Parallel Adaptive Monte Carlo Integration
and Vector-Boson Scattering
at the Large Hadron Collider

DISSERTATION
zur Erlangung des Grades eines Doktors
der Naturwissenschaften

vorgelegt von

Simon Braf3, M. Sc.

eingereicht bei der
Naturwissenschaftlich-Technischen Fakultét
der Universitit Siegen

Siegen 2019






1. Gutachter und Betreuer: Prof. Dr. Wolfgang Kilian, Universitdt Siegen

2. Gutachter: PD Dr. Tobias Huber, Universitdt Siegen

Datum der miindlichen Disputation: 5. Juni 2019



ii

Zusammenfassung

Das Standard-Modell der Teilchenphysik hat sich als verldssliche Theorie fir die
Beschreibung der Wechselwirkung zwischen elementaren Teilchen erwiesen. Mit der
Entdeckung des Higgs-Bosons am Large Hadron Collider (LHC) sind alle theoretisch-
vorhergesagten Teilchen des Standard-Modells beobachtet worden. Damit sieht sich
die Teilchenphysik neuen Herausforderungen gegeniibergestellt, wie die weitere Va-
lidierung des Standard-Modells voranzutreiben oder nach neuer Physik jenseits
des Standard-Modells zu suchen. Beides ist durch prézisere und umfangreichere
Messungen und experimentelle Daten-Analysen am LHC oder anderen zukiinftigen
Kollider-Experimenten moglich.

Monte-Carlo-Event-Generatoren sind ein wichtiges Werkzeug fiir Messungen
und experimentelle Daten-Analysen, sowie fiir theoretische Vorhersagen fiir Kollider-
Experimente. Sie basieren auf der “acceptance-rejection”-Methode fiir die Event-
Erzeugung mit einer vorgegebenen Wahrscheinlichkeitsverteilung im Konfigurati-
onsraum. Diese wird ergénzt durch die Methoden der Monte-Carlo—Integration des
d-dimensionalen Phasenraumes mit d = 3n — 4 Freiheitsgraden eines n-Teilchen
Endzustands, wofiir die Anwendung von klassischen, numerischen Integrationsre-
geln bei groflen n > 4 von Nachteil sind. Dabei sind Monte-Carlo-Integration und
Event-Erzeugung durch das sogenannte ,importance sampling® eng miteinander
verbunden. Die Anwendung von iterativen und adaptiven Monte-Carlo—Algorithmen
fir numerischen Integration erlaubt es uns die Effizienz der Event-Erzeugung mit
einer vorhergehenden Monte Carlo-Integration zu optimieren.

Wir stellen die Parallelisierung des doppelt-adaptiven Monte-Carlo—Algorithmus
VAMP unter der Benutzung der Paradigmen aus OpenMP und MPI vor, mit Riick-
sichtnahme auf die Minimierung des Kommunikationsbedarfs und einer Methode der
Effizienz-Verbesserung der Parallelisierung durch einen statischen Last- und Arbeits-
verteiler. Wir haben eine neue Implementation dieses doppelt-adaptiven Algorithmus,
Vamp2, fir die adaptive Monte Carlo-Integration und Event-Erzeugung geschrieben,
welcher als Teil des Monte Carlo Event-Generators WHIZARD verfiigbar ist. Ingesamt
koénnen wir eine Verbesserung der Integrationslaufzeit fiir typische Anwendungsfille
an Kollider-Experimenten im Rahmen von WHIZARD um die Ordnung 10 erreichen,
sodass sich die Rechenzeit von Tagen oder Wochen auf Stunden reduziert.

Wir verwenden die parallelisierte Integration in einer ersten Anwendung im
elektroschwachen und Higgs-Bereich des Standard-Modells fiir hohe Energien an der
TeV-Skala, welche am LHC erreichbar sind. Hierzu betrachten wir die Rolle von
transversal-polarisierten Eichbosonen und dem Higgs-Boson in Vektorboson-Streuung
(VBS), dass heifit, der Streuung von W und Z Boson in Paaren zu W, Z und Higgs.

In einem “bottom-up”-Ansatz der effektiven Feldtheorie des Standard-Modells
kénnen wir auf modell-unabhéingige Weise anomale Beitrdge durch mogliche neue
Physik mit dimension-acht Operatoren modellieren. Dabei stellen wir Relationen fiir
die dimension-acht Operatoren fiir verschiedene Darstellungen des Higgs-Feldes auf,
um Vergleiche zwischen unseren Resultaten und existierenden Studien zu erméglichen.

Es zeigt sich, dass eine Beschreibung der VBS-Prozesse bei diesen hohen Energie
durch die effektiven Feldtheorie die Unitaritit der Streumatrix verletzt. Durch die An-
wendung des “T-matrix” Unitaritdtsverfahren konnen wir die Unitaritdt der Theorie
und damit das verletzte Grundprinzip der Quantenfeldtheorie wiederherstellen. Die
dadurch definierten vereinfachten Modelle erlauben uns quantitative Aussagen tiber
(typische) Szenarien neuer Physik zu studieren und mégliche zusétzliche Event-Raten
iber die Standard-Modell Vorhersagen hinaus durch Obergrenzen abzuschétzen.
Davon kénnen wir die Sensitvitiat auf Resultate fiir neue Physik am LHC abstecken.



Abstract

The Standard Model of particle physics has proved to be a reliable theory for the
description of the interaction between elementary particles. With the discovery of
the Higgs boson at the LHC, all predicted particles of the Standard Model have been
observed. As a result, particle physics faces new challenges such as further validation
of the Standard Model or the search for New Physics beyond the Standard Model.
More precise and more comprehensive measurements and experimental data analyses
at the LHC or other future collider will shed light on this.

Monte Carlo event generators are an indispensable tool for measurements and
experimental data analyses, as well as for theoretical predictions at collider experi-
ments. They are based on the acceptance-rejection method for event generation with
a given probability distribution in configuration space. This is supplemented by the
methods of Monte Carlo integration of the d -dimensional phase space with d = 3n—4
degrees of freedom of an n-particle final state, for which the application of classical,
numerical integration rules for large n > 4 are disadvantageous. In particular, Monte
Carlo integration and event generation are closely linked by the so-called importance
sampling. The application of iterative and adaptive Monte Carlo algorithms for
numerical integration allows us to optimize the efficiency of event generation with a
previous Monte Carlo integration.

We present the parallelization of the doubly-adaptive Monte Carlo algorithm
VaMP using the OpenMP and MPI paradigms, under special consideration of minimiz-
ing communication needs and a method to improve the efficiency of parallelization by
a static load balancer. We have written a new implementation of the doubly-adaptive
algorithm, VAMP2, for adaptive Monte Carlo integration and event generation, which
is available as part of the Monte Carlo event generator WHIZARD. We reached an
overall improvement of the integration run-time of WHIZARD for typical use cases at
collider experiments by order 10, reducing possible computation times from days or
weeks to hours.

In a first application, we employ the parallelized integration in the electroweak
and Higgs sector of the Standard Model for high energies at the TeV scale accessible
by the LHC. For this purpose, we consider the role of transverse-polarized gauge
bosons and the Higgs boson in vector boson scattering (VBS), that is, the scattering
of W and Z bosons in pairs to W, Z, and Higgs.

In a bottom-up approach of the effective field theory of the Standard Model, we
model anomalous contributions by possible new physics in a model-independently
way with dimension-eight operators. We provide relations for the dimension-eight
operators for different representations of the Higgs field to allow comparisons between
our results and existing studies.

A description of the VBS processes by the effective field theory at such high
energies violates the unitarity of the scattering matrix. By applying the T-matrix
unitarity projection we can restore the unitarity of the theory and thus the first
principles of quantum field theory. The simplified models, defined in this way, allow
us to study quantitative statements about (typical) scenarios of New Physics and
estimate possible event rates beyond the standard model predictions by upper limits.
From this we can pinpoint the sensitivity on results for New Physics at the LHC.
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“Study hard what interests you the most in the most undisciplined, irreverent and
original manner possible.” (Richard P. Feynman)
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Preface

After a decade-long search in a series of experiments, a new area in particles physics
has opened with the launch of the LHC. The tremendous success of particle physics,
both in terms of experiment and theory, is based on the predictive power of the SM,
which evolved over the last century. In 2012, at the end of the first run of the LHC at
center-of-mass energies of 7 TeV and 8 TeV, the discovery of a light Higgs-like state with
a mass of 125 GeV was reported by the two major LHC experiments, ATLAS [1] and
CMS [2]. With that, all particles predicted by the SM have been observed and their
parameters determined. However, with the discovery of the Higgs, particle physics faces
new questions in the energy range above 1 TeV, especially with regard to the electroweak
and the Higgs sector: Is the Higgs sector minimal or non-minimal? Is it strongly or
weakly interacting? Are the first principles of quantum field theory (QFT) validated or
invalidated?

New experimental data will deepen our understanding. Especially, with the upcoming
third run phase of the LHC, as well as with the proposed High-Luminosity LHC and
High-Energy LHC at 27 TeV, experimental observations will be achieved with an ever
increasing amount of data and precision. Experimental analyses will be able to advance
into less-tested areas of the SM and probe electroweak physics and the Higgs sector,
particularly, trilinear and quartic couplings of Higgs and weak gauge bosons are one of
the more interesting candidates.

In order to compare experimental data with theoretical predictions, Monte Carlo
event generators [3] are an indispensable tool of elementary particle physics for both
experiment and theory. They supply us with well-founded theoretical predictions which
can be compared to experimental data, or help us to develop experiments such as those
at the LHC or planned future high-energy colliders, such as International Linear Collider
(ILC), Compact Linear Collider (CLIC) or Future Circular Collider (FCC).

The comparison of theory and experiment requires a two-step approach, on the one
hand the generation of particle-level event samples, resulting in a set of particle species and
four-momenta, and on the other hand, the simulation of the detector response. In order
to generate particle-level events, Monte Carlo event generators rely on the well-proven
methods of QFT and perturbation theory. Starting at high energies, where perturbation
theory has its validity, the hard scattering process for partonic observables, such as
cross sections and decay rates, and partonic event samples are computed. In subsequent
steps, these are then evolved via parton showers, subsequent decays and non-perturbative
models for hadronization to the energy and length scales of the particle-level events as
observed in a detector.

We focus our efforts on calculations regarding hard scattering processes, which involve
elementary SM particles, e.g. gluons, quarks, leptons, electroweak bosons and the Higgs
boson, and the photon. The large number and complexity of scattering events recorded at
detectors such as ATLAS or CMS call for a matching computing power for the simulation

XV
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and the efficient use of existing computing resources. By parallelizing the simulations,
these resources can be better utilized.

Typical processes for the LHC are 2 — 2 or 2 — 3 scatterings, where resonant particles
in the final state are subsequently decayed and additional jets are added by a parton
shower. For these processes, analytical expressions for both the matrix element and the
phase space are often known, at leading order of the perturbative series. For those the
application of parallelization can be done in a trivial way on a single machine with a
multi-core CPU, operating with nearly optimal efficiency. However, multi-leg processes,
which are also probed by the LHC experiments, with 2 — n, where n > 4, involve more
and more complex expressions where automation is the method of choice in order to
generate associated matrix elements and phase-space expressions. An example for such
processes is given by those involving vector-boson fusion or vector-boson scattering, where
the simulation handles elementary n = 6, 8 and 10 processes.

With the beginning of LHC automated leading-order calculations were more or less
the state-of-the-art method for Monte-Carlo event generators. However, with the growing
needs for precision in data analysis, and planned future high-energy and high-luminosity
lepton and hadron colliders, automation is shifting towards next-to-leading or even higher
orders. Computational simplification, as for leading order, can not be used anymore at
next-to-leading due to separation of production and decay or signal and background
processes, making the computation even more complicated and prolonged. Here, we restrict
ourselves to improvements for multi-leg processes at leading-order, as an extension to
next-leading order seems to be trivial from a purely technical point of view.

Summarizing, the increased need for higher-precision predictions involve more com-
plicated processes (more particles in the final state or next-to-leading order, parton
shower and hadronization), and require therefore longer computation times, which grows
with the complexity in orders of magnitude: from hours to days, from days to weeks or
months. Hence, optimization and parallelization play a crucial role in order to fulfill these
requirements [4] and to keep up in the race between experiment and theory.

We describe a new approach to efficient parallelization for adaptive Monte Carlo
integration and event generation, implemented within WHIZARD [5] Monte Carlo integra-
tion and event-generation program. The approach combines independent evaluation on
separate processing units with asynchronous communication via MPI-3.1 with internally
parallelized loops distributed on multiple cores via OpenMP.

For such computation tasks, the particle physics community has different systems of
computing resources at hand, mainly grid and high-perfomance computing (HPC)-based
systems. These differ in their respective philosophy, as well as the corresponding hardware.
Grid-based systems are used to process enormous numbers of serial computing tasks
simultaneously, which do not require node-communication during run-time. Whereas
HPC systems are explicitly designed for computations that require node-communication
during run-time, these systems are better equipped in terms of computing and network
performance, but with less computing nodes. Both systems have their valid application in
the area of particle physics, and the answer, which system will assert itself in the future,
is still pending. We are pushed towards HPC due the adaptive nature of the applied
Monte Carlo integration algorithms which require substantial communication after each
iteration.

With the Higgs as a portal to possible new physics beyond the Standard Model
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long-standing puzzles of particle physics, e.g. dark matter, might be solved. However,
new physics scenarios have to respect data from current and previous experiments.
Therefore, we expect new physics to manifest themselves primarily in interactions of
massive electroweak gauge bosons, namely, W*, Z, and the Higgs boson.

Processes of the type VV — V'V, where V = W, Z, H, known as vector-boson scattering
(VBS) and associated or Higgs-pair production in vector-boson fusion (VBF), are a
sensitive probe of electroweak physics and the Higgs sector. VBF and VBS are a prime
application for the parallelization of WHIZARD, [6, 7] as the integration and event
generation is time-consuming due to the complex matrix element and high-dimensionality
of phase space. Deviations from the SM can be parameterized, based on Lorentz and
gauge invariance, in a convenient, methodical way using an effective field theory (EFT).
In a bottom-up approach, the SM as low-energy theory can be extended to energy scales
above 1 TeV as Standard Model Effective Field Theory (SMEFT) [8-11]. The ATLAS and
CMS experiment at the LHC have measured VBS processes as a signal embed in partonic
process of the type qq¢ — VVqq, where ¢ is any light quark. Numerical results [12-16]
have been presented in the form of limits on parameters of the SMEFT.

Hints to new physics may arise as anomalous contributions to trilinear or quartic gauge
couplings. The usual applications of the SMEFT restrict themselves to dimension-six
operators. A useful parameterization regarding quartic gauge coupling, in particular,
independently of the trilinear gauge couplings, requires dimension-eight effective operators,
the second order of the low-energy expansion beyond the SM. In recent works [17-19],
possible deviations from the SM have been studied in VBS processes, but confined to the
longitudinal scattering modes of W and Z bosons. The numerical results of the non-SM
interactions of the longitudinal scattering have shown that for the level of deviations
that can be detected by the LHC experiments, the unitarity bounds as dictated by the
unitarity of the S-matrix are always violated in the high-energy range, if a naive SMEFT
calculation is attempted. At first glance, a model-independent prescription of new physics
beyond the SM that covers the accessible parameter range becomes impossible. But,
reasonable assumptions on new physics, e.g. a global high-energy symmetry and that
fermions decouple from new physics, and a unitarization projection lead to unitarity
constraints that limit the level of possible excess above the SM prediction. It is then
possible to devise simplified models that both satisfy unitary over the whole energy range
and smoothly match onto the SMEFT parameterization at low energy.

We study deviations from the SM in VBS processes that involve transverse-polarized
W and Z bosons, and also consider Higgs bosons in the final state. We provide relations
for the dimension-eight operators for different Higgs field definitions in order to compare
our results with previous studies. For the purpose of an exemplary study we have
compared a class of continuum models, which merely extrapolate the SMEFT expansion
into asymptotically strong interactions with models that describe single resonance with
specific quantum number assignments as weakly-interacting ones.

The thesis is structured as follows, in chapter 1 we introduce the theoretical foundations
of the Standard Model as well as the basics of Monte Carlo integration and event generation.
We complete the introduction with a description of the multi-purpose Monte Carlo event
generator WHIZARD and new contributions due to this thesis.

In chapter 3, we introduce the improved Monte Carlo integration algorithm and
discuss possible ways of optimization and parallelization. We illustrate variance-reducing
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techniques of adaptive Monte Carlo integration and the application of mappings for an
efficient parameterization of the phase-space. Furthermore, we highlight the different
parallelization paradigms and their applicability with regard to the parallelization of the
adaptive algorithm within the Monte Carlo event generator WHIZARD.

This is followed in chapter chapter 3 by a discussion of the new implementation,
VaMP2, and the technical details of the parallelization implementation of the adaptive
Monte Carlo algorithms. Furthermore, we discuss the run-time improvements due to our
parallelization regarding the integration of typical processes within the WHIZARD.

In chapter 4, we introduce the extension of the Standard Model as an effective theory
and present new interactions for the electroweak and Higgs sectors. We explain the
basic assumptions, which ends in the definition of the low energy operators. From this
we construct unitary models which either exhibit a strongly-interacting continuum in
the high energy range or receive a resonance and are otherwise parameterized likewise
the VBS amplitudes to all energies. These models yield then the maximally allowed
number of events consistent with quantum field theory in the VBS channel, matched
to the low-energy SMEFT with specific values for the operator coefficients. For the
implementation, we utilize the symmetry of the new interaction in order to determine the
eigenmodes of the quasi-elastic 2 — 2 scattering, thus, to diagonalize the amplitudes for
all vector-boson states in isospin-spin eigenamplitudes. We present numerical results and
plots for selected parameter sets and final states. To conclude, we discuss the relevance
of our results for future analysis at the LHC or other future colliders.

We conclude and summarize the thesis in chapter 5.



1 Theoretical Foundations

In this chapter, we outline the basics of particle physics and the connection between
experiment and theory. There is a wide-spread textbook literature on particle physics.!
In this short introduction based on [20, 24] we introduce the basic concepts of QFT
and modern particle physics, which will then lead us to the necessity of computational
automation and the questions of optimization and parallelization.

The chapter is structured into the presentation of the Standard Model of particle
physics section 1.1, the formulation of the observables of theory and experiment in sec-
tion 1.2. We introduce the concept of Monte Carlo integration in section 1.3 and event
generation in section 1.4, and discuss their natural relation to each other. In section 1.5,
we introduce the multi-purpose Monte Carlo event generator WHIZARD around which
this thesis revolves.

1.1 The Standard Model of Particle Physics

The description of the fundamental forces and properties of nature at smallest scales
is given by the SM of particle physics. The SM has gradually evolved over the second
half of the last century and has so far withstood every experimental test. The most
important points in this development were the emergence of quantum field theory in
the form of quantum electrodynamics, the introduction of renormalization of infinities,
the description of the strong interaction within the Yang-Mills theory of non-Abelian
local gauge symmetries, the unification of electromagnetic and weak gauge theories in the
Glashow—Salam—Weinberg gauge theory of the electroweak interactions, the spontaneous
electroweak symmetry breaking introduced by the Higgs mechanism in order to generate
masses for the all bosons and fermions (except neutrinos) and the prediction of a third
generation of quarks by Kobayashi and Maskawa in order to solve the weak CP-violation,
and thus the emergence of flavor physics with the description of the Cabibbo-Kobayashi-
Maskawa (CKM)-matrix.

The interactions between particles are described by local gauge symmetries, where
quantum fields transform locally under elements of the gauge groups which are dependent
on the space time. The connection between two field configurations at different space
times is given by the covariant derivative, which contains the gauge fields as minimal
couplings. The interaction between field configurations is therefore propagated through
the gauge fields. The gauge group of the SM is

Gsm = SU(3)cotor X SU(2)g, x U(1)y- (1.1)

The SU(3)010r 1S the symmetry of the strong interaction with coupling constant g; this
theory of Quantum Chromodynamics (QCD) involves three colors and has eight mediators,

'Our recommendations being [20-24].



2 CHAPTER 1. THEORETICAL FOUNDATIONS

the gluons. The SU(2); symmetry of the weak interaction with coupling constant g has
three gauge fields and the U(1)y is the symmetry of the weak hypercharge with coupling
constant ¢° with one gauge boson. All gauge bosons are vector particles of spin 1 having
three polarization states, in the massive case, or two polarization states, in the massless
case. After spontaneous electroweak symmetry breaking, the Higgs potential acquires a
non-zero vacuum expectation value and the fermions acquire masses through Yukawa
couplings to the Higgs field. Rotating the gauge fields of the broken SU(2); x U(1)y
subgroup with the Weinberg angle 6, into the mass eigenbasis gives the observable,
massive gauge bosons W+, Z and the massless photon. The massless Goldstone bosons
with spin 0, which appear as result of the spontaneous symmetry breaking of the Higgs
field, are eaten by the weak gauge bosons, in unitary gauge. Thus, with the gauge
bosons gaining their masses, the unphysical Goldstone bosons reappear as longitudinal
polarizations of the massive weak gauge bosons. The SM gauge group reduces then to
the symmetry of low-energy, SU(3).o10r X U(1)o,,- We remark that the interplay between
Higgs and weak gauge bosons plays an important role for high-energy predictions around
the TeV scale for the weak interactions. An intricate cancellation between Higgs and
longitudinal polarization of the weak gauge bosons hinders amplitudes to rise unphysically
strong with the energy. Without the Higgs, amplitudes proportional to the longitudinal
polarization of the weak gauge bosons would violate the unitary bound imposed by QFT
and, therefore, would leave the applicable range of the perturbative expansion of the SM.

From the experimental side, the major predictions of the standard model were
confirmed. Nevertheless, the keystone of the SM, the Higgs boson, was only confirmed
with the discovery of a Higgs-like light state at 125 GeV, independently within the
ATLAS and CMS experiments at the LHC in 2012 [1, 2]. With that, a period of precision
measurements of SM parameters as well as the different trilinear and quartic couplings of
Higgs and electroweak vector-bosons has started with current studies, e.g. [25], at the
LHC, or is planned for future colliders.

With the finding of such a Higgs-like state, we can continue our description of the
SM with a linear representation of the Higgs field. For the future, the Higgs will play a
crucial role at the LHC.

1.2 Formulation of Phase Space, Cross Section and Decay

The outcome of such collision experiments as run at the LHC, e.g. ATLAS and CMS
experiments, or any other experiment at any planned future collider like CLIC, FCC or
ILC, can be described by means of cross sections. For a quantum mechanical process,
the cross-section, based on the classical definition, is a measure of the probability P of
interaction (given in units of area)

_ 1

d
7T T

1
—dP 1.2
@ ? ( )
where T is the time for the experiment and & is the incoming flux. The cross section is
then directly related to the measured events IV in the detector of an experiment by the
luminosity of the accelerator

dN = Ldo. (1.3)
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Detector effects such as covered solid angle, trigger efficiency, etc. must be taken into
account in the analysis of the experiment to compare experimental data and theoretical
predictions leading to the so-called fiducial cross section.

On the other hand, we can formulate the theoretical foundation more profoundly. We
describe the scattering of an initial state |i) to the final state (f| by a scattering matrix
S. The probability for a transition (f|S|i) is directly connected (in a Lorentz-invariant
way) to the matrix element M by

(fI$—1i) = (Z%"’pr) (1.4)

where the initial state |i) and the final state (f| are to be taken at times t = Foo and
M = (fIM|i), for ease of notation. The translation into an observable is given by the
cross section for a scattering of 2 — n with the matrix element (p,,...,p,|S|¢;,¢s), or
a decay 1 — n with the matrix element (p,...,p,|S|q;), into n particles with momenta
D1, -+, Py, Tespectively, where n > 2. Following the definition of [24], the differential cross
section is given by

(2m)*
4\/(Q1 qa)% — m%mg

The decay rate of a particle in its rest frame into n bodies is given by

do = ’M‘Q d®, (q; + qo; Py, -1 Pp) - (1.5)

(27T>

dr = IM* dD,, (q15p1, -5 Pp) - (1.6)

The Lorentz-invariant n-body phase space is given by

n n d3
d®,, (Qipy---,p,) = Zpl I=ora (1.7)

1=1

where Q) = ¢ + ¢, for the scattering and Q = ¢; for the decay. In general, arbitrary
analytical expressions for the construction of phase space exist for n = 2 and 3. For higher
multiplicities algorithms in closed form exist for flat population® of the phase space [26,
27]. For arbitrary phase-space distributions with high particle multiplicities, such closed
algorithms are not available. The standard approach is to decompose the phase-space
into Lorentz-invariant two-body phase spaces, which are individually parameterized and
kinematically linked by a series of subsequent Lorentz boosts [28].

The transition matrix is connected to the fields of the QF T by the Lehmann—Symanzik—
Zimmermann reduction formula. Time-ordered perturbation theory allows us then to
compute the matrix element in eq. (1.4) as an expansion order by order in one or more
coupling constants g,, as long as ¢g; < 1. In general, these couplings are sensitive to the
energy scale; this fact is known as running of the coupling. An important example of the
running of a coupling is QCD with its asymptotic freedom. The coupling strength of QCD

2A corresponding flat-populated phase space is filling with four-momenta associated with a constant
weight, which can be proved for massless particles in a closed analytical form. For massive particles, this
only applies approximately, when the energy is large compared to the invariants of the phase space [26].
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becomes strong for small energy scales below Aqcp ~ 250 MeV, thus, at large length
scale. Conversely, the strong interaction becomes weak at high energies, thus, at small
length scales. This allows for a perturbative calculation of the elementary interactions at
the LHC or other high-energy collider.

Within the theoretical framework of perturbation theory, we can express the matrix
element M of particle interactions, and therefore, scattering processes and decays, to
any order pictorially with Feynman diagrams. Feynman diagrams can then be translated
with so-called Feynman rules® into mathematical expressions. For processes, involving
non-elementary particles in the initial-state like proton-proton collision, non-perturbative
effects (in the length scale of the protons) need to be separated from the perturbative
expansion of the hard process at high energies. Hence, the non-perturbative part is
factorized from the perturbative part. In order to restore the full hadronic process,
the hard partonic process is convoluted with parton distribution functions to the level
of compound particles. However, these measures are not sufficient for the complete
theoretical description of the final state. To describe the physics from the energy scale of
the hard partonic process down to the energy scales of hadrons, the unstable final-state
particles need to decay to soft gluons (and photons) in the form of a parton shower. And
finally, due to color confinement of QCD, all color-charged particles are hadronized. Since
this part can not be done perturbatively, it has to be modeled in some way.*

Instead of writing complicated formulas from scratch (or more accurately from di-
agrams), we can handle diagrams representing different processes automatically and
translate them to mathematical formulas, which results in fully-automated matrix ele-
ment generators and associated program frameworks, the so-called Monte Carlo event
generators.

To summarize, from theory side in particle physics, strong predictions for an experi-
ment and for the adjustment of the detectors are required. As we discussed above, the
computation of (differential) cross sections and decays can be completely automated for
leading order processes®. The total cross section or decay rate can be determined by
integration of the matrix element over the total Lorentz-invariant phase space. Differential
cross sections and decay rates can be determined from event samples.

1.3 Monte Carlo Integration

The phase-space integration over egs. (1.5) and (1.6) are typical for particle physics. They
have a complicated integrand and even more complicated integration regions dictated
by momentum conservation and on-shell condition. The high-dimensionality, e.g. for the
cross section d = 3n — 4, where typically n = 2, ..., 8, 10, forces us to divert from classical
cubature rules and to use Monte Carlo methods in order to evaluate the integral. We
outline the relevant information given in section 3.1 of [30].

3These Feynman rules can be derived from a Lagrangian, as known from classical mechanics, which is
manifestly Lorentz-invariant.

4These models should be sufficiently motivated by theory and confirmed by experiment These
calculations are then mostly done in a non-analytical, numerical fashion [29].

5In principle this is also true for next-leading-order processes, but in this work we deal exclusively
with leading-order processes.
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The integral I for an integrand f : 2 — R, e.g. a real-valued squared matrix-element
over the compact d-dimensional phase-space manifold (2, is given by

Io[f] = /Qdu(p)f(p)- (1.8)

The coordinates p represent four-momenta and possible extra integration variables for
structure function parameters or initial-state radiation. Four-momentum conservation,
on-shell conditions, (user-defined) cuts and weight factors are considered to be part of
the phase-space manifold and the measure du(p). For the numerical evaluation a phase-
space parameterization has to be chosen. A phase-space parameterization is defined as a
bijective mapping ¢ from the subset U of the d-dimensional unit hypercube, U C (0, 1)d,
onto {2 with Jacobian ¢’ = ‘% ,

p=¢(z), dulp) =¢'(z)du(z) = ¢'(z)py(x)d", (1.9)

where the map with density ¢’(x)p,(x) maps to the canonical measure on R<. In addition,
the integration over the unit hypercube can be arbitrarily continued beyond the fiducial
phase space {2 as long as du(x) = 0 holds there.

A general overview of Monte Carlo Theory and its application is given in [31]. In
stochastic, the integral I,[f] matches the expectation value of f(z)

Ef] = /Q F(0) Lo du(p) = I[f]. (1.10)

for a uniform probability density distribution 1, (z). Therefore, the integral I, can be
estimated by a finite sum

N
Eylf] = (=5 3 F6@)6 (2)pg(,) (1.11)
i=1
with the points z; € U distributed according to a uniform distribution and N the number
of random number configurations for which the integrand has been evaluated, the calls.
The estimate in (1.11) is for independent random points statistically distributed according
to a Gaussian (or normal) distribution® around the true value I,[f]. The statistical error
of (1.11) is given by the square root of the variance estimate,

N

Vnlf] = N _1

(2w —(NH%) (1.12)

which can be computed alongside (1.11). Furthermore, the definition of the accuracy a of
the sampling is defined in the context of
Al a

1 VN
where we find that “the accuracy a depends on the actual variance of the effective
integrand” [30]

(1.13)

fo(@) = f(0(2))d" (z)py (). (1.14)

5Law of large numbers.
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For later reference, we will refer to a single evaluation of (1.14) as event with associated
weight w; = f,(;).

Variance-reducing methods can be applied to improve the overall scaling behavior of
the variance beyond o 1/N, or to compensate ill-behaving integrands. The two methods
of choice are either stratified sampling, where the integrand is more frequently evaluated
at points where the contributions to variance are large, or importance sampling, which
evaluates the integrand at points where the absolute value of the integrand is large in
magnitude. We will introduce these terminologies and their application in more detail
in sections 2.1 and 2.2.

1.4 Event Generation

In eq. (1.5) and later on, we introduced the definition of fiducial cross section using the
notion of an event, which we did not clarify further. Following the definition in [23],
an event refers to an individual interaction of colliding beams at a particle collider.
Further machinery of detector systems and algorithms using a wide range of methods and
technologies is then used to reconstruct the properties of the primary interacting particles,
thus, the hard-scattering process. In simple terms, an experimental setup tries to connect
a signal “in the different detector system back to the Feynman diagram responsible for
the interaction” [23, p.22]. The properties of the detector setup and the detector precision
dictate the possible observables and the comprehensible event properties. On the other
hand, for the purpose of a (Monte Carlo) simulation, we can define the event properties,
as long as they are physically meaningful observables. For our considerations,” we reduce
the definition of an individual event to the bare minimum (along the lines of [32]): a set
of momenta, particle types, spins and charges.

Experimentally, events are produced at a particle collider, they automatically obey
the laws of physics, and appear therefore with the correct probability. In order to predict
events theoretically, we have to understand the probability of an event. For completeness,
we give a brief overview of the concepts of probability theory used in particle physics.

The probability density f(z;#) is a non-negative function and can depend on some
arbitrary parameters 6. The probaility density is normalized,

/f(a:;@) dz =1. (1.15)

We can interpret f(z)dx as the probability to find an event z in the interval [z, z + dz].
The cumulative distribution function F'(a) is the probability that = < a,

Fla) = / (@) da, (1.16)
Pla <z <b)=F()— F(a). (1.17)
In particular, we have the important relation:
F(x
d< ) = f(z). (1.18)
x

"We limit ourself to the generation of complete partonic events, without any application of a parton
shower, hadronization or detector effects.



