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Abstract

This thesis addresses the open questions of providing a cosmological model
describing an accelerated expanding Universe without violating the energy
conditions or a model that contributes to the physical interpretation of the
dark energy. The former case is analyzed considering a closed model based
on a regular lattice of black holes using the Einstein equation in vacuum. In
the latter case I will connect the dark energy to the Shan-Chen equation of
state. A comparison between these two proposals is then discussed.

As a complementary topic I will discuss the motion of test particles in a
general relativistic spacetime undergoing friction effects. This is modeled
following the formalism of Poynting-Robertson whose link with the Stokes’
formula is presented. The cases of geodesic and non-geodesic motion are
compared and contrasted for Schwarzschild, Tolman, Pant-Sah and
Friedmann metrics respectively.
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1. Introduction

The modern theory of gravitation formulated as General Relativity is a
backbone of the current approach to theoretical physics. In fact it exhibits
many physical applications for example related to astrophysical phenomena
like the study of black holes, of massive stars, cosmology, cosmogony,
gravitational waves and many others. In this thesis I will deal in particular
with cosmological applications of Einstein’s theory discussing two original
cosmological models; at the end I will also speak about the motion of
particles in general relativistic spacetimes undergoing friction effects
comparing the modified orbits with the geodesic motion. The plan of the
present thesis is the following:

• In this introductory chapter I will briefly review the most famous
cosmological models discussed so far in literature to explain how our
original ones fit inside the current research and the context in which
they have been formulated. Particular attention will be devoted to the
role played by the symmetries of the geometry and the role of the
equation of state in the cosmological modeling. Then I will compare
and contrast the methods employed in the construction of the two above
mentioned models enlightening their merits and suggesting possible
future directions of research for refining them. The last part of the
chapter introduces the problem of friction forces in general relativity
discussing its connection with the analogous topic in newtonian
mechanics.

• In chapter (2) I will introduce a relativistic inhomogeneous discrete
cosmological model in vacuum explaining on which assumptions it is
based and summarizing how we improved its understanding. I will
focus my attention on the construction of the initial data for the Cauchy
formulation of General Relativity discussing their symmetries which
are inherited by the the complete solution of the Einstein equations. I
will show how the local rotational symmetry and the reflection
symmetry constrain the physical variables of the configuration. An
application to the propagation of the gravitational waves in the
configuration can then be derived.
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• In chapter (3) I will formulate an original cosmological model in which
the matter content is modeled by a nonideal fluid whose equation of state
exhibits asymptotic freedom. I will mention how this equation of state
has been derived in statistical mechanics by Shan and Chen, its most
important features and the observational relations we used to test the
theory with the astronomical observations provided by the current space
missions.

• Chapter (4) includes instead a digression about the general-relativistic
version of the Poynting-Robertson effect with reference to the Tolman,
Schwarzschild, Pant-Sah and Friedmann metrics respectively. This
force affects the motion of a massive test particle acting as a dissipative
term. The results will be discussed with applications to astrophysics
and cosmology. For example the Pant-Sah metric can describe a gas
cloud which behaves like a gravitational lensing distorting the motion
of a body crossing it: our formalism enables us to evaluate the
deflection angle for a particle moving inside it. Moreover we can use
our results to estimate the peculiar velocity of an astrophysical object
when a cosmological metric is assumed. I would like to mention also
that friction effects are always present in motion of particles, and
usually the computations are only approximations neglecting this kind
of effects. Thus the formalism presented in this chapter admits wider
applications also unrelated to cosmology or astrophysics. Our most
important original result in this context is the proof that the
Poynting-Robertson formula is the correct general relativistic extension
of the famous Stokes’ law.

• At the end of the thesis the reader can find attached the papers I
co-authored. Hence in the next pages I will focus mainly in the
methodology adopted, in the initial hypotheses of my work and the
final conclusions leaving all the details of the full derivation of the
original results to the referred articles.

The computations and the plots presented in this thesis and in the attached
papers have been created with the help of the software for algebraic and
symbolic manipulations MapleTM and MathematicaTM.

1.0.1 Notation

In this paragraph I will introduce the notation used throughout this thesis:

• I will adopt geometric units: G = c = h̄ = 1
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• Einstein convention of sum over repeated indices is understood

• the metric has signature [-,+,+,+]

• ; and ∇ denote covariant derivative

• round parentheses denote symmetrization: T(ab) = 1
2(Tab +Tba)

• square parentheses denote antisymmetrization: T[ab] =
1
2(Tab −Tba)

• Volume element for the rest space:

ηαβγ = ηαβγδ uδ = η[αβγ] , (1.1)

where ηαβγδ is the 4-dimensional Levi-Civita symbol.

• Fully orthogonally projected covariant derivative:

∇̃αT β
γ = hβ

δ hρ
γhε

α∇εT δ
ρ (1.2)

• Covariant time derivative along the fundamental worldlines:

Ṫ α
β = uγ∇γT α

β (1.3)

• Angle brackets:

v〈α〉 = hα
β vβ , T 〈αβ 〉 =

(

h(α
γhβ )

δ −
1

3
hαβ hγδ

)

T γδ . (1.4)

1.1 The current state of modern cosmology

The search for the correct model describing our Universe is a subject of
constant debate since the first days of general relativity. The current
concordance model of cosmology we are familiar with from many textbooks
is named Λ-Cold Dark Matter (ΛCDM). It assumes spatial homogeneity and
isotropy on large enough scales as working hypotheses and consequently is
based on the Friedmann metric written in comoving Robertson-Walker
coordinates. The matter source is a mixture of perfect fluids like a photon gas,
a baryonic matter density, a dark matter and dark energy components. These
fluids are assumed to be non-interacting and hence they are separately
conserved. The experimental observations, like the ones coming from the
study of the type Ia supernovae, the analysis of the cosmic microwave
background and of the baryonic acoustic oscillations, are then fitted to derive
the amount of the different matter contents of the Universe. The orthogonal
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plots which can be created by superimposing the above mentioned
observations, after fixing a Friedmann metric as a background, are currently
interpreted in terms of an almost spatially flat Universe dominated by a dark
energy fluid, compatible with the cosmological constant term entering the
Einstein equations, which in particular gives raise to an accelerated expansion
of the Universe [1; 2].

The symmetries of the theory of general relativity does not forbid the
presence of this latter term, but its physical nature and consequently the one
of the dark energy has not been established up to now. The current literature
contains many theoretical proposals which address the question of the
physical interpretation of the dark energy. For example the dark energy has
been modeled as a quintessence fluid [3; 4], or the existence of modified and
exotic equations of state, the most popular of them being nowadays the
Chaplygin gas [5–7], have been considered. This latter case has also been
compared to the k-essence model whose lagrangian can be formulated in
terms only of its kinetic part like in the Born-Infeld theory [8–10].
Braneworld models, scalartensor theories of gravity and modified/massive
gravity models play some role in the current research [11; 12]. Other authors
describe the large scale accelerated expansion of the Universe invoking the
bulk viscosity of scalar theories [13], while others analyzed the effects of
small local inhomogeneities and of the formation of structures on the global
dynamics of the Universe. In this latter case both perturbative [14–16] and
non perturbative approaches [17–19] have been adopted to evaluate the
so-called backreaction. This term follows from the non-commutativity of the
averaging operation over small scale structures and of the Einstein field
equations. The two complementary methods for the analysis of spatial
inhomogeneities are referred to as top-down and bottom-up approaches
[20–22]. In the former we begin with a completely homogeneous background
to which we then add some perturbations which should mimic the observed
astronomical structures. In the latter the point of view is the opposite: we
build up a cosmological model starting from the truly observed structures in
the physical Universe, i.e. galaxies and clusters of galaxies, and deriving then
the consequent large scale dynamics which in this case can be considered as
an emergent property of the system resulting from the interaction between the
different constituents. The most important aim of this specific proposal is to
solve the structure formation problem and the accelerated expansion of the
Universe together without violating the energy conditions. For the state of the
art in the analysis of inhomogeneities in the cosmological modeling see
[23–29] and references therein. I would like to warn the reader that I just
named few of the most important lines of research to give an idea of how
much the work about the dark energy problem is important, and not to review
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all the possible analysis published so far. The reader can find the references to
these approaches in the bibliographies of the attached papers.

To summarize, the current research in theoretical cosmology falls mainly
into two different lines: one can act on the l.h.s or on the r.h.s of the Einstein
equations

Gµν +Λgµν = 8πTµν , (1.5)

where

Gµν = Rµν −
1

2
Rgµν (1.6)

is the Einstein tensor, Rµν and R being the Ricci tensor and scalar respectively
function of the metric gµν and its derivatives, Λ is the above mentioned
cosmological constant and Tµν the stress-energy tensor.

In the former case we act on the geometry of the Universe usually
relaxing the initial assumptions of perfect homogeneity and isotropy (i.e.
reducing the symmetry group of the geometry), while in the latter we usually
maintain the assumptions that we can base geometrically our model on the
Friedmann metric and we modify the matter content involved in the
stress-energy tensor for example considering not only simple polytropic
equations of state for the fluids entering the stress-energy tensor. Again in the
former case the aim is to account for the observational data without the need
of any dark side of the Universe or any cosmological constant or any exotic
fluids looking for new and original exact or approximate solutions of the
Einstein field equations. In the latter, overturning the point of view, we
postulate the existence of some exotic fluid permeating the Universe which
behaves like dark energy to explain its physical nature: the starting point is a
lagrangian formulation motivated from microscopic arguments (usually from
the theory of elementary particles), which is connected to an effective
equation of state through the canonical equations whose free parameters are
then constrained by the experimental observations.

1.1.1 Original contribution of this thesis

During my Ph.D., performed inside the project “Erasmus Mundus joint IRAP
Ph.D. program”for relativistic astrophysics, I have analyzed both these
approaches.

In one case, under the supervision of prof. Kjell Rosquist and in
collaboration with Dr. Timothy Clifton and Prof. Reza Tavakol, we have
considered a spatially closed Universe in vacuum made by a regular lattice of
an increasing number of non-rotating and uncharged Schwarzschild black
holes. They are supposed to be a rough schematization of the observed
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astronomical structures like galaxies and clusters of galaxies: their positions
have been fixed by tiling a 3-sphere with regular polychora (four-dimensional
analogue of the platonic solids). This model is part of the research in the
bottom-up approach to inhomogeneous cosmology: this is a genuinely
inhomogeneous model on small scale and instead approaches a homogeneous
one on large scale after coarse-graining. Moreover this is a fully general
relativistic exact non-perturbative model which does not possess any global
continuous symmetry. Its dynamics can thus be completely solved
analytically during all the evolution of the system only along special lines
admitting local rotational symmetry, examples of them being the edges of the
cells and the lines connecting two masses. The face of the cell, whose center
is occupied by the black hole, admits instead invariance under reflection that
can be exploited to derive some conclusions about the propagation of
gravitational waves in these models. The kinematical quantities like the
expansion rate, the shear tensor, the spatial gravito-electric and
gravito-magnetic Weyl tensors have been discussed on these lines and
surfaces. In particular we can follow the time evolution of the length of some
special lines and we can introduce a Hubble function and a deceleration
parameter based on this length, formally in the same way as in the Friedmann
model where they are instead defined in terms of the scale factor. It turns out
that different regions of the space-time admit completely different behaviors.
The results have also been compared with the ones of the simpler Friedmann
model. We can also show that the discrete symmetries of the face induce
these models to be piecewise silent, and consequently they are more realistic
than previously considered silent models.

On the other hand, under the supervision of Drs. Donato Bini, Sauro
Succi and Andrea Geralico, I have considered a Friedmann model without
cosmological constant whose matter content is given by the Shan-Chen
non-ideal equation of state with asymptotic freedom with the purpose of
giving a physical interpretation of nature of dark energy. This is a modified
equation of state introduced in the framework of kinetic lattice theory
describing a fluid which behaves like an ideal gas (pressure and density
change in linear proportion to each other) at both low and high density
regimes (for this reason we speak of asymptotic freedom), with a liquid-gas
coexistence loop in between. This equation of state has also been compared to
the bag model of hadronic matter and thus a cosmological application is well
motivated because the Shan-Chen equation of state is not just a numerical
trick. We showed that when we plug this equation of state in the Einstein
equation we can evolve from an initially radiation dominated universe, as
required by the hot big bang model, to a dark energy dominated one. This
means that we have a phase transition in which the pressure switches its sign
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at a certain instant in the past and stays negative for a long time interval
including the present day. After adding a pressure-less matter content to our
picture of the Universe, we proved that our model can fit the supernova data
where the distance modulus is plotted with respect to the redshift for an
appropriate choice of the free parameters entering the equation of state
without any need of vacuum energy. We also showed that for this specific
choice of the parameters inside the equation of state, our model is stable
under small initial perturbations and so is self-consistent. In this way we can
provide a microscopic interpretation of the dark energy when we take into
account the form of the potential modeling the interaction on which this
equation of state is based. We also applied the model to the description of the
inflationary era of the Universe evaluating the experimental quantities like the
ratio of tensor to scalar perturbations, the scalar spectral index and its
running. A graceful exit mechanism from the inflationary era is also provided
by this model.

