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Abstract We study chaos dynamics of spinning particles in Kerr spacetime of
rotating black holes use the Papapetrou equations by numerical integration. Be-
cause of spin, this system exists many chaos solutions, and exhibits some excep-
tional
dynamic character. We investigate the relations between the orbits chaos and the
spin magnitude S, pericenter, polar angle and Kerr rotation parameter a by means
of a kind of brand new Fast Lyapulov Indicator (FLI) which is defined in gen-
eral relativity. The classical definition of Lyapulov exponent (LE) perhaps fails in
curve spacetime. And we emphasize that the Poincaré sections cannot be used to
detect chaos for this case. Via calculations, some new interesting conclusions are
found: though chaos is easier to emerge with bigger S, but not always depends on
S monotonically; the Kerr parameter a has a contrary action on the chaos occur-
rence. Furthermore, the spin of particles can destroy the symmetry of the orbits
about the equatorial plane. And for some special initial conditions, the orbits have
equilibrium points.

Keywords General relativity, Dynamics, Chaos, Fast Lyapulov indicator

1 Introduction

In the last decade or so, chaos dynamics in general relativity began to be widely
appreciated [1] against to in classical dynamics has been researched about 100
years from Poincaré [2]. Because general relativity is a nonlinear theory, so chaos
is often visible. There are two main aspects in chaos dynamics in general relativ-
ity. One is the dynamics evolution of gravitational field itself, such as cosmology
models especially Mixmaster Universe model [3; 4; 5; 6]. Another is the test par-
ticles’ dynamical character in known metrics. Some interesting models are inte-
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grable in Newtonian theory but exhibiting chaos in general relativity, such as the
case of two fixed black holes [4; 7] and the Schwarzschild black hole plus a dipo-
lar shell [8; 9]. Letelier et al. also discussed chaos dynamics of a test particle in
slow rotating black holes with dipole halo [10] and the perturbed Schwarzschild
spacetime [11]. Many references focus on the geodesic motion of particles in su-
perposed Weyl fields [12; 13; 14], a Schwarzschild or Kerr black hole with mul-
tipole halos. On the other hand, Suzuki and Maeda studied a spinning particle
in Schwarzschild and Kerr spacetime [15; 16], Hartl investigated the last one in
detail [17; 18].

In the recent years, because of the detecting project of gravitational-wave, such
as Laser Interferometer Space Antenna (LISA), Laser Interferometer Gravitational
Wave Observatory (LIGO) and Astrodynamical Space Test of Relativity using
Optical Devices (ASTROD), the spinning compact binaries dynamics attracted
people great interesting [19; 20; 21; 22; 23; 24; 25], since the gravitational-wave
detection cannot succeed when chaos is present. So, the study of chaos dynamics
of spinning particles in Schwarzschild and Kerr spacetime called great interest.

Spinning particles in Kerr spacetime, just a strong gravity central body, like a
Kerr black hole or neutron star, is a basic model in cosmos, has important physics
significance. Meanwhile, this model is an important source of gravitational wave.
Because the orbits of the spinning particles are likely chaotic, the research of this
model is very interesting.

All we know, nonspinning particles’ orbits are regular in Schwarzschild or
Kerr spacetime. But for spinning particles, the orbits perhaps are chaotic. Cori-
naldesi and Papapetrou first discussed the motion of spinning test particle in Schwarzschild
spacetime [26]. The Kerr or Kerr–Newman spacetime case was also analyzed by
some
researchers [27; 28; 29; 30; 31; 32]. In [33; 34] the gravitational waves produced
by a spinning particle falling into a Kerr black hole or moving circularly around it
were discussed and the energy emission rate from those systems was calculated.
Suzuki and Meada
investigated more generic motion of a spinning particle around a Schwarzschild
black hole and pointed out that the spin effect can make some orbit chaotic [15].
Furthermore, they studied the innermost stable circular orbit of a spinning parti-
cles in Kerr spacetime [16], and they investigated orbit chaos by Poincaré sec-
tions. Then, Kiuchi and Maeda researched the gravitational waves from the above
dynamical system [35]. They also analyzed gravitational waves from spinning par-
ticles around Schwarzschild black hole [36].

