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Abstract

We begin by discussing aspects of supergravity compactifications and argue

that the problem of finding lower-dimensional de Sitter solutions to the classi-

cal field equations of higher-dimensional supergravity necessarily requires under-

standing the back-reaction of whatever localized objects source the bulk fields.

However, we also find that most of the details of the back-reacted solutions are

not important for determining the lower-dimensional curvature. We find, in par-

ticular, a classically exact expression that, for a broad class of geometries, directly

relates the curvature of the lower-dimensional geometry to asymptotic properties

of various bulk fields near the sources. The near-source profile of the bulk fields

thus suffices to determine the classical cosmological constant. We find that, due to

the existence of a classical scaling symmetry, the on-shell supergravity action for

IIA, IIB and 11d supergravity theories is a boundary term whose explicit form we

also determine. Specializing to codimension-two sources, we find that the contri-

bution involving the asymptotic behaviour of the warp factor is precisely canceled

by the contribution of the sources themselves. As an application we show that

all classical compactifications of Type IIB supergravity (and F-theory) to 8 di-

mensions are 8D-flat if they involve only the metric and the axio-dilaton sourced

by codimension-two sources, extending earlier results to include warped solutions

and more general source properties. We then proceed to study 3d SCFTs in the

superspace formalism and discuss superfields and on-shell higher spin current mul-

tiplets in free 3d SCFTs. For N = 1 3d SCFTs we determine the superconformal

invariants in superspace needed for constructing 3-point functions of higher spin

operators, find the non-linear relations between the invariants and consequently

write down all the independent invariant structures, both parity even and odd,

for various 3-point functions of higher spin operators. We consider the additional

constraints of higher spin current conservation on the structure of 3-point func-

tions and show that the 3-point function of higher spin conserved currents is the

sum of two terms- a parity even part generated by free SCFTs and a parity odd

part.
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Chapter 1

Introduction

The AdS/CFT correspondence [20, 21, 22] provides a duality map between large

N Superconformal Field Theories (SCFTs) and supergravity theories in higher di-

mensions. Certain large N SCFTs, for example, 4d N = 4 Super Yang-Mills and

3d N = 6 ABJ theory have a holographic dual description in terms of supergrav-

ity compactification geometries - IIB supergravity on the background geometry

AdS5 × S5 [20] or IIA supergravity on AdS4 × CP3 [28], respectively. In this

thesis we will first study certain aspects of supergravity compactifications mainly

pertaining to the maximally symmetric spacetime obtained on warped compact-

ification. We will investigate, in particular, the feasibility of generating de Sitter

solutions. We will also discuss a (classical) scaling symmetry possessed by the

IIA, IIB and 11d supergravity theories and the on-shell action of these theories,

consequently, being a boundary term. We will study the effects of codimension

2 brane sources on the lower dimensional curvature. Next we turn to the study

of 3d SCFTs. We first discuss the superspace formalism for studying these theo-

ries, and in particular the construction of conserved higher spin currents in free

3d SCFTs. We then investigate the structure of 3-point functions of higher spin

operators and the constraints of current conservation, extending earlier work of

[35].

In this introductory chapter we will briefly review some underlying basic no-

tions which should be useful for the later chapters.
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1.1 Supergravity and de Sitter spacetime

Supergravity theories are supersymmetric theories where the global supersymme-

try group is gauged. In this case the supersymmetry transformations depend on

parameters which are (locally) space-time dependent. Such theories are theories

of gravity where the graviton, described by the metric gµν has a supersymmetric

counterpart- the gravitino (ψµα). The actions of such theories, in varying number

of dimensions, were constructed in the 1970’s and provide a supersymmetric ex-

tension of the Einstein-Hilbert action by including terms corresponding to various

bosonic/fermionic fields in the supergravity multiplet. We will be interested in the

following basic supergravity theories from which most other supergravity theories

(in lower dimensions) are naturally obtained by dimensional reduction.

IIA supergravity

This 10 dimensional supergravity theory has a spectrum comprising of the gravi-

ton (gab), dilaton (φ), the form potentials: Aa, Bab, Aabc and two 16 component

Majorana-Weyl spinors (of opposite chirality) in the fermionic part of the spec-

trum.

The action (bosonic part, in the Einstein frame) takes the form

S = − 1

2κ2
10

∫
d10x
√
−g
(
R +

1

2
(∂φ)2 +

e−φ

2.3!
H2

3 +
e3φ/2

2.2!
F 2

2 +
eφ/2

2.4!
F̃ 2

4

)
− 1

4κ2
10

∫
B2∧F4∧F4

(1.1)

IIB supergravity

This 10 dimensional supergravity theory has a spectrum comprising of the graviton

(gab), axio-dilaton (τ), the form potentials: Bab, Aab, Aabcd (the four form potential

has a self-dual field strength) and two 16 component Majorana-Weyl spinors (of

same chirality) in the fermionic part of the spectrum. Since the fermions are of

same chirality, this theory is chiral.
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The action (bosonic part, in the Einstein frame) takes the form

SIIB = − 1

2κ2
10

∫
d10x
√
−g

(
R +

∂Aτ̄ ∂
Aτ

2(Imτ)2
+

Ḡ3.G3

12.Imτ
+
F̃ 2

5

4.5!

)
+

1

8iκ2
10

∫
C4∧G3∧Ḡ3

(1.2)

This theory is self-dual under the action of the S-duality group SL(2,R) (In

IIB string theory, the duality group is a discrete subgroup of this group: SL(2,Z))

The IIA and IIB supergravity arise (respectively) as the low energy limit (α′ →
0) of the 10d IIA, IIB string theories. In this limit all massive stringy modes

decouple (recall that the mass of the nth level ∼ n/α′) and one is left with the

massless modes described by supergravity. The IIA and IIB string theories are

also T-dual to each other.

11 dimensional supergravity

This is the unique supergravity theory in 11 dimensions. The spectrum comprises

of the graviton gab, gravitino ψaα and a 3-form potential Cabc (a, b, c etc. are

SO(10, 1) Lorentz indices while α is a 32 component spinor index). The bosonic

part of the action of 11-D supergravity is

S = − 1

2κ2
11

∫
d11x
√
−g
(
R +

1

2.4!
G2

4

)
− 1

12κ2
11

∫
G4 ∧G4 ∧ C3 (1.3)

On dimensional reduction on a circle one gets IIA supergravity from this theory.

This theory is also the low energy limit of M-theory which includes in its degrees

of freedom M2 and M5 branes. The 3-form is sourced by the M2 brane and the

M5 brane is its magnetic dual.

de Sitter spacetime and no-go theorems

de Sitter spacetime is a maximally symmetric solution of Einstein’s equations:

−Rab = Λgab with the cosmological constant Λ > 0.

Astronomical observations show that the Universe is currently in a period of

accelerated expansion. If this is due to a cosmological constant the universe in

the late time period would be in a de Sitter (dS) phase. Likewise several aspects

of primordial cosmology are best explained by postulating an early “inflationary”
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phase of rapid accelerated expansion of the universe so that its early time be-

haviour was also dS to a fair degree of accuracy. This gives an added significance

to understanding physics in de Sitter backgrounds. There are several aspects of

de Sitter spacetime which are ill-understood. It possesses a cosmological event

horizon and an associated temperature and entropy [1] which are hard to under-

stand from a microscopic perspective. The Hilbert space of quantum gravity in

de Sitter (dS) has been argued to be of finite dimension [2,3,4], a claim which is

seemingly at variance with a proposed dS/CFT correspondence [5,6]. At a more

basic level it is of interest to determine whether, in higher dimensional theories

like supergravity and string theory, compactifications to de Sitter spacetime can

be naturally obtained.

Kaluza-Klein compactifications of supergravity theories were extensively stud-

ied in the 70’s and 80’s with phenomenological applications in mind, and the par-

ticle spectrum and resultant possible compactified geometries investigated. There

are no-go theorems, which we discuss and review next, which show that, under

certain assumptions, such compactifications can not be realised as solutions of

higher dimensional supergravity theories. The no-go result is that time inde-

pendent compactifications of supergravity theories on compact manifolds with no

singularities can’t result in dS. Thus cosmological models of early (inflationary)

and late (cosmological constant dominated) universe can not be based on such

theories. As is usual with no-go theorems, it may be the case that altering the

assumptions which go into the proof can potentially alter the conclusion. In par-

ticular, we aim to explore the effect of singular sources such as backreacting branes

on the lower dimensional scalar curvature. Though we are not able to generate

new dS solutions, we do extend the no-go theorems.

No-go Theorems on de Sitter compactifications in Super-

gravity

We consider warped compactifications in supergravity theories where the D di-

mensional spacetime is a warped product: MD = Xd ×w YD−d of a maximally

symmetric d dimensional spacetime (Xd) and a compact D− d dimensional space
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(YD−d). The most general D dimensional line element that is consistent with d

dimensional Poincaré invariance is

dŝ2 = ĝMN(x)dxMdxN = ĝµν(x, y)dxµdxν + g̃mn(y)dymdyn

= e2W (y)gµν(x)dxµdxν + g̃mn(y)dymdyn (1.4)

(W (y) is the warp factor) 1. We have the relations

R̂µν = Rµν +
e(2−d)Wgµν

d
∇̃2edW (1.5)

R̂mn = R̃mn + d[∇̃m∇̃nW + (∇̃mW )(∇̃nW )] (1.6)

A simple no-go theorem [7] now follows if we take the compact manifold Y to

have no boundaries (in particular no singular brane sources). It is known that the

bosonic energy momentum tensor of all conventional supergravity theories obeys

the Strong Energy Condition:

−R̂MNv
MvN =

(
TMN −

ĝMN

D − 2
T

)
vMvN ≥ 0 (1.7)

for all timelike or null vectors vM . In particular for v timelike and ∼ (1, 0, 0, ....)

we get

−R̂00 = −R00 +
e(2−d)W

d
∇̃2edW ≥ 0 (1.8)

Now Xd is maximally symmetric so Rµν = Rd

d
gµν . Multiplying the above equation

by e(d−2)W
√
g̃ and integrating over Y gives:

Rd

d
VW +

1

d

∫
Y

dD−dy
√
g̃∇̃2edW ≥ 0 (1.9)

1notation and convention: indices M,N = 0, 1, . . . , D−1 run over all dimensions and give the

coordinates onMD; greek indices µ, ν = 0, 1, . . . , d−1 denote lower-dimensional coordinates(on

Xd); and indices m,n = 1, . . . , n = D − d denote compactified coordinates (on YD−d). We

use R̂MN to denote the D-dimensional Ricci curvature of the full D-dimensional metric, ĝMN ;

and R̂µν to denote the d-dimensional Ricci curvature computed from the d-dimensional metric,

ĝµν = e2W gµν . Also, ĝD = det ĝMN while ĝd = det ĝµν etc.. Also we use a ‘mostly plus’ metric

and Weinberg’s curvature conventions [55], which differ from those of MTW [56] only in the

overall sign of the definition of the Riemann tensor. This means that it is the scalar curvature

−R that would be positive for dS and negative for AdS.
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Here VW =
∫
Y
dD−dy

√
g̃e(d−2)W is the warped volume (it is the ratio of the D

dimensional and d dimensional Newton’s constants). The integrand above is a

total derivative and so, for Y compact without boundary, does not contribute.

We thus get

−Rd ≤ 0 (1.10)

so that Xd is necessarily Anti-de Sitter or Minkowski.

This shows that with our assumptions - of time independent non-singular

compactification without boundary - the higher dimensional theory has to violate

the strong energy condition to obtain dS on compactification. In fact, even an

accelerating cosmological model more general than dS such as one given by an

FRW metric: ds2 = −dt2 + a2(t)ds2
(3) (this is a time dependent compactification)

can not be obtained without violating the strong energy condition. Since R00 =

∂2
0a here and acceleration implies −R00 < 0 this means that the strong energy

condition has to be violated. The strong energy condition basically demands

that gravity be locally attractive, so it is reasonable that using matter fields (like

supergravity p-form fields) which obey it one can not get accelerating (deSitter)

spacetimes.

Maldacena and Nunez [8] considered, along similar lines, a general higher

dimensional supergravity lagrangian (with a potential for the scalars) with the

following assumptions:

1) There are no higher derivative (for eg. stringy) corrections - the gravita-

tional part of the action is the usual Einstein Hilbert form. This means we work

in the supergravity (zero slope α′ → 0 ) limit of string theory.

2) The kinetic terms of the p-form fields are positive.

3) The scalar potential is non-positive

4) Only the bosonic sector of the supergravity theories is considered.

5) The manifold YD−d is compact without boundary (Actually singularities

which are such that the warp factor goes to zero on approaching them are allowed.

These are singularities which may have a dual field theory interpretation [8].)

As [8] show these conditions imply that de Sitter spacetime can not be obtained

through compactification.

Of course if any of the above assumptions are evaded then we may potentially
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realise positive curvature solutions. Although one may like to have a de Sitter

realisation within a fully non-perturbative (finite α′ and gs) string/M theoretic

framework it is typically quite hard to go much beyond assumption 1 and we

will here not attempt to work beyond the supergravity regime. Assumption 2

seems quite reasonable though it is violated in Hull’s II*A,B theories (obtained

by T-dualising IIB,A on a timelike circle) where de Sitter compactifications (for

eg. dS5×H5 in II*B, H being the hyperbolic space) are possible [9], see also [10].

However these theories seem to be ill-defined because of the negative sign kinetic

term for the R−R fields.

Assumption 3 would be violated, for example, if we start with a supergravity

theory in higher dimensions with a positive cosmological constant. In 6d gauged

supergravity with a positive (exponential) potential explicit 4d dS solutions have

been constructed [14]. Typically we would expect a potential only to be generated

through compactification and we will take the higher dimensional theory to be

without an arbitrary potential.

It is to be noted that the strong energy condition is a quite strong one and

violated by physically realistic systems (unlike, for example, the null energy con-

dition). By incorporating fermions and thus coupling the theory to matter this

condition can be violated. We will however take assumption 4 to hold.

The manifold YD−d being compact implies the lower dimensional Newton’s

constant (Gd) is finite. If one consider Y to be non-compact, in particular hyper-

bolic, then it is possible to get de Sitter solutions. In such a case, however, it is

not clear how to obtain a discrete d dimensional spectrum. We willl take Y to be

compact but allow it to have boundaries (thus partially evading assumption 5).

In particular, we willl consider the boundaries to be singularities (of a type more

general than allowed in 5) in the compact manifold Y due to the presence of brane

sources. It may be noted that in the above no-go theorems the p-form field poten-

tials which contribute to TMN are included but the (p − 1)-branes which source

these fields are considered to be probe branes with negligible effect on the ambient

geometry. We may, however, wish to include the effects of brane backreaction.

We also keep ourselves to considering only time-independent compactifications.

Note that the above theorems need not hold if we consider Y to be Lorentzian
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and X a maximally symmetric space- such an accelerating cosmology would be a

time-dependent compactification[10,11]. From the viewpoint the lower (d) dimen-

sional observer this would give rise to time-dependent scalar (moduli) fields. In

this case one considers more general time dependent compactifications along the

lines of [15,16,17]. These authors discuss the constraints on realising accelerating

cosmologies from higher dimensional compactifications. Considering two deriva-

tive higher dimensional theories compactified on a manifold without boundary

which is flat (in the sense of having zero Ricci curvature scalar) or is conformally

flat, they show that obtaining accelerating cosmologies requires violations of the

null energy condition. More precisely, for an FRW cosmology with equation of

state parameter w the null energy condition requires that there exists a thresh-

old value wth (which depends on the number of compact dimensions) such that

−1 ≤ w ≤ wth and for which the number of e-foldings is bounded from the above

(also this number goes to zero as w → −1 and thus dS can not be realised). Thus,

only transient acceleration can be obtained, as also shown earlier in [10], and in

particular we can not have a dark energy due to a cosmological constant only.

The maximum number of e-foldings possible is also too small to get a realistic

description inflation. We note however that if we consider the compact manifold

to have singularities or if it is not Ricci flat or conformally Ricci flat then realizing

cosmic acceleration may not require violations of the null energy condition.

1.2 Higher spin operators in CFTs

Conformal Field Theories (CFTs) are of prime importance in theoretical physics

for several reasons. They are important in the study of phase transitions as

various statistical mechanical systems at criticality are described by CFTs. This

historically was the principal reason for their introduction and motivation for their

study. They describe fixed points of renormalization group flows and general

QFTs can be defined and studied through deformations of CFTs by marginal

operators. Through the AdS/CFT duality they map holographically to higher

dimensional quantum theories of gravity and thus provide a non-perturbative

construction of such theories. We give below, a brief overview of some well known
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basic CFT concepts.

The symmetry group of a CFT (the Conformal Group) is SO(D, 2) in D space-

time dimensions (D ≥ 3). All fields transform in representations of SO(D, 2).

Representations are labelled by Cartans of the maximal compact subgroup SO(D)×
SO(2) : R and dimension ∆. In particular, for the 3 dimensional case we will

be dealing with, the conformal group is SO(3, 2) (isomorphic to OSp(2,R)) with

representations being labelled by ∆ and the SO(3) spin s. For 3d SCFTs with

N extended supersymmetry, the supergroup of superconformal symmetries is

OSp(2,R|N ) which has the maximal compact bosonic subgroup SO(2)×SO(3)×
SO(N ) with the associated Cartan charges labelling the representations: (∆, s, hi),

hi being the SO(N ) Cartan charges (SO(N ) is the R-symmetry group).

CFT Definition (usual): One considers local fields transforming in a repre-

sentation R and the Action (more generally, Path Integral) invariant under this

transformation on the field variables. This is a perturbative definition- the usual

way QFTs are defined, about weakly coupled saddle points of the path integral.

For CFTs it is possible to give a non-perturbative definition by giving the

spectrum of all local primary operators together with the Wilson coefficients

[O∆,R, cijk]. Indeed many CFTs do not have any lagrangian description. This

includes the (2,0) SCFT which is central to M-theory and describes M5 brane

dynamics, and many other N = 2 4d SCFTs (of the so-called S class) which can

be obtained from the compactification of the (2,0) theory on a Riemann surface

with punctures.

The CFT spectrum comprises of local primary operators O∆ ([Kµ, O∆] = 0)

with scaling dimension ∆; and representationR of SO(D) in which O∆ transforms

(and the R-charges for an SCFT). All the local operators are in a one to one cor-

respondence with states in the radial quantization scheme via the state-operator

map.

The dynamical content of a CFT is encoded in the Wilson coefficients via the

Operator Product Expansion:

Oi(x)Oj(0) =
∑
k

cijkF (x, ∂y)Ok(y) |y=0 (1.11)

The OPE is an exact operator relation (with a finite radius of convergence) in any
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CFT, unlike the usual case in QFTs where it is an asymptotic expansion.

Unitarity imposes additional constraints on the spectrum in terms of lower

bounds on the dimensions of primaries: ∆ ≥ ∆min(R)

Conformal symmetry is quite constraining. It fixes the form of the 2 and 3

point functions of scalar conformal primary operators. The form of the 2-point

function is:

〈φ∆(x1)φ∆(x2)〉 =
k

x2∆
12

(1.12)

and we may normalise to set k = 1.

With the 2-point function normalised, the 3-point function is also completely

fixed upto an overall constant

〈φ∆1(x1)φ∆2(x2)φ∆3(x3)〉 =
c123

x2α123
12 x2α231

23 x2α312
31

(1.13)

with αijk =
∆i+∆j−∆k

2

The overall constant c123 - a three point coupling, is not arbitrary but encodes

dynamical information about the theory.

The spectrum together with the Wilson coefficients comprise the CFT data

and its knowledge completely specifies the CFT. This is because the OPE can in

principle be used recursively to reduce an n-point function of local primary oper-

ators to a sum of products of 2-point functions with various derivative operations.

The Wilson coefficients being known, this expression is completely determined.

Furthermore, since any descendent is determined by the action of some number

of derivatives on a primary, it follows that the the n-point functions of all local

operators are completely known.

However the operator dimensions and Wilson coefficients are not arbitrary real

numbers. Apart from the constraints of unitarity they are constrained by OPE

associativity (also called crossing symmetry) seen at the level of 4-point functions.

4-point functions are not fixed by conformal symmetry on kinematic grounds but

their functional form is quite constrained.
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〈φ∆(x1)φ∆(x2)φ∆(x3)φ∆(x4)〉 =
1

x2∆
12 x

2∆
34

f(u, v) (1.14)

where u, v are the conformal cross-ratios:

u =
x2

12x
2
34

x2
13x

2
24

v =
x2

14x
2
23

x2
13x

2
24

(1.15)

The function f can be expanded in terms of conformal blocks

f(u, v) =
∑
O

cOgO(u, v) (1.16)

The sum is over all the primaries in the spectrum and the conformal block -

gO(u, v) encodes the contribution of the exchange of O within the 4-point function

and all its conformal descendents.