1.1.2 The author’s contribution to the accompanying published

papers

I will explain in this section my personal contribution to the attached papers
that I co-authored.

In papers I-IV my work consisted mainly in deriving the equations of
motion and in solving them generating the plots for the particle orbit. Before
the beginning of this analysis I was trained on the use of the software
MapleTM in similar but simplified situations than the ones consider in this
series of papers. I also proposed the extension of the Poynting-Robertson
formalism to the case of motion inside a massive fluid subsequently
re-interpreted in terms of the analogy with the Stokes’ law and the
introduction of direct and indirect interaction between test particle and fluid.

I re-derived independently all the results discussed in paper V and VII,
where in the latter I played a major role in clarifying the role of the
measurable quantities in the physical situation under exam and their
connection with respect to our specific cosmological model and in proposing
an application of the Shan-Chen equation of state to the inflationary epoch.

In paper VI I focused my attention mainly in the 5 and 8 mass
configurations, in their lattice construction, in the initial data construction and
in the derivation of the dynamical equations in these specific cases; in paper
VIII I calculated the explicit simplifications of the gravito-electric,
gravito-magnetic and shear tensors on the reflection symmetry surfaces we
were dealing with.

I took active part in all the discussions underlying all the papers I am
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submitting for my final dissertation not only providing handwritten
computations and the MapleTM and MathematicaTM codes for the quantitative
derivation of the results presented but also in suggesting their connection to
the broader scientific context inside which I have been working and in writing
preliminary versions of the manuscripts (note the alphabetic ordering of the
names of the authors in the attached papers).

1.2 The geometric approach: a symmetry group point

of view

In the next chapter I will demonstrate that the Einstein equations (1.5)
constitute a system of non-linear partial differential equations. Thus their
solution is not known in general. To find manageable solutions usually some
symmetries are imposed as assumptions at the very beginning: this has been
done also in cosmology. Then the derived solution must be compared with the
astrophysical observations to see if the mathematical result represents also a
physical meaningful one. In this section I will review the role played by the
space-time symmetry group in the development of some remarkable
cosmological models.

As already stated the Friedmann-Lemaître-Robertson-Walker (FLRW)
models, derived from the hypotheses of spatial homogeneity and isotropy to
account for the cosmological principle, agree very well with the astronomical
data sets in the description of our Universe only by introducing a dark and
undetected side of the Universe. The Friedmann metrics are solutions of the
Einstein equations (1.5) where the matter content is described by the
stress-energy tensor

Tαβ = (p+ρ)uαuβ + pgαβ (1.7)

for a perfect fluid assumed to be at rest with respect to the coordinates with p

denoting the pressure, ρ the energy density and uα = (1,0,0,0) the
four-velocity of the geodesic congruence. To take into account also the
observational constraint of an expanding Universe (formulated by the Hubble
law) the metric has been chosen in the form

ds2 = −dt2 +a2
[

dr2 +Σ2
k(dθ 2 + sin2 θdφ 2)

]

, (1.8)

where a = a(t) is the scale factor, while the function Σk(r) = [sinr,r,sinhr]
assumes different expressions reflecting the curvature of a spherical, flat and
hyperbolic universe respectively, and k = −Σ′′/Σ, where a prime denotes
derivative with respect to r. An equation of state p = p(ρ) relating the
pressure and the energy density of the fluid must be chosen to have a closed
system of equations.
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The simplest and most symmetric model belonging to this family is the
Einstein static model which is based on the line element (1.8) with k = +1
and a = const. This model is homogeneous both in space and time and
isotropic in space. To obtain a static solution it is necessary to impose a
relation of the type Λ = 1

2(ρ + p) between the cosmological constant, the
energy density and the pressure of the fluid permeating the Universe [30].
However the discovery of the expansion of the Universe mathematically
expressed by the Hubble law clearly showed that this mathematical solution
was not the one chosen by nature [31].

Thus to improve our description of the physical Universe, the static
assumption has been removed moving to the class of the Friedmann
expanding models [32]. In this context the assumptions of spatial
homogeneity and isotropy are maintained, and thus the energy density, the
pressure and the scale factor are function of the time only. The Einstein
equations (1.5) in this case are reduced to the Friedmann equation expressing
the evolution in time of the scale factor

ȧ2 = −k +
8

3
πρa2 , (1.9)

where a dot corresponds to derivative with respect to the time, and the energy
conservation equation

ρ̇ = −3
ȧ

a
(ρ + p) , (1.10)

where a fluid with p = −ρ can mimic the cosmological constant Λ. With
further assumptions on the spatial curvature and on the type of fluid, a set
of geometrical cosmological solutions can be derived, the most famous ones
being the de Sitter [33], anti de Sitter, Milne [34] and Eintein-de Sitter ones
[35]. As I mentioned above the Friedmann class of solutions are the basis of
the concordance model of cosmology.

However in this picture the existence of astronomical structures is
completely neglected. Two approaches can now be followed: add some
perturbations on a fixed Friedmann background and follow their evolutions or
look for other exact solutions. We will consider in this thesis the latter case.
For example if one wants to eliminate the hypothesis of isotropy it is possible
to substitute the scale factor a(t) with a family of two or three scale factors
a1(t), a2(t), a3(t), which are again only function of the time because we are
still considering a homogeneous Universe. In this case we refer to the scale
factor of the Universe as the quantity a = (a1 a2 a3)

1
3 [36]. On the other hand

if we want to consider an inhomogeneous Universe the scale factor, the
energy density and the pressure must be function also of the spatial
coordinates and not only of the time. For example the first step is to consider
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an inhomogeneous Universe admitting spherical symmetry, mathematically
meaning that a(t) → a(t,r) (then we can of course consider different scale
factors along the different spatial directions to obtain an even more general
solution) [37]. As a next step the scale factor must be allowed to be function
also of the angular coordinates. In these cases analytical solutions are not
available, but the dynamics of the Universe can be treated at least
qualitatively exploiting a dynamical system formalism. In the next chapter I
will apply it for particular points of the configurations considered in our
original model. For a complete classification of the most famous
cosmological models in terms of their symmetries see [38].

The real Universe is of course less symmetric than the solutions available
in literature. Moreover we can hypothesize that the postulated existence of
an exotic and undetected fluid like the dark energy in the Λ-CDM model can
be a consequence of a naive choice of the metric. It is then worthy to relax
even more the initial assumptions about the symmetries of the geometry of
the Universe, as I will do in the second chapter of this thesis where I will
deal with an inhomogeneous discrete model. I would like to stress now that
the above mentioned symmetries are continuous and are thus connected to the
presence of a Killing vector field of the metric. As a next step in relaxing these
assumptions I will consider a model admitting only discrete symmetries. To
realize this project I will consider a regular lattice of black holes playing the
role of the astronomical structures. Appropriately arranging the Schwarzschild
mass sources, there would be points and lines which admit local rotational
symmetry and surfaces which exhibit instead symmetry under reflection. We
will treat the symmetries as follow: after constructing the initial data we will
see what kind of symmetries they exhibit; then it is possible to prove that their
symmetries are inherited by the complete solution of the Einstein equations.
When we will consider a discrete symmetry, we must define it not in terms of
Killing vector fields, but in terms of a diffeomorphism between the spacetime
manifold and itself which preserves the first and second fundamental forms.
See [39; 40] for the proofs of such theorems about the preservations of the
initial symmetries along all the time evolution of the system.

1.3 The role of the equation of state in cosmology

In this paragraph I will introduce a complementary approach to cosmology
than the one discussed in the previous section. In fact I will maintain that the
assumptions of spatial homogeneity and isotropy of the Friedmann class of
cosmological models are well motivated at least on large scales. The
interpretation of the space mission data in this framework implies the present
epoch of the Universe to be dark energy-matter dominated; the goal is now to

18



picture physically the characteristics of this exotic fluid. In this section I will
outline the procedure usually adopted to reach this target.

First of all it is well known that in nature three fundamental forces exist:
the electroweak, strong and gravitational interactions. The first two can be
successfully described by the theory of relativistic quantum field and are the
dominant ones on microscopic scales. On the other hand we assume that in
the late time cosmology the only force playing a role is the gravitational one.
However it has not been possible so far to provide a physical interpretation
of the dark energy in the framework of these fundamental forces: up to now
together with the mass density it is only a parameter of the fit of the standard
model of cosmology after assuming a Friedmann metric as background, as
already explained.

Once admitted that the dark energy can really be a physical component of
our Universe, even if not yet detected, and not only an unwanted consequence
of the chosen metric, the challenge is to set it in terms of a well posed field
theory. The method usually adopted in this context is the following:

• We start from a lagrangian formulation in terms of a complex scalar
field: the action of the cosmological model is usually provided by the
theory of elementary particles; I stress that the action itself is not a
measurable quantity and consequently can not be compared directly to
experimental data and consequently observational relations must be
derived.

• From the lagrangian, the Friedmann metric and the definition of the
stress-energy tensor in terms of the pressure and energy density of the
fluid, we can derive the canonical equations which connect the scalar
field to the pressure and energy density of the fluid that it describes.

• We eliminate the scalar field from the canonical equations to obtain a
“phenomenological”equation of state for the fluid stating the pressure in
terms of the energy density; usually this equation of state contains one
or two free parameters not fixed by the initial assumptions.

• We plug this equation of state inside the Einstein equations, which are
now constituted by the Friedmann and energy conservation equations,
and solve them obtaining the evolution of the energy density and of the
scale factor as functions of the time.

• We use these solutions to fit the observed data, for example plotting
the the distance modulus and/or the Hubble function with respect to the
redshift, or reconstructing the cosmic microwave background and the
baryonic acoustic spectra. If we can fit all the observations with the
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same interval for the free parameters of the equation of state, the theory
can be considered compatible with the observations.

• As a final check it is necessary to show that the model is self-consistent:
it must be stable under small perturbations.

In real life, it can happen that we start fitting the observed data with a
parametric equation of state ad hoc and then the lagrangian is inferred
integrating the canonical equations. A remarkable example in this direction is
the modified Chaplygin gas formulated by a two-parameter equation of state
of the form

p = − A

ρα
. (1.11)

In fact in a recent paper [5] its relation to the Nambu-Goto string action plus
soft-core corrections has been analytically derived, while in a series of other
papers the free parameters have been constrained using the astronomical data
set [6; 7].

Following the same procedure, we have considered the modified equation
of state with asymptotic freedom of Shan-Chen [41]; it is possible to show
that:

• This equation of state can be compared to the quark model for hadrons.

• Plugging this equation of state inside the Einstein equations (1.5) it is
possible to evolve naturally from a radiation dominated Universe to a
dark energy dominated one without the need of any vacuum energy: the
pressure switches sign at a certain instant in the past remaining negative
for a long time interval which includes the present era.

• It replaces the repulsive action of the cosmological constant with a
purely attractive interaction with asymptotic freedom.

• With an appropriate choice of the free parameters we can fit the type
Ia supernova data, the scalar spectral index, its running and the ratio of
tensor to scalar perturbations.

• This model is stable under small perturbations for the same choice of
parameters.

• This equation of state admits an interpretation in terms of a chameleon
scalar field.

