.3 Strip-to-Strip Correction

There are numerous effects which cause variations in the detector response on a strip-

to-strip basis. These variations can be caused by differences in PMT response, WLS

fibre efficiency, attenuation in the clear plastic cables, etc. These disparate effects are

grouped under a single correction for variations between individual strips. The correction

is calculated with through-going cosmic rays, which are selected to be normally incident

through the center of the strip. The deposited energy must also be corrected for the

photoelectron production threshold and for hits which clip a strip corner. The mean

response of an individual strip with respect to the detector average is then used as a

correction for that strip:

D(d, t) =
Mean Detector Response(d, t)

Mean Strip Response(s, d, t)
(3.3)
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The Near Detector strips have been found to have variations from the mean on the

order of 29%, with the calibration stable to 2.1%, while the Far Detector strips vary on

the order of 30% and are stable to within 4.8% [52].

3.4.4 Attenuation Correction

Following reconstruction, a correction must next be made based on the original location

of the signal along the scintillator strip, to account for the attenuation of light as it

travels along the WLS fibre. This is done using scintillator response data from the

Module Mapper. The mapper response was fit using the following equation:

A(x) = A1e
−x/L1 + A2e

−x/L2 (3.4)

where x is the distance along the strip, L1 and L2 are two attenuation constants, and

A1 and A2 are two normalizing constants. A(x) is then used to correct for attenuation.

This method has been cross-checked using cosmic ray muons, and the two methods have

been found to be consistent.

3.4.5 Relative and Absolute Calibration

Following attenuation corrections, the calibration is nearly complete. Two final steps

must now be accomplished: the calibration of the relative energy scale of the two detec-

tors, and the calibration of the absolute energy scale. These two steps comprise stage

M(d) in Equation 3.1.

While Sections 3.4.1 to 3.4.4 make the response of the detector uniform in terms of

interaction time and location, the relative response of the two detectors must still be

determined. The two detectors are designed to be functionally equivalent, but there

are still several features, such as fiducial volume size, readout design, electronics, etc.,

which cause differences in response. This calibration of the inter-detector energy scale is

carried out using stopping muons, which comprise 0.3% of the cosmic ray events in the

Far Detector. The Bethe-Bloch relationship in Figure 3.13 can be used to find the total

ionizing energy deposited in the MINOS detector, or stopping power, as a function of

muon momentum. Muon momentum is determined in MINOS from track range, with

curvature in the magnetic field as a cross-check. Only the portion of the track in the

0.5 to 1.1 GeV range is used, as dE/dx varies relatively slowly in this region [67]. The

energy deposition is then used to set the inter-detector energy scale, in units of MIPS

(also known as MEUs, or Muon Energy Units). The error on this relative energy scale
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Figure 3.13: Muon stopping power, used for the relative calibration of the
MINOS detectors. The Bethe-Bloch prediction is shown in gray. The triangles
indicate MINOS GEANT3 Monte Carlo, and the circles indicate Far Detector
data (these plots have been normalized to the Bethe-Bloch curve). Image from
[52].

is approximately 2% [52].

Finally, this relative energy (in MEU) must be turned into an absolute energy (in

GeV). This is done using data from the Calibration detector. As described earlier, the

Calibration detector was exposed to a CERN beam of electrons, muons, and hadrons

at several steps of fixed momentum from 200 MeV up to 10 GeV. Topology, time of

flight, and measurements from fixed Cerenkov detectors were used to distinguish between

particle types. The data were then plotted as a function of calorimeter response. The

response was found to be well-described by the GEANT/GCALOR[72] simulation used

in the Near and Far Detectors. The data are used to set the normalization of the

detector response in GeV, as shown in Figure 3.14. Stopping muons were used to verify

the accuracy of this approach to within 3%. For electrons, there was found to be a

better than 2% agreement between the Monte Carlo and calorimeter data [68], while the

simulations of hadronic showers caused by pions and protons agreed with data to within

6% [69]. The energy resolution was found to be 21.4%/
√
E ⊕ 4% for electromagnetic

showers, and 56%/
√
E ⊕ 2% for hadronic showers (where E is energy in GeV) [52].
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Figure 3.14: Response of the MINOS Calibration Detector to pions and elec-
trons at three fixed momenta from a CERN test beam. These data are compared
to the relevant MINOS Monte Carlo simulation. Image from [52].
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3.4.6 Photoelectron Branch

The second calibration chain in Figure 3.12, the photoelectron branch, does not play an

immediate role in the energy calibration of MINOS. Instead, gain information from the

LI system is used, along with photoelectron statistics, to turn ADCs directly into units of

photoelectrons in individual strips. These gains are calculated as follows. As described

in Section 3.4.1, an average of n = 50 PEs are provided per LI pulse to measure the

readout response. If the resulting ADC response distribution in a channel has mean µ

and RMS width σ, then one can calculate the gain G as follows [50]:

G =
µ

n
=

µ

(µ2/σ2)
=
σ2

µ
(3.5)

Test stand measurements [62] indicate that the PMTs do not have a perfect 1 PE reso-

lution, but instead a fractional width w. This width can be used to apply a correction

to the gain measurement, as follows:

G =
σ2

µ
(1 + w2) (3.6)

The PE counts calculated from these gains are used in the reconstruction, in physics

analyses, and in any other task requiring the use of raw photoelectrons [61].

3.5 Monte Carlo Generation

Understanding the behavior of MINOS also requires the use of simulated Monte Carlo

data. The MINOS Monte Carlo is produced in three steps: the simulation of the NuMI

beamline, the simulation of neutrino interactions, and the simulation of the detector

response.

3.5.1 Simulation of the Beam Flux

In order to model the NuMI beamline, it is necessary to simulate the following: hadron

production at the target, the propagation of those hadrons through the horn and decay

pipe, and the propagation of the neutrinos to the Near and Far Detectors. The collision of

120 GeV protons on the hadron target is modeled by FLUKA05[70]. These hadrons then

travel forward into the magnetic focusing horn fields. A combination of GEANT3 [71]

and FLUKA, referred to as GNuMI, simulates the decay chains and hadronic interactions

which produce the neutrinos in the beamline. The magnetic focusing horns are assumed
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Figure 3.15: Diagram showing the different angular acceptances for neutrino
production in the Near and Far Detectors. While the Near Detector accepts
a large solid decay angle, the Far Detector only accepts very forward going
neutrinos, with a small angle and a position further down the decay pipe. Image
from [53].

to have a uniform current inside their conductors, producing a 1/r toroidal magnetic

field.

The final stage of beam simulation is the propagation of the beam neutrinos to both

the Near and the Far Detector. This stage assigns both an energy and a trajectory to

each of the neutrinos. The energy is derived from decay kinematics [53]. For a two body

decay π/K → µ+ ν, the neutrino energy is given by:

Eν =
(1− mµ

M2 )E

1 + γ2 tan2 θν

(3.7)

where M is parent hadron mass, E is parent hadron energy, mµ is muon mass, θν is

decay angle in the lab frame, and γ = E/M is the Lorentz boost. The probability of a

meson decay occurring at a given solid angle is given by the following expression:

dP

dΩ
≈ 1

4π

4γ2(1 + tan2 θν)
3/2

(1 + γ2 tan2 θν)2
(3.8)

As is illustrated in Figure 3.15, the kinematics of neutrino production in the NuMI

beamline result in the Near and Far Detectors each accepting different angles of hadronic

decay, and therefore different neutrino energy spectra. The Near Detector can accept

a much wider solid angle of decay, including higher energy pions which decay further

down the pipe. The Far detector only accepts very forward-going neutrinos with a small

angle of decay, resulting in a different solid angle acceptance and spectrum of neutrino

energy. The beam flux drops with distance as a function of 1/R2, resulting in an overall

neutrino flux 106 smaller in the Far Detector. The resulting ratio of the unoscillated Far

Detector neutrino spectrum to the Near Detector spectrum can be seen in Figure 3.16.

There are several sources of uncertainty in the simulation of the beam flux. The
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Figure 3.16: Monte Carlo ratio of the predicted unoscillated νµ spectrum in the
Far Detector to the spectrum in the Near Detector. Boxes indicate uncertainties.
Both the 2005 FLUKA Monte Carlo and the SKZP-tuned version are shown.
Image from [53].
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biggest uncertainties come from the production of hadrons at the target. Other uncer-

tainties arise from physics interactions in the beamline, and from the magnetic horn

focusing (due to current, alignment, etc.). To correct for these uncertainties, the Near

Detector νµ CC data is used to “tune” the Monte Carlo. The horn and target ar-

rangement determine the Near Detector acceptance as a function of pion longitudinal

and transverse momentum (pz, pT ). A parametrization of d2N/dpzdpT is fit to the data

for several beam configurations, and the results of the fit are then used to tune the

Monte Carlo. This so-called SKZP tuning [73] is applied to both detectors. Figure 3.16

compares the Far/Near ratio of the standard MC to that of the SKZP-tuned MC as a

function of energy.

3.5.2 Simulation of Neutrino cross sections and Hadronic Final

States

Neutrino interactions in MINOS are simulated using NEUGEN (Neutrino Event Gener-

ator) - v3 [74]. NEUGEN is responsible for modeling the cross sections for each interac-

tion type. It also simulates hadronization for those events containing showers. Finally,

it models the intranuclear rescattering of hadrons as they exit the iron nuclei.

The cross sections of the various types of Neutral and Charged Current interactions

are all calculated differently. The cross section for quasi-elastic (QE) scattering events,

which dominate neutrinos with low energies < 1 GeV, is simulated using weak form

factors: a dipole axial form factor, and a pseudoscalar weak form factor (which is negli-

gible except for ντ scattering). In the case of resonance interactions (RES), a production

model based on the Rein and Seghal model [75] is used, which ignores lepton mass. The

resonance decay is assumed to occur isotropically in the reference frame of the hadron.

The cross section model for deep inelastic scattering (DIS) events is based on parton

model structure functions, taken from PDFLIB [76]. Finally, coherent pion production

(COH) is again calculated using the Rein-Seghal model [77].

The NEUGEN event generator chooses the interaction type based on these relative

cross sections. The hadronic final state is then modeled, using the AGKY model [105].

AGKY, developed in large part by members of MINOS, represents an attempt to improve

on previous simulations of hadronization for neutrino interactions. For events with high

invariant mass (W > 3.0 GeV), PYTHIA/JETSET[79] is used for shower modeling. For

events with low invariant mass (W < 2.3 GeV), a phenomenological model based on

KNO scaling [80] is used, which has been tuned to external bubble chamber data. The

data are taken from hydrogen, deuterium, freon, and neon targets, from the BEBC[106]
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[107] [108] [109], SKAT [110], and the Fermilab 15’ [111] bubble chamber experiments.

The intermediate region 2.3 GeV < W < 3.0 GeV uses both models and gradually scales

between the full use of KNO (at W=2.3 GeV) and the full use of JETSET/PYTHIA

(at W=3.0 GeV). AGKY is responsible for all aspects of hadronization, including final

shower particle multiplicity and transverse momentum selection.

The final step of the NEUGEN simulation is to simulate the scattering of the hadronic

shower particles as they leave the nucleus. This is handled by the INTRANUKE simu-

lation [78], which is also tuned using bubble chamber data (exiting data from neutrino

interactions in neon at BEBC[112] and measurements of pion interactions in deuterium

at the ANL 12’ bubble chamber) and takes into account effects such as the absorption

and exchange of charge and the scattering of pions.

3.5.3 Simulation of the Detectors

Once NEUGEN and INTRANUKE have produced neutrino interactions and their final

hadronic states, these events must be turned into simulated data in the MINOS detec-

tor. This is done in several stages. First, a GEANT3 simulation models the resulting

particle transport, and the energy deposition in the scintillator strips. This simulation

contains a detailed model of the MINOS detectors and the surrounding cavern rock.

A package known as PhotonTransport [81] simulates scintillation, and propagates this

signal through the detector to the PMT photocathode. This process makes use of the

calibration constants derived from the correction process in Figure 3.12. The DetSim

package then simulates the detector readout and digitization to produce an output PE

signal. The final output of DetSim is a Monte Carlo event which resembles the raw

MINOS data. The event signal is stored in units of ADCs, which can be calibrated and

reconstructed in the same manner as the data events.

One important element in the simulation is the modeling of cross-talk, i.e. the leaking

of charge between two separate pixels on a photomultiplier tube. This can happen in

two separate ways. Charge cross-talk results either when electrons leak from one dynode

chain to another, or when charge is induced by coupled anodes. Optical cross-talk occurs

during the initial photoelectron production, when photons at the end of a readout fibre

reflect or refract to a second pixel, or when photoelectrons produced near the edge of a

pixel accidentally leak into another dynode chain. Cross-talk is simulated in both the

Near and Far Detectors as part of the official Monte Carlo. Both sets of PMTs exhibit

up to a 4% level of cross-talk for any signal [52]. This is simulated using the separate

readout maps of the two detectors, the earlier gains measured by the LI system, and
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photoelectron statistics. As will be discussed later, this part of the simulation is known to

be poorly modeled. Because cross-talk hits will normally be incorporated into showers,

rather than tracks, this effect will need to be corrected for in any search for νe CC events.

The general MINOS reconstruction corrects for this mismodeling by disregarding any

strip hits which have less than a 2 PE pulse height.



Chapter 4

The νe Appearance Analysis

MINOS searches for two major modes of oscillation. The first of these is the disappear-

ance of muon neutrinos. The survival probability for νµ is as follows:

P (νµ → νµ) ≈ 1− sin2(2θ23) sin2

(
1.27∆m2

32L

E

)
(4.1)

This mode allows for a measurement of ∆m2
32 and θ23. The disappearance of νµ is

interpreted as νµ → ντ oscillation, although the oscillation energy is typically not high

enough to produce ντ CC events.

MINOS can also look for a second oscillation mode, νµ → νe:

P (νµ → νe) ≈ sin2(2θ13) sin2(θ23) sin2

(
1.27∆m2

23L

E

)
(4.2)

This oscillation will occur very infrequently if the value of θ13 is zero1. This chapter will

describe the challenges of a νe appearance analysis. It will also introduce the basic tools

required for the work in this thesis. These tools were developed during the two previous

MINOS analyses in 2009 [85] and in 2010 [86].

4.1 MINOS and the Search for θ13

A number of upcoming accelerator and reactor neutrino experiments have been designed

with the primary purpose of making a measurement of θ13. As a running experiment,

MINOS has the ability to make the first measurement, or at least constrain the current

best limits. Figure 4.1 shows spectrum-averaged oscillation probability for νµ → νe as

1In the full oscillation equations, there is some small amount of νµ → νe oscillation due to ∆m2
21-scale

solar neutrino oscillations

53
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a function of distance, with the MINOS Far Detector indicated. The actual predicted

oscillation in MINOS is much more complicated than the two-neutrino approximation

in Equation 4.2. Much of this complexity comes from the inclusion of matter effects

on neutrino oscillation, as the NuMI beamline passes through the Earth. When the

full-three neutrino case is considered, and these matter effects are taken into account,

the oscillation probability is approximately2:

P (νµ → νe) ≈ sin2(2θ13) sin2 θ23
sin2(A− 1)∆

(A− 1)2

+2α sin θ13 cos δ sin 2θ12 sin 2θ23
sinA∆

A

sin(A− 1)∆

A− 1
cos ∆

−2α sin θ13 sin δ sin 2θ12 sin 2θ23
sinA∆

A

sin(A− 1)∆

A− 1
sin ∆ (4.3)

where the following substitutions have been made:

∆ =
∆m2

32L

4E
, A =

GFneL√
2∆

, α =
∆m2

21

∆m2
32

(4.4)

The oscillation probability now depends not only on θ13, but on the CP violation

phase3 δ and the sign of the mass splitting term ∆m2
32 as well. Figure 4.3 shows νµ → νe

oscillation probability as a function of neutrino energy, for a single non-zero θ13 and for

various choices of these parameters. The choice of sign for ∆m2
32 determines the so-called

Mass Hierarchy - the ordering of the neutrino mass states. This hierarchy can be either

Normal or Inverted (see Figure 4.2). Matter effects will cause oscillations in the Inverted

Hierarchy case to be suppressed. MINOS will therefore not make a direct measurement

of θ13, but a measurement which is also dependent on δ and mass hierarchy choice.

Prior to summer 2011, there were some hints of a non-zero θ13. As described earlier,

CHOOZ set an upper limit of sin2 2θ13 < 0.16 at 90% C.L[43][42][45]. Further constraints

on θ13 also come from solar and KamLAND data, as well as other long-baseline and

reactor experiments. A 2009 global fit [87] combined these results together and found

θ13 > 0 at a level of approximately 2σ, with a best fit of sin2 2θ13 = 0.08. A 2010

MINOS νµ → νe search also placed new limits on θ13 [86]. This search predicted 49.1±9.7

events and saw 54 events, for a non-significant 0.7 σ excess. This resulted in limits of

sin2 2θ13 < 0.12 for the Normal Hierachy, and sin2 2θ13 < 0.20 for the Inverted Hierarchy,

both assuming δ = 0. New results by T2K and MINOS were also announced towards

2The full derivation and oscillation equation with higher order terms can be found elsewhere [48] [49]
[50].

3δ is referred to as δCP throughout this document.
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MINOS Far Detector

Spectrum-averaged appearance probability

Figure 4.1: νµ → νe oscillation probability for both a large and zero value of
θ13. The oscillation probability is averaged over the 1-6 GeV range for a MINOS-
style wide band beam. The non-zero oscillation probability for θ13 = 0 is due to
second order effects from the solar terms θ12 and ∆m2

21. Plot produced by Ryan
Patterson [83].
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Figure 4.2: Illustration of the mass hierarchy question for neutrinos. The mass
eigenstates (shown with the relative mixings of weak eigenstates) are stacked
from lowest mass at the bottom to highest mass at the top. The absolute values
of the mass differences between these states (squared), ∆m2

21 and ∆m2
32, are

known, but the actual ordering is still unknown. The sign of ∆m2
21 is known

from solar neutrino experiments. The left stack is referred to as the Normal
mass hierarchy, while the right stack is the Inverted mass hierarchy.
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Figure 4.3: The probability for νµ → νe oscillation, shown as a function
of true neutrino energy assuming the MINOS oscillation length (735 km). The
oscillation probability is shown for both the Normal (top) and Inverted (bottom)
hierarchies, for various values of the CP violation phase term δ. A MINOS
measurement of θ13 will depend on both of these factors (mass hierarchy sign
and δCP ). Plots produced by Pedro Ochoa [50].
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the end of the writing of this thesis, and will be described in Appendix A.

4.2 Analysis Considerations

The signal in this analysis consists of electron neutrino Charged Current (νe CC) events

which appear via oscillation in the MINOS Far Detector. There are several major chal-

lenges to overcome in observing this νe appearance signal. The first of these is the

relatively small size of θ13 itself, and the corresponding low probability of νµ → νe oscil-

lation. Even with a signal at the size of the CHOOZ limit, 2% of events in the MINOS

Far Detector at most are expected to be νe CC signal events. Second, MINOS has

been designed to search for νµ CC interactions, not νe CC interactions. Consequentially,

the detector resolution for signal event topology is poor. Finally, partially as a conse-

quence of this poor resolution, there are numerous sources of background contamination,

particularly from Neutral Current events, which can be very difficult to separate from

signal. All three of these features necessitate a sophisticated analysis for observing νe

appearance at the Far Detector.

4.2.1 The signal

An example of a simulated signal νe CC event can be seen in the first image in Figure

4.4. The signature of a νe CC interaction is the production of an electron. Because of

its small mass, this electron is easily deflected by atomic nuclei as it travels forward and

passes through matter, producing bremsstrahlung radiation photons. These photons

then produce more e+/e− pairs, which are similarly deflected. This process results in

a compact energy deposition pattern known as an electromagnetic (EM) shower. The

mean longitudinal energy profile of the shower, dE/dt, can be approximately described

by the following function [15]:

dE

dt
= E0b

(bt)a−1 e−bt

Γ(a)
(4.5)

where t is the distance measured in units of radiation length (dependent upon material),

E0 is the original electron energy, a is a variable describing shower rise, b describes

shower fall, and Γ is the gamma function. Table 4.1 shows the average size of an EM

shower in MINOS compared to the relevant detector parameters. Rather than a distinct

event topology, an electromagnetic shower in MINOS looks like a compact clustering of

strips with very little detail.



58 The νe Appearance Analysis

e-
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Figure 4.4: Transverse views (taken in one plane view only) of three types
of event in the MINOS detector: νe Charged Current (top left), νµ Charged
Current (top right), and Neutral Current (bottom). Events are Far Detector
Monte Carlo. Hit pulse-heights are measured in MIPs, and have been cleaned
of hits < 2 PE to remove cross-talk. The lines showing the presence of leptons
and hadrons are purely illustrative.
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Average MINOS EM Shower Relevant Detector Parameter

Effective radiation length = 4.06 cm Plane separation = 5.95 cm

Molière radius = 3.7 cm Strip width = 4.12 cm

Table 4.1: Average size of an electromagnetic shower in MINOS, versus the
relevant detector parameter. Molière radius is here defined as the radius of a
cylinder situated along the shower axis which contains 90% of the energy in an
electromagnetic shower. Numbers from [50].

In addition to this electromagnetic shower component, many νe CC events also con-

tain a large hadronic shower component. The fraction of total neutrino energy going to

the hadronic shower in a νe CC event is quantified by the variable y (often known as the

inelasticity):

y =
Eν − E`

Eν

= 1− E`

Eν

(4.6)

where Eν is the incoming neutrino energy, and E` is the outgoing lepton (in this case,

electron) energy. The smaller the value of y, the more electromagnetic-like an event

is, and the more easily it can be distinguished from background events such as Neutral

Current. While QE events tend to have a value of y peaking close to 0.0, DIS events

have a cross-section which is nearly flat as a function of y. The inelasticity of RES and

COH events can usually be found somewhere in between.

4.2.2 Background events

The following sources of background complicate the search for signal νe Charged Current

events:

Neutral Current (NC): Neutral Current (NC) interactions normally appear in the

MINOS detector as hadronic showers, consisting of large number of particles at a

relatively low transverse momentum. NC events often appear more “diffuse” than

νe CC electromagnetic showers. An example of a simulated NC event can be seen

in Figure 4.4. Two major factors make make NC events the most important back-

ground for a νe search. First, identifying a NC event becomes more difficult when

the hadronic shower contains a π0. The mean lifetime of a π0 is 8.4×10−17 seconds,

after which it will usually decay to two photons (branching ratio=98.8%) or to a

photon and e+/e− pair (branching ratio=1.2%) [15]. Some fraction of NC events

will therefore have an electromagnetic-like component, making them difficult to
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separate from the signal. Second, only some of the incoming neutrino energy for

a NC interaction is transferred to the hadronic shower, while the remainder is

carried, undetected, by the outgoing neutrino. The reconstructed energy of a NC

event is consequentially only a fraction of the true neutrino energy. NC events

from higher energy neutrinos can therefore be reconstructed with an energy in the

νµ → νe oscillation range, contaminating the region of analysis interest. In fact,

about half of the NC events in the 1 − 8 GeV region come from neutrinos with

true energy > 7 GeV [50].

νµ Charged Current (CC): Muon neutrino CC events (see Figure 4.4) are normally

very easy to recognize. Because the muon produced in the CC interaction has

a mass approximately 200 times larger than that of an electron, the muon will

produce a long ionizing track in the detector. A νµ CC event with a high inelasticity

y can be harder to recognize, however. In these events, a large fraction of the

neutrino energy is transferred to the hadronic shower, resulting in a shorter track

which can become embedded in the shower. Without the tagging muon, these νµ

CC hadronic shower events can be difficult to distinguish from νe CC EM shower

events.

Beam νe CC: Another form of background contamination comes from the νe/νe com-

ponent of the beam. These “beam” electron neutrinos are produced primarily from

secondary muon decay:

π+ → µ+ + νµ (4.7)

µ+ → e+ + νe + ν̄µ (4.8)

These events are topologically identical to νe CC appearance events, and must

therefore be included in an estimate of the total background contamination.

ντ CC: Producing a ντ CC interaction requires a neutrino energy >3.5 GeV. The peak

for νµ → ντ oscillation is smaller than this threshold, making these interactions

rare and as-yet-unobserved in MINOS. When a ντ CC event does occur, however,

the τ particle will decay typically into into an electron or a hadronic system. This

poses a small source of potential background.
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4.3 Overview of the Analysis

The basic goal of this thesis is to measure θ13 by observing the statistically significant

appearance of νe Charged Current events at the MINOS Far Detector. To do this, one

must be able to predict the amount of background contamination present in the absence

of νµ → νe oscillations. An excess of events on top of this background prediction is

interpreted to be a signal. The basic steps of the analysis are as follows.

1. Event Selection. A selection is applied to reject background events and select

signal νe CC events in the MINOS Far Detector. Some basic cuts can be ap-

plied to eliminate obvious background contamination, but a statistically significant

measurement of electron neutrino appearance requires the use of a sophisticated

Particle ID (PID) algorithm. This thesis will employ a novel PID known as the

Library Event Matching, or LEM, method. In the LEM PID, event strip hits are

compared to those of events in a massive Monte Carlo library of signal and back-

ground events. Out of this comparison, a list of best matches is compiled and used

to form a PID discriminant.

2. Near Detector Decomposition: The event selection in 1. is applied to the Near

Detector Data. This ND Data selection must then be broken down (or “decom-

posed”) into its different constituent background types. Because of discrepancies

between Data and MC, the ND MC alone cannot carry out this decomposition.

Instead, an algorithm known as the HOOHE method is used, which exploits the

relative background compositions of different NuMI beamline configurations.