1.4. EVENT GENERATION 7

In the following, we consider how to generate an F-distributed random number from
a uniform random variable. Let u € [0, 1], and a be distributed according to f(z), such
that, u = F'(a) holds. If we can find the inverse distribution function, then we can relate a
uniformly distributed random variable to an Ftdistributed random variable, a = F~*(u).
Unfortunately, the inverse distribution is only known for a rather small set of functions.
In particular, for a probability density given by a matrix element, it is in most cases
too complicated or even impossible to provide a unique inverse. Therefore, classically
the acceptance-rejection method is used, where the actual but complicated probability
distribution f is enveloped in a simpler, invertible probability distribution h. Usually, the
envelope is given by a uniform distribution or the sum of multiple uniform distributions,
and we find,

f(x) < Ch(z), |f(z)|<CAC>1. (1.19)
Given the constant C, we generate x according to h(z) and calculate f(x). We accept =
under the condition that C{;(l—?;)) < u,® where u € [0, 1], else we reject .

(a) Rectangular envelope Ch(z). x, gets re-(b) Adapted envelope Ch(x). x5 becomes more
jected and x, accepted. likely accepted.

Figure 1.1: Illustration of the acceptance-rejection method. We show an
arbitrary probability density function f(x) and two examples of an envelope
shape: rectangular and adapted. Random points are chosen inside the upper
bounding function Ch(x) and are accepted if the coordinate lies below f(x),
else rejected.

The acceptance-rejection algorithm populates the area (speaking in terms of a graph,
see fig. 1.1) below Ch(x) with points and only accepts those points that lie below f(x).
These points are distributed with the probability f(z), as required. The efficiency ¢ of
the acceptance is defined as the ratio of the area of f(x) over Ch(z), hence, ¢ = %
We can directly translate the efficiency into computation time. Let us have N points
distributed according to f(x), then we need to compute on average N /e points for the
acceptance-rejection method, resulting in an additional 1/ computation time in contrast
to the direct inverse distribution method. Therefore, we want the efficiency to be as close
as possible to one; an optimal choice of h(z) will approximate the form f(z) as well as
possible (and feasible). With the acceptance-rejection method, we now have the tool to
generate physical events by unweighting, such that the events occur with the frequency
specified by the corresponding matrix element of a process.

8For the actual computation, the test f(x) < uCh(x) is numerically stable against division by zero.
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In the previous section, we have already introduced the concept of Monte Carlo
integration, which is based on sampling of the integrand function at uniformly distributed
random points. However, instead of a uniform distribution we can make use of a well-
adapted probability distribution matching the form of the integrand function, the so-called
importance sampling, which we will introduce in more detail in chapter 2.

Here, we want to point out the important connection between Monte Carlo integration
and event generation: The same probability distribution can be used for both, the integra-
tion and event simulation. Hence, with the above knowledge we find a natural approach
to an efficient event generation. First, we choose or adapt a probability distribution,
starting with a uniformly distributed one, according to the integrand function during
integration. Then, using the previously adapted probability distribution for the actual
simulation of the physical events with the acceptance-rejection method, we can vastly
improve the efficiency with a well-adapted probability distribution, assuming that the
maximum event weight w,_ .., as in eq. (1.14), can be estimated sufficiently well during
integration. The efficiency ¢ of the acceptance (also known as unweighting efficiency), is
the ratio of the average event weight over the maximum weight,

(1.20)

In summary, this approach has two advantages: We get the integrated cross section
or decay width, and we gain an optimization of efficiency for the event simulation from
adapting the probability distribution during integration for the event generation on the
fly, resulting in an overall reduced computation time for the event generation.

1.5 Multi-Purpose Monte Carlo Event Generator: WHIZARD

The multi-purpose event generator WHIZARD [5, 33, 34] is a multi-channel Monte Carlo
integration and event generation program. The theoretical framework is given by leading-
order perturbative theory supplied in a fully automated way by the matrix-element
generator OMEGA. Beyond that, support for next-to-leading order (NLO) automation
within the Frixione-Kunszt—Signer (FKS) subtraction scheme has been implemented [35,
36], but is still under validation. Initial studies dealt with NLO QCD corrections for
top processes and decays [37-39], and resummation with POWHEG matching [40-42].
However, WHIZARD masters the classical tasks of a Monte Carlo event generator, such
as calculation of cross sections and other observables, generation of event samples, for
hard scattering processes and decays of particles with multiplicities of up to 10 particles
at high-energy colliders. In addition, WHIZARD supports hadronic scattering processes,
including the convolution with PDF, e.g. with LHAPDF [43], and provides support for the
calculation of Bremsstrahlung, QED initial-state radiation (ISR) and beam polarization®
making WHIZARD the standard simulation tool for various linear collider studies [44-49].

Compared to other Monte Carlo generators, WHIZARD plays a minor role in LHC
physics, where other programs such as HERWIG [50, 51], MADGRAPH [52] and SHERPA [53]
have distinguished themselves and have focused their efforts on improving QCD precision

9In general, it supports any combination of lepton and hadron beams.
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for SM processes. In contrast, WHIZARD traditionally targeted beyond the Standard
Model (BSM) physics, [7, 17, 54-58], and plays an important role in the feasibility
studies for future colliders, such as the ILC in Japan and CLIC and FCC at European
Organization for Nuclear Research (CERN).

Program Structure and Workflow

In the following we describe roughly the typical run of WHIZARD in order to determine the
total cross section of a process and to generate event samples. This knowlegde will later
prove as essential for understanding the implementation of parallelization and will play
an important role in evaluating the efficiency of the parallelization. WHIZARD combines
Monte Carlo integration and event generation in a single framework, where phase-space
parameterization for each process and the various add-on treatments for event generation
play an important role.”

WHIZARD is written in an object-oriented and modular way using the programming
language Fortran 2008. Most components can be extended in a modular fashion. Examples
for this approach are various interfaces for external programs for event formats (HepMC,
LCIO, etc.), phase-space parameterization or the different integrators. An important
point of the Fortran 2008 support is the native interoperability with C-interfaces and a
detailed prescription for accessing the program environment and operating system.

The development of WHIZARD is test-driven: most modules are covered by unit tests
against unwanted changes, and the general functionality of WHIZARD is secured by
functional tests. In particular, the latest technologies such as continuous integration based
on external tools like Gitlab and Docker, have proved their worth during development.
My personal contribution to WHIZARD, which is not governed in detail by this thesis,
are major refactoring, fixing and validation efforts for the NLO QCD production of
WHIzZARD. Further contributions are the implementation and validation of a PYTHIA-8
C/C++-interface on a single-event basis allowing for internal matching of showered events.
And the implementation of the flat phase-space parameterization RAMBO proposed by [27]
and an algorithmically improved version [26], where I implemented the latter. One major
part of this thesis evolves around the Monte Carlo integration and event generation, for
which I provided a new implementation of the adaptive Monte Carlo integrator as well
as an implementation of a random-number generator for parallel application to provide
correlation-free random numbers for the parallelization setup.

WHIZARD is steered by the user through the domain-specific scripting language
SINDARIN, which allows the user to specify the physics model, scattering or decay processes
both for integration or event generation, physical parameters and run parameters. In
addition, WHIZARD offers advanced control structures such as if-clauses or scan loops.
The SINDARIN command can be submitted either through a file or via command line
to WHIZARD. We restrict our considerations to the case of steering by file, where the
instructions of the file are processed in a top-down approach.

The workflow of WHIZARD is structured as follows. A WHIZARD run starts by setting
up the physics model and the physical parameters, initializing the random number

10For a more detailed description of the features of WHIZARD we refer to the WHIZARD manual, or for
the details of the implementation to the WHIZARD documentation, which are delivered as part of the
WHIZARD package [59].
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generator (RNG) with a corresponding seed. Then, the processes are initialized and the
source code for the matrix-element is generated by, OMEGA! after which the matrix
element source code is compiled and dynamically linked. The phase-space configuration
is generated and written to a file. What follows is the adaptive integration pass, in which
an importance sampling is performed and adapted, and a final integration pass for the
total cross section. Thereafter, the previously adapted importance sampling is used to
efficiently sample events. WHIZARD offers options for adding shower and hadronization
with internal and external tools on a single event basis. The so-generated events are then
exported to an appropriate event file format on disk, e.g. LHEF or HepMC to name the
most prominent ones. The program structure is also reflected in large parts of the source
code in a one-to-one mapping to the program flow.

In summary, a WHIZARD run consists of three parts: (i) initialization of physics model
and parameters, and setup of the process and phase space, both involving the writing
and reading of files, (ii) adaptive integration and final integration pass for the actual
integration result, both involve writing a grid-file, which then holds the adaptation-
and integration results, and (iii) the actual event generation, which is now as efficient
as possible through the previous adaptive integration, which then allows to generate
individual events and to save them on disk.

HThe source code for the matrix elements are automatically provided by the tree-level matrix-element
generator OMEGA, NLO matrix elements can be provided via the standardized BLHA interface of a
one-loop provider such as RECOLA, OPENLOOPS or GOSAM.



2 Adaptive Monte Carlo Integration

In this chapter, we introduce the multi-channel approach for integration [60] and the
adaptive Monte Carlo algorithms of VEGAS [61, 62] published as part of [30]. Furthermore,
we outline the requirement for the optimization and the parallelization of the adaptive
Monte Carlo methods with the paradigms of MPI and OpenMP within the framework of
the event generator WHIZARD.

The concept of parallelization is not new to high-energy particle physics as the
calculation methods are generally very time-consuming. As we elaborated in sections 1.3
and 1.4, the number of sampling points N in (1.11) directly correlates to the reduction
of the variance estimate and the computation time. Or otherwise stated, the more
computation time one invests, the further the variance can be reduced by the dimension-
independent Monte Carlo error scaling o< 1/ V/N, given that the integrand is well-behaved.
Since computation time is a finite resource and not every integrand is well-behaved,!
further improvements of the Monte Carlo error scaling with variance-reducing methods
such as stratified or importance sampling are required.

A major effort of the Monte Carlo event generator community is to advance the
status of the parallelization [4] of the major Monte Carlo event generators. Most have
already implemented parallelization features, e.g. SHERPA [53], MG5_ AMCQ@NLO [52]
as mentioned in [4], MATRIX [63] and McFM [64]. However, the requirements for theory
predictions in the Monte Carlo event generator area are ever increasing, e.g. due to the
increased measurement accuracy at the LHC, as already stated in the preface. Until the
end of 2018 the LHC run-II provided a combined 160fb™! of integrated luminosity of
events to the general-purpose experiments ATLAS and CMS. In order to meet these
requirements, there is a need for optimized computation methods, but also for an efficient
use of computational resources.

These computational resources can be split among grid-based batch systems and HPC
systems. Both are present at research institutes like CERN or DESY. Grid-based batch
systems can run an enormous amount of serial programs on a large grid of computing
nodes simultaneously, because they do not require communication between each other
during run-time. On the other hand, HPC systems are explicitly designed for computing-
intensive problems where parallelization requires explicit communication and a high
throughput of data between the computing nodes.

We present the adaptive Monte Carlo integration algorithm VEGAS for (approximately)
factorizable integrands based on the methods of importance and stratified sampling. In
addition, we introduce the multi-channel approach and the combination of VEGAS and
multi-channel approach, the VAMP algorithm [65] in section 2.4. In table 2.1 we compare
the integrated cross sections for various scattering processes, e.g. for LHC or for a future

n addition to momentum conservation and on-shell conditions, phase-space integration may depend
on external constraints such as phase-space cuts, as well as very much on the exact analytic structure of
the matrix element. In this sense it is well-defined, but certainly not always well-behaved.

11
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high-energy lepton collider, done with a flat phase-space parameterization using RAMBO
and the adaptive Monte Carlo integrator VEGAS and with the full machinery of the
doubly-adaptive multi-channel Monte Carlo algorithm VAMP. We see that the integration
results are compatible within their error estimates. The doubly-adaptive approach has
a faster error convergence and its efficiency is of several orders of magnitude better
than the one for the flat phase-space parameterization. Thus, the use of the much-more
involved VAMP algorithm is therefore clearly justified for the integration as well as for
the event generation due to the much higher efficiency. For the parallelization, the double
adaptation and the multiple phase-space parameterization require a detailed prescription,
due to their complexity, and non-trivial communication during parallelization. Therefore,
we follow the philosophy of HPC in order to provide an efficiently parallel adpative Monte
Carlo integration with MPI.

In the following, we introduce the optimization of the computation time by suitable
sampling techniques, i.e. multi-channel, importance and stratified sampling in sections 2.1
and 2.2, as well as in section 2.5 we discuss the parallelization schemes on the basis
of shared and distributed memory systems such as MPI or OpenMP. We explain in
detail the different, aforementioned algorithms, the functionality of the VAMP integration.
Furthermore, we discuss the details of possible optimization in the Monte Carlo event
generator WHIZARD.



Process O multicchannel /0 | Eff. % | Ogiat/ D | Eff. %
ete” — utu” 106.3864(22) 41.22(0) | 106.38645(4) 42.69(0)
ete” — putpy 28.788(10) 7.95(25) | 28.91(14) 0.112(19)
efe” = ptuyy 0.9049(6) 3.95(11) | 0.907(5) 0.048(12)
ete” — ptuTyyy 0.010873(15) 1.93(6) 0.01082(7) 0.024(14)
i =W (—=e )i 9.368(6) x 10° | 2.9(4) 9.39(4) x10° | 0.038(27)
Jjj—= W (= e 1,)jj 2.8813(27) x 10° | 2.40(17) 2.91(4) x10° | 0.008(4)
§i— W™ (= e 1,)jjj 7.967(13) x 10* | 1.03(5) 7.62(16) x 107 | <1073
99 = W (= e 1,)qq 2.4106(24) x 10* | 1.27(16) 2.411(20) x 10* | 0.020(9)
g9 — W~ (= e 1,)qqg 9.150(15) x 10® | 0.81(7) 8.86(18) x 10% | 0.004(5)
g9 — W (—=e,)qqgg | 2.366(15) x 10° | 0.152(18)| 1.54(9) x10%| <1073

Table 2.1: We compare the integration results between a flat phase-space
parameterization using the RAMBO algorithm with single adaptive Monte
Carlo integration and the doubly adaptive multi-channel Monte Carlo inte-
gration, which will be presented in section 2.4. Both are based on the VEGAS
integration algorithm, which will be presented in section 2.1 and computed
with the same number of sampling points. We see that the integration results
are compatible within (at worst) a 20 range and that the doubly adaptive
approach has a better error convergence, especially for processes with higher
multiplicities. Furthermore, we see that the respective efficiency, as defined
in eq. (1.20), for the flat phase-space parameterization is by several orders of
magnitude smaller than the efficiency of the multi-channel parameterization,
which is of the order of a few percent instead of promille or less.

€l
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2.1 The VEGAS Algorithm: Importance Sampling

First, we reconsider the estimate expression of the integral I,[f] in (1.11). Instead
of evaluating the integrand at uniformly distributed random points r;, a more fitting
probability function G(x) allows us to sample the integrand more densely in regions of
greater interest, e.g. where f takes large values in magnitude, the so called importance
sampling. Hence, let us have a bijective, factorizable mapping U — G(U) : r = G(z),
which maps a uniformly drawn random number r; € U to a G-distributed random variable
z; € G(U) with G(U) = U and z; = G'(r;). Applying the map to the integral, we have
to account for the change in the integration variable by dividing by the Jacobian g(x),

_ ) 4l — f¢(93)
Io[f] = /U £ () i = /G o T

For a finite sample with N events, the estimator for the integral and the variance are
now given by

ddr. (2.1)
x=G1(r)

EN[f] = %; JZZZ)), withz, = G_l(ri), (2.2)
N 2\ 2
Valf] = (Z (J; j;;)) —ENW) . (2.3)

The integral itself does not change under the change of variable, but the variance does
depend on the particular choice of G(z).

The VEGAS algorithm proposes a particular choice for the mapping G for (nearly-
)factorizable functions: For each dimension k = 1, ..., d the interval (0, 1) is divided into
ny, bins B; with bin width Az, ; =z ; 1 — 2 . Jk = 1, ..., 0y, respecting

Y Awy, =1, 0=m45<..<mp, =L (2.4)
Jk

A one-dimensional probability distribution g, (z),) is defined as constant over a bin By, ;.
and equal to its inverse bin with, 1/ Az, ;. . The overall probability distribution g(x) is
then given by

g(@) = [ oule) = [ —— (2.5)
k k

M
MR ATy g,

if z, € By, ;,, which is also constant in the multi-dimensional bin [, By ; . It is positive-
definite and satisfies

/Ug(a:) diz =1, (2.6)

by construction, and fulfills the requirement for the mapping G. The binnings z; define
the so-called integration grid, which has Zgzl(nk — 1) free parameters subject to the
following optimization: The VEGAS algorithm adjusts the size of the bins for each bin j,

of each axis k based on the size of the following measure

w o > 1 increase bin size
m; = L | S N 1 keep bin size , (2.7)
2w e log

Yk
2wy < 1 decrease bin size
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respecting the overall normalization. The measure is chosen such that it suppresses the
adaptation for small weights w; avoiding rapid destabilizing changes of the bin widths.
This behavior can be tuned with the free parameter o which is set to a value between 1
and 2. For values of « closer to 1, the suppression of small values is enhanced, for values
closer to or equal to 2 the suppression is damped. The default setting of WHIZARD is

a = 1.5. The individual (squared) bin weights are defined as

f2(95i)
9*(z;)

W?k = ((f)Az,)* = Z plx;), (2.8)

(mi)keBk,jk

marginalizing over all integration dimensions k&’ # k when refining the bins along a
dimension k. The bin weights are chosen such that the probability distribution g approaches
the form of the integrand. A proof that the choice of weights actually leads to an
optimal minimization of the variance for an factorizable integrand and a factorizable
probability distribution as given in appendix A.1 using the method of Lagrange multipliers.
As additional safety measurement against destabilizing grid changes, we average the
individual bin weights over the nearest neighbors

1

2 2 1
5 (wf, +u3) Jr <3
2 /2 __ 1 2 2 2 :
wjk - wjk - g (wjk—l + wjk T wjk+1> 3= Tk < T — 1 ’ (29)
1
5 (Wl i) Gy =y, — 1

as proposed in the original VAMP implementation. The bin weights w?k are collected as
by-product while sampling events during integration.

For the event generation, we select a point component by component, which we draw
from a uniformly in z-space selected bin B; , and compute the associated probability
by eq. (2.5). The event is then accepted or rejected due to the acceptance ratio

1@ @)
TVEGAS T () / = gla) (240

We see again, that the efficiency is directly sensitive to the resemblance of the probability
distribution to the integrand. In particular, we note that only a sufficiently well-adapted
integration grid leads to an optimized efficiency of event generation. However, this requires,
firstly, that the integrand should approximately factorize in its variables, and, secondly,
that the integration grid should be filled and adapted with a sufficient number of sampling
points. The choice of the latter is subject to the user’s experience.

Furthermore, we want to examine the connection between the integration grid and the
probability distribution more precisely, and the practical impact on the ratio f(x)/g(x).
The properties of the probability distribution in eq. (2.5) are clearly specified. We have
visualized the probability distribution given by an integration grid for an real-world
application, the integration of the hadronic process pp — W™ (— e v,)j with dimension
d =7, 5 for the phase-space integral of the hard process and 2 for the convolution of the
process with the PDF. We computed for each dimension the (flat) probability distribution
gi(z),) based on the position and width of each bin B j.- From that, we determined the
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(1,3)
(1,4)

(1,2)

(1,5)
(1, 6)
(1,7)

(2, 3)
(2, 4)
(2, 5)

(3, 5)
(3, 6)
(3,7)

(4,5)
(4, 6)
(4, 7)

(5,7)
(6, 7)

(2, 6)
(2,7)
(3, 4)

(5, 6)

Figure 2.1: Example of an adapted grid. We show the projection of the
probability distribution onto two integration dimensions (0,1)®?) namely, the
(k, k")-plane. The probability on the plane is given as the product of the
probability distributions Djs i, for each bin By, iy The color coding follows:
blue-ish for small p and yellow-ish for large p.

(1, 4)

Figure 2.2: We show a zoomed version of fig. 2.1 for dimension (1,2) and
(1,4).
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two-dimensional probability distribution for dimensions (k, k") by marginalizing over all
other dimensions. In fig. 2.1, all combinations of the tuple (k, k") of dimensions are plotted.
We see that some combinations, e.g. (1,2),(2,5),(3,5) exhibit a unique structure inside
the integration domain. On the other hand, as shown in (1,4) or (2,6), the adaptation
leads to enhancements at the border of the integration domain. For better visibility, we
consider the two zoomed cases: (1,2) and (1,4) in fig. 2.2. In the plot for (1, 2), we see two
substructures resolved in the middle of the integration domain, which are detected and
adapted by the algorithm. In the plot for (1,4), we see that the algorithm has detected
and adapted a structure at the border of the integration domain. The plots show that
the probability distribution g(z) behaves as expected.

However, the ratio f(z)/g(z) exhibits a more interesting characteristic. In fact, the
shape of g(z) will eventually resemble a histogramed version of f,(z), with a saw-like
profile along each integration dimension. Bins will narrow along slopes of high variation in
f4» such that the ratio f,/g becomes bounded. The existence of such a bound is essential for
unweighting events, since the unweighting efficiency e scales with the absolute maximum
of fs(x)/g(x) within the integration domain. Clearly, the value of this maximum can
only be determined with some uncertainty since it relies on the finite sample z;. The
saw-like shape puts further limits on the achievable efficiency . Roughly speaking, each
direction with significant variation in f, reduces e by a factor of two.

2.2 The VEGAS Algorithm: (Pseudo-)Stratified Sampling

On average, sampling a function at completely random points lets the Monte Carlo
integration converge proportional to o/ VN independently of the number of dimensions.?
As previously introduced, the convergence behavior can be improved with the methods
of importance sampling. Instead of drawing random numbers uniformly, one draws them
either from a cleverly chosen probability distribution or from an adaptively generated or
improved probability distribution.

Another approach is to distribute the random numbers less randomly [66], or to ensure
an even distribution among the integration domain, the so called stratified sampling.® The
integration volume is subdivided into disjoint sub-volumes. Then for each sub-volume,
the estimators for the integral and the variance are determined independently in the
usual Monte Carlo way with a fixed, overall sampling number. The total integral and the
total variance can then be easily determined from the individual results.

In general, stratified sampling has an equally-well convergence behavior compared
to importance sampling. But choosing the sub-volumes and the sampling number of
each wisely can prove to handle some integrals better, as well as some less well than
importance sampling. Nevertheless, it does not only accommodate for large contributions
of magnitude in the integrands, but also where the integrand is varying rapidly. Applying
an adaptation prescription, e.g. using the information on the variances of the sub-volumes

2However, the actual convergence will still depend on the behavior of the integrand.

3Quasi-Monte Carlo methods [67, 68] go beyond this approach by distributing the quasi-random
numbers with low discrepancy as evenly as possible among the integration domain. This approach could
be used for the phase-space integration, but not for event generation as such an approach breaks with the
laws of quantum mechanics.
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to vary their size, one can find that the best convergence occurs when the sub-volumes
are chosen in a way that the variance becomes the same for the different sub-volumes [60].

The disadvantage of stratified sampling is the requirement for an unpractically large
number of total sampling points. As a short example: A subdivision of the axis [0, 1]
into n, ;4 cells with s sample points each, would result in d dimensions in a total sample
number N = s-n?, which easily exceeds practical values. If we set d = 10, and Niq = 20,
then we get already 1.024 x 10'* sub-volumes, which need to be sampled s-times needing
disproportionately much computing time in practice.

Although stratified sampling is disadvantageous in high dimensions, it is advantageous
for low dimensions. The VEGAS (pseudo-)stratified approach allows us to apply the
benefits of stratified sampling to high dimensions without the need of large sampling
numbers and for switching to genuine stratified sampling for low dimensions.

We impose a binning along all coordinates axes producing nf cells. Within each
cell, we sample the integrand precisely s times at distinctive points, s > 2. The number
of cells per axis is chosen such, that the total number of calls, N = s - nff, is still
practical. For example, s = 2, d = 10, and limiting the sampling number to N ~ 107, we
obtain n, ~ 4.676. In each cell the sampling points are drawn randomly from a uniform
distribution. In the genuine stratified mode for low dimensions, the VEGAS algorithm
iteratively adapts the binning according to the variances per cell 7,

Wy, = (), — (D7 (2.11)

For high dimensions, VEGAS uses a pseudo-stratified approach. We also introduce an
equidistant binning in r-space, but superimpose the integration grid in z-space. In each
cell in r-space we sample precisely two points by selecting them uniformly in the r cell
and map it point-wise in one of the nfrl bins of x-space. During adaptation, the cells in
r-space are unaffected and their distribution stays uniform.

In the implementation, the binning in z-space equals the binning in r-space, the
integration grid itself is stratified. For the pseudo-stratified sampling, VEGAS applies a
point-wise injective mapping from r-space to x-space, thus, the integration grid is stratified
in an superficial way. An overview of the implementation of the VECGAS algorithm is given
in the activity diagram in appendix A.2.

As short remark on the applicability of integration grids adapted by stratified sam-
pling during event generation: For the integration both sampling methods can be used
interchangeably. For the event generation we only use the probability density based
on the adapted integration grid (see section 1.4 for the details of Monte Carlo event
generation). The actual adaptation method is identical for both methods and it differs
just in the choice of the bin weights. Therefore, both sampling methods conserve the
criterions in eq. (2.4) and eq. (2.6), giving us a valid probability distribution. Concerning
both method, the integration grid can be used safely in context of the event generation
with the acceptance-rejection method.

2.3 The Multi-Channel Approach

In fig. 2.3 we show a simple example of electron-position annihilation into a quark-anti
quark pair and an additional gluon. For the simple case, that ¢> < M,, we can find the
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Figure 2.3: Example Multi-Channel e e¢™ — ggg above the Z production
threshold.

averaged and summed matrix element by hand. It is proportional to the propagators of
the photon ¢ and the quark/antiquark with momenta S12=Dp12t+k,

1 1
122 MP e s (2.12)

where lepton and quark masses are neglected, ¢% > m?, mz. The fully-reduced matrix
element has only one denominator, which is already fully factorized (in a single mapping).
Above the threshold, the matrix element gains additional terms from the Z propagator
and the chiral structure of the interaction vertex of Z and e*,e™, which then does not
factorize in a single mapping. However, for importance sampling using VEGAS, we have
so far assumed that the matrix element, or differential cross section, is factorizable in its
variables, which as we see in general does not always apply.

A typical differential cross section exhibits singularities® in different phase-space
regions, best accounted for with different sets of phase-space variables. The basic idea is
to generate the singular structures in different mappings of the random numbers drawn
from a unit hypercube. Therefore, let us introduce the multi-channel ansatz following [60].
We introduce K phase-space channels as respective mappings of the unit hypercube U to
the phase-space manifold (2, ¢, : U — {2 with corresponding coordinates z_, Jacobian
|pe(x.)| and densities p,(z,.) such, that du(p) = |¢.(z.)|py(2,) d?z,. Furthermore, given
the partition of unity with the channel weights a, € R™, which satisfy

K
0<a,<1, Y a,=1, (2.13)
c=1

we can introduce an intermediate function
h<p> = Zachc(p)7 hc(p> = |¢::(¢c_1(p))|_l ) (214)

consisting of the Jacobian of all channels. We can then rewrite the integral expression,
where we pull back from (2 to U,

Iolf] = /Q £ (o) dulp) = /Q > o) dn)
B f(6(.))
B> O‘C/U Moy @) o 40

“4For the ease of readability, we simply refer to both peaks and genuine singularities as “singularities”.

(2.15)
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The mappings ¢, are then chosen in such a way, that each singularity is canceled at
least by one Jacobian |¢.|. If we assume, that the Jacobians |¢.| tend sufficiently fast to
zero in the vicinity of their respective singularity, then the effective integrand

weoo o f(@e(@))
fC ('CCC) - h(¢c<$c))p¢c<xc)7 (216)
reduces approximately at a singularity z_. to
N (XA -
ARk 210

Each effective integrand, which depends on all weights «, and Jacobians |¢.|, is then
integrated in its associated phase-space channel, and the total integral can be obtained,
by summing the «, weighted results.

The usual Monte Carlo method can then be applied,

N,
Exlf] = Y aene Y £ ) (2.13)

ci—1

where the total number of samples N is distributed among the channels, N = _N..
A particular choice for the weights is to correlate them and the number of samples N,
N, = o N, thus

Nc
Exlfl= 5203 1) (2.19)
c i,=1
For each channel, the points z.; can be taken independently as uniformly distributed
random numbers. Or, one may apply stratified sampling within each channel.

The channel weights «, are free parameters and the integral does not depend on the
actual choice of the channel weights and/or the mappings, in contrast to the variance.
Therefore, the choice and the method of optimization of the weights play an important
role for minimization of the variance. The optimization rule, which minimizes the variance
based on the channel weights, can be derived by the method of Lagrange multipliers
(see appendix A.3). The result is that a minimum® of the variance is achieved when all
channel variances become equal.

At first, we may start the weight optimization from a uniform distribution, hence,
a, = 1/K, and adapt them iteratively. The channel weights are updated by

ozCVCB
.oV

with an independent parameter 3 [60],% where the V, denote the channel variances.
We want to note that the update of the weights in eq. (2.20) following the argument
in section 2.3 does not necessarily converge to a global fixed point, but may only achieve

(2.20)

5It is not possible to argue that the optimization will lead to an global minimum, but at least to a
minimum.
5We choose B = 1/4, however, the parameter can be changed by the user.
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a minor level of local optimization. Nonetheless, the update prescription will focus on
channels with large contributions to the variance. Furthermore, practical application shows
the update prescription works rather well. In order to dampen statistical fluctuations,
the free parameter 8 can be adjusted to smaller values. Furthermore, it may be useful
to implement a safe-guard for when a channel weight becomes small and, therefore,
the corresponding number of samples N, is getting small. In that case, we may either
choose to switch off the channel, a, = 0, or introduce a threshold value for N,. However,
the choice of such a safe-guard is up to the implementation, e.g. in WHIZARD a lower
threshold value for N, is enforced by reweighting the channels weights a, accordingly
such that the condition ) o, =1 is conserved.

2.4 Doubly-Adaptive Multi-Channel Integration: VAMP

Connecting the multi-channel ansatz with VEGAS leads us to the VAMP algorithm,
introduced in [65]. In a similar way as before, we introduce K bijective mappings G, of
the unit hypercube onto itself U — G_.(U) = U. Furthermore, we constrain G,(z) with
the Jacobian g.(x.) = GL(z,) and the normalization condition

/gc(xc) diz, =1, (2.21)
U

for all channels. We can then identify g.(z.) as the probability distribution given in eq. (2.5)
by VEGAS, and chain G, with the channel mappings ¢, in eq. (2.14). The integral
expression can then be reformulated,

1 =3 a, /U f2(z,)

C

vt d0Te, (2.22)

where the modified effective integrand for the channel c is given by

g _ f(¢c(xc)) 293
fC(xc> g(¢c($c))p¢c(mc) ( . )
The overall probability density, replacing h(p) in eq. (2.16), is
ge(z.)
g(p) = Zc:acm\mfmpy (2.24)

The variance can be reduced in a two-fold way: By choosing a suitable mapping ¢,., but
with fixed Jacobain ¢., and also by the tune-able g, distributions. In regions, where the
contribution of g, gets large in magnitude, we find that eq. (2.23) reduces approximately

to
f(a.) ~ f¢°(w0), (2.25)
ge(z.)
in analogy to eq. (2.14).
The integral estimate for the combined approach is given by
Nc
Exlf]l = %Z Z fchc,icﬂ Leiq, = GZI(Tc,iC)~ (2.26)

c i.=1
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The variance can then be minimized by optimizing the free parameters independently,
thus, the channel weights «, accordingly to eq. (2.20) and the respective channel grids
by eq. (2.7).