Crossing symmetry (OPE associativity) states that one can do OPE contrac-

tion of different operators within the correlation function- and different ways

should give same results. This leads to further constraints on f in the form

of the bootstrap equation:

v∆f(u, v) = u∆f(v, u) (1.17)

The basic idea of the bootstrap approach to QFTs is to use general principles

like Symmetries, Unitarity, Analyticity, to determine physical observables of inter-

est which may be S matrices. In CFTs one uses unitarity and crossing symmetry

to constrain the correlators. Note that since u, v can take arbitrary real values,

and the function f can be expanded using the OPE in terms of products of OPE

coefficients (the conformal block expansion of the 4-point function), the above

bootstrap equation in effect gives an infinite number of equations in infinitely

many variables (OPE coefficients and operator dimensions). In general there is

no way known to solve them but in special cases, for example 2d CFTs where the

finite dimensional SO(2, 2) is in fact extended to the infinite dimensional Virasoro

group one can find an explicit solution- these are the well known Minimal Model

solutions of 2d CFTs with central charge c < 1 [23]

For CFTs with higher spin operators, the 2-point function is again completely

fixed by conformal symmetry
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〈Os,∆(1)Os,∆(2)〉 =
unique tensor structure

x2∆
12

(1.18)

The 3-point function is determined as a sum of a finite number of tensor

structures with undetermined constant coefficients

〈Os1,∆1(1)Os2,∆2(2)Os3,∆3(3)〉 =
finitely many tensor structures

x2α123
12 x2α231

23 x2α312
31

(1.19)

The 4-point functions of higher spin primary operators have not been ex-

tensively investigated (other than some work on spin 1 and spin 2 four-point

functions).

In this thesis we will be dealing with superconformal field theories (SCFTs).

These are special CFTs which additionally also have supersymmetry. Apart from

the generators of the conformal group, the symmetry generators in this case in-

clude the supersymmetry generators (Qa
α) and the generators of special super-

conformal transformations (Saα). The differential form of the action of all the

symmetry generators in superspace (for 3d SCFTs) is given by eq. (3.1) in Chap-

ter 3 and the full superconformal algebra is given by eq. (3.56) in an appendix to

that chapter.

Superconformal symmetry provides additional constraints on the field theory.

Superconformal representations are classified by superconformal primaries - these

are lowest weight states annhilated by Saα (besides Kµ). The raising operator here

is Qa
α (like Pµ in the conformal case). Due to the nilpotent nature of the action of

Q’s, the superconformal multiplets are necessarily finite-dimensional and a single

representation of the superconformal algebra headed by a superconformal primary

contains within it many conformal primaries (its Q descendants), and hence many

conformal representations. We will discuss in greater detail in Chapters 3 and 4,

SCFTs in three dimensions and particularly their superspace formulation and

correlators of higher spin operators.
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Significance of higher spin operators and the Maldacena-

Zhiboedov theorem

It is expected that CFTs which have any additional higher spin symmtery, and

corresponding conserved higher spin currents, would be free. This is analogous

to the Coleman-Mandula theorem for Poincaré symmetry. In 3 dimensions it was

proven recently by Maldacena and Zhiboedov [31]. Under the assumptions of a

unique spin 2 conserved current and finitely many degrees of freedom (finite N)

for the CFT they showed, using lightcone OPE methods, that the existence of

a single higher spin (s > 2) current suffices to demonstrate the existence of an

infinite tower of higher spin currents. Furthermore n-point correlators of such

conserved higher spin currents factorise into products of 2-point functions which

signals that the theory is free.

In chapter 3 we formulate superspace methods for studying free 3d SCFTs and

construct explicitly the higher spin currents that these theories have in terms of

free superfields.

In subsequent work [32] QFTs with exact conformal symmtry but weakly bro-

ken higher spin symmtery (1/N corrections being the source of symmetry break-

ing) were considered. Such theories are interacting- indeed a plethora of examples

is known starting from the basic O(N) vector model and including various super-

conformal Chern-Simons theories like ABJ theory. At large N, there is a weakly

broken higher spin symmetry with an anomalous ”conservation” law

∂ · J(s) =
1

N
J(s1)J(s2) + higher trace terms if possible (1.20)

Here s > 2 (the energy-momentum tensor is always exactly conserved). This

controlled breaking of higher spin symmetry in large N vector models can be used

to further constrain correlators of these interacting CFTs as demonstrated in [32]

The Virasoro Algebra provides an infinite dimensional extension of the Confor-

mal Algebra in two dimensions and enables the implementation of the conformal

bootstrap - the 2d Minimal Model exact solutions [23]. In higher dimensions, Vi-

rasoro symmetry is lacking. However, it appears from recent work [31], [32] that

higher spin symmetry might play an analogous role. The difference is that while 2d
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CFTs with exact Virasoro symmetry can be non-trivial, in d > 2 CFTs with exact

higher spin symmetry are free, as shown in [31]. However, as mentioned above,

CFTs can have a parametrically small weakly-broken higher symmetry, and this

provides further constraints. This was seen at the level of 3-point functions in [32]

but the same analysis is expected to work for higher correlators. It may thus be

feasible that judicious use of (weakly broken) higher spin symmetry can be used

for the conformal bootstrap (at least for large N) of higher dimensional CFTs.

1.3 Holographic interpretations

As is well known, the AdS/CFT correspondence [20] states that conformal quan-

tum field theories can be holographically dual to certain quantum gravity theories

in AdS backgrounds in higher dimensions. In particular, 4d N = 4 super Yang-

Mills theory is holographically dual to IIB string theory on AdS5×S5 and the 3d

N = 6 ABJ superconformal Chern-Simons theory is dual to IIA string theory on

AdS4 ×CP3. This is a strong-weak coupling duality, and in general the tractable

domain is where the bulk/boundary theory is weakly coupled. In particular the

strongly coupled large N , large λ limit of a CFT is well described by an AdS bulk

geometry where the effective gravitational dynamics is that of Einstein gravity.

In this limit, the equivalence ZCFT = ZQG between partition functions becomes

ZCFT [J ] = exp(−Sos+
∫
J.φ), which is the well-known GKPW prescription [22, 21]

for computing correlators of strongly coupled CFTs (Sos is the on-shell action).

This is the most extensively studied corner of the AdS/CFT duality.

It is of interest to determine what kinds of CFTs admit holographic duals with

a geometric description. In other words, under what conditions is the dynamics

of the CFT encoded in a metric based semi-classical description of a gravitational

theory. This has been investigated [33, 34] and it is known that such a bulk geo-

metric interpretation exists whenever there is a large parameter in the CFT such

that the dimensions of a few (low spin) primary operators (the single-trace pri-

mary operators) do not become parametrically large as N →∞. This ’gap’ in the

spectrum, i.e, the existence of a level of low dimension primary operators ensures

a dual geometric description in terms of an effective semi-classical gravitational
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description. 1/N corrections in the field theory amount to quantum corrections

in the bulk theory.

In CFTs where there are infinitely many higher spin single-trace primary op-

erators of minimal twist (τ = ∆−s) we do not expect the holographic duals to be

classical bulk geometries described by the Einstein-Hilbert action, since Einstein

gravity contains a unique spin two massless graviton and no higher spin massless

particles.

Higher spin bulk theories and CFTs with higher spin oper-

ators

The holographic duals to CFTs with a tower of higher spin operators are theories of

interacting higher spin massless fields in AdS. Although such theories do not exist

in flat space-time (as demonstrated by no-go theorems proved by Weinberg [46]),

the presence of a cosmological constant (dS/AdS spacetime) allows interacting

massless higher spin theories to exist. The existence of such theories can also be

inferred from string theory. In the usual infinite tension (α′ → 0 , T ∼ 1/α′ →∞)

supergravity limit of string theory, all massive stringy modes decouple (recall

that the mass of the nth level ∼ n/α′) and one is left with the massless modes

whose dynamics is described by supergravity. The opposite limit, the tensionless

limit, is when the AdS curvature scale is much smaller than the string length

(R/ls � 1, which is the same as α′ → ∞). In this limit all the massive levels

become massless and one expects a complicated interacting theory of infintely

many massless modes which captures the dynamics of string theory in the extreme

stringy regime. Vasiliev has constructed a non-linear theory of interacting massless

higher spin fields in AdS [39] and this construction is expected to be the tensionless

limit of classical string theory (though this has not been demonstrated yet).

It was conjectured by Klebanov and Polyakov [24] that the bosonic O(N)

vector model (a 3d CFT) is dual to Vasiliev (type A) theory. When the singlet

scalar in the theory has mimimal dimensionality ∆ = 1 we have a free bosonic

CFT whereas for ∆ = 2 the theory is the critical O(N) model (obtained by

RG flow, from the free CFT to the Wilson-Fisher fixed point, triggered by the
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relevant deformation (φ.φ)2). Similarily the type B Vasiliev theory is dual to

the fermionic O(N) vector model [25] - for ∆ = 2 we have the free fermion

CFT whereas for ∆ = 1 the critical theory - the Gross-Neveu model. Thus

these 3d CFTs are dual to higher spin theories (with even integer spin fields)

where the boundary conditions (on the boundary of AdS) preserve the higher spin

symmetry. It is also possible to choose boundary conditions which (weakly) break

the higher spin symmetry (at O(1/N) by multi-trace terms) and such theories have

as boundary duals interacting 3d CFTs which are Chern-Simons gauge theories

with bosons/fermions transforming in the fundamental (vector) representation of

the gauge group. Examples include the U(N) Chern-Simons theories studied in

[26], [27]. Although supersymmetry is not an essential ingredient of the vector

model/ higher spin duality one can indeed consider supersymmetric versions of

Vasiliev’s theory which would have superconformal field theories as duals [30, 29].

Although we will not explicitly discuss these theories in great detail in this thesis,

the material presented in Chapters 3 and 4 - regarding the superspace formalism,

higher spin operators and correlation functions - is of much revelance to their

study.
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Chapter 2

Supergravity compactifications

and dS no-go theorems

de Sitter space, or slow-roll geometries close to de Sitter space, appear to play an

important role in cosmology. This has motivated searching for explicit solutions to

the higher-dimensional field equations for which the large four dimensions we see

are de Sitter or de Sitter-like. Although a few such solutions are known [47, 48],

more and more general no-go results [49, 50, 51, 52] show that such solutions are

difficult to find1 It is interesting to enquire about the reasons for this.

In this chapter we argue that part of the problem is that we are not yet using all

of the ingredients that de Sitter solutions may require. In particular, contributions

have been neglected that are the same size as some of the contributions that are

usually kept when searching for (or ruling out) de Sitter-like solutions.

The neglected contributions come from the actions of any localized sources

that may be present in the extra-dimensional configurations of interest. In par-

ticular, we argue here that for codimension-two sources these actions contribute

to the curvature an amount that is competitive with the contribution of the bulk

fields, including their back-reaction. In particular, the source action acts to sys-

tematically cancel the contribution from the warping of the noncompact geometry

1Four-dimensional effective field theories of string theory including non-perturbative effects

and anti branes or D-terms [53] can give rise to de Sitter solutions. But at the moment there is no

full understanding from the microscopic higher-dimensional theory. For other recent attempts

for de Sitter solutions see [54].
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across the extra dimensions. This is important because the sign of the warping

contribution is usually definite, and because it is opposite to what is required for

a de Sitter noncompact geometry it plays a role in the various extant de Sitter

no-go results.

We study the effects of brane backreaction, source properties and bulk singu-

larities on obtaining de Sitter compactifications in higher dimensional supergravity

theories. We show how the lower dimensional scalar curvature (the cosmological

constant) is determined by the on-shell bulk action, warping effects, source action

and space-filling fluxes and is, in certain quite general cases, a sum over boundary

terms and thus determined by the asymptotic form of the bulk fields in the near-

brane limit. As an application we show that all codimension 2 brane solutions

(warped or unwarped) in axio-dilaton-metric theories are flat.

This chapter is organised as follows. We first discuss the no-go theorems

on de Sitter compactifications proved in the introduction. We then show how,

in warped compactifications, the curvature of the compact manifold constrains

the curvarure of the non-compact maximally symmetric part. In section 2.3 we

establish our main result: a general expression that relates the lower dimensional

scalar curvature to the on-shell bulk action of a theory and also includes effects

due to warping, source action and any space-filling fluxes which might be present.

In order to be able to put this relationship to use we show, in section 2.4, how the

on-shell action of a theory with a classical scaling symmetry is just a boundary

contribution. We show that the actions of 11-D supergravity, IIA, IIB supergravity

(respectively) have this scaling behaviour and we explicitly evaluate the on-shell

action as a sum over boundary contributions.

As an application we consider on-brane geometries for codimension 2 brane

sources. Explicit analytical expressions for unwarped D7 brane solutions in IIB

supergravity (axio-metric-dilaton sector) are known and are 8 dimensional flat.

We show that even after incorporporating the effects of warping and source effects

the solutions are still flat, thus generalising the result.
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2.1 No-go results and the 6D loophole

Our interest is in D-dimensional metrics of the form

ds2 = ĝMN dxMdxN = e2W (y) gµν(x) dxµdxν + g̃mn(y) dymdyn , (2.1)

where D = d + n; the d-dimensional metric, gµν , is maximally symmetric (i.e.

flat, de Sitter or anti-de Sitter); and the warp factor, W , can depend on position

in the n compact directions (whose metric, g̃mn, is so far arbitrary).

In particular, for cosmological applications there is much interest in identifying

solutions to higher-dimensional field equations for which gµν is a de Sitter metric

(which in our curvature conventions 2 satisfies R = gµνRµν < 0). The search for

such solutions has been fairly barren, and this is partly explained by refs. [49], [50],

[51] and [52], who identify increasingly general obstacles to finding this type of de

Sitter solution to sensible, higher-dimensional, second-derivative field equations.

On the other hand, a handful of explicit solutions of this type do exist, includ-

ing 4D de Sitter solutions [47] for six-dimensional Maxwell-Einstein systems,

SME = −
∫

d6x
√
−ĝ

{
1

2κ2
ĝMNR̂MN +

1

4
FMNFMN + Λ

}
, (2.2)

with positive 6D cosmological constant, Λ. Similar solutions [48] also exist for

six-dimensional gauged, chiral supergravity [57], whose relevant bosonic action is

Sbulk = −
∫

d6x
√
−ĝ

{
1

2κ2
ĝMN

(
R̂MN + ∂Mφ ∂Nφ

)
+

1

4
e−φFMNFMN +

2 g2
R

κ4
eφ
}
.

(2.3)

For both of these actions R̂MN denotes the Ricci tensor for the 6D metric, ĝMN ,

and F = dA is the field strength for a 6D gauge potential, AM . The quantity

κ2 = 8πG6 denotes the 6D gravitational coupling, while for the supersymmetric

case gR denotes the gauge coupling of a specific UR(1) gauge group that does not

commute with 6D supersymmetry.

These examples do not contradict the various no-go theorems because they

arise in systems which do not satisfy one of the assumptions of each. For instance,

2We use a ‘mostly plus’ metric and Weinberg’s curvature conventions [55], which differ from

those of MTW [56] only in the overall sign of the definition of the Riemann tensor.
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the no-go result of [50] assumes that any extra-dimensional scalar potential must

be negative (as it tends to be for higher-dimensional supergravities, but is not so

for eqs. (2.2) and (2.3)). They evade the less restrictive assumptions of [51] and

[52], some of which exclude [52] having only two extra dimensions, n = 2. More

importantly they do not satisfy the average ‘boundedness’ assumptions [51] that

exclude solutions that are too singular.

The potential relevance of back-reaction

There are two ways to view the possibility that singular behaviour can suffice to

evade the no-go results. One view is to regard solutions with such singularities

as unacceptable, and so draws the conclusion that de Sitter solutions may be

impossible to find. And for some types of singularity (like negative-mass black

holes) this is probably right, since the alternative requires admitting energies that

are unbounded from below.

But some (apparent) singularities are known to be perfectly sensible, such

as those seen in Coulomb’s law at the position of a source charge. In the case

of Coulomb’s law, the singularity doesn’t preclude taking the solution seriously

because we don’t intend to trust the solution in any case right down to zero size.

The existence of apparent singularities might similarly be expected to arise in

the gravitational theories relevant to cosmology, provided these are regarded as

effective descriptions of some more-microscopic degrees of freedom. One can hope

to get a handle on deciding whether a singularity might be reasonable for an

effective description, by seeing what kinds of apparent singularities actually can

emerge from localized sources governed by physically reasonable actions.

These considerations suggest that understanding the back-reaction of localized

sources could be a crucial part of obtaining de Sitter solutions, or ruling them

out. In particular the asymptotics, and apparent divergence, of bulk fields near

a source is likely to be important, and is ultimately controlled by the action that

describes the dynamics of that source. Notice for these purposes ‘source’ need not

mean a fundamental object, like a D-brane. Rather, it could describe something

more complicated, like a soliton or a higher-dimensional brane wrapping internal

dimensions or a localized but strongly warped region. All we need know is that
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the sources are much smaller than the extra dimensions within which they sit.

How the properties of a source affect the properties of bulk fields is best

understood at present for codimension-one and codimension-two sources. For

codimension-one sources, the back-reaction is described by the Israel junction

conditions [58], as is familiar from Randall-Sundrum models [59]. But bulk fields

with codimension-one sources also tend not to diverge at the source positions, and

so shed little light on how such singularities influence the low-energy curvature.

It is only for higher-codimension sources that it is generic that bulk fields diverge

at the source positions, and so where the relation between bulk singularity and

source properties can be explored.

Of course, these bulk singularities make matching bulk solutions to source

properties more complicated, usually requiring a renormalization of the source

[60]. The tools for detailed bulk-source matching and renormalization are most

explicitly known for codimension-two objects [61, 62, 63, 64, 65]. In particu-

lar, these tools have recently been used to identify [66] explicit objects that can

source the de Sitter solutions [48] of the 6D supergravity action, eq. (2.3). Since

the required source properties seem physically reasonable,3 they show that the

singularities in the corresponding bulk solutions need not be regarded as grounds

for their rejection.

2.2 Constraints on scalar curvature of X due to

that of Y

We discuss here how the scalar curvature of X (the non-compact maximally sym-

metric d-dimensional spacetime) is constrained by that of Y (the compact D − d
dimensional manifold) if we require X to be dS. In [12] it was noted that the scalar

curvature (−Rd) of X gets a positive contribution from a negative scalar curva-

ture (−RD−d) of Y . We’ll derive here a simple relationship between Rd, RD−d

(≡ g̃mnRmn) and Td (≡ gµνTµν - the d dimensional trace of the energy momentum

3As discussed in more detail below, their worst feature appears to be a requirement that

the dilaton, φ, grows as one asymptotically approaches the sources, and so care must be taken

to avoid leaving the weak-coupling regime before reaching the source.
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tensor) for a manifold MD = Xd ×w YD−d with total energy-momentum tensor

TMN

We will use equations (1.5) and (1.6). The D dimensional Einstein equation

is 4

−R̂MN = TMN −
ĝMN

D − 2
TD (2.4)

Consider first the d dimensional (µν) components of this equation. Since

ĝµν ≡ ḡµν = e2Wgµν we have

−R̂µν = Tµν −
e2Wgµν
D − 2

TD (2.5)

Now using eq. (1.5) and that

TD ≡ ĝMNTMN = ĝµνTµν + ĝmnTmn = e−2WTd + TD−d (2.6)

(Here ĝmn = g̃mn and TD−d ≡ g̃mnTmn) we get

−Rµν −
e(2−d)Wgµν

d
∇̃2edW = Tµν −

e2Wgµν
D − 2

(e−2WTd + TD−d)

Contracting the above equation with gµν gives

−Rd =
D − d− 2

D − 2
Td −

de2W

D − 2
TD−d + e(2−d)W ∇̃2edW (2.7)

Likewise, we consider the D − d dimensional (mn) components of eq. (2.4)

−R̂mn = Tmn −
g̃mn
D − 2

TD (2.8)

Now contracting equation (1.6) with ĝmn and simplifying gives

ĝmnR̂mn = RD−d + d
∇̃2eW

eW
(2.9)

so eq. (2.8) upon contraction and using the above equation leads to

−RD−d =
d− 2

D − 2
TD−d −

D − d
D − 2

e−2WTd + d
∇̃2eW

eW
(2.10)

Eliminating TD−d between eqs. (2.7) and (2.10) gives us

−Rd = − 2

d− 2
Td +

de2W

d− 2
RD−d + e(2−d)W ∇̃2edW +

d2

d− 2
eW ∇̃2eW (2.11)

4Here TD is the D dimensional trace of the energy-momentum tensor: TD ≡ ĝMNTMN .
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Now multiplying the above equation by
√
g̃ed−2W and integrating over YD−d

gives us the desired relation:

−RdVW = − 2

d− 2

∫
dD−dy

√
g̃e(d−2)WTd +

d

d− 2

∫
dD−dy

√
g̃edWRD−d (2.12)

+

∫
dD−dy

√
g̃∇̃2edW +

d2

d− 2

∫
dD−dy

√
g̃e(d−1)W ∇̃2eW

We note that for d > 2 the contribution of a negative Td and negative −RD−d

to −Rd is positive. In the case of no warping (W = 0), d = 4 and D = 10 , so that

we are considering 4 dimensional compactifications of 10 dimensional supergravity

theories the above relation reduces to eq. (1.1) of [13]:

−R4 = −T4 + 2R6 (2.13)

Thus even if some kind of energy condition enforces the positivity of Td, it may

be possible to compensate for this by having compact manifolds with scalar curva-

ture everywhere negative thus leading to positive curvature for the d-dimensional

space-time. Many compactications are known with X a Minkowski or AdS space-

time and Y a manifold with non-negative scalar curvature. For example, AdS5×S5

in IIB string theory, AdS4×S7 in 11D supergravity (here Y has positive scalar cur-

vature) andM4×CY3 in heterotic string theory (here Y- the Calabi-Yau manifold-

is Ricci flat and so the scalar curvature is zero). However, it seems quite difficult

to realise compactifications with Y having negative scalar curvature. Finding any

such solutions would help in realising de Sitter compactifications.