3. Extrapolation: The ND Data selection is then extrapolated to form a Far Detector

prediction, using Far/Near detector ratios taken from the Monte Carlo. Because

of νµ CC oscillation, detector effects, and beam kinematics, the individual Near

Detector background components (NC, νµ CC, and beam νe CC) must each be

extrapolated separately to the Far Detector.

4. Analysis Checks: All potential sources of systematic error are identified and

their impact assessed. The analysis framework is checked using two Far Detector

analysis sidebands, which consist of FD Data separate from the νe analysis region.

5. Unblinding the Far Data: The full FD Data set is examined. Up until this point,

the FD Data is kept blinded in the analysis region, to prevent bias. A multiple bin

shape fit is used to assess the likelihood of a non-zero signal having been observed.

Several possible interpretations of the result will be given.
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4.4 νe Appearance Analysis: Initial Steps

4.4.1 Preparing the Data and Monte Carlo for Analysis

Several changes must be made to the ND and FD Data and MC before they can be

analyzed. The first of these changes is putting the events in the correct energy scale. The

main MINOS calibration determines shower energy based on a hadronic energy scale.

For this analysis, the hadronic energy scale must be converted to an electromagnetic

energy scale. This conversion is calculated using signal and beam νe CC MC events

in the Far Detector, and beam νe CC MC events in the Near Detector. Quasi-elastic

events are used to set the EM energy scale, because a greater fraction of their energy is

located on average in an electromagnetic shower. The true neutrino energies of these QE

events (in GeV) are plotted versus their deposited energy in Minimum Ionizing Particles

(MIPs), and a linear fit is performed between 1 and 8 GeV. In the Far Detector, a factor

of MIP/GeV = 23.56 ± 0.03 is found, with an offset of -2.5 MIP. In the Near Detector,

a similar factor of MIP/GeV = 23.36 ± 0.6 is found, with an offset of -2.8 MIP [88].

These factors are used to convert the reconstructed energy to the EM scale.

For Monte Carlo events, several weights are applied on an event by event basis.

The SKZP weights are applied to both the Near and Far Detectors to correct for beam

mismodeling. In the Far Detector, additional weights must also be applied to simulate

the effects of oscillation. Three separate types of Monte Carlo file are used to simulate

the Far Detector. In the so-called beam files, the beam has not oscillated at all between

the Near and Far detector. In the νe files, all of the muon neutrinos have been oscillated

to electron neutrinos. In the ντ files, all of the muon neutrinos have instead been

oscillated to tau neutrinos. The neutrino events in each file type are reweighted to

produce the correct predicted neutrino spectrum for a given set of oscillation parameters.

The standard oscillation parameters used in this analysis are listed in Table 4.2. Unless

otherwise stated, the value of θ13 is set at the current CHOOZ limit.

Finally, both Monte Carlo samples and the Near Detector Data are reweighted to

match a standard exposure. The FD Monte Carlo is normalized to the same exposure

as the Far Detector data, 8.2× 1020 protons on target (POT). The ND Data and Monte

Carlo are both normalized to a standard exposure of 1× 1019 POT.
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Oscillation Parameter Value

θ23 π/4

θ12 0.60

θ13 0.21

|∆m2
32| 2.32× 10−3 eV2

|∆m2
21| 7.59× 10−5 eV2

δCP 0.0

Table 4.2: Oscillation parameters[15][89] used in the oscillation of Far Detector
Data. Angles are given in radians. θ13 is set at the CHOOZ limit.

4.4.2 Basic Cuts: Data Quality, Cosmic Rays, and Fiducial

Before selecting for νe Charged Current events, a round of cuts is applied to all Data

and MC events to ensure event quality. These cuts remove any events which are either

potentially poorly reconstructed or not part of a beam spill. A set of standard MINOS

data quality cuts removes events which were recorded when the detector was not taking

data properly (e.g., when the DAQ was malfunctioning). Additional cuts also ensure

that the magnetic coil current was on and being run in forward horn current neutrino

mode, and that the event was not a Light Injection event.

Several cuts are applied only to the Far Detector. A timing cut constrains events to

be in a 14 µs window around the beam spill. While the vast majority of spills in the Far

Detector will only have a single reconstructed event, occasionally there may be two or

more. When this is the case, only the event with the highest pulse height is accepted,

as the other event is probably a reconstruction artifact.

A fiducial volume cut is applied to both the Data and Monte Carlo, to ensure that

events were far enough from the detector edge to be correctly reconstructed. If z is

longitudinal distance in the detector, and r is radius from the beam center (which is

offset by x = 1.49 m, y = 0.14 m in the Near Detector), the following events are retained:

• Near Detector: 1.0 m < z < 4.0 m, r < 0.80 m

• Far Detector: 0.5 m < z < 14.3 m (supermodule 1), 16.3 m < z < 28.0 m

(supermodule 2), 0.5 m < r < 3.7 m

These regions are shown as part of the larger detector ensemble in Figure 4.5.

Finally, the Far Detector sample is cleaned of cosmic ray interactions. Cosmic rays

typically produce events which have a large vertical component or a large angle with
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Figure 4.5: The fiducial volume regions in both the Near and Far Detectors.
Images provided by Pedro Ochoa [50].

respect to the beam. If an event has a shower, the event is cut if its slope relative to the

beam path (z) is >10. If an event has a track, the event is also cut if the track’s vertical

component is larger than 10 m, and if the angle with respect to vertical is less than 35◦.

4.4.3 Preselection Cuts

After Data Quality, Fiducial, and Cosmic Ray cuts have been applied, only ∼2% of the

Far Detector MC sample consists of νe Charged Current signal events for a CHOOZ-

sized signal. This ratio can be improved by applying a series of basic Preselection cuts

which remove the most obvious background events.

The first Preselection cut is placed on reconstructed energy. Below 1 GeV, the

accuracy of the reconstruction breaks down, and Neutral Current events dominate the

sample. Above 8 GeV, essentially no νµ → νe oscillation is expected, and almost all

remaining νe Charged Current events will come from beam νe CC events. Only the

intermediate region is therefore accepted (this selection can be seen in Figure 4.6):

• 1 GeV < Reco. E < 8 GeV.

A second set of Preselection cuts removes events which are almost certainly νµ CC

events, due to the presence of a long muon-like track. A first cut selects events based on

the number of “track planes,” (track end plane) - (track beginning plane). A second cut

selects events based on the number of “track-like planes,” the number of planes which

contain only a track hit with no shower hits. These two cuts, which are shown in Figure

4.7, select only events with the following short track-like topology:
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Figure 4.6: Reconstructed energy Preselection cut in MINOS. This plots is for
Far Detector Monte Carlo, with the accepted region demarcated by black lines.
This plot was produced for the 7.0 × 1020 POT νe appearance analysis [86] in
MINOS.

• Track planes < 25

• Track-like planes < 16

The final two cuts remove events which were likely Neutral Current interactions.

Electromagnetic showers in νe CC events tend to be much more dense than hadronic

shower in NC events. Many NC events can therefore be cut by requiring that an event

have at least four contiguous planes. Each of these planes must have at least 0.5 MIPs of

deposited energy. While both NC and νµ CC events can contain a reconstructed track

with no shower, almost all νe Charged Current events contain a shower. Therefore,

all events are required to have at least one reconstructed shower. The following two

selections are made:

• Contiguous Planes (min. 0.5 MIPS) > 4

• Number of Showers > 0

The total number of Far Detector Monte Carlo events selected after Fiducial and

Data Cuts, and then after Preselection cuts, are listed in Table 4.3. The Preselection

cuts are 76.8% efficient for signal, while removing 82.6% of the total background. A



66 The νe Appearance Analysis

Number of Track Planes

0 10 20 30 40 50

 P
O

T
20

 1
0

×
E

ve
n

ts
 / 

7 

-110

1

10

210

310

MINOS PRELIMINARYFar Detector

 CCeνosc. 
NC

 CCµν
 CCτν

 CCeνbeam 

Monte Carlo

Selected

Number of Track-Like Planes

0 10 20 30 40 50

 P
O

T
20

 1
0

×
E

ve
n

ts
 / 

7 

-110

1

10

210

310

MINOS PRELIMINARYFar Detector

 CCeνosc. 
NC

 CCµν
 CCτν

 CCeνbeam 

Monte Carlo

Selected

Figure 4.7: Track Preselection cuts in MINOS. These plots are for Far Detector
Monte Carlo, with the accepted region demarcated by black lines. The top plot
shows the cut on the total track length. The bottom plot shows the cut on the
number of “track like” planes (planes containing only a track, with no shower
hits). These plots were produced for the 7.0× 1020 POT νe appearance analysis
[86] in MINOS.

CHOOZ-sized signal comprises 10% of the Preselection sample, a large gain in sample

purity over the Fiducial sample. More than 95% of the events which are cut by the

Preselection will also be cut later by the particle ID algorithm. Applying the above

Preselection cuts is still valuable, however, as it reduces analysis and processsing time

and permits the PID to focus on more difficult cases of particle discrimination.

Selection osc. νe CC Total bg. NC νµ CC ντ CC Beam νe

Fiducial vol. 70.9 3173.8 873.6 2238.1 19.5 42.6

Preselection 54.4 553.0 338.1 189.7 10.5 14.74

efficiency (vs. Fid.) 76.8% 17.4% 38.7% 8.5% 54.0% 34.6%

Table 4.3: Number of Far Detector MC events selected by the Fiducial (in-
cluding Data Quality) and then Preselection cuts. The corresponding selection
efficiency of the Preselection with respect to the Fiducial sample is also given.
A CHOOZ-sized signal is used.

4.4.4 Particle Identification Example: ANN11

Numerous particle identification methods have been explored over the course of the νe

appearance analysis in MINOS. In both the 2009 [85] and 2010 [86] published analyses,
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an algorithm called ANN11 was used. The ANN11 PID will mentioned throughout this

thesis, mostly as a point of reference for comparing the sensitivity gains of the LEM

particle ID. A more detailed description of this PID can be found elsewhere [90].

ANN stands for artificial neural net, and the 11 refers to the eleven separate input

variables of the PID. Each of these variables quantifies some aspect of the shape and

energy profile of a candidate event. These variables include:

• Shower rise (a from Equation 4.5)

• Shower fall (b from Equation 4.5)

• Shower Molière radius (i.e., the radius of 90% energy containment)

• RMS of the transverse energy loss profile

• Magnitude of the longitudinal energy projection vectors (weighted by pulse height)

• The sum of the distance between hits in a Minimal Spanning Tree, formed from

hits with pulse heights higher than the event mean

• Fraction of energy lost in 2, 4, and 6 planes

• Fraction of energy lost in 8 strips

• Fraction of the total energy contained within a 1.5 strip distance from the main

shower axis

The output of the ANN11 PID is a number between 0.0 and 1.0, where 0.0 indicates

high probability for a background event, and 1.0 indicates high probability for a signal

event. A cut of ANN11>0.7 was found to have an optimal performance in separating

signal from background while still keeping a high signal efficiency.

4.5 Some Analysis Tools

4.5.1 FOM and superFOM

In developing a particle ID for the νe analysis, some means of assessing relative PID

performance must be found. Carrying out the full MINOS analysis for each new iteration

of a PID discriminant would be prohibitively time-intensive. The sensitivity of a given

discriminant to signal is therefore assessed initially using its “Figure of Merit” (FOM). A

given particle ID selects Nsig signal νe CC events and Nbkg background events. The FOM
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measures how significant that signal selection is in comparison to statistical fluctuations

in the background:

FOM =
Nsig√
Nbkg

. (4.9)

In reality, the fluctuations on the background will have a contribution from systematic

error as well. For this reason, the “super-FOM” is calculated. If f is the fractional

systematic error on the background, the super-FOM is defined as follows:

super-FOM =
Nsignal√
σ2

stat + σ2
syst

=
Nsignal√

Nbg + (f ×Nbg)2
(4.10)

At this point, the systematic error on the PID selection is typically unknown. As an

approximation, a systematic error of 5%, the previously measured value for ANN11 [86],

can be assumed. As will be shown later, this value is actually quite close to the real

LEM systematic error.

4.5.2 The PORP Method

The above FOM method requires a prediction of the background Nbkg and signal Nsig

selected by the PID. This prediction can be estimated with the Far Detector MC. The

prediction is more accurately made, however, by first applying the PID selection to the

Near Detector data, and then extrapolating this ND selection component by component

to the Far Detector using Far/Near ratios from MC:

FDpred
α,j = NDdata

α,j

FDMC
α,j

NDMC
α,j

, (4.11)

where FDpred
α,j is the Far Detector prediction for background component α (NC, νµ CC,

or beam νe CC) and PID or Reconstructed Energy bin j, and NDdata
α,j , FDMC

α,j , and NDMC
α,j

are the same but for ND Data, FD MC, and ND MC, respectively.

Performing this extrapolation requires knowledge of the fraction of each background

type in the Near Detector. In the full analysis, the HOOHE method is used to perform

this decomposition. This would again be time-consuming to perform for each iteration of

the selection. As a first order approximation, however, one can use a simplified method

called PORP4 [100] to perform the background decomposition. In this method, the

4Named for its creators, Pedro Ochoa and Ryan Patterson.
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assumption is made that the hadronic showers in NC and νµ CC events are mismodeled

to an equal degree, while beam νe CC events have been modeled correctly. This is

a reasonable assumption, as the background is dominated by Neutral Current events,

with a smaller sample of NC-like νµ CC events. In comparison to the large error on the

hadronic backgrounds, the error on the beam νe CC sample is comparatively small, and

EM showers are known to be well-modeled from studies of the Calibration detector [99].

The PORP decomposition of the Near Detector data is performed by scaling the NC

and νµ CC Near Detector Monte Carlo events by the same amount, and leaving the

beam νe CC events unchanged from Monte Carlo:

NDdata
beam νe,j ' NDMC

beam νe,j (4.12)

NDdata
NC,j ' NDMC

NC,j

NDdata
all,j − NDMC

beam νe,j

NDMC
all,j − NDMC

beam νe,j

(4.13)

NDdata
νµ CC,j ' NDMC

νµ CC,j

NDdata
all,j − NDMC

beam νe,j

NDMC
all,j − NDMC

beam νe,j

(4.14)

This PORP method provides an excellent approximation of the final HOOHE back-

ground prediction. As an example, one can compare the background predictions for the

optimized single-bin LEM particle ID cut, LEM > 0.70. The PORP method predicts a

total of 46.6 events (33.9 NC events, 7.0 νµ CC events, and 5.7 beam νe CC events) for

LEM>0.7. The HOOHE method predicts a total of 47.4 events (35.1 NC events, 7.1 νµ

CC events, and 5.2 beam νe CC events). Given the simplicity of this algorithm, this is

an excellent degree of agreement (within 2%) with the far more complicated HOOHE

method.
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Chapter 5

The Library Event Matching (LEM)

Particle ID

5.1 The Principle Behind LEM

In order to detect the transition of νµ CC events to νe CC events, one must be able to

distinguish νe CC electromagnetic showers from the various forms of background present

in the MINOS detectors. The Preselection described in the previous section goes part of

the way towards removing obvious background. However, a more sophisticated algorithm

is still needed to identify νe CC events in the Far Detector. The aforementioned ANN11

analysis is one example of how to perform this discrimination. ANN11 and all other

previous MINOS νe analysis particle IDs relied on the use of reconstructed quantities

such as energy profile and event shape to distinguish between neutrino interaction types.

This process of constructing higher-order variables results in a loss of information.

The Library Event Matching (LEM) particle ID solves this problem by, in principle,

using all the event information available to identify νe CC events. Rather than using

post-reconstruction variables, the LEM PID uses the information from the event strip

hits themselves. While LEM is novel, the concept is also very simple. Each candidate

input event is compared to a large library of Monte Carlo νe CC and NC events. Out

of this comparison, a list of N best matches is compiled. Figure 5.1 shows an example

of a good match and a bad match, for a candidate input event. The information from

these N best matches is then fed into a discriminant, which produces a single number

describing how signal-like or background-like the original input event was. This final

number is the value of the LEM particle ID. The flow chart in Figure 5.2 shows this

process graphically.
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(a) Input Event

(b) A Good Library Match (c) A Bad Library Match

Figure 5.1: An example of the matching process. The event in (a), which
one wants to identify as signal or background, is compared to the events in the
LEM library. Some of these events will be good matches (b), while most will be
bad matches (c). The candidate event is Far Detector Monte Carlo. Source of
images: [92].

The downside of the Library Event Matching code is that it is computationally

intensive. However, a number of methods have been found to decrease processing time

drastically. Additionally, when this PID is incorporated into the full analysis chain

(see Chapter 9), there is a 14% improvement in sensitivity to sin2 2θ13, an increase in

senstivity which is equivalent to adding 30% more data.
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Figure 5.2: A flowchart showing the means by which LEM accomplishes
particle identification. An input candidate event (Data or MC) is compared
with a large library of Monte Carlo signal (νe CC) and background (NC) events.
Out of this comparison, N best matches are determined. These N best matches
are then put into a discriminant. The output of this discriminant is a single
number, the LEM particle ID, which states how likely the input event is to be
signal or background.
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5.1.1 Context of Thesis Work

The development of the LEM PID is one of the primary focuses of this thesis. The basic

LEM algorithm was developed in 2006-2008[91][92]. A first version of the PID1 was used

as a cross-check in the 2009 MINOS νe appearance analysis [85]. By the time the work

in this thesis began, the basic elements of LEM were in place, including an early version

of the MC library, the matching algorithm, and the PID discriminant variables. The

author’s work in this thesis has been to turn this early version into a fully optimized PID.

This includes, most significantly, the development of a new multivariate discriminant to

interpret matching data. Work has also been done to develop the pre-matching steps,

including further development of event compactification and matching precuts. This

thesis has also made major advances in quantifying and assessing the behavior of LEM,

including studies of matching quality, positional bias, etc. The end product of this work

is a fully optimized particle ID, with a well-understood behavior, which can reliably and

effectively be used for a νµ → νe search.

5.2 The LEM Library

The LEM Library consists of approximately 50 million simulated Far Detector MC

events. These events were produced in the Low Energy beam configuration. The raw

Monte Carlo was then reconstructed using the most recent version of the MINOS soft-

ware. This entire process was carried out at the Rutherford Appleton Laboratory on

the LCG Grid, and on the Fermilab Computing Grid, over the course of approximately

six months.

Of these 50 million events, approximately 20 million were νe CC events, and approx-

imately 30 million were Neutral Current events. The relative composition of the νe CC

and NC events was chosen in a study performed for the first version of the LEM PID[92].

Rejection sampling methods were used to calculate the sensitivity of a simple version of

the LEM algorithm with different proportions of the two event types. The ideal library

composition was found to have a fraction of 0.3-0.4 νe CC events. νµ CC interactions

were not included in the library, as the vast majority of νµ CC events are removed by the

track cuts of the Preselection. Those νµ CC events which remain (with short embedded

tracks) look very similar to NC hadronic showers [93]. Because LEM will be applied to

both detectors, and then extrapolated to form a FD prediction, any mis-identification

of νµ CC events will be an issue of performance, not accuracy. While the addition of

1Developed largely by Pedro Ochoa [50].
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νµ CC library events could have potentially further improved background rejection, this

decision would have increased the processing time prohibitively. The final choice of 50

million NC and νe CC library events almost doubled the previous library size.

Not all of the events in the LEM library are of interest to this analysis. Therefore,

a series of preselection cuts are applied to the overall library to only retain those events

relevant to the νe CC-like sample. The following events are kept:

• Events are within a ND and FD Fiducial region;

• 5 < Nplanes < 30;

• 7 < Nstrips < 80;

• NV
strips > 2;

• NU
strips > 2;

• 50 < Qtot < 3000 PE

where Nplanes is the number of planes traversed by an event, Nstrips is the number of

strips hit by an event, and NU
strips and NV

strips are the number of strips hit in the U

and V views respectively. Qtot is the total summed pulse-height of an event in PEs.

These preselection cuts both speed up processing time and help maintain match quality.

Following the cuts, approximately 24 million reconstructed νe CC and NC events remain,

which constitute the LEM library.

5.3 Preparing Events for Matching

Before matching occurs, several stages of cuts and formatting must be applied to ensure

that both the library events and the input events can be compared on the same footing

in the two MINOS detectors.

5.3.1 Strip Charge Units

When performing the LEM matching comparison, one must choose a unit of charge in

which to store event strips. The LEM matching algorithm assumes Poisson-based photon

statistics. In terms of quantities in the MINOS calibration chain, ADCs which have been

converted into PEs (via the photoelectron chain, see Section 3.4) are a natural unit in

which to compare library and input event hits. Converting ADCs into PEs requires

knowledge of the PMT gain calibration. The PMT gains are only known to within

± 5%, with a random channel-to-channel variation of 7% [94]. When PEs were used

for an earlier version of LEM, the resulting topological uncertainty resulted in an 8.5%

systematic effect on the background prediction [95].
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In choosing the strip charge units for a new analysis, several alternative approaches

were considered [96]. The method ultimately chosen relies instead on a quantity taken

from the Energy chain, the SigCor.2 At this point in the calibration chain, an event’s hits

have been corrected for linearity and drift, as well as strip-to-strip response differences.

Using SigCors avoids the gain uncertainties in the ADC→PE conversion which lead to

a high systematic error.

In order to use a Poisson statistics-based matching metric, it is necessary to scale

the SigCor charges to the size of the earlier PE-based pulse height. To determine this

scaling, the total number of SigCors and PEs were calculated separately for the Near

and Far Monte Carlo. The ratio of (Total SigCors)/(Total PEs) was then then used as

a scaling factor to convert the SigCors into effective PEs [97].

5.3.2 Compacting Events

Before they are matched to one another, input and library events must undergo a so-

called Event Compacting process. The events are reduced in size, given a standard

position in the detector, and generally prepared to be compared on the same footing.

The compacting steps are shown graphically in Figure 5.4, and are as follows:

1. A 3 PE cut is applied to the strips in the event. Almost all hits below 3 PE are

poorly modeled low pulse height hits or hits caused by cross-talk. The reconstruc-

tion already applies a 2 PE cut to mitigate the effects of this mismodeling. The

stricter LEM 3 PE cut further reduces detector-specific differences in topology, as

cross-talk is known to affect the two detectors differently [82].

2. The charge-weighted (centroid) mean of the event is calculated. This is done in

such a way as to avoid bias from stray high energy hits at the edge of an event

which may accidentally have been included during reconstruction. In both the u

and v views, the strips are first looped over to determine the ± 4 strip window

with the highest summed charge. The centroid is then calculated using the strips

within this window, with the outliers having been disregarded.

3. Attenuation corrections are applied to each of the strips in the event, using the

centroid mean as the reference position. These corrections get rid of position and

detector-dependent differences in light level, and will be described in detail in the

next section.

4. The event is given a new position, so that its centroid mean position is at generic

position strip 100, plane 100. This allows the events to be compared in a position-

2See Figure 3.12 for the location of SigCors on the Energy Calibration chain.
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independent manner.

5. The strips are regrouped around the centroid according to the pattern in Figure

5.3. While the information at the center of the event is largely preserved, strips

are increasingly consolidated as distance from the centroid increases.

The purpose of this compacting is twofold. First, it has a practical purpose in reduc-

ing the size of events at matching time. This both decreases the memory requirement,

and greatly speeds up the matching process. Second, the process also improves the qual-

ity of the matches themselves, by making the procedure less sensitive to random spatial

fluctuations. Most of the topological information in a νe Charged Current event tends

to be confined to the compact electromagnetic shower at the core of the event, unlike

the more diffuse Neutral Current and νµ CC hadronic showers. Therefore, hits at the

outer edges of an event can be grouped together to de-emphasize their contribution in

matching, with no reduction in performance. Studies have found that the particle ID’s

sensitivity to νe CC detection decreases by ∼ 7% when this strip grouping is not used

[92]. While an infinite library would be able to match to every single pattern, the strip

grouping simplifies event toplogy and permits the use of a smaller library to sample all

event types.

The centroid mean calculation in Step 2 was previously very sensitive to high pulse-

height outlier hits. These stray high pulse-height hits are often found at the edge of ND

Data input events, and result from imperfect separation of the numerous interactions

in each snarl. An older version of the algorithm occasionally located the centroid mean

in a position outside the main body of the event, causing the strips to be incorrectly

grouped. This failure occurred in about 2% of all cases. The new method, used in step

2, ensures that the centroid mean is found in the main body of the event, where the

largest number of strips are located. The updated version of LEM also truncates the

strip grouping pattern after 16 strips, to ensure that these outlying high pulse-height

hits are not incorporated into the event at matching time.

5.3.3 Charge Attenuation Corrections

By using raw strip hit information instead of reconstructed tracks and showers, the

LEM PID makes itself largely immune to changes or uncertainties in the reconstruction

code. This also means that the SigCor variable used to store LEM strip hits does not

have the standard calibration attenuation corrections. Figure 5.5 shows the amount of

light produced by muons from νµ CC events (with tracks spanning > 30 planes) passing

through different parts of a scintillator strip, in the two detectors. In the Far Detector,
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event 
centroid 

Figure 5.3: The pattern used for compacting event strips, as shown for the
strips in an individual plane in an event. Strips at the center of the event are
left largely untouched, in order to preserve the strip information in the core of
the event. As distance from the centroid mean increases, however, strips are
compacted together in increasing numbers, so that the contribution of outlying
hits to the matching is greatly reduced.

the total light yield of a muon is 15% lower if it passes through the center of a strip

rather than an edge. Additionally, the light level in the Near Detector is approximately

50% lower than in the Far Detector, due to the single-ended readout of strips.

Consequentially, the light level of individual events will be dependent on position.