We want to note that the multi-channel approach can scale the number of channels,
and therefore, integration grids, up arbitrarily.” Normally, the increasing number of free
parameters of the optimization will then face a constant number of sampling points,
which can result in insufficiently filled integration grids. Such critical grids can then
adapt inefficiently and spoil the combined ansatz. In order to improve the adaptation in
such cases, we define equivalences for channels that share a common structure. These
equivalences allow adaptation information, i.e. the individual bin weights w; of each
axis, to be averaged over several channels, which in turn improves the statistics of the
adaptation. Such an equivalence maps the individual bin weights of a channel ¢’ onto
the current channel ¢ together with the permutation of the integration dimensions d,
m:ct ¢ ki w(k), and the type of mapping. The different mappings used in the
algorithm are:

identity wj, = wj, + w (2:27)
invert wi =l +wy ()’ (2.28)
. . c 1 c ¢’
symmetric w; —w; + 5 (wdfjﬁ(k) + wd*jmk‘)) ’ (2.29)
invariant w; — 1. (2:30)
Jre

Interesting applications are those that require very high statistics. Channel equivalences
have been shown to play a crucial role in sampling correctly particularly the less densely
populated regions of phase space, e.g. in vector-boson scattering [6, 7, 17, 19, 49, 56, 57] or
in BSM simulations with a huge number of phase space channels [55, 69-71]. Constructing
these channel equivalences is part of the phase-space algorithm, but a detailed explanation
is out of scope of this thesis.

We employ two steps for the event generation after the multi-channel integration:
Firstly, we select a channel ¢ by the probability pammel 00 SUp,. Y% _; @ < Pepanner and,
secondly, we generate and accept an event in the respective channel c,

,_ T(@e(x,)) / G

= max ,
¢/ \&er h(¢c’(xc’>>

T hou(x,)

where max, , f(¢.(7.))/h(¢.(z.)) denotes the overall maximum weight of all channels.
However, to simplify the implementation where we want to generate an event in the
selected channel ¢ with VEGAS, we have to replace the total maximum weight with the
individual maximum channel weights. In order to do so, we reweight the channel weights
(only for event generation) with the individual channel maximum weights over the overall
maximum weight,

o, = i / > — e éC)))) : (2.32)

max, , max,

(2.31)

"The actual number of channels is either up to an algorithm or user input, and is in particular neither
restricted by the multi-channel ansatz, nor by the VEGAS.
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from where the dependency on the overall maximum weight then drops. After selecting a
channel with the reweighted channel weights, we can proceed to generate and accept an
event in the selected channel,
x T
o= L) o 0D -
h‘<¢c(wc) Te h(¢c<xc>)

with the same procedure as in VEGAS.

2.5 Optimization and Parallelization

Regarding particle-physics applications, we are met with the ever increasing demands on
the capabilities of modern Monte-Carlo event generators, e.g. on the precision in data
analysis at the LHC and planned future high-energy and high-luminosity lepton and
hadron colliders. Evolving from simple 2 — 2 or 2 — 3 processes, where the amplitudes
are hard-coded and already optimized, e.g. Pythia 6 [72] or its successor Pythia 8 [29], the
state-of-the-art simulations for LHC have been made with automated multi-leg tree-level
processes, which are capable of simulating 2 — n scattering processes, where n = 6, 8
and 10. However, data analyses with higher precision at the major experiments of the
LHC, such as ATLAS or CMS, require often to go beyond multi-leg tree-level processes,
hence, computations shift towards automated NLO (or even higher orders) processes for
integration and event generation at fixed-order and a corresponding matching routine, e.g.
POWHEG method [73]. Compared to multi-leg tree-level calculations, automated NLO
computations are currently limited to smaller multiplicities n < 5, but they introduce
(computing-intense) terms such as the real (with multiplicity plus one) and a virtual
correction terms, as well as numerical stabilizing subtraction terms, which are used to
subtract the occurring divergences on the individual terms, separately®. Combined with
the expanding possibilities of multi-processing resources and high-performance computing
systems, we are forced to examine the possibilities of optimization and/or parallelization
of our computation tools.

We can employ two approaches: reducing the actual central-processing unit (CPU)
time spent by optimization or reducing the wall time by parallel evaluation of the
computation tasks.

Optimization

First, we want to discuss the possibility of optimizing computational methods. The
optimization of the Monte Carlo integration and event generation has been discussed
thoroughly in the previous sections. Next, we consider the optimization of the matrix
element computation, as well as the phase-space generation: The number of Feynman
graphs contributing to a physical process grows approximately factorially with the number
of outgoing particles.

The generation of efficient code for the matrix-element computation is covered by
specialized matrix-element generators, e.g OMEGA for leading order (LO), [34], or RECOLA
for LO/NLO, [74, 75].

8The divergences cancel in a full analytical calculation of both real and virtual corrections, but need
to be regularized in a numerical approach.
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OMEGA [76, 77] constructs multi-leg tree-level amplitudes not directly from Feynman
diagrams as it proves to be that the direct Feynman diagram approach introduces
many redundant terms. Instead, OMEGA utitlizes One Particle Off-Shell Wave (1IPOW)
functions

W(I; 41y -5 9ms P1s "'7pn) = <¢(Q1)7 T ¢<Qm); out@(a:)@(pl), tt ¢(pn>; in> ’ (234)

in order to express sums of Feynman diagrams as 1POWs. Further reduction of the
algebraic expression of the scattering amplitudes is achieved with help of direct acyclical
graphs (DAGs), e.g. where expression of the form ab + ac are reduced to a(b + ¢) saving
one multiplication. In this form, the computation of the matrix elements can be put in
its most optimized form, resulting in an exponential scaling law.

Further improvements of OMEGA are made with regard to the form of the matrix
element as machine interpretable code. OMEGA can either provide the matrix element as
Fortran source code which then needs to be compiled or in the form of a self-provided
byte-code syntax which is then interpreted by the OMEGA virtual-machine [78, 79]. The
byte-code based matrix-element computation performs comparable to the Fortran-based
and compiled matrix element. The compilation time of the Fortran code can consume
a considerable amount of run-time and can exceed the available memory for multi-leg
processes with large n = 8 and 10. In contrast, the byte-code does neither require a
compilation as it is interpreted just-in-time nor does the interpreter demand vast amounts
of memory.? Thus, the OMEGA virtual-machine pushes the boundary for an optimized
computation of high-multiplicity multileg tree-level processes further.

Regarding the multi-channel phase-space parameterization: At tree level, the analytical
structure of the matrix elements is dominated by particle propagators going on-shell.'
From the Feynman diagrams we can then construct a phase-space configuration using
particle information, i.e. their masses. However, with a one-to-one translation of the
Feynman graphs into integration channels, the number of channels would grow factorially,
too. Additionally, if the multi-channel approach is combined with the adaptive binning of
VEGAS, the number of channels is then multiplied by the number of grid parameters, which
considerably complicates the overall optimization of integration grids as it would require a
tremendous number of sampling to cover all of the free parameters efficiently. Furthermore,
the calculation of the channel Jacobians, and the lookup of the grid probabilities, consume
a considerable fraction of the overall computation time, rising again with the number
of channels. In order to limit the number of integration channels, a heuristic algorithm
searches for dominant parameterization [80] or [5, see the WHIZARD manual] whose
description goes beyond the scope of this thesis.

The original implementation of the phase-space generator of WHIZARD, which con-
structs the channel paramerterizations from an internal construction of relevant Feynman
graphs, is called wood, and uses the internal model information to find resonant propaga-
tors, actual mass values in order to identify collinear and soft singularities and to map
mass edges, as well the process energy. However, the internal construction of Feynman
graphs, although implemented recursively, is inefficient and memory-consuming. There-
fore, a new algorithm wood2 has been designed, which relies on the already optimized

9For the actual matrix-element computation the memory footprint of the byte-code interpreted
matrix-element is slightly larger than for the Fortran-based, compiled matrix element.
10T addition, logarithmic radiation of massless particles or t-channel diagrams and further contribute.
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DAG representation of the Feynman graphs from OMEGA. It applies the elimination and
simplification algorithm of wood on the DAG represented Feynman graphs, and combines
them with the corresponding numerical values for the masses and the colliding energy.
The new algorithm is on average 100 times faster as can be seen in fig. 2.4.
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Figure 2.4: Comparison of the phase-space configuration generators: wood
and wood?2 [80]. The wood algorithm is based on the cascades implementation,
whereas the wood2 is based on cascades2. The run-time for the phase-space
configuration is shown for both. Furthermore, we compare them with the
run-time of cascades?2 and the preceding, necessary OMEGA run. Taken from
the master thesis [80]. The English-translated version of the plot was provided
by Manuel Utsch.

A final remark: The particular choice of the channel parameterization does not change
the limit E,[f] — I,[f], but it affects the variance and it may improve or slow down the
convergence of the integral estimate.

Parallelization

So far, we have sufficiently exhausted the possibilities of optimization, but the computation
tools are still bound to the resources of a single CPU machine. Further reduction of the
computation time can be reached with parallelization: The distribution of the computation
on different computing resources, e.g. CPUs with multiple cores or machines of a high-
performance computing cluster. The basic methods of parallel evaluation can be divided
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among two paradigms: shared memory and distributed memory, where also a combination
of both approaches is possible.

Shared memory systems allow multiple processes to share memory addresses allowing
processes to access or manipulate data of other processes in the same place and avoiding
copies of memory. Due to the design of shared memory, race conditions can occur where
several processes try to access or manipulate data at the same memory address. A typical
application of the shared-system paradigm is threading: A process spawns threads, which
are confined to their respective parent process, and allows computation tasks to run
concurrently on the threads, where the parent process and threads share memory. There
exist several application programming interfaces (APIs) with the better-known being the
POSIX thread standard or the OpenMP standard.

For independent processes, each operating locally on data, access to remote data
requires communication. Such distributed memory systems require sophisticated com-
munication, which depend on the physical side crucially on the network topology and
scalability. However, distributed memory systems allow significantly higher scalability of
computational resources, as opposed to shared-memory systems that rely on particular
hardware and software to scale accordingly, which are mostly bound to a single machine
with multiple-core CPUs.

In the following, we give an overview of the different protocols, in particular their
strategy, native language support, embedding into the programs, and hardware depen-
dence.™

1. Message-passing interface (MPI) [81, 82] is a standard associated to the distributed-
memory paradigm. It introduces the concepts of abstract workers and processes,
such that the high-level implementation is independent of the detailed nature of the
underlying hard- and software. Each worker is assigned a process running the same
program concurrently. Remote data requires communication which is introduced in
a set of communication procedures and message handling. Furthermore, in MPI-2
the notion of parallel input/ouput (I/O) was introduced, mostly supported by file
formats like the hierarchical file format, version 5 (HDF5). In MPI-3, the standard
introduces non-blocking communication for all communicative procedures allowing
for concurrent communication and computation. It provides native Fortran 2008
support and the implementation of the APIs is deferred to a library, e.g. OpenMPI,
MPICH, or Intel MPI. The standard does not provide any parallelization concepts,
only the framework for the communication, the concept is up to the respective
developer. The MPI protocol is particularly well suited for HPC clusters with many
independent, but interconnected CPUs with a well designed network.

2. Open multi-processing (OpenMP) [see 83, 84] is a shared-memory based paralleliza-
tion model that uses threads. OpenMP allows during program execution to switch
between sequential and parallel stages of the program flow using a master-slave
approach, where the master coordinates the distribution of computing resources
and the synchronization between the stages. A disadvantage of the shared-memory
model is that the execution of atomic instructions, such as read and write access

Ve are particularly interested in the Fortran support, which is the language of choice for our
numerical applications.
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to memory, can lead to race-conditions and deadlocks of the program flow. The
standard provides an explicit parallelization concept, which can be implemented via
directives in the source code by the developer, which is then realized automatically
by an OpenMP-compatible compiler.

3. Multithreading with the POSIX Thread Standard [85] is based on operating system
features and does not evolve itself around a sophisticated parallelization concept. It
requires a sophisticated implementation by the developer realizing higher concepts
of parallelization on its own, for example, resource manager must be derived.

4. Coarrays [e.g. see 86, 87] are an approach to native parallelism in the Fortran
2008 standard. Its semantics combine the concepts of MPI and OpenMP, hence, it
provides concepts for independent workers, where data can be accessed in shared-
memory fashion or requires communication for remote data. However, the support
by different Fortran compiler is rather poor.

5. CUDA [88] is a software-layer that gives direct access to graphical processing units
(GPU) as highly valuable multiprocessing units for parallelization of floating-point
computation with a small memory footprint.

The current strategy for the parallel evaluation within WHIZARD involves MPI and
OpenMP, either separately or in combination. We do not make use of the other protocol,
as they are either insufficiently supported by compilers (Coarrays) or are superseeded
by an easier paradigm (POSIX), or our problems do not fit on to the prerequisites for a
protocol, e.g. CUDA.

An example for existing parallelization efforts within WHIZARD is the parallelization
of the matrix-element computation, which is based on the concurrent evaluation of helicity
amplitudes with OpenMP multi-threading.

We rely on MPI for the parallel implementation of the integrator VAMP2 (see section 3.1
), however, minor parts can be parallelized with OpenMP, e.g. computation of the overall
probability in eq. (2.24), or the parallel evaluation of the helicity amplitudes of the
OMEGA amplitudes.

Ahmdal’s and Gustafson’s laws

We assume that we can separate a program into a parallelizable fraction with run-time 7},,
which can be performed concurrently by n workers, and a serial fraction with run-time 7,
the same for all workers. Additionally, we make the communication 7,(n) time explicit,
which we expect to vary on the used algorithm and to be dependent on the number of
workers. The total computation time can then be written as

T
T(n) =T, + Fp +T,(n). (2.35)

We expect the communication time to vanish for n = 1 and to increase monotonically in
n, e.g. T, ~log(n) or T, ~ (n —1)% a > 0.

The speedup factor of the parallelization is given by

T(1) T,+ T

f(n) =—— = -

T 1+ g1 n)

(2.36)
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In the ideal case, that T, and 7, vanish,
f(n) = n, (2.37)

and as long we can neglect T, the speedup is bounded by

Tp TP TP
f(n)g<1+i> <1+n-Ts> §1+i, (2.38)

but in practice we can neglect neither 7', nor T .. Eventually communication increases so
much that the speedup vanishes,

T,+T
~ = P 0,
T(n)

C

(2.39)

limiting the number of workers that we can efficiently employ for a given task.

We can summarize the challenges of the parallelization effort: Firstly, we want to
increase the fraction T, /T, that determines the critical behavior for large n, by parallelizing
all computing-intense parts of the program as thoroughly as possible. For example, if the
serial fraction is 0.1 %, then we already reach a speedup plateau at around n = 100 workers.
Secondly, we have to make sure that the communication time 7, remains negligible until
we reach this saturation point either by choosing a communication algorithm with a low
power of n in T,.(n), or by reducing communication where applicable and preventing
communication-related blocking by applying non-blocking communication in combination
with a feasible parallelization model.

The effectiveness for the parallelization is determined by benchmarks, where we
examine the computation time of a fixed problem for a varying number of workers. We
then compare the speedups of the benchmark with the ideal prediction of the speedup
in Ahmdal’s law [89]. For this, we neglect the communication time and write the time
executed by the parallelization part as fraction p - T' of the total time T'= T, + T, of the
serial process. The speedup in eq. (2.36) translates into

1 n—o0 1

— . (2.40)
1-p+£ 1—p

f(n) =

Again, in the limit of infinite resources, the speedup reaches a plateau given exactly by
the serial portion s =1 —p.

The pessimistic view of Ahmdal’s law can be contrasted with Gustafson’s Law [90].
The main critique point is that in practice the parallel fraction 7}, is not independent
of n. Furthermore, in practice, no one would compare the run-time of a fixed problem
with varying number of processes, except for academic research. In fact, we expect the
problem and the number of processes to scale together, as a user would tune a parallel
run. So, if we compare the run-time of a parallel evaluation T + T),, and compute the
run-time of a serial run as T +n - T, we find that the speedup is given by

Ltn 1 1 T 2.41
g(n)—TSTTp—”JF(—n)'TSJer- (2.41)




2.6. THE MESSAGE-PASSING INTERFACE (MPI) STANDARD 29

Compared to Ahmdal’s law, the scaled speedup depends linearly on the serial time, with
a moderate slope 1 — n. It is thus much easier to achieve an efficient parallelization than
suggested by Ahmdal’s law.

However, we want to assess the worst case of our parallelization. Therefore, we resort
to Ahmdahl’s law in order to estimate a lower bound on the speedup regarding a fixed-size
problem. In a real application, the computational resources should be adapted to the
present (integration) problem resulting in a more efficient parallelization on average due
to being a scaled-size problem. We close this discussion with the memorable statement
that “the speedup should be measured by scaling the problem, not by fixing the problem
size” [90].

2.6 The Message-Passing Interface (MPI) Standard

In section 2.5, we briefly mentioned the message-passing interface standard. In the
following, we give a short introduction to shed more light on the relevant terminology for
our implementation, as well as the standard itself.

The MPI standard is very general in its applications, it specifies a large amount
of procedures, types and memory-, process- and error-related management of different
purposes. However, we limit the wide range of functionality, which obscures a clear view
on the problem of parallelization and unnecessarily complicates the problem itself, to
the absolute minimum, which we need for the implementation of our parallelization.
For example, we do not use the MPI shared-memory capabilities or the MPI process
management for the implementation of a dynamic server-client model. For clarity in the
discussion of implementation later on, we refer to MPI processes as worker in order to
not confuse them with physical processes (in context of WHIZARD).

For MPI programs, the standard specifies that the processes are autonomous, in
principle each running its own code, and run in a MIMD'? style [cf. 82, p. 20]. The
definition of communicators [82, pp. 223-257] allows to abstract processes from the
underlying hardware and network topology, and to separate communication of different
program parts or libraries. The latter is achieved by the introduction of communication
context securing that sending and receiving messages in a given one does not interfere with
messages in other contexts. Communicators group processes (a so called process group)
as ordered set with assigned ranks (labels) 0,...,n — 1. The MPI standard predefines
the MPI_COMM_WORLD which contains all processes known at the initialization of a MPI
program (done by MPI_INIT) in a linearly ordered fashion.

In most cases, the underlying architecture of the hardware and the network infrastruc-
ture is not reflected by the linearly ordering of the process group, therefore, the standard
defines a process topology mechanism [82, pp. 289-332] which allows to order the processes
in such a way that the communication pattern is reflected in a virtual topology, and
thereby the communication is optimized. The virtual topologies can also be exploited by
the operating system to improve the distribution of processes to the hardware, and it must
not be confused with a hardware topology. Importantly, a virtual topology is introduced
principally to optimize communication by adjusting the process ranking through the

12Multiple instruction, multiple data. In practice, MIMD have a number of processes running asyn-
chronously and independently.
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virtual topology to match the communication pattern. The application of such topologies
is useful, for example, in the case where the next neighbor needs to exchange information,
e.g. solving partial differential equations, in contrast, during Monte Carlo sampling there
is no need for communication, only before and after, for the adaptation step. A specific
profiling of the run-time could reveal special topological structures in the communication
which might offer potential for further improvement, but for the time being, we neglect
the optimization through topologies. Lastly, all newly created communicators inherit
from the process group and context definition of MPI_COMM_WORLD.

Messages are passed between sender(s) and receiver(s) inside a communicator or
between communicators where the following communication modes are available:

non-blocking A non-blocking procedure returns directly after initiating a communica-
tion process. The status of communication must be checked by the user.

blocking A blocking procedure returns after the communication process has completed.

point-to-point A point-to-point procedure communicates between a single receiver and
single sender.

collective A collective procedure communicates with the complete process group. Col-
lective procedures must appear in the same order on all processes.

The standard distinguishes between blocking and non-blocking point-to-point or collective
communications. A conciser program flow and an increased speedup are advantages of
non-blocking over blocking communication.

In order to ease the startup of a parallel application, the standard specifies the startup
command mpiexec. However, we recommend the de-facto standard startup command
mpirun which is in general part of a MPI-library. In this way, the user does not have to
bother with the quirks of the overall process management and inter-operability with the
operating system, as this is then covered by mpirun. Furthermore, most MPI-libraries
support interfaces to cluster software, e.g. SLURM, TORQUE, HTCONDOR.

In addition, MPI supports parallel input/output (I/0O) [82, pp. 491-560]. The standard
defines a high-level interface supporting partitioning of file data among processes and
a collective interface supporting complete transfers of global data structures between
process memories and files. In addition, the standard allows for further improvement of
the efficiency by supporting asynchronous I/0, strided access and control over physical file
layout on storage device. Although the standard provides a more abstract approach than
a low-level approach with basic tools from POSIX standard, the complexity of handling
parallel I/O is still enormous. Well-defined file formats such as the HDF5 support parallel
I/O based on the MPI standard. We point out that an implementation of parallel I/O
for the self-defined file formats of WHIZARD and VAMP2 is meaningless, firstly, due to
their arbitrary definition and that such an implementation would require large amount
of development time and personal resources. Therefore, we should fall back on external,
well-defined file formats.

In summary, we do not use process and (shared-)memory management, topologies,
parallel I/O and the advanced error handling of MPI.



3 Parallelization of the Adaptive Monte Carlo
Integration

In this chapter, we present our results on the implementation of the parallel adaptive
multi-channel Monte Carlo methods using MPI which was published as part of [30]. The
results are presented within the framework of the event generator WHIZARD.

In the previous chapter 2, we have introduced the adaptive multi-channel Monte Carlo
method VAMP and the parallelization paradigms of MPI and OpenMP. In this chapter,
we reason in detail the need for a modern re-implementation as the VAMP2 integrator in
the Monte Carlo event generator WHIZARD. The advantage of the new implementation
VAMP2 over VAMP is the complete object-oriented programming approach, the dynamic
memory management, the inclusion of arbitrary random number generators (as available
in WHIZARD), whereas VAMP is limited to its own supplied random number generator.
Most important, the new implementation has a working parallelization scheme based
on the third MPI standard, which allows for a strong-typed interface to any MPI-3.1
compatible library and the application of non-blocking collective communication. However,
most benefits are based on the application of more modern Fortran 2008 compared to
Fortran 90 and the more comprehensive documentation of the source code.

We discuss the applications of random number generators in parallelized applications
and introduce the RNGstream [91] which allows us to generate random numbers without
any need of communication. We then present in detail the parallelization of the adaptive
Monte Carlo algorithms for the integration, VEGAS and VAMP, respectively, as well as
their implementation in VAMP2 and WHIZARD with a simple and rather naive approach
for load-balancing between the two algorithms. The load balancing is necessary for a
efficient parallelization as we need to cover the full range of multi-channel and worker
configurations for the parallel integration, e.g. from single to @(1000) channels in the
integration with several to hundreds of workers for the parallelization. In addition, we
present new results, that were not part of [30], namely, a static load-balancer to further
advance the efficiency of our parallelization effort.

3.1 A New Implementation: VAMP2

The implementation of the VAMP algorithm is packaged as part of WHIZARD [59], but
is also available as standalone package. VAMP ist written as standalone library which
can be interfaced by any Fortran 90 compatible program. Furthermore, we refer out
of simplicity to the library itself as VAMP integrator. The original implementation was
written by Thorsten Ohl and has been slightly extended over time to the additional
requirements of WHIZARD, e.g. the addition of channel equivalences. The implementation
has been written in Fortran 90 and utilizes an object-oriented approach as well as some
concepts of functional programming, as far as Fortran 90 allows for such programming
constructs. Memory management for dynamically allocatable arrays is done with Fortran

31



32 CHAPTER 3. PARALLEL ADAPTIVE MONTE CARLO INTEGRATION

pointers. The latter do not necessarily force the compiler to implement dynamic arrays
in a very efficient way. In general, pointers are used basically for different task, but in
Fortran 90 they were exploited! to provide allocatable memory (as in languages like C).
The programmer alone was responsible for the correct handling of allocated memory, i.e.
referencing and explicit deallocation.

Furthermore, the implementation of VAMP, which in itself is fully functional, is only in
parts well documented and many of the key details of the algorithm are lost in structure
and incomprehensible ways of the source code, which make maintenance and extensibility
a rather tedious task. In addition, there existed also a duplicate version of VAMP called
VAMPI, which implemented a parallel version of the VAMP algorithm using a first version
of the MPI standard. Unfortunately, this version was not kept up-to-date and is no
longer functional in the sense that it is not compatible anymore with the current version
of the VAMP implementation. Again, the documentation is insufficient, moreover, the
structure of the source code is confusing and in parts incomprehensible. This is not a
direct criticism on the VAMP package, but it was an insurmountable obstacle that we
encountered trying to parallelize the original VAMP algorithm. These and the need to
understand the algorithm at all depths have led us to write a new implementation.

We implement the VAMP algorithm from scratch in Fortran 2008 as VAMP2, with
all supported public features of VAMP, as part of the WHIZARD source code. For the
implementation of VEGAS, we followed the concepts of the original source code of
Lepage [61] and the C version in the GNU Scientific Library [92].

VAMP2 is designed as independent library and is fully programmed in an object-
orientated fashion based on the object-orientated features of Fortran 2008, where we have
defined various objects: containers for the configuration parameters, for the integration
results and for the integration grid itself and as well as a separate data types for the
integrators. The new implementation explicitly distinguishes between the two integration
algorithms, VEGAS and VAMP, and we implement them as separate integration modules,
which leaves us with two encapsulated integration entities, i.e. two integration libraries
to which we refer again as integrators, respectively.? The object-oriented approach allows
us to reuse the VEGAS integrator as an encapsulated object in the VAMP2 integration
module, this reflects the natural dependence of the two algorithms. Furthermore, we either
extended different structures of VEGAS by inheritance to VAMP2 (for the configuration
and result containers), or define a new data type for the VAMP2 integrator. All arrays
are dynamically treated as allocatable, which ensures that all arrays are contiguous and
are always correctly allocated and deallocated. This allows the compiler to make certain
assumptions for further optimization of the compiled code. Therefore, we expect a small
(but hardly measurable) speed advantage due to the use of allocatable versus pointer
arrays, as well as with full object-oriented typing.

The benefit of the Fortran 2008 implementation, besides the typical advantages due
to object-oriented programming and allocatables, is that we can implement a direct
C-interface (and thus an interface for C++) based on the Fortran 2008 standard, which

!The Fortran 90 Standard introduced pointers. Before, there was no way for a Fortran programmer
to do any type of memory operation during run-time.

2For the sake of simplicity, we refer to the specific implementation of a single integration module as
an integrator.
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makes the integrator accessible to a broader user base.?

VaMPp2 is shipped as part of the WHIZARD source code available in [5].% A future
standalone packaging is planned with an additional C++ interface allowing a variety of
external tools to access the VAMP2 integrator and most importantly to make the here
presented parallelization feature accessible to the public.

3.2 Random Numbers and Parallelization

The backbone of the afore-mentioned Monte Carlo method is the underlying generation
of random numbers which allows us to compute an integral without detailed knowledge
about the integrand with a convergence approximately to o/ V'N to the true value, where
« denotes the contribution to the variance due to the integrand. Without loss of generality,
we have always assumed that a “black box”-generator produced a sequence of uniform
random numbers in the open interval (0,1) with appropriate “random” properties.

The quality of random numbers such as uniformity or correlation have an important
impact on the integration result and the variance of the Monte Carlo approach. A deviation
from the uniformity without corresponding compensation of the integration measure can
lead to a wrong estimate of the integration results and the variance. Whereas correlations
in the random numbers have no effect on the integration result itself, with them we may
underestimate or overestimate the variance as our assumption of independent random
numbers for the calculation of the variance in eq. (1.12) is no longer valid. Furthermore, in
both cases, such “bad” random numbers can not be used for event generation. Quantum
mechanics predicts that the events occur independently of each other and “randomly”
(according to the underlying dynamics), these principles are broken by such bad random
numbers.

In order to respect these basic principles of quantum mechanics, an RNG could utilize
a physical process to generate random numbers such as radioactive decay or Brownian
molecular motion, known from thermodynamics. > However, we require for our purpose
that the computation of an integral or event generation is reproducible which is a clear
disadvantage of a genuine RNG as is it can not reproduce a once generated sequence
of random numbers. Furthermore, a genuine RNG may require additional hardware
with its own quirks and requirements. ® Therefore, we use a pseudo-random number
generator (pRNG) which computes based on a deterministic algorithm a sequence of
uniform random numbers from a starting point (seed) with a large periodicity. Thus,
a pPRNG generates pseudo-random numbers, not genuine random numbers. Still, we
expect the pseudo-random numbers to appear random enough, that is, the statistical
expectations of the pseudo-random numbers conform to those of a random system, e.g.
they have no common structure or global correlations. For more detailed introduction
into the topic of random numbers we refer to [93, 94].

3The high-energy particle physics community is clearly biased towards C++ applications.

4The details on the source code and the documentation can be found in src/vegas/vegas.nw in the
WHIZARD package release.

5Such a setup exists in reality, see Cloudflare: A wall of lava lamps produces a random pattern of
ascending and descending wax blobs which are turned into floating point data by a video recorder.

5The measurement of a physical process is still an experiment, and as such needs attention and
knowledge from user side and a very careful design.
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These requirements can be tested with different test suites based on statistical
principles and other methods. A simple example of such a randomness test is the -
test or uniform binning test. Assume we divide the interval [0, 1] into M bins of equal
length and generate N random numbers inside that interval. We can then determine
the number of random numbers n, in each bin i. The mean over many trials for n, is
Poisson-distributed, hence, (n;) = N/M and the expected variance is N /M. With the
constraint EZ.MnZ- = N for the M values n,;, we see that we have a total of (M — 1) degrees
of freedom and we obtain for Y2 = M — 1. Even simple random number generators should
satisfy this rather simple statistical test. In addition, every random number generator
should endure a battery of tests: The TestUO1 [95] library implements in ANSI C several
tests for empirical randomness. A very extensive collection of tests can be found in the
Die Hard suite [96], also known as Die Hard 1, which contains, e.g. the squeeze test, the
overlapping sums test, the parking lot test, the craps test, and the runs test [97]. There
is also a more modern version of this test suite, the Die Harder or Die Hard 2 [98], which
contains e.g. the Knuthran [94] and the RanLux [99, 100]. Naturally, such a pRNG should
add as little as possible overhead in the form of computation time.

The simplest set of pRNGs is given by the class of linear congruence generator (LCG)

X1 = (aX, + c) mod m, (3.1)

with sequence X,,, multiplier a, modulus m and increment ¢, which fail for any set of
parameters every of the aforementioned statistical tests. Every LCG suffers from the so
called Marsaglia effect [101] where points composed of n random numbers, (r;,...,7;,,),
are distributed along (n — 1)-dimensional hyperplanes.

For actually correct example of a better random generator, we introduce the TAO
random number generator proposed by [94] and provided by the VAMP package. The
generator is based on a lagged Fibonacci sequence of states X,

X, = (X,_,+X,_;) mod 2%, (3.2)
with lags £ = 100 and [ = 37 computing portable 30-bit integer numbers. The computation
requires a reservoir of at least £ random numbers in advance. For higher efficiency a
reservoir larger than 1000 states is needed. The TAO random number generator passes
the Die Hard tests. The implementation suffers from its integer arithmetic which is less
efficient on modern CPUs than floating point arithmetic as it is faster and can be put in
pipelines allowing terser computation.

For the parallelization of Monte Carlo integration and event generation, we have to
consider the detailed handling of random numbers. First, in order to utilize an RNG
like the TAO generator we have to either communicate each random number before or
during sampling. Both are time-consuming, spoiling parallelization efficiency. Or we have
to prepare them or, at least, guarantee independent sequences of random numbers of
different instances of RNG by initializing each sequence with different seeds. For the
latter, we have to assume that each independent seed leads to a separate sequence of
random numbers. © However, there is the unlikely possibility that the sequences will

"The assumption can be seen to be valid only in the case that the length of each stream is much
smaller than the periodicity of the pRNG.
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overlap, for example if one seed is part of the other sequence.® In such a case, random
numbers would be drawn and evaluated twice, resulting in a false result. Therefore, it is
hardly feasible or even impossible to ensure for all combinations of seeds and number of
workers such independence.