Summary of results

We examine how source back-reaction constrains the existence of de Sitter solu-

tions in more general higher-dimensional theories than the six-dimensional ones

already explored.

In particular, we explore some of these issues in eleven-dimensional supergrav-

ity, and in ten-dimensional Type IIB and Type IIA supergravity. Because our

best-developed tools apply to codimension-two objects, it is these we largely ex-

plore in detail. If only D-branes were allowed as sources, this would restrict us to
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D7-branes in Type IIB systems. But we also explore the other supergravities for

two reasons: because some of our results apply equally well to higher-codimension

sources; and because our sources might not be D-branes — or (p, q) branes for that

matter — but instead be more complicated localized codimension-two quantities

(like very small warped throats).

We find the following results:

• First, for geometries of the form of eq. (2.1), we find a very general classical

relationship that gives the curvature in the non-compact dimensions parallel

to the sources as the sum of four terms: R ∝ I + II + III + IV , where IV

vanishes for maximally symmetric geometries in the absence of space-filling

fluxes.

• Second, we show that contribution I — which is proportional to the bulk

action evaluated at the classical back-reacted solution — is very generally

given as the integral of a total derivative, and so is controlled by the bound-

ary values of a particular combination of bulk fields. This property relies

only on the existence of a classical scale invariance that is shared by most

higher-dimensional supergravities (and holds in particular for 11D and 10D

Type IIA and IIB supergravity).

• Third, we show that for codimension-two sources the contributions II and

III cancel one another. Here contribution II is an integral over a total

derivative of the warp factor, W , whose definite sign plays an important

role in the derivation of the general no-go results. Contribution III comes

from the action of the localized source, which is left out of most no-go

analyses.

• Finally, we explicitly identify the total derivative that appears in I for sev-

eral examples of interest, including commonly used supergravities in 6, 10

and 11 dimensions. This identifies the combination of fields whose near-

brane asymptotics is relevant to the low-energy curvature. As a simple

application we show that the noncompact dimensions are always flat for

all F-theory compactifications that involve only the metric and axio-dilaton

with codimension-two sources.
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These results carry two important messages. First, that back-reaction cannot

be neglected when determining the curvature of the noncompact dimensions since

the direct contributions from the source action cancel important contributions in

the no-go theorems. But, because the nonzero contributions are total derivatives,

the good news is that most of the details of the back-reacted solutions are not

important. All that counts is the near-source asymptotics of a specific combination

of back-reacted bulk fields.

Our explanation of these results is organized as follows. Section 2.3, develops

general expressions for how the curvature of non-compact, maximally symmetric

directions depends on the properties of the extra-dimensional bulk fields. Much

of this section is similar in spirit to the arguments made when deriving no-go

results [49, 50, 51, 52], and our main new contribution is to cleanly identify how

the curvature is controlled by asymptotic forms near the sources, and to see how

assumptions about source dynamics modifies this asymptotics. Section 2.4 explic-

itly identifies for 11D and 10D supergravity the precise combination of bulk fields

whose asymptotic forms are relevant to the low-energy curvature. We then apply

these general arguments to the special case of metric/axio-dilaton configurations

in 10D Type IIB supergravity with codimension-two sources, showing in this case

how all solutions are flat in the noncompact directions in the absence of bulk

fluxes.

2.3 A general expression for the classical cosmo-

logical constant

The purpose of this section is to derive a general expression for the curvature of

the noncompact directions. We make the connection between on-source curvatures

and near-source asymptotics in three steps. First we show — at the classical level

for maximally symmetric source geometries — that the integral of the low-energy

curvature can be computed as the sum of four terms: I+II+III+IV . Of these,

I is the higher-dimensional bulk action, evaluated at the compactified solution.

II is the integral over a total derivative, which Gauss’ theorem directly relates

to the boundary values of the warp factor, at infinity and near any potential
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singularities. III is a direct contribution from the action of any sources, and IV

is a term which vanishes in the absence of any space-filling fluxes.

Next we show that for all of the supergravities of interest the higher-dimensional

bulk lagrangian density is itself also always a total derivative when evaluated at an

arbitrary classical solution. Combining this with step one then shows that, in the

absence of space-filling fluxes, the integrated low-energy curvature is completely

controlled by source and boundary effects.

Finally, §2.5 demonstrates step three. By treating carefully the singular be-

haviour near any codimension-two sources, it is shown that contributions II and

III precisely cancel one another. Taken together, these three steps show that

only contribution I plays any role in a broad class of theories.

We first focus on step one: we use the higher dimensional equations of motion

to derive a relationship between the lower dimensional curvature and the on-shell

higher-dimensional action. For definiteness, we consider solutions to the field

equations of a D-dimensional (super)gravity theory, with action5

S =
1

2κ2
D

∫
dDz

√
−ĝD

(
− R̂+ LD

matter

)
+ Ssource , (2.14)

where Lmatter depends on a generic set of other D-dimensional fields (but not on

the derivatives of the metric), denoted collectively by ψ. Ssource denotes the action

of any sources, which differs from the term explicitly written by only involving an

integration over d dimensions, rather than D.

Now imagine we have a solution to the field equations for this action describing

a compactification down to 0 < d = D − n dimensions, of the form of eq. (2.1).

We wish to derive a general expression for R = gµνRµν in terms of properties of

the warp-factor, W , the compact metric, g̃mn, and the bulk- and source-matter

actions.

5An aside on notation: indices M,N = 0, 1, . . . , D− 1 run over all dimenesion; greek indices

denote lower-dimensional coordinates µ, ν = 0, 1, . . . , d− 1; and indices m,n = 1, . . . , n = D− d
denote compactified coordinates. We use R̂MN to denote the D-dimensional Ricci curvature

of the full D-dimensional metric, ĝMN ; and R̂µν to denote the d-dimensional Ricci curvature

computed from the d-dimensional metric, ĝµν = e2W gµν . Finally, ĝD = det ĝMN while ĝd =

det ĝµν etc.
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To this end consider the µν component of Einstein’s equation,√
−ĝD

[
R̂µν +

1

2
ĝµν
(
−R̂+ LD

matter

)
+
∂LD

matter

∂ĝµν

]
+ 2κ2

D

(
δSsource

δĝµν

)
= 0 , (2.15)

which we contract with ĝµν , making use of

ĝµνR̂µν = e−2WR + d ∇̃2W + d2 g̃mn∂mW∂nW

= e−2WR + e−dW ∇̃2edW , (2.16)

where ∇̃2 = g̃mn∇̃m∇̃n. Dividing the result by 2κ2
D, using

√
−ĝD = edW

√
−gd
√
g̃n,

and integrating over all D dimensions then gives

− 1

2κ2
d

∫
ddx
√
−gd R =

d

2
Son−shell +

1

2κ2
D

∫
ddx
√
−gd

∫
dny
√
g̃n ∇̃2edW (2.17)

+

∫
ddx ĝµν

(
δSsource

δĝµν

)
+

1

2κ2
D

∫
dDz

√
−ĝD ĝµν

∂LD
matter

∂ĝµν
:= I + II + III + IV ,

where Son−shell means the bulk part of the action appearing in eq. (2.14), evaluated

at a solution to the field equations, and the second last term uses that the source

terms are localized within the extra dimensions. κ2
d denotes the d-dimensional

gravitational coupling given by κ2
d = κ2

D/VW , with the warped volume defined by

VW :=

∫
dny
√
g̃n e

(d−2)W . (2.18)

Maximal symmetry and space-filling fluxes

Eq. (2.17) is the key equation, and so far it has been derived on very general

grounds. We now specialize to the situation where the solution does not break

the maximal symmetry of the d-dimensional metric gµν .

Maximal symmetry is a very constraining condition. First, it implies R is

a constant, so the left-hand-side of eq. (2.17) is proportional to the (divergent)

volume of the noncompact dimensions. Furthermore, the left-hand-side vanishes

only for flat d-dimensional space, and its sign is controlled by the sign of R.

Second, maximal symmetry strongly restricts the form of ∂LD
matter/∂ĝµν for the

field content usually found in higher-dimensional supergravity. In particular, the
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only fields that can be nonzero (classically) for maximally symmetric solutions

are: the metric, gµν ; space-filling fluxes of the form

F (p)
µ1..µdm1..mp−d

= εµ1..µdGm1...mp−d
; (2.19)

and any number of d-dimensional scalar fields (like components of g̃mn, etc.).

Because LD is defined with an overall factor of
√
−ĝD factored out, and because

the Einstein term is also treated separately, in the absence of higher-derivative

interactions ∂LD
matter/∂ĝµν = 0 if only scalar fields and the metric are present.

For the supergravities of interest here the only nonvanishing contributions to

∂LD
matter/∂ĝµν arise from p-form fields (with p ≥ d), having nonzero space filling

components.

For instance, for a p-form field with kinetic term

LD

p−form = − 1

2 p!
F 2

(p) , (2.20)

and non-vanishing space filling components we have

ĝµν
∂LD

matter

∂ĝµν
= − d

2(p− d)!
Gm1..mp−d

Gn1..np−d
g̃m1n1 g̃m2n2 · · · ĝmp−dnp−d = − dG2

2(p− d)!
,

(2.21)

which contributes to the right-hand-side of eq. (2.17) the amount

− d

2κ2
D(p− d)!

∫
ddx
√
−gd

∫
dny
√
g̃n e

dW G2 . (2.22)

We note that this is negative definite, which (in our conventions) contributes to

R with an anti-de Sitter-like sign.

Of course, space-filling fluxes need not contribute to eq. (2.17) only through

their kinetic term. The quantity ∂LD
matter/∂ĝµν can also receive contributions

from Chern-Simons terms. In this case, because LD
CS matter = LCS/

√
−ĝD, the

contribution is simply proportional to the Chern-Simons term itself:

ĝµν
∂LD

CS matter

∂ĝµν
= −d

2

∫
LCS . (2.23)

Unlike for the kinetic term, this contribution can have indefinite sign.

We see that in the absence of space-filling flux, the last term in equation (2.17)

vanishes. When this is so, eq. (2.17) relates the d-dimensional curvature, R, to a
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total derivative, a derivative of the source action, and the bulk action evaluated

on shell (which we show below is often also a total derivative).

The restriction to no space-filling fluxes is also not very restrictive, because

one can usually (Hodge) dualize a flux to get rid of any space filling components.

But there can be some situations where this cannot be done, such as when the

flux in question is the self-dual five form of Type IIB supergravity. In this case the

self-duality condition relates the flux components in the internal and space-time

directions. In an appendix to this chapter we use some well-known examples to

illustrate how eq. (2.17) works in practice (in the absence of source terms), with

and without space-filling flux.

We now make some comments about the implications of eq. (2.17). IV , as we

showed above, gives an AdS contribution to Rd. This is a bulk contribution and

is present only in the presence of space-filling fluxes. However if we have a space-

filling flux we can equivalently use its Hodge dual which in general would not be

space-filling (an exception is the five form self dual flux in the AdS5×S5 solution in

IIB supergravity). Using the dual solution would then give no contribution from

IV. Term III is manifestly a boundary term. The warping term (II) involves an

integral over a total derivative and so is also a boundary term. It turns out (as we

show in the next section) that for the supergravity theories arising as low energy

limits of string/M theory there exists a classsical scaling symmetry which makes

I into a boundary term as well. Thus, under certain quite general assumptions,

the lower dimensional scalar curvature (equivalently the cosmological constant) is

entirely determined by boundary data. Crucially, we need not know the full bulk

profile of the solution, but only its asymptotic form in the near boundary limit,

to determine Rd.

2.4 Scaling in Supergravity

In this section we first show that the on-shell action of a theory with a classical

scaling symmetry is a boundary term. We then find explicitly the form of this

boundary term for 11-D, IIA and IIB supergravity theories which possess such

scaling behaviour (at least in the bosonic sector). This section now proves that
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Son−shell can generally also be expressed as the integral of a total derivative for

the bulk supergravities of general interest.

This is actually a special case of a more general result [67] that states that

any scale-invariant system has this property, as we review here. It is generic to

higher-dimensional supergravities because these typically all have a classical scale

invariance [68].

2.4.1 Scaling and the on-shell action

Consider a theory with a lagrangian density L(φi, ∂φi) with the following scaling

property under the field scalings φi → saiφi :

L(saiφi, s
ai∂φi) = saL(φi, ∂φi) (2.24)

the field φi having scaling dimension ai. With such scaling behaviour we can show

that the onshell action is a total derivative. Differentiating the above equation

with respect to s and then setting s = 1 gives

∑
i

ai

[(
∂L

∂ [∂µϕi]

)
∂µϕi +

(
∂L
∂ϕi

)
ϕi

]
= aL (2.25)

Now to put the fields on-shell we use the Euler-Lagrange field equations(
∂L
∂ϕi

)
− ∂µ

(
∂L

∂ [∂µϕi]

)
= 0 (2.26)

and this gives

Lon−shell =
∑
i

ai
a
∂µ

[(
∂L

∂ [∂µϕi]

)
ϕi

]
(2.27)

Consequently the on-shell action of a theory with such scaling behaviour would

be a boundary term (being the integral of a total derivative). In the rest of

this section we determine the form of this boundary term for three supergravity

theories- 11-D, IIA, IIB- in which, as we note below, the bosonic part of the action

shows such scaling behaviour.
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2.4.2 11 dimensional Supergravity

The bosonic part of the action of 11-D supergravity is

S = − 1

2κ2
11

∫
d11x
√
−g
(
R +

1

2.4!
G2

4

)
− 1

12κ2
11

∫
G4 ∧G4 ∧ C3 (2.28)

For gMN → sgMN CMNP → s3/2CMNP we have S → s9/2S. The existence of

this scaling behaviour implies that the onshell action should be a boundary term.

To find this boundary term we first take the trace of Einstein’s equation:

R = − G2
4

(12)2
(2.29)

The equation of motion for the 3-form potential is:

d(∗G4) = −1

2
G4 ∧G4 (2.30)

Using these two equations gives the following expression for the on-shell 11-D

supergravity action:

Son−shell11−D = − 1

6κ2
11

∫
d[C3 ∧ ∗G4] (2.31)

2.4.3 IIA Supergravity

The (bosonic part of) IIA supergravity action (in the string frame) is

S = SNS + SRR + SCS (2.32)

where,

SNS = − 1

2κ2
10

∫
d10x

√
−ĝe−2φ

(
R̂− 4∂µφ∂

µφ+
1

2.3!
H2

3

)
SRR =

1

2κ2
10

∫
d10x

√
−ĝ
(
− 1

2.2!
F 2

2 −
1

2.4!
F̃ 2

4

)
(2.33)

SCS = − 1

4κ2
10

∫
B2 ∧ F4 ∧ F4

with,

F̃4 = F4 +C1 ∧H3 H3 = dB2 F2 = dC1 F4 = dC3 F 2
p = Fa1...apF

a1...ap

(2.34)
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The Einstein frame action is (with ĝMN = eφ/2gMN):

S = − 1

2κ2
10

∫
d10x
√
−g
(
R +

1

2
(∂φ)2 +

e−φ

2.3!
H2

3 +
e3φ/2

2.2!
F 2

2 +
eφ/2

2.4!
F̃ 2

4

)
+ SCS

(2.35)

This action scales as: S → s2S under the field rescalings :

e−φ → se−φ , gMN →
√
sgMN , B2 → B2 , C1 → sC1 , C3 → sC3 (2.36)

so we expect the on-shell action to be a boundary term. To find the boundary

contribution we write the Einstein frame action in terms of differential forms:

S = − 1

2κ2
10

∫ (
∗R− 1

2
dφ ∧ ∗dφ− e−φ

2
H3 ∧ ∗H3 +

e3φ/2

2
F2 ∧ ∗F2

+
eφ/2

2
F̃4 ∧ ∗F̃4 +

1

2
B2 ∧ F4 ∧ F4

)
(2.37)

The equations of motion for the form fields following from the action are:

d
(
e−φ ∗H3 + eφ/2C1 ∧ ∗F̃4

)
= −1

2
F4 ∧ F4

d(e3φ/2 ∗ F2) = −eφ/2H3 ∧ ∗F̃4 (2.38)

d
(
eφ/2 ∗ F̃4 + F4 ∧B2

)
= 0

while the trace of Einstein’s equation gives,

−R =
1

2
(∂φ)2 +

e−φ

4.3!
H2

3 +
3e3φ/2

8.2!
F 2

2 +
eφ/2

8.4!
F̃ 2

4 (2.39)

Substituting this in the action gives

S = − 1

4κ2
10

∫ (
−e
−φ

2
H3 ∧ ∗H3 +

e3φ/2

4
F2 ∧ ∗F2 +

3eφ/2

4
F̃4 ∧ ∗F̃4 +B2 ∧ F4 ∧ F4

)
(2.40)

Now using the equations of motion of the form fields, as before, we can put the

action in the required form- the integral of a total derivative:

Son−shellIIA = − 1

8κ2
10

∫
d
(
− e−φB2 ∧ ∗H3 +

e3φ/2

2
C1 ∧ ∗F2 +

3eφ/2

2
C3 ∧ ∗F̃4

−eφ/2B2 ∧ C1 ∧ ∗F̃4 +
3

2
C3 ∧ F4 ∧B2

)
(2.41)

37



2.4.4 IIB Supergravity

The (bosonic part of) IIB supergravity action (in string frame) is again given by

eq.(2.33) above with the same SNS but the R-R and Chern-Simons part of the

action are now given by

SRR =
1

2κ2
10

∫
d10x

√
−ĝ
(
− 1

2!
F 2

1 −
1

2.3!
F̃ 2

3 −
1

4.5!
F̃ 2

5

)
(2.42)

SCS = − 1

4κ2
10

∫
C4 ∧H3 ∧ F3 (2.43)

with Fk = dCk−1 H3 = dB2 and

F̃3 := F3 − C0H3 and F̃5 = ∗F̃5 := F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 . (2.44)

We can go over to the Einstein frame with ĝMN = eφ/2gMN and combining

fields into complex quantities

τ = C0 + ie−φ G3 = F3 − τH3 (2.45)

which transform simply under the SL(2,R) duality group, to get the Einstein

frame action:

SIIB = − 1

2κ2
10

∫
d10x
√
−g

(
R +

∂Aτ̄ ∂
Aτ

2(Imτ)2
+

Ḡ3.G3

12.Imτ
+
F̃ 2

5

4.5!

)
+

1

8κ2
10

∫
C4∧G3∧Ḡ3

(2.46)

This action also scales as: S → s2S under similar field rescalings (Ck → sCkand

the rest, as before).

The Einstein frame action can be written in differential form notation:

SIIB = − 1

2κ2
10

∫ (
∗R− 1

2
dφ ∧ ∗dφ− 1

2
e2φdC0 ∧ ∗dC0 −

eφ

2
F̃3 ∧ ∗F̃3

−e
−φ

2
H3 ∧ ∗H3 −

1

4
F̃5 ∧ ∗F̃5 +

1

2
C4 ∧H3 ∧ F3

)
(2.47)

The form field equations are

d(∗e−φH3 − ∗eφC0F̃3) = F3 ∧ F̃5 (2.48)

d(∗eφF̃3) = F̃5 ∧H3 (2.49)

dF̃5 = H3 ∧ F3 (2.50)
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whereas, the trace of Einstein’s equations gives

−R =
∂M τ̄ ∂

Mτ

2(Imτ)2
+

Ḡ3.G3

24.Imτ
(2.51)

Using these the action can again be expressed as the integral of a total derivative

Son−shellIIB =
1

8κ2
10

∫
d
(
C4∧C2∧H3− C4∧F3∧B2+ B2∧eφC0∗F̃3− B2∧e−φ∗H3− C2∧eφ∗F̃3

)
(2.52)

Why should we care when the bulk contribution on the right-hand-side of

eq. (2.17) is a total derivative? We care precisely because the bulk fields are

generically singular at the specific points in the n compact dimensions where the

sources are located. To deal with this singularity, as well as any singularities com-

ing from Ssource, we imagine surrounding these objects in the transverse dimensions

by a ‘Gaussian pillbox’ at a small proper distance from the source. This removes

the singularity at the source at the expense of introducing a new boundary on the

Gaussian pillbox.

When the bulk contribution to the right-hand-side of eq. (2.17) is a total

derivative, its integral depends only on the near-source limit of the back-reacted

bulk fields at the pillbox. And these boundary conditions, in turn, are related to

the physical properties of the source at ymc allowing them to be combined with

the Ssource terms in a general way, as the next section discusses in more detail.