All of the LEM library events are Far Detector MC events. One could in theory attempt

to match input events to library events in the same region in either of the two detec-

tors. Producing a library large enough to match both topology and position, however,

while still maintaining match quality, would be impossible. With the current LEM li-

brary, these light level differences can cause an input event to match to a different set

of LEM library events depending on its position and detector, resulting in reduced per-

formance and potential systematic bias. LEM input and library events must therefore

be “calibrated” with a set of LEM attenuation corrections.

The process by which these attenuation corrections were applied is described in detail

in reference [92] and is summarized briefly here. A phenomenological fit to the data in

Figure 5.5 found that light attenuation in MINOS can be described by the following

expression:

aw(dw) ' 2

3
e−

−dw
7.05 +

1

3
e−

−dw
1.05 (5.1)

where dw is distance (in meters) traveled along the WLS fibre. Light traveling through

the clear plastic cable also attenuates in a similar way (although with a single, longer

attenuation distance). In the Far Detector Data, raw light Qraw is read out at both the

east and west ends of the strip: Qraw = QE
raw +QW

raw. Both QE
raw and QW

raw are corrected

for attenuation. The corrected sum, Q = QW + QE is then reweighted by the average
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MC

MC

MC

Raw MINOS Event:

Aer PE Cut and Reposioning:

Aer Strip Grouping:

Figure 5.4: The event compacting process, for a single MINOS MC event.
The top image shows the raw event, prior to any compacting. The second image
shows the event following the 3 PE cut and attenuation corrections, with the
even centroid having being relocated to plane 100, strip 100. The bottom image
shows the fully compacted event, after strip grouping has been applied as well.
Source of images: [92].
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Figure 5.5: Light levels for charge deposited by long beam muons in the Near
and Far Detectors. Distance along strip refers to the muon’s location in the
detector, i.e. distance from the West readout. The charge is collected at both
strip ends for the Far Detector (blue), and at only the West end for the Near
Detector (red). Data provided by Pedro Ochoa [92].

FD attenuation factor 〈AFD〉 = 〈Qraw

Q
〉 to match the real average charge deposition. A

similar, single-sided correction is applied to the Near Detector. This ND correction must

also take into account the reflectivity R of the non-readout strip side. The attenuation-

corrected Near Detector light is then scaled to the same average light level as the Far

Detector. The effects of this calibration on both the Near and Far Detectors can be seen

in Figure 5.6. The light levels are now essentially flat in the Fiducial regions of both

detectors, and events can be compared on the same footing, without bias.

5.4 Matching LEM Events

5.4.1 Deciding which events to match

Although the library preselection cuts and compacting procedure reduce some of the

time required for matching, comparing each input event to the full library would still be

computationally intensive. To further optimize the matching, a relaxed version of the

standard νe analysis Preselection is also applied to all input events. These cuts remove

events outside of the νe oscillation energy range, and events which have a large number

of reconstructed track planes and are therefore likely to be νµ CC events. The following
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Figure 5.6: Light levels in the Far (top) and Near (bottom) detectors, before
and after attenuation corrections. Distance along strip refers to the muon’s
location in the detector, i.e. distance from the West readout. The charge is
collected at both strip ends for the Far Detector (top), and at only the West end
for the Near Detector (bottom). The red curve shows the light yield prior to
attenuation corrections, and the black curve following attenuation corrections.
The analysis Fiducial region is also indicated. Data provided by Pedro Ochoa
[92].
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events are retained:

• 0.5 GeV < Ereco < 12 GeV

• N track
planes < 30

During the matching process, a series of “compatibility” cuts are also applied to

prevent the comparison of very dissimilar input and library events. Events A and B will

not be compared if they have a drastically different number of planes (a large difference

in the number of planes NA
planes and NB

planes), more than a 20% difference in their total

compactified and attenuation-corrected charges (QA
total and QB

total), or more than a 20%

difference in the number of compacted strips (NA
strips and NB

strips):

• |NA
planes − NB

planes| ≤ x where x = 4 if Navg
planes =

NA
planes+NB

planes+1

2
> 20, x = 3 if

Navg
planes > 15 and x = 2 otherwise,

• 2|N
A
strips−NB

strips

NA
strips+NB

strips
| ≤ 0.2,

• 2|Q
A
total−QB

total

QA
total+QB

total
| ≤ 0.2 ,

Any input event which either fails the initial preselection or fails the compatibility checks

for all library events is assigned a LEM PID value of -1. Following the standard νe

Preselection cuts, only ∼ 0.2% of input events have LEM=-1 [98].

The Matching Algorithm

All input events which pass these cuts undergo LEM matching. The matching procedure

quantifies how likely two separate patterns of (effective) photoelectrons were to have been

produced by the same energy deposition. The detector response can be described using

Poisson statistics. A given true energy deposition has some probability of producing n

photoelectrons in strip i. This probability is described as P (ni;λ), the probability of

seeing ni photoelectrons given a detector response described by a Poisson distribution

with a mean of λ photoelectrons (these probabilities are calculated prior to the matching

and stored for run time). The likelihood Si(ni
A, n

i
B) that two separate photoelectron

pulse heights ni
A and ni

B were produced by the same energy deposition is found by

taking the product of the two Poisson probabilities and integrating over all possible

values of λ:

Si(ni
A, n

i
B) =

∫ ∞

0

P (ni
A;λ)P (ni

B;λ)dλ (5.2)
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Moving from strips to full events, the probability of two collections of strips A and B

being produced by the same energy deposition is found by taking the product of Si over

all strips, or more conveniently, the sum of − ln(Si):

−L = −
Nstrips∑

i=1

ln

(∫ ∞

0

P (ni
A;λ)P (ni

B;λ)dλ

)
(5.3)

The log likelihood −L will vary based on the size or number of strips in an event. For

convenience, the self-likelihood of the event is subtracted out from the matches as an

arbitrary constant:

−∆L = −(Llib − Lself) = Lself − Llib (5.4)

where the self-likelihood Lself is defined as follows (if event A is the input candidate

event):

−Lself = −
Nstrips∑

i=1

ln

(∫ ∞

0

P (ni
A;λ)P (ni

A;λ)dλ

)
(5.5)

A smaller value of −∆L corresponds to a better match.

This matching procedure runs over the complete set of Preselected library events. For

every input event, −∆L is calculated three times. First, the matching is carried out with

both compacted events’ centroids centered at Plane 100, Strip 100. Then, the matching is

carried out twice more, first with the input event’s position shifted by +1 plane, and then

by −1 plane. The smallest value of −∆L is chosen as the likelihood for that particular

library event. It has been found that approximately two thirds of input events have

their best match without the ±1 plane shift [92]. Like the strip grouping procedure, this

process reduces the sensitivity of the matching to random spatial variations and increases

the effective statistics of the library. Because strip compactification has already been

applied to reduce the effects of these fluctuations in the transverse direction, this shifting

procedure is not necessary for the strips.

As the matching proceeds, a running list is kept of the 200 library events with the

lowest value of −∆L, i.e. the best matches. In order to reduce processing time, the

matching process in Equation 5.3 is terminated once an event reaches a value of −∆L
which is too large to be one of the 200 best matches.
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5.4.2 Match Quality

Several studies were conducted to characterize the behavior and accuracy of the LEM

matching algorithm for this thesis. One such study is simply to look at the magnitude

of −∆L for different types of events. Figure 5.7 shows the value of −∆L for the 50 best

matches for Preselected input events, both for NC matches and νe CC matches. This

plot has been broken down into individual input event types. FD MC νe input events

match more frequently to νe CC library events, while NC input events match νe CC

library events both less frequently and with a higher average value of −∆L.

Another good diagnostic of the matching procedure is how well the reconstructed

energy of an input event corresponds to the true energy of its νe CC best matches3. A

discrepancy between match and input event energy would indicate some inconsistency or

bias in the matching process, or some problem with the library sample. As can be seen

in Figure 5.8, the energy of FD MC signal and background input events corresponds well

with the νe CC match true energy. This relationship is at least in part a result of the

LEM matching compatibility cuts, which ensure the similarity of events being compared.

Notably, the ND MC background events also match to similar energies of νe CC library

events. This agreement between energies is a good cross-check of the matching process.

A similar study examining the relationship between input and matching events in terms

of their hadronic properties will be presented later (see Section 6.2).

5.5 Designing a LEM discriminant

The final output of the matching is a list of 200 matches, with basic information such

as whether those matched library events were νe CC or NC, their true energy, their

inelasticity y, etc. The next stage in the LEM particle ID algorithm is to use this

information to form an optimal PID discriminant.

5.5.1 Constructing variables from the LEM Matches

The first step in this process is to decide how many matches will be retained, and to

construct variables from those matches. Studies done for the first version of LEM found

that using 50 matches produced an optimal PID discriminant. Less than 50 matches

contained too little information, and match quality degraded above 50. From these 50

3This relationship does not hold for Neutral Current matches, because the visible energy of a NC
event is only a fraction of its total energy.
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Figure 5.7: Distribution of −∆L for the 50 best LEM library matches. The
matches are taken from input events passing the standard Preselection. The
above two plots are broken into νe CC library matches (top) and NC library
matches (bottom). This plot is for Far Detector MC only, and θ13 is at the
CHOOZ limit.
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Figure 5.8: Comparison of reconstructed input event energy versus true LEM
event match energy, for those of the 50 best matches which are νe CC matches,
for Far Detector MC events at the Preselection level. The top plot shows this re-
lationship for FD signal νe CC input events. The middle plot shows the same for
FD MC background input events, and the bottom plot for ND MC background
events. The black line represents x=y.
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best matches, three separate quantities were then constructed to answer three separate

questions:

1. How many of the 50 best matches were signal (νe CC) events?

2. How electromagnetic-like were the νe CC match showers?

3. How well did the charge distribution of the input and the νe CC matches overlap?

These characteristics are described with the following variables:

f50 - The fraction of matches which are νe CC: This is the simplest of the three

particle ID variables, quantifying how often the input event matched to signal. If

a larger fraction of the 50 best matches were νe CC signal events, instead of NC

events, the input event was more likely to be signal. A higher value f50 therefore

corresponds to a more signal-like event.

y50 - The mean y of the νe CC Matches: This variable quantifies how electromagnetic-

like an event was, by calculating the mean inelasticity (hadronic y) of its νe CC

best matches. As a reminder, y is defined as follows:

y =
Eν − E`

Eν

= 1− E`

Eν

(5.6)

where Eν is incoming neutrino energy and E` is the amount of energy transferred

to the lepton (in this case, the electromagnetic shower). The rest of the energy

is transferred to the hadronic system. The signature of a νe CC event is an EM

shower, so that library events with a low value of y will look most like signal. νe

CC library events with a higher value of y look more similar to background. A

signal event will therefore tend to match to low-y νe CC library events more often,

resulting in a y50 closer to 0. Hadronic shower background events can also have

a small electromagnetic-like component from π0 decay, but will tend to match to

higher-y events, resulting in a larger value of y50.

q50 - The average fractional matched charge for νe CC matches This final

variable quantifies the quality of the matching between the input event and the

νe CC library events, by looking at Qfrac, the fraction of the strip charges which

overlap between the input event and a νe CC library event:

Qfrac =
Qmatched

Qmatched +Qunmatched

, (5.7)
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The PID variable q50 consists of the average value of Qfrac for the νe CC best

matches. If the νe CC matching was good on average (i.e., if q50 is high), the event

is more likely to be signal.

The Preselection-level distributions for these LEM particle ID variables for specific event

types are shown in in Figure 5.9. In each case the expected signal is shown at the CHOOZ

limit (sin2 2θ13 = 0.16).

Finally, because the signal and background distributions each have distinct energy

distributions (see Figure 5.10), reconstructed energy (in GeV, in the EM scale) is also

incorporated as a fourth PID variable.

5.5.2 Choosing a LEM discriminant

One of the major tasks undertaken in this thesis is to optimize the performance of LEM,

by combining these 3 PID variables and reconstructed energy into a multivariate dis-

criminant. Numerous techniques were studied for this analysis, including a simple set

of cuts and a likelihood-based method employing two-dimensional probability distribu-

tion functions. However, the choice of method is constrained by two factors. First,

as is shown in Figure 5.11, the three LEM variables are highly correlated, both for νe

CC signal events and for background events. These correlations arise due to the fact

that the three LEM PID variables are not fully independent. An event which is very

electromagnetic-like (y50 → 0.0), for instance, will consequentially mostly match to νe

CC events (f50 → 1.0). This necessitates the use of a discriminant which can adequately

take correlations into account.

Second, the choice of discriminant is also limited by the amount of available Far

Detector Monte Carlo statistics. Less than 300,000 Far Detector Monte Carlo events

are available for both signal and background. While this is an adequate number of

events to produce a good discriminant, it does not allow for, say, the population of a

four-dimensional probability distribution function.

5.5.3 Neural Networks

A particle ID for LEM must therefore be able to handle highly correlated variables and

a relatively limited body of statistics. An artificial neural network discriminant meets

both of these requirements. Broadly speaking, an artificial neural network consists of a

set of artificial neurons which mimic those found in the brain. Each neuron reacts to

stimuli in some characteristic way and in turn communicates with other neurons via a
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Figure 5.9: The LEM variables for Preselected Far Detector Monte Carlo
events in the MINOS detector: f50 (top), y50 (middle), and q50 (bottom). Signal
is at the CHOOZ limit, and has been scaled × 5 for ease of viewing.
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Figure 5.10: Reconstructed energy (in GeV) Preselected Far Detector Monte
Carlo events in the MINOS detector. This variable is the fourth input to the
LEM PID. Signal is at the CHOOZ limit, and has been scaled × 5 for ease of
viewing.

network of weighted connections. Using the response of this network of neurons, the

system can be taught to perform a specific task, e.g. to discriminate between a νe CC

event and a Neutral Current event. A multidimensional space of input variables can

then be mapped to a single one-dimensional space, the discriminant output variable.

Every neural network has a characteristic architecture, or an arrangement of neurons

and a set of weighted connections. Each neuron is given an activation a =
∑

iwi, where

wi is the ith weighted input to the neuron. The neuron has a characteristic response to

the input, y = f(a). The network is also given a so-called learning rule, which determines

how the system evolves over time. Using these components [102], a neural network can

be “trained” to perform various tasks, such as classifying events into two categories.

The type of neural net discussed in this document is a supervised network, in which the

network is trained using examples of input events (e.g., FD MC events with values of f50,

y50, q50, and energy) which have a known target classification (signal or background).

A Multilayer Perceptron (MLP) style of neural net was employed as a discriminant

for the LEM PID. This discriminant was trained using the TMVA [101] multivariate

analysis package. In a MLP neural net, the neurons are organized into layers: an input

layer, one or more central “hidden” layers, and an output layer (in this case, a single

neuron). For the neuron activation function f(a), one can choose between a variety of

different sigmoid functions [103].

The neural net is trained using the learning rule known as back-propagation, which
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Figure 5.11: Correlations between the three LEM PID variables for back-
ground events (left hand images: NC, νµ CC, and ντ CC, with no beam νe

events) and signal νe CC events (right hand). Events are Preselected Far Detec-
tor MC.
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works as follows. The output of a neural network with a single hidden layer and single

output node can be written as:

yANN =
m∑

j=1

y
(2)
j w

(2)
j1 =

m∑
j=1

f(
n∑

i=1

xiw
(1)
ij )w

(2)
j1 , (5.8)

where n is the number of input neurons, m is the number of hidden neurons, xi is

training input i, yj is the output of neuron j, w
(i)
ij is the weight between input i and

hidden neuron j, and w
(2)
j1 is the weight between hidden neuron j and the single output

neuron. N training events are provided to the neural network. Each event a has input

xa = (x1, . . . , xn). yANN,a is calculated each time and compared to the target value

ŷaε{1, 0}. From this output, a so-called error function is calculated, which states how

close the output was to the target:

Ea(xa|w) =
1

2
(yANN,a − ŷa)

2, (5.9)

In order to train the neural net, this error function must be minimized. This is typically

done by adjusting the weights in the direction in weight space where the value of E

is falling the steepest (i.e., where the value of −∇wE is the largest). TMVA employs

the “online learning” method, where the weights are adjusted after every single training

event. The sample of training events is iterated through (potentially hundreds of times)

until the error function has found a minimum, and the neural net is considered trained.

5.5.4 The LEM Neural Network

The LEM Multilayer Perceptron has three layers of neurons. First, there is a layer of

four input neurons, one each for f50, y50, q50, and reconstructed energy. After the input

layer, there is one hidden layer with 9 nodes. Finally, there is a single output neuron,

which in this case produces a number between 0.0 and 1.0 quantifying how likely an

input event was to have been signal (1.0) or background (0.0). The architecture of the

system was therefore 4 : 9 : 1. For the neurons themselves, a neuron response function of

tanh(a) was chosen. A maximum number of 600 cycles was set for the training process.

The TMVA neural net was trained with a sample of FD MC events divided into

signal (νe CC) and background (νµ CC, NC, and ντ CC). Signal and background events

were weighted in the correct proportions for oscillation assuming the values in Table 4.2

(i.e., CHOOZ-sized signal), with other standard MC weights applied as well. The two

samples were also normalized so that they contained roughly the same number of signal
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and background events.

Several variations on the above 4 : 9 : 1 neural net were also considered. A three-

variable neural net omitting reconstructed energy was also attempted, and found to

have a 15% reduced performance. A fifteen-variable neural net which incorporated both

the ANN11 and LEM variables had comparable performance, to within 2% of the four-

variable LEM, suggesting there was little additional sensitivity to be gained by combining

the two PIDs. The 4 : 9 : 1 neural net with inputs f50, y50, q50, and reconstructed energy

was therefore chosen. The resulting distribution of the LEM PID for various event types

can be seen in Figure 5.12.

5.6 Assessing the Performance of LEM

A simple PID cut will here be used to assess the relative performance of LEM, using

a FOM calculated from a PORP prediction. In the final νµ → νe search, a multiple

bin shape fit will be used. The simple PID cut will be used to assess the basic PID

performance and behavior.

5.6.1 LEM Performance with PORP and approximate error

Figure 5.13 shows the performance of a range of cuts for the LEM particle ID, with a

CHOOZ-size signal. Background predictions are calculated using the PORP method.

The three separate performance measures are as follows:

• Signal/Background: The sample purity, which rolls off around 0.95 due to very

limited statistics in the high PID region.

• Figure of Merit: FOM, with statistical error only (Equation 4.9).

• Figure of Merit: super-FOM, with a 5% systematic error in addition to statistical

error (Equation 4.10).

A maximum super-FOM of 4.03 is obtained with a cut of LEM > 0.76. At this

point, 21.8 signal events and 27.4 background events are selected, giving a sample purity

of 44.3%. Figure 5.14 shows the relative FOM and super-FOMs for LEM and ANN11

(with the same systematic error). ANN11 achieves a maximum super-FOM of 3.21 at

ANN11>0.70, with a purity of 31.2%. Comparing the FOMs of the PIDs shows that

LEM is capable of producing up to a 25% improvement in sensitivity over the previous

PID technique, ANN11.
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Figure 5.12: The LEM particle ID distribution for Preselected Far Detector
Monte Carlo events. The νe CC events have been oscillated at the level of the
CHOOZ limit. The top plot shows the particle ID distribution for separate
event types. Signal has been scaled × 5 for ease of viewing. The bottom plot
shows the signal distribution versus the total background distribution, with both
distributions area normalized.
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Figure 5.13: Relative performance of the LEM PID as a function of cut.
Performance is shown as Signal/Background, Figure of Merit (FOM), and super-
FOM with a 5% systematic error. All the quantities have PORP data-based
corrections applied.

The efficiency of the LEM>0.76 cut for various background types is listed in Table

5.1. This cut has a 30.8% selection efficiency for Signal events relative to the Fiducial

sample. This selection efficiency rises to 40.1% relative to the Preselection Sample.

Either with or without the PORP correction, this cut rejects approximately 99% of

all background events in the Fiducial sample. For the PORP-corrected case, 95% of

the background in the Preselection sample is rejected. LEM therefore manages both

to eliminate the vast majority of the background in the MINOS detector, while also

preserving just under half of a potential signal sample.

5.6.2 LEM > 0.70: Official Cut Performance and Efficiency

The numbers discussed in the previous section assume an approximate systematic error

of 5% and a PORP decomposition. In reality, the systematic error on the LEM selection

will both not be exactly 5% and will also vary with the choice of LEM cut. When the

full systematic error is calculated, the optimal cut ends up being at LEM > 0.70, with

a 4.8% systematic error on the background. With PORP corrections, this cut selects

28.7 signal and 48.7 background events, for a purity of 37.1% and a super-FOM of 3.90.
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Selection osc. νe CC Total bg. NC νµ CC ντ CC Beam νe

Fiducial vol. 70.9 3173.8 873.6 2238.1 19.5 42.6

Preselection 54.4 553.0 338.1 189.7 10.5 14.74

LEM (No PORP) > 0.76 21.8 36.7 26.3 4.8 1.2 4.0

efficiency (vs. Fid.) 30.8% 1.1% 3.0% 0.2% 6.6% 9.4%

efficiency (vs. Presel.) 40.1% 6.6% 7.9% 2.5% 12.2% 27.2%

LEM (PORP) > 0.76 21.8 27.4 18.8 3.3 1.3 4.0

efficiency (vs. Fid.) 30.8% 0.9% 2.2% 0.2% 6.6% 9.4%

efficiency (vs. Presel.) 40.1% 5.0% 5.6% 1.7% 12.2% 27.2%

Table 5.1: Number of Far Detector raw MC events selected by a LEM >
0.76 cut, and the corresponding selection efficiencies relative to the Fiducial and
νe Preselection selections. The LEM selection is shown both with and without
PORP corrections.

This constitutes a 22% improvment in sensitivity over ANN11. For a PORP-corrected

sample, LEM>0.70 has a 40.5% efficiency versus the Fiducial sample, and a background

rejection of 98.5% (see Table 5.2). This cut will be assumed to be the optimum single-bin
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cut for all future discussions of the LEM particle ID in this document, unless otherwise

stated.

Selection osc. νe CC Total bg. NC νµ CC ντ CC Beam νe

Fiducial vol. 70.9 3173.8 873.6 2238.1 19.5 42.6

Preselection 54.4 553.0 338.1 189.7 10.5 14.74

LEM (No PORP) > 0.70 28.7 61.7 44.5 9.5 2.0 5.74

efficiency (vs. Fid.) 40.5% 1.9% 5.1% 0.4% 10.3% 13.5%

efficiency (vs. Presel.) 52.7% 11.2% 13.2% 5.0% 19.1% 38.9%

LEM (PORP) > 0.70 28.7 48.7 33.9 7.0 2.0 5.74

efficiency (vs. Fid.) 40.5% 1.5% 3.9% 0.3% 10.3% 13.5%

efficiency (vs. Presel.) 52.7% 8.8% 10.0% 3.7% 19.1% 38.9%

Table 5.2: Number of Far Detector raw MC events selected with the official
analysis LEM > 0.70 cut, and the corresponding selection efficiencies versus the
Fiducial and Standard νe Preselection selections. The LEM selection is shown
both with and without PORP corrections.

5.6.3 Events Selected by LEM

Certain types of neutrino interaction tend to look more νe-like, and are therefore more

likely to be selected by the LEM PID. Figure 5.15 shows the LEM PID broken down by

interaction type (DIS, QE, RES, COH) for both signal and background, while Table 5.3

lists the percentage of each type for both the overall Preselection sample, and for the

LEM>0.70 selection. For signal events, the LEM PID preferentially selects QE events, as

well as many RES events. DIS events overwhelmingly dominate the background sample,

with small contributions from the other event types (including COH). Table 5.4 breaks

down the selections by how many π0s were present in the interaction. At the preselection

level, 61.9% of background events contained at least one π0. Following the LEM>0.70

cut, this percentage rises to 84.9%. This is not surprising, as LEM is expected to select

hadronic shower events which have a larger EM component from π0 decay, and therefore

look more νe CC-like.
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Figure 5.15: The LEM PID distribution (FD MC) for signal (left) and back-
ground (right) broken down into a stack of different interaction types: Deep
Inelastic Scattering (DIS), Quasi-elastic (QE), Resonance (RES), and Coherent
Pion Production (COH).

Event Type DIS QE RES COH

Preselection

Signal 40.8% 24.8% 33.7% 0.6%

Background 87.8% 2.4% 9.2% 0.6 %

LEM > 0.70

Signal 24.8% 37.1% 33.3% 0.8%

Background 82.3% 5.3% 8.2% 4.2 %

Table 5.3: Interaction types selected in the FD MC sample, both for Prese-
lection and LEM>0.70.

5.6.4 Cross-Checks of LEM

It is valuable to examine the efficiency of the LEM cut with respect to position, energy,

and other variables, to check for any remaining biases in either of the two detectors.

Once again, this is more a concern for efficiency than for accuracy, as most systematic

biases will cancel out to first order in the extrapolation. Figures 5.16 and 5.17 show

the efficiency of LEM relative to the Preselected sample as a function of position in the

detector. This is shown both in the plane perpendicular to the beam (u vs v) and along

the direction of the beam (z). In each case, this is shown for ND Data and MC, and for

FD MC. For reasons that will be discussed in Chapter 6, the discrepancy between the

data and Monte Carlo efficiency in the Near Detector is expected. There are some small
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Event Type 0 π0 1 π0 >1 π0

Preselection

Signal 71.7% 23.2% 5.1%

Background 38.1% 40.6% 21.3%

LEM > 0.70

Signal 78.4% 18.4% 3.2%

Background 15.2% 54.4% 30.5%

Table 5.4: Number of π0s present in events in the FD MC sample, both for
Preselection and LEM>0.70.

spatial variations from the mean. As can be seen in the case of the Near Detector, these

spatial variations appear to be well-modeled between Data and Monte Carlo.