The inconvenience of slower integer arithmetic on modern CPUs, and the dubious
independence renders the TAO random number unpractical for the parallelization.

RNGstream [91] allows to generate multiple independent streams® of random numbers
and makes it possible to access these streams with O(1) operations. The underlying
backbone generator is the combined multiple-recursive generator, referred to as MRG32k3a,
which manipulates two components each of order 3 with respect to the simultaneously
handled random numbers numbers. The state of the generator after n steps is given by
the recurrence relation,

21, = (1403580 X 21, » — 810728 X x; ,,_3) mod 4294967087, (3.3)
Ty = (B27612 X 5, | — 1360589 X @, ,, 5) mod 4294944443, (3.4)

with the initial seed 7, ; = (xi7_2,xi7_1,xi70)T € {1,2}. The output u,, of the RNG is
defined by

2z, = (21, — Ta,,) mod 4294967087, (3.5)
[ 2,/4294967088 if 2 >0, 56
" 7 ) 4294967087 /4294967088 if z, = 0. '

The resulting period of the RNGstream is approximately 2'%'. The RNGstream
passes the TestUO1 and Die Hard suites. Furthermore, the RNG passes the spec-
tral test up to (at least) 45 dimensions, which requires that the point set T, =
{(ug, oty 1 )(21 0,21 1,21 9)" € Zf‘nl, (9,0, T91, g 0)" € Zf’%} covers the n-dimensional
unit hypercube very uniformly, making it an ideal candidate for high multiplicity phase-
space integrals of particle physics.

The sequence of random numbers is divided into disjoint streams of length 2127, which
are then further divided into substreams of length 276, Each stream or substream can be
accessed by repeated application of the transition function z,, = T'(z,,_;). We rewrite the
transition function as a matrix multiplication on a vector, making the linear dependence
clear, x,, = T x x,_;. In that form, the transition function can be precomputed and
stored for n steps, T,, = T", using the power of modular arithmetic. Accessing a stream
or substream is of the same cost as computing a single advance of the RNG. The exact
choice of the advance parameters for the streams and substreams is an intricate problem
and we refer to [91].

We have rewritten the RNGstream C++ implementation, which uses floating point
arithmetic, in Fortran 2008 in WHIZARD. The new RNG ist available for the VAMP2
integrator, but unfortunetaly not for the original VAMP integrator as the TAO RNG is
hard-coded for it.

8The assumption of independent seeds does not hold here, but there is no way to test this a-priori.
9We change our notation here to streams instead of sequences of random numbers accordingly to the
RNGstream terminology.
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In context of parallel evaluation, the RNGstream allows us to identify each channel
with a stream and each cell in r-space with a substreams in advance. As the numerical
properties of the random number are then fixed for both serial and parallel evaluation, it
will also fix (with further constraints, see later) the numerical properties of the integration.
This gives us a powerful tool to test and verify the integrator at hand as serial and
parallel results must coincide completely. As such, it gives us a strong tool to test and
verify the parallelized version of the integrator.

3.3 Parallelization of VEGAS

A consistent description of the parallelization of the VEGAS implementation [102] was
given in [103].

In the following we discuss why a trivial parallelization of VEGAS due to the adaptive
algorithm fails. We then discuss how we can distribute the integration using the stratified
sampling properties of VEGAS, first, to ensure that the integration is done properly
(like in a serial run) and, second, that the adaptation does not fail. For the purpose of
illustration we consider an integration over a sharp Gaussian curve, which may resemble
a narrow particle resonance.

The most trivial way to parallelize VEGAS would be to distribute N samples among p
workers such that each worker uses N /p samples to compute the integral. After sampling
the result can be obtained as weighted average where the weights correspond to the
errors of the individual computations. We have p grids which are adapted each with N /p
sampling points, and thus in comparison to a single grid with N samples are less well
adapted. In particular, interesting structures may be barely or not at all recognized by
VEGAS which in return can lead to a grid that is adapted too coarse in some regions. In
the worst case, such a misadaptation can lead to a false result and a correspondingly
underestimated error. An example of this is given in the third column of table 3.1, where
the first five iterations give completely inconsistent results as the algorithm does not get
a hold on the sharp Gaussian function.

However, the method can be improved by synchronizing the p grids after each iteration.
The adaptation information is collected on a single worker and the grid is adapted there,
in order to minimize numerical instability. In such a way, we adapt a single grid with the
full information of N samples. But, as we can see in the fourth column in table 3.1, the
errors of each iteration are still larger than those of the serial run.



It. Calls Trivial parallelized Parallelized+Sync. Unparallelized
1 5000-16 4.2-1073¢4£2.2-10733 0.0000864 + 0.0000690 0.537 6864 + 0.5376830
2 1.2-10739 4 3.5-1073%  1.032088 4+ 0.041060  0.993894 4+ 0.013399
3 1.9-107% +£5.0-1073%  1.000428 <+ 0.000283  1.000008 + 0.000067
4 6.0-1073*+£5.0-1073% 0.999933 +0.000143  0.999724 4 0.000080
5 5.7-10720 £5.7-1072° 0.998949 4 0.000187  1.001166 + 0.001 102
6 0.998361 4+ 0.000492  1.000323 +0.000980  0.999365 <+ 0.000 603
7 0.996 855 4+ 0.000635  1.000582 + 0.000676  1.000288 4 0.000295
8 0.997329 4+ 0.001107  0.997636 +0.000311  1.000052 = 0.000 127
9 0.993738 4 0.002539  0.997168 +0.000160  1.000017 4 0.000 088
10 20000-16  0.992781 4+ 0.001604  0.998939 +0.001081  1.000019 4 0.000 068
11 0.993782 4+ 0.001661  0.999631 +0.000827  1.000016 < 0.000057
12 0.993844 4+ 0.001446  0.999705 4+ 0.000355  0.999937 <+ 0.000 046
13 0.994918 4 0.001192  0.999693 4+ 0.000325  0.999940 <+ 0.000 040
14 0.996218 4+ 0.001213  0.999611 +0.000316  0.999957 <+ 0.000035
15 0.997030 + 0.001070  0.999720 =+ 0.000255  0.999995 4+ 0.000021

Table 3.1: Taken from [103], we compare 15 iterations of a trivial parallelized
and trivial parallized-synchronised VEGAS with 16 workers integrating a sharp
Gaussian with an unparallelized run. Equal numbers of function calls were
sampled in each run.
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The numerical properties of the adaptation have been fixed so far with the synchro-
nization of the grids using a single worker. However, all workers sample the full unit
hypercube. On the other hand, the unparallelized run distributes all samples evenly by
means of the super-imposed stratification. In order to fix the numerical properties of the
sampling itself, we make use of the super-imposed stratification of the unit hypercube
into many sub-hypercubes which we can then distribute among the workers.

In principle, Monte Carlo sampling does not require intermediate communication
during an iteration, except for synchronization calls at the beginning or end of an iteration
for synchronizing the grids. But we have to ensure that the sub-hypercube each are only
assigned once to a worker. A direct one-to-one assignment that would communicate via
a broadcast-gather-approach each per hypercube introduces a significant overhead that
spoils the efficiency of the parallelization.

Therefore, it is more convenient for a worker to calculate more than one hypercube
before communicating its results. Let r» be the number of fractions the unit hypercube
is equally split into and k£ the number of hypercubes {G,}. In order to minimize the
communication time, we require that » <« k. On the other hand, the problem of dynamic
load balancing can be circumvented by requiring for the number of workers p and number
of fractions r: p < r. We arrive at the overall constraint,

pLr<Lk. (3.7)

We can implement a static load balancer respecting the constraint in eq. (3.7) using

an algorithmic approach. First, we slice the d-dimensional hypercubes r, up into two

sub-cubes r! and 7 with dimensions dj and d, . The sub-cubes r; | are distributed among

the workers where each worker evaluates a d-dimensional hypercube r; = r;,H ® 7";, Ik
Here, the x = z; ® =, denotes an outer product between the two sub-cubes z; such
that d = d; + dy. We refer to the sub-cubes in TH—space as parallel sub-space as they are
evaluated concurrently by all workers. The complementary sub-space is referred to as
orthogonal sub-space, as d = dj + d,; holds. In order to impose the load balancing, it is
suggested to choose dj = |d/2| and d, = [d/2], which should satisfy eq. (3.7).

A last remark, VEGAS is only parallelizable if there is an equidistant binning in the
super-imposed stratification space, otherwise stated, n,, > 2. However, the number of
equidistant binnings per dimension depends on the number of sampling points IV,

n, = /N/2, (3.8)

N = 2n. (3.9)
Requiring at least n, = 2, eq. (3.8) sets a lower bound for the number of sampling
points, N > 2%+ which becomes important later for the combination of VEGAS and
multi-channel parallelization as the number of sampling points per channel is subject to
adaptation.

or, vice versa,

Implementation

In the VEGAS implementation, each hypercube in r-space is tagged with a unique
coordinate,

I, 1<¢;<n.c €N, (3.10)

G = (02‘717 < Cid i,j = My G j
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(a) Super-imposed stratified grid in r-space. (b) Integration grid in z-space.

Figure 3.1: We compare the super-imposed stratified grid in r-space with
the actual integration grid in z-space. For illustration, we have chosen n, =4
for the uniformly binned stratified grid and n = 5 for the adaptive integration
grid, and we entered the first coordinates for the cells in the super-imposed
stratified grid. The integration grid is adapted and has a pronounced structure
in the area [0.65,0.85]%?. We see how different points in r-space are mapped
by eq. (A.9) into z-space.

as shown in the example in fig. 3.1. The algorithm cycles over the hypercubes in r-space
by incrementing the coordinate ¢; of the latest evaluated hypercube r;, as shown in fig. 3.2,
beginning at ¢, = (1,1, ...,1)". We split the coordinate ¢, up into parallel and orthogonal

. R T |
coordinates, ¢;,c;-, with ¢; = ¢, ® ¢,

S
¢ = (Ci7di+17 ey Ci,d)Tv (3'11)
87% — (6171, ceey C?:,dL)T' (3.12)

For the purpose of the parallelization, we can then split up the loop over the hypercubes
(cells) of the r-space into an inner loop over rll-space, which is evaluated by all workers,
and an outer loop over r-space. Each worker only descends into the inner loop, if the
corresponding hypercube with coordinate ¢; is assigned, if not, the inner loop is skipped
and we advance the state of the random number generator by the number of samples
in the hypercube ¢;. After sampling, the results can be collected from the individual
workers. Since we distribute the computation on the basis of the decomposition of r-space,
the full integral can be retrieved by summing all individual results in the r; hypercubes
and the variance as the sum of squared values in the r; hypercubes, from which we can
then determined with eq. (2.2) the actual variance. The same applies to the distribution
values of r; in eq. (2.7), which can be summed up binwise in each dimension. The detailed
explanation of the implementation will be discussed in section 3.5.
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{ Cycle over dimensions j of r-space. >é

(Increment c(i,j) = c(i, j) + 1 )

Return false

Figure 3.2: The increment algorithm for the hypercube coordinates works
as follows: Beginning with dimension j = 1, the j-th coordinate component is
incremented by one, ¢; ; — ¢; ; + 1. If for the coordinate component ¢; ; < n,
holds, then the algorithm will terminate and return the true value. However,
if the coordinate component c, ; overflows, ¢, ; > n,, then the coordinate
component ¢; ; will be reset to one and j will be incremented by one, j — j+1.
The increment algorithm then starts over again until it terminates or all
coordinate components overflow. In that case, the algorithm terminates with

the false value as the hypercube has been successfully cycled over.

(Reset r(j) =1 )

I

3.4 Combined Parallelization of VEGAS and VAMP2

In contrast to VEGAS, we can parallelize the multi-channel integration directly over
the individual channels as they are independent of eachother for the duration of the
sampling, only the adaptation requires simultaneously all channel results, as can be
seen from eq. (2.26). However, the approach is limited by the number of applicable
workers N, since effective parallelization'® can only occur for N < N,.. On the other
hand, for the case, N > N_, we propose to use the spare workers to parallelize individual
channels in VEGAS. Combining both approaches, however, requires a detailed examination
of the parallelizability of the individual channels in VEGAS, and the computational
requirements of individual channels. In the end, we have to find a balance between the
two parallelizations, so that the resources can be used optimally.

In general, for standard multi-particle problems the number of phase-space channels
is rather large, typically exceeding 103...10*. We can then assign one or more channels
to each worker. In some calculations, the matrix-element is computing-intensive but the
number of phase-space channels is small, e.g. NLO virtual matrix elements. In that case,
we can parallelize over single grids. We assign to each worker a separate slice of the
nd cells of the stratification space. In principle, for the simplest case of n, = 2, we can

10Tf we have more workers available than we distribute tasks, we lose efficiency for the remaining works
in terms of Ahmdal’s law.
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exploit up to 2¢ computing nodes. On the other hand, parallelization over r-space is only

meaningful when n, > 2. Especially when we take into account that n, changes between

different iterations as the number of calls IV; . depends on the multi-channel weights «;.
In summary, we need to consider the following possibilities:

o N_> N, apply full multi-channel parallelization;
o all channels parallelizable, apply full VEGAS parallelization;

o mixed mode parallelization with a load balancer between VEGAS and multi-channel
parallelization.

Before we turn our attention to the load balancing process between VEGAS and
multi-channel parallelization, we discuss the implementation of the previously described
parallelization approaches.

3.5 Implementation Details of the MPI Parallelization

Firstly, we use the encapsulation of the integrator as a library. Starting from a top-down
approach that the integrator’s code is embedded as a (static or shared) library in a main
program, we distinguish between the interface data and run-time data. The interface data
are passed down from the interface by the calling program and are the same for all parallel
instances, requiring no communication. The run-time data arise in the integrator’s library
and may differ during execution, therefore, requiring communication. Secondly, we expect
that the workers are running identical code up to different communication-based code
branches. This is ensured by the overall worker setup which is externally coordinated by
the MPI-library provided process manager mpirun,'! and the applied master-slave model.
The master-slave model allows us to conserve the numerical properties of the integrator,
in the form that the master collects the individual results and adaptation information
of the slaves (and itself), computes the overall result and performs the adaptation of
weights and grids as the adaptation of the grids is numerically very sensitive to the
smallest changes. Together with the previously introduced RNGstream we can transfer
the complete numerical properties of the serial to the parallel execution, where the latter
reproduces the former.

At the beginning of an iteration pass of VAMP2, we broadcast the current grid setup
and the channel weights from the master to all slave workers. For this purpose, the
MPI protocol defines collective procedures, e.g. MPI_BCAST for broadcasting data from
one process to all other processes inside the communicator, as shown in fig. 3.3. The
multi-channel formulas eq. (2.22) and eq. (2.24) force us to communicate each grid!'? to
every worker. The details of an efficient communication algorithm and its implementation
is part of the actual MPI implementation (most notably the OpenMPI and MPICH
libraries) and no concern for us. After we have communicated the grid setup using
the collective procedure MPI_BCAST, we let each worker sample over a predefined set of

1The executable is started by mpirun in N identical instances, hence, N worker.
12The grid type holds information on the binning x,, the number of dimensions, the integration
boundaries and the Jacobian.



42 CHAPTER 3. PARALLEL ADAPTIVE MONTE CARLO INTEGRATION

(Broadcast from master to all the channel weights cx. )

v

% Cycle over channels, i € {1, ..., N} >e

Y Retrieve grid from channel integrator i. A
Broadcast grid from master to all.
All set grid for channel integrator .

\’

(Update all channel calls. )

Figure 3.3: Setup of the grids for the multi-channel parallelization. Before
we broadcast the individual grids from the master to all workers, we broadcast
the channel weights in a non-blocking fashion. After all grids have been
broadcasted, we update the configuration of the channels due to the changes
of weights and grids.

phase-space channels. Each worker skips its non-assigned channels and advances the
stream of random numbers to the next substream such as it would have used them for
sampling.

If a channel is VEGAS, we will defer the parallelization to VEGAS either using a naive
or more sophisticated static load-balancing approach. For the naive load balancer, we
spawn an MPI_BARRIER waiting for all other workers to finish their computation until
they synchronize at the barrier and start with parallelization of the channel over its
grid. Alternatively, we use the static load balancer, which makes a more specific choice
regarding parallelizable grids, based on the channel weights and the number of workers.

In order to employ the VEGAS parallelization from section 3.3 we divide the r-space
into a parallel subspace 7| with dimension d; = |d/2] over which we distribute the
workers. We define the left-over space r; = r\r” as perpendicular space with dimension
d, = [d/2]. Assigning to each worker a subspace 7 ; C |, the worker samples 7 ; ®r.
For the implementation we split the loop over the cells in r-space into an outer parallel
loop and an inner perpendicular loop. In the outer parallel loop the implementation
descends in the inner loop only when worker and corresponding subspace match, if not,
we advance the state of the random number generator by the number of sample points in
7, @ 71, where 7 is the skipped outer loop index. The overall procedure is schematically
shown in fig. 3.4.

After sampling over the complete r-space the results of the subsets are collected. All
results are collected by reducing!® them by an operator, e.g. MPI_SUM or MPI_MAX with
MPI_REDUCE. The application of such a procedure from a MPI library is in general more
efficient than a self-written procedure. We implemented all communication calls as non-

3Reduction here is meant as a concept from functional programming where data reduction is done by
reducing a set of numbers into a smaller set of numbers via a function or an operator.



3.5. IMPLEMENTATION DETAILS OF THE MPI PARALLELIZATION 43

< Is parallel mode? >

¢ yes
(Broadcast grid from master to all. )

< Cycle over ranks k, k € {0,...,n—1}

v

Y Increment r-space coordinate by one
in first |d/2] dimensions.

\’

(Advance RNG with N steps. )

Figure 3.4: Preparation of the VEGAS parallelization. When the channel
is VEGAs-parallelizable, we then synchronize the grid firstly in the VEGAS
integrator. After that, we set the correct start coordinate for the respective
worker and advance the state of the RNGstream accordingly.

blocking, i.e. the called procedure will directly return after setting up the communication.
The communication itself is done in the background, e.g. by an additional communication
thread. The details are provided in the applied MPI library. To ensure the completion of
communication a call to MPI_WAIT has to be done.
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Figure 3.5: Execution branches for master and slave. We iterate over the
channels and determine for each channel the assigned worker which has the
integration results and adaptation information (grid distribution). On the
master, the results and the adaptation information are received from the
respective slave. On the slave worker, the assigned channel is sent to the
master. At the end, the number of function calls is collected on the master.

a1

NOILLVHOHALNI OTHVO AHLNOW HALLAVAYV TATIVHVd € H4d.LdVHO



3.5. IMPLEMENTATION DETAILS OF THE MPI PARALLELIZATION 45

When all channels have been sampled, we collect the results from every channel and
combine them to the overall estimate and variance. We apply a master/slave chain of
communication where each slave sends its results to the master as shown in fig. 3.5. For
this purpose the master worker and the slave worker execute different parts of the code.
The computation of the final results of the current pass is then exclusively done by the
master worker. Additionally, the master writes the results to a VAMP2 grid-file in case the
computation is interrupted and needs to be restarted after the latest iteration (adding
extra serial time to WHIZARD runs).

When possible, we let objects directly communicate by Fortran 2008 type-bound
procedures, e.g. the main VEGAS grid object, vegas_grid_t has vegas_grid_broadcast.
The latter broadcasts all relevant grid information which is not provided by the API of
the integrator. We have to send the number of bins to all processes before the actual grid
binning happens, as the size of the grid array is larger than the actual number of bins
requested by VEGas.!

Further important explicit implementations are the two combina-
tions  of  type-bound  procedures vegas_send_distribution for  send-
ing and for receiving vegas_receive_distribution, and furthermore
vegas_result_send/vegas_result_receive which are needed for the communi-
cation steps involved in VAMP2 in order to keep the VEGAS integrator objects encapsulated
(i.e. preserve their private attribute).

Beyond the inclusion of non-blocking collective communication we choose as a mini-
mum prerequisite the major version 3 of MPI for better interoperability with Fortran
and its conformity to the Fortran 2008 + TS19113 (and later) standard [82, Sec. 17.1.6].
This, e.g., allows for MPI-derived type comparison as well as asynchronous support (for
I/O or non-blocking communication).

Blocking

A final note on the motivation for the usage of non-blocking procedures. Classic (i.e. serial)
Monte Carlo integration exhibits no need for in-sampling communication in contrast to
classic application of parallelization, e.g. solving partial differential equations. For the
time being, we still use non-blocking procedures in VEGAS for future optimization, but
in a more or less blocking fashion, as most non-blocking procedures are followed by an
MPI_WAIT procedure. However, the multi-channel ansatz adds sufficient complexity, as
each channel itself is an independent Monte Carlo integration. A typical use case is the
collecting of already sampled channels while still sampling the remaining channels as it
involves the largest data transfers in the parallelization setup. Here, we could benefit
most from non-blocking communication. To implement these procedures as non-blocking
necessitates a further refactoring of the present multi-channel integration in WHIZARD,
because in that case the master worker must not perform any kind of calculation but
should only coordinate communication. A further constraint to demonstrate the impact of
turning many of our still blocking communication into a non-blocking one is the fact that
at the present moment, there do not exist any free and open-source profilers compliant

14The size of the grid array is set to a pre-defined or user-defined value. If the implementation switches
to stratified sampling, the number of bins is adjusted to the number of cells and, hence, does not necessarily
match the size of the grid array
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with the MPI 3.1 standard that support Fortran 2008. Therefore, we have to postpone
the opportunity to show the possibility of completely non-blocking communication in our
setup.

3.6 MPI Process Balancing

In the following, we outline the requirements of load balancing for the combined paral-
lelization by introducing an appropriate notation and discuss the condition of balance
between both parallelization modes.

We define the set C = {1, ..., N_} as indices of the multi-channel sum. The index set V'
for the VEGAS parallelizable channels is given as V' = {i € C|n,. > 2, for the i-th channel},
where n,. is the number of (equal) binnings in 7-space (see section 2.2). The index set
c=cC /V gives the remaining channels, which can be trivially parallelized. The number
of elements in a set is given by the cardinality, denoted by | - |.

First of all, we compare the computation time C(i, 1) of a single-worker channel with
the computation time C(i, N) for an N-parallel channel, parallelized within VEGAS. We
find the following inequality

C(i,1) < C(i,N) - N + €,(i, N), (3.13)

where we introduced the additional overhead of the parallelization as C; (i, V). The latter
incorporates the additional execution time of code introduced for the coordination of
the parallelization and the additional execution time by the parallelization itself, e.g.
time of communication procedures. We remark that the communication time depends
crucially on the number of workers, the actual MPI library implementation and other
external factors like network bandwidth or cluster workload. For further considerations,
we ignore these effects as they are beyond of the scope of this thesis.!® In a next step,
we consider eq. (3.13) in the combined parallelization. The overall composition of the
communication time changes. First, both multi-channel and VEGAS parallelization require
the same setup, distributing the integration grids and channel weights, and after sampling,
all integration results and adaptation information must be collected. For the VEGAS
parallelization, the results as well as the adaptation information are firstly collected on a
single worker. Generally, this worker is not the master rank, so we explicitly separate
the communication time CNH within VEGAS from the overall communication time. The
rest of the communication is identical for both sides, then during the sampling itself
no communication is further required. The design goal for the load balancing is then
to ensure that the total computation time for the multi-channel parallelized channels is
equal to the total computation time for the VEGAS-parallelized channels. We re-express
this statement as

Z C(Zﬂ 1) = Z C</L7 Ni,worker) + 6\\ (lL? Ni,worker)7 (314)
iEé eV

where we have neglected the additional execution times for collecting the overall results
or organizational code, since these times are applied equally to both sides.

5We can not improve or change those negative effects by the implementation as those are an issue to
be solved by the user.
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Naive Load Balacing

First, we introduce a naive approach using all workers in MPT_COMM_WORLD. We let each
worker sample over a predefined set of phase-space channels. Each worker skips its non-
assigned channels but advances the stream of random numbers to the next substream
as it would have used them for sampling. However, if we can defer the parallelization
to VEGAS, we spawn a barrier waiting for all other workers to finish their computation,
and then start with the parallelization of the channel over its grid. The results for
multi-channel parallelized channels C are firstly stored on their assigned ranks, and must
be communicated to the master worker. On the other hand, in this setup the results
for VEGAS parallelized grids are already stored on the master removing the additional
communication for collecting results during post sampling Cp,,s = Cj (4, Nyyorker)-
The pre-sampling setup stays unchanged, and the balance in eq. (3.14) changes,

Z C@,1) = Z C(i, Ni Worker)- (3.15)

ieC eV

In summary, per default, we parallelize over phase-space multi-channels, but prefer
single-grid parallelization for the case that the number of cells in r-space is n, > 1.

The advantage of this approach is that we save the extra communication time by
collecting the results of the VEGAS parallelized channels, and that both the conceptual
approach and the implementation are very simple (and understandable).

Static Load Balancing

In order to estimate the computation time for a grid, we use the channel weights, since
these are proportional to the number of samples N; per channel. Furthermore, we assume
that all sampling points cost on average the same computation time. As an estimate, the
average behavior should be sufficient, but we keep in mind that the execution time for
different points can fluctuate very much, as the sampling depends, besides the matrix
elements computation, on phase-space cuts, phase-space mappings, and search for grid
probabilities. Each can reject further evaluation of a sampling point. For example, the
sampling can be prematurely terminated if the cuts were not met.

Based on eq. (3.13), the multi-channel parallelization seems to perform more efficiently
with regard to the VEGAS parallelization and, therefore, it is the favorable mode of
parallelization for N < N,_. For increasing number of workers, we need then to model
the resource requirements between the multi-channel parallelization and the additional
VEGAs-parallelization smoothly, e.g. without oversubscribing resources to either of both
as this would spoil the efficiency.'® In order to persuade such a smooth modeling between
modes, we introduce the following steps: Firstly, we define the criterions on the selection
of VEGAS parallel grids depending on the number of channels and workers. Secondly, we
introduce the static load balancing and describe the mechanism to create communicators
in separate contexts with MPI_CREATE_COMM_GROUP.

The necessary criterion for grid parallelization is that it can only be decomposed in
r-space and only when n, > 2. Furthermore, we require a; > o (N, Nyorker) it order

16Such a behavior can be countered by a dynamic load balancer, which is much more involved to
implement and is under current research.
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to include the computational expense of the channels, as a; o< N;. The minimum weight
Opin is a function of the number of channels N, and number of workers Ny, 1., Which
we define as

1

1—1
amin<ch NWorker) = NC i N_’Y

‘Worker? NC < NWorker7 1 < 7 < 2. (316)

The minimum weight models a continuous transition between the modes for fixed N, and
increasing Nyyo,er, letting us count channels with a weight larger than an average weight
1/N, as parallelizable.

After communicating the integration grids and channel weights, we initialize the
static load balancer for each integration pass of VAMP2. In addition to the number of
channels and workers, the static load balancer requires the number of cells in r -space.
The balancer decides according to the aforementioned rules which mode is to be applied
and which channel is evaluated by which worker or subset of workers, as shown in fig. 3.6.
Since all information is known a priori and identical on all workers, the balancer does not
require any communication for the initialization. After the number of workers has been
set for both parallelization modes, workers are assigned accordingly. For the multi-channel
parallelization, we assign workers to one or more channels, in acyclical manner. For the
VEGAS parallelization, we assign as many workers as possible (limited only by the number
of cells ng’”) to the individual grids. In order to do so, we iterate over the parallel grids
and determine the largest possible number of available workers. These are then marked
as occupied for the time being. The remaining workers are then distributed among the
next grids, until there are either too few available workers or no more available at all. In
that case, we overflow the assignment by taking the leftover available worker and start
again with the first worker. The remaining worker are then marked all again as available
and we repeat the procedure until all grids have workers assigned.

We separate the communication between the two modes by creating a communicator
for the channel parallelization and creating a communicator for each parallelizable grid.
Thus, the communication for each evaluation is separated. With that we can use the
existing infrastructure with only slight adjustments. Instead of MPI_COMM_WORLD the
respective communicator is then used.

The MPI standard defines two procedures using process groups to create communica-
tors: MPI_COMM_CREATE and MPI_COMM_CREATE_GROUP, the latter is an addition of MPI-3.
MPI_CREATE_COMM creates a new communicator from a parent communicator, typically
MPI_COMM_WORLD, and a subset of the parent communicator’s process group, which can
be generated using the MPT_GROUP_* procedures. All workers in the parent communicator
must then call MPI_CREATE_COMM. This constraint is removed in MPI_COMM_CREATE_GROUP,
where only the workers in the specified subgroup have to execute MPI_COMM_CREATE_GROUP
in order to create the communicator. Thus, for our implementation, we can dynami-
cally generate the grid communicators from the assigned subgroup of workers from the
parent-communicator in the integration loop of VAMP2, without bothering the channel
workers or other non-assigned grid workers with a call to MPI_CREATE_COMM, which would
introduce a non-trivial blocking of the integration loop.

For the multi-channel parallelization, the results for each channel are on their assigned
worker. For the parallelized grids, the results are collected on the first worker, to which we
refer as slave master, in the grid’s communicator. In the end, the results can be collected
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in the same way as for the naive balancer in the MPI_COMM_WORLD communicator. For
this, the balancer keeps track of the relationship between the ranks in our self-created
communicators with the ranks in MPI_COMM_WORLD.

A first version of the implementation is part of the current development branch of
WHIZARD. Unfortunately, we can not show any results as the implementation has been
more difficult to handle than expected. Furthermore, the communication in the new
implementation is not stable. We could not reliably reproduce the same integration results
for different numbers of workers. So, we defer a detailed discussion of benchmark results
to a future work. Only when the numerical properties are restored, the benchmarks are
meaningful.
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Profiling

For efficient parallelization, it is important to identify the critical points that prevent a
more effective use of computation resources. In general, for serial applications there is the
possibility of profiling, which can be applied on parallel programs only with specialized
tools, too. We discuss some minor technical details of the fine tuning of the new integrator
and in some points of WHIZARD.

In order to profile a program, for example to determine the number of calls or the
(total) run-time of procedures, the compiler offers the possibility to generate additional
annotations as well as code in the program, which measure different program parameters
and write them into a file. This file can then be evaluated using a profiler such as gprof.
Unfortunately, this approach only supports statically linked programs. Since WHIZARD
and its libraries, as well as the external libraries, e.g. the MPI library, are all dynamically
linked and loaded, we need another tool.

For the profiling of a dynamically linked program, the dynamic linker and loader
1d-linux.so (or ld.so)17 supports since version 2.1 of glibc profiling of a single
shared object. In order to activate the profiling, one passes the environment variable
LD_PROFILE = <shared object name> to the program to be executed. The names
of the shared objects (shared libraries) required by a program or shared object
can be listed with 1dd <program>. The output of the profiling data can be found
under $LD_PROFILE_OUTPUT/$LD_PROFILE.profile where the environment variable
$LD_PROFILE_QOUTPUT steers the output directory. The program sprof can then evaluate
the previously generated profiling data providing a flat-profile, a call graph or call pairs,
steerable by commandline options. A disadvantage of the 1d.so profiling method is
that only one profile of a single shared object can be created at once, so that several
runs of a program are needed to profile all relevant shared objects. An advantage of the
aforementioned tools is that they are all free software and they are open source, which is
relevant for the reproducibility of scientific results. It allows other researchers to check
and verify our proceeding as open source offers a transparent view of the tool’s internals,
making results more comprehensible. The free license removes the boundaries of a dubious
(and possible open science hostile) license. On the other hand, we have to question the
usability of the free tools, as they are only of limited use for us.