• It provides a natural exit mechanism from the inflationary era of the
Universe, which instead is not present in the previous modeling of the
dark energy in terms of the cosmological constant.
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I refer to chapter 3 of this thesis and to papers V and VII and references
therein for more details about the derivation of the above mentioned equation
of state by Shan and Chen in the framework of the lattice kinetic methods
employed in statistical mechanics, and the observational tests we applied. I
would like to stress here instead the relationship between a physical
interaction and an equation of state [42]. In fact if a microscopic potential
U = U(r) describes the interaction between the particles constituting the
fluid, the statistical mechanics methods allow us to derive a virial expansion
of the equation of state where the pressure is expressed through a power series
of the density N/V :

p

T
=

N

V
+B2(T )

(

N

V

)2

+B3(T )

(

N

V

)3

+ ... , (1.12)

as a function of the potential, where T denotes the temperature. The second
coefficient of this expansion is for example given by

B2(T ) = −1

2

∫

dr(e−βU −1) , (1.13)

where β is the inverse temperature. This well-known example shows that also
in cosmology we can reconstruct the properties of the fluid permeating the
Universe by fitting the data sets, and then connect this fluid to a fundamental
interaction using the methods of statistical mechanics.

1.4 Geometry versus matter content of the Universe

In the second and third chapter of this thesis I will introduce two different and
original models for relativistic cosmology. As explained there and in the
attached papers they belong to two completely different and opposite schools
of thinking appearing nowadays in the scientific debate. The initial
assumptions are consequently not the same and according to me they deserve
to be discussed in some details once again even more than the conclusions
they imply. Any theory or model with the ambitions of describing the nature
and the physical world we are living in must clearly separate and distinguish
between what we assume, what we derive, what we observe and what we

interpret; cosmologists must always remember and apply these steps.
In the specific case of this thesis I have discussed two models both

exhibiting an accelerated expansion Universe; in the concordance model of
cosmology such dynamical behavior is explained in terms of the presence of a
dark energy in the matter content of the Universe. In this thesis in one case
the dark energy is considered as an interpretative consequence of the model,
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in the other as an observational phenomenon. From the operative point of
view this means that, once general relativity is considered the correct arena
for the modeling of this effect, we can act on the right hand side or on the left
hand side of the Einstein equations (i.e. on the geometry or on the matter
content of the Universe). The physical meaning must be always remembered
and is the following:

• Assuming the dark energy to be an interpretative effect means that we
expect that it is not a real fluid: it does not exist in the physical world.
Its presence is regarded as a consequence of a not completely correct
choice of the underlying geometry for the spacetime: the available data
sets point out its existence only because they are analyzed with this
bias. In the ΛCDM model the most important of these “prejudices”is
the copernican principle stating that we do not live in a particular point
of the Universe that combined with the Cosmic Microwave Background
data allows us to say that the Universe is homogeneous and isotropic on
large scales. However a test of this cosmological principle would
require the acquisition of the same information about the Cosmic
Microwave Background with a family of satellites and astronomical
observatories covering the full space each of them set in a different
spatial point. Only if they all provide the same data are we permitted to
say that the copernican principle, on which the current concordance
model is based on, holds [43]. Such a confirmation does not exist at the
present time of this research. Another assumption in the current
concordance model of cosmology is that there is no interaction energy
between the matter sources.

• Assuming the dark energy to be an (indirect) observational evidence
means that we assume the validity of homogeneity and isotropy of the
Universe and we think that this fluid really exists. In this case we study
its physical properties and characteristics.

For the sake of completeness I must aware the reader that the research on
the inhomogeneous cosmological model is not only physically motivated, but
also mathematically motivated because of the lack of a well-defined definition
of the process of averaging for tensorial quantities. However constraining
ourselves to the physical aspects, the two approaches are both valid until they
are incompatible with at least one observation (the scientific method is
hypothetical-deductive-negative-asymmetric [44]). For example if one day
there will be a direct detection of a particle of the dark energy fluid we will be
led to admit that the small-scale inhomogeneities have less importance on the
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large-scale dynamics than the one derived in this thesis and that we must
reconsider the vacuum hypotheses for our model.

On the other hand the method helps us in outlining some general lines for
future short-term researches trying to eliminate unrealistic models:

• After analyzing the dynamical backreaction we would like to study its
observational counterpart through the Sachs optical equations: are the
lattice models compatible with supernova data?

• The Shan-Chan equation of state coupled to the Friedmann metric is
compatible with the above mentioned supernova plot. What can we say
about the agreement with cosmic microwave background data? And
with the baryonic acoustic oscillations data?

1.5 Friction forces in general relativity: formulation of

the problem

In this section I will explain how the motion of a test particle (a particle
whose mass-energy m can not perturb the fixed background) is described in
general relativity; I will begin with the geodesic motion to add next a friction
force term. Here I will only derive the formal equations governing these
phenomena in their general form, while their applications to physical
interesting situations will be discussed in chapter (4) of this thesis. To really
understand this formulation of the problem it is important to consider how it
has been treated in newtonian mechanics and then generalize to a curved
space-time all the classical relations.

I start reminding the reader that in an Euclidean space the motion of a
massive particle is governed by the second law of dynamics:

ma = m
dV

dt
= F , (1.14)

where a is the vectorial expression of the acceleration (which can then be
expressed as the time derivative of the velocity), while F is the resultant of all
the forces driving the motion. In the case that the force field is conservative it
is possible to express it through the gradient of a scalar field, named potential
energy U , implying that the set of three equations of motion (1.14) can be
re-formulated as

mẍ = −∇U , (1.15)

where I have eliminated the velocity of the particle in terms of the time
derivative of its position. Assuming then a set of initial conditions for the
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motion, one can fully determine the orbit of the particle (at least numerically).
In the particular case F = 0 the motion reduces from a dynamical to a pure
geometrical effect. If we are interested in the description of a friction effect,
in the r.h.s of the equation of motion we can consider a dissipative force
proportional to the velocity of the body moving inside the viscous fluid

m
dV

dt
= −βV , (1.16)

where I considered here only a scalar equation, while β denotes just a
numerical factor. If we assume also that the object is moving inside a
gravitational field quantified by the acceleration of gravity g the equation to
be solved is reduced to

dV

dt
= g− β

m
V , (1.17)

whose solution is given by

V =
mg

β

(

1− e−
β t
m

)

, (1.18)

where I assumed without loss of generality that the particle was initially at
rest [45]. When we will move to a general relativistic context, the first part
of equation (1.17) will be given by the geodesic term Uα∇αUβ , U being the
four velocity of the particle, and thus our first goal is to understand how to
generalize the friction force employed here deriving an expression valid also
in a curved background.

For this purpose we must look more in detail how the proportional factor
β is written in classical mechanics. The Stokes’law is explicitly given by

f(Stokes) = −6πRνρV (1.19)

where R is the radius of the body (assumed spherical) whose motion we are
interested in, ν is the so-called kinematic viscosity of the medium while ρ

denotes its density: the Stokes’ force is given by the product of a geometric
factor, the viscosity and the group ρV . Starting from this expression we proved
that the same force in general relativity is given by the Poynting-Robertson
effect [46; 47]:

f(fric)(U)α = −σP(U)α
β T β µUµ , (1.20)

where σ can be regarded as the cross section of the interaction, P(U) = g +
U ⊗U projects orthogonally to the velocity (here g denoting the background
metric) and T β µ is the stress-energy tensor inside which we must consider
an appropriate equation of state describing the physical properties of the fluid
inside which the body is moving. I want to stress that the Poynting-Robertson
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formula is not our original result, but it is its connection with the Stokes’ law,
as proved in paper III. In fact considering a stress-energy tensor for a perfect
fluid

Tµν = (ρ + p)uµuν + pgµν , (1.21)

in terms of its four-velocity uµ , and parameterizing the four-velocity of the
body as

U = γ(U,u)[u+ v(U,u)] , (1.22)

γ(U,u) denoting here a Lorentz factor and v(U,u) the spatial part of the
velocity, the Poynting-Robrtson formula (1.20) is reduced to

f(fric) = −σcγ2
(

ρ +
p

c2

) v

c
∼−σγ2 (ρ + p)v , (1.23)

after some algebraic manipulations. In the first step of the equation above I
explicitly restored the speed of light to show that σ should be interpreted as
an area because of its dimension. Equation (1.23) is exactly the Stokes’ law
(1.19) with all the modifications that one could expect in a relativistic regime:

• The Lorentz factor γ which reduces to unity in the non-relativistic
regime characterized by a small value for the velocity;

• The density ρ now must take into account also the pressure term, as
expected from the analogy with the equations of the relativistic
hydrostatic equilibrium;

• We can then identify 6πRν ↔ σc.

The constant σ is consequently given by the cross-section of the body whose
motion we are interested in:

σ =
wRν

c
∼ L(body)L(visc) , (1.24)

where wR can be regarded as the form factor of the body; from this expression
we can give a numerical estimate for its value. We also have

L(visc) = λcs/c , (1.25)

where cs denotes the speed of sound, while λ is the mean free path, which is
indirectly proportional to the density of the medium inside which the motion
takes place. Rewriting the cross section of the scattering process between test
particle and medium as

σ = L2
(body)

λ

L(body)

cs

c
, (1.26)
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shows that the dissipative effects we are talking about are expected to
drastically modify the motion of macroscopic bodies crossing relativistic
fluids: this represents the astrophysical case we are interested in. This is true
because in this context the factor σ can become comparable to the
geometrical cross section of the body; in fact when the density is sufficiently
low, the mean free path is of the same order of magnitude of the dimension of
large bodies, λ ∼ L(body), and on the other hand the speed of sound of a
relativistic medium can approach the speed of light. Moreover I would like to
observe that this derivation holds for both the cases of a particle moving
inside a massive or massless fluid, just changing the equation of state entering
the stress-energy tensor which is one of the term of the Poynting-Robertson
formula. Thus the analysis of the modified geodesic motion by a friction term
is in order, as we will discuss in the chapter dedicated to the physical
applications of the Poynting-Robertson effect in general relativity.
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2. Inhomogeneous discrete

relativistic cosmology

In this chapter I will introduce an inhomogeneous discrete relativistic
cosmological model based on a black hole lattice. After providing a physical
motivation for the adoption of this class of models, I will review the basic
underlying equations and how they have been constructed in literature. Then I
will explain how we characterized these models both from the static and
dynamic point of views on some special spatial surfaces, lines and points
which exhibit particular symmetries, like the reflection and the locally
rotational symmetries. Moreover the static characterization can then be used
as initial data for the dynamical evolution of the system. This latter original
part can be considered as a warming up exercise before moving to the
attached papers VI1 and VIII.

2.1 Motivation of this study

As already stated in the previous chapter the
Friedmann-Lemaître-Robertson-Walker (FLRW) models, relying on the
assumptions of spatial homogeneity and isotropy, are in very good accordance
with the astronomical data sets in the description of our Universe only at the
expenses of introducing a dark and undetected side of the matter content with
no physical explanations up to now. On the other hand the astronomers
observe that the Universe is filled with galaxies and galaxy clusters and in
particular that at the present moment the volume fraction of matter in our
Universe is of the order ∼ 10−30 as explained in paper VIII. This suggests the

1In the printed version of paper VI at page 12 we consider also the 2-
fold symmetry case. There is stated that rank-2 tensors have no fixed eigen-
direction, implying that eigenvectors must be degenerate and a condition between
the components of such a tensor was presented from which we derived the locally
rotational symmetry property. This reasoning is not correct. This is because the
eigenvector is only defined up to a multiplicative factor, meaning that its direction
is undetermined even if we have fixed its length (for example multiplying it by −1).
Thus we can not invoke the equation used in that paper. Anyway we never used this
argument throughout the paper and it does not affect its conclusions.
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needs both to relax the assumption of homogeneity at some level of our
description and to consider a in-vacuum model. In particular we are interested
in investigating if and in which amount the observed local small scale
inhomogeneities affect the large scale evolution of the whole Universe.
Moreover our Universe can be considered homogeneous only in the limit of
large enough scales and not locally. Unfortunately the Einstein equations
(1.5) are not linear and so they do not commute with the averaging operation
(this means that a metric describing the Universe in average is not the solution
of the average of the Einstein equations). This forces us to find other ways to
prove that a homogeneous Universe can arise at some level starting from a
discrete modeling of the matter content. Moreover we think that a discrete
description will at least enrich our knowledge because more motivated by the
observations, for example it contains a gravitational interaction energy term
between the matter sources not present in the current dust homogeneous
models.