One can also assess the light level corrections in a more direct way. Light level can

be approximated by looking at the ratio between the event’s pulse height in two scales,

MIPs and PEs. MIPs describe the response of the scintillator itself. PEs4 describe the

actual amount of light which is eventually read out at the PMTs. The ratio of (total

event PEs)/(total event MIPs) is therefore a good approximation of an event’s mean

light level, i.e. how much readout light was produced on average by an event’s deposited

charge. This ratio is not well-defined for all topologies, with very high or low values of

PE/MIP being dominated by low energy events. However, in the central regions where

the light level is well defined (and all event energies are well-represented), the efficiency

is flat, as shown in Figure 5.18. In both the spatial and light level efficiency plots,

the efficiencies are also quite close for both the Near and Far Detectors. These plots

therefore suggest that the attenuation corrections discussed in Section 5.3.3 have been

largely successful in making the LEM selection independent of detector position effects.

Finally, one can also consider the efficiency of the LEM detector with respect to

reconstructed energy. The particle ID has been trained to look for a signal with a peak

at approximately 2 GeV. LEM will therefore have a lower efficiency for events with an

energy higher or lower than this peak. Figure 5.19 shows the efficiency (with respect to

Preselection) of LEM in terms of reconstructed energy, showing that this is in fact true.

4These are actual PEs, from the ADC→PE conversion, rather than effective PEs.
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Figure 5.16: The efficiency of the LEM>0.70 cut as a function of U (top)
and V (bottom) direction vertex in the MINOS detectors, for ND Data and MC
(left) and FD MC (right). Efficiency is with respect to the standard Preselection
Sample. The FD MC sample contains only background events (NC, νµ CC, Beam
νe CC). No PORP or other data-based corrections are applied.
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Figure 5.17: The efficiency of the LEM>0.70 cut as a function of Z vertex
in the MINOS detectors, for ND Data and MC (left) and FD MC (right). Effi-
ciency is with respect to the standard Preselection Sample. The FD MC sample
contains only background events (NC, νµ CC, Beam νe CC). No PORP or other
data-based corrections are applied.
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Figure 5.18: The efficiency of the LEM>0.70 relative to Preselection as a
function of light level. Light level is here defined the ratio (pulse height in
PEs)/(pulse height in MIPs). Only the ‘well-defined” region is shown - outside
of this region, low energy events dominate. ND Data and MC are shown on the
right, and FD MC on the left.
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Figure 5.19: The efficiency of the LEM>0.70 cut as a function of Recon-
structed Energy in the MINOS detectors. Efficiency is with respect to the stan-
dard Preselection Sample. The efficiencies for Near Detector Data and Monte
Carlo are shown on the top, and for Far Detector Monte Carlo on the bottom.
The Far Detector sample contains only background events (NC, νµ CC, Beam
νe CC). No PORP or other data-based corrections are applied.

5.7 Summary

The Library Event Matching (LEM) PID improves signal-background discrimination in

MINOS by in principle using all available strip hit information. A basic form of the PID

existed prior to the work in this thesis. The new version of LEM has been optimized by

the author in several ways, most significantly in the introduction of a new multivariate

discriminant. The new version of the PID is potentially up to 22% more sensitive to

signal than the previous νe analysis PID, ANN11. The behavior of the matching and

efficiency has now been thoroughly checked, as well. No unexpected biases or systematic

errors have been found.



Chapter 6

The Near Detector Selection

6.1 Introduction

The previous section focused almost exclusively on signal/background discrimination in

the MINOS Far Detector. The Near Detector plays an equally important role in this

analysis. In order to make a prediction of signal and background at the Far Detector,

the LEM selection is first applied to the unoscillated Near Detector data. This selection

is then extrapolated to the Far Detector, to make a data-corrected prediction of the

selected FD background in the absence of oscillations.

Because of νµ CC oscillations and other effects, the individual ND Data background

components (νµ CC, NC, and beam νe CC) must be extrapolated separately to the Far

Detector. One therefore needs to make an accurate measurement of the relative fraction

of each background type. In theory, one could use the Near Detector Monte Carlo

to determine these relative ND background rates. However, there is large discrepancy

between the ND Data and MC for the LEM particle ID selection. Figure 6.1 shows the

LEM distribution and the three PID variables for ND Data and MC. In all cases, the

shape of the distribution is different between Data and MC. The degree of mismodeling

is particularly strong in the high-PID region. Figure 6.2 also shows reconstructed energy

for the LEM>0.70 selection. In this signal-like region, there is a 15%-25% excess in the

Monte Carlo.

This chapter will focus on this discrepancy in two separate ways. First, it will

describe the author’s attempts to determine the potential sources of the large Data/MC

discrepancy. Because the LEM method is highly dependent on the details of the Monte

Carlo modeling, it is not surprising that there is a large discrepancy between Data and

MC. Prior to the work in this thesis, the ND Data/MC discrepancy had been observed,

but the sources of the mismodeling were not well understood. Notably, as long as any

103
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Figure 6.1: The LEM Particle ID distribution, and the three LEM PID input
variables, in the Near Detector. Events passing the Preselection cuts are shown.
Both Data and MC are scaled to 1019 POT.
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Figure 6.2: Reconstructed energy (GeV) in the Near Detector Data. Events
passing both the LEM>0.70 cut and the Preselection are shown. Both Data and
MC are scaled to 1019 POT.

Far/Near effects are adequately modeled, this discrepancy will not affect the final result.

Second, this chapter will briefly describe the means by which the Near Detector

can be decomposed into separate background components. This method, the Horn On

Horn Off High Energy (HOOHE) beam decomposition method, was developed for the

MINOS νe appearance analysis over the course of several analyses. A brief summary of

this method will be given by the author.

6.2 Exploring the Source of the Data/MC Discrep-

ancy

6.2.1 Hadronic Shower Modeling in MINOS

In Figure 6.1, there is a large difference in shape between Data and MC for the variable

y50, the average true y of an event’s νe CC matches. This suggests that the mismod-

eling of hadronic showers could be the source of the large Data/MC difference in the

LEM selection. Hadronic showers at a higher invariant masses are well modeled by

the PYTHIA/JETSET model [79]. This modeling breaks down for events with a lower
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Figure 6.3: The true invariant mass W of signal (blue) and background (black)
events in the FD Monte Carlo. All events have passed the Preselection. Signal
(CHOOZ-size) has been scaled × 10 for ease of viewing.

invariant mass closer to the pion production threshold. For this reason, a phenomeno-

logical model, AGKY[105], was developed to better model the type of hadronic showers

present in MINOS. This model was largely tuned with and checked against data from

bubble chamber experiments (BEBC [106] [107] [108] [109], SKAT [110], and the Fermi-

lab 15’ [111] bubble chamber). All events with invariant mass W > 3.0 GeV are still

described using PYTHIA/JETSET. All events with W < 2.3 GeV are described with

a KNO-based model. These regions are linked by a transition region, between 2.3 and

3.0 GeV, in which fraction of events described by PYTHIA/JETSET rises from 0% to

100%, and the fraction of events described by KNO drops from 100% to 0%. As shown

in Figure 6.3, most interactions of interest to the νe analysis are found in the KNO and

transition regions.

The KNO-based portion of AGKY carries out two major tasks: first, it chooses

the multiplicity of the particles which comprise the hadronic shower, and second, it

selects the 4-momenta of these particles. The first task (populating the hadronic shower)

involves several steps. First, the average charged hadron multiplicity is chosen: 〈nch〉 =

ach + bchW
2, where ach and bch are constants derived from bubble chamber experiment

data. Next, the average total hadron multiplicity is calculated: 〈ntot〉 = 1.5〈nch〉. Finally,
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the KNO scaling law [80] is used to turn this average into an actual hadron multiplicity:

〈n〉 × P (n) = f(n/〈n〉) (6.1)

where P (n) is the probability of obtaining n hadrons, and f(x) is the Levy function (with

a constant c derived from experiment):

f(z, c) =
2e−cccz+1

Γ(cz + 1)
(6.2)

The kinematics and charge of the system determine what ratio of each particle type

populates the shower. A single baryon is also produced in the hadronic shower, based

on quark models.

Next, the momenta of the resulting particles must be described. First, a 4-vector

P ∗
N = (E∗

N ,p∗N) is chosen for the baryon, which dominates the system. This choice is

based both on the transverse momentum of the nucleon, p2
T , and on parton distributions

functions (with respect to xF ) calculated from earlier experiments [113] [114]. Momenta

are next chosen for the hadrons that populate the remainder of the system. These

hadron momenta are generated using a phase space decay in center of mass. During this

decay, the transverse momentum of the shower is constrained with a “squeezing” factor

A, applied as e−A pT . The system is then boosted back in to the lab frame.

6.2.2 y50 as a probe of hadronization

In Section 5.4.2, it was shown that the reconstructed energy of an input event corresponds

closely with the true energy of its νe CC best LEM matches. A similar relationship could

also be expected between the true inelasticity y of a signal event and the average y of its

νe CC matches - i.e., the LEM variable y50. Indeed, Figure 6.4 shows a strong correlation

between these variables. This is unsurprising, as electromagnetic showers in νe CC signal

events are known to be relatively well-modeled in the MINOS detector [99].

A similar study can be performed for the hadronic showers in NC input events as

well. Many hadronic shower events also have a electromagnetic component, caused by a

π0 decaying to two photons. For these MC events, one can construct the variable yNC ,

the fraction of the NC shower which is electromagnetic. This is the fraction of the NC

visible energy Evis carried by π0s:

yNC = 1− Eπ0

Evis
(6.3)
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Figure 6.4: The relationship between true hadronic y and y50 for νe CC input
events in the Far Detector MC.

Figure 6.5 shows the relationship between yNC and y50 (for NC input events). There is

a clear correlation between these two variables. The quantity y50 distribution, and the

LEM PID as a whole, therefore probe the EM fraction of a hadronic shower and the

hadronic modeling of a MC event in general. Mismodeling in AGKY would be reflected

in a resulting discrepancy between Data and MC for hadronic shower background events

selected by the LEM PID.

6.2.3 Sources of Mismodeling in AGKY

A number of approximations and ambiguities in AGKY could be responsible for the ND

Data/MC discrepancy in LEM. During the evaluation of systematic error for the first νe

analysis, six separate possible sources of error in AGKY were identified [115]. In order

to determine their effect on the νe analysis, these errors were evaluated using a series

of probability distribution function histograms which reweighted existing Monte Carlo

as a function of invariant mass W , summed transverse momentum
∑
pT and hadronic

shower EM fraction. The histograms themselves were 2 dimensional histograms of pT

vs EM fraction, in 0.1 GeV slices of W 2 [95]. These histograms were normalized to keep

the total event count constant. The histograms modeled the following uncertainties:

Baryon xf Selection (Model 1) This histogram reweights the MC so that the se-

lection of baryon momentum results in showers which more closely match reality.
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Figure 6.5: The relationship between the EM fraction of a NC hadronic shower
(1 − Eπ0/Evis) and y50 (the mean matched y of νe CC matches) for NC input
events in the Far Detector MC.

The baryon momentum, as described before, is chosen based on parton models.

This four-vector is most likely to be found in a backward direction in the center of

mass frame, due to the location of the di-quark. This results in most of the pions

and other hadrons moving in the forward direction in a jet-like distribution. Com-

parisons with experimental data found that AGKY overestimated the multiplicity

of charged hadrons with a forward momentum and underestimated those with a

backward momentum. Model 1 changes this by generating the baryon momentum

isotropically in the center of mass using a phase-space decay [116]. This is believed

to more closely match reality, and some feature resembling this isotropic decay

may be included in future versions of GENIE [117].

π0 Selection (Model 2±) This reweighting model accounts for the uncertainty in the

probability of π0 production in the shower, a feature which could have a large

impact on the hadronic shower EM fraction, and the resulting LEM PID value.

AGKY uses an experimentally derived selection probability of 30%. There is some

uncertainty on this number, due to both the difficulty of detecting π0s in a hydro-

gen bubble chamber environment, and to the presence of intranuclear rescattering

in experiments utilizing the heavier freon or neon. Comparisons [115] of the pre-

dicted AGKY π0 multiplicity and π0 dispersion with experiment (SKAT freon
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measurements [110] and BEBC neon [107] and hydrogen [108] measurements) indi-

cated a ±20% uncertainty on the π0 selection probability. These two reweighting

histograms reset the probability from 30% to 21% and 39%.

Charged-Neutral Multiplicity Correlation (Model 3) This reweighting model con-

siders the degree of correlation between the multiplicity of charged and neutral

hadronic particles. The current AGKY model selects the charged particle multi-

plicity first, and from that the overall shower multiplicity. This introduces cor-

relation between the charged and neutral multiplicities. This correlation is in

disagreement with the data, which suggests that the two multiplicities are largely

independent when W is on the order of a few GeV. This histogram reweights the

MC to simulate independent multiplicities.

Implementation Ambiguities (Model 4) This reweighting model considers several

differences in the hadron 4-vector selection process (e.g., the procedure taken dur-

ing pT squeezing) which were discovered between the NEUGEN v3.5.0 and GENIE

v2.0.0 versions of AGKY. This model simulates a GENIE-only model.

pT Squeezing (Model 5) This reweight model simulates uncertainty in the pT rejec-

tion factor (the squeezing factor A described in 6.2.1) which is used to select the

transverse momentum of a shower. The parameter A is changed from 3.5 to 1.5,

resulting in broader showers.

Isotropic 2-body Decay (Model 6) AGKY models 2-body decays isotropically in

the center of mass. This reweighting model tests the impact of this assumption by

performing the decay orthogonally to the direction of momentum transfer.

Each of these reweighting factors was applied to the ND MC to investigate the effect

of potential mismodeling on Monte Carlo. Figure 6.6 shows the effect of each reweight

on the LEM>0.70 reconstructed energy distribution. The majority of models studied

changed the distribution by between 0% and 5%. The uncertainty in the π0 multiplicity

was expected to have a major impact on the LEM selection, due to the important role

played by the π0 → γγ decay, but could not fully account for the 15− 25% discrepancy

between ND Data and MC. One of the models, Baryon xf Selection (Model 1), however,

did have the required effect on the high PID region. As can be seen in Figure 6.6,

reweighting for Model 1 results in the best agreement between ND MC and data.
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Figure 6.6: The reconstructed energy distribution for the LEM>0.70 selection
in the Near Detector, for Data, Monte Carlo, and Monte Carlo reweighted to var-
ious hadronic models. The models are as follows (with the aspect of AGKY they
modify): Model 1 (baryon xf selection), Model 2± (π0 selection probability),
Model 3 (Charged-Neutral particle multiplicity correlation), Model 4 (implemen-
tation ambiguities), Model 5 (pT squeezing), Model 6 (isotropic 2-body decays).
Both samples are scaled to 1019 POT.
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6.2.4 Reweighting Events for Model 1

The effect of the Model 1 reweighting on the LEM PID distribution is shown in Figure

6.7. In the high-PID region, the ND Data/MC discrepancy is drastically reduced. The

reason for this reduced discrepancy can be seen in the reweighted y50 distribution, in 6.8.

The shape of the reweighted y50 MC curve, the best probe of the hadronic modeling, now

much more closely matches the data. The LEM>0.70 reconstructed energy distribution,

in Figure 6.9, now has a discrepancy on the order of 5% rather than 20%. The effect of

the baryon 4-vector modeling can also be studied a step further back in the LEM PID,

as well, by using Model 1 reweighted MC events to retrain the LEM neural net itself.

In this case, a similar level of Data/MC agreement is obtained.

The results of these reweighting studies strongly suggest that hadronic mismodeling

is the primary cause of the large Data/MC disagreement found in LEM. In particular,

the LEM PID is very sensitive to the electromagnetic content of hadronic showers, via

the PID variable y50. When the Monte Carlo is reweighted to simulate a model which

better describes the EM content (as indicated by the shape of the y50 distribution), the

ND data and MC agree much more closely.

6.2.5 Impact of Hadronic Modeling on super-FOM

Although uncertainties in hadronic modeling have a large effect on the shape and size of

the LEM distribution for Monte Carlo, the overall effect on the prediction and sensitivity

is minimal. The MINOS two-detector setup is designed to cancel out systematic errors

and uncertainties of this sort to first order. Figure 6.10 shows super-FOM for a single-bin

cut for Standard LEM (regular MC), Model 1 Reweighted LEM (MC events reweighted

for Model 1, no retraining), and Model 1 Retrained LEM (both input and PID training

events reweighted for Model 1), assuming a systematic error of 5%. Reweighting is

now applied to both the ND and FD MC. As described earlier, Standard LEM has a

maximum super-FOM of 4.03 at LEM>0.76, with 21.8 signal events and 27.4 background

events selected. Reweighted LEM (no retraining) has a maximum super-FOM of 3.97 at

LEM>0.76, with 21.4 signal events and 27.1 background events selected. The Retrained

LEM has a maximum super-FOM of 4.07, with 21.1 signal and 25.4 background events

selected. The behavior of the Standard and Reweighted LEM are essentially the same,

while the Retrained LEM has slightly improved sensitivity. This suggests that while the

Data/MC discrepancy in LEM is caused by real physics, the presence of poorly modeled

hadronic showers in LEM does not appear to have resulted in any appreciable reduction

in performance. Any remaining second order effects from mismodeling will incorporated
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Figure 6.7: The LEM PID distribution (top) in the Near Detector, for Monte
Carlo and Data events passing the standard νe preselection. The Monte Carlo
is shown both raw (red) and reweighted to the Model 1 baryon selection model
(blue). All samples are scaled to 1019 POT. The ratio of the Data / MC is shown
on the bottom.
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Figure 6.8: Mean Match y (y50) in the Near Detector, for Monte Carlo and
Data events passing the standard νe preselection. The Monte Carlo is shown
both raw (red) and reweighted to the Model 1 baryon selection model (blue).
All samples are scaled to 1019 POT. The ratio of the Data / MC is shown on
the bottom.
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Figure 6.9: Energy spectrum of Near Detector events passing LEM PID >
0.70. The Monte Carlo is shown both raw (red) and reweighted to the Model 1
baryon selection model (blue). All samples are scaled to 1019 POT. The ratio of
the Data / MC is shown on the bottom.
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Figure 6.10: Super-FOM with 5% systematic error as a function of cut for the
Standard, M1 Reweighted, and M1 Retrained LEM PIDs. All quantities have
PORP-based corrections and a CHOOZ-size signal.

into the analysis as systematic error.

6.3 The HOOHE Method

The large discrepancy between Data and Monte Carlo in the LEM Selection means that

one cannot rely on Monte Carlo alone to decompose the Near Detector data into indi-

vidual background types. A more sophisticated decomposition technique must therefore

be used. The Near Detector decomposition procedure described here is referred to as

the “Horn On, Horn Off, High Energy” (HOOHE) method. A summary of the process

is given below, but full details can be found in reference [118].

6.3.1 Three Separate Beam Configurations

The Near Detector decomposition procedure makes use of the fact that, while the NuMI

beamline tends to run primarily in Low Energy (LE10/185kA) mode, it is also possible to

change the configuration of the magnetic focusing horns and graphite target to produce

different beam configurations. These beam configurations not only have different overall

neutrino fluxes and energy spectra, but also different relative rates for each event type
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Figure 6.11: Expected true energy spectra for the three beam configurations
used in the HOOHE method: Low Energy (“Horn On”), Horn Off, and High
Energy [119].

(νµ CC, beam νe CC, NC). This algorithm will use MINOS data recorded in both a

High Energy mode (LE250/200kA) and a Horn Off mode. The expected true energy

spectra for these three beam types are shown in Figure 6.11. Using the ND Data and

Monte Carlo selections for each configuration, a decomposition of the Low Energy beam

configuration can be performed.

In the standard LE10/185kA configuration, the magnetic focusing horns are given

a current of 185 kA, and the graphite target is placed slightly upstream (10 cm) from

the first of the two magnetic focusing horns. This produces a beam with a peak at 3.1

GeV (with an RMS of 1.1 GeV) [53]. When the LEM>0.70 selection is applied to Low

Energy Monte Carlo, a distribution with the composition seen in in the top image in

Figure 6.12 is obtained.

For the Horn Off configuration, the magnetic focusing horns are turned off. When

the hadrons are no longer focused, the low energy peak present in the standard beam

configuration disappears, and a larger part of the spectrum comes from high energy

neutrino events (a peak of 7.4 GeV, with a broad RMS of 4.1 GeV). With the loss of the

low energy peak, the LEM particle ID selects almost no νµ CC events at high energy,

causing the relative composition of Neutral Current events to be drastically increased
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(see the middle image in Figure 6.12).

Finally, in the High Energy LE250/200kA configuration, the horn current is increased

to 200kA and the target is moved to a position of 250 cm, upstream from the first

magnetic focusing horn. In this configuration, the horn focuses higher energy hadrons,

causing a distribution peaked at 8.6 GeV (and 2.7 GeV RMS). As was the case with

the Horn Off configuration, the presence of higher energy hadrons causes NC events to

dominate the sample.

6.3.2 Making a Linear System

From the above three beam configurations, a system of three separate linear equations

can be constructed:

NLE Data
i,Total = NLE Data

i,NC + NLE Data
i,CC + NLE Data

i,νe
(6.4)

NHO Data
i,Total =

[
NHO MC

i,NC

NLE MC
i,NC

]
NLE Data

i,NC +

[
NHO MC

i,CC

NLE MC
i,CC

]
NLE Data

i,CC +

[
NHO MC

i,νe

NLE MC
i,νe

]
NLE Data

i,νe
(6.5)

NHE Data
i,Total =

[
NHE MC

i,NC

NLE MC
i,NC

]
NLE Data

i,NC +

[
NHE MC

i,CC

NLE MC
i,CC

]
NLE Data

i,CC +

[
NHE MC

i,νe

NLE MC
i,νe

]
NLE Data

i,νe
(6.6)

where N
BC Data(MC)
α is the number of ND Data (MC) events in analysis bin i for configu-

ration BC (LE, HO, HE) and for background component α (NC, beam νe CC, νµ CC).

Bin i can be, for instance, a bin of PID and/or energy.

First, NLE Data
i,Total , NHO Data

i,Total , and NHE Data
i,Total are the total number of ND Data events

counted in each configuration. Second, the relative frequencies of each background type

between configurations,
[

NHO MC
i,α

NLE MC
i,α

]
and

[
NHE MC

i,α

NLE MC
α

]
, are known with good accuracy from

Monte Carlo. Much as is the case when comparing the Near and Far Detector MC,

systematic errors cancel out to first order when taking the ratio of background rates

between two beam configurations. Third and finally, the individual LE data background

components NLE Data
i,NC , NLE Data

i,CC , and NLE Data
i,νe

are the unknowns of the system. With three

equations and three unknowns, the system can in theory be solved to find the individual

Near Detector Background components.

In reality, the process is somewhat more complicated. Both the Horn Off and High

Energy configurations are dominated by Neutral Current events, causing Equations 6.5
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Figure 6.12: Relative compositions [119] of background events for the three
separate beam configurations used in the Near Detector decomposition, for a
LEM>0.7 selection. Horn On (standard beam) is shown on top, followed by Horn
Off (middle) and High Energy (bottom). Distributions are area-normalized.
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and 6.6 to be nearly linearly dependent [118]. The uncertainty on the solutions to the

system will therefore be quite high. While the original Near Detector Monte Carlo

predictions are not accurate, they can be used as an additional constraint, so that the

uncertainty on the decomposition will be no greater than the original uncertainty on

the Monte Carlo. With this additional requirement, the system is now over-constrained.

Rather than obtaining an exact solution for NLE Data
i,NC , NLE Data

i,CC , and NLE Data
i,νe

, a χ2 mini-

mization is fit. Statistical, flux, and systematic errors (see Chapter 8) on the ND samples

are incorporated into this fit in the form of a covariance matrix [118].

6.3.3 Results - the Near Detector Decomposition

The decomposition is performed with the ND Data split into bins of PID and Energy.

For the energy binning, a grouping of five bins with edges [1 GeV, 2 GeV, 3 GeV, 4 GeV,

5 GeV, 8 GeV] was chosen. The choice of LEM binning will be discussed in Section 9.3,

but the decomposition of the LEM>0.7 selection will here be considered as an example

(i.e., one PID bin). In addition to bins of PID and energy, the decomposition is also

broken down into separate analysis runs (Runs 1, 2, and 3) and background types (νµ

CC, NC, beam νe CC) when the decomposition χ2 fit is performed. The χ2 fit also

requires the solution to not have a negative solution in any bin.

The resulting decomposition of the LEM>0.7 sample is shown in Figure 6.13. The

fit has a χ2 of 20.2, for 44 degrees of freedom. The breakdown of the sample into NC, νµ

CC, and beam νe CC samples can be found in Table 6.1. The NC and νµ CC components

have a correlation of -0.172.

Event Type % of ND Data Sample Error on Sample.

NC 61.5 ± 1.1

νµ CC 23.5 ± 1.1

beam νe CC 15.0 ± 1.4

Table 6.1: Percentage breakdown of the individual background components
in the LEM>0.70 sample, with errors. These numbers are shown graphically in
Figure 6.13

.
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Figure 6.13: The results of the example of a Near Detector Decomposition for
LEM>0.70 sample, with five energy bins. The total curve (in black) is derived
from the Near Detector data. The individual background components have been
derived from the decomposition. The plot is normalized to an exposure of 1019

POTs. Plot produced by Joao Coehlo [119].