Therefore, we inevitably chose to use a commercial, non-free and closed-source solution
from Intel,'® VTune [104]. VTune supports directly the profiling of shared-libraries and
the evaluation of the interaction between different shared-libraries, which can not be done
in a straight-forward manner with sprof. Firstly, we used VTune on the serial version of
WHIZARD and found that, for example, the debug statements used in the new integrator
have caused a significant I/O, even when not activated. Since these were called each time
a phase space point was evaluated, this considerably slowed down the run-time of the
new implementation, doubling or tripling the run time of the integration. We could easily
solve this problem by rewriting the debug statements so that they do not unnecessarily
waste resources unless explicitly enabled. Secondly, we could speed up the search of the

17«The programs ld.so and 1d-linux.so* find and load the shared objects (shared libraries) needed by a
program, prepare the program to run, and then run it.” from man 1d.so.

18 Although Intel offers a free license for open source projects, but explicitly excluding paid developers
even if they are funded by the public sector.
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grid probabilities in eq. (2.26), by using a linear search instead of a binary search on
the grids. This may seem unintuitiv at first, but has the following reason, the processor
is trying to predict which code will be executed in the future to introduce a low-level
optimization. This can lead to mispredictions, e.g. for if-clauses a wrong branching may
be predicted. Then, the processor has to revert its state back, and thus wasting time.
This concerns in particular the binary search, although this is mathematically of order
O(nlogn). But the processor optimization can slow down considerably its execution time
for a small number of bins per axis, e.g. n < 20. Profiling has shown that a linear search
for n < 20 gives an advantage over the binary search of 1% to 10 %, depending on the
number of involved channels.

We were able to use VTune for minor parallel profiling. We could show that for a small
number of workers, the naive load balancer behaves comparatively well. Unfortunately,
we were not able to test a higher number of workers because the corresponding tool was
not / is not available on the HPC of the University of Siegen. In a subsequent work, the
static-load balancer could be tuned accordingly, or an efficient pull-push system could be
established by profiling.

3.7 Embedding the Parallel Integration into WHIZARD

We have done the parallelization of the adaptive integrator in an encapsulated fashion.
Furthermore, we did not propose any major changes to the interface of the integrator
due to the parallelization. We may embed the parallelized integrator into WHIZARD
without major precautions. But it turned out that a straightforward embedding of the
parallel integrator is not possible. Therefore, we first need to familiarize ourselves with
the structure and program flow of WHIZARD with respect to the integration setup in
more detail.

The program flow of WHIZARD is steered on user-side by the domain-specific language
Sindarin!® where instructions are executed in their specified order. Here, we restrict
ourselves to the execution of the integrate command that instructs WHIZARD to
integrate a (specific) process according to the previous settings. However, before the
actual process has to setup, WHIZARD carries out several tasks: The matrix element source
code has to be generated by a call to OMEGA, from which WHIZARD compiles the process
library, which is then dynamically linked by the main executable,?’ and the phase-space
parameterization has to be carried out either by the antiquated cascades module or the
optimized-version cascades2. WHIZARD can skip individual steps of the process setup
if the corresponding task has been carried out, e.g. by testing respective files. All these
parts of process setup involve heavy 1/0, especially writing to the filesystem. In order to
enable file input/output (I/O), in particular to allow the setup of a process, without user
intervention, we implement the well-known master-slave model. Additionally, we require
WHIZARD to operate parallely on a distributed filesystem, e.g. network filesystems as they
are usually supported by HPC clusters. The master worker, specified by rank 0, is allowed

19WHIZARD can either read statements from one (or more nested) file(s) or directly interpret input in
a command line mode.

20For the sake of completeness, OMEGA can also provide bytecode that does not need to be compiled,
which is then executed by the OMEGA virtual machine [78].
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to setup the matrix-element library and to provide the phase-space configuration (or to
write the grid files of the integrator) as those are involved with heavy I/O operations.
The other workers function solely as slave workers supporting only integration and event
generation. Therefore, the slave workers have to wait during the setup phase of the master
worker. We implement this dependence via a blocking call to MPI_BCAST for all slaves
while the master is going through the setup steps. As soon as the master worker has
finished the setup, the master starts to broadcast a simple logical which completes the
blocked communication call of the slaves allowing the execution of the program to proceed.
The slaves are then allowed to load the matrix-element library and read the phase-space
configuration file in parallel.

The slave setup adds a major contribution to the serial time, mainly out of our
control as the limitation of the parallel setup of the slave workers are imposed by the
underlying filesystem and/or operating system, since all the workers try to read the files
simultaneously. We expect that the serial time is increased at least by the configuration
time of WHIZARD without building and making the matrix-element library and configuring
the phase-space. Therefore, we expect the configuration time at least to increase linearly
with the number of workers.

In comparison, we want to discuss the possibility for genuine?! parallel 1/O with
regard to configuration, grid and event files. As explained in section 2.6, the MPI standard
since version 2 defines a parallel I/O system. Despite the high level of abstraction reached
in the specification, it is still a very tedious task to develop and implement appropriate
routines and procedures specific to a given file format. Existing file formats, e.g. the
HDF5, specifically developed for scientific use, are well-defined, and in most cases support
parallel I/O by interfacing a MPI library. With such a file format with parallel 1/0O
support, an advantage could arise if all workers could write or read the grid file of the
integrator in parallel, as this involves the major serial time in our approach. However, we
would have to loosen our assumption about conserving the numerical properties of the
integrator by allowing slaves to refine grid (after each pass). In principle, we could save a
small but not negligible amount of communication time, for example by not having to
collect all the results on the master and then writing them to the grid file. But, to what
extent such an approach may prove to be more effective, can be only checked in detail
with a corresponding profiling tool, as discussed in section 3.6.

3.8 Benchmark of VEGAS and VAMP2

In order to assess the efficiency of our parallelization, we compare the two modes, the
traditional serial VAMP implementation and our new parallelized implementation, VAMP2.
We restrict ourselves to measuring the efficiency of the parallel integration, which, in
contrast to parallel event generation, requires non-trivial communication.

For the latter, we limited our efforts to extending capabilities of the event generation
to use the RNGstream algorithm in order to secure independent random numbers among
the workers and automatically split the output of events into multiple files for each worker,

21In our approach, we assume that the underlying filesystem handles the distribution of files among
all workers. This is not the most efficient but is easy to implement. Therefore, we deferred the task of
parallel 1/O to a distributed filesystem.



54 CHAPTER 3. PARALLEL ADAPTIVE MONTE CARLO INTEGRATION

respectively, as we do not make use of parallel I/O. In this version, the event generation
does not require any kind of communication and, therefore, we skip a detailed discussion
of the efficiency of parallel event generation, as such a discussion would too much depend
upon environmental factors of the used cluster like the capabilities of the underlying
filesystem etc.

In the following we outline the hard- and software setup for the two benchmark
scenarios: (i) a pure MPI setup, where we determine the run-time and speedup for a
fixed problem over a growing number of workers, (ii) a hybrid approach with MPI +
OpenMP, where we combine thread-based parallelization with OpenMP with inter-node
communication based on MPI. Again, we determine the run-time and speedup, where fix
the number of nodes, but with increasing number of threads per node.

The benchmark processes are run on the high-performance cluster of the University
of Siegen (Hochleistungrechner Universitidt Siegen, HoRUS). The cluster consist of 34
Dell PowerEdge C6100 containing each 4 computing nodes with 2 multi-core CPUs. The
CPUs are Intel Xenon X5650 with 6 cores each 2.7 GHz and 128 MiB cache. The nodes
are connected by gigabit ethernet.

On the software side, the HoRUS cluster is managed by the batching and alloca-
tion system SLURM 17.02.02 for easy source distribution. We use GFORTRAN 7.3.0 as
OPENMP-compatible compiler for WHIZARD and the MPI-library OPENMPI 3.1.3. For
the benchmark we let the MPI-library provided run manager mpirun coordinate the
MPI-specific setup of WHIZARD within SLURM. We measure the run-time with the GNU
time command tool and for the final results we average over three independent runs. The
overall computation of a WHIZARD run is measured, including the complete process setup
with the matrix-element generation and phase-space configuration. We expect that the
setup gives rise to the major part of the serial computation time of WHIZARD, and, the
I/0O operations of the multi-channel integrator, which save the grids after each integration
iteration as safe-guard against premature termination.

We benchmark, see fig. 3.7, over Nopy in powers of 2, as it is quasi-standard. Given
the architecture of the HorUS cluster with its double hex-cores, benchmarking in powers
of 6 would maybe be more appropriate for the MPI-only measurements. We apply a
node-specific setup for the measurement of the hybrid parallelization. Each CPU can
handle up to six threads without any substantial throttling. For the measurement of
the hybrid parallelization we apply a node-specific setup. Each CPU can handle up to
six threads without oversubscribing its resources. We operate over Ny eads = 11,2, 3,6}
with either fixed overall number of involved cores/MPI worker, Nyer = 60, 30,20, 10,
with results shown in fig. 3.9, or with fixed number of MPI workers Ny, or = 20, with
results shown in fig. 3.9.

Benchmark Processes

The benchmark processes are selected such that they include a wide range of Standard
Model physics, e.g. QCD, electroweak and Higgs physics, to cover typical applications of
WHIZARD, representative for both hadron and electron-position collider. Such a selection
is not unambiguous, as it depends, among other things, on the details of physics to be
examined as well as the collider type self, and should only be understand as representive
class of processes.
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In the following, we study different processes at different levels of complexity in order
to investigate the scaling behavior of our parallel integration algorithm. The process
ee” — pu'u~ at energies below the Z resonance has only one phase-space channel (s-
channel photon exchange) and its integration is adapted over one grid. Parallelization
is done in VEGAS over stratification space. The process e"e” — p p~p p v v, with
its complicated vector-boson interactions gives rise to @(3000) phase-space channels.
With overall @(10%) number of calls for the process, each phase-space channel is sampled
(in average) by (10?%) calls suppressing the stratification space of all grids. Therefore,
parallelization is done over the more coarse phase-space channel loop. The last process
we investigate, ete™ — p p ptpT, has O(100) phase-space channels where we expect
for some grids a distinct stratification space (at least two cells per dimension) allowing
WHIZARD to switch between VEGAS and multi-channel parallelization. All but the first
trivial examples are taken from [5] mimicking real-world application for a proton-proton
collider. The results for the full integration, thus, times for both adaptation and final
iterations for the results of the integration are shown in fig. 3.7.
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Figure 3.7: We show the overall computation for the adaptive integration
processes for process with differing complexity, each for a different number of
participating CPUs (left panel). The number of CPUs is chosen as a power
of 2. In the right panel, we plot the speedup of the processes and compare
them to ideal of Ahmdal’s Law with parallel fraction of 1.0 (dashed) and
0.9 (dash-dotted). For the sake of better readibility, we labeled the processes
with their partonic content. However, the computation involves the complete
process with PDF convolution, but without shower and hadronization.

Furthermore, we are interested in the behavior for increasing complexity of a single
process, e.g. increasing (light) flavor content of processes with multiple jets. For the two
processes, jj — W™ (— e 1) +{j,jj} we increase the number of massless quark flavors in
the content of the jets. The results in fig. 3.8 indicate that for a single final-state jet more
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flavor content (and hence more complicated matrix elements) lead to lower speedups.
For two (and more) final state jets the speedups increases with the multiplicity of light
quarks in the jet definition. This means that possibly for smaller matrix elements there is
a communication overhead when increasing the complexity of the matrix element, while
for the higher multiplicity process and many more phase-space channels, improvement in
speedup can be achieved.
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Figure 3.8: We show the speedup for a jet process with increasing flavor
content and a fixed numbers of CPUs of 60.

We repeat the measurement for the two processes for the hybrid parallelization, once
with a variable number of MPI workers and a fixed number of MPI workers, but each
time with an increasing number of threads. The results are shown in fig. 3.10, for variable
number of workers, and, for fixed number of workers in fig. 3.9.

Coming back to fig. 3.7 showing the results of the benchmark measurement for MPI:
The process e"e” — p = saturates for N > 32. The serial run-time of WHIZARD is
dominating for that process with its two-dimensional integration measure (without beam
structure functions) where the Monte Carlo integration is anyways inferior to classical
integration techniques. The process ete” — p p pup~ showing mixed multi-channel
and VEGAS parallelization, however, also saturates for N > 32. Going beyond that, the
multi-channel parallelizable process eTe™ — M+H7M+M7U+ﬂ7u achieves a higher speedup
but with decreasing slope. The overall speedup plot indicates a saturation beginning
roughly at N > 32 where serial time and communication start to dominate. We conclude
that WHIZARD embarks a parallelization fraction higher than at least 90 % for MPI.

We point out that these results are obtained for a fixed-size problem and the speedup
was determined due to Ahmdal’s law in section 2.5. However, we expect for real applica-
tions where the number of workers is chosen according to complexity and evaluation time
of problem, a higher and more favorable speedups of ©(100), in accordance to Gustafson’s
law. This can be seen from the results in fig. 3.8, where the computation time of the
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Figure 3.9: We show the speedup for a fixed number of MPI worker with
increasing number of OpenMP threads.
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Figure 3.10: We show the speedup at an overall fixed number of cores
(60) involved in the parallelization. We distribute the cores among MPI and
OpenMP parallelization. For the latter we have to respect the node structure
where each node consists of two CPUs each with 6 cores handling up to 6
threads without any performance penalty.
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matrix element increases with the jet content, which then allows for a linearly increased
speedup.

In section 4.6 we present tables that show the actual physical run-times for the
different processes under consideration.

3.9 Future Improvements

To summarize, we recapitulate our reasoning about the low-level parallelization of the
adaptive Monte Carlo algorithms and give an outlook about possible improvements.

We have decided against the use of a high-level API parallelization package, which
would provide efficient and well-tested communication concepts and structures for
computing-intense application, based on MPI. Instead, we chose a self-written, low-
level implementation parallelization of the adaptive Monte Carlo algorithms with hands
directly on MPI. We made this decision with a certain naivety such that we assumed that
a low-level implementation would provide a higher efficiency and would be simple enough
to implement. Both aspects have proven to be much more complicated than anticipated.

We see the effect that the run-time is saturated by the communication time for larger
numbers of workers, e.g. N > 30. However, the naive load-balancing approach yields a
surprisingly good parallel efficiency. A detailed profiling, especially with regard to larger
numbers of workers, could reveal possible bottlenecks in the implementation. In addition,
we have given a detailed description for (static) load balancing. Unfortunately, we could
not complete the implementation in the time scale of this thesis 22 Therefore, we refrained
from showing benchmark results for it, but we expect the static load balancer to further
reduce the run-time and, thus, increase the parallel efficiency. Furthermore, the static
load balancer could be extended by a server-client mechanism to collect the integration
and adaptation results. In this model, a worker would act as a permanent receiver, which
would collect the results of the other clients in a non-blocking fashion. However, this
approach would be only apply well for larger numbers of worker where the omission of a
single worker would not significantly impact the parallel efficiency.

In order to improve the efficiency of the parallelization, a detailed profiling should
reveal bottlenecks or hot-spots of the parallel execution. The MPI standard explicitly
defines a profiling interface to collect the contribution of individual communication
routines to the overall run-time. In example, this profiling interfaces is utilized in the
publicly-funded performance tool SCALASCA [105], but at time of writing this thesis
it did not support the Fortran 2008 bindings of the MPI standard which we applied.
Other tools such as mpiP [106] are not longer actively developed and do not support all
Fortran 2008 bindings. Commercial general-purpose solutions such as VTune [104] or
TotalView [107] are hardly an alternative for free scientific work due to their expensive
and “non-free” license agreements, as well as their closed-source code. Therefore, we tried
avoiding to use them to profile the parallelization, which could have revealed unnecessary
calls, redundant messages or inefficient load balancing.

Perhaps, the use of a high-level parallelization system could provide a better parallel
efficiency due to more mature concepts and well-tested structures. For example, a dedicated

22In principle, the implementation of the static load balancer is fully functional, but it randomly yields
incorrect results which need further investigations.
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library for dynamic load balancing like the Zoltan parallel service library [108] or the
Asynchronous Dynamic Load Balancer (ADLB) [109], which even provides Fortran 90
bindings. Further enhancements could be made directly in the use of more abstract
and higher-leveled parallelization models such as provided by DIY [110], which are also
based on MPI, but include appropriate load balancing, efficient input and output to/from
parallel storage systems as well as the assignment of data into domains and their allocation
to MPI processes.

Concluding, we underestimated the complexity of parallelizing an algorithm, especially
the combination of two algorithms such as the multi-channel approach and VEGAS. The
parallel implementation of these turned out to be very challenging and I could only address
this in very general and overviewing way in this thesis.?® Nevertheless, we achieved our
goal to provide an efficiently parallelized adaptive Monte Carlo integration.

23] refer the interested reader to the source code of the new integrator in WHIzZARD [5] for a detailed
reading on the actual implementation hurdles.






4 Transverse Modes and Higgs Bosons in
Electroweak Vector-Boson Scattering at the LHC
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(a) (Anomalous) Trilinear gauge interaction in (b) (Anomalous) Quartic gauge interaction in
vector-boson fusion (VBF). vector-boson scattering (VBS).

Figure 4.1: Self-interactions of the electroweak gauge bosons and Higgs boson,
V = W,Z and H, are predicted by the local, non-Abelian SM gauge group,
further contributions due to new physics beyond the SM can be modeled by
local contributions with a EFT. Those interactions are collectively represented
by the blob(s).

The discovery of the Higgs in 2012 marks an important step toward a detailed
understanding of nature at the smallest length scales. The success of the SM of particle
physics is undoubted, but nevertheless, questions arise about new physics beyond the
SM.

We want to extend our understanding of the SM beyond the TeV range, which is
accessible at the LHC. For the search for new physics, we anticipate possible deviations
from the SM to appear within the electroweak and Higgs sector. The details of the Higgs
sector are currently under probe as well as trilinear and quartic couplings of electroweak
gauge bosons, see fig. 4.1, which so far have not been observed at the LHC. However, a
recent ATLAS analysis [25] claims evidence for the production of three massive vector
bosons.

For our scenarios, we limit our investigations to quasi-elastic 2 — 2 scattering processes
involving electroweak gauge bosons and the Higgs, in order to probe (anomalous) quartic
gauge couplings. Deviations due to physics beyond the SM are weakly constrained by
available experimental data. However, as a consequence, we facilitate our predictions
with assumptions, firstly, that light fermions do not couple directly to the dynamics of
new physics, since this would have a direct impact, e.g., on flavor physics. Secondly, that
the local gauge symmetry of the SM retains its relevance beyond the TeV range, which is
backed by present data at LHC. Lastly, that the new interactions are not charged under
SU(3)co10rs hence, they do not carry color, as it would considerably impact QCD at high
energies.
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Under these assumptions, we consider light fermion currents as spectator fields, e.g. for
embedding the vector-boson scattering (VBS) processes in partonic processes, and focus
completely on bosonic SM multiplet currents that probe new physics. However, heavy
fermions (t, b, T) should be taken into account as corrections due to their non-neglible
masses, but we do not consider processes with those particles in the final-state.!

In any case, new physics that is coupled to SM bosons, will manifest itself in anomalous
scattering matrix elements of those bosons, and should become accessible in high-energy
VBS. As a common feature of this class of models, we expect the scattering matrix to be
self-contained and complete in terms of SM bosons and eventual new-physics states, to a
good approximation.

In this chapter, we present our results, which were published as [7], on predictions on
VBS and associated or Higgs-pair production in vector-boson fusion (VBF) processes
at LHC, see fig. 4.1, using the framework of the Standard Model Effective Field Theory
(SMEFT) for energy ranges beyond the TeV scale.

The chapter is organized as follows, in section 4.1 we introduce the framework of
the SMEFT and discuss the structure of the new physics in the electroweak and Higgs
sector and state the underlying assumptions, particularly: (i) the effective field theory
Lagrangian, (ii) the resulting dimension-eight operators and their Wilson coefficients, (iii)
application and validity of the custodial symmetry, (iv) comparison of the scalar operators
for different representations of the Higgs field, (v) and embedding the V'V — V'V process
into a partonic process at the LHC. In section 4.2, we discuss the existence of a unitary
bound on general scattering amplitudes following from first principles of QFT and the
implications for the EFT approach. From the interactions given by the dimension-eight
operator, we can determine the eigenamplitudes of the quasi-elastic 2 — 2 scatterings
using custodial symmetry, which allows us to diagonalize the amplitudes for all vector-
bosons modes in section 4.3, from which we construct unitary models exhibiting a strongly
interacting continuum. These models give us the maximally allowed number of events that
are consistent with QFT for a given high-energy VBS process matched to a low-energy
SMEFT prediction with specific Wilson coefficients. Furthermore, we discuss simplified
models, which contain a resonance and similarly parameterize the VBS amplitudes.
In section 4.5 we outline the production setup for computing the models within the
Monte Carlo event generator WHIZARD and the matrix-element generator OMEGA. For
both models we present in section 4.6 numerical results and plots for selected Wilson
coeflicients and final states. We conclude in section 4.7 with a discussion of our results
and their relevance to future analyses at the LHC or other future colliders.

At this point, I want to remark that the analytical expressions for the diagonalized
amplitudes were calculated by Christian Fleper, whose work I continued after he left
particle physics on short notice. My relevant part in the calculation of those amplitudes
was to cross-check and validate the formulas and the implementation in OMEGA, i.e. the
model SSC2. My major contribution to [7] was to combine his code with WHIZARD and
to compute the actual results, as well as presenting them.

Furthermore, they do not contribute to the initial-state at the LHC, except for the b-quark whose
mass is still small compared to the TeV scale.
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4.1 Standard Model Effective Field Theory

In the absence of a particular preferred theory for BSM physics, we resort to a bottom-up
approach based on a formulation in an effective field theory (EFT) [111]. This allows
us to describe deviations from the SM in a model-independent fashion, or if there is
evidence for a deviation from the SM, it could give us an indication of its origins. So
far, the only groundbreaking discovery of the LHC is a Higgs-like state [1, 2], no further
new elementary particles or sufficiently significant deviations from the SM have been
observed. Therefore, the focus of collider physics has shifted towards a detailed study of
the electroweak symmetry breaking and the relationship with the Higgs boson. One of
the most fundamental processes of the electroweak interaction is the electroweak gauge
boson scattering, which is currently studied at the LHC [13, 15, 16, 112, 113] and will
be a key process at the high-luminosity LHC or at future high-energy accelerators such
as FCC [114] (pp-collider), ILC [115] or CLIC [116] (both e*e -collider). The strong
suppression of electroweak VBS by the Higgs at the high center-of-mass energies is of
particular interest [117, 118]. A intricate cancellation between the amplitudes involving
quartic gauge coupling (QGC), triple gauge coupling (TGC) and Higgs exchange results
in scattering amplitudes for longitudinally-polarized weak gauge bosons that do not grow
with the energy, and, for a light Higgs boson, respect the upper bounds dictated by
unitarity. We would expect that deviations from the SM indicate a new interaction in
the electroweak symmetry breaking (EWSB) sector.

Individual contributions to the VBS scattering amplitudes are dominated by Goldstone
bosons, which are directly related to the scattering amplitudes of longitudinally polarized
W and Z [119, 120]. These classes of processes have become accessible at the LHC, [121,
122], requiring also a strong theory-side description of them.

The phenomenological descriptions of VBS processes, e.g. for data analyses, should
smoothly interpolate between the low-energy behavior, which is well-defined by the SM
and its parameters, and all possible asymptotic high-energy behaviors. The latter must
thereby remain consistent with the universal principles of QFT. In the following, we will
introduce and discuss the necessary steps that allow a corresponding parameterization of
the asymptotic high-energy behavior, as well as interpolate between the low and high
energy.

Effective Field Theory Lagrangian

Following the introduction from [123] for a genuine aQGC model with an elementary
Higgs in linear realization, where the SM Higgs boson refers to a light electroweak scalar
doublet. The effective theory, where the SU(2);, x U(1)y gauge symmetry is linearly
realized, can be expressed as

[o.¢]
In
Loyerr = Lom + Z na O, (4.1)
n=>5

where the dimension-n operators @,, involve SM fields with Wilson coefficients f,, (which
allow for variations of importance of the individual operators) and a characteristic scale
A, at which heavy fields are integrated out. We have made the contribution of the SM,
the dimension-four operators, explicit.
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We will neglect contributions by n = 5 as there is only one operator, see [124],
which violates lepton number conservation with AL = 42, but can be used to introduce
Majorana masses for neutrinos, see [125]. Furthermore, we skip dimension-seven operators
as they violate both baryon- and lepton-baryon number conservation, too, see [126]. In
general, odd-dimensional terms are neglected out of the assumption that baryon and
lepton numbers still need to be conserved in the effective theory, and possible violations, if
there are any, are expected to arise at a very large energy scale, e.g. the Planck scale, [127].

With the linear Higgs representation, deviations from the SM predictions for Higgs
couplings and trilinear and quartic gauge boson couplings first appear at dimension
n = 6, as introduced in [8-11]. AQGC are already introduced at the level of dimension-six
operators, but are directly related to anomalous trilinear gauge coupling (aTGC).% In
particular, the aQGC are not independent of changes in the Higgs couplings in aTGC.
Furthermore, the tensor and Lorentz structure introduced by the dimension-six operators
is not general enough to cover all possible aQGC. However, if we want to describe aQGC
independently and separately from aTGC, we have to increase the order of the expansion
to dimension-eight operators. That dimension-eight operators are necessary, can be seen
from the pure modification to QGC: gauge bosons can be derived either from a field
strength tensor or the covariant derivative acting on the Higgs. Both expressions have
dimension two in the canonical power-counting. We needed a total of four terms of field
strength tensors and covariant derivative acting on the Higgs, in order to find all possible
contributions to the aQGC.

We can then truncate the infinite series of operators in eq. (4.1), and we arrive at

L Pt Ly ot Ly s C L . (4.2)
SMEFT SM T g ~dim-6 T "y~ dim.-8 SMEFT
The EFT field content is given by fermions, gluons, vector gauge boson and the SU(2);,
Higgs doublet @ which in the linear representation consists of the physical Higgs boson
and the three Goldstone boson w*,w?.? For the electroweak gauge bosons, we take the
notation from [125]
D,=09,®—-igW,® — ig’(I)BM, (4.3)
W, =90,W,-0,W,—iglW, W,
B/M/ = auBy - al/Bl/?
with 5
r
Ho9 "

The W, fields transform locally as W, — UEW#UL and the B, field transforms
covariantly only under a U(1)g subgroup of SU(2)i which explicitly breaks the global
symmetry of the linear Higgs. After EWSB, the global symmetry becomes the approximate
custodial symmetry SU(2)s which is also broken by the hypercharge symmetry Uy, (1).

In our definition of the Higgs multiplets, we deviate from [7] where the Higgs field is
introduced as 2 x 2 Hermitian matrix field. We follow [123, 127] where the Higgs field is

aTa
W,=Wi>, B,=B (4.6)

2Therefore, we would expect to see deviations from the SM first in TGC.
3We focus solely on the bosonic SM multiplets and, therefore, do not write fermions and gluons
explicitly.
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given as a doublet field ®. In a side-by-side comparison, the Higgs doublet field ¢ and
the 2 x 2 Hermitian matrix Higgs field H are given in unitary gauge by

(I):%(vih)’ (4.7)

1 (v+h 0
H_E( 0 v—i—h)’ (48)

where the components h, v are the physical Higgs and vacuum expectation value of the
Higgs potential. We show later how this representation of the Higgs doublet connect to
the representation as 2 x 2 Hermitian matrix Higgs field (see section 4.1).

Dimension-Eight Operators

Pure aQGC are first introduced by dimension-eight operators. In the case of dimension-six
operators, modifications to aQGC would also lead to changes in aTGC, and one would
expect to see deviations from SM predictions there first. As already discussed, we need in
total a combination of four terms of field strength tensors and covariant derivatives acting
on the Higgs, i.e. D, ®, W or B, for constructing dimension-eight operators. Since the
number of open Lorentz indices is only one or two, there are only three possibilities [123,
128] to combine them.

In detail, we construct the operators from currents that probe new, (possibly) non-local
dynamics. The simplest Higgs-field currents are given by

5P = [@'a),
1y =[(D,®)" (Dr®)],
5, =|(D,®)" (D,®)] (4.9)

The gauge-field tensors can be combined as

Ty = g% tr [W,,WH] | Ty = g7 tr [W, W] (4.10)
7Y = ¢ [B,,B"], Iy = g*tx [B,,B”] . (4.11)

These terms are electroweak singlets. Non-singlet currents can be likewise constructed.

In the so-called Eboli basis [123, 128], we have operators that couple only to the
covariant derivative and the Higgs field, the scalar operators,

ES,O = FS,O [(Duq))TDu‘I)] [(D#(I))TDV(I)] ’ (4.12)
Lg,=Fs,[(D,®)D'®] [(D,®)'D"®], (4.13)
Lg,=Fs,[(D,®)D,®| [(D"®) D"®], (4.14)
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field-strength tensor and covariant derivatives, the mixed operators,
[“M,O = —92FM,0 [(D ‘I’>T(D“‘1’)] [W Wyp] ) (
£M,1 = _QZFM,l [( ) (DF®) ] [ WV“] (
Lyro=—9"Fy, [(D,®)(D"®)] tr [B,,B""], (4.17
‘CM73 = —92FM,3 [( ) (D’®) ] [ Bw] ) (
Lyrs=—99 Fyatr [(DH{)) W,, (D"®) B, (
Lys=—99 Fystr[(D,®)'W,, (D'®) B, (
Ly =—9"Fy,tr [(D,®)'W, W"(D'®)] . (4.21

only field-strength tensor, which couple the gauge-field currents to themselves, the tensor
operators,

Lpo=g"Fpotr [W,, W] tr [W, ;W] (4.22)
Ly =g"Frtr (W, W+ tr [W W (4.23)
Lpy=g'Frytr [W,, W tr [Ws W], (4.24)
Lps= g4FT75 tr [WWWW] tr [ ﬁBO"B] (4.25)
Lrg=g'Frgtr (W, W+ tr [B,;B*], (4.26)
Ly =g Frqtr [W, W] tr [Bg, B, (4.27)
Lpg=g*Frgtr[B, B"]tr [BQBBO‘ |, (4.28)
Lpg=g"Fpgtr [B,,B"]tr [Bs,B"]. (4.29)

We have adopted the naming convention of[127-129] and redundant interactions have been
removed to arrive at a linearly independent set: In [128], the two additional operators,

Lpg=tr [W, WHW"|B,, (4.30)
Ly, =tr [W, W*W¥| By, (4.31)

have been defined. Both operators vanish identically. For L 5, the trace is symmetric
under permutations of indices § and v, whereas the field-strength tensor Bg, is anti-
symmetric, hence, the product vanishes. For L1 4, the trace itself vanishes. Furthermore,
the operator

Lys=[(D,®) W, W"DH'®] (4.32)

is linearly-dependent on L, o by the relation £, 4 = éﬁ M0

Furthermore, the additional scalar operator Lg, has been introduced [123, 130],
as opposed to in [7, 128]. The third scalar operator is important in order to relate the
dimension-eight operators eq. (4.12) of the Eboli base with the operators of the electroweak
chiral Lagrangian [125] (see appendix B.1 for an overview) and to the basis definition
used in [7]. As we will see later on, the implementation of WHIZARD’s scalar operators
was originally based on the electroweak chiral Lagrangian with a non-linearly realized
symmetry. We show how the coeflicients of the canonical dimension-eight operators can
be mapped to the coefficients of the scalar operators of chiral theory and which role
the operator Lg o plays, in section 4.1. Before that, we will focus on the underlying
symmetries and their extension for our models.
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Custodial Symmetry

In the following we introduce the approximate custodial symmetry SU(2), [131-133],
which will later play a crucial role in the analytical derivation of the unitarization
corrections of the EFT regarding VBS.

In eq. (4.12) we have introduced the dimension-eight operators in the Eboli basis[128],
with a linearly-realized Higgs boson as Higgs doublet ®. In the following, we present
the convention for the Higgs field and the corresponding changes to the dimension-eight
operators used in our study [17].