On the other hand, Michael Hartl discussed the chaos dynamics of spinning
test particles in Kerr spacetime by means of the classical definition of Lyapunov
exponent (LE), and find that chaos appears only for physically unrealistic values
of the spin parameter firstly [17]. More than of that, he did a detailed survey of
spinning test particle orbits in Kerr spacetime by use of same tool [18].

In general, the methods for quantifying the ordered or chaotic nature of orbits
in general relativity usually are Poincaré sections, Lyapunov exponent and fast
Lyapunov indicator (FLI). If the system’s degrees of freedom are not more than
four, Poincaré sections is one of the most common qualitative tools. Karas and
Vokrouhlicky firstly introduced LE to study the motion near a black hole in general
relativity [37]. But LE and FLI of classical dynamics sometimes invalidate while
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being used in general relativity. So Wu et al. gave definitions of LE and FLI with
two nearby trajectories in curved spacetime [38; 39]. There is a close relation
between the FLI and LE: the FLI divided by time t tends to the LE when the time
is sufficiently large. Besides, overflow of the lengths of tangential vectors in the
case of a chaotic orbit can be avoided because the integration time is not long
enough. This is the reason why the indicator is classified as a “fast” method.

Based the reason above mentioned, in this paper, we continue to study the
chaos and dynamics of spinning particles around a central Kerr black hole by the
brand new FLI in general relativity in stead of classical LE used by Hartl. We em-
phasize that, in this letter, because of too many degrees of freedom, the Poincaré
sections are invalid in detecting chaos, but can be used to study the dynamical
structure. In our case, the FLI in general relativity is a valid and convenient method
for detecting chaos. So, by use of it, we research the dependence of orbit chaos
on some dynamical parameters: initial radii, polar angle, Kerr and spin parame-
ter. We find that the chaotic degree does not monotone increase with the spinning
magnitude, and the Kerr parameter appears to counteract chaos. Furthermore, we
also find the spin of particles can destroy the symmetry of the orbits about the
equatorial plane. And some strange dynamical structures emerge in special initial
conditions.

The paper is organized as follows. The basic equations for spinning particles
in curve space are reviewed briefly at fist, and the numerical integration method is
discussed in Sect. 3. Then, the FLI of Wu is introduced simply in Sect. 4, and we
explain why we choose FLI but not Poincaré section at the next section. In Sect. 6,
we study the relations of chaos with different parameters. Then we give some
strange dynamical character in Sect. 7, meanwhile we investigate the dependence
of the maximal inclinations with spin parameter. At the end, we present a simple
summary and discussion.

2 Papapetrou equations for spinning test particles

The equations of motion of a spinning test particle in a curve spacetime were given
first by Papapetrou [40], and then reformulated a set of more clear form by Dixon
[41]. In this paper, we measure all times and lengths in terms of M, measure the
momentum of the particle in terms of µ , and measure the spin in units of µM. The
µ represents the rest mass of particle, and M is the mass of center massive body.
So these equations are [42],

dxµ

dτ
= υ

µ

d pµ

dτ
=−

(
1
2

Rµ

νρσ Sρσ +Γ
µ

νσ pσ

)
υ

ν

dSµν

dτ
= 2(p[µ

υ
ν ] +Γ

[µ
ρσ Sν ]ρ

υ
σ ),

(1)

where, υµ is the four-velocity, or the tangent to the particle’s worldline. pµ and
Sµν are the momentum and the spin tensor respectively. Here, τ is defined as
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proper time. The Sµν is a anti-symmetry tensor, defined by the particle’s stress–
energy tensor T µν ,

Sµν =
∫

d3x(xµ T ν0−xvT µ0). (2)

The Eq. (1) is called the pole–dipole approximation, where the multipole mo-
ments of the particle higher than mass monopole and spin dipole are ignored.