6.4 Summary

A firm understanding of the Near Detector Data is vital for the νµ → νe search presented

in this thesis. In the next chapter, the ND Data selection is extrapolated to the Far

Detector to make a background prediction. Because the νµ CC component oscillates,

while the NC component does not, it is vital to break down the ND data into its

constituent parts. The HOOHE method accomplishes this decomposition.

Studying the Near Detector Data and Monte Carlo also allow for a more sophisticated

understanding of the LEM PID, however. The LEM PID was previously known to have

a large discrepancy between the ND Data and MC in the signal-like region (LEM>0.70).

The work in this chapter has revealed that the LEM variable y50 is a good probe of the

EM content of hadronic shower events. The Data/MC discrepancy is therefore mostly

caused by hadronic shower mismodeling. This type of systematic error will largely cancel

out to first order in the Far/Near extrapolation, having little effect on the final prediction.

With the ND data now well understood, the analysis can proceed to a prediction of the

Far Detector background.
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Chapter 7

Predicting the Far Detector Data

Now that the ND Data has been decomposed, this chapter will discuss how a prediction

is made for the five different expected FD interaction types: Neutral Current, νµ CC,

beam νe CC, ντ CC, and a νe CC signal. Most of the techniques in this chapter were

developed for previous analyses, with the exception of an assessment of the rock muon

background, which has been carried out for this thesis.

7.1 The NC, νµ CC, and beam νe CC Background

Predictions

The first three interaction types (NC, νµ CC, and beam νe CC) are the most straight-

forward to predict. The rates of these three background types are now known in the

Near Detector from the HOOHE decomposition. Using Far/Near ratios from Monte

Carlo, these backgrounds can each be separately extrapolated to form a Far Detector

prediction:

Fα
i =

fα
i

nα
i

Nα
i (7.1)

where Fα
i is the FD prediction for background type α in extrapolation bin i (a bin of

PID and/or energy), and fα
i , nα

i , and Nα
i are respectively the FD MC, ND MC, and ND

Data samples.

Several effects make it necessary to extrapolate these background components sep-

arately. Muon neutrinos oscillate between the Near and Far Detectors, causing a νµ

CC-specific FD deficit. The Neutral Current rate will undergo no such oscillation. Ad-

ditionally, the energy spectrum for beam νe CC events is different between the Near

123
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Figure 7.1: Examples of Far/Near MC ratios used in the extrapolation of the
Near Detector backgrounds (Neutral Current, νµ CC, and beam νe CC) to the
Far Detector. This plot shows extrapolation to the Far Detector in 5 bins of
Reconstructed Energy (GeV), for the LEM>0.7 signal-enriched region. These
values are shown for each of the three analysis runs (1, 2, and 3456). The error
bars indicate the total systematic error on the extrapolation; the contributions
to this error will be discussed in Chapter 8.

and Far Detectors. Beam νes are produced by secondary muon decays, which will occur

further along the beam pipe than pion and kaon decays. This gives the Near Detector

a different angular acceptance than for νµ CC events. The Far/Near ratios for all three

components are therefore different.

Several other effects also contribute to an overall Far/Near difference. The factor of

106 difference in neutrino flux between the two detectors has already been described (see

Section 3.5.1). Far/Near differences also arise from physical differences between the two

detectors, in fiducial volume and the readout system. All of these differences are folded

into the Monte Carlo Far/Near ratio in equation 7.1. The Far/Near ratio as a function

of reconstructed energy for each background is shown in Figure 7.1.
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7.2 Predicting ντ CC and signal νe CC appearance

While NC, νµ CC, and beam νe CC events can be predicted with relative ease from the

Near Detector, there are two other event types which only exist in the Far Detector: ντ

CC and signal νe CC. Both of these event types are the product of νµ → ν` oscillation

between the Near and the Far Detector (` = e or τ). The flux of ν` therefore depends

on the total flux of νµ CC events in the ND fiducial volume, rather than the Preselected

HOOHE rates. These νµ CC events are selected in a manner similar to the methods

used in the νµ disappearance analysis [53], with basic cuts on muon track topology, event

position, and a particle ID cut. This νµ CC selection is applied to the ND Data and to

the FD and ND MC. The ND Data νµ CC fiducial selection is then extrapolated to the

Far Detector as in 7.1 to make a prediction of the reconstructed νµ CC spectrum in the

Far Detector.

This reconstructed νµ energy is then turned into a νe or ντ appearance signal in a

process with three major steps:

1. The νµ reconstructed spectrum is transformed into a νµ true spectrum.

This is done by correcting the FD νµ CC prediction with a two-dimensional matrix

RTνµCC, which transforms reconstructed to true energy. The spectrum is also

corrected for the purity P and the efficiency E of the νµ CC selection:

F
νµCC
j =

[∑
k

[
f
νµCC
k

n
νµCC
k

N
νµCC
k

]
RT

νµCC
kj

]
Pj

Ej

(7.2)

where j is here a bin of true energy, k a bin of reconstructed energy, and f
νµCC
k ,

n
νµCC
k , and N

νµCC
k are the respective CC selections for FD MC, ND MC, and ND

data.

2. The νµ true spectrum is oscillated to make a true νe or ντ spectrum.

The true νµ spectrum is reweighted for the probability of P(νµ → ν`) oscillation.

This is transformed into true ν` CC energy by scaling to the correct cross-section,

i.e. σ` instead of σµ:

F ν` CC
j = F

νµCC
j P

νµ→ν`

j

σ`
j

σµ
j

(7.3)

3. The true νe or ντ spectrum is turned into a reconstructed spectrum.

A second transfer matrix TRν` is applied to convert true ν` energy back into

reconstructed energy. The final signal is corrected for the efficiency ε of LEM (in
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PID bin i) as a function of reconstructed energy:

Fν`CC
ik =

∑
j

F ν` CC
j TRν`

kjε
ν`
ik (7.4)

The output of these steps is Fν`CC
ik , a prediction of the number of νe or ντ events selected

in reconstructed energy bin k and LEM bin i.

7.3 Corrections to the Extrapolation

7.3.1 Corrections to the Signal Prediction: the MRE Correc-

tion

An additional correction must be applied to the νe CC appearance prediction. The

mismodeling of the hadronic shower component in MC νe CC events could cause the

efficiency term ε in Equation 7.4 to be incorrect. A selection of νµ CC-derived hadronic

showers with an injected EM shower are therefore used to make a data-based correction

to correct for this mismodeling. The hadronic showers are taken from known νµ CC

events possessing an identifiable muon track. The muon is removed from the shower, and

its momentum and vertex used to produce an electron instead. A MC electromagnetic

shower is generated from this electron and merged with the “muon-removed” hadronic

shower. The new event is passed through the reconstruction and analysis chain again.

Finally, a series of cuts are applied to these events, ensuring that the original event was

a good-quality νµ CC event. This new sample is known as the Muon Removed, Electron

Added, or MRE sample [121].

The MRE sample is produced for both ND Data and Monte Carlo hadronic showers,

and the selection efficiency is then calculated for different value of the LEM PID. The

ratio of the ND Data and ND MC efficiencies, εData/εMC is then used as a correction

factor for ενe in Equation 7.4. As an example, the LEM>0.70 PID cut has an efficiency

of 35.5% for the ND Data MRE sample, and an efficiency of 36.5% for the ND MC MRE

sample. The MRE correction factor is then CMRE=0.97. Table 7.1 shows the size of the

MRE correction factor [122] for a variety of ranges of the LEM PID.

It is interesting to compare the effects of the MRE correction to the effects of the

Model 1 hadronic reweighting studied in the previous chapter. To do this, the ratio (M1

Reweighted)/(Standard) is calculated for standard FD MC νe CC signal events for a

given range of PID. This ratio is shown in comparison to the MRE correction in Table
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LEM Bin MRE correction Signal: (Model 1)/Standard

>0.70 0.97 0.98

0-0.2 0.93 1.06

0.2-0.3 0.95 1.07

0.3-0.4 0.96 1.04

0.4-0.5 0.98 1.02

0.5-0.6 0.97 1.01

0.6-0.7 0.97 0.98

0.7-0.8 0.97 0.98

>0.80 0.99 0.98

Table 7.1: Size of MRE correction factor for various ranges in the LEM particle
ID. The effect of the Model 1 reweighting on νe CC FD MC events is also given
as a point of comparison, in the final column.

7.1. In the high PID region, where Model 1 is known to have the largest effect, the

effects of the MRE correction are comparable to the effects of the Model 1 reweight.

This suggests that the MRE correction reflects many of the same hadronic modeling

issues that were discussed in the previous chapter. The similarity between the MRE

correction and Model 1 breaks down for lower PID values, however, suggesting that

other hadronic effects cause the discrepancy for this range of the PID.

7.3.2 Other backgrounds: Cosmic Rays

The cosmic ray cuts described as part of the Preselection should in theory remove all

background events from cosmic rays. The effectiveness of these cuts can be measured by

looking at the number of events selected in the NuMI anti-coincidence spills, i.e. in the

windows out of time with the beam [123]. Out of the total 43 million anti-coincidence

spills analyzed, 258 events are selected at Preselection level, with 72 having LEM>0.70.

When the cosmic ray cuts are then applied, the Preselection selects 4 events, with none

passing LEM>0.7. These numbers are then normalized to the total data-taking period

of the in-time beam spills. After this normalization, it was determined that cosmic

rays add <0.5 events to the Preselection sample, and <0.3 events to the LEM>0.70

signal-enriched region. This contamination can be disregarded.
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7.3.3 Other backgrounds: Rock Interactions

The NuMI beam spreads out substantially as it travels, so that in both the Far and Near

Detectors, neutrinos from the NuMI beamline can interact in the rock surrounding the

cavern. Daughter particles from these rock interactions, such as muons and hadrons,

continue to travel forward, potentially into the MINOS detectors, where they can be

reconstructed as neutrino interactions. These so-called rock events are typically found

either at the front or the outer radius of the detector, and tend to have low energies

(because they are partially-reconstructed events). Rock muons are not be accounted for

in the Far/Near background extrapolation. Because the Near Detector fiducial volume

uses only a fraction of the total detector volume, there is a self-shielding effect as the

non-fiducial steel stops many of the particles. The Far Detector fiducial volume, however,

extends nearly to the edge of the steel planes, providing far less shielding and leaving

the detector open to background from rock events. A correction must be applied to the

FD prediction to account for this.

The rock event background was assessed using special Far Detector Monte Carlo.

In this simulation [124], the cavern is modeled as a plain rectangular box, surrounded

by Ely greenstone rock. Adding more detailed features to the cavern shape has a very

small effect on the simulation. As shown in Figure 7.2, most of the Preselected rock

events occur near the edge of the fiducial volume. Table 7.2 lists the total number of

rock events versus the total number of detector background events (raw FD MC) for

various selection levels. Figure 7.3 shows the distribution of the rock muon events as a

function of reconstructed energy and LEM PID value. The rock events are also shown

as a fractional excess on the standard detector FD MC background sample.

As might be expected, most of the rock events are concentrated at low energy. The

events also tend to have low PID values. Very few rock events are selected, and these

events form a negligible fraction of the LEM>0.70 selection. The fractional excess in

the low energy region, however, was considered large enough to add a correction to the

extrapolation. The fractional rock muon background is therefore calculated for each

background type and used as a correction factor in the final prediction.

7.4 Predictions for the Far Detector

Using the tools outlined in this chapter, a prediction can now be made of the Far Detector

background and signal. Unlike the earlier LEM>0.70 studies, this extrapolation is now

performed in bins of both PID and energy, to predict the full shape of the distribution.
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Figure 7.2: Expected rock muon background (Far Detector Monte Carlo) as
a function of radius squared for all preselected events.

Selection Standard FD MC Rock Muon FD MC % Contamination

Fiducial 3173.3 93.0 2.9%

Preselection 553.0 2.5 0.5%

LEM > 0.70 61.7 0.1 0.0%

Table 7.2: Number of FD MC rock muon events selected in the Far Detector,
versus number of standard FD MC background events. No PORP weights are
applied. Numbers are for an exposure of 8.2 ×1020 POTs.

The reconstructed energy is extrapolated in the HOOHE decomposition binning. The

LEM PID is extrapolated in 8 bins, with edges {0.0, 0.2, 0.3, 0.4, 0.5 ,0.6, 0.7, 0.8, 1.0}.
This binning will be justified in Chapter 9. The extrapolation is performed separately in

the three data-taking runs, and then summed to form a FD prediction. Figure 7.4 shows

the resulting FD prediction as a projection of the full LEM PID distribution. Figure

7.5 shows the prediction as a projection of the reconstructed energy distribution. The

prediction in each PID bin can be found in Table 7.3 for both a zero and non-zero θ13.
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Figure 7.3: Expected rock muon background (Far Detector Monte Carlo), in
bins of reconstructed energy (top) and LEM (bottom). The left plots show the
total number of MC rock events selected for a 8.2 ×1020 POT exposure. The
right plots show these rock event distributions as a fractional excess on top of
the total FD MC background sample.
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LEM Particle ID Bin Lower Edge

Event Type 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 >0.70

sin2 2θ13 = 0.0

NC 72.32 58.12 46.27 39.97 37.39 33.59 23.80 11.31 35.11

νµ CC 60.92 40.78 25.01 18.03 13.92 9.92 5.44 1.64 7.09

beam νe CC 1.12 1.58 1.21 1.50 1.55 2.12 2.07 3.46 5.53

ντ CC 2.24 1.66 1.31 1.22 1.25 1.33 1.27 0.92 2.19

Total Bkgd. 136.60 102.14 73.79 60.72 54.11 46.97 32.59 17.33 49.92

Signal 0.01 0.02 0.02 0.03 0.04 0.06 0.08 0.11 0.19

sin2 2θ13 = 0.16

NC 72.32 58.12 46.27 39.97 37.39 33.59 23.80 11.31 35.11

νµ CC 60.77 40.64 24.92 17.96 13.86 9.88 5.42 1.64 7.05

beam νe CC 1.10 1.53 1.15 1.43 1.46 2.02 1.99 3.22 5.21

ντ CC 2.05 1.52 1.20 1.12 1.14 1.22 1.17 0.84 2.00

Total Bkgd. 136.24 101.81 73.54 60.48 53.86 46.71 32.37 17.01 49.38

Signal 1.65 2.63 3.11 4.05 5.50 8.42 12.54 17.11 29.65

Table 7.3: Far Detector predictions in individual PID bins, for both an 8 bin
full-shape LEM, and a single LEM>0.7 cut. Predictions are given for all event
types, for both no signal (sin2 2θ13 = 0.0) and a CHOOZ-size signal (sin2 2θ13 =
0.16)



Chapter 8

Systematic error

The previous chapter discussed the means by which a Near Detector selection is turned

into a Far Detector prediction. During this process, most potential errors in physics

modeling, calibration, etc. cancel out to first order in the Far/Near MC ratio. This does

not mean that the measurement is free from systematic error. Some uncertainties affect

both detectors and will have a second-order impact on the final background prediction.

Other systematic errors may predominantly affect a single detector, and therefore have

a direct effect on the prediction. Finally, some systematic errors will specifically affect

the prediction of νe and ντ appearance. The systematic effects described in this chapter

were identified and evaluated for the 2011 νe analysis. A more detailed description of

each error, and several which were ultimately not included in this analysis, can be found

in [125].

8.1 Simulating Systematic Error

The vast majority of systematic errors were simulated by shifting the relevant parameter

by one standard deviation. This shift was simulated either by reweighting existing MC,

or producing new reconstructed MC events. Either way, these shifted MC samples are

used to produce a new FD prediction. The fractional change in the prediction due to

the systematic uncertainty is then calculated:

Rbkgd =
P+1σ

NC + P+1σ
νµ CC + P+1σ

beam νe CC

P0
NC + P0

νµ CC + P0
beam νe CC

(8.1)

133
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Rντ =
P+1σ
ντ CC

P0
ντ CC

(8.2)

Rνe =
P+1σ
ντ CC

P0
νe CC

(8.3)

where P+1σ
α is the prediction for for background type α (NC + νµ CC + beam νe CC

background, ντ CC, or signal νe CC) shifted by one standard deviation for a given

systematic error, and P0
α is the nominal, unshifted prediction, and Rα is the resulting

fractional shift in the prediction.

In the case of the NC + νµ CC + νe CC background error, the systematic shifts affect

the Far/Near MC extrapolation ratio. In the case of the νe and ντ CC errors, there are

two types of effects. First, the same uncertainties which affect the Far/Near ratio also

affect the selection efficiencies ενe and εντ (in Equation 7.4). Second, the underlying νµ

CC spectrum determining the ντ and νe CC flux is also affected by several systematic

errors specific to the νµ CC sample.

In this chapter, each uncertainty will be characterized by the fractional shifts Rbkgd,

Rνe , and Rντ it produces in the LEM>0.7 prediction. For the largest systematic errors,

plots will be shown of these fractional shift as a function of PID value. The impact of

the systematic errors on the full PID and energy distribution will be further quantified

in the discussion of the multiple bin likelihood fit framework in Chapter 9.

8.2 Direct Far/Near Uncertainties

The largest systematic errors are those which directly impact the Far/Near ratio, and

therefore are less likely to be canceled out in the course of the extrapolation. These

include uncertainties in the relative normalization of the two detectors, the calibration,

and the modeling of cross-talk.

8.2.1 Normalization

Several sources of uncertainty affect the normalization of the prediction. These include

uncertainties on the exact geometry and mass of the detectors, the total counted POTs,

and the live time of the Near and Far Detectors. A comprehensive study of these factors

[126] found a 0.32% uncertainty on the overall normalization due to the total measured

POT exposure, a 0.2% uncertainty from the steel thickness, and a 0.2% uncertainty from
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the scintillator thickness.

Another source of normalization error comes from uncertainty in the relative number

of events accepted by the Near and Far fiducial volume cuts. This uncertainty is evalu-

ated by comparing the Far/Near ratio between Data and MC for muon-removed shower

events (MRCC events, which are essentially MRE events without an injected electron).

From this study, there was found to be a 2.0% uncertainty in the fiducial volume selec-

tion. The combined effects of POT counting, detector components, and fiducial volume

uncertainties result in a 2.0% normalization systematic error on the background. Ad-

ditional uncertainty in the selection of νµ CC fiducial events raises this uncertainty to

2.4% for νe and ντ appearance events.

8.2.2 Cross-talk mismodeling

Much of the discriminating power of the LEM PID comes from its direct use of the

event’s strip hits. This gives rise to another potential source of systematic error, resulting

from cross-talk mismodeling. Studies[128] have found a large Data/MC disagreement for

detector hits below 1 PE. Most hits below 2 PE are caused by PMT cross-talk, suggesting

that this aspect of the simulation may be imperfect. Because Near and Far Detector

cross-talk behave according to two different PMT readout maps, this mismodeling could

pose a significant source of Far/Near systematic error. In order to mitigate these effects,

the reconstruction already disregards any hits below 2 PE, and the LEM PID does not

use any hits below 3 PE, but there could still be residual effects.

Cross-talk is produced in two separate forms: electrical and optical. The effects of

electrical cross-talk were found to be small enough to disregard. The effects of optical

cross-talk are assessed by comparing the prediction from Monte Carlo using the current

cross-talk map, to that from Monte Carlo produced with a more accurately simulated

map. The effect of this change on the LEM>0.70 prediction is on the order of 2%. As

will be described in Section 8.6, much of this 2% shift comes from statistical fluctuations

in the shifted sample. A linear parametrization will be needed to better approximate

this systematic error.

8.2.3 Calibration

Calibration uncertainties constitute one of the largest possible sources of systematic

error in the analysis. The calibration process not only determines the energy of the

final event, but also can affect its topology and reconstruction. Resulting uncertainties

in light level can change the LEM match list, and the final PID value. Calibration
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systematic errors were mostly evaluated using specially generated Monte Carlo samples,

which were reconstructed with a given calibration parameter shifted by one standard

deviation. The following sources of uncertainty were investigated:

Relative ND and FD Energy Scale The largest single calibration error comes from

uncertainty in the relative energy scale of the Near and Far Detectors. This system-

atic error arises from several uncertainties in the inter-detector energy calibration,

including uncertainties on the muon stopping power, drift, detector aging, and

random noise. This uncertainty is evaluated separately for the two detectors. The

Near Detector MC energy scale (the factor which converts the pulse height to

MIPs) is shifted by its uncertainty, 1.9%. The Far Detector MC energy scale is

shifted by 0.9%. Both uncertainties have a large effect on the extrapolated back-

ground prediction. For the LEM >0.70 sample, the ND energy scale uncertainty

leads to a −3.8% systematic effect on the total background prediction. The FD

energy scale uncertainty leads to a 1.6% systematic effect. The fractional shift on

the background prediction as a function of PID can be seen in Figure 8.1. Because

these systematic errors only affect the extrapolated energy distribution, they were

not evaluated for the ντ or νe CC appearance predictions.

ND and FD Gains Another possible source of Far/Near systematic error comes from

the PMT gain calibration. There is a 5% overall uncertainty on PMT gain mea-

surements, and a 7% random variation in gains between PMTs [94]. While these

gains are not used in the calculation of event energy, they are used to convert

ADCs to PEs for each hit. Therefore, the uncertainty can have an impact on

various analysis tasks such as the reconstruction’s 2 PE cut. The effect of this

uncertainty is evaluated by producing a new MC sample in which the average

PMT gain is shifted by 5%. The gains of the individual PMTs are also given a 7%

random Gaussian variation. This is done separately for the Near Detector and Far

Detector. The Near Detector Gain uncertainty has a systematic effect of -0.5%

on the total predicted background, and the Far Detector Gain systematic error a

0.7% effect. The FD gain error also has a -1.0% effect on the ντ CC prediction,

and a 0.2% effect on the νe CC signal prediction.

Linearity Correction When the PMT linearity is measured, there is an associated

uncertainty on the measurement. In order to propagate these uncertainties to the

prediction, these uncertainties are used set the width of a Gaussian distribution,

which is then used to randomly vary the linearity correction in a new MC sample.

This uncertainty has a <1% effect on the LEM>0.70 FD prediction.
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Attenuation Correction Following the attenuation corrections, detector response may

still vary by approximately 1% along the length of the scintillator strip. This vari-

ation occurs in data, but not in the Monte Carlo (which is perfectly corrected). To

assess the impact of these attenuation uncertainties, Monte Carlo events are given

the same attentuation factor as the data and then recalibrated. This uncertainty

has a <1% impact on the LEM>0.70 prediction.

Strip-to-Strip Correction Some variations in response between strips on the order

of 0.5% from the mean are still expected even after the strip-to-strip corrections.

This uncertainty is simulated by fluctuating the strip response within a Gaussian

distribution of width 0.5%. This variation has a <1% effect on the LEM>0.70

prediction.

Absolute Energy Scale There is a 5.7% uncertainty on the absolute energy scale

in both detectors [127]. To approximate this uncertainty, a new Monte Carlo

sample was reconstructed with this scale shifted by one standard deviation. This

uncertainty produces a relatively large uncertainty on the LEM>0.7 background

prediction, on the order of 1%. The resulting fractional shift on the prediction, as

a function of PID, is shown in Figure 8.2.

Hadronic Energy Scale There is a potential uncertainty on the relative hadronic and

electromagnetic energy scales. Data from the Calibration Detector suggests that

the error on this relative scale is on the order of ±5%. This uncertainty is simulated

by both reweighting events based on their hadronic energy, and by shifting the total

energy by 5%. The reweighting determines the effect on the selection efficiency,

while the energy shift determines the effect on the reconstructed energy. The

uncertainty has a total effect of <1% on the background prediction.

The total systematic uncertainty due to calibration, and the contributions of each of the

individual uncertainties, are summarized in Table 8.1. Calibration uncertainties have

the largest impact on the LEM>0.70 prediction of any systematic error type, with an

error on the order of 4% for the background and signal prediction, and 10% for the ντ

CC prediction.

8.3 Uncertainties affecting both detectors

The previous section outlined the most serious potential sources of systematic error, in

which the uncertainty directly impacts the Far/Near ratio in the extrapolation. Other
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Figure 8.1: Fractional shift in the background prediction (including ντ CC)
due to uncertainties in the relative energy scale, as a function of particle ID
(LEM). The top plot shows the effects of a one standard deviation uncertainty
in the Near Detector energy scale, and the bottom plot the effects of a one
standard deviation uncertainty in the Far Detector energy scale.
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Figure 8.2: Fractional shift in the background (including ντ CC) (black)
and signal (red) predictions due to uncertainty in the absolute energy scale, as a
function of particle ID (LEM). The plot shows the impact on the prediction when
the absolute energy scale in the Near and Far MC is shifted by one standard
deviation.
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Calibration Errors

Syst. F/N Bkg. νe CC ντ CC

Attenuation −0.11% 0.05% −0.02%

Gain (F ±1σ) 0.65% 0.21% −1.03%

Gain (N ±1σ) −0.46% − −
Linearity −0.21% 0.00% −0.01%

Rel E-scale (F ±1σ) 1.60% − −
Rel E-scale (N ±1σ) −3.81% − −

Strip-To-Strip −0.12% 0.05% −0.12%

Abs. Energy Scale −1.21% 4.41% 9.99%

EM vs. Had. Scale 0.28% −0.48% −0.82%

Total Error 4.11% 4.44% 10.71%

Table 8.1: The % shift in the LEM>0.70 prediction, for F/N backgrounds (NC,
νµ CC, and Beam νe CC) and the appearance predictions (signal νe CC and ντ

CC.), due to various calibration systematic uncertainties. Numbers are for 1 σ
of uncertainty. The systematic uncertainties are added in quadrature to form
the total uncertainty. Error values denoted by “−” indicate that the systematic
error was not evaluated for that event type. The FD and ND Relative Energy
Scale errors and the ND Gain error were not relevant for the prediction of ντ

and νe appearance.

systematic errors have an impact on both detectors and thus largely cancel out in the

Far/Near extrapolation. The remaining second-order effects are evaluated below.