Following along the lines of [125, pp. 28-29] we extend the (local) symmetry of the
standard model, SU(2);, x U(1)y, to the global symmetry SU(2);, x SU(2)g, where for
the Higgs sector the relation U(1)g C SU(2)g should apply. For a Higgs multiplet H,*
the following transformation law applies,

H — U, HU}, (4.33)

where U, € SU(2);, and Uy € SU(2). The vector bosons are assumed to transform
as singlets under SU(2)y. It may be desirable to assign fermions to SU(2)g doublets
(as already realized for SU(2)y,), but this is not a valid symmetry of the fermions. This
symmetry requires assumptions that are not realized in nature: the masses of the up-
and down-like quarks have to be the same and the CKM matrix must be trivial and with
that, also flavor physics! However, the CKM matrix is not trivial, and the quark masses
are not the same, e.g. the top quark mass is two orders of magnitude larger than the
mass of the bottom (and all other quark masses).

In addition, the weak interaction breaks the SU(2)g symmetry as the hypercharge
boson B transforms only under U(1)g, which is not consistent with the SU(2)g symmetry.
However, the coupling of the hypercharge boson B is proportional to sinf,,>, which is
not a large parameter, and the fermions play for aQGC interaction only a role in one-loop
corrections. Thus, we neglect these interactions by assuming the SU(2)g is approximately
realized.

In the limit where up and down masses are equal, and we have e — 0,sinf, — 0
and e/sinf,, fixed, the SU(2)y is exactly realized in the SM Lagrangian. In this limit,
the electroweak symmetry breaking brings the global symmetry down to the custodial
symmetry SU(2)q, under which the Higgs multiplet transforms as,

H — U HU,,, (4.34)

with Us € SU(2)¢. Under this SU(2) transformation, to which we will refer later as
custodial isospin, the W and Z vector fields form a mass-degenerate triplet. We will use
the latter to simplify aQGC amplitudes of vector-boson scattering with so-called isospin
amplitudes [134].

For the Higgs field, the matrix notation is chosen as it manifestly represents the
larger global symmetry O(4) ~ SU(2);, x SU(2)y, which becomes after the EWSB the

4As earlier mentioned, we refer to the Higgs doublet as @, and to the Higgs multiplet in general as H.
5The Weinberg angle 0_ is introduced in order to rotate the weak boson W° and the hypercharge
boson B into mass eigenstates, i.e. the massive Z and the massless photon, after electroweak symmetry

breaking. The value is given as sin? 6_ (M) = 0.23126 & 0.00005 in the MS scheme, [24].
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approximate custodial symmetry SU(2). The Higgs multiplet, written in the form of a
2 x 2 Hermitian matrix, is then given as

- 1 (v +.h_iiU3 —i\/§w.+ ) 7 (4.35)
2 —iv2w v+ h+iw?

where the components h, w®, w® are the physical Higgs boson and the three unphysical
Goldstone scalars, respectively. v denotes the numerical Higgs vacuum expectation value
(vev), v = 246 GeV [24]. The (actual) Higgs field is just a unit matrix multiplied by v + h,
while components with the Goldstone boson correspond to the Pauli matrices 7;.

The three transformations left, right and custodial, U}, € SU(2);,Ug € SU(2) and
Uc € SU(2)¢, act as

H - UH, H- HU,, H—U.HU., (4.36)

respectively. With the exception of 71 € SU(2), the global symmetries of SU(2);, and
SU(2)y are realized as local gauge symmetries. The Higgs field decomposes under the
custodial transformation into a singlet and triplet, which corresponds to the physical
Higgs and the Goldstone bosons. Conversely, under SU(2);, gauge transformations, the
two columns of the Higgs matrix transform independently as the conventional complex
doublet H in eq. (4.7) and its charge conjugate. In unitary gauge, the Goldstones “are
eaten” by the electroweak gauge bosons when the latter become massive. The longitudinal
polarizations of the electroweak gauge bosons are thus provided by the Goldstone bosons.
The Higgs field matrix then reduces to,

H= %@ +h) (é ?) . (4.37)

The plain SM lagrangian, which can be interpreted as the lowest order of the EFT
expansion, with only the kinematic terms of the bosons and the Higgs potential, reads

| a1 ,
Loy > —5 W, W] — L ufB,, B
+ trl(D, H) DVH] 4y e HVH] 4 5 (w V). (4.39)

For the precise definition of higher-dimensional operators, the free parameters have to be
expressed in terms of observables, order by order. The free parameters are defined by
observable quantities,

m
g=2—2 (4.39)
v
m2 — m2
Z %%
g =2— (4.40)
p? = %m%, (4.41)
m
A= —, (4.42)
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applicable to the operator expansion at tree level and beyond in eq. (4.2), with the
particle masses and the Higgs vacuum expectation value v as fixed input. Importantly,
the definition of g and ¢’ fixes the covariant field strength and the covariant derivative of
the Higgs that we apply for the construction of higher-dimensional operators.

With the Higgs matrix notation we can rewrite the operators such that the custo-
dial symmetry is represented manifestly. Since the product (DMH)TDUH is a matrix,
we take the trace operation over the monomial. The replacement [(DH@)TDVQ] —
tr[(DMH)TDyH} in the operators with H in the matrix notation yields the basis defini-
tion of our study [7], which we will use in the following.

Relation of Scalar Operators between Doublet and Matrix Notation

For the electroweak chiral Lagrangian with a light Higgs boson the following operators
were introduced in [17] analogously to the scalar operators of the Eboli basis in eq. (4.12),
Lsy=Fgotr [(D,H)D H] tr [(D vH], (4.43)

Lg,=Fg,tr[(D,H)ID'H|tr (D "H] (4.44)

where H refers to the 2 x 2 Hermitian Higgs matrix field, see for the definition eq. (4.8).
In order to compare the operator sets, we find that that the monomials of the operators
from the scalar operators eq. (4.12) and eq. (4.43) are given by [135],

D,®)'D,® = Lo,men + mzw we, (14 1) MZZZZ 141y
[( m ) V]Eboli_i(/‘>(y>+ W m v +; +T/,Ll/ +;
iMy, h
(2, (0,0) = 2,(0,h) (1 + ;) , (4.45)

M2
L(O)(O,h) + = (W, WF, + W, W+ )(1+%)2

1“2 2
Z h
+ 17,1, (1 4 ;> . (4.46)

Comparing them, it follows,

tr [(DHH)T D H| el =

tr [(D,UH)TDVH] chlral ([<D (I) TD ¢] Eboli + [(DVQ)TD“(I)]EbOIi) : (447)
Hence, the operator coefficients are related by [129]
16
_40‘4—FSO_FSO+F527 (448)
16 ~
v

where we added for completeness the coefficients a, and a5 of the electroweak chiral
Lagrangian (see appendix B.1). This applies both to the non-linear formulation without
Higgs boson and with Higgs boson of the electroweak chiral theory. In the former case
only the relations between aQGC are taken into account, since no vertices with Higgs
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boson appear then in the operators £, and L. Furthermore, custodial SU(2). isospin
conservation requires then Fg o = Fjg 5, hence, 13370 =2Fg,.

For the case, Fg o # Fg o, the previous subset of operators does not suffice to mutually
model the coefficients, neither in the chiral Lagrangian nor in the Eboli-operator basis.
For thiss, the operators that mix the custodial symmetry SU(2)o breaking operator
T= E%ZT with V,, become necessary [125, 136],

Ly =agtr [V,V,] tr [TVt [TVY], (4.50)
Ly = oy tr [V,VE] tr [TV, ] tr [TVY]. (4.51)

However, we can neglect the operator L£,. For the linear representation of the Higgs
within the electroweak chiral Lagrangian, where we assign dimension one to X' in chiral
counting, the dimension of the operator changes to 10 [125, p. 35] and, therefore, is
beyond our considerations. The relations for the aQGC vertices for Fg, # Fg, are
given in appendix B.2, including the analytical expressions for the contributions of the
operators to the aQGC.

With the above definition we can briefly discuss the comparability of the different
definitions of operators. We already have the relations eq. (4.48) between the scalar
operator coefficients. The question is whether these relations can be applied to obtain
genuinely equivalent results from different operator sets, with equivalence in the sense
that if we set the operator coefficients correspondingly in relation, then the physical
observables are equal for all the definitions at LO. This is especially true if the sets lead
to the same Feynman rules for all vertices that deviate from the SM.

This is the case with the additional £g 5 operator as we can write down the relations
between the quartic gauge boson vertices in the same way. Still, without £g 5 one can find
vertex-specific conversion rules [135, p. 61] as the vertices for WW- W W~ WtW~ZZ
and ZZZZ contain at least two identical particles. This means that, after symmetrizing,
the two vertices WTW-W W~ and WTW~ZZ can be generated from Feynman rules
with two Lorentz structures each, instead of three Lorentz structures as one may naively
assume. Therefore, it is sufficient to have two operators with two different Lorentz
structures from which all possible Lorentz structures can then be generated for a single
vertex. For the fully symmetric vertex ZZZZ, there is only one Lorentz structure for the
scalar operators.

We note, however, that this is only a provisional solution and one should instead include
the additional operator Lg 5 for a correct comparison. Under certain circumstances, the
latter may even be mandatory, for example in the VBS-production process pp — WTW™jj:
For the partonic subprocess ud — udW* W™, both, WW "W W~ and WW~ZZ,
vertices contribute, in which case the operator sets can only be compared when Lg 5 is
included.

In summary, we were able to show that the coefficients of the chiral scalar operators
and the scalar operator of the Eboli basis can be modeled mutually, when isospin is
conserved, or broken, and for the latter, by picking up the isospin-breaking L, operator
in the chiral basis. The connection for the operators in eq. (4.43) is only done in the
isospin-conserved case, since here the SU(2) conservation is required explicitly.
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J J
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J J
V |4
(a) Vector boson emission. (b) QCD-induced background.
J J
v v
) ) ()
v
v 4 v
J J
(¢) Quartic gauge interaction from the SM. (d) Anomalous quartic gauge interaction.

Figure 4.2: Examples of Feynman diagrams contributing to vector-boson
scattering where the anomalous quartic coupling is modeled by the dimension-
eight operators of SMEFT and all other interactions originate from the SM.

Embedding the VBS Matrix Element

The main goal of our study is the discussion of aQGC, which are already realized in 2 — 2
vector boson scattering by the dimension-eight operators in eq. (4.12), see table 4.1 for
their contributions to different VBS processes. However, such scatterings are not directly
observable at LHC, in the sense that one can not directly measure V'V final states, but
only the decay products of the vector bosons. Furthermore, at the LHC the measurement
of the decay products is complicated, since hadronic decay products are indistinguishable
from the large QCD background. Therefore, only leptonic decay products are taken into
consideration. The situation for the initial state at the LHC is similar as vector bosons are
produced by emissions off quark currents. Thus, we can not directly observe VV — V'V
scattering. These processes are embedded in pp-processes, where the production of the
vector bosons comes from quark currents J : v and the final state consists of leptonic

decay products, written as decay currents J C 7 Furthermore, these VBS processes are
—

strongly suppressed by the PDF dependence of the quark currents in comparison to gluon-
induced processes, since gluon-PDF's give the dominant contribution from proton-proton
scattering at high energies.

A wide variety of Feynman diagrams [24] contribute to the transition amplitude for the
embedded vector-boson scattering pp — V'V jj, see fig. 4.2. In particular, contributions
come from vector-boson emission from the quark currents, trilinear or quartic couplings,
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[“S,i ‘ ['M,i £T,z‘
i€ {0,1,2} | {0,1,7} {2,3,4,5} | {0,1,2} {5,6,7} {8,9}

WWWW v v v
WWZZ v v v v v
7777 v v v v v v
WWZy v v v v
WWnry v v v v
277~ v v v v v
77~ v v v v v
ZAyyy v v v
YYVY v v v

Table 4.1: Contributions of the different dimension-eight operators of the
Eboli basis to the aQGC vertices, taken from [129].

and QCD-induced backgrounds.

For our consideration, we limit ourselves to embedding the aQGC from the dimension-
eight operators as quasi-elastic V'V — V'V scattering process into the quark currents, but
neglect the leptonic decay of the vector bosons. This assumption is justified since we
are only interested in the general high-energy behavior and (possible) violations of the
unitarity of the scattering matrix by the dimension-eight operators. In particular, we do
not want to concern ourselves with the prediction of fiducial cross sections, which we
postpone to a future work.

Proceeding as in [57], we restrict ourselves to on-shell 2 — 2 vector boson scattering,
whose kinematics can be fully described with the Mandelstam variables s,t and u
(see appendix B.3 for their definition). The application of symmetries, in our case the
(approximate) custodial symmetry SU(2) (see section 4.1), and crossing relations allows
us to cast the different amplitudes of the vector-boson scatterings in a compact analytical
form, as proposed in [134], and will be given in section 4.3.

In this form, we obtain a single master amplitude (from a single process), which is
related by the isospin symmetry and crossing relations to the amplitudes of all other
processes. We can then decompose all amplitudes (using the master amplitude) into
partial-wave amplitudes by partial-wave decomposition. This allows us to diagonalize the
scattering matrix in a bottom-up approach, which is a prerequisite for the application
of the T-matrix unitarization [17, 130] prescription (which we introduce in section 4.2).
In this form, we can unitarize the respective eigenamplitudes of the EFT for aQGC
with an analytical method [17, 57, 130, 137, 138]. Compared to previous studies [17, 19,
130], which investigated only scattering of longitudinally polarized particles, where the
decomposition into partial waves is done for a spinless transition (e.g. using Legendre
polynomials instead of Wigner D-functions), we examine all 81 helicity transitions from
initial to final state.%

After determining the spin eigenamplitudes, we neglect helicity-dependent terms of

59 helicity states for the initial state |V'V) and 9 helicity states for the final state (V' V], hence, 81
transitions.



4.2. UNITARIZATION 73

O(s*), which provide only subleading contributions and we thus neglect them in a first
approximation. The unitarized spin eigenamplitudes are then transformed back to the
isospin basis and the unitarity corrections are applied to the Feynman rules for the VV —
VV processes as s-dependent form factors. These form factors imply on-shell evaluation.
For the later implementation, we neglect this prerequisite and evaluate the s-dependent
unitarization form factor with off-shell momenta.

We have to match the space-like momenta of the incoming vector bosons to s. We do
this by setting s = (¢; + q2)2, where ¢, ¢, are the space-like momenta of the two incoming
vector bosons. The effect is negligible, as long as the mismatch between off-shell and
on-shell amounts to subleading terms of order m\QN /s and qf /s. For VBS, the kinematics
|qf\ ~ m%v dominate the cross section, but phase-space regions also contribute where
terms proportional to qi2 /s become leading. However, we limit ourselves to observables
inclusive in qf, where these terms are (mostly) of subleading order. A detailed description
for handling off-shell V'V — V'V subprocesses for any momenta, as well as a complete
helicity treatment (without neglecting higher terms in the partial-wave decomposition)
is given in [139] for the Monte Carlo generator VBFNLO with the specifically developed
T,,-matrix unitarization method.

Custodial symmetry dictates that we neglect contributions of external and internal
photons, since these explicitly break the custodial symmetry. Furthermore, we ignore the
Coulomb singularity [140] for charged particles, i.e. charged-W, since the forward region,
where the Coulomb singularity occurs, is cut out in an experimental analysis [122], and
the effect for off-shell particles is rather small compared to on-shell particles [141].

4.2 Unitarization

The predictive power of the EFT introduced in section 4.1 breaks down for high energies
larger than the masses of the electroweak gauge bosons, which was demonstrated in [17,
19, 57, 130]. Break-down is meant in the sense that in the asymptotic limit of high
center-of-mass energies the EFT predicts more events than are allowed by the unitarity
of the S-matrix, and thus violates conservation of probability. In particular, we know that
the SM provides an intricate cancellation of amplitudes with gauge boson interactions
and associated Higgs exchange for its high-energy behavior [117, 118]. Therefore, any
high-energy completion of the SM consistent with the basic assumptions of the EFT
approach should not predict unitarity-violating event distributions [17].

Various methods have been proposed: cut-off functions, energy-dependent form-factors
applied to couplings or unitarization prescriptions acting on the scattering matrix S itself,
which all suppress the unphysical high-energy behavior of the effective theory. Since we
want to model the high-energy behavior without a dependence on a cut-off or form-factor
in a bottom-up approach, we make use of the unitarization prescription, in our case, the
T-matrix unitarization proposed by (Kilian, Reuter, Ohl and Sekulla in) [17].

In the following, we derive the most important properties from the unitarity of the
scattering matrix, and outline the derivation of the K-matrix unitarization scheme [142,
143] and its drawbacks, along the lines of [144]. Furthermore, we introduce the T-
matrix unitarization from [17, 130] and briefly discuss the requirement to diagonalize the
scattering matrix S in order to calculate unitarized amplitudes of the EFT.
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The transition amplitude for an initial state |i) becoming a final state (f| is given by
the S-matrix operator
Sy = (f1S) (4.52)

which under time reversal becomes
t )
Sy = (ilST]f). (4.53)

Splitting off the non-interacting part of the S-matrix and denoting the interacting part
as T-matrix, the scattering matrix is then written as

S=T1+iT, (4.54)

where I denotes the identity operator. The unitarity of the S-matrix incorporating the
conservation of probability
Ssts=ssf =1, (4.55)

can then be used to relate the imaginary part of the 7-matrix to the total cross section of
a related 2 — 2 forward scattering process by the virtue of the optical theorem, see [20,
pp. 453-455] for a detailed derivation.

From the unitarity condition, we can also derive an upper bound for the size of an
arbitrary scattering amplitude. For this consideration, we limit ourselves, for the sake
of simplicity, to 2 — 2 scattering processes of the form ab — cd. The differential cross
section for such a scattering is given in correspondence to eq. (1.5) by

do __1 %
AR~ (81)2sq

Mfi|2 = |ffi(“(2)|2> (4.56)

with the solid angle 2 = (0, ¢), the center-of-mass energy /s and the invariant squared
matrix-element M, where f and i denote the final and initial states, and the respective
momenta ¢, and ¢;. The scattering amplitude f fi(Q) can then be expressed in terms of
partial-wave amplitudes with Wigner D-functions [21, 145]

(@) = 23 @7+ 177 d],(6,0,0), (4.57)
J

1

where A = (A, — \,) and \" = (A, — ;) in terms of the helicities of the involved particles
in the scattering process. Integrating over the full solid angle, the total cross section for
the partial-wave J is then given by

s i
ofl_Q

(27 +1)|T/(s)
qz

|’ (4.58)

We can identify the initial and final states with total spin J and the z-component M of J
(in a coordinate system fixed in the overall center-of-mass frame). The states are then
defined as

li) = {a,b}; J, M, A, \p) (4.59)
1f) = e dys T, M, A Ay) (4.60)
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where {a,b} and {c,d} denote additional quantum numbers to fully specify the initial
and final states, respectively. The normalization is then (f|i) = d;; due to overall angular
momentum conservation. Assuming that we can then diagonalize the 7-matrix with a
unitary transformation U, e.g. into partial waves.” We find

sts= (I + %UT’ U’f)T (I + %UT/ UT> ~1, (4.61)

where 7= UT'U". Equation (4.61) can be reformulated with the complex eigenvalues®
(7);; = 2t;;6;; = 2t; of the T-matrix resulting in the Argand circle condition

1
= 4.62
3 (462)

which has a simple geometrical interpretation (see fig. 4.3). The complex eigenvalues of
the transition operator 7 will lie on a circle with radius % around the center % in the
complex plane. Conversely, we can read off of eq. (4.62) an upper bound for tree-level
amplitudes, e.g. for the partial-wave amplitudes ai ,» of spin J and helicity differences of
in- and outgoing particles A\, \" in eq. (4.58)

<z (4.63)

N | =

J
|Re ay

We can use the unitary condition to introduce a unitarization prescription, we get
from eq. (4.55) and eq. (4.54)

SIS=I+i(T-TN) +7T'T=1, (4.64)

where from unitarity of the S-matrix also follows that the 7-matrix is normal, thus,
T1T=T7TT. Assuming that the inverse 7! exists,” multiplying eq. (4.64) from left with
7! and from right with (TT)_l we find

(T H =Tt =iT

; ; 4.65
ST+t =714 L (465)
2 2
K-matrix scheme
Using eq. (4.65) we can then define the inverse of the K-matrix operator by,
Kl=7"14 %I, (4.66)

and from eq. (4.65), we see that K = K holds. Furthermore, from invariance of time
reversal of the S and 7-matrix operators, it follows that the K-matrix operator is symmetric

"In general, the overall approach is not limited to a 2 — 2 scattering process.

8We introduced a factor of 2 for convenience.

9In general, the assumption is not trivial. But we refrain from any profound reasoning, since we
use the assumption only for the introduction of the K-matrix unitarization in a specific case where the
assumption is valid, see later.
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and furthermore, we may choose the K-matrix to be real. Multiplying eq. (4.66) by K
from left and 7 from right (and vice versa), we find

T=K+ %K T=K+ %r K, (4.67)

from which directly follows that K and 7 commutate, [K, 7] = 0. Solving for 7, we arrive

at
K

7=
-1k

(4.68)

where I/(I — %K) =(I- %K)fl, and the relation to the S-matrix operator is given by
I+ - K

S = —.
I--K
2

(4.69)

The K-matrix in eq. (4.69) was introduced by Heitler [137] and Schwinger [138] as Cayley
transform of the complete unitary scattering operator S. For a perturbatively calculable
theory, the K-matrix can be determined perturbatively as long as 7—2i is non-singular [17].
From eq. (4.68) we see that K and 7T are identical at lowest order of the perturbation
series.

ReC

Figure 4.3: Stereographic projection of an unitary scattering amplitude on
the Argand circle to the real-valued K-matrix amplitude a-.

If we assume that the 7-matrix is diagonalizable, i.e. with the eigenvalues ¢ = 2a ; for
the special case of the partial wave decomposition in eq. (4.58), then the n x n-matrix
K € R™™" is given by,

K=Y T, @+ ir)- Zm 1+ia;) " 5,,0 S (4.70)

1] m nj . 1]
—~ 1 +1ia;

The corresponding eigenvalue ay of the K-matrix can then be related to an amplitude a
“as a sterographic projection from the Argand circle onto the real axis” [130] (see fig. 4.3),

a

1+ia
In general, the diagonalization of the S-matrix may seem infeasible or even impossible. In
that case, it was proposed to revert the logic to compute the K-matrix from the scattering

ap = (4.71)
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matrix by [142, 143, 146-148]. Here, the K-matrix is interpreted as an incomplete, but
calculable approximation of the true scattering matrix S. Thus, the 7-matrix can be
calculated as a non-perturbative completion of this approximation from a diagonalized
K-matrix by inverting eq. (4.71),

o= —K (4.72)
1 —iag

For the case of a non-diagonalizable K-matrix, we refer to [17, 130].

T-matrix scheme

ImC

ReC

Figure 4.4: Thales projection of a unitary scattering amplitude on the
Argand circle to the complex-valued, (possibly non-perturbative) T-matrix
amplitude a.

The disadvantage of the K-matrix prescription is that the K-matrix implies the
existence of a perturbative expansion of the underlying theory. Furthermore, it must be
calculated as an intermediate step and the K-matrix itself does not imply any further
(physical) use. This intermediate step can become complicated and cumbersome for some
processes. Therefore, direct T-matrix unitarization was introduced in [17, 130]

1

T= —
I%GT[’J _EI

(4.73)

with a (potentially) unitary-violating 7,-matrix and the unitarized 7-matrix (see fig. 4.4).
If we let a; be the eigenamplitudes of the partial-wave decomposition of an arbitrary
To-matrix, e.g. from section 4.1, then the unitarized amplitude ay ; in the T-matrix
unitarization is given by

_ 1
Ret —i

ay

(4.74)

ar.g=

After diagonalizing the respective 7-matrix, we can then directly apply the unitarization
prescription onto the eigenamplitudes.
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4.3 lIsospin-Spin Amplitudes

We outline the approach to the unitarization of 2 — 2 processes as presented in [17, 57,
130]. We revisit the most important steps in order to compute the isospin-spin eigenbasis
of the quartic gauge couplings as well as their unitarization. We show schematically the
back transformation into isospin amplitudes for the actual implementation in the Monte
Carlo event generator WHIZARD.!"

In the approximate custodial symmetry SU(2)g, the three vector bosons W+, W~
and Z form a (mass-)degenerate triplet state.!' From this, we can build SU(2) x SU(2)
states |V V). The latter can be transformed to the isospin-eigenbasis through application
of Clebsch—Gordon decomposition (see appendix B.4 for the details). In addition, we can
fully describe the kinematics of a 2 — 2 scattering with the Mandelstam variables s, ¢
and u. Along with crossing relations (see appendix B.3) and the former isospin algebra,
we can express all quasi-elastic scattering amplitudes, where W, W~ and Z are involved,
by a single master amplitude, analogous to [134].

For the transverse interactions with the dimension-eight operators L. ;5 and for
the mixed dimension-eight operators L/, 7 we define the master amplitude

A(s,t,us A) = .,él(I/I//\+lT/I/)\_2 — Z5,25,) =
1
—24* <FT,O + ZFM) 5A1,A25A37A452

1
- g4 (FTa]- + §FT’2> (6)‘1v7>‘35)‘277)‘4t2 + 6)‘177)‘45>‘277>‘3u2)

1
+ §Q4FT,2 (6/\1,)\25)\3)\46)\1,—/\3) (752 + U2>

1
+ 159" (8Far0 = 2Fara + Far7) 8° (03,:05905.002,,0 = 1605 5,65, .00x,.0)
1
+ 1_692 (2Fp1 + Farr) (8* =% —u?) (5,\1,425&,05&,0 - 6/\3,7>\45/\1,05>\2,0)
1
1_692FM,7 ((5,\1,435,\2,05&,0 - 6/\2,7/\45&,05)\3,0) (s* —u?)

T (5>‘2’_)‘35>‘1705>‘4:0 - 6>‘17—>\45>\2705>\370) (82 - tQ)) '

+

(4.75)

where XA = (A}, Ay, A3, A,) for ease of the notation. Using the custodial SU(2) isospin-
decomposition rules given in appendix B.4, the scattering amplitudes for the mixed and
transverse operators are given by

A<W;\ZW;\; - W)\ZW)J;> = A2(57tvu; )‘>7 (476)
A(VV;I/V;2 — WAZWA_) = %Ao(s,t,u; A) + %Al(s,t,u;)\) + éAQ(s,t,u;A), (4.77)

AW Wy = 2y Z,,) = %Ao(s,t,u; A)— éA2(s,t,u; A), (4.78)

10We skip the details of the implementation due to their purely technical nature, and refer the interested
reader to the previous studies [57, 130].

Since we restrict ourself to the high-energy range, we neglect the masses of W,Z and H (where
applicable).
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AW Zy, = Wi Z,,) = %Al(s,t, W) + %A2(s7t, W), (4.79)
A(Zy 2y, = 2y 7,.) = %A()(s,t, W) + §A2(s,t, wA). (4.80)

The decomposition into isospin-spin eigenamplitude by an expansion of isospin eigenam-
plitudess into Wigner D-functions [145] di N (0) with A = A, — Ay and A = A3 — )\, yields

" dt
S

Ars(s;A) = A di/\/ (arccos (1 + 22)) , (4.81)

—S

where we matched the angle § with the Mandelstam variable t, cosf = % + 1. The full
expressions for the Wigner D-functions are given in appendix B.5.
The isospin eigenamplitudes A; are given by

A(](Sa t? Uu; A) :3"4(87 ta Uu; )‘17 A27 )‘37 )‘4) + A(tu S, U; _/\47 )‘27 )‘37 _)‘1>

AUt S5y, —Ags Ags —Ay), (4.82)
A1<87 t? Uu; )‘) :A<t7 S, U; _A4¢ )‘27 )‘37 _>‘1> =+ A(u> tv S )‘1? _)‘4¢ >‘31 _)‘2)7 (483)
Ao (s, t,u; X) =A(t, 8, U5 —A gy Aoy Ag, —Aq) + A(u, t, 55X, — Ay, Ag, —Ay). (4.84)

For the purpose of constructing a minimal unitary projection, it is sufficient to
determine a set of master amplitudes which capture the leading term proportional to
s? for each spin-isospin channel, uniformly for all individual helicity combinations. The
implied over-compensation of some helicity channels that are subleading at high energy,
is within the scheme dependence that is inherent in the unitary projection. The simplified
helicity-independent expressions are

3 3
Aoo(s) = —594 [4FT,O — 2FT,1 + FT,Z] 32 + EQQ [SFM,O + 2FM,1 + FM,7] 32, (485)

1

Api(s) = —3—292 [4FM,O + Fyrq— 3FM,7] s?, (4.86)
1 1

Ago(s) = —Eg4 [4F o —2Fp, + Fpo| 8+ ﬁf [4Fy 0+ Frpq + Fapq] 2, (4.87)

Ap(s) = 0, (4.88)
1 1

Ay (s) = 694FT,282 - 3—292 [4FM,O + FM,1 - 3FM,7] 52= (4.89)
1 1

A,(s) = gg4 [—2Fp o+ Fppq —3Fy 7] s° + EQQ [AF\M,0 4 Fypq + Fyyp ] 8%

(4.90)

Agg(s) = 0, (4.91)
1

Agi(s) = —3—292 [4FM,O + Fyrq — 3FM,7] s?, (4.92)
1 1

Ago(s) = —Eg4 [4Fp o —2Fp, + Fpo| 8 + ﬁg2 [4Fy 0+ Frrq + Fapq] 20 (4.93)

We list the complete set of master amplitudes with their dependence on the operator
coefficients in table 4.2 for the transverse operators and in table 4.3 for the mixed
operators.



80 CHAPTER 4. VECTOR-BOSON SCATTERING AT THE LHC

J
i 0 1 2 A
0o 6 -2 -2 0 0 0 0 0 0  (+,+,++)
O 0 0 0 0 0 —% -2 = ()
O 0 0 0 0 0 = —% -5 (=)
22 14 11 1
5 "3 "6 000 0 -5 T Ty B
0 0 0 0 0 0 0 0 0 (+4++)
, 00 0 0 0 0 2 2 0 (+—+-)
o 0o 0 0 0o 0o -2 L1 0 (-4
2 1 1
0o 0o o 2 -2 1 0 0 0 (++--)
0 2 -1 0 0 0 0 0 0 (++++
s, 0 0 0 0 0 0 —% —% —% (+,— +,—)
O 0 0 0 0 0 5 T i (+,——+)
4 8 1
3 3 3 0 0 0 -5 -5 -5 Ht-o)

Table 4.2: Coefficients of the isospin-spin amplitudes calculated
with eq. (4.81) for the transversal operators L7 ; depending on the helic-
ity of the incoming and outgoing particles. The isospin-spin amplitudes are
given by A;;(s;A) = (coFrp, + e Fp, + CQFT2)9482.

Unitarization Corrections

The T-matrix projection (as introduce in section 4.2) is applied to the simplified helicity-
independent eigenamplitudes where only one coupling (mixed or transverse) is active.
With the latter, one arrives at a closed form expression. In contrast, when using an
arbitrary number of non-zero couplings or using explicitly helicity-dependent amplitudes,
one has to resort to a numerical evaluation of the T-matrix projection [139]. For the
spin-isospin eigenamplitudes A; ;, the unitarization projection is given as

2 1
AIJ - R 1 i (494)
‘A, B
The unitarization correction is split off of the naive EFT amplitude A, ;
AApy= Ay —Apy, (4.95)

reverting the corrections of the isospin-spin amplitudes back to the isospin basis'?