The conclusion is that although explicitly finding the back-reacted bulk so-

lution for a given source is very difficult, when the curvature depends only on a

total derivative most of the details of these solutions are not important. It is only

their near-brane boundary conditions that play any role in fixing the on-source

curvature, R.

Note: The on-shell supergravity action figures prominently in the AdS/CFT

correspondence via the GKPW prescription. It determines the generating func-

tional for large N, large λ CFT correlators. Since we have shown that on-shell

IIA, IIB and 11d supergravity actions are boundary terms (with their explicit

form also determined above) it seems feasible that this should provide an efficient

way to calculate correlators in CFTs whose duals are solutions with fluxes in such

supergravity theories.
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note on 6D supergravity

As a point of reference, we restate here the on-shell action as computed [67] for

chiral, gauged supergravity [57] in six dimensions. The relevant bosonic action, S6,

is given in eq. (2.3) and scales as S6 → s2 S6 when ĝMN → sĝMN and e−φ → s e−φ.

The on-shell lagrangian is therefore a total derivative, and is seen by explicit

evaluation to be

S6
on−shell =

1

2κ2
6

∫
d6x

√
−ĝ6 �φ . (2.53)

In our conventions, when used in eq. (2.17), this shows that an AdS sign cor-

responds to φ decreasing near the source, while a de Sitter sign arises when φ

increases towards the source (a property that may also be directly verified of the

explicit de Sitter solutions [48, 66]). Since e2φ counts loops in this system, consis-

tency of the classical approximation requires that one encounters the physics that

regulates the source before leaving the weak-coupling regime eφ � 1. Although

this sounds worrisome, similar considerations apply to the gravitational field of a

macroscopic source like the Earth. The large curvatures encountered if this field

were extrapolated to zero size would also eventually invalidate a semiclassical ap-

proximation; but are not a problem in practice due to the prior intervention of

the Earth’s surface.

2.5 Sources and singularities

The final step is to relate more precisely the boundary contributions to the bulk

integrals encountered above to the properties of the source action, Ssource. As we

now see, this allows contribution II to be related to contribution III in eq. (2.17),

with the result that they cancel for codimension-two sources.

The trick when doing so is to deal properly with the singularity of the bulk

configurations near the sources. We follow a strategy familiar from experience

with the Coulomb singularity of electrostatics: we surround the sources with

small ‘Gaussian pillboxes,’ and replace the singular extrapolation into the pillbox

interior with an appropriate set of boundary conditions on the surface of the box.

In this way the singular physics of a point charge is finessed into a finite flux
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through an arbitrary, but small, surface enclosing the charge.

Of course, this is only a useful construction if the size of the charge distribution

is much smaller than the distances of interest for predicting the resulting electric

field. If the box is too small compared with the charge distribution inside, the

real charge distribution inside cannot be approximated by a point source with the

same total charge. A similar problem arises if the box is too large compared with

the scales over which the electric fields are to be computed. The construction is

useful if a sufficiently large hierarchy exists between the size of the source and the

distances of interest for the resulting electric fields.

The same is possible for gravitating systems, provided the physical size of the

source is much smaller than the distance over which the gravitational field extends

(like the size of any extra dimensions). To accomplish this in the present context

[61, 63], we excise a small D-dimensional spacetime volume from around each

source, and instead specify the boundary conditions on boundary to this small

volume.

In the spirit of replacing a real charge distribution by an equivalent point

charge, the boundary conditions are specified by doing so for a simple source

distribution that shares the same energy. This is most simply done by imagining

the source energy density to be distributed on the boundary of the pillbox itself,

with the pillbox interior filled in with a smooth field configuration. Such a simple-

minded procedure suffices to capture the long-distance physics of a generic real

distribution if the pillbox is sufficiently small, with the size of the actual source

of interest being much smaller still.

Formally this is done by specifying a (D − 1)-dimensional codimension-one

boundary action, S̃bdy, on the pillbox surface, together with a smooth solution

describing the pillbox interior. This construction allows boundary conditions to

be inferred using standard methods involving the Israel junction conditions [58],

which relate S̃bdy to the jump in bulk-field derivatives between inside and outside

of the pillbox.

Once these junction conditions are found, a new point of view is possible for

which the pillbox is regarded as a proper boundary of the bulk geometry, without

reference to the pillbox interior. In this case one defines a new boundary action for
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the pillbox, Sbdy, which is defined by the condition that its derivatives determine

the near-source radial derivatives of the fields exterior to the pillbox. In general

Sbdy differs from S̃bdy because it must now also include any effects that used to

be generated by the now non-existent interior geometry. Sbdy also includes the

Gibbons-Hawking action [71] for gravity on the boundary, both of the interior and

exterior regions:

Sbdy := S̃bdy + SGH+ + SGH− + Sint , (2.54)

with

SGH =
1

κ2
D

∫
dD−1x

√
−γ K , (2.55)

and K = gijKij, where Kij is the extrinsic curvature of the boundary and γij

the induced metric. The subscript ± for SGH± indicates whether the extrinsic

curvature is to be computed just inside or just outside of the codimension-one

pillbox boundary. The Gibbons-Hawking action is required in the presence of

boundaries to make the variation of the Einstein action well-posed. Finally, Sint

describes the ‘bulk’ action describing the interior geometry, whose details are not

important in what follows when the pillbox is sufficiently small.

In the limit of a vanishingly small pillbox, these codimension-one actions can be

compactified into corresponding higher-codimension actions. We define S̃source to

be the result obtained from S̃bdy in this way, but it is the dimensional reduction of

Sbdy that compactifies to the d-dimensional source action, Ssource, used in previous

sections.

This procedure has been worked through in detail for scalar-tensor-Maxwell

theories with codimension-two sources in D = d + 2 dimensions [61], to which

we now specialize. The resulting boundary conditions were then checked for D7-

brane sources in Type IIB supergravity in 10 dimensions, for which the bulk and

source actions are explicitly known, as are a broad class of solutions to the bulk

field equations [69]. In all cases the solutions and actions satisfy the boundary

conditions inferred using this construction [63].

For the present purposes it turns out that we need only the boundary condi-

tions for the metric. Using the Israel junction conditions to relate an assumed

smooth interior geometry for the pillbox to the geometry outside, one finds the

following junction conditions, expressed in terms of the codimension-one action,
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S̃bdy, of the codimension-one source:6

1

2κ2
D

√
−ĝD

(
Kij −Kgij

)
− (int)ij =

δS̃bdy

δĝij
. (2.56)

This expression adopts coordinates near the pillbox for which ρ denotes radial

proper distance away from the source, which is located at ρ = 0. The pillbox

boundary lies on a surface of fixed, small ρ, for which Kij is the extrinsic curvature

of the fixed-ρ surface, for which the local coordinates are {xi} = {xµ, θ}, with

i = 0, 1, · · · , d where d = D−2 and θ is an angular coordinate that runs from 0 to

2π as one encircles the source. Finally, ‘(int)ij’ denotes the same result evaluated

for the smooth interior geometry, for which ρ = 0 is nonsingular.

As mentioned earlier, there are two equivalent ways to read eq. (2.56). The

first is the way it was initially derived: where S̃bdy represents only the action of

the boundary, and the interior region of the brane is matched onto the exterior

one through eq. (2.56). The other viewpoint is that the pillbox is considered the

actual boundary of spacetime, and the ‘interior’ of the branes is excised entirely.

In this point of view, the properties of the interior solutions are encoded in the

boundary action, Sbdy:

1

2κ2
D

√
−ĝD

(
Kij −Kgij

)
=
δS̃bdy

δĝij
+ (int)ij =

δSbdy

δĝij
. (2.57)

In the limit of a very small pillbox, these conditions dimensionally reduce to

conditions that only refer to the codimension-two action.

lim
ρ→0

∮
xb

dθ

[
1

2κ2
D

√
−ĝ

(
Kij −Kĝij

)
− (int)ij

]
=

δS̃source

δĝij
, (2.58)

where the integration is about a small circle of proper radius ρ encircling the

brane position at ρ = 0, and NM is the unit normal pointing towards the brane

(NMdxM = −dρ).

Thus we see that source-bulk matching relates the asymptotic, near-source

radial derivatives of the bulk fields to the properties of the source action. In what

6The difference in signs compared to [63] arises from the choice of unit normal. Here, K

is defined with respected to the outward pointing normal, to agree with the convention for the

Gibbons-Hawking term.
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follows, an important role is played by the function, Usource, that controls the

codimension-two boundary condition for the warp factor, W ,

d

κ2
D

lim
ρ→0

∮
dθ
√
−ĝD NM∂MW = 2

∂

∂gθθ

[√
−gd L̃source

]
:= d

√
−gd Usource , (2.59)

where the last equality defines Usource, and L̃source is the codimension-two lagrange

density

S̃source =

∫
ddx
√
−ĝd L̃source . (2.60)

The function Usource is important7 for other reasons, besides its above role in

controlling the asymptotic behaviour of the warp factor. As we show below, for

codimension-two sources Usource turns out also to be the Lagrange density of the

full action, Ssource [61, 63]. It turns out that Usource is generically non-negative,

and this is related to the general property (described below) that the bulk field

equations dictate that W does not increase as one approaches a codimension-two

source.

Implications for the on-source curvature

We now show how the above matching conditions imply a dramatic cancelation in

our key formula, eq. (2.17). In particular, after using Gauss’ law to rewrite total

derivatives in terms of surface terms at the position of the Gaussian pillboxes

surrounding the sources, followed by eq. (2.59), one of the terms on the right-

hand-side of eq. (2.17) can be written:

1

2κ2
D

∫
ddx
√
−gd

∫
d2y
√
g̃2 ∇̃2edW =

d

2κ2
D

∫
ddx
√
−gd

∮
dθ
√
g̃2 (N · ∇̃W )edW

=
d

2

∫
ddx
√
−gd Usource . (2.61)

We wish to compare this with another term on the right-hand-side of eq. (2.17),∫
ddx ĝµν

(
δSsource

δĝµν

)
= lim

ρ→0

∫
dd+1x ĝµν

(
δSbdy

δĝµν

)
. (2.62)

7Although determination of Usource appears to require knowing how Ssource depends on gθθ,

this is actually not necessary because the it is related [63] by an identity — the ‘Hamiltonian’

constraint for evolution in the ρ direction, since this relates the first derivatives of bulk fields

with respect to ρ — to the easily computed derivatives δSsource/δφ
a and δSsource/δgµν .
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To evaluate this we use the matching condition, eq. (2.56), which implies∫
dd+1x ĝij

δS̃bdy

δĝij
= − d

2κ2
D

∫
dd+1x

√
−ĝD

[
K − (int)

]
= −d

2

(
SGH+ + SGH−

)
,

(2.63)

to rewrite Sbdy as follows:

Sbdy = S̃bdy + SGH+ + SGH−

= S̃bdy −
2

d

∫
dd+1x ĝij

δS̃bdy

δĝij

= S̃bdy −
2

d

∫
dd+1x

(
ĝµν

δS̃bdy

δĝµν
+ ĝθθ

δS̃bdy

δĝθθ

)
, (2.64)

Now, our interest is in maximally symmetric configurations with no space-filling

fluxes, for which

S̃bdy =

∫
dd+1x

√
−ĝD L̃bdy , (2.65)

and L̃bdy does not depend on curvatures. In this case δS̃bdy/δĝµν = 1
2

√
−ĝD L̃bdy ĝ

µν .

Using this in eq. (2.64) gives

Ssource = lim
ρ→0

Sbdy = −2

d
lim
ρ→0

∫
dd+1x ĝθθ

δS̃bdy

δĝθθ
= −

∫
ddx
√
−gd Usource , (2.66)

where the last equality uses eq. (2.59). This leads finally to our desired expression:∫
ddx ĝµν

(
δSsource

δĝµν

)
= −d

2

∫
ddx
√
−gd Usource . (2.67)

As claimed, from eqs. (2.61) and (2.67) we see that the codimension-two matching

conditions ensure the cancelation of two of the terms on the right-hand-side of

eq. (2.17),

1

2κ2
D

∫
ddx
√
−gd

∫
d2y
√
g̃2 ∇̃2edW +

∫
ddx ĝµν

(
δSsource

δĝµν

)
= 0 , (2.68)

leaving

− 1

2κ2
d

∫
ddx
√
−gd R =

d

2
Son−shell +

1

2κ2
D

∫
dDx

√
−ĝD ĝµν

∂LD
matter

∂ĝµν

=
d

2
Son−shell , (2.69)

with the second line following because we already assumed there to be no space-

filling fluxes. This, together with the earlier expressions that give Son−shell as a

total derivative, are our main results.
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2.6 Example: the axio-dilaton IIB supergravity

In this section we first review the known [19] D7 brane solutions in axiodilaton-

metric IIB supergravity first for the case in which there is no warping and the

solutions are 8-dimensional flat. We’ll then incorporate warping and source terms

with the hope that we may be able to realise curved (in particular dS) on-brane

geometries. It turns out however that even in this more general case the solutions

are still 8d flat. In this general case we are unable to solve the coupled non-linear

system of PDE’s that results but we show the flatness of the brane solutions using

the general expression for Rd established in the previous section.

Our goal in this section is to illustrate the generality of the result, eq. (2.69),

obtained at the end of the last section. We use eq. (2.69) to show that the

on-source curvature vanishes for F-theory axio-dilaton compactifications of 10D

Type IIB supergravity with arbitrary codimension-two sources, generalizing a

known result when the sources are supersymmetric [70]. Although this example

corresponds to the choices d = 8 and n = 2, — with only the metric, gMN , and

the axio-dilaton, τ = C + i eφ, (and no other fluxes) in play, in what follows we

work instead with general d.

This choice is made for three reasons. First, because it includes a broad

class of explicitly known solutions [69] with explicit sources: D7- and O7-planes,

as well as various kinds of (p, q)-branes. Second, because the absence of bulk

fluxes ensures that the right-hand-side of eq. (2.17) is particularly simple (and is a

total derivative). Third, the d-dimensional sources in this case have codimension

two, which is one of the few situations for which matching conditions relating

near-source asymptotics to physical properties of the source are explicitly worked

out [61]. In particular, they have been tested explicitly [63] for the solutions of

ref. [69] with D7-brane sources — and implicitly, using SL(2, R) invariance, for

(p, q)-brane sources as well.
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2.6.1 Bulk equations of motion

The Einstein frame action for the Einstein-axio-dilaton system in 10D Type IIB

supergravity is S = SB + Ssource, where

SB = − 1

2κ2

∫
d10x

√
−ĝ ĝMN

[
R̂MN +

∂Mτ ∂Nτ

2 (Im τ)2

]
. (2.70)

This is invariant under PSL(2,R) transformations

τ → aτ + b

cτ + d
, (2.71)

with the real parameters a through d satisfying a d−b c = 1. The scaling symmetry

boils down in this case to τ → s τ and ĝMN →
√
s ĝMN , under which SB → s2 SB.

The Einstein field equations for this action are

R̂MN +
1

4(Im τ)2
(∂M τ̄ ∂Nτ + ∂N τ̄ ∂Mτ) = (source terms) , (2.72)

whose trace with ĝMN ensures that Son−shell = 0 (for all D). The axio-dilaton

equation is, similarly

−i∇̂2τ +
∂Mτ∂Mτ

Im τ
= (source terms) . (2.73)

As ever, the solutions of interest have geometry

dŝ2 = ĝMN dxMdxN = e2W gµν dxµdxν + g̃mn dymdyn , (2.74)

where gµν(x) is a d-dimensional maximally symmetric Minkowski-signature met-

ric, and W (y), τ(y) and g̃mn(y) depend only on the other n compact directions.

We temporarily keep the variables d and n general, although at the end we spe-

cialize to our real interest in this section: n = 2 (and D = 10 and d = 8, though

this is less crucial).

For general d and n the Ricci tensors satisfy (see eqs. 1.5 and 1.6)

R̂µν = Rµν +
(
∇̃2W + d g̃mn∂mW ∂nW

)
e2Wgµν

= Rµν +
1

d
e(2−d)W

(
∇̃2edW

)
gµν

and ĝmnR̂mn = R̃ + d
(
∇̃2W + g̃mn∂mW∂nW

)
= R̃ + d e−W ∇̃2eW ,(2.75)
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and so the (µν) Einstein equations, R̂µν = 0,

Re−2W + e−dW ∇̃2edW = (source terms) , (2.76)

while the n-dimensional trace of the remaining Einstein equations becomes

R̃ + d e−W ∇̃2eW +
g̃mn∂mτ∂nτ̄

2(Im τ)2
= (source terms) . (2.77)

We next briefly review a situation where solutions are known fairly explicitly to

the equations governing the metric and axio-dilaton in Type IIB supergravity.

These are the unwarped, flat solutions of [69].

2.6.2 Flat unwarped solutions

When n = 2 a very broad class of explicit solutions to the Einstein equations

are known [69] in the limiting case where the two transverse dimensions are not

warped: ∂mW = 0. In this case the (µν) Einstein equation implies R = 0 and so

the solutions are given by τ = τ(z) and

ds2 = ηµν dxµdxν + e2C(z,z) dz dz . (2.78)

The transverse components of Einstein equations simplify to

2 ∂∂̄C − (∂τ ∂̄τ̄ + ∂τ̄ ∂̄τ)

(τ − τ̄)2
= 0 , (2.79)

while the axio-dilaton equation of motion is:

∂∂̄ τ +
2 ∂τ ∂̄τ

τ̄ − τ
= 0 . (2.80)

A broad class of solutions to eq. (2.80) are immediate when ∂mW = 0 [69]:

it is satisfied by any holomorphic function, τ = τ(z), for which ∂̄τ = 0. The

transformation properties of the axio-dilaton under the PSL(2, Z) subgroup of

the PSL(2, R) symmetry are most easily tracked if τ(z) is written

j(τ(z)) = P (z) , (2.81)

where j(τ), is the standard bijection from the PSL(2, Z) fundamental domain,

F , to the complex sphere, given in terms of Eisenstein modular forms, Ek(τ), [73].
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P (z) is a holomorphic function whose singularities are chosen by the properties

of the source branes.

The singularities of the metric turn out to be just conical at positions, z = zi,

where P (z) has isolated poles. The metric turns out to be compact when P (z) is

a ratio of polynomials of equal degree whose numerator has 24 zeroes, such as for

the choice

P (z) =
4(24f)3

27g2 + 4f 3
, (2.82)

with f(z) a polynomial of degree 8 and g(z) a polynomial of degree 12. This

gives a compactification of Type IIB supergravity on CP 1, corresponding to an

F-theory reduction on K3 [70].

The metric function C(z, z) is found by solving Einstein’s equations, giving

e2C(z,z) = (Im τ)

∣∣∣∣∣η2(τ)
N∏
i=1

(z − zi)−1/12

∣∣∣∣∣
2

, (2.83)

where η(τ) = q1/24
∏

k(1−qk), for q = e2πiτ , denotes the Dedekind η-function [73],

and the product runs over the singularities of P (z). Having explicit expressions

for τ(z) and C(z) the full solution is thus determined.

Finally, the asymptotic form of τ(z) near the singularities may be found using

the known properties of j(τ). In particular, for large Im τ , j(τ) ' e−2πiτ + · · ·
and so where P (z) ' ci/(z − zi) the above solution implies

τ(z) ' 1

2πi
ln(z − zi) + · · ·

and e2C(z,z) ' k Im τ ' − k

2π
ln |z − zi|+ · · · , (2.84)

as z → zi, for k a positive constant.

2.6.3 Warped solutions

Because source-bulk matching is best understood for codimension-two, we spe-

cialize now to the case n = 2, in which case several things simplify.

First, the trace leading to the last equation carries no loss of information, and

so the full set of Einstein equations become completely equivalent to eqs. (2.76)
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and (2.77). Second, it becomes convenient to use complex coordinates, z :=

x8 + ix9 = y1 + iy2, and write the compact metric in conformally flat form

g̃mn dxmdxn = e2C dz dz̄ = dρ2 + e2B dθ2 . (2.85)

With these choices ∇̃2f = e−2C δmn∂m∂nf = 4 e−2C ∂∂̄f , for any scalar field f ,

and the scalar curvature becomes R̃ = 2 ∇̃2C.

The Einstein equations simplify to

1

4
Re2C + e−dW∂∂̄edW = (source terms)

2 ∂∂̄C + d e−W∂∂̄eW − (∂τ ∂̄τ̄ + ∂τ̄ ∂̄τ)

(τ − τ̄)2
= (source terms) , (2.86)

while the axio-dilaton equation of motion becomes independent of C:

∂∂̄ τ +
d

2
(∂W∂̄τ + ∂̄W∂τ) +

2 ∂τ ∂̄τ

τ̄ − τ
= (source terms) . (2.87)

These coupled non-linear second order partial differential equations together

with the appropriate boundary conditions would determine the full solution (we

have d = 8 here). When there was no warping though the equations were non-

linear we were lucky to have explicit solutions. It’s unlikely that this will be the

case now.

From these system of equations, which we are unable to analytically solve,

we need to infer the curvature of our brane solutions. To this end we’ll use the

expression eq.(2.17). We will identify the contributions on the right-hand-side

of eq. (2.17) for this example. Contributions II and III can be related to each

other using the bulk brane matching conditions resulting from the Israel junction

conditions [18]. These relate the asymptotic near brane properties of the bulk

fields to properties of the source action and as shown in section 2.5 II and III

cancel each other for our codimension-2 example.