Because of spinning, the motion of particle does not follow the geodesic, so
the pµ is no longer parallel to υµ . If following Dixon, choosing the rest frame of
the particle’s center of mass, we can get one of the spin supplementary conditions
[41]

pµ Sµν = 0. (3)

And from this equation, we can find the relation of pµ and υµ [42],

υ
µ = pµ +

2Sµν Rν lκλ plSκλ

4+Rαβγδ Sαβ Sγδ
. (4)

For the more, there are four others constraints [17; 42],

pµ pµ = −1 (5)

Sµν Sµν = S2 (6)

E = −pt +
1
2

gtµ,ν Sµν , (7)

and

Jz = pφ −
1
2

gφ µ,ν Sµν . (8)

Here, the S denotes the spin magnitude, and quantifies the size of the spin, so
plays a crucial role in determining the behavior of spinning particle systems. The
E and Jz represent energy and z angular momentum of particle respectively. In
fact, Kerr spacetime also exist another integral, Carter constant Q [43; 44].

3 Numerical integration of Papapetrou equations

In this section, we introduce our numerical methods for Eq. (1). There are 24 vari-
ables in Papapetrou equations (1), but because the anti-symmetry of spin tensor
Sµν , so the number of variables decreases to 14. For the reason of existence of
many constraints, the initial values cannot be assigned arbitrarily, we first appoint
several initial parameters, and the rest are computed from the integrals (3), (5)–
(8). For the reason of Sµν can be deduced from 1-form spin vector, so the problem
will be simpler furthermore. The tensor and vector formulations of the spin are
related by

Sµ =
1
2

εµναβ uν Sαβ (9)
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and

Sµν =−ε
µναβ Sα uβ , (10)

where uν = pν/µ(= pν in our units), εµναβ is Levi–Civita tensor. In addition, the
spin satisfies the condition

Sµ Sµ =
1
2

Sµν Sµν = S2, (11)

and

pµ Sµ = 0 (12)

So we set the initial conditions t,r,θ ,φ , pr,Sr,Sθ , and the left pt , pθ , pφ ,St and
Sφ will be calculate by Eqs. (5), (7), (8), and (9)–(12). Then from Eq. (10), we can
get the initial value of Sµν , thus the Eq. (1) can be integrate numerically. And
in this paper, we integrate (10) directly, instead of the equations in Hartl’ paper
[17; 18], because this can reduce CPU time greatly.

For convenience, t = 0, pr = 0 and φ = 0 is fixed in initial time. Because of
[43]

Σ
2
(

dr
dτ

)2

= R(r), (13)

where

R(r) = [E(r2 +a2)−aLz]2−∆ [r2 +(Lz−aE)2 +Q], (14)

and we use the standard auxiliary variables

Σ = r2 +a2 cos2
θ , (15)

and

∆ = r2−2Mr +a2. (16)

Q is Carter constant

Q = p2
θ + cos2

θ [a2(m2−E2)+ sin−2
θL2

z ]. (17)

So, if giving the initial r0,θ0and pθ
0 , basing Eq. (13), the apocenter and peri-

center can be fixed. This hints us to investigate the relation between the dynamical
characters of the above-mentioned system and the parameters r0,θ0,a,S.

Our integrator is RKF7 (8), step size is 0.1, and adopt conservations Eqs. (3)
and (5)–(8) to check the numerical precision, and we find it can achieve 10−13 to
10−14 while integration time is 105.
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4 Fast Lyapulov indicator in general relativity

Lyapulov exponent (LE) is a very good tool to distinguish chaos and non-chaos in
dynamical system. Sometimes it may cost too much CPU time to computer until
reach convergence. So Froeschlé et al. [45; 46] defined FLI which need not to be
computed until to convergence. FLI not only is very fast tool to find chaos, but
also can sketch out the global structure of phase space.