2
AA (s, t,u; A) = Z(QJ +1)AA;, dix(cos 0)
J=0

: (4.96)

cos 0:%—0—1

12We have placed the factor of 327 into the unitarization projection in eq. (4.94).
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J
i 0 1 2 A
3 3 3
02 -2 2 0 0 0 0 0 0  (+,+,0,0)
0O 0 0 0 0 0 0 51/3 w5 (00
1 1 7 1 3
0 0 0 —3 o W oW T (+,0,—,0)
o o o + X -~ L _L 2 (400
8 132 %92 40 160 320 »
0 0 0 0 = % 0 0 0  (+,0,4,0)
1
0 0 0 0 —= —= 0 0 0  (+,0,0,+)
1 0 0 0 0 0 = 0 0 0  (+,+,0,0)
0 0 0 0 0 0 0 0 0  (+,—,0,0)
1 1 1 1 1 1
SO S R I A
0 0 0 —3 ¥ ¥ wm W i (+,0,0,—)
0 0 0 0 = o 0 0 0  (+,0,4,0)
1 1
0 0 0 0 o o 0 0 0 (+,0,0,+)
20 0 0 0 0 0 0 0 0  (+,+,0,0)
0 0 0 0 0 0 0 0 0  (+,—,0,0)
1 1 1 1 1
0 0 0 3 % @ w i 0  (4,0,0,—)
0 0 0 0 = o 0 0 0  (+,0,4,0)
1 1
0 0 0 0 —% —5 0 0 0  (+,0,0,+)
Cg €1 Co C 51 Co Co 51 Co

Table 4.3: Coefficients of the isospin-spin amplitudes calculated
with eq. (4.81) for the mixed operators £ wm,; depending on the helicity of the
incoming and outgoing particles. The isospin spin amplitudes are given by
A;j(8i0) = (coFpy, + 1Py, + C2FM7)9232-

one arrives with counter-terms for the different scattering channels. Using cosf = % +1
and t = —(u+ s), for the massless case, we can express the isospin eigenamplitudes in the
Mandelstam variables s, ¢t and u. We arrive for the mixed operators with F,; # 0, Frp; =0
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at
AA (s, t,u; A) =
) t—u 15 t—
(AAIO(S)__AAH(S) S +7A-A12(3)< S > )5)\1, Oxy0+ 025,000,
5v/6 5v6 t—u\2
+ (2224500 - 222400 (154)") by, 10, 00,

. 2
+ | AAL (s) — AAL (s) > O, 4+925,000,,-0x,,0 (4.97)

t—u

n t—u

(
+ <AAH )+ Ay (s)
(

AAp(s) + AAp(s)

t—u t—u
+ (AAII(‘S) — AAp(s) P 5AA5(s) ( . ) O, 4+005,000,,000, 4
and analogously, for the transverse operators with F, ; = 0, Fip ; # 0 we obtain
AA (s, t,u; A) =
) t— t—
(AAm(S) - EAAIZ(S) +24AA(s) (s) ( ) ) Oxy 100,400,400+

5
ZAAIZ(S)+5AA12(S) ) AL, 5>\2 5>\3 +5>\4

_|_

AA12(8> + 5AA12(S)

> 5>‘17+ Agy— )\3 _5>‘4 +

+
TN TN TN
| Ot

) t— t—u\2
AA,o<s>—5AA12<s>+2AAH<s> - (5 (552)7) 83, 10, 0, -
(4.98)

Off-shell Implementation

In the following, we briefly outline the procedure, introduced in [57], for constructing the
generic off-shell parameterization of VBS corresponding to the appropriate unitarized
on-shell isospin amplitude in egs. (4.97) and (4.98). The Feynman rules have been derived
from the Lagrangian in eq. (4.12) with the help of Mathematica [149] and the Feynrules
package [150, 151]. We replace the dependence on the constant prefactors, i.e. Fi /M.i»
by form factors which only depend on s. Compared to the Feynman rules for the scalar
operators, as implemented in [17, 130], the Feynman rules for the aQGC introduced by
the mixed and transverse-only operators, that contain currents WWWO‘B , depend on the
momenta entering/leaving the vertex which come from derivatives acting on the gauge
fields. Correspondingly new Lorentz structures have been introduced to OMEGA.

The unitarization corrections for a given Fp )y, ; parameter are added in such a way
that we match Lorentz structures of the naive Feynman rules with the terms s?, t2,
and u?, see appendix B.3. The unitarization corrections are then multiplied as form

13See sections: Scalard-Dim8 Couplings, Mixed Scalar2-Vector2-Dim8 Couplings, Transversal Gauge4
Dim8 Couplings and Mixed Gauge4 Dim8 Couplings of the OMEGA manual [5].
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factors to the corresponding parameters and Lorentz structures. This approach explicitly
breaks the crossing symmetry, which, however, is already broken as a consequence of the
unitarization scheme for 2 — 2 amplitudes. For the OMEGA implementation all possible
orientations of the time arrow are implemented for a given vertex as alternatives. The
actual orientation is then determined by OMEGA during embedding the quasi-elastic
scattering in the actual physical process.

The model SSC2, which only incorporated the T-matrix unitarized dimension-eight
Lg 12, has been extended, such that the mixed operators Oy, ;7 and the transverse
operators Op 1 /o are implemented supporting the naive EFT and adding unitarization
corrections as form factor modified Feynman rules.

Including the Higgs Boson

The operators L ;57 contribute to Higgs interactions with the vector gauge besons,
including the amplitudes for the processes WTW~ — HH and ZZ — HH. The Higgs
contribution can be obtained from the corresponding Z contribution with the replacement:
Z — Z + ih, [130]. The interaction leads to the following amplitude relations

AWEWT — Z7) - A(WFWT — HH) = A(ZZ — HH), (4.99)
AW*Z — W*Z) — A(WTH — W*H). '
These amplitudes contain isospin contributions I = 1 and I = 2, although the Higgs is
a scalar field. This can be explained by the fact that the low energy custodial SU(2)q
symmetry is a subgroup of the larger, high-energy SU(2);, x SU(2)g chiral symmetry
after EWSB. The Higgs amplitudes should therefore be considered in context of SU(2);, X
SU(2)g chiral symmetry, such that single contributions by higher isospin quantum
numbers do not occur alone.

4.4 Simplified Resonance Models

In this section, we include resonance models which give rise to distinctive features in the
energy spectrum. In the previous section, we only considered continuum models where we
smoothly interpolate between the low-energy SMEFT and high-energy unitary saturation.

A resonance is the saturation of an elastic channel for a finite energy, visible as a peak
in the spectrum, and the amplitude drops off after the peak, and may then rise again
for higher energies. For example, such a behavior can be observed for charm mesons,
where one finds resonances below the threshold for cc production and a continuum
above [152]. In the following section, we use the approach of [19, 57, 130], where models
were considered in the context of VBS, and couplin%s, of resonances with longitudinal
gauge bosons were studied via the scalar current JI<{ from section 4.1. We extend the
allowed coupling to transverse bosons. For this we take a single scalar which couples to
the current J&‘;) from eq. (4.10).

For high energies, the K-matrix and T-matrix unitarization of an amplitude leads
to a saturation which can formally be regarded as a resonance at infinity [57, 130].

YFor further details, [see 130, p. 68].
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However, this high energy behavior of the amplitude differs from resonances with finite
mass where the highest absolute value is reached at an energy equal to the resonance’s
mass. If we can not reach these energies experimentally, we will only observe a rise of the
amplitude. In this case, the description of the resonance coincides with the description
of the dimension-eight operators in eq. (4.12). Therefore, we study exemplary models
with single resonances with specific quantum numbers and compare them with the
class of continuum models in section 4.1 that model merely the SMEFT expansion into
asymptotically strong interactions.

There are several models for the extension of the Higgs sector, which effectively
lead to a similar phenomenology. Firstly, we expect that such a resonance couples both
to longitudinal and transverse vector boson polarizations. However, BSM models with
new physics coupled to the transverse polarization of the electroweak gauge bosons are
constrained by data [153]. Other models include extra dimensions [154, 155], or indirect
couplings due to loop contributions [156-158].

Mostly, such resonant models with an additional scalar resonance introduce a heavy
particle, [7]. In the composite Higgs models couplings to transverse gauge bosons can be
mediated either by technipions [159] or heavy fermions [160, 161]. If the mass scale intro-
duced by a new heavy particle is beyond the energy range of the LHC, the corresponding
model can then be parameterized in an EFT expansion. As an example, recent studies
[153, 162-164] for the diphoton excess [165, 166] used an EFT approach to investigate
the effect of a possible diphoton resonance. In general, vector boson resonances were
explicitly investigated in WZ scattering, see [167]. For models with heavy resonance like
in the Little Higgs [168, 169], the coefficients of SMEFT were calculated, see [170].

However, we do not refer to a specific model, but provide a (largely) model-independent
method to describe a scalar resonance scenario as we are interested in the exemplary
behavior of a single resonance to generally show the interpolation between the continuum
model and the resonance model, which has been already demonstrated for the scalar
case [19, 130].

The Lagrangian (taken from [19]) for the isoscalar-scalar ¢ is extended by couplings

(4)
to the electroweak (scalar) currents Jy," and Jy, ',

["'O':_%O- (mg_a2>U+U(JUH +J0L), (4100)
J, = Futr (D,H)" (D"H)), (4.101)
Jy1 = G Fpy tr (W, ,WH) 4 ¢°F g tr (B, B"), (4.102)

and has then three independent coupling parameters $F,_, F,w and F_p. In the low-
energy limit, integrating out the scalar resonance by the replacement P §(s—m?),
we obtain the SMEFT Lagrangian with the following nonzero coefficients of the dimension-
eight operators at LO:

2
= Lot (4.103)
=0 2m§’ '
FO’ FG’
Fyro = - 5 -, (4.104)

Mg
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FO’HFO'B

Frpo=— (4.105)

m2
FQ
oW
FT 0 — %, (4106)
FU' FO'
Fp,= 27 (4.107)

Fpg= . (4.108)

The relation between coupling constants to the electroweak currents and the resonance
mass m, is given by the width of the scalar resonance,

I'(m,) = /d9£ <|Mo—aw+w—|2 + % ’MUHZZ‘2

32m2m?2
1 2 2 1 2
+§ ‘MO'*)HH‘ + ‘MO'*)Z’Y| + 5 |MU~>77| ) ) (4109)
with [p| = m,/2. The masses of the electroweak gauge bosons are neglected in the

kinematics of the phase space as m, > my.

We only consider the contribution of F,y; and set the parameters F_y, i to zero,
as F_y has been covered in [19], and contributions by F, 5 break custodial symmetry.
Then the resonance width becomes

m3
Ly (m,) = ?16—7:94F3W (1+0(1/m2)). (4.110)
In particular, by fixing the mass of the scalar m_ we can directly connect the resonance
width I' y and the coupling strength F_ .

In the low-energy limit, only L, contributes. Therefore, we can compare the anal-
ogous distributions of the continuum model and the resonance model with no further
adjustment, since both evolve from the same low-energy limit. The free parameter for
the continuum model is Fr o, the free parameter for the resonance model is the decay
width eq. (4.110) which depends on two parameters, the scalar mass and the scalar-W
coupling strength. The parameters have to be chosen in such a way, that eq. (4.103) is
fulfilled, in order to compare them.

Isospin-Spin Amplitudes

We use the same approach as in section 4.3 to determine the eigenamplitudes for all
polarizations by decomposition with Wigner D-functions. Again, we limit ourselves to
the operators L7/, /o and L ¢/q /2, since these conserve custodial symmetry.

Already in [19], it was shown that the kinematic functions for the unitarized amplitudes
for resonances are not simple powers of s, but contain logarithms and pole-like rational
functions of s in general. For the isospin-spin amplitudes in the case of an isoscalar-scalar
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resonance as given in table 4.4, we define the following kinematic functions:

3s2

X(s,m) = ——, (4.111)
s—1m
2 m4 TTL2
Sy(s,m) =2m* + 2? log (s n m2> — s, (4.112)
4
m 4 2 m s
S,(s,m) =47 1 6m* (2 1 s 4.113
1(s,m) B —l—m(m+s>0g<s+m2>+3 ( )
4 4 2
_ M 2 m 4 2 2 m
Sy(s,m) = 65—2 (2m* +s) + 23_3 (6m* + 6m?*s + s°) log (s " m2> : (4.114)
~ m? m* mS  md m? s
S. = — — — 4+ — + —1 ——. 4.115
2(8,m) 3 2s * 52 * 5 08 s+m2> 4 ( )
J
) 0 1 2 A
X(s,m) 0 0 (+,+,+,+)
0 0 0 §Q(S,m (+,—,+,—)
0 0 Sy(s,m)  (+,— —,+)
X(‘S?m)_'_SO(S’m) 0 SQ(Sam> <+a+a 7_>
0 0 0 (+,++,+)
1 0 0 _§2(S>m) (+a 7+7_>
0 0 SQ('Svm) <+a+a+7+>
0 S;(s,m) 0 (+,+,——)
0 0 0 (+,+,+,+)
2 0 0 €2<Sum> (+7 7+)_>
0 0 Sy(s,m)  (+,— —,+)
SO('S?m) 0 SZ('Svm) <+a+a_7_>

Table 4.4: Coefficients ¢ of the isospin-spin amplitudes calculated
with eq. (4.81) for the isoscalar-scalar resonance L,y depending on the
helicity of the incoming and outgoing particles. The isospin spin amplitudes
are given by A,;;(s;A) = cg*s®.

4.5 Production Setup

In the following we describe the implementation of the isospin-spin amplitudes in
WHIZARD. We outline the setup for computing the cross sections for the different pro-
cesses in order to assess the properties of the dimension-eight theory and unitarization.
Furthermore, we justify the need for parallelization, as well as explain the overall steering
of WHIZARD for the production.



4.5. PRODUCTION SETUP 87

Implementation

The implementation of the diagonalized isospin-spin eigenamplitude and the T-matrix uni-
tarization follows [17, 57, 130]. For the operators L ; and L, ; form-factor modified Feyn-
man rules that allow unitarized and non-unitarized evaluation of the dimension-eight opera-
tors, are implemented for the processes WrW+ — WHW* WHWT — WFrWT Ww+ —
727 and Z7Z — 77 in the model SSC2 in 0'Mega, which is available in WHIZARD. The
details of the implementation can be found in targets_Kmatrix_2.ml where the actual
expressions for the corrected isospin-spin eigenamplitudes, dependent on the Mandelstam
variables s,t and u, are implemented.

Although the unitarization corrections for the isospin-spin eigenamplitudes are ex-
pressed for on-shell evaluation in a 2 — 2 VBS process, we evaluate the VBS subprocess
off-shell, embedded by quark currents j,_, ;. Hence, we set as Mandelstam variable
§ = ¢y + q,, where ¢; and g, correspond to the off-shell momenta of the two vector bosons
involved.

The unitarization corrections can be switched off with the Sindarin parameter fkm = 0,
or conversely, with fkm = 1 switched on. The model parameters I ; and F); ; can be set
via the Sindarin parameters £t0, £t1, £t2, fm0, fm1 and fm7 in TeV . For the coefficient
F_w, the Sindarin parameter gkm_st has been introduced. The width and mass of the
scalar can be set with the mass parameter mkm_s and the width parameter wkm_s.

Processes

In the continuum model, we first discuss the same-sign vector boson process pp —
WTWTjj and the Higgs production process pp — HHjj in proton-proton collision at
\/s = 14 TeV. For the simplified resonance model, we consider the process pp — ZZjj.
The first stands out for its characteristic same-sign signature for the leptons from the W
decays. The second is very difficult to distinguish from the background, but depends on
the triple Higgs coupling, which has yet to be measured. The Higgs production is already
considered by a gauge-invariant dimension-six operator [127], but the precision of the
prediction can be (significantly) improved by the next order in the SMEFT expansion,
thus, by dimension-eight operators.

A short remark on the explicit V'V final state of the processes. The final states is not
directly measurable due to background, e.g. QCD-induced same-signed W boson pairs,
top quark production, Drell-Yan and WZ background [15], and the fact of finite-energy
jet resolution. However, we do not compute the fiducial (differential) cross section where
we would have to consider the further decay of the vector bosons, or of the Higgs, in final
state leptons. We are only interested in the overall physical behavior between low-energy
theory and high-energy saturation, hence, we neglect this step as it only obscures further
insights.

Firstly, we consider the contributions of the longitudinal-transverse mixed operators
Ly 0/1/7 to the processes, considering the contribution of each operator one at a time
by setting all coefficients to zero, except the active one. We choose three distinctive
values, Fy, ; = {2, 10, 50} TeV*. We present the differential cross section in the invariant
diboson mass Mj,y, which coincides with the effective energy V/§ of the VBS subprocess.
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Secondly, we repeat the procedure for the transverse operators Ly 1/, With Fp; =
{2,10,50} TeV ™.

Cuts

We calculate the full hadronic differential cross sections, where we use the PDF set
CTEQ6L [171] at /s = 14 TeV, which is set by beams = p, p => pdf_builtin as default
within WHIZARD. Furthermore, we use the standard parameters of WHIZARD, where the
electroweak parameters are determined by the G scheme through the measured values
of Gg, My, my and my."® In addition, we apply the standard cuts, see eq. (4.116), for
VBS processes from [2]. In the recent analysis [15] a slightly changed set of VBS cuts has
been introduced, which is used in [139].

Anj; > 2.4 A |n,| < 4.5, (4.116)
Pl > 20GeV.

An example for a full Sindarin script is given in appendix B.6.

Computation

For the determination of the differential cross sections in the invariant mass of the diboson
final state, which coincides with the effective energy V'3 for the VBS subprocess, we have
completely resorted to the computation of total cross sections. We compute the total cross
section with an additional cut on the invariant diboson mass My, € [M —50, M +50] GeV
with the scan parameter M in 100 GeV steps in the range from 100 GeV to 8 TeV. The
resulting total cross sections can then be plotted against the invariant diboson mass in
bins of [M —50, M +50] GeV, this gives us the desired differential cross sections. Therefore,
we have to compute a total of 89 individual total cross sections for each configuration.

Typically, one would prefer to generate unweighted events, put them in a histogram
in the invariant diboson mass and normalize the histogram to the total cross section of
the process. However, initial trials have shown that the differential cross section varies
by order of magnitude(s) over the entire energy range, and especially in the tail of the
distribution at 8 TeV we expect large errors due to small number of events per histogram
bin.'¢ This would require a huge number of events and a corresponding chain of tools to
circumvent storage of so many event samples. With the total cross-section method, we
can control the errors of each bin separately, which was very important for us in order
to examine possible subleading errors due to contributions from the mismatch of the
off-shell /on-shell evaluation of the isospin-spin eigenamplitude, as well as, errors in the
general implementation of the amplitudes.

After our validation, however, the actual event generation should be preferred because
the approach with the total cross-section is time consuming and would not have been

15 Although G, is a low-energy constant, we use it to fix the SM couplings at LO, thus, without further
concern regarding the running of those couplings, except for the QCD coupling.
16The error of the bin scales with VN, as the number of events are Poisson-distributed.
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possible without parallelization, since the calculation of a single point takes on average 4
to 8 days, which we could reduce to some hours.

The computations with WHIZARD, version 2.6.3, were carried out at the high-
performance cluster Maxwell at DESY!". We used the parallel and doubly-adaptive
multi-channel integrator VAMP2 from chapter 3, as well as the RNGStream introduced
in section 3.2. For production runs, we used the hybrid parallelization of MPI and
OpenMP, where each worker was assigned two OpenMP threads. With the parallelization,
it was possible to reduce the calculation of a single cross section from several days to
mere hours.

Summarizing, we could reach a relatively small error in the tail of the distribution
by computing the total cross section bin-wise, but only with the help of the parallelized
Monte Carlo integrator VAMP2.

Simplified Resonance Models

For the simplified resonance model we consider the process pp — ZZjj. We compute the
differential cross section for the invariant-mass distribution of the ZZ final state for a scalar
resonance with mass m, = 1TeV and different couplings F_ = {2,4.72,10} TeV 1.
These values correspond to the anomalous quartic couplings Fr; = {2,10, 50} TeV,
where the scalar resonance has been integrated out as in eq. (4.103). The respective decay
widths I'yy are computed from eq. (4.110), see table 4.5.

Fw/TeVt Iy (m,)/GeV

2 43.395(32)
4.72 219.69(16)
10 1084.9(8)

Table 4.5: The decay widths Iy are given for the proposed values of F_ ;.

We used as input for the parameter g = 2myy, \/§GF with my and Gy
taken from [24].

The width Iy for the coupling F,\y = 10TeV ! is of the order of the scalar mass
m, ~ 1TeV. A distinction between mass and width becomes meaningless in the context
of I' v = m,. Therefore, a prescription as Breit-Wigner resonance is not appropriate
anymore [20, p. 463] as the interaction becomes strong.

4.6 Results

In the following we present the predictions from our calculations for the (strongly coupled)
continuum models from section 4.1 and the simplified resonances models from section 4.4.

'"Deutsches Elektron Synchroton, https:\\www.desy.de.
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(Strongly coupled) Continuum Models

First, we consider the strongly-interacting continuum models. But before discussing
the results of our calculations, we outline our expectations with respect to our initial
assumption about unitarity, gauge invariance and minimal flavor violation. The presented
models describe all possible interactions and interaction strengths which may be observed
in future VBS measurements, their robust predictions provide an indication of the
sensitivities for collider experiments.

Except for the standard model, none of the aforementioned models is UV-complete,
which means in particular that we may expect different behavior of the results in the
asymptotic limit, for example, that inelastic channels, i.e. resonances, may appear as final
states. However, given our initial assumptions, we do not expect that they exceed the
event rate in our considered sector of the strongly-interacting continuum model.

To proceed, we compare the SM predictions, with the unitarized predictions as well as
with the naive predictions of the SMEFT. We consider individual operators one at a time
by setting only the respective coefficients to nonzero values. For completeness, we have
listed in table 4.6 the contributions of the different isospin-spin channels of transverse
and mixed operators to the VBS processes.



Process Lro/1)7 Lpo/1/2 Higgs?

WEWE - WEW= AAyy, Ady, Ay,

AAyy, AAy, AA
WEWT — WEWT 00 01 02
! - ‘ 125 ‘ o1 ‘ 99 AAOO’ AAOQ’ AAll? AAIQ? AA22

AAOO’ A-A01> AAO% AA21,

77 — 77 Adyy, Adyy, AAy,

AAy,

Table 4.6: We list the different contribution of the isospin-spin eigenam-
plitude to the different processes for the longitudinal-transverse mixed and
purely transverse operators. Furthermore, we assign a v’ to processes whose
eigenamplitude decomposition is the same for the respective Higgs-associated
process.

SLINSHY 97
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Mixed operators

We show the results for pp — WTW™5j in fig. 4.5 and for pp — HHjj in fig. 4.6, within
the continuum model with one nonzero coefficient at a time for the longitudinal-transverse
mixed operators with parameters Fy; ¢ ; 7, respectively. We made the particular choice
for the parameters, F' = {2,10,50} TeV~. Solid lines show the distributions over the
invariant mass of the final state V'V /H H pair coinciding (in our setup) with the effective
energy V/§ of the embedded VBS (sub-)process. For comparison, the black solid line shows
the SM prediction and the dashed lines show the naive predictions of SMEFT, without
unitarization, respectively.

We spot around 1TeV that both the unitarized solid and naive SMEFT dashed
curves rise commonly from the SM curve, predicting higher event rates. After a 1 TeV to
2TeV wide transition region, the unitarized amplitude of the WTW™ approximates an
asymptotic differential cross section that is an order of magnitude larger than the SM
prediction. For the HH final state, the differential cross section is enhanced by two orders
of magnitude. For both processes, the dashed curves predict an huge amount of events.
Such an overestimate suggests a sensitivity to the model parameters which is unphysical.

To summarize, regardless of the chosen parameterization, the solid unitarized curves
approaches an asymptotic differential cross section. This asymptotic limit corresponds
to a maximally-strong interaction, which saturates in the unitarity limit. Therefore, the
high-energy prediction is mainly controlled by the unitarization requirement [17], however,
as the differential cross section falls off asymptotically the maximally allowed event rate is
given. The remaining parameter dependence is confined to the transition region, beyond
which we can read off the maximally allowed event rate from the saturated quasi-elastic
amplitude corresponding to the individual isospin-spin eigenamplitudes, see table 4.6.

Transverse operators

In fig. 4.7 we show the results of the pp — WTW™jj for the transverse operators with
parameters Frp /9, respectively. The purely transverse operators do not contribute to
any aQGC involving the Higgs, thus, the HH channel is not affected.

We spot again around 1 TeV that both the unitarized solid and naive SMEFT dashed
curves rise commonly from the SM curve, predicting higher event rates. After a 1 TeV to
2 TeV wide transition region, the unitarized amplitude, solid curve, of the WTW™ process
approximates an asymptotic differential cross section. The plots indicate an enhancement
of the purely transverse operators over the SM prediction by two orders of magnitude.

Again, the naive SMEFT result overestimates the possible event rates. We may
interpret the result of the unitarized SMEFT in such a way that the purely transverse
operators are much more sensitive to new physics than the longitudinal-transverse mixed
operators. This may be accounted for in data analyses.

Simplified resonance models

In fig. 4.8 we see that for the two parameters Fyy, = 2TeV ™! and 4.72TeV ™' the

resonance peaks are well aligned above 1TeV, but for 10 TeV~! there is a significant
deviation of the resonance position. For our further consideration, we exclude the curves
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Figure 4.5: Differential cross section for the diboson invariant mass for
the process pp — WTWTjj. The solid black line shows the SM differential
cross section, the greenish, blueish and redish lines the cross sections with
anomalous couplings Fy;;, = {2,10,50} TeV~*, respectively. Solid: unitarized;
dashed: naive result. Cuts like in eq. (4.116).

for this parameter, since the resonance peak, independent of whether the unitarization
projection was applied or not, does not align at 1 TeV, where the propagator for the
scalar acquire an imaginary part. We attribute this to the width I' 5 being of the order
of the scalar mass m_ (see page 89), thus, we enter the regime of a strong interaction,'®
in contradiction to our goal studying weakly interacting resonance models.

Despite that, we observe that the resonance peaks becomes narrower and more
pronounced by the unitarization projection. We attribute this to the fact that we have
neglected the subleading terms in the calculation of the resonance width, which, however,
are taken into account in the unitarity projection. Furthermore, in the high-energy limit,
the amplitude is suppressed as result of a saturated isospin-spin eigenamplitude with
s? terms originating from a derivative coupling. This derivative coupling is a typical

18This can also be seen by comparing the non-unitarized curve for F_,, = 10 TeV~! with the results
from the strongly interacting continuum models in the previous section.



94 CHAPTER 4. VECTOR-BOSON SCATTERING AT THE LHC

pp — HHjj pp — HHjj

— Py =50

—————— — Fyo=10

B L o= ] .
107! 4 - — Fyo=2 1072 4 S

— — SM

F, =50
Fy,p =10
Fyi=2

107°

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
M(HH)/GeV M(HH)/GeV

(a) Lo PP — HHjj (b) L4 : pp — HHjj

pp — HHjj

T T T
1000 2000 3000 4000 5000
M(HH)/GeV

(c) L7 pp— HHjj

Figure 4.6: Differential cross section for the diboson invariant mass for
the process pp — HHjj. The solid black line shows the SM differential
cross section, the greenish, blueish and redish lines the cross sections with
anomalous couplings F; ; = {2,10,50} TeV—*, respectively. Solid: unitarized;
dashed: naive result. Cuts like in eq. (4.116).

feature of strong interactions and is a necessary property of a resonance of higher spin.
Conversely, this means that saturation from unitarization plays an important role for
the correct description. Therefore, the use of T-matrix unitarization, which allows for
arbitrary complex amplitudes and non-perturbative models in contrast to the K-matrix
unitarization, is indispensable to cover the entire kinematic range, in particular, as the
amplitude becomes complex in the region of the resonance (or strongly interacting).

In fig. 4.9 we compare the continuum model with the matching scalar resonance
from eq. (4.103), with and without unitarization projection. For the small coupling, the
resonance behaves almost like an elementary particle, and there is almost no difference
between the unitarized and non-unitarized amplitudes. In addition, the resonance peak is
not approximated by the continuum model as the resonance rises far before the strongly
interacting rise of the continuum model around 2TeV. In addition, the high-energy
behavior of the continuum model does not match that of the scalar resonance model,
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Figure 4.7: Differential cross section for the diboson invariant mass for
the process pp — WTWTjj. The solid black line shows the SM differential
cross section, the greenish, blueish and redish lines the cross sections with
anomalous couplings Fr; = {2,10,50} TeV ™, respectively. Solid: unitarized;
dashed: naive result. Cuts like in eq. (4.116).

whether unitarized or not. We may conclude that it may be more interesting to search
experimentally for a weakly coupled resonance in VBS based on such a simplified model
as the sigma model eq. (4.100), than to find deviations by SMEFT Wilson coefficients. We
conclude that the simplified model allows us to smoothly interpolate between strongly and
weakly interacting models. Possibly, the interpolation may leave the range of application
of the perturbation series.
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Figure 4.8: Differential cross section for the diboson invariant mass for the
process pp — ZZjj. The solid black line shows the SM differential cross
section, the greenish, blueish and redish lines the cross sections with a scalar
resonance with mass m, = 1 TeV and coupling of F,y, = {2,4.72,10} TeV !,
respectively. Solid: unitarized; dashed: naive result. Cuts like in eq. (4.116).
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Figure 4.9: Differential cross section for the diboson invariant mass for the
process pp — ZZjj. The solid black line shows the SM differential cross
section, the blueish lines show an anomalous coupling Fr; = 2TeV~ and
the redish lines show a scalar resonance with mass m, = 2TeV~!. Solid:
unitarized; dashed: naive result. Cuts like in eq. (4.116).
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4.7 Discussion

In summary, we find that (i) the low energy theory dictated by the SMEFT smoothly
interpolates to the high-energy prediction of the unitary saturation, (ii) a violation of the
unitary bound is given for any dimension-eight operator, (iii) the T-matrix unitarization
scheme preserves the smooth interpolation between low and high energy prediction up to
the saturation of the unitary bound, (iv) the here probed simplified scalar resonance allows
for a smooth interpolation between weakly and strongly interacting models, where the
unitarization of the resonance leads to (Dyson) resummation of the resonance propagator.

SMEFT provides us with a well-defined framework for theoretical predictions at the
LHC for the energy below the TeV scale. However, the SMEFT predicts unphysically
large event rates for high energies, since amplitudes from the dimension-eight operators
grow with energy. Thus, they violate the unitary bound, which happens independently
of the choice of the Wilson coefficients, unless they are so small that their predictions
are no longer distinguishable from SM predictions. We have studied the behavior for
VBS processes at the LHC, and our findings, in this regard, are consistent with the
study [139]. We found that the SMEFT expansion does not provide a systematic expansion
or meaningful description of the complete dataset.

We want to specify this “failure” of the naive SMEFT in more detail: SMEFT does
not allow for a meaningful description of the considered processes that can be viewed
as model-independent. However, this failure should not be understood in the sense of a
quantum field theoretical failure of a valid (but truncated) expansion of a UV-complete
model, the SM. It rather expresses the practical problem of the tension between a size of
operator coefficients experimentally detectable at the LHC and the limitations from the
unitary bounds.

Therefore, a physical interpretation is meaningful only in the context of a unitarization,
as already presented in [17, 57, 130]. To estimate the contribution through individual
parameters, this is an indispensable tool. Due to the minimal T-matrix projection,
the saturation of the elastic channels provides us with a maximum limitation on the
achievable parameter sensitivity. Especially with regard to the determination of the
parameter sensitivity, this is important as in the unitarized model contribution is by an
order of magnitude weaker than a naive determination'® lets us expect. However, the
description of the non-SM behavior is no longer model-independent within the chosen
unitarization scheme, as it dictates more or less the behavior in the asymptotic saturation.
For comparison with experimental data without a unitarization scheme, kinematic regions
would have to be removed that would violate unitarity in the comparison model, thus
one would lose valuable information. We conclude, therefore, that a well-defined, but
model-dependent, i.e. dependent on the unitarization scheme, parameterization is possible
without losing the SMEFT as a systematic description of the low-energy region.