We also note that since we only have a 0-form potential there is no space-filling

8-form flux living on the 7 brane world-volume. So term IV in eq. (2.17) gives

no contribution. Secondly, as there are no higher form fields, eq. (2.52) tells us

immediately that the on-shell bulk action (term I) also vanishes 8.

8This is more generally true. For an action of the form S =
∫

(R − fab(φ)∂µφ
a∂νφ

bgµν +
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R =
d

2
Son−shell = 0 . (2.88)

Thus we have inferred, without solving the complicated coupled non-linear PDE’s

above, that even in the more general case, making allowance for warping, the

solutions are still flat.

Notice that if we had not included the source term, our conventions are such

that the warping term contributes an AdS sign if N · ∂W < 0; i.e. W decreases

towards the boundary. As we show below, the explicit asymptotic form for the

bulk solution near the sources can be found in general, and for a codimension-two

source situated at ρ = 0 (where ρ denotes proper radius) has the form eW ∝ ρω

with ω ≥ 0, in agreement with the AdS sign found in the no-go results [49, 50,

51, 52].

2.6.4 Near-source Kasner solutions

To find asymptotic solutions in the vicinity of a source it is convenient to use an

orthogonal coordinate system including proper distance ρ. We therefore take the

following ansatz for the metric and dilaton

d̂s
2

= dρ2 +Aρ2αdθ2 + Bρ2ω gµνdx
µdxν

τ = kθ + iFρ−q , (2.89)

where A = a0 +a1 ln ρ, B = b0 +b1 ln ρ and F = f0 +f1 ln ρ. This form captures, in

particular, the asymptotic form of the known unwarped solutions described in sec-

tion 2.6.2. Since the quantity b1 first arises in the field equations at subdominant

order as ρ→ 0, we initially neglect it here.

Given this choice, and keeping only the most singular part as ρ → 0, the

other), with an Einstein Hilbert term for the metric and an arbitrary target space metric for the

scalars, the R part always cancels the scalar kinetic part when the metric is put on-shell. Thus

only the “other” part of the action (involving, for example, higher p-form fields) can contribute

to Son−shell
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dilaton equation becomes

ρ−q−2

[
(α + dω − 1)(f1 − qf0 − qf1 ln ρ)− f 2

1

f0 + f1 ln ρ

]
(2.90)

+ρ−q−2

[
a1

2

f1 − qf0 − qf1 ln ρ

a0 + a1 ln ρ
+

k2ρ2q+2−2α

(a0 + a1 ln ρ)(f0 + f1 ln ρ)

]
= 0 .

We keep the variable d general here, although our Type IIB application is to

d = 8. The (ρρ) Einstein equation similarly is

0 =
1

ρ2

[
α(α− 1) + dω(ω − 1) +

1

2
q2

]
+

1

ρ2

[
a1(2α− 1)

2(a0 + a1 ln ρ)
− qf1

f0 + f1 ln ρ

]
+

1

ρ2

[
f 2

1

2(fo + f1 ln ρ)2
− a2

1

4(a0 + a1 ln ρ)2

]
, (2.91)

while the (θθ) equation gives

gθθ
ρ2

[
α(α + dω − 1) +

a1(2α + dω − 1)

2(a0 + a1 ln ρ)
− 1

4

a2
1

(a0 + a1 ln ρ)2
+

k2ρ2q+2−2α

4(a0 + a1 ln ρ)(f0 + f1 ln ρ)2

]
= 0 .

(2.92)

To leading approximation the most singular part of these equations as ρ→ 0

is solved — upto terms of relative order 1/ ln ρ or more — if the powers satisfy

the two ‘Kasner’ conditions,

α + dω − 1 = 0

α(α− 1) + dω(ω − 1) +
q2

2
= 0 . (2.93)

Using the first of these to simplify the latter allows it to be written

α2 + dω2 +
q2

2
= 1 . (2.94)

This result holds if terms that depend on k are suppressed, which is true if

the condition q + 1 > α is satisfied. In the case of interest, with d = 8, α can be

eliminated from the Kasner conditions to give

72ω2 − 16ω +
q2

2
= 0 , (2.95)

with solutions

ω =
1

9

(
1±

√
1− 9q2

16

)
. (2.96)
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This shows that the only real solutions have ω ≥ 0, and consequently α ≤ 1. The

limiting case with q = ω = 0 and α = 1 corresponds to a conical singularity at the

brane position. Hence positive q is sufficient to have the Kasner condition satisfy

the leading terms in the field equations near ρ = 0, with additional contributions

of order 1/ ln ρ and smaller.

Notice in particular that because ω ≥ 0, the warp factor always either goes to

zero or to a finite value when approaching a source. This ensures that the warping

contribution to eq. (2.17) is never of the de Sitter sign.

We can now consider what happens if we do not neglect the logarithm, b1 ln ρ,

in the warping. In this case

ĝµν = ρ2ω(W0 +W1 ln ρ)gµν . (2.97)

In the dilaton equation, we get the additional (suppressed) terms

...+ ρ−q−2

[
W1

2

f1 − qf0 − qf1 ln ρ

W0 +W1 ln ρ

]
. (2.98)

In the (ρρ) Einstein equation this gives

...+
1

ρ2

[
ω

W0 +W1 ln ρ
− 1

2

W1

W0 +W1 ln ρ
− 1

4

W 2
1

(W0 +W1 ln ρ)2

]
, (2.99)

and finally for (θθ)

...− gθθ
ρ2

[
d

2

αW1

W0 +W1 ln ρ
− d

4

a1W1

(a0 + a1 ln ρ)(W0 +W1 ln ρ)

]
. (2.100)

From this we see that a log-term in W only modifies the field equations at a

suppressed 1/ ln ρ level.
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Appendix

Curvature and fluxes for simple Freund-Rubin ex-

amples

In this appendix we review several familiar Freund-Rubin AdSd × Sp solutions to

higher-dimensional supergravity, where d + p = D. We do so in order to explore

how space-filling fluxes show up in eq. (2.17) of the main text.

Freund-Rubin solutions

Consider solutions to the field equations for the action

S = − 1

2κ2
D

∫
dDx
√
−gD

(
R+

1

2 p!
F 2

)
. (2.101)

For the p-form threading a p-sphere, Fm1.....mp = k εm1.....mp , Einstein’s equations

RMN −
1

2
gMNR+

1

2(p− 1)!

(
FMABC..F

ABC..
N − 1

2p
gMN F

2

)
= 0 , (2.102)

yield solutions that are product spaces,

ds2 = gMNdxMdxN = gµνdx
µdxν + g̃mn dxmdxn , (2.103)

with curvatures

R̃ = −k
2p(D − p− 1)

2(D − 2)
and R =

k2(2p−D)

2(D − 2)
. (2.104)

Here R̃ is the Ricci scalar associated with the p-sphere metric (which is negative

in our conventions), g̃mn, R is the (positive) Ricci scalar of a d-dimensional anti-de

Sitter metric, gµν . RMN is the Ricci tensor for the full D-dimensional metric gMN .

(In the absence of warping we need not distinguish ĝµν from gµν .)

Example: 11D supergravity

In this section we consider several examples from 11D supergravity that illustrate

the equality (2.17) with and without space-filling fluxes.
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Since the Chern-Simons term does not contribute, Freund-Rubin solutions for

11-D supergravity can be obtained using the 4-form field strength, GMNPQ, and

the following action

S11 = − 1

2κ2
11

∫
d11x
√
−g11

[
R+

1

2(4!)
G2

4

]
. (2.105)

There are two natural choices, depending on whether the 4-form flux threads the

anti-de Sitter or spherical dimensions.

AdS7 × S4

First consider solutions of the form AdS7 × S4, for which the only nonzero com-

ponents of G4 are along the 4-sphere directions:

Gmnpq = 3n εmnpq and so G2
4 = (9n2)4! . (2.106)

Einstein’s equations are

RMN −
1

2
gMN R+

1

12

(
GMABCG

ABC

N − 1

8
gMN G

2
4

)
= 0 , (2.107)

and so taking the 11-, 7- and 4-dimensional traces of eq. (2.107) one finds

R = −3n2

2
, R = gµνRµν =

21n2

2
and R̃ = g̃mnR̃mn = −12n2 , (2.108)

corresponding to AdS7 × S4.

One can use these to check eq. (2.17):

− 1

2κ2
7

∫
d7x
√
−g7 R = −21n2

4κ2
7

∫
d7x

and Son−shell = − 1

2κ2
11

∫
d11
√
−g11

[
−3n2

2
+

(9n2)4!

2(4!)

]
= − 3n2

2κ2
11

∫
d11
√
−g11 ,

and so

− 1

2κ2
7

∫
d7x
√
−g7 R =

7

2
Son−shell , (2.109)

as required by (2.17) for a unwarped solution of maximal symmetry without space

filling flux.
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AdS4 × S7

Now consider the solution AdS4×S7, which involves a space-filling flux: Gµνρσ =

3mεµνρσ. From Einstein’s equations one finds

R =
3m2

2
, R̃ = g̃mnR̃mn = −21m2

2
and R = gµνRµν = 12m2 . (2.110)

In this case one finds a mismatch between

− 1

2κ2
4

∫
d4x
√
−g4 R and

4

2
Son−shell . (2.111)

This difference is accounted for by including the flux contribution to gµν∂L11/∂gµν ,

which gives a term of the form of eq. (2.22), as required by eq. (2.17).

Alternatively, one can work with a dual Lagrangian containing a kinetic term

for the 7-form, H, that is dual to G:

Sdualized = − 1

2κ2
11

∫
d11x
√
−g11

[
R+

1

2(7!)
H2

7

]
. (2.112)

In this description the seven form threads only internal directions and has no

space-filling components, and the dualized action evaluates to

− 1

2κ2
4

∫
d4x
√
−g4R =

4

2
S on-shell (dualized) . (2.113)

Recall for these purposes that although dualization is a symmetry of the equations

of motion, it is not a symmetry of the action.

56



Chapter 3

Superspace formulation of SCFTs

with higher spin operators

We now turn to 3d SCFTs. This is a vast arena of current research. These theories

exist aplenty as fixed lines of renormalisation group flows in three dimensions in

the form of superconformal Chern-Simons theories. A classic example, much

studied recently, is ABJ theory [28]. This is an N = 6 superconformal Chern-

Simons theory with the gauge group Uk(N)×U−k(M). We’ll not explicitly study

superconformal Chern-Simons theories in this thesis but our general results on

3d SCFTs apply to these theories in particular. The techniques and formalism

developed in this chapter and the next could probably be used with advantage

in studying higher spin operators/currents and their correlation functions in ABJ

theory and its bulk holographic dual.

In section 3.1 we consider 3d superspace, and the differential form of various

operators which act in it. The construction of superconformally covariant struc-

tures in superspace is reviewed. In section 3.2 on-shell supercurrent multiplets for

higher spin currents in the free theory are constructed out of the superfields. In

section 3.3 we make a few remarks about the structure of anomalous conservation

equations for 3d CFTs and SCFTs with weakly broken higher spin symmetry. In

an appendix we list our conventions and some useful identities.
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3.1 Superspace

We begin by reviewing superspace in three dimensions and the covariant structures

that it admits, following the paper of Park [36]. Our conventions are summarized

in an appendix to this chapter.

In order to study N = m superconformal field theories in 3 dimensions we em-

ploy a superspace whose coordinates are the 3 spacetime coordinates xµ together

with the 2m fermionic coordinates θaα. Here α = 1, 2 is a spacetime spinor index

while a = 1 . . .m is the R-symmetry index, where the θs (and the supercharges

Qa
αs) are Majorana spinors that lie in the vector representation of the R-symmetry

group SO(N ). The superconformal algebra, listed in (3.56) in the appendix, is

implemented in superspace by the construction

Pµ = −i∂µ,

Mµν = −i
(
xµ∂ν − xν∂µ −

1

2
εµνρ(γ

ρ) β
α θ

a
β

∂

∂θaα

)
+Mµν ,

D = −i
(
xν∂ν +

1

2
θαa

∂

∂θαa

)
+ ∆,

Kµ = −i
((

x2 +
(θaθa)2

16

)
∂µ − 2xµ

(
x · ∂ + θαa

∂

∂θαa

)
+ (θaX+γµ)β

∂

∂θβa

)
= xνMνµ − xµD +

i

2
(θaγµX)α

∂

∂θαa
− i

16
(θaθa)2∂µ +

(θaθa)

4
(θbγµ)α

∂

∂θαb
,

Qa
α =

∂

∂θαa
− i

2
θβa(γµ)βα∂µ,

Saα = −(X+) β
α Q

a
β − iθaθb

∂

∂θαb
− iθaαθbβ

∂

∂θβb
+
i

2
(θbθb)

∂

∂θαa

= −(X−) β
α

∂

∂θβa
+
θaα
2
D +

1

4
εµνρ(γ

ρθa)αM
µν − (θbθb)

8
θaβ∂βα −

3i

4

(
θaαθ

∂

∂θ
+ θaθb

∂

∂θαb

)
,

Iab = −i
(
θa

∂

∂θb
− θb ∂

∂θa

)
+ Iab .

(3.1)

Here the derivative expressions act on superspace coordinates while the operators

M, ∆ and Iab act on the operators (states) which carry tensor structure, non-zero

scaling dimensions and transform non-trivially under R-symmetry. All indices

are contracted in matrix notation (the spinors are contracted from north-west to
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south-east, see the appendix to this chapter) and the definitions of X+, X− are

given in (3.9). Note that x2 + (θaθa)2

16
= 1

2
(X+X−) α

α (this combination appears

in the expression for Kµ above). The supercovariant derivative operator Da
α is

defined by

Da
α =

∂

∂θαa
+
i

2
θaβ∂βα, (3.2)

The operator Di
α has the property that it anticommutes will all supersymmetry

generators

{Da
α, Q

b
β} = 0 (3.3)

Note also that

{Da
α, D

b
β} = −Pαβδab (3.4)

In what follows we will sometimes need to construct functions built out of co-

ordinates in superspace that are invariant under superconformal transformations.

Given two points in superspace, (x1, θ1) and (x2, θ2), it is obvious that θ12 = θ1−θ2

is annihilated by the supersymmetry generators. It is also easy to verify that the

supersymmetrized coordinate difference

x̃µ12 = xµ12 +
i

2
θaα1 (γµ) βα θ

a
2β (3.5)

is also annihilated by all Qα.

Any vector of SO(2, 1) may equally be regarded as a symmetrized bispinor.

So xµ may be represented in terms of bispinors by the 2× 2 matrix X = x · γ. In

this notation (3.5) may be rewritten as

(X̃12) βα = (X12) βα + iθa1αθ
aβ
2 +

i

2
(θa1θ

a
2)δ β

α (3.6)

While an arbitrary function of θ12 and X̃12 is annihilated by the supersymmetry

operator, it is not, in general, annihilated by the generator of superconformal

transformations. In order to build superconformally invariant expressions it is

useful to note that

Saα = IQa
αI (3.7)

where I is the superinversion operator, whose action on the coordinates of super-

space is given by

I(xµ) =
xµ

x2 + (θaθa)2

16

(3.8)
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To define the superinversion properties of spinors, it is useful to define the objects

X± = X ± i

4
(θaθa)1. (3.9)

It follows from (3.8) that this object transforms homogeneously under inversions

I(X±) = X−1
±

I(θaα) = (X−1
+ θa)α (3.10)

I(θaβ) = −(θaX−1
− )β

(Here X is the 2 × 2 matrix corresponding to a particular superspace point, not

a coordinate difference).

Using these rules it follows that the following objects (see [36, 37, 38]) trans-

form homogeneously under inversions:

(Xij+) βα = (Xi+) βα − (Xj−) βα + iθaiαθ
βa
j (3.11)

(Xij−) βα = (Xi−) βα − (Xj+) βα − iθajαθ
βa
i (3.12)

For example,

I (Xij+) βα = I
(

(Xi+) βα − (Xj−) βα + iθaiαθ
aβ
j

)
= −(X−1

i+ ) γ
α (Xij+) δ

γ (X−1
j− ) β

δ

(3.13)

Thus Xij± transform homogeneously under inversions and are also annihilated by

the generators of supersymmetry. Moreover it may be demonstrated [36, 37, 38]

that

Xij± = X̃ij ±
i

4
θ2
ij1 Xij± = −Xji∓ (3.14)

The second relation above implies that once all the Xij+ are known, all the Xij−

are determined (and vice-versa) by this relation. In performing various manipu-

lations it is useful to note that

X+X− =
(
x2 +

1

16
(θaθa)2

)
1 (3.15)

Xij+Xij− =
(
x̃2
ij +

1

16
(θaijθ

a
ij)

2
)
1 (3.16)
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so that

(X±)−1 =
X∓

x2 + 1
16

(θaθa)2

(Xij±)−1 =
Xij∓

x̃2
ij + 1

16
(θaijθ

a
ij)

2

(3.17)

(note that the the R-symmetry index a is summed over but that, throughout,

i, j (= 1, 2, 3) label points in superspace and are not summed over).

There also exist fermionic covariant structures (which are identically zero in

the non-supersymmetric case) which are constructed out of the superspace co-

ordinates as follows [36, 37, 38]:

Θa
1α =

(
(X−1

21+θ
a
21)α − (X−1

31+θ
a
31)α

)
(3.18)

Θ2, Θ3 are defined similarly. Its transformation properties under superinversion

are

Θa
iα → −(Xi−) βα Θb

iβI
a
b Θαa

i → ITab Θβ b
i (Xi+) αβ (3.19)

The basic covariant structures Xij±, Θa
iα are annihilated by the generators

of supersymmetry. For this reason they form the basic building blocks for the

construction of superconformal invariants, as we will explain in a later section.

Polarization spinors: Since we will be dealing extensively with higher spin

operators and their correlators, it will be useful to adopt a formalism, developed in

[35], in which the information about the tensor structure is encoded in polarization

spinors: λα. These auxiliary objects are book-keeping devices to keep track of the

tensorial nature of correlators in an efficient manner. They are defined to be real,

bosonic, two-component objects transforming as spinors of the 3d Lorentz group

(see [35]). Being spinors in 2+1 dimensions fixes their transformation law under

superinversions:

λα → (X−1
+ λ)α , λβ → −(λX−1

− )β (3.20)

(This is the same as the transformation law of the θ’s).

A higher spin primary operator Jµ1µ2.....µs with spin s can be represented

in spinor components by Jα1α2.....α2s ≡ (σµ1)α1α2(σ
µ2)α3α4 ....(σ

µs)α2s−1α2sJµ1µ2.....µs .

We note that this represents an operator supermultiplet in contradistinction to [35]
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where the non-supersymmetric conformal case was considered (also, J need not

necessarily be a conserved current). We then define Js ≡ λα1λα2 ...λα2sJα1α2.....α2s .

The 3-point function 〈Js1(x1, θ1, λ1)Js2(x2, θ2, λ2)Js3(x3, θ3, λ3)〉 is then a su-

perconformal invariant constructed out of three points in (augmented) superspace

with co-ordinates labelled by (xi, θi, λi). The tensor structure of the correlator,

instead of being represented by indices, is encoded by the polynomial in λ’s (the

3-point function being a multinomial with degree λ2s1
1 λ2s2

2 λ2s3
3 for each term).

3.2 Free SCFTs in superspace and conserved higher

spin currents

In this section we study free superconformal theories, with N = 1, 2, 3, 4 and 6

supersymmetry in superspace and describe the construction of conserved higher

spin currents which these theories possess.

These currents constitute the full local gauge-invariant operator spectrum of

the theories considered. In the non-supersymmetric case the bosonic conserved

currents and the violation, due to interactions, of their conservation by 1
N

effects

play a central role in the solution of three point functions in these theories [31, 32].

The currents we consider in this section are the supersymmetric extension of the

bosonic currents considered in [35, 31, 32]. We construct the supercurrents, using

the superspace formalism described in sections 3.1, in terms of onshell superfields

and supercovariant derivatives.