But the classical definitions of LE and FLI may be noneffective when they
are used in general relativity. In curve spacetime, the value of classical LE or FLI
depends on the choice of time and space coordinates. In other words, there would
be different values of the classical LE and FLI in variable coordinate system, even
fail to find chaos. So Wu et al. [38; 39] give new definitions in general relativity.
We would like to use invariant FLI in curved spacetime to detect chaos. Now we
introduce the new FLI simply.

The definition of FLI bases on two-nearby-orbits method which simplifies the
problem greatly, because we do not need to deduce complicated geodesic devia-
tion equations. For a free particle move along the geodesic,

ẍµ =−Γ
µ

αβ
ẋα ẋβ . (18)

Let two particles, an observer and his “neighbor,” move on two nearby-trajectories
in a curved spacetime. At the observer’s proper time τ , the observer is at the point
O with coordinate xα and 4-velocity υα , and his neighbor reaches the point Õ with
coordinate x̃α , we attain the deviation vector

∆x(τ) = ∆xα(τ) = x̃α(τ)− xα(τ). (19)

So the distance along the Kerr geodesics of the neighbor measured by the
observer at proper time τ is

||∆x(τ)||′ =

√√√√√
∣∣∣∣∣∣

xN∫
xO

gµν(x)dxµ dxν

∣∣∣∣∣∣, (20)

the xO,xN represent the 4-vectors of “observer” and “neighbor” individual. Ob-
viously, this is a quite complex calculation. In our letter, for nonchaotic cases,
∆xµ ≈ dxµ ; Even for chaos orbits, because we renormalize the neighbor’s orbits
while ‖∆x‖ achieving at 0.1 (will be mentioned later), so the below definition of
space distance ‖∆x(τ)‖′ ∼ ‖∆x(τ)‖,

||∆x(τ)||=
√
|∆x•∆x|=

√
|gµν ∆xµ ∆xν |. (21)

But Eq. (21) is simpler than Eq. (20), and only has tiny difference. So Wu et al.
adopted the definition (21) in reference [39]. Thus we define the FLI as follows:

FLI(τ) = log10
||∆x(τ)||
||∆x(0)||

, (22)

where ∆x(0) represents the deviation vector at initial time. The Eq. (22) just is the
definition of new FLI by Wu et al. [39].
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Fig. 1 The Poincaré sections of the orbit A of a nonspinning (S = 0) particle around a maximal
(a = 1) Kerr black hole, plotted in Boyer–Lindquist coordinates. The orbital parameters are
E = 0.8837 and Jz = 2.0667, with r0 = 2.0, pr = 0,θ0 = π/2. The orbit is regular obviously

For geodesic motion, Wu et al. have proved the timelike distance (21) is regular
as long as time evolvement, so need not projection operation. But in our example,
the particles are no longer along the geodesic, so we must project (21) to observer
local space. For the same reason referred above, then the projected space distance
is

∆x(τ) =
√

hαβ ∆xα(τ)∆xβ (τ), (23)

where, space projection operator

hαβ = gαβ +υ
α

υ
β . (24)

The FLI(τ) in Eq. (22) cannot be computed without renormalization because
the distance between the two particles would expand so fast in the case of chaos
as to it could reach the chaotic boundary to cause saturation. Wu et al. [38; 39]
appoint that it works well when we choose the initial distance |∆x(0)| ≈ 10−7 to
10−9, and let |∆x|= 0.1 as the critical value to implement the renormalization. Let
k(k = 0,1,2, . . .) be the sequential number of renormalization, and then calculate
the FLI with the following expression [39]:

FLIk(τ) =−k(1+ log10 ||∆x(0)||)+ log10
||∆x(τ)||
||∆x(0)||

. (25)

We would use Eq. (25) to calculate FLI in next section.

5 Detect chaos by FLI

In this section, we study the availability of several methods in detecting chaos,
and point out that FLI is work good at this. Because FLI need not to compute to
convergence, just observe the increase of FLI with time. So it would decrease the
computing time greatly compare to LE. We are typical to compute to 2×104M, if
FLI rise exponential with time, we think the system is chaos. And if FLI increase
only linearly, the system is nonchaotic. In this paper, via many calculations, we
find FLI = 6 is very good critical value for distinguish chaos while computing time
achieving 2×104. When FLI is bigger than 6, we think the orbit is chaotic, else is
nonchaotic.