In order to realize a universe which is genuinely inhomogeneous on small
scales approaching homogeneity on large ones we can follow the methods
pointed out by by Lindquist and Wheeler [20]. They are considered the
pioneers of the Wigner-Seitz cell approach to cosmology: considering a
closed topology we can tile the 3-sphere with regular polyhedra, put a central
mass in each cell and approximate the true space-time geometry with the
Schwarzschild geometry of the closest mass. However this approach exhibits
discontinuities in the metric and in its derivatives at the boundaries of the
cells. We must also remember that the Wigner-Seitz approximation used in
condensed matter theories works very well in electrodynamics, but in the
theory of gravity it requires some more attention. This is because the initial
data are not completely arbitrary but follow from the solution of the constraint
Einstein equations (see next section for their derivation). In this chapter I will
follow an exact analogue using the Misner static lattice [48]. The possible
regular lattices are [49]:

• Tetrahedra 5-cell

• Cubes 8-cell

• Tetrahedra 16-cell

• Octahedra 24-cell

• Dodecahedra 120-cell

• Tetrahedra 600-cell.
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Then we will introduce the physical 3-metric related to an auxiliary 3-metric
(S3 metric) by the relation γi j = ψ4γ̂i j where ψ is the conformal factor
solution of the Helmholtz equation △̂ψ = 1

8 R̂ψ , △̂ and R̂ being respectively
the laplacian operator and the scalar curvature for the 3-sphere metric. I want
to stress that this is an in-vacuum model because we have sources with an
approximately Schwarzschild structure and we are interested in the physics
happening outside the horizons of these sources. One possible tool to
characterize in a static way these models is to study the curvature at the
moment on maximum expansion in some highly symmetric points to move
next to the analysis of the same quantity along some lines and surfaces.
Moreover these results are the initial data for the full evolution of the
dynamics using the Cauchy formulation of general relativity introduced in the
section below.

2.2 The Cauchy formulation of General Relativity

This paragraph reviews some results about the formulation of General
Relativity as an initial value problem discussed in [38; 50; 51]. In this chapter
I will follow the same index convention as in the paper that I co-authored VI:

• µ , ν , ρ ,..., run between 0 and 3 and denote spacetime coordinates;

• i, j, k,..., run between 1 and 3 and denote spatial coordinates;

• a, b, c,..., run between 0 and 3 and denote orthonormal frame spacetime
coordinates;

• α , β , γ ,..., run between 1 and 3 and denote spatial orthonormal frame
coordinates.

Thanks to the standard 1+3 decomposition we can foliate the
4-dimensional manifold in terms of a family of constant-time hypersurfaces
denoted by {Σ} with the properties of being spacelike and 3-dimensional.
The future-pointing timelike unit normal to the slice is

nµ = −N∇µt, (2.1)

where N is called lapse function. Accounting the general definition of the time
vector

tµ = Nnµ +Nµ (2.2)

we can introduce the shift vector Nµ with the property Nµnµ = 0. Then the
four-dimensional coordinate system adapted to the foliation introduced above
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is given by xi (the spatial coordinates in the slice), t is parameterizing the slices
and finally γi j is the 3-dimensional metric of the hypersurfaces. In terms of
these quantities the invariant interval can be decomposed as

ds2 = gµνdxµdxν = −N2dt2 + γi j(dxi +Nidt)(dx j +N jdt) . (2.3)

In the Cauchy formulation of General Relativity γi j is called “first
fundamental form”and its value must be chosen in agreement with the
constraint equations for a well-posed initial value problem. As second
fundamental form (the Einstein equations are second order) we introduce the
extrinsic curvature

Ki j = −1

2
£nγi j = u(i; j) , (2.4)

£n denoting the Lie derivative along the nµ direction. The first and the second
fundamental forms together constitute the set for the initial data. Moreover the
values of the induced metric depend on the embedding of the hypersurface Σ

in the 4-dimensional space and so we must consider also the Gauss-Codazzi
constraints:

R̄ = −K2 +Ki
jK j

i +2Gi ju
iu j (2.5)

Ki
j;i −K; j = R̄ikuiγk

j , (2.6)

where K = Ki
i is the trace of the extrinsic curvature, R̄ik the Ricci tensor of the

hypersurface Σ and R̄ its trace. Introducing also the following decomposition
of the stress-energy tensor

Tµν = ρuµuν +qµuν +uµqν + p(gµν +uµuν)+πµν (2.7)

qµuµ = 0, πµ
µ = 0, πµν = π(µν), πµνuµ = 0 , (2.8)

where qµ is the momentum density and πµν is the anisotropic pressure, the
complete evolution equations can be cast in the following form:

∂tKi j = N[R̄i j −2KikKk
j +KKi j −8ππi j +4πγi j(π

i
i −ρ)]

− ∇̄i∇̄ jN +Nk∇̄kKi j +Kik∇̄ jN
k +K jk∇̄iN

k (2.9)

∂tγi j = −2NKi j + ∇̄iN j + ∇̄ jNi , (2.10)

where the quantities ith a bar are referred to the three-dimensional
hypersurface, while the Hamiltonian and the momentum constraints (just a
reformulation of the Gauss-Codazzi ones) are respectively:

R̄+K2 −Ki jK
i j = 16πρ (2.11)

∇̄ j(K
i j − γ i jK) = 8πqi . (2.12)
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I underline that only the initial data satisfying the constraints (2.11)-(2.12)
can be accepted for the Cauchy formulation of General Relativity and the
conservation law Gµ

ν ;µ = 0 then guarantees that the evolution equations will
preserve the constraints on the other slices.

Comment. Introducing an auxiliary 3-metric γ̂i j related to the physical
3-metric via the relation

γi j = ψ4γ̂i j , (2.13)

where ψ is the so-called conformal factor, the Hamiltonian constraint (2.11)
can be written as [50]

△̂ψ − 1

8
ψR̂− 1

8
ψ5K2 +

1

8
ψ5Ki jK

i j = −2πψ5ρ , (2.14)

where △̂ is the Laplacian associated with the auxiliary 3-metric and R̂ is its
scalar curvature. If we are in vacuum and we consider a time-symmetric
situation (happening for example in closed cosmological models with a
moment of maximum expansion like ours) which implies Ki j = 0, we obtain
the Helmholtz equation

△̂ψ =
1

8
ψR̂ (2.15)

which is the equation used for the construction of the initial data of the model
we are working on in [17]. If we have also R̂ = 0 Eq. (2.15) reduces to the
well-known Laplace equation △̂ψ = 0.

2.2.1 Orthonormal frame approach

In this paragraph I will present the basic equations for the study of a
cosmological model like ours. I will follow an orthonormal frame approach
[38; 52; 53], which completes the covariant one used in the previous
paragraph. The first frame vector corresponds to the unitary time-like (free
falling) observer velocity vector uµ ; then we introduce the projection tensors

hµ
ν = δ µ

ν +uµuν , hµ
νuν = 0 , U µ

ν = uµuν . (2.16)

In terms of the two projectors (2.16) it is possible to irreducibly decompose
the covariant derivative of the four-velocity as

∇µuν = −uµ u̇ν +θµν = −uµ u̇ν +σµν +
1

3
θhµν −ωµν , (2.17)

where the rate of expansion θ = ∇̃µuµ is the trace part, the shear
σµν = ∇̃〈µuν〉 with σ2 = 1

2 σµνσ µν is the symmetric trace-free part, while the
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vorticity ωµν = ∇̃[µuν ] is the antisymmetric one. These are also called the
kinematical variables and in a cosmological context the rate of expansion is
related to the Hubble function via θ = 3H.

Moreover we can introduce the gravito-electric-magnetic variables. We
begin decomposing the Riemann tensor into trace and trace-free parts as:

R
µν

ρσ = C
µν

ρσ +2δ [µ
[ρRν ]

σ ]−
1

3
Rδ µ

[ρδ ν
σ ] , (2.18)

where the Ricci tensor and the Ricci scalar can be eliminated in terms of the
matter content of the Universe via the Einstein equations (1.5), while the trace-
free Weyl curvature tensor can be decomposed into its electric and magnetic
parts relative to uµ :

Eµν = Cµρνσ uρ uσ (2.19)

Hµν =
1

2
η

ψµ
τξ

Cψµχωuξ uω = ⋆Cµρνσ uρ uσ . (2.20)

To complete the orthonormal basis we introduce then three more space-like
unit vectors, with the property of being mutually orthogonal and each of which
is orthogonal to uµ . One can denotes such a set of vectors with {e

µ
α}. They

satisfy commutation relations of the form:

[ea , eb] = γc
ab ec , (2.21)

where the spatial commutation functions can be further decomposed as

γα
βγ = 2a[β δ α

γ] + εβγδ nδα . (2.22)

The equations we need for our cosmological application are a simplified
version of the following:

• Ricci identities: 2∇[a∇b]u
c = R c

ab dud

• Twice-contracted Bianchi identities T ab
;a = 0

• Bianchi identities: ∇[aRbc]de = 0

• Jacobi identities: [[ea,eb],ec]+ [[eb,ec],ea]+ [[ec,ea],eb] = 0

As a next step we separate out the orthogonally projected part into trace,
symmetric trace-free and skew-symmetric parts and the parallel part similarly
obtaining a set of propagation and constraint equations (Cauchy formulation
of general relativity). Some of them are referred to in literature with historical
names; from the Ricci identities the propagation equations are:
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• Raychaudhuri equation (trace part)

• Vorticity propagation equation (anti-symmetric part)

• Shear propagation equation (trace-free symmetric part)

while the constraint equations are

• (0α)-equation

• Vorticity divergence identity

• Hab-equation.

From the Bianchi identities the propagation equations are:

• Ė-equation

• Ḣ-equation

while the constraint equations are

• divE-equation

• divH-equation.

I refer to the papers [38; 53] for their general and complete expressions.
Finally to express the geometric quantities through the physical ones we write
the extrinsic curvature as

−Ki j = σi j +
1

3
γi jθ . (2.23)

The above mentioned set of equations constitutes a system of non-linear
partial differential equations, and its solution is not known in general. One
way of dealing with them is to assume some kind of symmetry and/or other
simplifications imposing the vanishing of some terms for hypotheses and
derive a simpler set of equations. A fundamental task in this procedure of
simplification is to check that the simplified version of the constraint
equations are really correctly evolved by the simplified version of propagation
equations, otherwise the model is inconsistent. Maartens [54] showed that
under the assumptions I am considering in this chapter, the complete
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covariant set of equations to be studied in a generic point of the spacetime
reduces to the following. The evolution equations are

θ̇ = −1

3
θ 2 −2σ2 (2.24)

σ̇ab = −2

3
θσab −σc〈aσb〉

c −Eab (2.25)

Ėab = −θEab +3σc〈aEb〉
c + curlHab (2.26)

Ḣab = −θHab +3σc〈aHb〉
c − curlEab , (2.27)

while the constraint equations are

divσa =
2

3
Daθ (2.28)

Hab = curlσab (2.29)

divEa = εabcσb
dHcd (2.30)

divHa = −εabcσb
dEcd , (2.31)

where divAa = DbAab and DaAb
c = hd

ahb
eh f

c∇dAe
f .

In this chapter I will further simplify these equations to derive the dynamics
of our model in special highly symmetric points, while in the attached papers
VI and VIII a similar analysis is extended to particular curves exhibiting local
rotational symmetry. I will also use the well-known algebraic decomposition
of a spatial symmetric trace-free tensor [53]:

A+ := −3

2
A11 =

3

2
(A22 +A33) , A− :=

√
3

2
(A22 −A33)

A1 :=
√

3A23 , A2 :=
√

3A31 , A3 :=
√

3A12 . (2.32)

2.3 Curvature of a discrete mass distribution

I am considering an inhomogeneous model of a closed Universe filled with
a discrete distribution of masses. To begin with I want to compare them to
the FLRW models at the moment of maximum expansion to provide a static
characterization and to generate the initial data for the dynamical evolution
which will follow. The lattice of black holes on the 3-sphere is described by
the metric [17]

ds2 = ψ4 (dχ2 + sin2 χdθ 2 + sin2 χ sin2 θdφ 2) , ψ = ∑
k

√
mk

2 fk(χ,θ ,φ)
,

(2.33)
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where
ds2 = dχ2 + sin2 χdθ 2 + sin2 χ sin2 θdφ 2, (2.34)

is the metric of the 3-sphere. The index k runs over the masses involved in the
configuration, mk is the numeric value of each mass (that in the following I will
put mk = 1 without loss of generality since all the physical quantities should be
rescaled with respect to the values of the total mass of the model); the functions
fk are solutions of the Helmholtz equation (2.15) where now R̂ = 6 is the scalar
curvature of the 3-sphere metric (2.34). Being the Helmholtz equation a linear
equation, it allows the use of the superposition principle to construct lattice
type solutions [55].