3.2.1 General structure of the current superfield

Let us start by first describing the structure of the N = 1 supercurrents. A

general spin s supercurrent multiplet can be written as a superfield carrying 2s

spacetime spinor indicies and can be expanded in components as follows

Φα1α2...α2s = φα1α2...α2s + θαψ
αα1α2...α2s + θ{α1χα2...α2s} + θαθαB

α1α2...α2s (3.21)
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where all the indices α1,α2, . . . α2s are symmetrized. The conservation (shortening)

condition for the supercurrent is

Dα1Φ
α1α2...α2s = 0 (3.22)

where Dα is the supercovariant derivative given by

Dα =
∂

∂θα
+
i

2
θβ∂βα (3.23)

Using eqs.(3.23) and (3.21) we obtain

δ {α1
α1

χα2...α2s} + θα1(2B
α1α2...α2s − i

2
∂ α1
β φβα2...α2s)

− i

2
θ2∂αα1ψ

αα1α2...α2s +
i

2
θβ∂βα1θ

{α1χα2...α2s} = 0 (3.24)

This implies

χα2...α2s = 0 (3.25)

while the symmetric part of the θ component gives

Bα1α2...α2s =
i

4
∂
{α1

β φ|β|α2...α2s} (3.26)

whereas the antisymmetric part gives

εα1α2∂
α1
β φ

βα2...α2s = 0⇒ ∂α1α2φ
α1α2...α2s = 0 (3.27)

which is the current conservation equation for the current φ. Since χ = 0, the θθ

component gives the current conservation equation for ψ

∂αα1ψ
αα1...α2s = 0 (3.28)

Thus the form of the supercurrent multiplet for a spin s conserved current is

Φα1α2...α2s = φα1α2...α2s + θαψ
αα1α2...α2s +

i

4
θαθα∂

{α1

β φ|β|α2...α2s} (3.29)

The general structure of the current superfield described above goes through

for higher supersymmetries as well. For higher supersymmetries the conservation

equation reads

Da
α1

Φα1α2...α2s = 0 (3.30)
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where a = 1, 2 . . .N is the R-symmetry index1. In the case of an N = m spin-

s current multiplet, the currents φα1α2...α2s and ψαα1α2...α2s are themselves N =

m − 1 spin s and spin s + 1
2

conserved current superfields (depending on the

grassmann coordinates θaα: a = 1, . . .m− 1) while the θα in (3.29) is the left over

grassmann coordinate θmα . Thus we see the general structure of the supercurrent

multiplets: AnN = m spin s supercurrent multiplet breaks up into twoN = m−1

supercurrents with spins s and s+ 1
2

respectively.

This structure can be used to express higher supercurrents superfields in term

of components. For instance, theN = 2 spin s currents superfield can be expanded

in components as follows

Φα1α2...α2s = ϕα1α2...α2s + θaα(ψa)αα1α2...α2s +
1

2
εabθ

a
αθ

b
βAαβα1α2...α2s

+ term involving derivatives of ϕ, ψa and A
(3.31)

where a, b are R-symmetry indicies and take values in {1, 2}. The conformal

state content so obtained, namely (ϕ, ψ1, ψ2,A) above, match exactly with the

decomposition of spin s supercurrent multiplet into conformal multiplets.

3.2.2 Free field construction of currents

In this section we give an explicit construction of the conserved higher spin su-

percurrents in term of superfields for N = 1, 2, 3, 4, 6 free SCFTs. 2

N = 1

In a free field theory the exactly conserved higher spin currents are bilinear in the

free fields with symmetrised derivatives. For example, in the free bosonic O(N)

vector models the currents have the schematic form: J(s) ∼ φi∂
sφi + ... where

any number of the s derivatives can act left or right and the whole expression

is symmetrised and traceless. The coefficients in this linear combination can be

1Note that for N > 1, (3.30) is true only for R-symmetry singlet currents. For currents

carrying non-trivial R-symmetry representation the shortening condition is different. In this

paper we will only need the shortening condition (3.30).
2This part was worked out by V. Umesh and T. Sharma in collaboration with Shiraz Min-

walla. It is included here for the sake of completeness.
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determined by current conservation (∂.J(s) = 0), where the free field equations of

motion (∂2φ = 0) are also used.

In a similar manner, the exactly conserved higher spin currents in a free

SCFT are constructed from scalar superfield bilinears together with supercovari-

ant derivatives. The scalar superfield satisfies DαD
αΦ = 0, and using the current

conservation equation:

∂

∂λα
DαJ (s) = 0. (3.32)

the spin s supercurrent for the N = 1 free SCFT can be expressed in term of the

N = 1 free superfield Φ as follows

J (s) =
2s∑
r=0

(−1)
r(r+1)

2

(
2s

r

)
DrΦ̄D2s−rΦ (3.33)

where J (s) = λα1λα2 · · ·λα2sJα1α2···α2s and D = λαDα, and λα’s are polarization

spinors and s = 0, 1
2
, 1 . . . . The currents are of both integral and half-integral

spins. It can be verified that the above is the unique expression for the conserved

spin-s current in N = 1 free field theory. We note here that the stress tensor

lies in the spin 3
2

current supermultiplet (which also contains the supersymmetry

current), and thus is conserved exactly even in interacting theory.

N = 2

We give the expression of the conserved current in terms of the free N = 2

superfield Φ and its complex conjugate Φ̄.

J (s) =
s∑
r=0

{
(−1)r(2r+1)

(
2s

2r

)
∂rΦ̄∂s−rΦ + (−1)(r+1)(2r+1)

(
2s

2r + 1

)
∂rD̄Φ̄∂s−r−1DΦ

}
(3.34)

where ∂ = iλαγµαβλ
β∂µ, D = λαDα and s = 0, 1, 2 . . .. The spin 1 supercurrent

multiplet contains the stress tensor, supersymmetry current and R-current, and

its conservation holds even in the interacting superconformal theory.

As described above in subsection 3.2.1 these N = 2 currents can be decom-

posed into N = 1 currents. It is straightforward to check that the currents 3.34

when expanded in θ2
α as in (3.29) correctly reproduce the N = 1 currents (3.33).

This give a consistency check of these N = 2 currents.
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N = 3

The N = 3 chirality constraint on the matter superfield Φk is

D{ijΦk} =
1

3!
(DijΦk +DikΦj +DjkΦi) = 0

or equivalently DijΦk = −1

3

(
DilΦlε

jk +DjlΦlε
ik
) (3.35)

where Dij
α = (σa)ijDa

α.

From this chirality constraint the following identities, which would be useful

in proving current conservation, can be derived3

Dij
αD

mn
β Φk =

1

2

(
i∂αβΦiεjmεnk + i∂αβΦiεjnεmk + i∂αβΦjεimεnk + i∂αβΦjεinεmk

)
(3.36)

Contracting various indicies, the following relations can be obtained from (3.36)

as corollaries

DαijDmn
α Φk = 0

Dij
αD

mk
β Φk = −3

2

(
i∂αβΦiεjm + i∂αβΦjεim

)
Dij
αDijβΦk = −3i∂αβΦk =

2

3
Dk
jD

jiΦi

(3.37)

We give here the expression for the conserved currents in terms of the N = 3

superfield Φi.

J (s) =
s∑
r=0

(−1)r
(

2s

2r

)
∂rΦ̄i∂s−rΦi +

2

9

s−1∑
r=0

(−1)r+1

(
2s

2r + 1

)
∂rD j

i Φ̄i∂s−r−1D k
j Φk

J (s+ 1
2

) =
s∑
r=0

{
(−1)r

(
2s+ 1

2r

)
∂rΦ̄i∂s−rD j

i Φj + (−1)r+1

(
2s+ 1

2r + 1

)
∂rD j

i Φ̄i∂s−rΦj

}
(3.38)

where ∂ = iλαγµαβλ
β∂µ, D = λαDα and s = 0, 1, 2 . . .. The stress energy tensor

in this case lies the spin 1
2

supercurrent multiplet along with the R-current and

supersymmetry currents. The conservation of this supercurrent holds exactly even

in the interacting superconformal theory.

3see appendix for SO(3) conventions
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N = 4

The R-symmetry in this case is SO(4) (equivalently SU(2)l × SU(2)r)
4. The su-

percharges Qĩi
α transform in the 4 of SO(4)(equivalently (2, 2) of SU(2)l×SU(2)r).

The two matter superfields transform in the (2, 0) representation which implies

that the scalar transforms in the (2, 0) while the fermions transform in (0, 2). The

matter multiplet again satisfies a ‘chirality’ constraint

Dĩ{iΦj} =
1

2
(DĩiΦj +DĩjΦi) = 0,

or equivalently Dĩi
αΦj = −1

2
εijDĩk

α Φk.
(3.39)

where Dĩj
α = (σ̄a)ĩjDa

α.

From this chirality constraint the following identities, useful in proving current

conservation, can be derived1

Dĩi
αD

j̃j
β Φk = 2i∂αβΦiεĩj̃εjk (3.40)

Contracting various indices, the following equations can be obtained from (3.40)

as corollaries

DαĩiDj̃j
α Φk = 0

Dĩi
αD

j̃j
β Φj = −4i∂αβΦiεĩj̃

Dĩj
αDβĩkΦ

k = 2Dĩi
αDβĩiΦ

j = 8i∂αβΦj.

(3.41)

Using these equations it is straightforward to show that the following currents are

conserved.

J (s) =
s∑
r=0

(−1)r
(

2s

2r

)
∂rΦ̄i ∂s−rΦi +

1

8

s−1∑
r=0

(−1)r
(

2s

2r + 1

)
∂rDĩiΦ̄i ∂

s−r−1DĩjΦ
j.

(3.42)

where ∂ = iλαγµαβλ
β∂µ, D = λαDα and s = 0, 1, 2 . . .. In this theory the stress

energy tensor lies in the R-symmetry singlet spin zero supercurrent multiplet

(1, 0, {0, 0}).
4The indices a, b.. take values 1, 2, 3, 4 and represent the vector indices of SO(4) while the

fundamental indices of the SU(2)l and SU(2)r are denoted by i, j... and ĩ, j̃...
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N = 6

The field content of this theory is double of the field content of the N = 4 theory.

In N = 2 language the field content is 2 chiral and 2 antichiral multiplets in

fundamental of the gauge group. The R-symmetry in this theory is SO(6) (≡
SU(4)) under which the supercharges transform in vector representation (6 of

SO(6)) while the 2+2 chiral and antichiral multiplets transform in chiral spinor

representation (4 of SU(4)).

The N = 6 shortening (chirality) condition on the matter multiplet is5

Dij
αΦk = Djk

α Φi = Dki
α Φj

or equivalently Da
αΦk = − 1

10
Db
αΦl(γ̄ab) k

l

(3.43)

From this chirality constraint the following identities, which are useful in prov-

ing current conservation, can be derived2

Da
αD

b
βΦk =

i

2
∂αβΦkδab +

i

4
∂αβΦl(γ̄ab) k

l ,

or equivalently Dij
αD

mn
β Φk = −i∂αβ

(
εijmnΦk + εkjmnΦi + εikmnΦj − εijknΦm − εijmkΦn

)
(3.44)

Taking the complex conjugate of equations (3.43) and (3.44), and using the

property that γab and γ̄ab are antihermitian, we get

Dij
α Φ̄k =

1

3

(
Dil
αΦ̄lδ

j
k −D

jl
α Φ̄lδ

i
k

)
or equivalently Da

αΦ̄k =
1

10
Db
α(γ̄ab) l

k Φ̄l

(3.45)

and

Da
αD

b
βΦ̄k =

i

2
∂αβΦ̄kδ

ab − i

4
∂αβ(γ̄ab) l

k Φ̄l,

or equivalently Dij
αD

mn
β Φ̄k = −i∂αβ

(
εijmnΦk − εljmnΦ̄lδ

i
k − εilmnΦ̄lδ

j
k + εijlnΦ̄lδ

m
k + εijmlΦ̄lδ

n
k

)
(3.46)

5Here we revert back to lower case letters for the SU(4) indices i, j (taking values 1, . . . 4)

as there is no confusion with other R indices.
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Using the above relation a straightforward computation shows that the follow-

ing R-symmetry singlet integer spin currents are conserved

J (s) =
s∑
r=0

(−1)r
(

2s

2r

)
∂rΦ̄p ∂

s−rΦp− 1

24

s−1∑
r=0

(−1)r+1

(
2s

2r + 1

)
εijkl ∂

rDijΦ̄p ∂
s−r−1DklΦp.

(3.47)

where ∂ = iλαγµαβλ
β∂µ, D = λαDα and s = 0, 1, 2 . . .. The stress-energy tensor

of this theory lies, as in the N = 4 theory, in the R-symmetry singlet spin zero

multiplet (1, 0, {0, 0, 0}).

3.3 Weakly broken conservation

The free superconformal theories discussed above have an exact higher spin sym-

metry algebra generated by the charges corresponding to the infinite number of

conserved currents that these theories possess. These free theories can be deformed

into interacting theories by turning on U(N) Chern-Simons (CS) gauge interac-

tions, in a supersymmetric fashion and preserving the conformal invariance of free

CFTs, under which the matter fields transform in fundamental representations.

The CS gauge interactions do not introduce any new local degrees of freedom so

the spectrum of local operators in the theory remains unchanged. Turning on the

interactions breaks the higher spin symmetry of the free theory but in a controlled

way which we discuss below. These interacting CS vector models are interesting

in there own right as non trivial interacting quantum field theories. Exploring

the phase structure of these theories at finite temperature and chemical potential,

provides a platform for studying a lot of interesting physics, at least in the large

N limit, using the techniques developed in [29].

From a more string theoretic point of view, a very interesting example of

this class of theories is the U(N) × U(M) ABJ theory in the vector model limit
M
N
→ 0. ABJ theory in this vector model limit has recently been argued to be holo-

graphically dual a non-abelian supersymmetric generalization of the non-minimal

Vasiliev theory in AdS4 [29]. The ABJ theory thus connects, as its holographic

duals, Vasiliev theory at one end to a string theory at another end. Increasing M
N

from 0 corresponds to increasing the coupling of U(M) gauge interactions in the
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bulk Vasiliev theory. Thus, understanding the ABJ theory away from the vector

model limit in an expansions in M
N

would be a first step towards understanding of

how string theory emerges from ‘quantum’ Vasiliev theory.

In [31, 32] theories with exact conformal symmetry but weakly broken higher

spin symmetry were studied. It was first observed in [31], and later used with

great efficiency in [32], that the anomalous “conservation” equations are of the

schematic form

∂ · J(s) =
a

N
J(s1)J(s2) +

b

N2
J(s′1)J(s′2)J(s′3) (3.48)

plus derivatives sprinkled appropriately. The structure of this equation is con-

strained on symmetry grounds - the twist (∆i − si) of the L.H.S. is 3. If each Js

has conformal dimension ∆ = s + 1 + O(1/N), and thus twist τ = 1 + O(1/N),

the two terms on the R.H.S. are the only ones possible by twist matching. Thus

we can have only double or triple trace deformations in the case of weakly broken

conservation and terms with four or higher number of currents are not possible.

In the superconformal case that we are dealing with, since D has dimension

1/2 , D · J(s) is a twist 2 operator. Thus in this case the triple trace deformation

is forbidden and the only possible structure is more constrained:

D · J(s) =
a

N
J(s1)J(s2) (3.49)

In view of this, it is feasible that in large N supersymmetric Chern-Simons

theories the structure of correlation functions is much more constrained (compared

to the non-supersymmetric case).
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Appendix

Conventions

Spacetime spinors

The Lorentz group in D = 3 is SL(2,R) and we can impose the Majorana con-

dition on spinors, i.e., the fundamental representation is a real two component

spinor ψα = ψ∗α (α = 1, 2). The metric signature is mostly plus. D = 3 supercon-

formal theories with N extended supersymmetry posses an SO(N ) R-symmetry

which is part of the superconformal algebra, whose generators are real antisym-

metric matrices Iab, where a, b are the vector indices of SO(N ). The supercharges

carry a vector R-symmetry index, Qa
α, as do the superconformal generators Saα.

In D = 3 we can choose a real basis for the γ matrices

(γµ) β
α ≡ (iσ2, σ1, σ3) =

((
0 1

−1 0

)
,

(
0 1

1 0

)
,

(
1 0

0 −1

))
(3.50)

Gamma matrices with both indices up (or down) are symmetric

(γµ)αβ ≡ (1, σ3,−σ1) (γµ)αβ ≡ (1,−σ3, σ1) (3.51)

The antisymmetric ε symbol is ε12 = −1 = ε21. It satisfies

εγµε−1 = −(γµ)T

εΣµνε−1 = −(Σµν)T
(3.52)

where Σµν = − i
4
[γµ, γν ] are the Lorentz generators. The charge conjugation

matrix C can be chosen to be the identity, which we take to be

−εγ0 = C−1 γ0ε−1 = C (3.53)

Cαβ denotes the inverse of Cαβ. Spinors transform as follows

ψ′α → −(Σµν)
β
α ψβ.

Spinors are naturally taken to have index structure down, i.e., ψα.
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The raising and lowering conventions are

ψβ = εβαψα

ψα = εαβψ
β

(3.54)

There is now only one way to suppress contracted spinor indices,

ψχ = ψαχα,

and this leads to a sign when performing Hermitian conjugation

(ψχ)∗ = −χ∗ψ∗.

The γ matrices satisfy

(γµγν)
β
α = ηµνδ

β
α + εµνρ(γ

ρ) β
α (3.55)

where εµνρ is the Levi-Civita symbol, and we set ε012 = 1 (ε012 = −1). The

superconformal algebra is given below:

[Mµν ,Mρλ] = i (ηµρMνλ − ηνρMµλ − ηµλMνρ + ηνλMµρ) ,

[Mµν , Pλ] = i(ηµλPν − ηνλPµ),

[Mµν , Kλ] = i(ηµλKν − ηνλKµ),

[D,Pµ] = iPµ , [D,Kµ] = −iKµ,

[Pµ, Kν ] = 2i(ηµνD −Mµν),

[Iab, Icd] = i (δacIbd − δbcIad − δadIbc + δbdIac) ,

{Qa
α, Q

b
β} = (γµ)αβPµδ

ab,

[Iab, Q
α
c ] = i(δacQ

α
b − δbcQα

a ),

{Saα, Sbβ} = (γµ)αβKµδ
ab,

[Iab, S
α
c ] = i(δacS

α
b − δbcSαa ),

[Kµ, Q
a
α] = i(γµ) β

α S
a
β,

[Pµ, S
a
α] = i(γµ) β

α Q
a
β,

[D,Qa
α] =

i

2
Qa
α , [D,Saα] = − i

2
Saα,

[Mµν , Q
a
α] = −(Σµν)

β
α Q

a
β,

[Mµν , S
a
α] = −(Σµν)

β
α S

a
β,

{Qa
α, S

b
β} =

(
εβαD −

1

2
εµνρ(γ

ρ)αβM
µν

)
δab + εβαI

ab.

(3.56)
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All other (anti)-commutators vanish.

R-symmetry

SO(3)

Gamma matrices are chosen to be the sigma matrices

(σa) j
i =

((
0 1

1 0

)
,

(
0 −i
i 0

)
,

(
1 0

0 −1

))
. (3.57)

Indicies are raised and lowered by ε12 = −1 = −ε12. Note that σ matrices with

both lower or both upper indicies are symmetric.

The following identities are useful

εijφk + εjkφi + εkiφj = 0,

εijεkl = δilδ
j
k − δ

i
kδ
j
l ,

εijεkl = εikεjl − εilεjk, (same for upper indices)

(σa) j
i (σa) l

k = 2δliδ
j
k − δ

j
i δ
l
k

(σa)ij(σ
a)kl = −(2εilεjk + εijεkl) = −(εikεjl + εilεjk)

(3.58)

SO(4)

Gamma matrices are chosen to be

Γa =

(
0 σa

σ̄a 0

)
for a= 1,2. . . 4

where (σa) ĩ
i = (σ1, σ2, σ3, i12), (σ̄a) i

ĩ
= (σ1, σ2, σ3,−i12).

(3.59)

Indicies are raised and lowered by ε12 = −ε12 = −1 = ε̃12 = −ε̃12. With these

definitions, the following identities would be useful.

(σ̄a)ĩi = (σ̄aT )ĩi
(
(σ̄a)T = −εσaε̃−1

)
,

(σa) ĩ
i (σ̄a) j

j̃
= 2δ ĩ

j̃
δji ,

(σa)ĩi(σ̄a)j̃j = −2εijεĩj̃, (σa)ĩi(σ̄
a)j̃j = −2εijεĩj̃.

(3.60)
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SO(6)

We choose the gamma matrices to be

Γa =

(
0 γa

γ̄a 0

)
for a = 1, 2 . . . 6

where γa = (γ1, γ2, γ3, γ4, γ5, i14), γ̄a = (γ1, γ2, γ3, γ4, γ5,−i14), γ5 = γ1γ2γ3γ4.

and γi =

(
0 σi

σ̄i 0

)
with σi = (σ1, σ2, σ3, i12), σ̄i = (σ1, σ2, σ3,−i12) for i = 1 . . . 4

(3.61)

In these basis we the ‘chirality’ projection matrix is diagonal and is given by

Γ7 = −iΓ0Γ1Γ2Γ3Γ4Γ5 =

(
I4 0

0 −I4

)
(3.62)

The charge conjugation matrix is

C = Γ0Γ2Γ4 =

(
0 c

−c 0

)
with c = iγ2γ4 (3.63)

which satisfies

C∗ = C−1 = −C, (Γa)∗ = C−1ΓaC

⇒ c = −c∗ = c−1, (γ̄a)∗ = −c−1γac

In index notation: (γ̄a j
i )∗ = (γ̄a∗)i j = −cik(γa) l

k clj = cikcjl(γ
a) l
k

(3.64)

Indicies are raised and lowered with using the charge conjugation matrix C

for Γa and c for γa. With both indicies up or down the γ matrices are antisym-

metric6. The last equation in (3.64) implies the following useful properties for

the generators Let us define

γab = γaγ̄b − γbγ̄a, γ̄ab = γ̄aγb − γ̄bγa,

then we have following useful relations

γab† = −γab, γ̄ab† = −γ̄ab,

(γ̄ab∗)i j = (c−1γabc)i j, (γ̄ab) j
i = −(c−1γabc)ji.