8.3.1 Beam Model Systematic Error

The MINOS MC beam simulation has several potential sources of systematic error.

These are as follows:

SKZP Weights The ND νµ CC flux simulated by FLUKA disagrees with the ND

Data. The SKZP weights described in Section 3.5.1 are applied to correct this

discrepancy. There are several sources of uncertainty on the correction, including

uncertainties in hadronic production, target position, current, and other physical

parameters in the beam and target. The Monte Carlo is reweighted as a function

of energy to simulate the impact of shifting the SKZP weights by one standard

deviation of uncertainty. This reweighting has a <1% effect on the background

prediction.
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FLUGG vs. FLUKA While FLUKA is the default beam simulation, later files were

also produced with FLUGG[134]. FLUGG has a beam νe CC flux 20% larger than

FLUKA in the Near Detector and 10% larger in the Far Detector. To evaluate the

impact of this uncertainty in beam νe flux, the standard (FLUKA) Monte Carlo is

reweighted by the ratio of the FLUGG νe/νµ flux ratio to the FLUKA νe/νµ flux

ratio. This systematic uncertainty, which primarily affects the beam νe prediction,

has a less than 1% effect on the total background prediction.

Target Degradation Finally, the gradual degradation of the NuMI target was found

to have a time-dependent effect on the beam flux. Simulations found that this

degradation was consistent with the loss of two fins in the target, due to radiation

damage. The Monte Carlo was reweighted to simulate this damage and assess

the impact on the prediction. The overall effect on the LEM>0.70 background

prediction was found to be less than 1%.

The contributions from beam systematic error are summarized in Table 8.2; the total

impact is on the order of 1%. All three of these uncertainities have an additional effect

on the νµ CC Flux used to calculate ντ and νe CC appearance, as will be discussed in

Section 8.4.2.

Beam Model Errors

Syst. F/N Bkg.

FLUGG −0.69%

SKZP 0.27%

Target Degradation −0.10%

Total Error 0.75%

Table 8.2: The % shift in the LEM>0.70 prediction, for extrapolated F/N
backgrounds (NC, νµ CC, and Beam νe CC), due to beam modeling systematic
uncertainties. Numbers are for 1 σ of uncertainty. The systematic uncertainties
are added in quadrature to form the total uncertainty.

8.3.2 Physics Modeling: Cross Sections

Other systematic uncertainties can also arise from uncertainties in the cross sections for

neutrino interactions. While there are many different possible sources of cross section

mismodeling in MINOS, most of these will cancel out in the Far/Near extrapolation.
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Only a few cross section parameters were therefore identified and studied as possible

sources of Far/Near systematic error in the νe analysis [95]. These parameters include

uncertainties on the axial-vector mass term MA for quasi-elastic and resonance interac-

tions. The uncertainty on both MQE
A and MRES

A is taken to be ±15%. There is also

a 50% uncertainty on the KNO parameters determining the DIS cross section. These

uncertainties are simulated by reweighting events based on the ratio of a modified cross

section (shifted within one standard deviation of uncertainty) to the nominal cross sec-

tion. As expected, these effects largely cancel in the F/N extrapolation, and lead to a

< 0.5% uncertainty on the extrapolated background prediction. These systematic errors

are summarized in table 8.3. As will be discussed in Section 8.4.2, these uncertainities

also have an effect on the νµ CC Flux used to calculate νe and ντ CC appearance.

Cross Section Errors

Syst. F/N Bkg.

KNO 0.18%

MQE
A −0.04%

MRES
A −0.14%

Total Error 0.22%

Table 8.3: The % shift in the LEM>0.70 prediction, for F/N backgrounds (NC,
νµ CC, and Beam νe CC), due to various cross section systematic uncertainties.
Numbers are for 1 σ of uncertainty. The systematic uncertainties are added
in quadrature to form the total uncertainty. The effects of cross-section uncer-
tainties on the νe and ντ appearance predictions will be discussed separately in
Sections 8.4.1 and 8.4.2.

8.3.3 Physics Modeling: the AGKY model and Hadronic Show-

ers

The impact of hadronic shower modeling on the LEM PID was discussed in some detail

in the context of describing the Data/MC discrepancy in the Near Detector LEM dis-

tribution (see Section 6.2.3). These uncertainties in AGKY are modeled using a series

of weights, which are now applied to both the ND and FD MC to assess the impact on

the prediction. The models are here described again briefly, with an additional model

assessing the impact of uncertainty in hadron multiplicity:
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Baryon xf selection: The MC is reweighted so that the selection of the baryon mo-

mentum produces showers which more closely match reality.

π0 selection: The probability of π0 production is shifted by +20% and −20%.

Multiplicity Correlation: The MC is reweighted to simulate a completely indepen-

dent charged and neutral hadron multiplicity.

Implementation Ambiguities: A GENIE-only version of the AGKY model is simu-

lated.

pT Squeezing: The transverse momentum rejection factor is changed from −3.5 to

−1.5, resulting in broader showers.

Isotropic 2 body decay: Two body decays are performed orthogonally to the direc-

tion of momentum transfer, rather than isotropically in the center of mass.

Hadron Multiplicity: The uncertainty on the total hadron multiplicity is evaluated

using a slightly different type of reweighting histogram than the first six systematic

errors. As described earlier, the charged hadron multiplicity is parametrized as a

function of invariant mass W with the expression 〈nch〉 = a + b logW 2. This is

then converted to total multiplicity using 〈ntot〉 = 1.5〈nch〉. While the parameters

a and b are derived from bubble chamber experiments, the resulting predictions

do not always match experimental data. To simulate this uncertainty, a and b are

varied over the range permitted by experiment. The events are then reweighted

separately for each interaction type (νp, νn, ν̄p, or ν̄n).

The resulting fractional changes in the FD prediction as a function of PID for each of

these systematic errors are shown in Figure 8.3. Assessing the impact of these systematic

errors is very important, as uncertainties in AGKY have a large effect on the separate

ND and FD Monte Carlo samples. The Baryon xf (Model 1) uncertainty alone has a 20%

systematic effect on ND MC for LEM>0.70. This systematic uncertainity is reduced by

the Far/Near extrapolation to a secondary effect on the order of 1% for the background

prediction. The error on the signal prediction is 3%. These systematic uncertainties are

summarized in Table 8.4. Note that most of the AGKY models were not extended to

study the impact on ντ CC hadronization. These uncertainties would have little effect on

the final ντ CC systematic error, as the error on ντ appearance is completely dominated

by cross section uncertainties (Section 8.4.1).
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Figure 8.3: Fractional shifts in the background (including ντ CC) (black) and
signal (red) predictions due to uncertainties in various AGKY hadronic modeling
parameters, as a function of particle ID (LEM). These plots show the effects of
shifting the Monte Carlo by one standard deviation for each uncertainty.
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AGKY Errors

Model Syst. F/N Bkg. νe CC ντ CC

1 Baryon xf selection 0.40% −1.96% −
2+ π0 selection (+1 σ) 0.02% 0.59% −
2- π0 selection (-1 σ) −0.02% −0.59 −
3 Multiplicity correl. 0.66% −1.03% −
4 Implementation Ambiguities −0.09% −0.66% −
5 pT Squeezing −0.23% −0.50% −
6 Isotropic 2 body decay 0.57% −0.28% −
7 Hadron Multiplicity −0.17% −1.44% −0.76%

Total Error 1.14% 2.84% −0.76%

Table 8.4: The % shift in the LEM>0.70 prediction, for F/N backgrounds (NC,
νµ CC, and Beam νe CC) and appearance predictions (νe CC and ντ CC), due to
various systematic uncertainties in the AGKY hadronization model. Numbers
are for 1 σ of uncertainty. The systematic uncertainties are added in quadrature
to form the total uncertainty. Error values denoted by “−” indicate that the
systematic error was not evaluated for that event type. ντ CC errors were only
evaluated for Hadron Multiplicity.

8.3.4 Physics Modeling: Intranuclear Re-scattering

The final source of uncertainty in the MINOS Monte Carlo comes from uncertainties in

intranuclear re-scattering, simulated by the INTRANUKE program [78]. Ten possible

INTRANUKE systematic errors arising from uncertainties on cross sections or branching

ratios were identified for this analysis [130]. These uncertainties were simulated by

reweighting the Monte Carlo by one standard deviation for each parameter. Table 8.5

presents each of the separate INTRANUKE systematic errors, which together have a

<1% effect on the prediction for LEM>0.7. A bug prevented the evaluation of these

systematic errors for ντ CC events. As with the AGKY errors, any INTRANUKE errors

would be dwarfed by the much larger ντ CC cross section error (Section 8.4.1).

8.4 Uncertainties on νe and ντ CC Appearance

Most of the systematic errors mentioned above affect not only the Far/Near extrapolated

background, but also the νe and ντ appearance prediction. For these uncertainties, the

systematic error impacts the selection efficiency for νe and ντ CC events in the Far De-
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INTRANUKE Errors

Model Syst. F/N Bkg. νe CC

INUKE0 q-exchange −0.03% −0.15%

INUKE1 π elastic −0.07% −0.08%

INUKE2 π inel. 0.46% 0.58%

INUKE3 π abs. −0.09% 0.58%

INUKE4 π → 2π −0.02% −0.09%

INUKE5 N-knockout 0.13% −0.15%

INUKE6 N → (2)π −0.03% 2.37%

INUKE7 form. time −0.42% −0.59%

INUKE8 π xsec 0.13% 0.81%

INUKE9 N xsec −0.09% −1.46%

Total Error 0.66% 3.05%

Table 8.5: The % shift in the LEM>0.70 prediction, for F/N backgrounds (NC,
νµ CC, and Beam νe CC) and νe CC appearance, due to various systematic un-
certainties in the INTRANUKE hadronic intranuclear re-scattering simulation.
Numbers are for 1 σ of uncertainty. The systematic uncertainties are added in
quadrature to form the total uncertainty. A bug prevented the evaluation of
the ντ CC uncertainty, but the INTRANUKE contribution is negligible when
compared to the total ντ CC systematic error

tector. In addition to these errors, there are several additional systematic uncertainties

which exclusively affect the νe and ντ samples.

8.4.1 ντ Cross section

There is a large degree of uncertainty on the ντ cross section in the MINOS MC sim-

ulation. This uncertainty is 10% for deep inelastic scattering events, and rises to 50%

for quasielastic and resonance events [131] [133]. This results in an average cross section

uncertainty of approximately 45% for the ντ CC events considered in this analysis. The

large systematic error on the QE and RES interactions comes from uncertainties in the

cross section’s pseudoscalar form factor, which is otherwise negligible for νe and νµ CC

events. The ντ pseudoscalar form factor is well known for low values of Q2, but largely

unmeasured at the level of the MINOS experiment [132]. In addition to these cross sec-

tion uncertainties, the DIS error also includes uncertainties on other properties of the

ντ simulation such as the impact of τ polarization [133]. The overall uncertainty on the
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Figure 8.4: Fractional shift in the background prediction (including ντ CC)
due to uncertainty in the ντ cross section as a function of particle ID (LEM).
The fractional error is for a +1 σ shift on the cross section.

ντ CC cross section dominates the overall error on the ντ CC prediction. It is also large

enough to have a >1% effect on the overall background uncertainty. The fractional shift

on the total background LEM distribution due to the ντ CC cross section uncertainty is

shown in Figure 8.4.

8.4.2 νµ CC Spectrum Uncertainties

Several systematic errors also affect the underlying νµ CC spectrum that determines

the flux of the ντ and νe CC events. These errors impact the Far/Near extrapolation

ratio for the νµ CC Fiducial samples. To simulate these errors, the FD and ND MC νµ

CC Fiducial samples are shifted for the systematic error under consideration, and the

resulting effect on the FD prediction is calculated. The relevant systematic errors were

chosen from systematic error studies done for the νµ disappearance analysis [53]. These

errors include a 50% error on the number of NC events selected in the νµ CC sample,

and a 10% error on the νµ CC energy scale. The beam simulation errors in Section 8.3.1

and the cross section errors in Section 8.3.2 can also affect the νµ CC flux. The effects

of these νµ CC errors are summarized in Table 8.6.
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νµ CC Spectrum Errors

Syst. νe CC ντ CC

νµ FLUGG Reweight −0.01% −0.01%

νµ KNO 0.35% −0.25%

νµ M
QE
A −0.11% −0.37%

νµ M
RES
A 0.25% −0.64%

νµ SKZP −0.52% 0.08%

νµ Target Deg 0.01% −0.30%

CC Energy Shift 3.90% −0.92%

NC sample −0.55% −0.59%

Total 4.01% 1.86%

Table 8.6: The % shift in the LEM>0.70 prediction, for νe CC and ντ CC
appearance, due to various systematic uncertainties on the νµ CC fiducial sample.
Numbers are for 1 σ of uncertainty. The systematic uncertainties are added in
quadrature to form the total uncertainty.

8.4.3 CalDet and MRE

Data from the Calibration Detector (CalDet) and MRE samples are used to evaluate,

respectively, the uncertainty on the modeling of electromagnetic showers and the uncer-

tainty on the hadronic components of νe CC events. For the EM shower uncertainty, the

LEM PID is applied to data and Monte Carlo from electrons interacting in the Calibra-

tion Detector. A fitted version of this Data/MC ratio is then used to reweight the Far

Detector νe CC distribution as a function of true electron momentum. This correction

has a 1.4% effect on the predicted νe CC distribution. The MRE sample is used to place

a similar systematic uncertainty on the hadronic component of selected νe CC events by

shifting the νe selection efficiency within the statistical uncertainty on the Near Detector

Data/MC MRE correction [122]. This has a 1-2% effect on the νe CC distribution.

The MRE and CalDet errors were both incorporated into the analysis in the form of

a covariance matrix rather than a simple fractional error. This was done to account for

the fact that the MRE and CalDet systematic errors were essentially statistical errors,

and hence had 0% bin-to-bin correlations. For i = j, the elements of these matrices

were MMRE
ij = ∆MRE

i ∆MRE
j and MCalDet

ij = ∆CalDet
i ∆CalDet

j , where ∆
CalDet(MRE)
i is the

shift in bin i of the FD prediction due to a 1σ CalDet or MRE error shift. For i 6= j,

MMRE
ij = 0 and MCalDet

ij = 0. Both covariance matrices can then be added to the

larger covariance error matrix which is used in the fit described in the next chapter.
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When considered as part of a multi-bin fit, both errors had <0.1% effect on the analysis

sensitivity.

8.5 HOOHE errors

In order to evaluate the total error resulting from the HOOHE decomposition, all of

the Near Detector systematic errors were also evaluated for the Horn Off and High

Energy samples. These systematic errors were evaluated previously, for the covariance

matrix used to perform the HOOHE χ2 fit. For each extrapolation bin i (a bin of PID

and energy), the corresponding covariance matrix element for HOOHE uncertainty is

calculated as follows:

V HOOHE
ij =

∑
k

∑
m

(Pikσ
HOOHE
ik )(Pjmσ

HOOHE
jm ) (8.4)

In this covariance matrix, the full decomposition binning (energy × PID × Run ×
Background type) is summed over, rather than just the extrapolation binning. Therefore,

Pik is the prediction in extrapolation bin i for run and background type bin k (these two

variables are subsumed into a single subscript). σHOOHE
ik is the corresponding systematic

uncertainty in that decomposition bin; this error is taken from the earlier HOOHE χ2 fit

covariance matrix. This HOOHE systematic error covariance matrix is then incorporated

into the fit in the same manner as the CalDet and MRE errors. The HOOHE systematic

was found to have an effect of < 0.1% on the sensitivity.

8.6 Linear Fits to Systematic Error

Most of the systematic errors discussed in this chapter were either estimated by reweight-

ing existing Monte Carlo, or by reconstructing new Monte Carlo. In both cases, a lack

of statistics in the simulation can pose a problem. This is primarily an issue for the sys-

tematic errors requiring a new reconstructed MC sample, which is often smaller in size

than the nominal MC sample. To combat this lack of statistics, several of the systematic

errors were approximated with a linear fit for the analysis in this thesis.

Each systematic error was plotted as the fractional shift it produces in the FD signal

and background prediction, as a function of LEM PID (see Figures 8.1, 8.3, etc. for an

example). From examining these distributions, several systematic errors were found to

have a high degree of bin to bin fluctuation, particularly around the central 0% line.

These systematic uncertainties were the strip-to-strip, optical cross-talk, and isotropic 2
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body decay systematic errors. In each case, the fractional uncertainty was parametrized

with a linear fit as a function of PID value. All three systematic errors chosen were

essentially flat as a function of energy, so no additional linear fit along the energy axis

was required. In each case, the signal (νe CC) and background (NC + νµ CC + beam

νe CC + ντ CC) distributions were parametrized separately. It is necesary to separate

the signal systematic error, as its impact on the total prediction is dependent on θ13 and

δCP . Figure 8.5 shows the raw fractional uncertainty for each systematic error, along

with the linear fit. For each of these systematic errors, the final systematic error is taken

from this linear fit.

8.7 Total Systematic Error

The error band in Figure 8.6 shows the total systematic error on the ND MC distribution,

in comparison with ND and Monte Carlo distribution, as a function of LEM PID. Figure

8.7 shows the same, but for the LEM>0.70 reconstructed energy distribution. The

systematic error band amply covers the observed ND Data/MC discrepancy in nearly

all cases. When the Far/Near extrapolation is performed, however, most of these errors

are reduced to secondary effects, and total error drops drastically. Figures 8.8 and 8.9

again show background predictions for the LEM and reconstructed energy distributions,

with much-reduced systematic error bands. Finally, Table 8.7 provides a summary of

the total systematic error on the signal-enriched LEM>0.7 region. There is a total 4.8%

systematic uncertainty on the extrapolated NC, νµ CC, and beam νe CC prediction, a

46.6% uncertainty on the ντ CC prediction, and a 7.7% uncertainty on the signal νe

prediction.
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Figure 8.5: The three systematic errors shown above had a large degree of sta-
tistical fluctuation in their fractional errors, which required a linear parametriza-
tion. These systematic errors were the uncertainties on optical cross-talk (top),
strip-to-strip variations (middle), and AGKY isotropic 2 body decays (bottom).
The raw fractional shifts on the background prediction (black, including ντ CC)
and signal prediction (red) are shown as a function of particle ID (LEM), along
with the linear fits for each distribution (the dashed lines).
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Figure 8.6: The LEM PID distribution for Data (black line) versus Monte
Carlo (red line). The systematic error on the Monte Carlo is shown as a red
band. This plot is normalized to 1019 protons on target.
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Figure 8.7: The reconstructed energy (LEM>0.70) distribution for Data (black
line) versus Monte Carlo (red line). The systematic error on the Monte Carlo is
shown as a red band. This plot is normalized to 1019 protons on target.
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Figure 8.8: The FD prediction for the LEM PID distribution. The systematic
error on the prediction is shown as a blue band. This plot is normalized to
8.2× 1020 protons on target.
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Figure 8.9: The FD prediction for the reconstructed energy (LEM>0.70)
distribution. The systematic error on the prediction is shown as a blue band.
This plot is normalized to 8.2× 1020 protons on target.
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Summary of Systematic Errors

Syst. F/N Bkg. νe CC ντ CC

Normalization 2.00% 2.40% 2.40%

Optical Cross-talk 0.05% 0.20% 0.05%

Calibration 4.11% 4.44% 10.71%

AGKY Model 1.14% 2.84% −0.76%

INUKE Model 0.66% 3.05% −
Cross Sections 0.22% − 45.20%

Beam Model 0.75% − −
νµ CC Spectrum − 4.01% 1.86%

Total Error 4.82% 7.68% 46.56%

Table 8.7: Total effect of systematic uncertainties on the components of the
LEM >0.70 prediction, divided into in various categories of systematic error.
The uncertainties are added in quadrature to calculate the total systematic error.
Error values denoted by “−” indicate that the systematic error was not evaluated
for that event type. The INTRANUKE uncertainties were not evaluated at all for
ντ CC events, due to a technical problem. The νe CC cross section uncertainties,
and the νe and ντ CC beam model uncertainties are evaluated via the underlying
νµ CC Spectrum uncertainties.



Chapter 9

Fitting the Far Detector Data

Because the value of θ13 is expected to be small, and the amount of background contami-

nation in the selected sample is significant, it is important to extract as much information

as possible out of the Far Detector Data. The first two published versions of the MINOS

νe appearance analysis were counting experiments, in which a single total number of

observed events passing a PID cut (ANN11 > 0.70) was compared to an expected num-

ber of background events. As will be shown in this chapter, fitting in multiple bins (of

PID and energy) increases sensitivity to sin2(2θ13) by 14%. This is a gain in sensitivity

comparable to that obtained by using the LEM particle ID.

The fit described in this chapter was developed by the author for the 2011 MINOS

νe published analysis and expanded upon for this thesis. This chapter will describe

both the methods used in the fit, and the choice of optimal binning. At the end of this

chapter, the projected sensitivity of this analysis to sin2(2θ13) is described.

9.1 Fitting Methodology

The number of both signal and background events involved in this analysis is small.

This means that it is not possible to use a standard χ2 fit, minimizing:

χ2 =
∑

i

(ni − µi)
2

µi

(9.1)

Instead, a likelihood method based on Poisson statistics is used. The negative of the

logarithm of the likelihood is defined as:

− lnL = −
∑

i

ln(
µni

i e
−µi

ni!
) =

∑
i

ln(ni!) + µi − ni lnµi (9.2)

155
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where µi is the expected number of events and ni is the observed number of events in bin

i. This can re-written as a likelihood ratio by subtracting out the constant self-likelihood

lnL({ni}; {ni}). The expression can then be written as follows:

− lnL→ − lnL = (− lnL({ni}; {µi}))− (− lnL({ni}; {ni}))

=
∑

i

(ln(ni!) + µi − ni lnµi)−
∑

i

(ln(ni!) + ni − ni lnni)

=
nbins∑
i=0

µi − ni + ni ln(ni)− ni ln(µi) (9.3)

This form of the likelihood has the advantage that, in the high-statistics limit, −2 lnL

will approximate to a χ2 distribution:

−2 lnL ≈
∑

i

(ni − µi)
2

µi

= χ2 (9.4)

A fit using −2 lnL from Equation 9.3 will therefore be used in this analysis.

9.1.1 Some notes about methodology

The data distribution {ni} is constant. In this thesis, {µi} is the background predic-

tion, with a signal component dependent on sin2(2θ13) and δCP . For the fit, −2 lnL

is calculated as a function of sin2(2θ13) (for a given value of δCP ). From this range

of values, the minimum −2 lnLmin is found. The value of sin2(2θ13) at this minimum

is the best fit. This minimum is then subtracted to form a surface of −2∆ lnL =

(−2 lnL) − (−2 lnLmin) as a function of sin2(2θ13). It can be shown that in the Gaus-

sian limit for an estimate of a single parameter, 90% of the probability density function

for that parameter lies within the area demarcated by −2∆ lnL ≤ 2.71 [135]. This

analysis has little sensitivity to δCP . In this chapter, for the purposes of determining

the binning which optimizes the sensitivity to sin2 2θ13, the fit will be performed in

one dimension, with δCP assumed equal to 0. This chapter will also consider only the

sensitivity for the Normal Hierarchy.

This chapter will assess the performance of the fit using two separate variables:

Projected Sensitivity This variable assesses the physics reach of a fit. The observed

distribution {ni} is chosen to be the prediction for θ13 = 0 (i.e., the background-

only prediction). The resulting upper 90% CL for sin2(2θ13) is then calculated.

This upper 90% CL is the projected sensitivity. A smaller projected sensitivity is

desirable, as it indicates that a fit is capable of placing a tighter limit on sin2(2θ13).
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Null Exclusion This variable assesses the ability to reject the null hypothesis of θ13 =

0. {ni} is chosen to be the prediction for background plus a non-zero signal with

sin2(2θ13) = 0.10. The fit is performed, and the value of −2∆ lnL at θ13 = 0

is calculated. This value of −2∆ lnL is the null exclusion. A larger exclusion

indicates that a given fit can better distinguish a non-zero νe appearance signal

from θ13 = 0.

9.2 Incorporation of Systematic Error

Two methods were explored for introducing systematic errors into the likelihood fit. The

first method uses a single nuisance parameter for each separate systematic error:

−2 lnL =
nbins∑
i=0

[µ′i − ni + ni ln(ni)− ni ln(µ′i)] +
∑

k

f 2
k

2
(9.5)

µ′i = bi + si +
∑

k

fk(biσ
b
ik + siσ

s
ik) (9.6)

where bi and si are the respective background and signal predictions in fitting bin i, σb
ik

and σs
ik are the fractional errors on background and signal due to systematic error k, and

fk is a nuisance parameter scaling systematic error k. The values of the fk parameters

are determined in the MINUIT[136] minimization of Equation 9.5. This method will be

referred to throughout this chapter as the nuisance parameter method. There are both

advantages and disadvantages to this method. The first disadvantage is the processing

time. As described in the previous chapter, over forty separate systematic errors are

considered in the analysis. Each time the likelihood is calculated, Equation 9.5 must be

minimized for each of the systematic error nuisance parameters fk. Second, this method

also assumes 100% bin-to-bin correlations for each systematic error. This is not an

unreasonable assumption, given that most of the systematic errors are approximated by

shifting the whole Monte Carlo distribution by one standard deviation. However, there

are a few systematic errors for which the bin-to-bin correlations are not 100%. These

include the HOOHE, MRE, and CalDet systematic uncertainties. Another method must

be devised for incorporating these systematic errors.

A second method of introducing systematic error addresses both of these concerns.