As I explained in the section above, the Riemann tensor, which quantifies
the curvature of a manifold, is irreducibly decomposed into a trace part given
by the Ricci tensor and scalar and a tracefree part, the Weyl tensor. Moreover
the latter can be decomposed into a spatial electric and a spatial magnetic
observer-dependent fields. I will refer to these quantities, and in particular to
the electric field, as the curvature of the configuration.

To compare the results we will obtain for the different configurations
between themselves and with the analogue Friedmann solution it is necessary
to take into account the presence of the binding energy between the black
holes constituting the lattices which instead does not enter the standard
cosmological model which is based on a (continuous) fluid description.

This evaluation can be done following [17; 56]. Observing that all our
configurations have a mass at the north pole χ = 0 (at least up to a rotation),
and observing that a series expansion around this point gives

ψ(χ,θ ,φ) = A+
B

χ
+O(χ) , (2.35)

and comparing with the Schwarzschild metric which approximates the
spacetime in that region, we can introduce the “proper”mass defined as:

m̂ = 2AB . (2.36)

The appearance of an interaction term between the constituents is a basic
property of the discrete models and will play a fundamental role in the
computations which follow. For the values of the binding energy in the
models considered below see [17].

The Friedmann metric (1.8) can be showed to be conformally flat, meaning
that it can be expressed as the Minkowski metric multiplied by a conformal
factor. A straightforward computation thus shows that both the gravito-electric
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and gravito-magnetic tensors are identically zero: Eµν = Hµν = 0 along all the
evolution. The Ricci tensor and the Ricci scalar, the remaining parts of the
curvature, are instead functions of the particular fluid permeating the Universe
via the Einstein equations (1.5) and they are functions only of the time and not
of the spatial coordinates for the homogeneity assumption.
The picture of our discrete models is instead completely different from the
Friedmann one: the trace parts of the Riemann tensor are identically zero
along all the evolution because we are dealing with a vacuum model (in
particular the Riemann tensor reduces to the Weyl one), while the electric and
magnetic fields are in general non-zero and depend both on the time and on
the spatial coordinates. On the time-symmetric hypersurface the electric field
is reduced to the three-dimensional Ricci tensor of the hypersurface which
can be evaluated directly from the line element (2.33) once the functions fk

solutions of the constraint equations are known. They depend on the positions
of the mass sources n0:

fk =
√

2(1−n ·n0) , (2.37)

where n = (cos χ, sin χ cosθ , sin χ sinθ cosφ , sin χ sinθ sinφ). We focused
our attention on the lines admitting local rotational symmetry, the edges of the
cells being one example. We showed that along the edges the magnetic field
is zero at the beginning for symmetry under time reversal and its evolution
equation imposes it to remain zero along all the time evolution. The situation
displayed by the electric field is instead richer: only one independent
component is non zero and its numerical value depends on the position along
the edge. Particular points are the vertices: they are spherically symmetric
and we expect that the electric field is identically zero at the beginning and
remains zero also during the evolution: its initial numerical value directly
derived form the line element (2.33) confirmed this intuition, while its
evolution is discussed in the next section. These points are referred to as
locally minkowskian because the complete Riemann tensor is zero. The
spatial evolution along the edge of the non-zero electric field component at
the initial moment exhibits two different behaviors depending if the
configuration admits contiguous or non-contiguous edges since this affects
the value of its first derivative. Moreover the electric field has always the
same sign in all the points constituting the edge and admits a local extremum
in the middle point between two vertices. Moreover the flat region around the
vertices is dominant when the number of masses is increased. See figure 4
and 5 of paper VI for a graphical representation.

To summarize, we started showing that the discrete configurations we are
dealing with in our cosmological models admit a wider behavior than the
previously considered Friedmann models. In particular it is already evident
from this static analysis that different spatial regions of the same
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configuration behave completely differently from each other and from their
Friedmannian analogue. This suggests to improve the comparison between
these different models and with the Friedmann one also from a dynamical
point of view.

2.4 Equations of the dynamics for the discrete models

In this section I will move from the static characterization of the discrete
models discussed above to their dynamical one. The equations presented here
are, of course, simplified relations coming from the general ones presented at
the beginning of this chapter. Some attention will be devoted to their
qualitative analysis which allows us to determine the relationships between
our lattice model with other exact cosmological solutions already studied in
literature. As in the previous section, the computations mentioned here must
be intended as a simplified paradigm of the one presented in the published
articles on which this chapter is based.
The initial values for the integration of the evolution equations are:

• θ = 0 from time symmetry

• σ i j = 0 from the Hamiltonian constraint taking into account that we are
in vacuum (R̄ = 0)

• E i j = R̄i j from (2.9) with the substitution −Ki j = σi j +
1
3 γi jθ and taking

into account the shear propagation equation and the preceding initial
conditions.

In particular at the center of the cell faces and at the vertices we have
∇̃iE

i j = 0 and ∇̃iσ
i j = 0 because for example the center of the face

corresponds to a middle point between two masses whose position is
preserved during the evolution. Thus in this peculiar point both E i j and σ i j

have only one independent component each. In fact:

• E i j has 9 components (it is a 3x3 tensor)

• From the symmetry E i j = E(i j) the independent components are 6

• From the constraint E i
i = 0 the independent components reduce to 5

• From the 3 equations ∇̃iE
i j = 0 the independent components reduce to

2

• The directions inside one face are equivalent and so in the center of the
cell face E i j must have only one independent component.
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Therefore in the center of the face in an orthonormal frame we can
parametrize the electric field and the shear tensor as Ei j = diag[−2E, E, E]
and σi j = diag[−2σ̃ , σ̃ , σ̃ ].

The equations driving the evolution of the components of the electric field and
the shear tensor are thus given by:

Ė = −θE −3σ̃E (2.38)

˙̃σ = −2

3
θσ̃ + σ̃2 −E (2.39)

θ̇ = −1

3
θ 2 −6σ̃2 , (2.40)

where a dot denotes derivative with respect to the time. Since the evolution
equations change the values of the components of the electric tensor and of
the shear, but not their structure [39; 40](for example the tensor Eab will
continue to be of the form presented above only with a different numerical
value for the quantity E), we can understand from the Ḣ-equation that the
initial condition Hi j = 0 will hold also during the evolution. The general class
of models characterized by zero pressure and vanishing magnetic component
of the Weyl tensor are named in literature with the name of silent universe

because there is no exchange of information between different fluid elements,
either by sound waves (since p = 0) or by gravitational waves (since Hab = 0)
[57–60]. I want to stress that also in the case of dust, where the density energy
ρ is non zero, one can impose the condition Hab = 0 and assume that the fluid
is irrotational to have a silent universe [59; 61]. Moreover it is well-known
that these simplifications allow us to decouple the evolution equations for E

and for σ̃ with a suitable change of variables from the evolution equation for
θ and write them as an autonomous system of ordinary differential equations
[62]. This manipulation allows us to study them qualitatively as a dynamical
system looking for the possible equilibrium points.

Initial values for the first derivatives. Inserting the initial data θ = 0 and
σ̃ = 0 inside the evolution equations (2.38), (2.39) and (2.40) we can obtain
information about the first derivatives of the physical quantities which describe
our system. In fact we have:

Ėin = 0 (2.41)
˙̃σin = −Ein (2.42)

θ̇in = 0 , (2.43)

which allow us to make some observations:
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• At the beginning the variation of the eigenvalue of the electric
component of the Weyl tensor is small and this quantity exhibits an
extremum in correspondence of the time-symmetric hypersurface;

• At the moment of maximum expansion it is reasonable to have σ̇ = 0
but there are not hypotheses about the time derivative of the eigenvalue
σ̃ ;

• The same discussion for the initial value of the derivative of E is valid
also for θ .

A remarkable property of the evolution system we obtained is to admit the
Milne solution and the Bianchi flat type III as invariant subsets as proved in
the chapter 13 of the book [62] exploiting the spatial variable method. These
solutions are characterized by

• Milne universe:

Ωm = 0 , ΩΛ = 0 , Σ+ = 0 , E+ = 0 , M1 = M2 = M3 =
1

3

• Flat Bianchi III:

Ωm = 0 , ΩΛ = 0 , Σ+ =
1

2
, E+ = 0 , M1 =

3

4
, M2 = M3 = 0

where

M1 =
1

3
(K −2S+) , M2,3 =

1

3
(K +S+±

√
3S−) (2.44)

K = − R̄

6H2
, S± =

3S±
H2

, Σ+ =
σ+

H
, (2.45)

with H the Hubble function and 3S± the spatial curvature. Of course, this is a
subset of the analysis of a generic silent universe; although the results obtained
in [62] are valid in all the spacetime points while now only in some due to their
symmetries. In paper VI instead we showed how to decouple this system of
equations.

2.5 From generic points to particular surfaces, lines

and points

This section is devoted to the analytic derivation of the equations for the lines
connecting two masses or two vertices in the 5 masses configuration. These
lines play an important role since they are locally rotationally symmetric. I
start therefore moving from a generic point of the configuration to some special
surfaces.
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2.5.1 Reflection symmetry hypersurfaces

The symmetries of the configuration help us not only in characterizing the
locally rotational lines, but also the hypersurfaces invariant under reflection.
Assuming that on these hypersurfaces the reflection is implemented by the
transformation x1 →−x1, the metric exhibits the important property

gµν(x0, x1 ,x2, x3) = gµν(x0, −x1 ,x2, x3) ; (2.46)

reflection symmetry in particular means that all the odd functions of the
coordinate x1 must vanish on the surface we are dealing with. Consequently it
is important to construct an orthonormal frame in terms of only even either
odd functions of the coordinate under which we have the reflection symmetry:
this is the starting point of paper VIII. After some algebraic manipulations an
appropriate construction of the frame shows explicitly that all the
commutation functions (2.21) exhibiting an odd number of indices equal to 1
must vanish. This result can then be restated in terms of the Ricci rotation
coefficients which are combination of the commutation functions

Γabc =
1

2
(γacb + γbac − γcba) . (2.47)

In terms of the Ricci rotation coefficients the Riemann tensor, which in our
case corresponds to the Weyl tensor being in vacuum, can be written as [52]

Ca
bcd = Ra

bcd = ec(Γ
a

bd)− ed(Γ
a

bc)+Γa
ecΓe

bd −Γa
edΓe

bc −Γa
beγe

cd .
(2.48)

A direct inspection of the electric and magnetic tensors under the reflection
symmetry just introduced provides the following restrictions:

E12 ≡ 0 , E13 ≡ 0 , H11 ≡ 0 , (2.49)

H22 ≡ 0 , H23 ≡ 0 , H33 ≡ 0 . (2.50)

These relations state that the component with an odd number of indices equal
to 1 of the electric tensor are zero, while for the magnetic tensor the same
condition holds for an even number. In particular these simplifications
combined together impose the relation

EabHab = 0 (2.51)

on the reflection symmetry surfaces: on the cell faces, for example, we then
have a weaker condition than the one defining a silent universe. Moreover this
condition, contrary to the electric and magnetic tensors themselves, is
observer-independent and consequently is a true property of the space-time
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under exam. What discussed so far is valid for any reflection symmetry
hypersurface. In the specific case of our discrete inhomogeneous
cosmological model we start observing that the initial data exhibit this kind of
discrete symmetry and when we apply the theorems for the conservation of a
symmetry in general relativity proved in [39; 40] to derive a result which is
valid all along the time evolution of the system.