(3.65)

6This should be the case as the vector of SO(6) is (4× 4)antisym of SU(4).
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The first line says that the generators of SO(6) transformation are Hermitian7

while the two equation in the second line follows from (3.64).

The following identities are useful8:

γ̄aij = γaij + 2δa0cij, (γ̄a) j
i = (γa) j

i − 2δa0δji ,

γaijγ
a
kl = −2εijkl = 2(cikcjl − cilcjk − cijckl),

γaij γ̄
a
kl = −2εijkl + 2cijckl = 2(cikcjl − cilcjk),

(γa)ij(γ̄a)kl = 2δikδ
j
l − 2δilδ

j
k,

(γab)ji (γ
ab)lk = −32δliδ

j
k + 8δji δ

l
k,

(3.66)

Useful relations

Some useful relations and identities are given below

εαβ
∂

∂θaβ
= − ∂

∂θaα
(3.67)

(γµ) β
α (γµ) ρ

σ = 2δ ρ
α δ

β
σ − δ β

α δ
ρ
σ (3.68)

θαθβ =
1

2
εαβθθ, θαθβ = −1

2
εαβθθ (3.69)

θ1αθ
β
2 + θ2αθ

β
1 + (θ1θ2)δβα = 0 (3.70)

X2 ≡ X β
α X

α
β = 2xµx

µ ≡ 2x2 , X β
α X

γ
β = x2δγα =

X2

2
δγα (3.71)

D1αX̃
−∆
12 = i∆(X̃12) βα (θ12)β (3.72)

D1α(X̃12) γβ = −iδγα(θ12)β +
i

2
δγβ(θ12)α (3.73)

D1α(X12−) γβ = −iδγαθ12β , D1α(X12+) γβ = iεαβθ
γ
12 (3.74)

7The generator of SO(6) acting on chiral and antichiral transformation are respectively

− i
4γ

ab and − i
4 γ̄

ab

8Note that representation theory (SU(4)) wise C shouldn’t be used to raise or lower indicies

as it is not an invariant tensor of SU(4). Only εijkl and εijkl(which are specific combinations

of product of c’s) can be used to raise or lower SU(4) indices. we will explicitly see that all the

SU(4) tensor equations can be written using just ε tensors.
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Chapter 4

3-point functions of higher spin

operators

In this chapter we turn to correlation functions of N = 1 3d SCFTs. We discuss

the form of the 2-point function of a spin s operator and give an elementary

derivation, on the basis of symmetry and dimensional arguments, of the 2-point

function of two spin half operators and explicitly compute a 2-point correlator

in the free theory. Next we turn to 3-point correlation functions. The structure

of correlation functions in SCFTs have been earlier studied by J-H Park [36, 38]

and H. Osborn [37]. We build on their results on the supercovariant structures in

superspace (reviewed in chapter 3) and use them together with the polarization

spinor formalism of [35] to carry out our analysis.

We first construct parity even and odd superconformal invariants in super-

space, determine the myriad non-linear relations between them and then use these

results (in section 4.2.3 ) to determine the independent invariant structures which

can arise in various 3-point functions of higher spin operators. This chapter is

essentially an extension, to the superconformal case, of many of the results of [35].

We subsequently (in section 4.2.3) apply the constraints of current conservation

and find evidence that the 3-point function of conserved higher spin currents is

the sum of two parts- a parity even part generated by free SCFTs and a parity

odd part.
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4.1 Two-point functions

The two-point function of two spin-s operators in a 3d SCFT has a form com-

pletely determined (upto overall multiplicative constants) by superconformal in-

variance. Since, as we saw in chapter 2, X12± is the only superconformally covari-

ant structure built out of two points in superspace, the only possible expression

for the two point function which also has the right dimension and homogeneity in

λ is:

〈Js(1)Js(2)〉 ∝ P 2s
3

X̃2
12

(4.1)

where P3 is the superconformal invariant defined on two points, given in Table

4.1.

As an illustrative example, we consider the two-point function of two spin half

supercurrents. On the basis of symmetry and dimension matching we can have

the following possible structure for the 2-point function:

〈J1/2(x1, θ1, λ1)J1/2(x2, θ2, λ2)〉 = b
λ1λ2

X̃∆1+∆2
12

θ2
12

X̃12

+
λ1X̃12λ2

X̃∆1+∆2+1
12

(c+ d
θ2

12

X̃12

) (4.2)

where 1 X̃12 ≡
√

(X̃12) βα (X̃12) αβ . The shortening condition on the above 2-point

function gives

d = 0 b =
ic

4
(∆1 + ∆2 − 2) (4.3)

For J1/2 a superconformal primary ∆1 = ∆2 = 3/2 so b = ic/4 and the two point

function (upto some undetermined overall normalization) is given by

〈J1/2(x1, θ1, λ1)J1/2(x2, θ2, λ2)〉 ∝ λ1X̃12λ2

X̃4
12

+
i

4

λ1λ2θ
2
12

X̃4
12

(4.4)

A natural generalization, that reduces correctly to the above equation for s = 1/2,

is

〈Js(1)Js(2)〉 ∝ (λ1X̃12λ2)2s−1

X̃4s+2
12

(λ1X̃12λ2 +
is

2
λ1λ2θ

2
12) (4.5)

1X̃12, wherever it occurs uncontracted and without indices, is a scalar and stands for the

supersymmetric distance between points 1 and 2
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with 〈J0J0〉 = 1/X̃2
12 (since the superconformal shortening condition is different

for spin zero). Note that the above can be written as

〈Js(1)Js(2)〉 ∝
(λ1X̃12λ2 + i

4
λ1λ2θ

2
12)2s

X̃4s+2
12

(4.6)

which is the same as (4.1) . The shortening condition on this is satisfied, as may

be explicitly checked.

As a check, we also work out, by elementary field theory methods, the two

point function of the spin 1
2

current constructed out of the free N = 1 superfield

which is defined as

Φ = φ+ iθψ

Φ̄ = φ̄+ iθψ∗
(4.7)

We find that the 2-point function computed explicitly in the free theory is in

agreement with our result (4.1) above. The spin half supercurrent is

Jα = Φ̄DαΦ− (DαΦ̄)Φ (4.8)

Using the equation of motion for Φ this obeys the shortening condition DαJα = 0.

The two point function of two such currents can be obtained after doing Wick

contractions to write 4-point functions in terms of 2-point functions. We use the

free field propagator 〈Φ̄Φ〉 = 1
X̃12

, and also that,

D1αD2β
1

X̃12

=
−i(X̃12)αβ

(X̃12)3
, D1α

1

X̃12

D2β
1

X̃12

=
εαβθ

2
12

4(X̃12)4
(4.9)

This gives (upto multiplicative factors which we neglect)

〈Jα(1)Jβ(2)〉 =
((−X̃12)αβ + i

4
θ2

12εαβ)

X̃4
12

. (4.10)

Contracting with λα1 and λβ2 we find, in free field theory,

〈J 1
2
(1)J 1

2
(2)〉 =

P3

X̃2
12

(4.11)

which, indeed, is what was expected.
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4.2 Three-point functions

In this section we undertake the task of determining all the possible structures that

can occur in the three-point functions of higher spin operators 〈Js1Js2Js3〉. For

the non-supersymmetric case this was done in [35]. We will use superconformal

invariance to ascertain what structures can occur in three-point functions. We

find that there exist new structures for both the parity even and odd part of

〈Js1Js2Js3〉 which were not present in the nonsupersymmetric case. The parity-

odd superconformal invariants are of special interest as they arise in interacting

3d SCFTs. We will here restrict ourselves to the case of N = 1 SCFTs (no

R-symmetry). The results are summarized in the table given below:

Parity even Parity odd

Bosonic P1 = λ2X
−1
23−λ3

S1 = λ3X31+X12+λ2
X̃12X̃23X̃31

Q1 = λ1X
−1
12−X23+X

−1
31−λ1 and cyclic

and cyclic

Fermionic R1 = λ1Θ1 and cyclic T = X̃31
Θ1X12+X23+Θ3

X̃12X̃23

Table 4.1: Invariant structures in N = 1 superspace.

4.2.1 Superconformal invariants for 3-point functions of

N = 1 higher spin operators

We need to determine all the superconformal invariants that can be constructed

out of the co-ordinates of (augmented) superspace : xi, θi and the (bosonic) po-

larization spinors λi (i = 1, 2, 3). Using the covariant objects of chapter 3, which

transformed homogeneously under superinversions, we can begin to write down

the superconformal invariants constructed out of (xi, θi, λi).

We have

λiX
−1
ij−λj → −(λiX

−1
i− )(−Xi−X

−1
ij−Xj−)(X−1

j+λj) = λiX
−1
ij−λj (4.12)
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Thus we have the three superconformal invariants

P1 = λ2X
−1
23−λ3 , P2 = λ3X

−1
31−λ1 , P3 = λ1X

−1
12−λ2 (4.13)

Also, under superinversion,

X1+ = X−1
12−X23+X

−1
31− → −X1−X1+X1+ (4.14)

and similarly for X2+,X3+, so we also have the following as superconformal in-

variants:

Q1 = λ1X1+λ1 , Q2 = λ2X2+λ2 , Q3 = λ3X3+λ3 (4.15)

Furthermore,

λ3X31+X12+λ2 → −
1

x2
1x

2
2x

2
3

λ3X31+X12+λ2 , X̃2
ij →

X̃2
ij

x2
ix

2
j

(4.16)

so there are the additional (parity odd) superconformal invariants

S1 =
λ3X31+X12+λ2

X̃12X̃23X̃31

, S2 =
λ1X12+X23+λ3

X̃12X̃23X̃31

, S3 =
λ2X23+X31+λ1

X̃12X̃23X̃31

(4.17)

which transform to minus themselves under inversion. Together these constitute

the supersymmetric generalizations of the conformally invariant P, Q, S struc-

tures discussed in [35] 2

Using the covariant Θ structures of chapter 3 it follows that we have the

additional (parity even) fermionic invariants

R1 = λ1Θ1 , R2 = λ2Θ2 , R3 = λ3Θ3 (4.18)

It may be checked that

R2
1 = R2

2 = R2
3 = R1R2R3 = 0 (4.19)

Construction of the parity odd fermionic invariant T

We can construct more superconformally covariant structures from the building

blocks (Xjk+, Xi+, Θi, λi) - these are the fermionic analogues of P, S, Q. We

define them below and also give there transformation under superinversion.

2Note that the Sk in [35] has an extra factor of iPk compared to ours.
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a) Fermionic analogues of Pi: Define

πij = λiXij+Θj (4.20)

Then under superinversion

πij → −λiX−1
i−X

−1
i+ Xij+X

−1
j−Xj−Θj = − 1

x2
i

πij (4.21)

Similarly,

Πij = ΘiXij+Θj , Πij → Πij (4.22)

It turns out, however, that

Πij = 0 (4.23)

This result was found using Mathematica.

b) Fermionic analogues of Si:

σ13 =
λ1X12+X23+Θ3

X̃12X̃23X̃31

, σ13 → x2
3σ13 (4.24)

Σ13 =
Θ1X12+X23+Θ3

X̃12X̃23X̃31

, Σ13 → −x2
1x

2
3Σ13 (4.25)

σ32, σ21,Σ32,Σ21 are similarly defined through cyclic permutation of the indices.

It follows that

X̃2
ijΣij → −X̃2

ijΣij (4.26)

c) Fermionic analogues of Qi:

ωi = λiXi+Θi , ωi → −x2
iωi (4.27)

Ωi = ΘiXi+Θi , Ωi → x4
iΩi (4.28)

However, using Mathematica, we find

Ωi = 0 (4.29)

The invariants constructed out of the product of two parity odd (or two parity

even) covariant structures would be parity even, and since we have already listed
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all the parity even invariants, would be expressible in terms of Pi, Qi, Ri. Thus,

we find the following relations for the above covariant structures

π2
ij = σ2

ij = ω2
i = 0 (4.30)

πijωi = 0 (4.31)

1

X̃2
12

π12π23 = −R1R2 ,
1

X̃2
23

π23π31 = −R2R3 ,
1

X̃2
31

π31π12 = −R3R1 (4.32)

1

X̃2
ij

πijπji = RiRj = X̃2
ijσijσji (4.33)

X̃2
12σ21σ32 = R2R3 , X̃2

23σ32σ13 = R3R1 , X̃2
31σ13σ21 = R1R2 (4.34)

X̃2
ij ωiωj = −RiRj (4.35)

From the above covariant structures it is possible to build additional parity

odd fermionic invariants by taking products of a parity even and a parity odd

covariant structure.3Thus, we have

Tij = πijσji (4.36)

and under superinversion

Tij → −Tij (4.37)

Note that πij 6= πji so {π12, π23, π31} is a different set of parity odd covariant struc-

tures than {π21, π32, π13} (the same is true for the even structures σij). However,

because the following relation is true

Tij = −Tji (4.38)

it follows that we have only three odd invariant structures:

T1 ≡ T23 = π23σ32 , T2 ≡ T31 = π31σ13 , T3 ≡ T12 = π12σ21 (4.39)

3Note that structures like xiωi, πij/xi would be parity odd invariants under inversion. How-

ever, these are not Poincaré invariant (since correlation functions should depend only on differ-

ences (xij) of the coordinates). We could also construct structures like U = X̃12X̃23X̃31ω1ω2ω3

which would be an odd invariant (U → −U) . However, it is identically zero because the product

of three different Θ’s vanishes.
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We may also define

T ′23 = π12σ31 , T ′31 = π23σ12 , T ′12 = π31σ23 T ′ij → −T ′ij (4.40)

with T ′32 = π13σ21 , T ′13 = π21σ32 , T ′21 = π32σ13 again being related to the above

by

P3T
′
21 = −P2T

′
31 , P1T

′
32 = −P3T

′
12 , P2T

′
13 = −P1T

′
23 (4.41)

Also

T̄ij = X̃2
ijσjiωj , T̄ij → −T̄ij (4.42)

Again, we have the relation

T̄ijQi = T̄jiQj (4.43)

thus we have only three T̄ij’s.

Likewise, we have

T̂12 = X̃2
12σ31ω2 , T̂23 = X̃2

23σ12ω3 T̂31 = X̃2
31σ23ω1 T̂ij → −T̂ij (4.44)

with T̂21 , T̂32 , T̂13 being related to the above by

PjT̂ij = PiT̂ji (4.45)

We also have the following relations involving Σij

Σij = Σji , X̃2
12Σ12 = X̃2

23Σ32 = X̃2
31Σ31 (4.46)

Therefore, here we get just one parity odd invariant

T ≡ X̃2
ijΣij (4.47)

It turns out that T ′ij, T̄ij, T̂ij , X̃
2
ijΣij can be expressed in terms of Ti by means

of the following relations

P1T
′
31 = P3T1 , P2T

′
12 = P1T2 , P3T

′
23 = P2T3

P3T̄12 = −Q2T3 , P1T̄23 = −Q3T1 , P2T̄31 = −Q1T2 (4.48)

1

2
P2X̃

2
13Σ13 = T2 ,

1

2
P3X̃

2
21Σ21 = T3 ,

1

2
P1X̃

2
32Σ32 = T1

P1T̂23 = −P2T1 , P2T̂31 = −P3T2 , P3T̂12 = −P1T3
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Making use of the above equation and eq.(4.47) we can express all parity odd

fermionic structures in terms of T

T2 =
1

2
P2T , T3 =

1

2
P3T , T1 =

1

2
P1T (4.49)

T̄12 = −1

2
Q2T , T̄23 = −1

2
Q3T , T̄31 = −1

2
Q1T (4.50)

T ′31 =
1

2
P3T , T ′12 =

1

2
P1T , T ′23 =

1

2
P2T (4.51)

T̂12 = −1

2
P1T , T̂23 = −1

2
P2T , T̂31 = −1

2
P3T (4.52)

To summarize, from our fermionic covariant structures we could construct five

parity odd invariants Ti, T
′
ij, T̄ij, T̂ij , T . However, only T suffices as the other

four are related to it through the above simple relations.

We have thus obtained the superconformal invariants Pi, Qi, Ri, Si, T (listed

in tabular form at the beginning of this section) out of which the invariant struc-

tures for particular 3-point functions can be constructed as monomials in these

variables. Before we do this, however, we need to determine all the relations

between these variables using which we can get a linearly independent basis of

monomial structures for 3-point functions.

4.2.2 Relations between the invariant structures

Following [35] we can do a counting of the number of independent (parity even)

invariant structures for 3-point functions in 3d SCFTs with N = 1 supersym-

metry: the superconformal group in this case has 14 generators (10 bosonic, 4

fermionic) and out of (xi, θi, λi) (i = 1, 2, 3, so 7 × 3 real variables) we can con-

struct 7×3−14 = 7 superconformal invariants. Thus among the nine parity even

structures (Pi , Qi , Ri) we must have two relations. One of them is the supersym-

metrized version of the non-linear relation (2.14) in [35]

P 2
1Q1+P 2

2Q2+P 2
3Q3−2P1P2P3−Q1Q2Q3−

i

2
(R1R2P3Q3+R2R3P1Q1+R3R1P2Q2) = 0

(4.53)

This cuts down the number of independent invariants by one. We also have

the following triplet of relations which vanishes identically when the Grassmann
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variables are set to zero (fermionic relations) and reduces the number of invariants

to seven :

P2R1R2 +Q1R2R3 + P3R3R1 = 0

P3R2R3 +Q2R3R1 + P1R1R2 = 0 (4.54)

P1R3R1 +Q3R1R2 + P2R2R3 = 0

There are further non-linear relations involving the S’s. Since the squares or

products of S’s are parity even, we expect them to be determined in terms of the

parity even structures. Indeed, we find

S2
1 = P 2

1−Q2Q3−iP1R2R3 , S2
2 = P 2

2−Q3Q1−iP2R3R1 , S2
3 = P 2

3−Q1Q2−iP3R1R2

(4.55)

S1S2 = P3Q3 − P1P2 , S2S3 = P1Q1 − P2P3 , S3S1 = P2Q2 − P3P1

They imply that the most general odd structures that can occur in any three point

function are linear in Si. It turns out there exist further linear relations between

the parity odd structures. We find the following basic linear relationships between

the various parity odd invariant structures:

At O(λ1λ2λ3):

R1S1 +R2S2 +R3S3 = 0 (4.56)

At O(λ2
1λ2λ3, λ1λ

2
2λ3, λ1λ2λ

2
3):

Q1S1 + P2S3 + P3S2 −
i

2
P2P3T = 0

Q2S2 + P3S1 + P1S3 −
i

2
P1P3T = 0 (4.57)

Q3S3 + P1S2 + P2S1 −
i

2
P1P2T = 0

and

S2R1R2 + S3R3R1 + T (Q1P1 − P2P3) = 0

S3R2R3 + S1R1R2 + T (Q2P2 − P3P1) = 0 (4.58)

S1R3R1 + S2R2R3 + T (Q3P3 − P1P2) = 0

From eq. (4.56) follows:

S2R1R2 − S3R3R1 = 0
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S3R2R3 − S1R1R2 = 0 (4.59)

S1R3R1 − S2R2R3 = 0

From these follow other linear relations at higher orders in λ1 , λ2 , λ3:

Q1P1S1 +Q2P2S2 −Q3P3S3 + 2P1P2S3 −
i

2
TP1P2P3 = 0

Q2P2S2 +Q3P3S3 −Q1P1S1 + 2P2P3S1 −
i

2
TP1P2P3 = 0 (4.60)

Q3P3S3 +Q1P1S1 −Q2P2S2 + 2P3P1S2 −
i

2
TP1P2P3 = 0

Adding the above equations gives

Q1P1S1 +Q2P2S2 +Q3P3S3 −
3i

2
TP1P2P3 + 2(P1P2S3 + P2P3S1 + P3P1S2) = 0

(4.61)

Also, we get

R1R2(S1P2 +
1

2
Q3S3) +R2R3(S2P3 +

1

2
Q1S1) +R3R1(S3P1 +

1

2
Q2S2) = 0 (4.62)

(P 2
1Q1 − P 2

2Q2)P3S3 + (P 2
3 −Q1Q2 − iP3R1R2)(Q1P1S1 −Q2P2S2) = 0

(P 2
2Q2 − P 2

3Q3)P1S1 + (P 2
1 −Q2Q3 − iP1R2R3)(Q2P2S2 −Q3P3S3) = 0 (4.63)

(P 2
3Q3 − P 2

1Q1)P2S2 + (P 2
2 −Q3Q1 − iP2R3R1)(Q3P3S3 −Q1P1S1) = 0

and so on. All these relations can be put to use in eliminating linearly depen-

dent structures in 3-point functions. The above relations between the invariant

structures extend the corresponding non-supersymmetric ones in [35].