So FLI is a very appropriate tool to detect chaos. We emphasize to point out
that Poincaré sections cannot distinguish chaos in our example, because the sys-
tem have seven dimensions. But Poincaré sections can help us understand the dy-
namical structure. Obviously, we also cannot distinguish chaos from the particles
trajectory. From Figs. 1, 2, 3 and 4 show the validity of all kinds method.

For the nonspinning case, because of existing four integral, so the system’s
freedom is four, and Poincaré sections are very suitable to detect chaos. We can
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Fig. 2 The Poincaré sections of the orbit B of a maximally spinning
(S = 1) particle around a maximal (a = 1) Kerr black hole. The or-
bital parameters are E = 0.8837 and Jz = 2.0667, with r0 = 2.1, pr = 0,
θ0 = π/2. The orbit B is likely chaotic

Fig. 3 The Poincaré sections of the orbit C of a maximally spinning
(S = 1) particle around a maximal (a = 1) Kerr black hole. The or-
bital parameters are E = 0.8837 and Jz = 2.0667, with r0 = 3.0, pr = 0,
θ0 = π/2. The orbit C is a chaos mimic

Fig. 4 a The FLI of orbit B. The chaos of the orbit B becomes explicit after a time span 103. For
this case, we just need to integrate to 2× 104, and use only one renormalization. b The LE of
orbit B. LE is convergent to 10−6 when time achieve to 105. This show that the orbit B is chaotic.
It has same conclusion with FLI. c The FLI of orbit C. The FLI increases in an algebraic law at
time span 2×104, so this is a nonchaotic orbit. d The LE of orbit C. LE is down to zero when
time achieve to 105. This shows that the orbit C is nochaotic. It has same conclusion with FLI

Fig. 5 Scatter plot of initial radii r0 versus FLI at E = 0.8837,Jz = 2.0667,θ0 = π

2 ,S = 1.0.
While r0 ≥ 2.8, no chaos appear

find from the Fig. 1 that the orbit of a nonspinning particle (orbit A) is clearly
integrability by the Poincaré sections.

For spinning particles, the degree of freedom increase to six. Poincaré sec-
tions are regular in higher dimensions space, but the projection to plane perhaps
is stochastic for a nonchaotic orbit. So we think Poincaré section is not a good
method to find chaos in our case. Increasing S to 1, and fixing other parameters
same with Fig. 1, we let r0 = 2.1 (orbit B) in Fig. 2 and r0 = 3.0 (orbit C) in Fig. 3,
we find both them look likely irregular, but are both chaotic? By the help of FLI,
we can find orbit B is chaotic, but orbit C is not, this is displayed in Fig. 4. In
Fig. 4 we also calculate LE for comparing to FLI, and find they are consilient, but
LE needs to cost more integration time.

6 Chaos in variable parameters

In this section, we investigate the relations between chaos and some vital pa-
rameters at certain energy and z angular momentum, conclude: pericenter radii
rp(pr = 0 section), polar angle θ0, Kerr rotation parameter a and the spin mag-
nitude S. When we discuss one of these parameters’ influence to the dynamical
system, must fix others. And in our all computing, we set coordinate time t = 0
at beginning. We typically compute to time 2×104M, but if find chaos below the
time 104, we stop to calculate and save result.