Although the fit statistics are Poisson, one can assume that the systematic errors under

consideration behave according to Gaussian statistics. One can therefore calculate a
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systematic error covariance matrix Vij:

Vij =
∑

k

∆k
i ∆

k
j (9.7)

where ∆k
i is a change in the prediction in bin i due to a +1σ shift in systematic error

k. This matrix includes contributions from each of the fractional systematic errors

in Chapter 8, as well as contributions from the HOOHE, MRE, and CalDet covariance

matrices. This covariance matrix is then employed in a modified version of the likelihood

fit:

−2 lnL =
nbins∑
i=0

[µ′i − ni + ni ln(ni)− ni ln(µ′i)] +
1

2
fTV −1f (9.8)

µ′i = µi + fi (9.9)

Equation 9.8 is minimized with respect to the nuisance parameters fi (in a vector f)

which now correspond to fitting bin i. This method will be referred to throughout this

chapter as the bin-by-bin method. The bin-by-bin method carries the advantage of only

having as many nuisance parameters as there are bins. If few bins are used, the fitting

time is reduced, and additional systematic errors can be added with little impact on

speed. Additionally, the HOOHE, MRE, and CalDet errors can be incorporated directly

into the covariance matrix. There are several possible downsides to using this method.

First, when too few systematic errors are included in the sum in Equation 9.7, the

covariance matrix V can be nearly singular and inversion is subject to numerical issues.

Second, when a large number of bins are used (e.g., if energy binning is incorporated

into the fit), the method loses its speed advantage. Matrix inversion difficulties also

occur more frequently as the size of the matrix is increased.

When a large number of systematic errors are used with a smaller number of fitting

bins, the methods in Equations 9.8 and 9.5 produce essentially the same result. The

needs of an individual binning scheme will therefore drive the choice of method.

9.3 Choosing an appropriate binning

In the binning optimization studies which follow, a PORP decomposition is used to make

the background and signal predictions. These studies also ignore systematic errors on the

νµ CC fiducial flux, as the inclusion of these errors is time-consuming. CalDet, HOOHE,

and MRE systematic errors are also disregarded, as these covariance matrices must be
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re-calculated for any new binning. As will be shown in Section 9.4, not including these

errors has little impact on the final sensitivity. Due to the instability of the bin-by-bin

covariance matrix method (Equation 9.8), the nuisance parameter method (Equation

9.5) is used to include systematic error.

9.3.1 An optimized single-bin LEM cut

While the final result in this thesis will be a multiple-bin likelihood fit, it is desirable to

use a single-bin fit as a cross-check to the main analysis. This is the counting experiment

style of fit used in the two previous MINOS published analyses. For this counting

experiment, cuts were studied in increments of 0.05 between 0.55 and 0.90. Table 9.1

shows the resulting projected sensitivity and null exclusion for the various LEM cuts. A

cut at LEM>0.7 is found to give the best projected sensitivity (the lowest upper 90%

Confidence Level). This cut is a different from the earlier optimum LEM>0.76 cut, due

to the inclusion of the true LEM systematic error.

Binning Projected Sensitivity Null Exclusion

LEM>0.55 0.0743 4.63

LEM>0.60 0.0708 5.07

LEM>0.65 0.0684 5.44

LEM>0.70 0.0659 5.81

LEM>0.75 0.0667 5.89

LEM>0.80 0.0728 5.22

LEM>0.85 0.0983 3.38

LEM>0.90 0.1875 2.23

Table 9.1: Sensitivity for various single-bin LEM cuts. The first column lists the
LEM PID cut. The second column shows the 90% CL projected sensitivity for
sin2 2θ13. The third column shows the expected exclusion of the null hypothesis
(θ13 = 0) in terms of −2∆ lnL. Systematic errors are incorporated using the
nuisance parameter method (Equation 9.5), and all predictions are calculated
using PORP, for an exposure of 8.2× 1020 POT.

9.3.2 Fitting in bins of Particle ID

Prior to the work in this thesis, studies had suggested [138] that the most gain in pro-

jected sensitivity came from fitting in multiple bins of PID, rather than bins of energy.
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Therefore, the PID binning will be considered first. There are a number of different ways

to approach this PID binning. First, one can perform a true shape fit, incorporating the

full PID range from 0 to 1.0. This incorporates all of the available information in the

PID distribution, allowing for the differentiation of a shape-dependent signal and the

normalization. A potential downside of this approach is the relative lack of systematic

error information for the lower PID range. The systematic errors chosen for this analysis

concentrated on uncertainties in the νe CC-like region, rather than the background-like

sample. The ND Data/MC discrepancy on the low end of the PID distribution is less well

understood. A second option is therefore to confine the PID binning to the signal-like

LEM>0.50 region.

Too fine a PID binning may simply increase processing time with no accompanying

gain in sensitivity. With this in mind, several PID binnings are considered:

• LEM>0.7

• 2 bin full-shape fit with bin edges: {0, 0.7, 1.0}

• 3 bin full shape fit: {0, 0.35, 0.65, 1.0}

• 5 bin full shape fit: {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}

• 8 bin full shape fit: {0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0}

• 10 bin full shape fit: {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

• High PID 3 bin fit: {0.6, 0.7, 0.8, 1.0}

The eight bin full shape fit uses a larger first and last bin to account for lack of statistics

in the LEM<0.1 and LEM>0.9 regions. The three bins confined to the high PID region,

{0.6, 0.7, 0.8, 1.0}, were chosen from an exhaustive scan of the LEM>0.50 region, which

considered combinations of two, three, and four bins [139] [140].

Table 9.2 lists the resulting projected sensitivity and null exclusion for each of the

binnings. The high PID three bin fit has a better sensitivity than any of the binnings,

with the exception of the eight and ten bin cases. The eight bin fit gives an additional 2%

improvement in sensitivity over this binning. However, there is essentially no difference

between the full 10 bin fit and the 8 bin fit.

The full PID eight bin fit is therefore chosen as the PID binning for this analysis.

The high PID three bin fit, which was used in the published version of the analysis (see

Appendix A), will be used as a cross-check, along with the LEM>0.7 single-bin cut.
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Binning Projected Sensitivity Null Exclusion

0.7, 1.0 0.0659 5.81

0, 0.7, 1.0 0.0634 6.22

Full PID, 3 bins 0.0660 5.75

High PID 3 bins: {0.6, 0.7, 0.8, 1.0} 0.0586 7.19

Full PID, 5 bins 0.0590 7.08

Full PID, 8 bins 0.0574 7.40

Full PID, 10 bins 0.0572 7.41

Table 9.2: Sensitivity for various LEM-only binnings. The first column lists
the binning. The second column shows the 90% CL projected sensitivity for
sin2 2θ13. The third column shows the expected −2∆ lnL exclusion of the null
θ13=0 hypothesis for sin2(2θ13) = 0.1. Systematic errors are incorporated via the
nuisance parameter method (Equation 9.5), and all predictions are calculated
using PORP, for an exposure of 8.2× 1020 POT.

9.3.3 Fitting in Energy

Fitting in multiple bins of LEM provides a significant improvement in sensitivity. How-

ever, additional information may be gained from fitting in bins of energy as well. Table

9.3 shows the results of combining the three LEM binnings (single cut, three bin, and

eight bin) with various reconstructed energy binnings. The decomposition binning, with

edges {1, 2, 3, 4, 5, 8} (in GeV), gives both the best projected sensitivity reach and

the best null exclusion. The total improvement from introducing this binning is on the

order of 1 − 2% - small, compared to the 14% improvement gained by optimizing the

LEM binning. The reason for this small improvement can be seen in Figure 9.1, which

shows Signal/Background as a function of LEM binning and energy binning. While S/B

varies strongly with LEM binning, the relationship is much flatter with energy.

The above results suggest that fitting in both energy and PID provides the greatest

sensitivity. A combined PID and energy fit uses all available shape information and is

capable of accounting for non-standard PID and energy distributions in the data. The

decision was therefore made to fit in 40 separate bins: eight bins of LEM PID with edges

{0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0}, and five bins of reconstructed energy with edges

(in GeV) {1, 2, 3, 4, 5, 8}. Once this binning was chosen, a full HOOHE decomposition

and formal extrapolation was performed for the 8 LEM × 5 E binning. The remainder

of the studies used in this chapter use this full extrapolation.
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and Reconstructed Energy binning (bottom). The predictions for signal and
background are made as projections of an 8 LEM × 5 E bin extrapolation, with
a CHOOZ-size signal.
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LEM Bins E Bins Projected Sensitivity Null Exclusion

LEM>0.70 1 8 0.0659 5.81

LEM>0.70 1 5 8 0.0652 5.92

LEM>0.70 1 3 5 8 0.0653 5.92

LEM>0.70 1 2 3 4 5 8 0.0651 5.96

LEM 3 bin 1 8 0.0585 7.19

LEM 3 bin 1 5 8 0.0580 7.31

LEM 3 bin 1 3 5 8 0.0583 7.26

LEM 3 bin 1 2 3 4 5 8 0.0580 7.32

LEM 8 bin 1 8 0.0574 7.40

LEM 8 bin 1 5 8 0.0569 7.54

LEM 8 bin 1 3 5 8 0.0571 7.49

LEM 8 bin 1 2 3 4 5 8 0.0568 7.56

Table 9.3: Sensitivity for various combinations of LEM and Energy binning.
The first column lists the PID binning, and the second column the bin edges for
energy binning (in GeV). The third column shows the 90% CL projected sensi-
tivity for sin2 2θ13. The fourth column shows the −2∆ lnL exclusion of the null
hypothesis (θ13=0). Systematic errors are incorporated with the nuisance pa-
rameter method (Equation 9.5), and all predictions are calculated using PORP,
for an exposure of 8.2× 1020 POT.

9.4 Systematic Error

In the previous chapter, 49 separate sources of systematic error were identified, and the

fractional error on the LEM>0.7 signal-enhanced region determined. For a multiple bin

fit, the shape information of the individual systematic errors also becomes important.

To assess the impact of systematic error k on the 8× 5 bin fit, the projected sensitivity

and null exclusion are calculated when k is the only systematic error in the fit. These

values are then compared to the sensitivity of a statistics-only fit, and the fractional

change in the projected sensitivity and in the null exclusion due to systematic error

k are calculated. The average of these two values is taken to characterize the loss in

sensitivity incurred by that particular systematic error.

This sensitivity loss was determined for 46 of the total 49 systematic errors, using the

nuisance parameter method (the bin-by-bin method is unreliable when only one or two

systematic errors are present). The inversion of the HOOHE, CalDet and MRE covari-

ance matrices failed for the 8× 5 binning, so these matrices were again ignored. Indeed,
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computational inaccuracies in the inversion of the near-singular 40×40 covariance matrix

caused the bin-by-bin method to fail in general for this binning.

The systematic errors were sorted into nine different groups of five systematics each,

in descending order of their impact on the sensitivity. These groups are listed in Table

9.4. The five systematic errors having the largest impact on the 8× 5 bin analysis were

found to be: Normalization, Near and Far Relative Energy Scales, Absolute Energy

Scale and ντ cross-section. These sets of error were added cumulatively to the likelihood

fit, and the total loss in sensitivity assessed after each step. When all of the errors

are included in the fit, there is a loss in projected sensitivity of approximately 10%,

from sin2(2θ13) = 0.0528 to 0.0584. Figure 9.2 shows the fraction of this total loss in

sensitivity achieved after adding each group of five systematic errors. After including the

15 largest systematic errors, 98% of the total systematic error effect has been accounted

for. After twenty five errors have been added, this fraction is greater than 99%.

Of the 46 total non-covariance matrix systematic errors, therefore, less than half

make up 99% of the total systematic error effect. However, all 46 errors were retained

for the fit, as the processing time remained manageable. This study, however, provided

validation of the decision to neglect the MRE, CalDet, and HOOHE errors. Because

of technical difficulties in inverting the covariance matrix for the 8 × 5 binning, the

3 × 5 binning was used instead to evaluate the impact of these errors. This is a valid

comparison: an identical study by the author [141] assessed sensitivity losses in the 3×5

binning and found a ranking nearly identical to that in Table 9.4. The impact of the

HOOHE, CalDet, and MRE errors on the sensitivity of the 3 × 5 fit is shown in Table

9.5. In all cases, the errors have a negligible effect on sensitivity, smaller than most of

systematic errors in 9.4. They can therefore be safely disregarded in the LEM 8 × 5

binning.

An alternate method of assessing the impact of systematic error on the analysis is to

look at the change in the fit result when a modified version of the prediction is used as the

observed distribution {ni}. The nominal observed 8× 5 bin distribution is chosen to be

the background prediction with signal at sin2(2θ13)=0.10. The best fit, upper 90% CL,

and null exclusion are calculated for this distribution. Next, this observed distribution

is reweighted with a +1σ systematic error shift on the signal and background, and the

new best fit, upper 90% CL and exclusion at zero are calculated. These values are then

compared to the nominal fit. This study was performed for the five largest systematic

errors (Group 1 in Table 9.4), with the results listed in Table 9.6. The best fits of the

shifted distributions all remain within 10% of the nominal value. The upper 90% CL

and null exclusion show a similar degree of variation.
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9.5 Projected Sensitivity

The final result of this analysis will be obtained with a fit to the data, in 8 PID bins

covering the full PID distribution and 5 reconstructed energy bins. The signal and

background predictions in each of the 40 fit bins are shown in Figure 9.3, and the

resulting signal/background ratio in Figure 9.4. The projected sensitivity of the 8 LEM

× 5 E bin fit is now determined using the full HOOHE extrapolation and the full set

of systematic errors. The high-PID 3 LEM × 5 E bin fit and a LEM>0.7 counting

experiment fit (with only one energy bin) will be used as cross-checks. Table 9.7 lists

the projected sensitivity for the Normal Hierarchy for these three binnings. For the sake

of comparison, the sensitivity of ANN11>0.7 is also shown.

Figure 9.5 shows the full 2D projected sensitivity contours for each of these fits. This

plot shows how the sensitivity of this analysis has been improved relative to the ANN11

single bin fit. Employing a multiple bin shape fit provides an improvement in sensitivity

comparable to that of using the LEM PID rather than ANN11. The gain from going

from ANN11 to LEM is approximately 14%, while the gain from LEM>0.7 to 8 LEM

× 5 E bins is also approximately 14%. The analysis improvements in this thesis have

increased the MINOS sensitivity to sin2(2θ13) by a total of 27% - a gain in sensitivity

equivalent to a 54% increase in data. As shown in Figure 9.6, the new 8×5 fit reaches a

sensitivity well below the CHOOZ limit, for both the Normal and Inverted Hierarchy.
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% of Total Sensi-
tivity Loss

Systematic Errors in Group

Group 1: 84.88%

Background Normalization, Relative E. Scale (ND),

ντ Cross-section, Absolute Energy Scale,

Relative E. Scale (FD)

Group 2: 6.42%

INUKE 2, AGKY (Multiplicity Correlations),

INUKE 7, Gain (FD),

FLUGG

Group 3: 6.12%

AGKY (Isotropic 2 Body Decay), CC Energy Shift

INUKE 5, Optical Crosstalk,

INUKE 9

Group 4: 1.15%

νe Normalization, AGKY (π0 Selection −1σ)

AGKY (π0 Selection +1σ), Attenuation,

Gain (ND)

Group 5: 0.72%

INUKE 8, INUKE 1,

Target Degradation, Strip to Strip,

AGKY (Baryon xf selection)

Group 6: 0.30%

INUKE 3, INUKE 0,

ντ Normalization, EM vs. Had. Energy Scale,

Hadron Multiplicity

Group 7: 0.25%

MRES
A , INUKE 6,

CCSigNC, KNO,

νµ CC SKZP

Group 8: 0.13%

AGKY (pT Squeezing), INUKE 4,

SKZP, AGKY (Implementation Ambiguities),

νµ CC KNO

Group 9: 0.02%

νµ CC MQE
A , νµ CC MRES

A ,

Linearity, νµ CC Target Degradation,

MQE
A , νµ CC FLUGG

Table 9.4: Systematic errors, sorted into various groups based on their impact
on the sensitivity of the LEM 8×5 bin fit. Group 1 has the largest impact, while
Group 9 has the smallest input. The number in the left hand column indicates
what percentage of the total loss in sensitivity is caused by the systematics in
that group.
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Systematic Errors

Performance Measure Statistics
only

HOOHE CalDet +
HOOHE

MRE +
HOOHE

Projected Sensitivity: 0.05440 0.05442 0.05442 0.05442

Null Exclusion 8.348 8.343 8.343 8.343

Table 9.5: Impact of the three covariance matrix errors (HOOHE, CalDet,
and MRE) on the 3 LEM × 5 E bin fit.

Systematic Error Best Fit Upper 90% CL Null Exclusion

Nominal 0.100 0.180 7.47

Normalization 0.104 0.188 8.36

Absolute Energy Scale 0.107 0.187 8.60

Rel. Energy Scale (FD) 0.103 0.183 7.84

Rel. Energy Scale (ND) 0.093 0.172 6.66

ντ Cross-section 0.106 0.187 8.21

Table 9.6: Best fit, upper 90% CL, and exclusion at zero for 8 LEM × 5
E bin fit, both for a nominal observed distribution with sin2(2θ13) = 0.10 and
for distrubutions shifted by +1σ. The upper 90% CL and best fit are values of
sin2 2θ13. The null exclusion is a value of −2∆ lnL.

Binning Projected Sensitivity

ANN11>0.70 0.0792

LEM>0.70 0.0683

3 LEM × 5 E bins 0.0594

8 LEM × 5 E bins 0.0584

Table 9.7: Projected sensitivities, i.e. the upper 90% CL for a background-
only observation, for four separate binnings. The fits are performed using the
full set of systematic errors (minos MRE, CalDet, and HOOHE).
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Chapter 10

The Far Detector Data

Nearly all of the studies outlined in the previous chapters have used ND Monte Carlo, FD

Monte Carlo, and ND Data. Prior to this point, the Far Detector Data in the νe analysis

region has been left blinded, to avoid possible analysis bias. With the analysis procedure

finalized, the Far Detector Data can finally be examined. This chapter describes the

unblinding procedure and the interpretation of the FD Data using the analysis framework

developed in this thesis. The first two sections describe two final sideband cross-checks

which were carried out before the data in the νe analysis region were studied.

10.1 Sideband 1: The Anti-PID sideband

The Anti-PID sideband tests the ability of the analysis (the PID, decomposition, and

extrapolation) to predict the FD Data in the lower end of the PID region. Even for

sin2(2θ13) = 0.16, the Signal/Background ratio in all bins in this region is less than

approximately 0.1. A cut of LEM<0.50 has a FOM of Nsig/
√
Nbkg = 11.4/

√
373.3 =

0.57. In comparison, the signal-like LEM>0.70 region has a FOM of 30.3/
√

49.1 = 4.3.

This sample is therefore safe to use as a sideband to the main analysis.

The data in the LEM<0.50 sideband are compared with the prediction for both a

no-signal case, sin2(2θ13) = 0, and with a signal at sin2(2θ13) = 0.16. Comparisons of

the Anti-PID prediction and data are shown in Figure 10.1. 377 events in total are

observed, versus a prediction of both 373.3 events for sin2(2θ13) = 0, and 384.4 events

for sin2(2θ13) = 0.16.

The agreement between the Anti-PID data and prediction distributions is then as-

sessed. The log-likelihood of the data distribution compared to the prediction is first

calculated. To assess the significance of this log-likelihood, 10,000 toy Monte Carlo

experiments are then generated by applying Poisson fluctuations to the predicted dis-
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tribution. The log-likelihood of the data is then compared to that obtained from the

toy experiments. For experiments generated from the sin2(2θ13) = 0 prediction, 86% of

experiments have a better likelihood than the data. For experiments generated from the

sin2(2θ13) = 0.16 prediction, 87% of experiments have a better likelihood than the data.

This is an acceptable degree of variation between the Anti-PID FD data and prediction,

which could have easily been produced by statistical fluctuation.

10.2 Sideband 2: The MRCC Sideband

While the Anti-PID sideband adequately tests the decomposition and extrapolation,

it does not test the analysis for hadronic showers in the high PID signal-like region,

where there is known to be a greater than 20% discrepancy between ND Data and MC.

The Muon Removed Charge Current (MRCC) sample tests the analysis for these types

of events. The MRCC sample is very similar to the MRE sample. A muon removal

algorithm [142] is used to remove the tracks from νµ CC events. This leaves behind a

sample of hadronic showers. Because the sample is designed to contain events which were

originally νµ CC events, there is no chance of accidentally observing a νe appearance

signal in the MRCC FD Data. The sideband can therefore be used to check that the

Data/MC discrepancy observed in the Near Detector is also present in the Far Detector.

If this is not the case, it indicates that there is some unidentified difference between the

two detectors which must be accounted for in the analysis.

For this sideband, the ND Data MRCC distribution is extrapolated to form a FD

MRCC prediction, which is then compared to the MRCC FD Data. This side band is

then evaluated in two ways. First, the statistical goodness-of-fit between the MRCC

Data and Prediction is calculated. Second, the multiple bin likelihood fit is applied to

the MRCC data, to determine the extent to which the MRCC FD Data mimics a signal.

Prior to studying this sideband, the acceptable level of agreement between the prediction

and data was defined to be 2σ.

10.2.1 MRCC Prediction vs. Data

A series of cuts is applied to the muon-removed ND and FD Data and MC to produce

the MRCC sample. These cuts are listed in Table 10.1. An initial round of MRCC

Preselection cuts are first applied. These cuts ensure data quality. They also include

a series of cuts taken from the νµ CC disappearance analysis which ensure that the

original event was a golden νµ CC event with a definite muon track. An MRCC fiducial



The Far Detector Data 175

LEM PID
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 P
o

T
20

10×
E

ve
n

ts
 / 

8.
2

0

20

40

60

80

100

120

140

160

=0CPδ>0, 2
32m∆)=0.16, 13θ(22sin

Signal
Background
Data

LEM PID
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 P
o

T
20

10×
E

ve
n

ts
 / 

8.
2

0

20

40

60

80

100

120

140

160

Reco. E (GeV)
2 4 6 8

 P
o

T
20

10×
E

ve
n

ts
 / 

G
eV

 / 
8.

2

0

50

100

150

=0CPδ>0, 2
32m∆)=0.16, 13θ(22sin

Signal
Background
Data

Reco. E (GeV)
2 4 6 8

 P
o

T
20

10×
E

ve
n

ts
 / 

G
eV

 / 
8.

2

0

50

100

150

Figure 10.1: The Anti-PID sideband. The top plot shows the LEM PID distri-
bution, with only the Far Detector data bins in the Anti-PID region (LEM<0.50)
opened. The bottom plot shows the reconstructed energy prediction and data
for LEM<0.5. The expected signal for sin2(2θ13) = 0.16 is also shown.
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cut (slightly more relaxed than the νe analysis version) is also applied to the event vertex.

The reconstructed energy of the events after muon removal is constrained to be within

the standard νe analysis Preselection range of 1.0 to 8.0 GeV. Following this MRCC

Preselection, the standard νe Fiducial and Preselection cuts are applied. Finally, the

PID selection is applied, and the events are sorted into the 8 LEM × 5 E binning.

MRCC Preselection

Data Quality

L010185N running

Event successfully muon removed

Beam quality cuts (data only)

Detector quality cuts (data only)

Largest event in snarl (FD only)

Event Energy
1.0 GeV < Reco. Energy < 8.0 GeV

Sorted into binning {1.0, 2.0, 3.0, 4.0, 5.0, 8.0} (GeV)

MRCC Fiducial Original event within MRCC fiducial volume

MRCC Preselection

Has a track

Track pass fit

Original roCC PID > 0.3

Standard Preselection

νe Fiducial MRCC event within νe fiducial volume

Cosmic Cuts

Event slope < 10

Angle of any track > 0.6

Distance between start and end of any track < 2 m

νe Preselection

Track-like planes < 16

Track Planes < 25

Contiguous Planes > 4

Number of Showers > 0

PID Selection

νe PID
LEM PID, with binning:

{0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0}

Table 10.1: The series of cuts used in the MRCC sideband. The MRCC
Preselection cuts are used to make the MRCC sample itself. The Standard
Preselection and PID cuts are identical to what is used in the standard analysis.

Because the MRCC ND Data consist almost entirely of νµ CC events, there is no
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need for a decomposition. Following selection cuts, the ND Data are extrapolated to

the Far Detector as follows:

Pij = NLEM,ij
Data × FLEM,ij

MC

NLEM,ij
MC

× MRCCData

MRCCPred
(10.1)

where Pij is the MRCC FD prediction for LEM bin i and Energy bin j, NLEM,ij
Data is the

ND Data MRCC Selection, and NLEM,ij
MC and FLEM,ij

MC are the ND and FD MC selections,

respectively. MRCCData is the MRCC Preselection for the FD Data, and MRCCPred is

the predicted MRCC Preselection, defined as follows:

MRCCPred =
∑

j

MRCCj
ND Data ×

MRCCj
FD MC

MRCCj
ND MC

(10.2)

where MRCCj
ND Data is the MRCC Preselected ND Data selection in energy bin j, and

MRCCj
ND(FD) MC the same but for the ND (FD) Monte Carlo.

The MRCC Preselection correction in Equation 10.2 ensures that the correct number

of events are predicted at the level of the MRCC Preselection. This is necessary, due to

the presence of a known Far Detector excess in the MRCC Preselection sample discovered

[143] in Run 3. This thesis is only concerned with the behavior of νe CC-like events,

rather than that of νµ CC-like events. Therefore, the above correction is made to mitigate

the effects of this discrepancy.