2.5.2 Lines connecting two masses

I consider explicitly the masses 4 and 5 in table II of [17], whose positions in
the coordinates of the embedding space are:

w = −1

4
, x = −1

4

√

5

3
, y = −1

2

√

5

6
, z = λ . (2.52)

Normalizing the previous expression we obtain:

w = − 1√
6+16λ 2

, x = −
√

5

3(6+16λ 2)
, (2.53)

y = −
√

10

3(6+16λ 2)
, z =

4λ√
6+16λ 2

,

which gives the parametric equation of the line connecting two masses if we

consider −1
2

√

5
2 ≤ λ ≤ 1

2

√

5
2 . Using the coordinate transformation

w = cos χ (2.54)

x = sin χ cosθ

y = sin χ sinθ cosφ

z = sin χ sinθ sinφ ,

the equation of the line connecting two masses can be derived in the
coordinates intrinsic to the 3-sphere. It reads as:

χ = arccos

(

− 1√
6+16λ 2

)

(2.55)

θ = arccos

(

−
√

5

3(5+16λ 2)

)

φ = arctan

(

−2

√

6

5
λ

)

.
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2.5.3 Lines connecting two vertices

I consider explicitly the vertices 4 and 5 in table (2.1), whose positions in the
coordinates of the embedding space are:

w =
1

4
, x =

1

4

√

5

3
, y =

1

2

√

5

6
, z = λ . (2.56)

Normalizing the previous expression we obtain:

w =
1√

6+16λ 2
, x =

√

5

3(6+16λ 2)
, (2.57)

y =

√

10

3(6+16λ 2)
, z =

4λ√
6+16λ 2

,

which gives the parametric equation of the line connecting two vertices if we

consider −1
2

√

5
2 ≤ λ ≤ 1

2

√

5
2 . Using the coordinate transformation (2.54) the

equation of the line connecting two vertices can be derived in the coordinates
intrinsic to the 3-sphere. It reads as:

χ = arccos

(

1√
6+16λ 2

)

(2.58)

θ = arccos

(
√

5

3(5+16λ 2)

)

φ = arctan

(

2

√

6

5
λ

)

.

The computation of this section gives an analytic picture of what instead
is presented only graphically in paper VI. Thus in the study of the
cosmological model introduced in this chapter I started from the analysis of
particularly symmetric surfaces to move next to the case of locally
rotationally symmetric lines to move then to the analysis of specific points; in
this latter case the reflection symmetry substitutes the local rotational one and
allows us to restrict the non-zero components of the curvature tensor.

2.5.4 Application of the 1+3 orthonormal frame formalism

Our dynamical equations (2.38), (2.39) and (2.40) have been derived
following a 1+3 covariant approach. However it is possible to determine the
same system of equations following a more complete 1+3 orthonormal
formalism. Moreover this method let us check the conservation of the
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Point w, x, y, z χ ,θ ,φ
1 -1, 0, 0, 0 π , −, −
2 1

4 , −
√

15
4 , 0, 0 arccos 1

4 , π , 3π
2

3 1
4 , 1

4

√

5
3 , −

√

5
6 , 0 arccos 1

4 , arccos 1
3 , π

4 1
4 , 1

4

√

5
3 , 1

2

√

5
6 , −1

2

√

5
2 arccos 1

4 , arccos 1
3 , 5π

3

5 1
4 , 1

4

√

5
3 , 1

2

√

5
6 , 1

2

√

5
2 arccos 1

4 , arccos 1
3 , π

3

Table 2.1: Positions of the vertices in the coordinates of the embedding space
and in the hyperspherical polar coordinates intrinsic to the 3-sphere. We can note
that the vertices are at the antipode respect to the masses and we remind that the
coordinate transformation for going to the antipode is w →−w, x →−x, y →−y,
z →−z or equivalently χ → π −χ , θ → π −θ , φ → φ +π .

constraints E22 = E33 and σ22 = σ33 along the evolution. Here I want to
demonstrate this statement starting from the results obtained in [52; 53]. In
the 1+3 orthonormal formalism the coupled system of ordinary differential
evolution equations is given by:

e0(θ) = −1

3
θ 2 −2σ2 (2.59)

e0(σ+) = −1

3
(2θ −σ+)σ+− 1

3
(σ−)2 −E+ (2.60)

e0(σ−) = −2

3
(θ +σ+)σ−−E− (2.61)

e0(E+) = −(θ +σ+)E+ +σ−E− (2.62)

e0(E−) = −(θ −σ+)E− +σ−E+ . (2.63)

Starting from our initial data we obtain:

E+ = 3E , E− = 0 , σ+ = 3σ̃ , σ− = 0 . (2.64)

In this way the equations (2.59), (2.60) and (2.62) reduce respectively to our
evolution equations written in a covariant way (2.38), (2.39) and (2.40), while
equations (2.61) and (2.63) are identically satisfied proving our assertion.

2.5.5 Commutators and symmetries in the orthonormal frame

approach

Now I would like to discuss the dynamics following the 1 + 3 orthonormal
frame approach focusing my attention on the center of the face and in the
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vertex of our discrete configurations starting from the papers [52; 53] and
inserting our assumptions regarding the matter content of the Universe. The
commutators of the orthonormal frame vectors are

[e0 , eα ] = −
[

1

3
θδ β

α +σβ
α

]

eβ (2.65)

[

eα , eβ ] =
[

2a[αδ γ
β ] + εαβδ nδγ

]

eγ . (2.66)

Moreover we can invert relation (2.22) to obtain the quantities a and n:

aβ =
1

2
γα

βα (2.67)

nαβ =
1

2
γ(α

γδ εβ )γδ . (2.68)

We can further simplify the commutators focusing our attention on some
specific points of our configuration characterized by certain discrete
symmetries, the most important ones being symmetry under reflection which
preserves a given cell face and locally rotational symmetry. In particular the
1+3 orthonormal frame approach helps us in showing explicitly the
conservation of such symmetries during the evolution and the connection
between them and the gravito-magnetic tensor.

For example the center of a face is a locally rotational symmetric point (in
the plane) and in this particular case the commutators become

[e0 , e1] = −1

3
(θ −2σ+)e1 (2.69)

[

e0 , e2] = −1

3
(θ +σ+)e2

[

e0 , e3] = −1

3
(θ +σ+)e3

[

e1 , e2] = ae2
[

e2 , e3] = n11e1 +2n31e3
[

e3 , e1] = −ae3
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leading to the following evolution equations

e0(θ) = −1

3
θ 2 − 2

3
(σ+)2 (2.70)

e0(σ+) = −1

3
(2θ −σ+)σ+−E+ (2.71)

e0(a) = −1

3
(θ +σ+)a (2.72)

e0(n11) = −1

3
(θ +4σ+)n11 (2.73)

e0(n31) = −1

3
(θ +σ+)n31 (2.74)

e0(E+) = −θE+−σ+E+− 3

2
n11H+ (2.75)

e0(H+) = −(θ +σ+)H+ +
3

2
n11E+ , (2.76)

to the following constraint equations

0 = −2

3
e1(θ)− 2

3
(e1 −3a)(σ+) (2.77)

0 = (e1 −a)(a)+
1

9
θ 2 − 1

9
(θ +2σ+)σ+ +

1

4
(n11)

2 +
1

3
E+ (2.78)

0 = (e1 −2a)(n11) (2.79)

0 = (e1 −a)(n31) (2.80)

0 = H+ +
3

2
n11σ+ (2.81)

0 = (e1 −3a)(E+) (2.82)

0 = (e1 −3a)(H+) , (2.83)

and to two consistency conditions:

0 = an11 (2.84)

0 = n11

[

E+ +
1

3
(θ −σ+)θ − 2

3
(σ+)2 +

3

4
(n11)

2

]

,

where no assumptions were made about the silent properties of the Universe.
When we will move to the vertices of the cells these equations simplify further
because they are spherically rotational symmetric points in three dimensions
and not only in the plane.

Now I will specialize to the center of the face in the eight mass case to
specify the preceding equations. To be specific I consider the face defined by
the four vertices whose Euclidean coordinates are

(

1
2 , 1

2 , 1
2 , 1

2

)

,
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(

−1
2 , 1

2 , 1
2 , 1

2

)

,
(

1
2 , −1

2 , 1
2 , 1

2

)

and
(

−1
2 , −1

2 , 1
2 , 1

2

)

, where I used the fact
that the positions of the vertices in the eight masses configuration correspond
to the positions of the masses in the sixteen one. Thus the center of the face is
the point

c =

(

0 , 0 ,
1

2
,

1

2

)

(2.85)

and an arbitrary point in the face can be expressed as

f = c+λ1s1 +λ2s2 =

(

λ1 , λ2 ,
1

2
,

1

2

)

, (2.86)

where the two vectors s1 = (1,0,0,0) and s2 = (0,1,0,0), which are
constructed by the difference of the coordinates of the vertices, are the ones
which span the space. To obtain the equation of the face in spherical
coordinates I must introduce the normalization factor

N = || f || =

√

λ 2
1 +λ 2

2 +
1

2
(2.87)

so that

fN =

(

λ1

N
,
λ2

N
,

1

2N
,

1

2N

)

, (2.88)

which shows that the equation of the face is φ = π
4 . Thus the face normal is

n =
√

gφφ φ,i = ψ2 sin χ sinθδ
φ
i (2.89)

and thanks to the diagonal property of the metric the orthonormal basis vectors
at the initial moment can be chosen as:

e2 = eχ =
1

ψ2
∂χ (2.90)

e3 = eθ =
1

ψ2 sin χ
∂θ (2.91)

e1 = eφ =
1

ψ2 sin χ sinθ
∂φ . (2.92)

The commutators at the initial moment are given by:

[eχ , eθ ] =
2∂θ ψ

ψ3 sin χ
eχ −

2sin χ∂χψ + cos χψ

ψ3 sin χ
eθ (2.93)

[

eθ , eφ ] =
2∂φ ψ

ψ3 sin χ sinθ
eθ −

2sinθ∂θ ψ + cosθψ

ψ3 sin χ sinθ
eφ (2.94)

[

eφ , eχ ] = − 2∂φ ψ

ψ3 sin χ sinθ
eχ +

2sin χ∂χψ + cos χψ

ψ3 sin χ
eφ , (2.95)
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or equivalently the non-zero structure functions are reduced to:

γχ
χθ =

2∂θ ψ

ψ3 sin χ
(2.96)

γθ
χθ = − 1

ψ3

[

2∂χψ + cot χψ
]

= γφ
χφ

γθ
θφ =

2∂φ ψ

ψ3 sin χ sinθ
= γχ

χφ

γφ
θφ = − 1

ψ3 sin χ

[

2∂θ ψ + cotθψ
]

.

I stress that up to now this result for the structure functions is valid in all the
points of the face. When specializing to a locally rotational symmetric point
we can identify:

a = − 2

ψ3 sin χ sinθ
∂φ ψ (2.97)

n11 ≡ 0 (2.98)

n31 = − 1

2ψ3 sin χ

[

2sin χ∂χψ + cos χψ
]

. (2.99)

One can note that in the eight mass configuration in all the face defined by the
equation φ = π

4 we have ∂φ ψ ≡ 0 so that the structure functions reduce to:

γχ
χθ =

2∂θ ψ

ψ3 sin χ
(2.100)

γθ
χθ = − 1

ψ3

[

2∂χψ + cot χψ
]

= γφ
χφ

γφ
θφ = − 1

ψ3 sin χ

[

2∂θ ψ + cotθψ
]

.

Center of the face

Substituting then ψ in terms of the functions fk and inserting the coordinate of
the center of the face

(

π
2 , π

2 , 0
)

one obtains that the basis vectors commute at
the initial moment, i.e.:

[

eχ , eθ ] =
[

eθ , eη ] =
[

eη , eχ ] = 0 , (2.101)
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where I have introduced η = φ + π
4 giving a = 0 and ni j = 0 at the initial

instant. In this way we obtain the constraint equations at the initial moment:

e1(θ) = −e1(σ+) (2.102)

0 = 3e1(a)+
1

3
θ 2 − 1

3
(θ +2σ+)σ+ +E+ (2.103)

0 = e1(n11) (2.104)

0 = e1(n31) (2.105)

0 = H+ (2.106)

0 = e1(E+) (2.107)

0 = e1(H+) (2.108)

while the consistency equations are automatically satisfied. In particular it is
important to observe that when applying the evolution equations (2.72), (2.73)
and (2.74) with the above derived initial conditions we obtain that during all
the time evolution:

a ≡ n11 ≡ n31 ≡ 0 . (2.109)

Returning back to the constraint equation (2.81) we see in particular that we
stay in a “piecewise”silent model along all the evolution:

H+ ≡ 0 . (2.110)

Vertex

In this paragraph I will discuss the analytic solutions of the evolution equation
in the vertex of the configuration. As already noticed the vertex is a locally
spherically symmetric point, so that the result n11 ≡ 0 and H+ ≡ 0 of the
preceding paragraph are still valid and we now also have that E+ = 0 on the
time symmetric hyper-surface considered as initial condition (remember the
connection between the gravito-electric Weyl tensor and the curvature).
Moreover thanks to the evolution equation (2.75) we obtain:

E+ ≡ 0 , (2.111)

showing that in this point the full Riemann tensor vanishes. Therefore the
evolution equation for the shear becomes

e0(σ+) = −1

3
(2θ −σ+)σ+ (2.112)

and accounting the initial condition σ+ = 0 we obtain:

σ+ ≡ 0 . (2.113)
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Thus in this point the only dynamical quantity is the rate of expansion θ whose
evolution is given by the Raychaudhuri equation that now reads as

θ̇ = −1

3
θ 2 , (2.114)

which can be integrated giving:

θ(t) =
3

t
, (2.115)

or
θ ≡ 0 , (2.116)

where only the latter is physically meaningful since it satisfies the initial
condition θ = 0. Introducing the relation between the rate of expansion and
the scale factor θ = 3 ȧ

a
we obtain the time dependence for the latter:

a(t) = const. (2.117)

meaning that we are in a locally minkowski space.