6.1 Varying initial radii

In the Sect. 3, we point out that if the r0 and pr
0 are given, the apocenter and peri-

center can be fixed, so in this section, we set all pr
0 = 0. From Eq. (14), we can
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Fig. 6 Scatter plot of initial polar angle θ0 versus FLI at E = 0.8837,Jz = 2.0667 and S =
1.0,r0 = 3.6. Chaos appears at θ0 = π/6

Fig. 7 a A rough scan of spin parameter S versus r0 at E = 0.8837,Jz = 2.0667,a = 1.0, and
θ0 = π/2. The symbol “O” presents the orbits are chaotic, else are nochaotic. b Scatter plot of
spin parameter S versus FLI at E = 0.8837,Jz = 2.0667,r0 = 2.0, and θ0 = π/2. There is not
apparent relation between chaos and S. The most strong chaos happens at S = 0.95

Fig. 8 a A rough scan of Kerr parameter a versus r0 at E = 0.9328,Jz = 2.5667,S = 1, and the
value of θ0 is same with Fig. 7. the Symbol “X” represents instable orbits. b Scatter plot of Kerr
parameters a versus FLI at E = 0.9328,Jz = 2.5667,S = 1,r0 = 3.65, There is a clear relation
between chaos and a. More small a, more easy to occur chaos

deduce smaller r0(≈ rp) means smaller rp and larger ra, in the other word, larger
eccentricity. The Fig. 5 exhibits the variety of FLIs with r0 while other parameters
invariable. The figure shows clearly that chaos disappear along as the increase of
r0(≈ rp), whereas exists two troubled dots, the r0 = 2.60 and r0 = 2.78. The FLI
is primarily a function of initial radii r0.

6.2 Varying initial polar angles

The initial polar angle θ0 also has important influence on the character of the
dynamical system. From Fig. 6, we can conclude that more small θ0 implies
more easily for appearance of chaos. The other parameters are E = 0.8837,Jz =
2.0667,S = 1.0,r0 = 3.6. At these conditions, the cutoff value of θ0 are π/5 (ap-
proximate), and below this critical value, we cannot find chaos.

6.3 Varying spin parameters

All we know, the spin magnitude S is a most vital parameter to the occurrence
of chaos, only while S achieves a critical value, the system can become chaotic
possibly. But, are all orbits chaotic while S is bigger than the cutoff value if other
parameters are invariable? Further more, is chaos stronger with S increase while
fixing other parameters? In the Fig. 7a, we do a rough scan which S runs from 0.1
to 1.0 and r0 is 2.0–3.0. This figure presents the chaotic orbits main locate large
S. But more detailed calculations show that the bigger S does not imply stronger
chaos at all time, some times even cannot find chaos while other parameters are
changeless. From Fig. 7b, we cannot find apparent rule between degree of chaos
and S, but if S is big enough, the system is chaotic always. The most strong chaos
happens at S = 0.95, not 1.0. the other parameters in Fig. 7. are E = 0.8837,Jz =
2.0667,a = 1.0,θ0 = π/2.

If we consider all possible initial conditions, there is a critical S for which
chaos occurs. The nonchaotic orbits have a cutoff value of S = 1, i.e., they are not
chaotic even in the extreme S = 1 limit. The cutoff value of S was research by
Hartl in 2003 [18], and did not find a physically realistic cutoff value. The detail
was report in reference [18].



10 W. Han

Fig. 9 The Poincaré sections at parameters E = 0.8837,Jz = 2.0667,r0 = 3.5,θ = π/2, this
clearly illustrate three intersectant orbits

Fig. 10 S = 0.89, others parameter are same with the Fig. 9. More orbits intersecting, and look
likely stochastic but nonchaotic

Fig. 11 The trajectory projected to z−ρ section, we find the loss of asymmetry about equator
plane. The parameters are E = 0.9237,Jz = 2.8,S = 0.8,r0 = 6.0,a = 1, pθ

0 = 0,θ0 = π/2

6.4 Varying Kerr parameter

The Kerr rotation parameter a influences the Riemann–Christoffel curvature ten-
sor directly, because of the coupling of the spin to the Riemann curvature, so the
Kerr parameter a should have effects on the spinning particles. We first do a rough
scan which a runs from 0.1 to 1.0 and r0 from 3.0 to 5.0, and the conclusion is
showed in Fig. 8a. When a is small, the instable region is more big. It is obviously
that chaos disappears at very big Kerr parameters. Also, we plot a part and detailed
relation between the FLI and a in Fig. 8b. We can find that the FLI is clear func-
tion about a. So the rotation of the center body perhaps can eliminate the effect of
the spin of the particles, and counteract chaos. The other parameters in Fig. 8 are
E = 0.9328,Jz = 2.5667,S = 1,r0 = 3.65andθ = π

2 .