The extrapolation in Equation 10.1 is performed to make an MRCC prediction in

the standard 8×5 binning. This extrapolation is performed separately for the three data

runs and summed. This prediction is then compared to the unblinded MRCC FD Data.

The resulting LEM, Energy, and 40 bin distributions are shown in Figures 10.2, 10.3,

and 10.4. The goodness of fit was assessed using toy MC experiments, in the same

manner as the Anti-PID sideband. For the full 8 × 5 distribution, 80% of experiments

had a better absolute likelihood, an acceptable level of agreement. As a cross-check,

88% of experiments had a better absolute likelihood for the 3×5 binning. If a cut of

LEM>0.70 is applied, 50.7 events are predicted and 64 observed, a 1.87 σ discrepancy.

There is therefore an acceptable level of agreement between the prediction and data

for the MRCC distribution. Note also that the significance of the above numbers is

somewhat exagerrated, as none of these tests considered the systematic error on the

MRCC sample.
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Figure 10.2: MRCC Far Detector Prediction (red) versus Data (black) for the
Full PID distribution for the LEM 8×5 E bin extrapolation.

10.2.2 MRCC: Multiple Bin Fit Studies

A second way to evaluate the MRCC sideband is to test how well the FD Data events

mimic a signal when a multiple bin fit is conducted. The MRCC sideband contains

no signal by design. The MRCC FD Data is instead fitted to the MRCC prediction

plus an injected signal-like term which varies with θ13: f(θ13) = MRCC Prediction +

Signal(θ13). Signal(θ13) is simply the standard νe signal prediction. When the MRCC

FD Data is fitted to f(θ13), the best fit should be consistent with the null hypothesis of

θ13 = 0.

The significance of this fit is assessed with a toy MC study, similar to that used in

the Feldman-Cousin method [144]. Systematic errors are not considered in this analysis

in either fitting or generating toy experiments, as the relationship between the Standard

and (νµ CC based) MRCC systematic errors is not well understood. The fit itself is a

modified version of the likelihood fitting code described in the previous section. The

steps for this analysis are as follows:
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Figure 10.3: MRCC Far Detector Prediction (red) versus Data (black) for
Reconstructed Energy.

1. The likelihood ratio of the data is calculated as a function of θ13 using:

−2 lnLData =
nbins∑
i=0

µi − ni + ni ln(ni)− ni ln(µi) (10.3)

The best fit θbest
13 is located from the minimum likelihood ratio −2 lnLData

min .

2. The null exclusion, −2∆ lnLData at θ13 = 0 (i.e., for the MRCC Prediction), is

calculated:

−2∆ lnLData = −2 lnLData
0 − (−2 lnLData

min ) (10.4)

where −2 lnLData
0 is the likelihood at θ13 = 0.

3. The MRCC prediction is fluctuated using Poisson statistics to produce 10,000

pseudo-experiments.

4. Steps 1 and 2 are repeated with the pseudo-experiments in place of the Data, so

that −2∆ lnL and best fit θbest
13 are found for each of the experiments.
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5. The fraction fL of experiments for which −2∆ lnL ≤ −2∆ lnLData is calculated.

The fraction of experiments fθ13 for which θbest
13 ≤ θbest,Data

13 is also found.

The value fL is the Confidence Level of a non-zero “signal.” It can be interpreted as

the probability that the fitted excess is real, rather than a fluctuation. The value fθ13 is

the probability that a random fluctuation in the data would be fit to a smaller signal.

Notably, both of these quantities are single-sided distributions, so that the cutoff for 2σ

is 97.7%. The values of fL and fθ13 for both an 8× 5 and 3× 5 bin fit to the MRCC are

listed in Table 10.2. The two variables fL and fθ13 give similar results. For the full shape

distribution, fL = 92.2% permits the inclusion of θ13 = 0 at 1.51σ. This is an acceptable

level of agreement with the prediction.

Quantity LEM 3×5 bin LEM Full PID

Best Fit sin2 2θbest
13 0.030 0.032

−2∆ lnL at θ13 = 0 1.85 2.11

fL 92.2% 93.5%

Significance 1.42 σ 1.51 σ

fθ13 92.2% 93.7%

Significance 1.42 σ 1.53 σ

Table 10.2: Results of the toy MC study carried out for the MRCC sideband.
fL is the fraction of pseudo-experiments with a better fit to the prediction than
the Data. fθ13 is the fraction of pseudo-experiments which have a smaller signal-
like excess. Not that this study did not include systematic error.

While the excess is below 2σ, it is also still somewhat high, with fL and fθ13 being

greater than 90%. The significance of this excess is reduced somewhat by the fact that all

of the above MRCC studies were statistics-only, and did not consider systematic error.

The systematic uncertainty on the MRCC sample is not well understood, but will be

different from that affecting the standard sample. Some of this systematic uncertainty

will result, for example, from the muon removal algorithm and from the cuts used in the

creation of the MRCC sample itself. An exhaustive series of tests were also conducted on

the MRCC sample, to attempt to discover the source of the excess. These tests looked

for pathologies in numerous variable distributions, for position biases, for problems in

the muon removal process, etc. In the end, it was concluded that the excess was a

statistical fluctuation.
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Figure 10.5: Far/Near ratio of Preselected MINOS data as a function of time.
The dashed lines separate data into (in order) running periods 1, 2, 3, 4+5, and
6. Plot provided by Mhair Orchanian.

10.3 Opening the Data

Once the two sidebands have been checked, the analysis in this thesis is considered

to be finalized, and the FD Data over the full PID range can be unblinded. Low-

level distributions showing event timing, the physical location of the events, etc. are

presented first, followed by the distributions directly linked to the analysis (energy and

PID variables). The data are then interpreted in terms of the physical parameters.

10.3.1 Variable Distributions

Several checks are made of the FD Data to ensure basic data quality. Figure 10.5 shows

the Far/Near ratio for Preselected data as a function of time, ensuring that the event

rate has been steady. The data agrees with a flat mean to within statistical fluctuations,

with a χ2/ndf of 34.4/24.

Figure 10.6 shows the time of the Preselected Far Detector data events relative to

the nearest beam spill. The Preselection requires this relative time to be −2× 10−6 s <

∆t < 12× 10−6 s. All of the Preselected events are well contained in this window, and

there are no peaks towards the end of the distribution which might indicate pathological

behavior or contamination by non-beam events.

Figures 10.7 and 10.8 show the position of event vertices in the detector. Both

in the transverse and longitudinal directions, there is no indication of any statistically

significant excesses towards the edges of the detector.

Figure 10.9 compares the FD Data and prediction for the Preselected reconstructed

energy distribution in 1 GeV bins. This distribution initially gave some cause for concern,
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Figure 10.6: Time to nearest spill for Preselected Far Detector data events.
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Figure 10.7: Event position vertices for Preselected Far Detector data vs.
prediction. Shown are u vertex (top left), v vertex (top right), vertex radius
squared (bottom left) and z vertex (bottom right).
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Figure 10.8: The xy positions of the Preselected FD Data. The blue lines
indicate the fiducial region, and the black lines the physical edge of the detector.
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Figure 10.9: Event reconstructed energy for Preselected FD Data vs. pre-
diction. For the standard decomposition, extrapolation, and fit, the final three
energy bins (5-8 GeV) are merged into a signal bin.

due to the presence of an excess in the 5 − 8 GeV fitting bin. While 109.5 events are

expected in this range, 135 are observed, with most of the excess in the 5 − 6 GeV

range. The events in this bin were thoroughly studied, looking for any sign of anomalous

behavior. Figure 10.10 shows one such study, looking at the vertex position of the events.

All of the events appeared normal. A statistics-only Pearson’s χ2 of the distribution in

Figure 10.9 yields a χ2/ndf of 12.0/7, corresponding to a probability of p=0.10. The

excess in the 5−6 GeV range was therefore concluded to be a statistical fluctuation. The

impact of this excess on the final fit is relatively small, due to the fit being conducted

in bins of both PID and energy.

Figure 10.11 shows the prediction and FD Data distributions for the three LEM

input variables. There is a good level of agreement between the FD Data and prediction

for these distributions. While there is no immediate sign of a signal, there is also no

sign of pathologies.
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Figure 10.10: Positions of Preselected event vertices in the 5− 6 GeV region,
as radius squared (left), and longitudinal position (right).

10.3.2 Fitting the Data

A fit to the FD Data is now performed in 8 LEM and 5 energy bins, using the methods

described in Chapter 9. One final source of uncertainty must also be considered in the

fit: oscillation uncertainties. These are uncertainties in the other oscillation parameters

which are not being measured in this experiment, as summarized in Table 10.3. These

uncertainties are incorporated into the fit in a manner similar to that described in

Chapter 8, by shifting the FD MC by one standard deviation of the uncertainty on each

parameter and then calculating the resulting fractional shift on the prediction.

Parameter Best Fit Value Uncertainty

|∆m2
32| 2.32× 10−3 eV2 (+0.12,−0.08)× 10−3 eV2

|∆m2
21| 7.59× 10−5 eV2 (+0.19,−0.21)× 10−5 eV2

sin2(2θ23) 1.0 -0.06

sin2(2θ12) 0.861 +0.03,-0.02

Table 10.3: Uncertainties on the oscillation parameters used in this analysis
[42] [89].

The results of the 8 × 5 fit (and the cross-checks) are given in Table 10.4. For

the 8 × 5 case, a best fit of sin2(2θ13) = 0.042 is obtained, with an upper 90% CL of

sin2(2θ13) = 0.115. Figure 10.12 shows the prediction, data, and best fit signal in each

of the 40 fit bins. Figure 10.13 shows the energy and PID distributions. Similar results

are obtained for the LEM 3 × 5 bin fit and LEM>0.7 counting experiment. For the
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Figure 10.11: Far Detector data vs. prediction for the three LEM particle ID
input variables: f50 (top), y50 (middle) and q50 (bottom). All events have passed
the νe Preselection.



188 The Far Detector Data

LEM>0.7 counting experiment, 49.9± 7.1(stat)± 2.4(syst) events are expected and 62

are observed, which corresponds to an excess with a statistical significance of 1.3σ. For

comparison, the results are also shown for the previous νe appearance particle ID cut,

ANN11>0.7; these results are consistent with the LEM fit.

Binning Best Fit sin2(2θ13) Upper 90% CL −2∆ lnL at θ13 = 0

8 LEM × 5 E 0.042 0.115 1.54

3 LEM × 5 E 0.037 0.122 1.20

LEM > 0.7 0.064 0.170 2.47

ANN11 > 0.7 0.040 0.147 0.83

Table 10.4: Results of various LEM fits to the Far Detector data. The numbers
presented here assume δCP =0 and the Normal Hierarchy. Statistical, systematic,
and oscillation parameter uncertainties are all included in the fit.

10.4 Interpreting the Results

The final result of the work in this thesis is a likelihood surface of −2∆ lnL at each point

in the parameter space.1 The log likelihood surface for the 8× 5 fit for both the Normal

and Inverted Hierarchy can be seen in Figure 10.14. The lines in this image mark where

−2∆ lnL = 1.0 and 2.71.

This thesis presents two different interpretations of this result, one Bayesian and the

other Frequentist. The Frequentist approach answers the question of how often the same

experimental results would be obtained, if the experiment were repeated many times.

For this result, the exclusion of sin2(2θ13) = 0 is calculated using the Feldman-Cousins

method [144]. The Bayesian approach gives a probabilistic interpretation of the data,

in terms of θ13 and δCP for an assumed prior probability of θ13. A credible interval is

calculated for this result based on a prior flat in θ13 and δCP .

10.4.1 Interpretation 1: Feldman-Cousins Exclusion at Zero

The results of the fit in Table 10.4 become more difficult to interpret near sin2(2θ13) = 0.

Below this value, any solutions are non-physical. Downward fluctuations, however, can

1Note that this log likelihood surface can easily be transformed into a raw likelihood surface by
converting it to e−Z/2, where Z = −2∆ lnL.
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result in a solution which may be beyond this boundary. For cases such as this, where

the amount of data is not large, non-Gaussian behavior can occur. It is then appropriate

to use a Feldman-Cousins approach to interpret the results and to produce Confidence

Level contours in the physical region. In this thesis, the Feldman-Cousins method is only

used to assess the significance of the exclusion of sin2(2θ13) = 0. The Feldman-Cousins

approach is very similar to that used for the MRCC sideband toy MC study (Section

10.2.2). In this case, however, the fake experiments are generated with systematic error

and oscillation uncertainty taken into account as well.

The first step in the FC process is already finished: the log likelihood of the data is

calculated as a function of θ13, and −2∆ lnLdata is calculated at θ13 = 0. These are the

numbers listed in Table 10.4.

Next, 10,000 MC fake data pseudo-experiments are generated [120]. This is done in

the following steps, using Gaussian and Poisson random number generators:

1. The predicted signal and background distributions (for θ13 = 0) are fluctuated

within their respective total Gaussian systematic errors σsig and σbkg.

2. The fluctuated signal and background distributions are added together, and the

total distribution is fluctuated within the Gaussian oscillation uncertainty σosc.

σosc is calculated by fluctuating the predicted distribution within the uncertain-

ties outlined in Table 10.3 to produce a modified prediction. This is done 2000

times, and the fractional change calculated each time, to produce a probability

distribution function which provides σosc.

3. Poisson statistical fluctuations are applied to the total distribution from 2. to form

a pseudo-experiment.

Next, −2∆ lnLpseudo is calculated at θ13 = 0 for each of the 10,000 pseudo-experiments.

A histogram containing the values of −2∆ lnLpseudo is plotted and then integrated to

find the fraction of experiments α for which −2∆ lnLpseudo < −2∆ lnLdata. This value

α is the confidence level of the result at that point in parameter space, in this case for

sin2(2θ13) = 0.

When this procedure is carried out for the full 8× 5 binning, sin2(2θ13) = 0 is found

to be excluded at the 91% CL. Note that this limit applies for all values of δCP where

θ13 = 0. The exclusion for the various cross-checks are listed in Table 10.5.



The Far Detector Data 193

Binning −2∆ lnL Feldman-Cousins CL at sin2(2θ13) = 0

8 LEM × 5 E 1.54 91%

3 LEM × 5 E 1.20 88%

LEM > 0.7 2.47 94%

Table 10.5: Feldman-Cousins exclusions of sin2(2θ13) = 0, for various binnings.
The value of −2∆ lnL at θ13 = 0 is also listed.

10.4.2 Interpretation 2: Bayesian Credible Interval

The Frequentist approach asks how often a certain result would occur, if the experiment

were repeated many times. The Bayesian interpretation attempts instead to quantify the

resulting state of knowledge about the value of θ13. Through Bayes’ Theorem, one can

calculate the posterior probability density function P (x; data), the probability density

function for a parameter x given the data:

P (x; data) =
P (data;x)P (x)

P (data)
(10.5)

where P (data;x) is the probability of the data as a function of x, P (x) is the prior

probability of x, and P (data) is the prior probability of the data.

The first element in this theorem, P (data;x), is simply the likelihood surface in

Figure 10.14. The other two terms in Equation 10.5 are not determined by experiment.

The prior probability of the data P (data) simply acts as a normalization term, as it

is independent of the fit parameters. The choice of P (x), the prior probability for the

θ13 and δCP , is subjective, because it involves making an assumption about what pre-

existing information about the parameters to include. Nonetheless, there are reasonable

assumptions that can be made. The most obvious choice is to use a flat prior, where

P (x) =constant. What is meant by “flat” is again subjective. νe appearance oscillation

is detected by measuring the value of sin2(2θ13), so a prior flat as a function of sin2(2θ13)

could be chosen. The underlying natural parameter being measured, however, is θ13,

the actual eigenstate rotation angle. A prior flat in θ13 and δCP is therefore the more

natural choice.

This flat prior can easily be constructed by filling the likelihood surface with respect

to θ13, rather than sin2(2θ13). The log likelihood surface is then converted to probabil-

ity and normalized to 1.0 to produce the probability density function P (x; data), the

outcome of Bayes’ Theorem. From this function, one can then construct a Bayesian
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Credible Interval to determine the parameter range in which there is a fractional prob-

ability α of the true value of θ13 being found. This is not a uniquely defined region, so

likelihood ordering is used to determine the interval: the region is chosen so that it both

contains a fraction α of the total probability, and so that the probability is higher in the

included region than in the excluded region.

Both the 68% and 90% intervals for this result are shown in Figure 10.15 as a function

of θ13. Figure 10.16 translates these intervals back to sin2(2θ13), the experimentally mea-

sured parameter. The upper 90% limit is substantially closer to zero than the values esti-

mated by the fit in Table 10.4. At δCP = 0, the upper 90% limit is sin2(2θ13) = 0.09(0.15)

for the Normal (Inverted) Hierarchy. This lower limit results from the flat prior: when

all values of θ13 are equally probable, a lower value of sin2(2θ13) becomes more probable.

The probability drops more quickly for larger values of sin2(2θ13), causing a tighter upper

90% CL limit. This new limit is well below that of CHOOZ. Additionally, sin2(2θ13) = 0

is excluded at a confidence interval value of 86%, an exclusion not dissimilar from the

above Feldman-Cousins result.

The need to choose a prior for θ13 makes this Bayesian Credible Interval a subjective

interpretation of the result. For this reason, the true experimental result for the work

in this thesis is the likelihood surface in Figure 10.14. This likelihood surface represents

the sum total of knowledge gained about sin2(2θ13) from the data.
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Figure 10.16: Bayesian Credible Interval for the experimental result, assuming
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versus sin2(2θ13), with the limits translated from Figure 10.15. The best fit, 68%
CL, and 90% CL are shown; the fit was performed with 8 LEM × 5 E bins, for
the Normal (top) and Inverted (bottom) Hierarchy.



Chapter 11

Conclusions: the Future of Neutrino

Physics

11.1 Searching for νµ → νe oscillation in MINOS

Several new experiments will come online in the next ten years which have been designed

with the primary goal of making a measurement of θ13. MINOS, with its large amount

of existing neutrino data, can investigate new regions of the sin2 2θ13 parameter space,

by looking for νµ → νe oscillations between its Near and Far Detectors. As this thesis

has shown, this is not an easy measurement to make. The expected appearance signal

is very small, with background contamination and poor MINOS resolution for νe CC

events posing major challenges for detection.

The work in this thesis greatly improves MINOS’ sensitivity to sin2(2θ13). The basic

analysis framework developed in two previous published MINOS analyses [85] [86] has

been improved in two major ways. First, the author has implemented and optimized

a novel particle ID scheme, the Library Event Matching method, which uses informa-

tion from the event strip hits themselves. This new PID gives a 14% improvement in

sensitivity to sin2(2θ13). Second, the work in this thesis has transformed the analysis

from a counting experiment to a multiple bin likelihood fit. An additional 14% gain

in sensitivity is gained by fitting the final data in bins of both PID and reconstructed

energy. This thesis fully develops the framework for this fit, and for the interpretation

of the final result.

In the end, no statistically significant proof of νµ → νe oscillation was found. How-

ever, there are hints of a possible excess. A Feldman-Cousins analysis of the final result

excludes sin2 2θ13 = 0 at the 91% CL. The result also places the tightest limits on
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Figure 11.1: Results of a 2011 global fit [146] for for the value of θ13. Fit
assumes three-neutrino oscillation. Solid lines use old reactor neutrino fluxes,
while dashed lines use the new fluxes [44].

sin2(2θ13) to date, for a reasonable choice of Bayesian prior. A prior flat in θ13, for in-

stance, places the upper 90% limit of a credible interval at θ13 = 0.16, or sin2 2θ13 = 0.09

(for the Normal Hierarchy).

11.2 Future Searches for θ13

In the summer of 2011, evidence began to emerge for a non-zero value of θ13. Some of this

evidence came from the MINOS experiment, both from the work in this thesis, and from

the published result described in [51]. Further proof came from the T2K experiment,

which saw a small signal with a statistical significance of 2.5σ. Both the T2K result and

the 2011 official MINOS result are briefly described in Appendix A. Figure 11.1 shows

the results of a global fit [146] for θ13, taking into account both the new measurements

and previous constraints from long baseline, atmospheric, and solar results. This fit

finds evidence for θ13 > 0 at more than 3σ, with a best fit of sin2(2θ13) = 0.098.1

This evidence for a relatively large, non-zero value of θ13 gives extra urgency to the

next generation of experiments. First, several new inverse β decay reactor experiments

will attempt to make precise, direct measurements of the value of θ13. Double CHOOZ

[147], which adds a new detector to CHOOZ, hopes to reach a projected sensitivity of

sin2 2θ13 < 0.03 after three years of data taking. The Daya Bay experiment [148] in

1This best fit assumes the newest measurements of flux for reactor experiments [44]. A best fit of
sin2(2θ13) = 0.082 is found if the older versions of the fluxes are used.
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China aims for a sensitivity of sin2 2θ13 < 0.01. A third reactor experiment in South

Korea, RENO [149], will have a comparable sensitivity. In addition to making very

precise measurements of θ13, these experiments will also allow a comparison of νe and

ν̄e oscillation.

The T2K experiment will continue to gather data and refine its measurement. The

NOvA experiment[150] will also conduct a search for νµ → νe oscillations. NOvA will use

an upgraded version of the Fermilab NuMI beamline, with a Near Detector at Fermilab,

and a Far Detector sitting at an off-axis angle of 14.6 mrad in Ash River, Minnesota, 810

km away. NOvA’s sensitivity to θ13 is comparable to that of T2K. The longer baseline of

NOvA causes matter effects to have a much larger impact on neutrino oscillation. This

could allow NOvA to make a determination of the sign of ∆m2
32 (i.e., to determine the

mass hierarchy). NOvA could also place significant constraints on δCP .

The next decade will be an extremely exciting one for neutrino physics, in which

many fundamental questions may be answered. The results of this thesis are a good

first step, but only a prelude to the discoveries which will potentially come soon.
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Appendix A

Other Results: MINOS and T2K

A.1 The T2K Experiment

In June of 2011, the T2K experiment [145] announced that they had observed a statisti-

cally significant νe appearance signal result. The basic concept of the T2K experiment,

and a brief summary of the results, are discussed here. Like MINOS, T2K (Tokai-2-

Kamioka) searches for νµ → νe oscillation by comparing the flux of neutrinos at both a

Near and a Far Detector.

The NuMI beam used by MINOS is a wideband neutrino beam. A large neutrino flux

is produced, at a relatively wide spread of energies, requiring a very precise simulation of

the beam kinematics and decays. T2K differs from MINOS in using an off-axis neutrino

beam. An off-axis beam produces a much narrower neutrino spectrum. As explained

earlier, the energy of a neutrino produced in a two-body decay is dependent both on

decay angle and on the parent energy:

Eν =
(1− mµ

M2 )E

1 + γ2 tan2 θν

(A.1)

Figure A.1 shows the energy of neutrinos produced from pions decaying at a given

momentum, for various angles off a beamline. As the angle off the beamline increases,

the neutrino beam becomes nearly monochromatic. This monochromatic beam can be

centered near the νµ → νe oscillation energy peak, and is also relatively free of difficult-

to-model kaon decays. An off-axis beam is therefore very effective for making precise

measurements of θ13. T2K uses a beam which is 2.5◦ off-axis, resulting a neutrino energy

peak of ∼ 0.6 GeV. At the beginning of the muon neutrino beam (280 m downstream),

the beam is monitored both by an on-axis detector (INGRID) which characterizes the

beam profile, direction, and intensity, as well as an off-axis Near Detector which provides
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Figure A.1: The concept behind an off-axis beam. Neutrino energy is shown
as a function of decay pion parent energy for various angles off the main beam
axis. A larger angle results in a more monochromatic beam. Figure is for a
NOvA-style beam, and was produced by Patricia Vahle [150].

comparisons with the Far Detector. The Far Detector is the Super-Kamiokande detector,

at a distance of 295 km. Signal νe appearance events are identified at the Far Detector

via electrons from quasi-elastic Charged Current interactions. The largest sources of

background are the intrinsic beam νe component and misidentified π0s.

Operation of T2K was shut down after the March 2011 earthquake, but in June 2011

results were presented from the first 1.43×1020 protons on target. Following all analysis

cuts, T2K expected to see a total of 1.5±0.3 background events in the Far Detector.

They observed 6, corresponding to a 2.5σ excess. There is a 0.7% chance that this result

could have been caused by a statistical fluctuation. The resulting Feldman-Cousins

limits on sin2 2θ13 are shown in Figure A.2. The Normal Hierarchy best fit for the T2K

result was found to be sin2 2θ13 = 0.11, with a lower 90% CL limit of 0.03, and an upper

90% CL limit of 0.28.

A.2 The MINOS 2011 νe Analysis

The 2011 MINOS νe analysis, published in [51], proceeded along lines very similar to

the work in this thesis. Many of the techniques used were developed concurrently by

the author for this thesis, including the updated LEM PID and the multiple bin fit.

There were several major differences, which will be briefly described here. For the fit,

the bin-by-bin covariance matrix method was used to incorporate systematic error. The
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Figure A.2: 2011 T2K νe appearance results. This figure shows the Feldman-
Cousins 90% and 68% CL for sin2 2θ13, as a function of δCP and choice of mass
hierarchy: Normal (top) or Inverted (bottom). The best fit is shown as well.
Figure from [145].
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fit was conducted in the 3 LEM × 5 E bins used as a cross-check in this thesis. The

final result is interpreted using a full Feldman-Cousins contour, shown in Figure A.3.

Many small changes implemented in this analysis, such as rock muon corrections, were

not used. The results were very similar to those presented in this thesis. A best fit of

sin2(2θ13) = 0.040 (0.078) is found for the Normal (Inverted) Hierarchy, with an upper

90% CL of 0.12 (0.19). sin2(2θ13) = 0 is excluded at the 89% CL.
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