2.6 Summary

Applying the method outlined in this chapter we have obtained an interesting
physical picture of our cosmological configuration:

• Starting from the parametric solution of the dynamical equations in a
locally rotational symmetric curve we have introduced the length of an
edge l(t); and from this quantity we have considered a Hubble function
and a deceleration parameter defined in the same formal way as in the
previously considered Friedmann metric just substituting the scale factor
with the length of the edge:

Hl =
l̇

l
, ql = − l̈l

l̇2
. (2.118)

Following their time dependence we have shown that under the
assumptions of this class of models an accelerated expansion of the
Universe in vacuum is possible (the deceleration parameter can be
negative). This suggests that the violation of the energy condition is not
necessarily required by the astrophysical observations.

• We have proved that the reflection symmetries acting on the face of the
cells impose the observer-independent condition EabHab = 0 on them.
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• Exploiting the reduction of the Weyl tensor on a reflection symmetry
surface, we have also shown that there is no gravitational radiation
crossing the cell boundaries according to Bel’s first criterion [63]. In
fact the perpendicular component of the super-Poynting vector
Pa = εabcEb

dHcd vanishes implying that the system has standing
gravitational waves with nodes placed on these surfaces.

The role of the symmetries and of their time conservation in deriving all the
these results should now be clear: they allow us to eliminate many degrees of
freedom of the system. In fact this procedure of breaking the homogeneity
and isotropy symmetries of the Friedmann model in a controlled way is a
standard procedure in dealing with new cosmological solutions of the
Einstein equations. In particular we have considered here discrete symmetries
since our space-time does not admit any Killing vector field, while instead the
standard literature is based on continuous ones and before our study it was
possible to treat these models only numerically. The real physical Universe is
of course less symmetric than the ones used to model it; anyway it is
fundamental to note that in our model the local inhomogeneities imply an
accelerated expansion of the whole configuration suggesting that the dark
energy matter content should be considered as an interpretative and not
observational aspect in the modeling of the Universe which follows from a
naive choice of the underlying metric which completely neglects the presence
of the astronomical structures. In a step forward in this program analogue
stronger results should be re-derived considering even weaker configurations
without any symmetry at all (for example considering different values for the
masses of the configurations).
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3. On the role of the Shan-

Chen equation of state in the

cosmological modeling

I will now adopt a completely different approach to cosmology than the one
presented in the previous chapter: I will focus my attention on the matter
content of the Universe (r.h.s. of the Einstein field equations) and not on the
geometric side (l.h.s. of the Einstein equations). Particularly in this original
class of cosmological models I will introduce here there are two fundamental
hypotheses: the geometric description of the Universe is provided by the
Friedmann metric (1.8) meaning that, contrary to the discrete inhomogeneous
cosmological model, we assume that the small scale structures play a
negligible role in the large scale expansion of the Universe; on the other hand
the matter content is accounted by the Shan-Chen equation of state. More
broadly speaking, in this direction of research the stress energy-tensor (2.7)
can contain also anisotropic pressure terms or heat fluxes that instead are
neglected in the simpler Friedmann models. Another possibility is to maintain
the hypothesis that the cosmic fluid can be fully characterized by its energy
and pressure and to propose a non-polytropic modified equation of state. Our
attempt falls inside this line of research. One famous example discussed in
literature is the Chaplygin and anti-Chaplygin gas whose equations of state
are respectively

p = ± A

ρα
, (3.1)

with A and α numerical constants constrained using the observational relations
(cosmic microwave background peaks, type Ia distant supernovae, baryonic
acoustic oscillations,...). This expression allows analytical results many times,
while in our case we will be forced to employ numerical methods.

In other words I will postulate that the accelerated expansion of the
Universe is not a geometric effect or a consequence of the presence of a
cosmological constant term inside the Einstein equations, or of a vacuum
energy but that can instead be accounted for in terms of a nonideal fluid with
asymptotic freedom. In this way I can provide a possible microscopic
interpretation of the dark energy. To realize this goal it is consequently
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fundamental to understand under which assumptions the Shan-Chen equation
of state has been derived and that when we plug this equation of state inside
the Einstein equations it is possible to satisfy the observational tests currently
available in literature both in the contexts of late time cosmology and
inflationary epoch, as explained in the two next sections. As for the previous
chapter the reader can find all the technicalities of the full derivation in the
two attached papers V and VII and references therein.

3.1 The Shan-Chen equation of state: a review

The lattice Boltzmann equation method can be systematically employed to
evolve fluids which exhibit phase transition where analytical methods fail
[64–66]. The basic starting point is that the gaussian function e−x2

is the
functional generator of the Hermite polynomials. This mathematical trick can
then be applied to decompose the classical Maxwell-Boltzmann velocity
distribution in terms of a series of Hermite polynomials. In a step forward in
the research in statistical mechanics, the lattice Boltzmann algorithm has been
extended to the description of relativistic systems replacing the maxwellian
function with the Maxwell-Jüttner distribution moving from the Euclidean to
the Minkowskian space. Recent literature contains attempts to extend this
treatment also to general relativity. Particular attention has been devoted to
the case of a fluid placed in a flat but expanding background, whose
hydrodynamic evolution we want to follow.

An interesting physical application of the manifestly relativistic lattice
Boltzmann algorithm has been discussed with respect to the quark-gluon
plasma which can be produced for example in the collisions of heavy ions.
For the modeling of this phenomenon the chosen background metric is the
Milne Universe because it describes an expanding spacetime [67].

Another remarkable application in this context is the derivation of the
Shan-Chen equation of state [41], which exhibits a phase transition, that I will
briefly review in this section and that I will use for the construction of an
original family of cosmological models in the next.

It is in fact well known that in the Boltzmann equation the details of
microscopic interactions between the fluid constituents are set inside a
collision integral [68]. The role of statistical mechanics, which is a branch of
theoretical physics, is in fact to provide methods for the full derivation of all
the macroscopic properties of a thermodynamic system (pressure,
temperature, volume and relations between them) starting from the laws of
the molecular dynamics (velocity of the molecules inside the fluids). A
typical example is the connection between the temperature of a gas and the
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average speed of the particles constituting it. Therefore if we derive an
equation of state, relating the energy of the fluid to its pressure, employing the
methods of statistical mechanics we know that the equation of state is a
macroscopic expression of the underlying microscopic physics: it must
necessarily reflect the nature of the interactions between the particles of the
fluid. Therefore we can expect that statistical mechanics can also enlighten
the peculiar form of the equation of state of the dark energy.

For the derivation of the Shan-Chen equation of state we start from the
pair-potential

V (x,x′) = ψ(x)G(x−x′)ψ(x′) , (3.2)

where x and x′ denote the position of two points along the lattice, G(x− x′)
is the Green function which quantifies the strength of the interaction and ψ(x)
will become later on a functional of the density energy ρ . Consequently when
I will move to a cosmological application of the Shan-Chen equation of state
we can interpret the quantity ψ as a chameleon scalar field, i.e. a particle
which exhibits a non-linear self-interaction and whose mass is consequently a
function of the environment inside which the particle lives and thus depends on
the presence or absence of other particles and fields. The existence of a field
with such peculiar characteristics has been postulated to provide a possible
candidate for the dark energy and dark matter contents of our Universe whose
direct detection is still a subject of investigation [69].

If we are interested in the description of a system in which only
nearest-neighbor interactions appear, we can approximate the Green function
with a number setting G(x−x′) = 0 if the particles are at distance bigger than
the lattice scale length and G(x−x′) = G otherwise. In this latter case we can
derive the force between two particles from the underlying potential (3.2)
employing a Taylor expansion:

F(x) ≃ −Gψ(x)∇ψ(x) . (3.3)

From this expression of the inter-particle interaction it is possible to observe
that the equation of state we are looking for is given by a linear part typical of
an ideal gas plus an excess pressure term:

p = w

(

ρ +
G

2
ψ2

)

, ψ = 1− e−αρ , (3.4)

w, G < 0 and α , the latter one having the dimension of the inverse of an energy
density in this formulation, being free parameters of the model. Imposing the
first and second derivatives of the pressure with respect to the energy equal to
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zero

∂ p

∂ρ
= w(1+Gαψ(1−ψ)) = 0 (3.5)

∂ 2 p

∂ρ2
= wGα2(ψ −1)(2ψ −1) = 0 ,

Shan-Chen observed that the system they were describing admits a phase
transition with critical energy

ρcrit =
ln2

α
, (3.6)

and Gα = −4. Considering this equation of state as an isotherm of a pressure-
volume-temperature thermodynamic system and applying the Maxwell equal-
area construction, they interpreted the phase transition as between liquid and
vapor. It is important to note that the above specified expression for the field
ψ (3.4) is fundamental to have such phase transition. Our original intuition
consists in coupling the equation of state derived by Shan and Chen to the
Friedmann and the energy conservation equations (1.9)-(1.10) to show that in
the cosmological context we can naturally evolve from an initially radiation
dominated Universe to a dark energy dominated one exploiting only one fluid
during the time evolution carefully selecting the free parameters of the model;
this has been explicitly proved in paper V: this was not possible previously
when the dark energy has been modeled as a cosmological constant.

Our original cosmological interpretation of the Shan-Chen equation of
state is not its only possible physical application. In fact rescaling the energy
ρ with respect to a reference energy ρ∗ the equation of state (3.4) reduces to

p = wρ∗P , P = ξ +
G

2
(1− e−αξ )2 (3.7)

ξ =
ρ

ρ∗
, (3.8)

where in particular the constant α has been rescaled with respect to this
reference energy to a dimensionless quantity. The sound speed squared is
given by

c2
s =

∂ p

∂ρ
= w[1+Gαψ(1−ψ)] , (3.9)

which is shown in figure (3.1) as a function of ξ for the values w = 1
3 , G = −5

and a family of values for α . In particular at high densities the sound speed
approaches the constant value c2

s → w.
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Figure 3.1: Sound speed of a Shan-Chen fluid. The figure shows the speed
of sound squared for a Shan-Chen fluid for the values w = 1

3 , G = −5 and α =
[2, 3, 4, 5] as a function of the dimensionless energy density. The sound speed
approaches asymptotically the constant value c2

s ∼ 0.33.

At low and high energy density regimes the Shan-Chen equation of state is
approximated by

P ≃ ξ for ξ << 1 (3.10)

P ≃ ξ +
G

2
for ξ >> 1 ,

which show that we are considering an asymptotic-free equation of state
because it reduces to an ideal gas behavior both at low and high densities.
Figure (3.2), which shows the rescaled pressure P as a function of ξ for a
fixed value of the free parameter G and a set of possible values for α ,
confirms this behavior.

This is its most important physical feature: it replaces hard-core repulsive
interaction with a purely attractive one which becomes negligible above a
given density threshold; this phenomenon is referred to as “asymptotic
freedom”. This property of the fluid considered was necessary in the lattice
Boltzmann equation theory for numerical reasons, but it can help us also in
dealing with the repulsive nature of the cosmological constant, meaning that
according to our study the Shan-Chen equation of state should not be
interpreted just as a numerical trick but can have also a physically meaningful
foundation. Moreover the expansion (3.10) shows that this equation of state
can be applied also to the hadronic model of nuclear matter: in this case the
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Figure 3.2: Shan-Chen equation of state. This figure shows the rescaled
pressure with respect to the dimensionless energy density of the Shan-Chen
equation of state for the value G = −5 and α = [2, 3, 4, 5] confirming the
asymptotic freedom (linear proportionality between pressure and energy density)
at both high and low regimes.
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constant G should be regarded as the bag constant which accounts for the
difference between the energy density of the true vacuum state and the
perturbative one. In particular in the parton model of hadrons the authors
referred to “bag”as the region of space where the strongly interacting
fields/particles are confined. Also in this case when the quarks are close to
each other the confining force becomes weaker reaching zero for close
confinement and consequently the quarks are free to move (another
non-cosmological application of the idea of asymptotic freedom underlying
the derivation of the Shan-Chen equation of state) [70].