7 The exceptional dynamical character

There are some strange phase structure and asymmetrical about the equator plane
for spinning particles with special initial conditions.

In the Fig. 9, the dynamical parameters are E = 0.8837,Jz = 2.0667,r0 =
3.5,θ = π/2, the Poincaré sections shows that it exists three intersectant orbits,
so the system should locate at a equilibrium point, and it is nonchaotic. When S
decreases to 0.88, this phenomenon disappear. The Fig. 10 gives the section at
S = 0.89, there are seem more intersectant orbits.

Because of the symmetry of the Kerr metric, the spinless particles’ orbits must
be symmetry about the equator plane. In general, the spinning particles’ trajec-
tories also have symmetry about polar angle θ even when chaos happens, but
for some special parameters, the orbits lose the symmetry, we give an example
in Fig. 11. For studying this problem, we set pθ = 0 at fist, then deduce pr

0. In
Fig. 11, the parameters are E = 0.9237,Jz = 2.8,S = 0.8,r0 = 6.0,a = 1, pθ

0 = 0,
and the orbit is nonchaotic. At the interval 0.64≤ S ≤ 0.89, we can find the obvi-
ous asymmetry about equator plane.

Also, for spinless particles, if pθ
0 = 0,θ0 = π/2, the movement should be as-

tricted on equator plane. Obviously, if S 6= 0, it is impossible. But how the max-
imal inclination of orbit (ϑ = π

2 −θ ) relates with spin parameter S? The Fig. 12
show us clearly that the ϑmax monotone increase with S. The other parameters are
E = 0.9237,Jz = 2.8,r0 = 6,a = 1. And all orbits are nonchaotic.
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Fig. 12 The function of the maximal inclination of orbit ϑ about S. The parameters are: E =
0.9237,Jz = 2.8,r0 = 6,a = 1, pθ

0 = 0,θ0 = π/2

8 Conclusions

The Papapetrou equations, which model a spinning test particles moving in Kerr
spacetime, exist many chaotic solutions for enough large S. And also, because
of spinning, even if for a nonchaotic orbit, can exhibits some funny dynamical
character depend on spin magnitude S. We detect chaos by means of FLI which
was defined by Wu et al. in 2006, and emphasize that the Poincaré sections cannot
be used to distinguish chaos. With the help of FLI, we give some significative
relation between orbit chaos and dynamical parameters: pericenter, polar angles,
spin and Kerr Parameters.

In our results, the rotation of central body can counteract the chaos effect
aroused by spinning of particles, this is showed in Fig. 8. Though the orbit chaos
need enough large spin magnitude, but the chaos is not a monotonic relation with
S. The initial spin components Sr and Sθ also have influence to chaos, this been
study by Hartl in 2003 [18], and in this paper, we set the initial values Sr = Sθ =
0.1S. Furthermore, for nonchaotic orbits, the maximal inclinations are monotone
increasing with spin parameter S. Some surprise dynamical structures appear at
given parameters. For example, while E = 0.8837,Jz = 2.0667,r0 = 3.5,θ = π/2,
Poincaré sections show that there are three orbits superpose together (Fig. 9).
Sometimes, because of spin, the orbits are asymmetric about the equator plane.

Notwithstanding Hartl [17; 18] pointed out the orbits are nonchaotic for physi-
cally realistic values of S (satisfying S� 1), but the model is still interesting. And
in this paper, we do not consider the gravitational wave radicalization form the
model, and would consider it in future.
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46. C. Froeschlé E. Lega (2000) Celest. Mech. Dyn. Astron. 78 167