We also have the following relations

T 2 = 0 , FT = 0 , SiT = −εijkRjRk sumover j, k (4.64)

where F stands for any of the fermionic covariant/invariant structures. This im-

plies that for any 3-point function it suffices to consider parity odd structures

linear in T, Si. Thus Si, T comprise all the parity odd invariants we need in writ-

ing down possible odd structures in the 3-point functions of higher spin operators

and we need only terms linear in these invariants.
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4.2.3 Simple examples of three point functions

Independent invariant structures for three point functions

Below we write down the possible superconformal invariant structures that can

occur in specific three point functions 〈Js1(1)Js2(2)Js3(3)〉. We consider the case

of abelian currents so that, when some spins are equal, the correlator is (anti-)

symmetric under pairwise exchanges of identical currents. We use only super-

conformal invariance to constrain the correlators, so the results of this section

apply even if the higher spin symmetry is broken (that is, if Js is not conserved

for s > 2). All that is required is that Js are higher spin operators transforming

suitably under superconformal transformations4.

Under the pairwise exchange 2↔ 3 we have

A1 → −A1 , A2 → −A3 , A3 → −A2 , T → T (4.65)

where A stands for any of P, Q, R, S.

〈J 1
2
J 1

2
J0〉: Here J0 is a scalar operator with ∆ = 1. It is clear that any term

that can occur is of order λ1λ2. Thus the possible structures that can occur in

this correlator are:

P3 , R1R2 , S3 , P3T (4.66)

We also computed this correlator explicitly in the free field theory (like the 〈J 1
2
J 1

2
〉

correlator in the previous section) and the result is (with ∆1 = ∆2 = 3
2
, ∆3 = 1

2
):

1

X̃12X̃23X̃31

(P3 −
i

2
R1R2) (4.67)

The odd piece can not occur in the free field case.

〈J 1
2
J 1

2
J 1

2
〉: Note that this has to be antisymmetric under exchange of any two

currents. However the only two possible structures
∑
RiPi ,

∑
RiSi are symmet-

ric under this exchange. Thus 〈J 1
2
J 1

2
J 1

2
〉 vanishes.

〈JsJ0J0〉 : For s an even integer, the correlator is

4We take Jα1α2.....αsi
to be a primary with arbitrary conformal dimension ∆i so that Jsi ≡

λα1λα2 ...λαsiJα1α2.....αsi
has dimension ∆i−si. In general Jsi need not be conserved. However,

if the unitarity bound is attained - ∆i = si + 1 for si ≥ 1
2 ; ∆i = 1

2 for si = 0- then Jsi , being a

short primary, is necessarily conserved: D(i)α
∂

∂λ(i)α
Jsi = 0
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〈JsJ0J0〉 =
1

X̃12X̃23X̃31

Qs
1 (4.68)

In this case no other structure can occur. For s odd or half-integral, the correlator

is zero.

〈JsJ 1
2
J 1

2
〉: For s an even integer, the possible structures are

Qs
1P1 , Q

s−1
1 P2P3 , R2R3Q

s
1 ,

Qs−1
1 (P2S3 + P3S2) , Qs

1P1T , Q
s−1
1 P2P3T

The structure R1Q
s−1
1 (R2P2 − R3P3) is also possible but using eq.(4.54) equals

−R2R3Q
s
1 and hence can be eliminated while writing down independent super-

conformal invariant structures. Similarly, the structure Qs
1S1 can be written in

terms of others listed above by using eq. (4.57) and R1Q
s−1
1 (R2S2 − R3S3) in

terms of the last two structures above by using eq. (4.58)

For s odd, antisymmetry under the exchange 2↔ 3 allows only the following

possible structures

R1Q
s−1
1 (R2P2 +R3P3) , Qs−1

1 (P2S3 − P3S2)

The structure R1Q
s−1
1 (R2S2 +R3S3) vanishes on using eq. (4.56).

〈J1J1J0〉: The possible structures are

Q1Q2 , P
2
3 , R1R2P3 , R1R2S3 , P3S3 , Q1Q2T , P

2
3 T

〈J1J1J1〉: Note that all the parity even structures that can occur in 〈J1J1J1〉 are

those that are present in the non-linear relation eq.(4.53) but all these structures

are antisymmetric under the exchange of any two currents whereas this correlator

is symmetric under the same exchange. Hence the parity even part of 〈J1J1J1〉
vanishes. For the same reason no possible parity odd structures can occur either.

Thus 〈J1J1J1〉 vanishes in general.

〈J 3
2
J 1

2
J0〉: Here the possible structures are

Q1P3 , R1R2Q1 , Q1S3 , Q1P3T
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〈J 3
2
J 1

2
J 1

2
〉: The linearly independent structures are

R1Q1P1 , R1P2P3 , Q1(R2P2 +R3P3) , R1Q1S1

Two other possible fermionic parity odd structures can be eliminated using eqs.

(4.56,4.57)

〈J 3
2
J 1

2
J1〉: After eliminating some structures using the relations in sec. (7.2)

we get the following linearly independent structures:

Q1Q2P2 , Q1P1P3 , P
2
3P2 , R1R2Q1P1 , R1R2P2P3 , R3R1Q1Q2,

Q1P1S3 , Q1P3S1 , P2P3S3 , R1R2P2S3 , Q1Q2P2T , Q1P1P3T , P
2
3P2T

〈J 3
2
J 3

2
J 3

2
〉:

Q1Q2Q3

∑
i

RiPi ,
∑
cyclic

R1Q2Q3P2P3 ,
∑
i

RiQiP
3
i , P1P2P3

∑
i

RiPi ,∑
i

RiQiP
2
i Si

The structure
∑

cycR1P1(P 2
2Q2 + P 2

3Q3) can, by using the non-linear identity

eq.(4.53), be expressed in terms of the above structures and hence need not

be included. The structure
∑

cyclicR1Q2Q3(P2S3 + P3S2) vanishes on using eqs.

(4.57,4.56)

〈J2J1J1〉: The possible linearly independent structures are

Q2
1Q2Q3 , Q

2
1P

2
1 , Q1P1P2P3 , P

2
2P

2
3 ,

R2R3P1Q
2
1 , R2R3P2P3Q1 ,

Q1Q2P2S2 +Q1Q3P3S3 , P
2
2P3S3 + P 2

3P2S2 ,

R1R2P
2
2S3 +R3R1P

2
3S2 ,

Q2
1Q2Q3T , Q

2
1P

2
1 T , Q1P1P2P3T , P

2
2P

2
3 T

Other structures are possible, but can be written in terms of the other structures

listed above by using the relations in section 4.2.2.

〈J3J1J1〉: As before, after eliminating some structures which are antisymmetric

under the exchange 2↔ 3 we are left with the following linearly independent basis
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for 〈J3J1J1〉 :

Q2
1(P 2

2Q2 − P 2
3Q3) ,

Q2
1(R1R2P1P2 −R3R1P3P1) , Q1(R1R2P

2
2P3 −R3R1P

2
3P2) ,

Q2
1(P2Q2S2 − P3Q3S3) , Q1(P 2

3P2S2 − P 2
2P3S3) ,

Q1(R1R2P
2
2S3 −R3R1P

2
3S2) , Q2

1(P 2
2Q2 − P 2

3Q3)T

Again, linearly dependent structures have been eliminated using the relations

of section 4.2.2.

〈J4J1J1〉: The structures that occur here are the same as Q2
1 times the struc-

tures in 〈J2J1J1〉.
〈JsJ1J1〉: For s even this again equals Qs−2

1 〈J2J1J1〉 (this was noted, for the

non-supersymmetric case, in ref. [35]- it continues to hold in our case). For s odd

and greater than three this correlator equals Qs−2
1 〈J3J1J1〉. Thus the number of

possible tensor structures in 〈JsJ1J1〉 does not increase with s.

〈J2J2J2〉: The following are the possible independent invariant structures

Q2
1Q

2
2Q

2
3 , P 2

1P
2
2P

2
3 , Q1Q2Q3P1P2P3 ,

∑
i

Q2
iP

4
i ,

Q1Q2Q3

∑
cyclic

Q3P3R1R2 , P1P2P3

∑
cyclic

Q3P3R1R2 ,

P1P2P3

∑
cyclic

P1P2S3 ,
∑
i

Q2
iP

3
i Si ,

Q1Q2Q3

∑
cyclic

Q3S3R1R2 , P1P2P3

∑
cyclic

Q3S3R1R2 ,

Q2
1Q

2
2Q

2
3T , P 2

1P
2
2P

2
3 T , Q1Q2Q3P1P2P3T ,

∑
i

Q2
iP

4
i T

Many other linearly dependent structures have been eliminated using the relations

in sec. (7.2).

As is evident, the number of invariant structures needed to construct the 3-

point correlator increases rapidly as the spins of the operators increase and we

will not consider more examples.

It is clear from the above examples that the general structure of the 3-point

function is the following:

〈Js1Js2Js3〉 =
1

X̃m123
12 X̃m231

23 X̃m312
31

∑
n

Fn(Pi, Qi, Ri, Si, T ) (4.69)
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where mijk ≡ (∆i − si) + (∆j − sj) − (∆k − sk) and the sum is over all the

independent invariant structures Fn, each of homogeneity λ2s1
1 λ2s2

2 λ2s3
3 . Since the

3-point function is linear in the parity odd invariants and linear or bilinear in the

R’s (either Ri or RjRk , j 6= k), we have the following structure for Fn:

Fn = F (1)
n (Pi, Qi) + a(1)

n F (1)
n (Pi, Qi)T + a(2)

n F (2)
n (Pi, Qi)Si + a(3)

n F (3)
n (Pi, Qi)Ri

+a(4)
n F (4)

n (Pi, Qi)RiSj + a(5)
n F (5)

n (Pi, Qi)RjRk + a(6)
n F (6)

n (Pi, Qi)RjRkSl

Here each F
(a)
n (Pi, Qi) is a monomial in P ’s and Q’s such that each term on the

r.h.s above has homogeneity λ2s1
1 λ2s2

2 λ2s3
3 .5

Three point functions of conserved currents

We have so far considered the constraints on the structure of the three-point

functions of higher spin operators arising due to superconformal invariance alone.

We will now see how the structure is further constrained by current conservation,

i.e, when the operators are actually conserved higher spin currents. In this section

we present evidence for the claim that the three point function of the conserved

higher spin currents in N = 1 superconformal field theory consists of two linearly

independent parts, i.e.,

〈Js1Js2Js3〉 =
1

X̃12X̃23X̃31

(
a〈Js1Js2Js3〉even + b〈Js1Js2Js3〉odd

)
(4.70)

where a and b are independent constants, and the ‘even’ structure arises from free

field theory.

The procedure, quite similar to that used by [35], is as follows. For any par-

ticular three point function we first consider the linearly independent basis of

monomial structures (listed in section 4.2.3) and take an arbitrary linear combi-

nation of these structures.

〈Js1Js2Js3〉 =
1

X̃12X̃23X̃31

∑
n

anFn (4.71)

5The six F
(a)
n (Pi, Qi) are not independent functions. F

(2)
n , F

(4)
n , F

(6)
n can be obtained from

F
(1)
n , F

(3)
n , F

(5)
n , respectively, by replacing a P pi in the latter by P p−1

i Si (suitably (anti-) sym-

metrized if some spins are equal in the 3-point function)
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Current conservation Dα1J
α1α2.....α2s = 0 is tantamount to the following equa-

tion on the contracted current Js(x, λ) :

Dα
∂

∂λα
Js = 0 (4.72)

Thus the equation

Di
∂

∂λi
〈Js1Js2Js3〉 = 0 (4.73)

for each i = 1, 2, 3 gives additional constraints in the form of linear equations in the

an’s- some of these constants can thus be determined. The algebraic manipulations

get quite unwieldy- we used superconformal invariance to set some co-ordinates

to particular values and took recourse to Mathematica6. The results obtained are

given below (the known X̃ij dependent factors in the denominator are not listed

below):

Three-pt function Even Odd

〈J 1
2
J 1

2
J0〉 P3 − i

2
R1R2 S3 − i

2
P3T

〈J1J 1
2
J0〉 P3R1 + 1

2
Q1R2 0

〈J1J1J0〉 1
2
Q1Q2 + P 2

3 − iR1R2P3 S3P3 + i
2
(S3R1R2 −Q1Q2T )

〈J 3
2
J 1

2
J0〉 P3Q1 − i

2
Q1R1R2 Q1S3 − iQ1P3T

〈J 3
2
J 1

2
J 1

2
〉 Q1R1P1 +Q1(R2P2 +R3P3) + 2R1P2P3 0

〈J2J 1
2
J 1

2
〉 Q2

1P1 − 4Q1P2P3 − 5i
2
R2R3Q

2
1 Q1(P2S3 + P3S2)

+ i
2
(Q2

1P1 − 3Q1P2P3)T

Table 4.2: Explicit examples of conserved three-point functions.

Using expression (3.33) for the currents in the N = 1 free theory, some 3-point

functions were explicitly evaluated (again using Mathematica, as the computations

get quite cumbersome beyond a few lower spin examples). It must be emphasized

that the (tabulated) even structures obtained above match with the expressions

obtained from free field theory (upto overall constants). We thus have some

evidence for the claim that the three-point function of conserved currents has a

parity even part (generated by a free field theory) and a parity odd piece.

6We would like to acknowledge the use of Matthew Headrick’s grassmann Mathematica

package for doing computations with fermionic variables.
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Chapter 5

Summary and Outlook

In this chapter we summarise the results presented in chapters 2, 3 and 4 and give

a brief overview of some possible directions for future work. To begin with, in

Chapter 2, we first examined solutions to higher-dimensional field equations for

geometries of the form of eq. (2.1), with maximal symmetry in the noncompact

dimensions. We asked what features of a solution control the curvature in the

maximally symmetric, noncompact dimensions. We discussed no-go theorems on

obtaining dS compactifications in supergravity theories and considered the effects

of bulk singularities, backreacting brane sources and space-filling fluxes on the

lower dimensional curvature of the solution.

Our main result is given by eq. (2.17), which gives the noncompact curvature

scalar as a sum of four terms: R ∝ I + II + III + IV . Here I corresponds to

the bulk action evaluated at the appropriate back-reacted solution; II denotes an

integral over a total derivative involving the warp factor (whose sign is usually

definite, and not de Sitter-like); III denotes the direct contribution of the actions

of any localized sources; and IV denotes a term which vanishes for solutions

that are maximally symmetric in the non-compact dimensions, in the absence of

space-filling fluxes.

We showed that the (classical) cosmological constant of the d dimensional

spacetime is related, under quite general assumptions, to the asymptotic form

of the bulk fields in the near boundary/source limit- we need not know the full

bulk profile the solution. The boundary data includes contributions from the
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on-shell action, warping effects and the source action. Thus understanding the

backreaction of the localised objects that source the bulk fields is crucial in looking

for classical de Sitter solutions.

Eq. (2.17) relates the curvature to the on-shell bulk action. Remarkably, it

is very often true that this on-shell action is also a total derivative. A sufficient

condition for this turns out to be the existence of a scale invariance of the classical

equations of motion [67], which in particular is present for most higher-dimensional

supergravity theories of general interest. When Son−shell is the integral of a total

derivative, the curvature of the noncompact dimensions is completely determined

by the asymptotic form of a particular combination of bulk fields near any sources

that are distributed around the extra dimensions.

These arguments have two main implications. First, they show (at least for

codimension-two sources) that source back-reaction and the source actions cannot

be neglected when seeking de Sitter solutions. But they also show that all of the

details of the complete back-reacted solution are not required; it often suffices to

know the asymptotic behaviour of the bulk fields in the near-source limit. We

explicitly derive which bulk fields play this role for 11D supergravity and 10D

Type IIA and Type IIB supergravity.

We also demonstrated that all solutions (warped or unwarped) of the metric-

axio-dilaton theory with only codimension two sources are d-dimensional flat. This

generalises the known F theory result for unwarped solutions. This result is true

because the boundary conditions that must be satisfied near the sources relate the

near-source asymptotics of the bulk fields in such a way that the contributions II

and III precisely cancel. We can look at more general solutions with higher form

fluxes and higher codimension branes in the hope of obtaining dS.

Subsequent work [74] based on the results presented in [40] (and discussed in

chapter 2) deals in particular with the application of these methods to type II

supergravity flux compactifications. In such solutions it was investigated further

how the classical cosmological constant is fully determined by the boundary con-

ditions of the fields in the near-source region. The implications for meta-stable

de Sitter solutions in IIB theory, obtained by placing anti-D3 branes at the tip of

a warped Klebanov-Strassler geometry [72], were considered. A topological argu-
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ment was presented which demonstrates the presence of a singularity in the flux

energy density of the backreacted solution.

Also, classical de Sitter solutions in higher (d > 4) dimensions were considered

by [75]. It was shown here that orientifold compactifications of type II supergrav-

ity theories to d dimensions can not give rise to meta-stable de Sitter solutions for

d > 6. There are only a few possibilities in d = 5, 6 and they all require negative

tension orientifold planes and negative curvature compact manifolds, as discussed

in section 2.2

Besides potentially addressing issues of dark energy and inflation in cosmology

a natural de Sitter embedding in supergravity/string theory would also help in

gaining a more complete understanding of holography for dS gravity.

In chapter 3 we embarked on the study of 3d superconformal theories in an

on-shell superspace formalism. We summarize the main results obtained in this

regard, and presented in chapters 3 and 4, below:

• Classification of superconformal invariants formed out of 3 polarization

spinors and 3 superspace points (following [36]) and using it to constrain

3 point functions of higher spin operators in 3d superconformal field theo-

ries in section 4.2.1.

• A conjecture - and evidence - that there are exactly two structure allowed

in the 3 point functions of the conserved higher spin currents for N = 1 in

section 4.2.3.

• An explicit construction of higher spin conserved current supermultiplets in

terms of on shell elementary superfields in free superconformal field theories

in section 3.2.2.

• The superspace structure of higher spin symmetry breaking on adding in-

teractions to large N gauge theories in section 3.3.

The 3-point functions of higher spin operator supermultiplets were constructed

in terms of superconformal invariants built out of superspace co-ordinates and

bosonic polarization spinors. For this purpose, following earlier work of Hugh
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Osborn and J.H. Park , we constructed the various parity even and odd super-

conformal invariant structures out of the covariant structures which superspace

admits.

The myriad non-linear relations between these invariants were discovered (this

required extensive manipulations of grasmannian variables on Mathematica). This

enabled the determination of a basis of linearly independent monomial structures

(built out of the invariants) for the possible structures which can occur in 3-point

functions of higher spin operators. Thus the form of the 3-point functions was

constrained on the basis of superconformal invariance alone.

Thereafter, the constraints arising from imposition of conservation of currents

of higher spin were considered. It was conjectured, and evidence through examples

was provided, that the 3-point function of conserved higher spin currents is the

sum of a parity even and a parity odd part with the parity even piece arising from

free SCFTs. This 3-point function analysis extended the earlier work of Giombi,

Prakash and Yin [35].

It should be possible to build on this line of work in some different, but related,

directions:

• Extending the 3-point function analysis to SCFTs with R-symmetry (i.e.

with extended supersymmetry). Several interesting theories which are cur-

rently being studied intensively are of this class.

• The analysis can also be extended to higher dimensions - for four and six

dimensional SCFTs. The superconformal covariant structures in four and

six dimensions are known [37, 38]. We may also note here that for d >

3 CFTs it is known that the invariants are all independent and so there

are no complicated non-linear relationships between them which need to

determined prior to writing down the structures for 3-point functions. Also

there is only one parity odd invariant in d = 4 and none in d = 6, so the

analysis may be considerably simpler.

• Extending the various recent results of Maldacena and Zhiboedov on CFTs

[32] with weakly broken higher spin symmetry. In SCFTs with weakly bro-

ken higher spin symmetry (eg. Chern-Simons SCFTs) the superspace struc-
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ture of the anomalous ”conservation” equation is more constrained (see sec-

tion 3.3) and this presumably can be used profitably to constrain correlators

to a greater degree.

• 3d SCFTs with higher spin operators include a range of theories describ-

ing a variety of Renormalization group fixed points. In particular they

include Large N supersymmetric Chern-Simons theories with vector matter

(i.e. with matter fields, bosonic/fermionic, transforming in the fundamental

representation of the gauge group) or bi-fundamental matter (such as ABJ

theory) which are currently an active avenue of research. This includes de-

termining the single-trace operator spectrum, the exact large N solution of

various such theories on different 3-manifolds by computing the partition

function and their phase structure at finite temperature.

• 3d SCFTs are expected to be holographically dual to 4-dimensional theories

of gravity (via the AdS/CFT duality map). In particular, field theories with

higher spin operators are expected to be dual to Vasiliev type theories of

massless higher spins in AdS spacetime. Thus, insight into the complicated

non-linear dynamics of these theories (which themselves describe string the-

ory in the highly stringy tensionless limit) can be obtained by studying such

CFTs.

• Extending the analysis of 3-point functions to 4 and higher point functions

in view of implementing the (super) conformal bootstrap for higher spin op-

erators. This has been implemented mainly for scalar operators, but it may

be possible to take forward some of this work using the formalism devel-

oped in chapter 4 by using polarisation spinor and superspace techniques,

perhaps together with the embedding formalism for CFTs ([44, 45], see also

[42, 43]).

It would be interesting to work on this range of topics in the future as they

would shed light on the dynamics of a variety of CFTs. One may hope for the exact

solution of vector model CFTs (at least in the large N limit) and the application

of bootstrap methods to learn more about CFTs in general, in various dimensions.
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