For the energy range that is accessible at the LHC, we have provided predictions, from
which we can read off the expected range of event rates and distributions, for particular
models. If one observes an excess over these event rates, it could hint to a possibility that

19The naive description predicts more events than are physical, so a fit against experimental data
tends to constrain the Wilson coefficients more than physically meaningful. By contrast, the unitarized
description predicts physical event rates that are smaller, making the bounds on the Wilson coefficients
less stringent [139].
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assumptions are not realized in nature. Though, such violations would strongly point
to certain new physics scenarios, e.g. direct involvement of fermions into new, possibly
Higgs-scenario interactions (in contrast, we only regarded them as spectators to new
physics), or that the gauge symmetry of the SM is only valid for energies below the
TeV scale, or that the four-dimensional QFT loses its universal validity. However, the
current success of the SM in the low energy-data make this scenario seem rather unlikely.
Hence, we believe that the quantitative results obtained within the framework of unitary
simplified models reliably exhaust the range that can be expected from real data.

In addition, we have extended our predictions by the processes WTW~—, W*Z and
Z7 (see appendix B.7), but these are less accessible at the LHC. However, they are
necessary if one wants to assess several anomalous couplings, like given in our model, so it
is necessary to increase the number of (free) observables in a global fit of all parameters.

4.8 Future Improvements

Our results were only generated with variation of a single Wilson coefficient. However, these
results do not provide realistic predictions, despite our sophisticated initial assumptions
such as enforced unitarity, gauge symmetry, and minimal flavor violation, which was
introduced by the assumption of custodial SU(2)s symmetry. A more realistic approach
would take several parameters into account at the same time as we would expect in a real
process. In order to reveal the correlations between the parameters and their sensitivity
to collider experiments, a global fit is necessary.



5 Conclusion and Outlook

In this thesis we introduced an approach to parallel adaptive Monte Carlo integration
and with its help we studied possible beyond the SM contributions to VBS processes
using SMEFT at the LHC.

Monte Carlo Event Generators are an essential tool for the simulation of event-
distributions of elementary processes for experimental analyses at present and future
colliders to study the SM and search for New Physics beyond the SM. Increased demand
on high multiplicity and high precision in the detection of signal and background processes
call for appropriate computing resources. One major contribution to the computation time
is the multi-dimensional phase-space integration as well as determinig a most efficient
sampling for (unweighted) event generation automatically.

We have described an efficient Monte Carlo algorithm that applies an automatic iter-
ative adaptation to integration and event generation, and their respective parallelization.
We outlined the two major parallelization concepts, MPI and OpenMP, and discussed
their applicability. We reviewed the generation of random numbers in parallel application
and how it helps to avoid unnecessary communication for random numbers using the
RNGstream.

The parallel evaluation is based on the paradigm of the MPI standard in conjunction
with OpenMP multi-threading. For the concrete realization, the algorithm has been
implemented within the framework of the multi-purpose event generator WHIZARD. The
new code constitutes a replacement for the VAMP adaptive multi-channel integrator
and makes active use of modern features in the current MPI-3.1 standard. Our initial
tests for a variety of benchmark physics processes demonstrate a speedup by a factor
> 10 with respect to serial evaluation. The best results have been achieved by sole MPI
parallelization.

We were able to show that, in general, hybrid parallelization with OpenMP and MPI
leads to a speedup which is comparable to sole MPI parallelization. However, combining
both approaches is beneficial for tackling memory-intense processes, such as 8- or 10-
particle processes. Depending on particular computing resources, the latter approach
allows for a more efficient use of the locally available memory at a computing node. In the
hybrid approach, WHIZARD is parallelized on individual multi-core nodes via OpenMP
multi-threading, while distinct computing nodes communicate with each other via MPI.
The setup of the system allows for sufficient flexibility to make optimal use of both
approaches for a specific problem.

The initial tests pointed to further possibilities for improvement. For this purpose, we
have proposed an improved load balancing in comparison to a first, naive load balancing
approach. Furthermore, a server/client structure should give the freedom to re-allocate
and assign computing workers dynamically during a computing task, and thus make
a more efficient use of the available resources. Further speedup can be expected from
removing various remaining blocking communications and replacing them by non-blocking
communication while preserving the integrity of the calculation. Finally, we note that the
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algorithm shows its potential for calculations that spend a lot of time in matrix-element
evaluation.

A first application of the new implementation and the parallelization were the simu-
lations for [6]. Beyond that, the parallelization proves to be a keystone in the present
validation of the NLO automation in WHIZARD [172] since the evaluation of NLO matrix
elements is much more time-consuming than for LO ones. For instance, in some tests of
NLO QCD processes we found that the time required for integration could be reduced
from the order of a week down to a few hours.

We have demonstrated a further application of the VAMP2 implementation and its
parallelization in the search for new physics in the electroweak and Higgs sectors in
the TeV range accessible at the LHC. For this purpose, we studied transverse modes
and Higgs bosons in vector-boson scattering as quasi-elastic scattering of the type VV
— VV to investigate new physics as anomalous contributions in quartic couplings. We
use a bottom-up effective field theory approach to study new, unknown physics in a
model-independent framework. We consider the Standard Model effective field theory
(SMEFT), which preserves the local gauge symmetry of the Standard Model. In order to
assess anomalous quartic gauge couplings independently of anomalous trilinear gauge
couplings in the SMEFT, we had to deviate from the usual first order approach of
SMEFT with dimension-six operators to the next order with dimension-eight operators.
We consider transverse and mixed, longitudinal-transverse operators for the aQGC, in
the corresponding vector-boson polarizations.

We imposed global chiral symmetry SU(2);, x SU(2)i as extension of the local
gauge symmetry of the SM which becomes the global custodial SU(2)- symmetry under
electroweak symmetry breaking. For the definition of the dimension-eight operators we
departed from the representation of the Higgs field as doublet in the Eboli-Basis to the
Hermitian matrix representation, which is manifestly invariant under chiral and custodial
symmetry. We have derived a full set of relations between the scalar operators in our
base, the Eboli base and the chiral electroweak Lagrangian, both in the case of conserved
custodial symmetry, as well as broken custodial symmetry. These relations prove to be
necessary in comparison of experimental analyses and predictions of Wilson coefficients,
since different parameterization are in use.

Naive SMEFT prescriptions of the dimension-eight operators for the isospin-spin
eigenamplitudes within the sensitivity of the LHC do not respect first principles of
QFT, i.e. they violate bounds dictated by the unitarity of the S-matrix. However, an
exclusion of high-invariant masses of the vector-boson scattering system would remove
valuable information neglecting the interesting high energy region for possible new physics
contributions. Deviating from the model-independent paradigm of the EFT, we introduce
an (arbitrary) unitary projection to model the unitary saturation in the high-energy
region. We apply the T-matrix unitarization projection in order to provide a consistent
description of high-energy matched to low energy EFT covered by the SMEFT. For the
valid region of the EFT, the T-matrix unitarization leaves the theoretical prediction
unchanged and only effects for unitarity violating terms and can be applied in absence of
a non-perturbative theory.

We constructed unitary projections yielding simplified models to assess prospects for
new physics contribution. In the context of these simplified models, we made quantitative
statements for future measurements. We have extended previous works by including
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transverse vector-boson polarization modes together with final-state Higgs bosons. In
particular, we studied strongly-interacting continuum models where we smoothly in-
terpolated the low-energy SMEFT to the high-energy unitary saturation by applying
T-matrix projection. In addition, we considered a simplified resonance model with one
scalar resonance coupled to a transverse gauge boson. For both sets of models, we obtained
parameter-dependent upper limits for the event rates of all processes for the full energy
ranges.

A comparison with data from a future experimental analysis should reveal a hierarchy
and correlations between the individual parameters of the dimension-eight operators.
Furthermore, the semi-numerical approach is cumbersome and requires some substantial
simplifications; future improvements should involve a full numerical approach.

In conclusion, this thesis proposed a parallelization to an efficient, adaptive Monte
Carlo integration to face increasing demands on computational complexity and to utilize
available computing resources. In a prime application of this, we constructed and studied
simplified unitary models based on dimension-eight operators of SMEFT for the search
of new physics in vector-boson scattering at the LHC. During this thesis, the newly-
implemented, parallelized Monte Carlo integrator VAMP2 and the simplified models have
been added for further phenomenological studies at LHC or other future colliders to the
public available Monte Carlo event generator WHIZARD.






A Parallel Adaptive Monte Carlo Integration

A.1 The VEGAS Algorithm: Optimization

We prove in full-length the optimization formulae for a factorizable probability density
function, which was only proved schematically in [62].
2 2
We want to minimize the effective variance <£—2> — <£> under the probability
P p
distribution p. The square of the expected value of f is per definition independent of p.
However, the particular choice of p affects the expected value of f2,

<;3> B D Y L A1)
9 p 0 o p()

p*(z)

where we used dP = p(z)dz. The probability distribution has to be normalized and
factorizable,

d 1
0 =T AzﬁmmmzL (A2)

Using the method of Lagrange multipliers, we can connect the factorization and normal-
ization condition with (A.1)

D f[ /1 Py 2g) zd: !
Opy, k=1 J0 pr(xy) oo pg(Tg) =1 0
We exchange derivation and integration. We insert a “one” expression in the \,-dependent
term 1 =[], [ dzpy(zy),

1 -1 ! f2(1‘1» ) r _
/0 dxk{pi(xk> (kg /O dxk) —Hk#k/pk ( )—i-)\kpk( k)} = 0. (A.4)

Taking the derivative with respect to x; and inserting (A.2), we find the optimized
probability distribution

P2y, my) :
d.ﬁE ) — . A5
Pl V% (kaék//o ¥ oplay, ) ) —

The normalization is given by the derivative of \;, instead of py, in (A.3),

\/;:/Oldxk (k#/o d:ck/fQ;Ull,’_‘_"’ d)>)§. (A.6)
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The optimization weights are then chosen according to (A.5),

~{ flx. 2
w; oc A ;) , (7)) € By (importance sampling), (A.7)
N, AN 2
wj, o Nir ; A (gEZ;) (@)1, € By j, (stratified sampling). (A.8)

A.2 The VEGAS algorithm: Implementation

The VEGAS algorithm is implemented according to the diagram in fig. A.1. We iterate
over the d-dimensional equally-binned hypercube, i.e. the coordinate ¢ of r-space. Each
cell in 7 space is then sampled n, times. Each time, the coordinates in r-space are mapped
to a bin of the integration grid, see fig. 3.1. Using a random number r € (0, 1), the map
from stratified to integration space is given by

c, —1+r

c¢/(c]) = int ( : nbins) +1, (A.9)

.

where int converts its argument to the nearest integer. A random point x in the d-
dimensional bin cf is then determined by

c;, —1+r p
xr = ((—-nbins—i— 1) —ci) WAV (A.10)

.

and the bin volume (inversely proportional to the probability) is determined. Depending
on the integration mode, the contribution to the adaptation is updated in the inner loop,
for importance sampling, or outside the loop, for stratified sampling. The cumulative
result for the integral and the variance is updated at the end.



A.2. THE VEGAS ALGORITHM: IMPLEMENTATION
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Figure A.1: An overview over the performed steps during integration in the

VEGAS integrator.
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A.3 Multi-Channel Weight Optimization

The channel weights are free parameters, which are constrained only due to eq. (2.13).
Following [60], we outline the derivation of the optimization of the channel weights.

The integral expression in eq. (2.15) is independent of the choice of the channel
weights. On the other hand, the total variance (W (&) — I*) /N, with

B, f*(p)

W(@) = [ 5 dulo) (A.11)
o h(p)

does explicitly depend on the channel weights. Therefore, we can minimize the total

variance by optimizing the channel weights c,.. We use the method of Lagrange multipliers,

and find the auxiliary functions

L(@,\) =—W(d)+ A (Z a, — 1) . (A.12)
We find that we reach a minimum &, when all channel variances are equal, as V¢ : W, =
—\ = W (a) dictates, where we identify

W, = -2 W@ = / ho(p) (12 (A.13)

Oa,

as a single channel variance. We verify that & gives us indeed a minimum, by expanding
a,=a,+ B, B. < a,and ) B, We find that

2
wia) =@ + 3 [ L8 (S s +o00)). (A1)

stating that W (&) is one minimum. However, we can not state that a is a global minimum,
nor how we can reach such a minimum.

A.4 Benchmark Results

We list the results of our time measurements for the benchmark runs in tables A.1 to A.4.
The measurements provide the basis for our conclusions on the actual performance of the
parallelized program.

The numbers have to be interpreted with some care; there are sizable fluctuations in
the measured run time for long-running processes which can be attributed to a somewhat
messy computing environment. All data have been obtained from runs on a university-wide
cluster which suffers from high and variable usage by other research groups. A precise
measurement of benchmark runs would require an exclusive allocation of computing
resources, which was not available.
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Nepy  T(jj— Wjs™  T(jj — Wij)s™ T(jj — Wjjj)s™
1 865.1 + 31.9 19621.3 +0.1 169679.3 4+ 15590.2
2 4424 +2.4 9248.4 4 18.0 91824.3 + 8660.0
4 228.0+ 1.8 5320.4 + 429.1 53487.4 + 6279.5
8 119.34 0.5 2974.3 4+ 166.3 33808.9 + 2346.9
16 71.6 + 0.2 1768.2 + 105.4 19114.2 + 637.3
32 41.340.8 1273.5+ 16.5 11371.1 4 229.0
64 25.6 4 0.2 14032+ 1.3 6707.4 + 0.1
128 25.5 4 0.0 14775 £ 2.1 4976.0 + 0.1

Table A.1: Computation time of j5 — W~ (— e v,) 4+ nj processes.

Nepy  T(gg — Waq)s™' T(gg — Wqgg)s ' T(gg — Waqggg)s '
1 765.3 + 1.5 3356.7 + 93.8 98853.2 + 103.2
P 407.2 4 0.8 1617.7 4+ 54.0 14908.5 + 0.1
4 2124+ 5.5 848.0 + 40.9 7573.8 & 276.2
8 110.8+ 0.1 439.0 + 4.4 4118.6 + 137.1
16 60.3 + 0.4 279.1 + 2.1 92321.3 + 36.1
32 37.7+0.4 169.0 & 0.4 1329.0 + 14.7
64 37.8 4 0.4 130.7 + 1.9 788.1 + 1.0
128 38.8 4 0.4 111.5+0.7 618.8 &+ 9.9

Table A.2: Computation time of gg — W™ (— e v,)qq + ng processes.
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Nepy  T(eet wpph)s™ Tleet wppipph)s™ Tlee = pprppfyp,)s!
1 19.8 +£0.1 561.9 +£0.1 83927.3+ 0.4
2 10.240.1 294.04+0.4 47290.9 4+ 19.5
4 5.8 +0.1 152.74+0.3 23667.4 +19.3
8 3.04+0.1 87.3+0.0 144156 +27.4
16 2.6+0.1 51.84+0.0 85683.34+ 0.4
32 2.04+0.1 52.6 + 0.6 6613.4 4+ 26.4
64 1.940.1 92.2+0.2 5138.1 4 0.1
128 2.34+0.1 52.240.3 3697.5 4+ 25.2
Table A.3: Computation time of the leptonic processes.
process Nepy T({d})s™! T({u,d})s™! T({u,d,s})st  T({u,d,s,c})s?
W 1 1589.143.0 2189.3+8.3 2730.9+1.2 3440.64+11.2
R 60 66.8£0.0 123.80.7 179.340.1 283.140.8
.. .. 1 11075.042347.7 29405.041206.9 49151.54585.6 91677.342502.7
37— Wjj

60 435.140.3 811.740.4 1220.44+0.8 2006.04+0.5

Table A.4: Computation time over increasing flavor content. The upper two
lines are for the process j5 — Wy, the lower two for the process pp — Wjj,
respectively. The second column gives the number of CPU cores, the following
columns are the results for an increasing number of massless quark flavors in
the initial state and jets, growing from one (d) to four (d,u,s,c).
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B Vector-Boson Scattering at the LHC

B.1 Electroweak Chiral Lagrangian

In order to compare results for WWWW , WWZZ and ZZZZ calculated from the scalar
operators from the non-linear EFT,! with the dimension-eight scalar operators in eq. (4.12)
of the linear Higgs representation,? the most important points from the chiral electroweak
Lagrangian are introduced. We use them then in section 4.1 for comparison of the operators
from the linear representations, i.e. doublet or matrix notation, with the electroweak
chiral theory.

Following among the lines of [57, 125], we introduce the non-linear representation of
electroweak symmetry breaking using a matrix-valued auxiliary field 32, which transforms
as

> - U B0, (B.1)

under local SU(2);, x U(1)y electroweak gauge symmetry.

The X matrix can be parameterized in a Higgs-less scenario by

3(x) = exp (%iw(@) , (B.2)

T

with the scalar triplet w = w“; and the Pauli matrices 7%. The scalar triplet refers to
the Goldstone bosons, which vanish in unitary gauge leading to X' = 1.

For the QGC relevant operators, respecting custodial symmetry SU(2) and conserving
CP, are [136, 173-175],

L,=a,tr [VMVVP, (B.3)
Ly=aytr [V,V"]?, (B.4)

where a, and a5 are dimensionless coefficients. With further definitions,

V,=%(D,%)=—(D,%) X" (B.5)

a 3

. T a . T
DMZ:fﬂMZ—i—lg?WHE}—Ig ZB.U«?’ (BG)

! As implemented in WHIZARD [17, 57, 130].
2As implemented in VBFNLO [123, 128, 139] or MADGRAPH [52] (the latter using the convention of
Feynrules [150, 151]).
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we find [135],

My
£y =a, (87 (W™ W)W W)+ (W WH W™ W)

2 2 4
+ 16Mv;/j\4z (W= Z)(W* - Z) +4%(z A z>> (B.7)
My
L= as (161}—4 (W™ - WH (W~ - WH))
M2, M? M}
+ 16 VZ4 Z(W=-W*)(Z - 2) +4v—f(z'2)(z : Z)) . (B.8)

For the Higgs field, the matrix notation is chosen, which manifestly represents the
larger global symmetry O(4) ~ SU(2);, x SU(2)g, which becomes after the EWSB the
approximate custodial SU(2) symmetry. The Higgs multiplet is then written in the form

of a 2 x 2 matrix,
(v +h—iw?®  —ivV2uw* )

1
H=:=
—ivV2w~ v+ h+iwd

5 (B.9)

with the three Goldstone bosons w®. A simple relation holds between Higgs matrix field
H and auxiliary field ¥ [17],

H - %(Hh) 5, (B.10)

with the physical Higgs field h. A new set of scalar operators has been defined analogously
to the dimension-eight scalar operators in eq. (4.12) for the chiral Lagrangian [17],

Lgy=Fgotr [(D,H)'DH]tx [(D'H)'D"H], (B.11)
L, =Fg,tr[(D,H)'D'H| tr (D H)'D"H] (B.12)

the coefficients Fg o and Fg; are of mass dimension —4. With the covariant derivative,

Ty T
D, :8N—1gWu7+1g BHE. (B.13)

and, the parametrization of the 2 x 2 Higgs doublet is given in unitary gauge by

_v+h (1 O
notih (10, @10

A full equivalence can then be found between the chiral Lagrangian in eq. (B.3)
and eq. (B.11) with Higgs and the scalar dimension-8 operators eq. (4.12).

B.2 Comparison of Scalar Operators

In the following we give the contributions of the scalar dimension-eight operators to the
quartic gauge couplings [135]. First, the contributions of the dimension-eight operators of
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the Eboli-basis eq. (4.12),

_ _ _ 1
— MA(W™ - W) (W WH) + M2 MZ(W - Z) (W - Z) + ZMé(Z .7)2,

S,0|4 gauge

(B.15)
_ _ _ 1
£371|4gauge = Mg, (WH- W)W W)+ MZMZ(W™ - WH)(Z-Z) + ZMg(z VAR
(B.16)
_ ~ ~ 1
11572|4gauge = Mg (WH- W) (W W) + M3 MZ(W™ - Z)(WH-Z) + ZMg(z VAR
(B.17)
Second, the contributions of the dimension-8 operators eq. (B.11),
My,
L£5.0l4 gange = Fs0 (T (W - W)W W) + (W™ - WH(W™ - WT))
+ My MZ(W™ - Z)(W-Z) + %Mg(z : Z)2> , (B.18)
L£50l4 gunge = Fg ) (Mg (W™ - W) (WH-WH) + MEMZ(W™-W)(Z-2)  (B.19)
1
+ZM§(Z : 2)2) . (B.20)

Additionally, the custodial-symmetry breaking operator £, [125] gives contributions to,

(= )
Lo=oag |4 (WH-Z) (W™ -Z)+2M,(Z-Z7)* | . (B.21)

v

For the case of Fg o # Fg ;, the operator coefficients for Lg /15 and L,/5, can be related
by,

ot 23Fg o + 14F,

= B.22
“1 7 296 A4 ’ (B.22)
4 —11Fg o+ 37Fg 1 + 11F
= 2 50 51 52 (B.23)
592 A4
o = TV T80 Fs2 (B.24)
" 148 At ' ‘
In the limit of the custodical symmetry, when Fg , = Fg ,, we arrive at
4 4 Fgo+ F
v v-+S8,0 S,2
Qy = 1_6FS,0 ~ 16 A4 ’ (B.25)
4 4 F
O vt s
Qg = 651~ 16 12 (B.26)

which is the relation mentioned in section 4.1.
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Figure B.1: 2 — 2 scattering. Definition of the incoming momenta p,, p,
and outgoing momenta ¢, gs.

B.3 Mandelstam Variables

For 2 — 2 scattering process with incoming momenta p,, p, and outgoing momenta ¢, ¢,
the Mandelstam variables [134] are defined as

s=(p; + )2 (¢ + q2)2, (B.27)
t=(p—a)* = (ps — 1)% (B.28)
u=(p1— )%= P:—0)? (B.29)
s—i—t—l—u-m +m +m —i—mg2 (B.30)
We use the crossing symmetry relations for 2 — 2 scattering:
<p17a>7(p275> _>(QI7 )7(q )
-ch. 1, B.31
<_QI77))(_Q275> <—p1,04)( p27 )} Tehanme ( )
(plqu)a(_QD’Y) (Q%(S)(_p%B)
t-ch 1, B.32
(p27ﬁ)7(_Q275) (QD )( plaa) } e ( )
(p17a>7<_Q275) - <QI77)(_p275)7
-ch. I B.33
(p276)7(_Q177> - (QZa(S)(_plva) } Hrenanne ( )

The complete amplitude decomposes in three independent, invariant functions in s, t,u
Aaﬁ,yé(s, t, U) = A(S, t, u)daﬁ(&y& =+ B(S, t, U)davéﬁg -+ C(S, t, u)(Sa(;(SVB. (B34)

Every amplitude has to respect the crossing symmetry, which lets us relate the amplitudes
A, B and C to each other

B(s,t,u) = A(t, s, u), (B.35)
C(s,t,u) = A(u, s,t). (B.36)
We can utilize the massless limit of the Mandelstam variables, s = —(t + u), to
reexpress,
t—u  t?—u?
= B.37
N2 2 2 2
(t L) _4t— ol | 5 (B.38)
s s2 82
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and we can therefore write all counter-terms in section 4.3 explicitly in s2,¢% and u?.
In the massless limit, the Mandelstam variables are connected to the 2 — 2 scattering
momenta by

Vo)
[

(p1 P21 @) = 1 (B.39)
(P1- @) (P2 42) = % (B.40)
(p1-a42) (P2 q1) = %2 (B.41)

The form factors are then extracted from the isospin amplitudes egs. (4.97) and (4.98) by
substituting

2

S 4

s2 529‘15975’ (B'42)

4

52 Szga'ygﬁ(S? (B43)
2

U 4

52 829059,8’}/' (B44)

B.4 Isospin Algebra

We use the isospin formalism for spin-1 particles. The three vector bosons W, W~ and
Z form an isospin triplet, equivalent to the Goldstone Boson triplet in [130],

(W*) =—[1,+1), (B.45)
|Z> = ’1>O> ) (B.46)
W)= [1,—1). (B.47)

Then, we can rewrite the amplitude for p;p, — psp, scattering using Glebsch-Gordon de-
composition, 1®1 = 34+2+1, in terms of isospin amplitudes (jy, jo; J, M j|T|j3, ja; K, Mg)

A (p1P2 = P3pa) = (J1 M3 Jo, Mo T |3, mis5 Ja, M)
= Z (J1sms oy maldvs dos J My) (Gss das I, Micljs, miss jig, my)

HaY X (f1: Joi J s My|T|jg, s K, M) . (B.A48)
) K

With the relations from appendix B.3, we can express all amplitudes by a single master
amplitude. In our case, we choose the master amplitude to be

A(WPW™ — ZZ) = A(s, t,u), (B.49)
where we matched the case M = 0 to a amplitude A.
As an example, we take at closer look at WTW~ — ZZ scattering,
A(WTW™ = ZZ) = —(1,1;1,—1|T|1,0; 1,0)

= ) (LG, =11, 150, M) (1,1 K, Mye|1,1;0,0) (1,17, My|T|1,1; K, M) .
J’M.]z
K, My
(B.50)
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Letting the scattering operator T act on |j;, jo; J, M) and using orthogonality between
isospin states® we arrive at

AWYW™ = 22) =Y (L, 11, -1/, 1.0, M) (1,1;.7, M[1,1;0,0) A
J,M

=(1,1;1,-11,1;J =0, M = 0)(1,0;1,0[1,1;J = 0, M = 0) A ;_¢ ps—0
+ (1,151, =11, 10 = 1,M = 0) (1,0;1,0[1,1; = 1, M =0) A, ;o (B.51)
(1,101, 1|1,1,J—2M—0(10,1,0|1,1,J—2M—0>AJ2M0

\/g A0+\[ 04, + \/7\/7A2 A2 AO,

where we used that contributions from the doublet or singlet representation do not
contribute. We add the Higgs as complex correction to the Z with the replacement
Z —7Z+ih

Following the above definitions and using the Condon-Shortley conventions on the
phases, we can write down the complete basis, which is given by

12, +2) = \WiWﬂ (B.52)
12, £1) = 7 (|ZW#) + |W*Z)), (B.53)
2, 0) = % (IWHW™) +2|ZZ) + [WH W) (B.54)
1, 41) = % (IW*Z) — [ZW*)), (B.55)
1, 0)= % (IWHW™) — [W-W*)), (B.56)
0, 0)= % (IWHW™) — |ZZ) + [W-WH) . (B.57)
The inversion of the basis reads,

[WHW*) = |2, £2), (B.58)
IWTW) — %p,ow%u,ow%o,o% (B.59)
W=Z) = % (12,1) + |1, +1)), (B.60)
ZWE) = % (12,1) F |1, £1)), (B.61)
122) = % 12,0) — % 10,0) . (B.62)

3<j1,j2§ J, MJ|j3»j4; K, MK> = 6j1j35j3j45JK6MJMK'
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B.5 Wigner D-functions

The Wigner D-functions d’ , for j = {0,1,2} are given by [24],

AN
doo =1, (B.63)
di , = cos, dl | = 1+Tcos9 dl = 1—Tcos9 (B.64)
2 3 2 1
dyo = <§ cos” 6 — 5) , (B.65)
1 . 1—

dil = +TCOSG(2 cosf — ]_), d%,O = —\/§SIHOCOS 97 d%,fl = %86(2 cos 0 + 1)’
(B.66)

Q2. = 1+ cosf)? 2 - 1+cosf . 0. 2 _6,29 B
2,2 — 9 — ] > 21 — —T sin o, 20 = Z sin“ 0, ( .67)

— _ 2

dy 1 = —1Tm89 sind, d_,= (#) : (B.68)

B.6 Sindarin File

We show an example Sindarin file for the production runs of WHIZARD for our results
in section 4.6 and appendix B.7. In particular, we choose the Sindarin file for the process
pp — HHjj, see listing B.1. The example exhibits a wide range of features of the Sindarin
scripting language: model selection, process definition, beams and PDF, integration and
RNG methods, scan loop with run ids as well as formatted output.
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I Set RNG and seed.

ﬁintegration_method = "vamp2"

Erng_method = "rng_stream"

seed = 1961991

model = SSC_2

alias q = u:d:s:c:U:D:S:C:g

process signal = q,q => H,H,q,q restrictions =

< "!Rsigma:RphiO:RphisO:Rphi+:Rphi++:Rphi-:Rphi--
= :Rf:RtO:RtsO:Rt+:Rt++:Rt—:Rt——"I

compile
ms = 0
mc = 0

relative_error_goal = 0.02
beams = p, p => pdf_builtin
fs0 =
fs1l =
ft0 =
ftl =
ft2 =
fm0 =
fml =
eft h = 1
fkm 0
sqrts = 14 TeV
Eout_file = "ppHHjj_fmO_O.dat"
open_out ("ppHHjj_fmO_0.dat")
scan real M_cut = (0 GeV => 8 TeV /+ 100 GeV) !
Erun_id = sprintf "%e" (M_cut)
cuts = all M > 500 GeV [q,q]
and all Pt > 20 GeV [q]
and all -4.5 < Eta < 4.5 [q]
and all abs(Rap) > 2.4 [q,ql
and all M_cut < M < (M_cut + 100 GeV) [H,H]
integrate (signal) ! iterations = 20:300000:"guw", 5:150000 !
show(integral(signal))
printf " Jf %E JE " (((M_cut+(50 GeV))), integral(signal)/(100 GeV),
< error(signal)/ (100 GeV))

O NO O O O O

close_out ("ppHHjj_fm0_0.dat")

Listing B.1: Example Sindarin file for the process pp — HHjj.
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B.7 Additional Numerical Results

In this section, we display results for the invariant-mass distribution of the LHC processes
pp — WTW~jj, 27354, and W*Zjj in figs. B.2 to B.6 which supplement the results for the
WTW* and HH channels in section 4.6. For all processes, we present the SM distribution
together with the corresponding distribution of the continuum simplified model, one free
parameter varied at a time, with a universal parameter value of 2 TeV ™.

Longitudinal-Transverse Mixed Operators

pp = WTW7jj pp — WHW~jj
10! 10!
— sM
10° 10"
% 10! 2l% 10
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<3 <2
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+
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L L8
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. Wi . AV
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Figure B.2: Differential cross section for the diboson invariant mass for
the process pp — WTW™jj. The solid black line shows the SM differential
cross section and the redish lines the cross sections with anomalous couplings
Fy o ={2,10, 50}TeV~4, respectively. Solid: unitarized; dashed: naive result.
Cuts like in eq. (4.116).
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. pp — ZZjj pp = ZZjj
10 10!
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Figure B.3: Differential cross section for the diboson invariant mass for
the process pp — ZZjj. The solid black line shows the SM differential cross
section and the redish lines the cross sections with anomalous couplings
Fyy ;= {2,10,50}TeV~*, respectively. Solid: unitarized; dashed: naive result.
Cuts like in eq. (4.116).
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pp — WTZjj pp = W*Zjj
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Figure B.4: Differential cross section for the diboson invariant mass for
the process pp — WTZjj. The solid black line shows the SM differential
cross section and the redish lines the cross sections with anomalous couplings
Fyy ;= {2,10,50}TeV~*, respectively. Solid: unitarized; dashed: naive result.
Cuts like in eq. (4.116).
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Transverse Operators

pp — WTW™jj pp — WTWjj

— Fro=2
— SM

ks T

[
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(a) Lpr0: PP = WTW 53 (b) Lps1: PP — WWjj
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Figure B.5: Differential cross section for the diboson invariant mass for
the process pp — WTW™3j. The solid black line shows the SM differential
cross section and the redish lines the cross sections with anomalous couplings
Fry,= {2, 10, 50}TeV*4, respectively. Solid: unitarized; dashed: naive result.
Cuts like in eq. (4.116).
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pp — ZZjj pp — ZZjj
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— SM — SM

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
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Figure B.6: Differential cross section for the diboson invariant mass for
the process pp — ZZjj. The solid black line shows the SM differential cross
section and the redish lines the cross sections with anomalous couplings
Fyy ;= {2,10,50}TeV~*, respectively. Solid: unitarized; dashed: naive result.
Cuts like in eq. (4.116).
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