3.2 Observational tests

In the previous section of the present chapter I have reviewed the derivation of
the nonideal equation of state of Shan-Chen with asymptotic freedom focusing
in particular on the form of the underlying potential and on the fact that it has
been proved that it can be used to simulate a liquid-vapor phase transition,
phase transition that we expect to appear also when we couple the equation of
state (3.4) to the Einstein equations (1.5). In this section I will describe how to
prove this statement rigorously showing how we can connect the observational
data collected by the space missions to the quantities entering our theoretical
formulation. The demonstration can be split up into two parts having the aim of
describing two completely different stages of the evolution of our Universe: we
can apply the Shan-Chen equation of state to late time cosmology and/or to the
inflationary era of the Universe. In both cases the entry and exit mechanisms
are crucial for the improvement of the current models.

3.2.1 Late time cosmology

When we apply the Shan-Chen equation of state to the cosmological modeling
we start solving the Friedmann and the energy conservation equations once we
have plugged in this specific equation of state. For the sake of completeness
they are explicitly given by

dξ

dτ
= −3

x

dx

dτ

[

(1+w)ξ +
w

2
G
(

1− e−αξ
)2
]

, (3.11)

dx

dτ
= ±

√

Ωk,0 + x2ξ , x =
a(t)

a0
(3.12)

where τ = H0t, H0 being the Hubble constant, is a dimensionless time and x

is given by the ratio of the scale factor at an arbitrary time a(t) and at today
a0. To find a numerical solution we must then implement the initial conditions
ξ (τ0) = Ω0, where Ω0 is the amount of dark energy today, and x(τ0) = 1.
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We can then plot both the pressure, the energy density and the
“effective”parameter of the equation of state weff = P

ξ
versus the time. The

first important feature of the model is that the pressure as a function of the
energy changes its sign during the time evolution and stays negative for a long
time interval which includes the present day: the physical meaning is that the
fluid permeating the Universe naturally and smoothly evolves from an
ordinary matter content to an energy component whose equation of state is
compatible with dark energy. To have a more realistic picture of the Universe
we can consider two non-interacting fluids permeating the Universe which are
separately conserved, namely we add a dust component to the matter content
in terms of a pressure-less fluid. The first basic property of the model, i.e. the
evolution from ordinary to dark energy of the Shan-Chen fluid, remains valid
also in this extension for another numerical choice of the free parameters
entering the equation of state.

From a stricter observational point of view we can compare our model to
the supernova type Ia data, after proving that the Shan-Chen fluid can mimic
dark energy. This data set is the first test that a cosmological model must
pass and it is based on the fact that the supernovae are standard candles since
they exhibit fixed and known luminosity [1; 2]. The test is usually done by
plotting the distance modulus with respect to the redshift; the expression for
the distance modulus is [71]

µ = 5log
dL

Mpc
+25 , (3.13)

where I have inserted the luminosity distance introducing the redshift z

dL = (1+ z)
dH

√

|Ωk,0|
Σk

(

√

|Ωk,0|
dc

dH

)

. (3.14)

dH = 1/H0 is called “Hubble distance“, while dc is the comoving distance and
Ωk,0 is the curvature parameter, where a subscript here and in what follow
states that the quantity is considered at the present time; moreover Σk( f ) =
[sin( f ), f , sinh( f )] for a closed, flat and hyperbolic universe respectively. To
obtain the optical properties of the Universe we must integrate the radial null
geodesic equation in the Friedmann metric dr/dt =−1/a which gives the path
of a light signal moving from a galaxy to us. From this solution we evaluate
then the comoving distance dc = a0r.

In the case of the previously considered ΛCDM model that we want to
compare with, the expression for the comoving distance can be found in [71]:

dc = dH

∫ z

0

dz′

E(z′)
, (3.15)

E ≡ H

H0
=
√

ΩΛ,0 +Ωk,0(1+ z)2 +Ωm,0(1+ z)3 .
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In the formulas above H denotes the Hubble function, ΩΛ,0 and Ωm,0 the mass
parameters today, where the first accounts for the presence of dark energy
while the latter quantifies the dust; the presence of photons is instead assumed
to be negligible. In our original cosmological model, instead, we must
integrate simultaneously the Friedmann and the energy conservation
equations (3.11)-(3.12) and

d

dτ

(

dc

dH

)

= −1

x
. (3.16)

The initial condition for the radial coordinate is r(τ0) = 0 which means
dc(τ0) = 0 for the comoving distance. Appropriately choosing the numerical
values for w, α and G, we have obtained that our curve for the distance
modulus can be exactly superimposed to the ΛCDM one.

As a second test we can plot the Hubble function versus the redshift for
the same choice of parameters as in the previous case: also in this case our
model is in agreement with the ΛCDM curve and consequently with the
observational data. This data set has been experimentally obtained exploiting
the aging of passively evolving galaxies (in which there is a negligible star
formation activity [72]) [73] and baryon acoustic oscillations [74]. In
particular the latter ones are density fluctuations of the baryonic matter and
are used as a standard ruler in cosmology; they also give information about
the large scale structure formation in the Universe.

Finally we have shown the dependence of the deceleration parameter on
the redshift. As I mentioned in the second chapter of this thesis when I
discussed the inhomogeneous discrete cosmological model, the deceleration
parameter is defined through the scale factor and its first and second time
derivatives by

q = − äa

ȧ2
, (3.17)

where the time dependence of the scale factor is obtained via the Einstein
equations (1.5); its evolution consequently depends on the equation of state
we are dealing with. Our formalism allows us also to evaluate the present day
value of the deceleration parameter and the age of the Universe which are
compatible with the observed ones.

Role of instabilities in the hydrodynamic fluid evolution

Even if the theoretical model is compatible with the observational data, as
I discussed so far in this section, we are required to do a further check. In fact
it is important to show explicitly that the model is stable under small initial
perturbations, otherwise the mathematical formulation can not be accepted as
a description of the physical world. This is a self-consistency exam for the
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model itself rather than an experimental test. This is because the
hydrodynamic approach we followed in the modeling of the matter content of
the Universe would not hold anymore if it contains growing inhomogeneities,
especially under the effect of gravity. Moreover accounting for what I
explained in the first section of this chapter about the derivation and the basic
features of the Shan-Chen equation of state, we know that the hard-core
repulsive effects, which prevent this kind of instabilities in liquids, have now
been replaced with soft-core attractive ones with asymptotic freedom: the
attractive interactions can consequently facilitate the growth of the
instabilities causing a density blowup and a destruction of the model. In the
Shan-Chen model the interparticle interaction reaches a saturation value
above which the interaction strength vanishes; in this specific case the
attractive force goes to zero at short distance, or in other words at high
densities. For these reasons a stability analysis of our cosmological model
was necessary. The study shows that the density contrast defined as the ratio
between the perturbation of the energy density and the energy density itself is
bounded for a long time interval for the same choice of the free parameters in
the equation of state needed for the data fit of the modulus distance and the
Hubble function versus the redshift, while it explodes only approaching the
initial singularity. In this latter case it is possible to assume without loss of
generality that our model is too naive for a complete and correct description
of the big bang since we are here interested only in a physical application to
late time cosmology. We also noticed that the presence of a pressure-less fluid
component plays a stabilizing role, which was not guaranteed at priori (for
example the Einstein static Universe in which the dark energy is modeled as a
cosmological constant term rather than a Shan-Chen fluid is unstable [38]).

3.2.2 Inflationary era

So far I have discussed the experimental tests to compare the Shan-Chen
cosmological model to observations in late time cosmology, however we can
expect that the phase transition exhibited by the fluid during the time
evolution in that context can be employed also for the description of the
inflationary era of the Universe, in particular providing a natural exit
mechanism from this stage of the evolution of the Universe. This is because
in the standard model of cosmology the dust density dilutes as the volume
a3(t), the photons density as a4(t), while the cosmological constant does not
dilute at all: when this latter term will become dominant it is impossible to
escape from that stage of the evolution. I recall that in the inflationary epoch
the Universe undergoes a phase of exponential expansion which is needed to
solve the
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• flatness paradox: at the present time we observe an almost flat Universe,
which requires the Universe to be flat also at the initial moment, if the
Universe is matter or radiation dominated.

• horizon paradox: why do we observe an almost constant temperature
even in spatial points of the Universe which could not have been in
causal contact with each other?

and which has also been proposed in reference to the

• formation of the large scale structure

• origin of the anisotropies in the cosmic microwave background radiation

in the framework of the standard Big Bang model [71; 75].
The simplest possible theoretical model for this phenomenon assumes

that the inflationary epoch is dominated by a quintessence fluid which can be
described in terms of a real scalar field φ = φ(t), which depends only on the
time for the assumptions of homogeneity and isotropy. The lagrangian is
given by

L =
φ̇ 2

2
−V , (3.18)

V =V (φ) being the potential of the field causing the expansion of the Universe.
The canonical equations give us the relations between the energy and pressure
of the fluid and the field:

ρ =
φ̇ 2

2
+V , p =

φ̇ 2

2
−V , (3.19)

or equivalently

V =
1

2
(ρ − p) , φ̇ 2 = ρ + p , (3.20)

where in our case we will postulate that the pressure is given by the energy by
the equation of state of Shan-Chen (3.4). We can use this formalism also to
connect the Hubble function to the field obtaining

H2 =
1

3

(

φ̇ 2

2
+V

)

. (3.21)

This couple of equations shows that the potential driving the inflationary era is
fixed when an equation of state is assumed and when the background metric
is decided (an extension of the quintessence formalism to a background with
small inhomogeneities has been considered in the context of the k-essence [8]).

During the inflationary era it is assumed that the kinetic part of the
lagrangian (3.18) is negligible respect to its potential part in order to have an
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exponential growth of the Universe. To define mathematically this condition
we start introducing the so called slow-roll parameters [71; 75]

ε =
1

16π

(

V ′

V

)2

(3.22)

η =
1

8π

V ′′

V
(3.23)

Ξ =
1

64π2

V ′′′V ′

V 2
(3.24)

where here a prime denotes derivative with respect to the scalar field φ . The
inflationary era takes place when the above defined slow-roll parameters are
small:

ε ≪ 1 , |η | ≪ 1 , |Ξ| ≪ 1 , (3.25)

which in particular implies that during this stage the equation of state
describing the fluid permeating the Universe can be approximated by p ∼−ρ .
In the attached paper VII, after deriving the relations between the slow-roll
parameters and the energy density of the model we plot the slow-roll
parameters as a function of the scalar field φ showing that they respect the
conditions required to describe an inflationary scenario for an appropriate
choice of the free parameters of the model. After this initial check we deepen
the connection between the Shan-Chen class of cosmological models and the
inflationary paradigm comparing our formalism with the experimental data
characterizing this era of the Universe. In particular one can consider the ratio
of scalar to tensor perturbations, the scalar spectral index and its running
which can be expressed in terms of the above defined slow roll parameters
following standard literature [75]:

r = 16ε (3.26)

ns = 1−6ε +2η (3.27)

αs =
dns

dlnk
= 16εη −24ε2 −2Ξ , (3.28)

and consequently as functions of the energy density of the Shan-Chen fluid.
The data provided by the Planck mission analyzing the structure of the

cosmic microwave background can be combined with the ones of the large
angle polarization of the Wilkinson Microwave Anisotropy Probe (WMAP) to
constrain observationally these parameters [76; 77]:

r < 0.11 , ns = 0.9603±0.0073 , αs = −0.0134±0.0090 , (3.29)

where in particular the last one suggests that there are no indications for a
running of the spectral index. The spectral index instead comes from the
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assumption that the power spectrum can be written as a power function whose
exponent is ns −1; its numerical value is fundamental to discriminate between
different proposals of the inflationary mechanism and it is important to
observe that its current experimental value is not compatible with 1 which
characterizes gaussian (or adiabatic) initial perturbations [75]. According to
our model instead this is not a problem at all since we can reproduce it within
our model.

3.2.3 A word of warning: the BICEP2 experiment

In the previous section I have chosen to use the Planck data, in particular for
the ratio of scalar to tensorial perturbations, for a test of our original
cosmological model. However a recent result by the BICEP2 collaboration
suggests a different observational value for this quantity [78] claiming the
detection of the B-mode. Following the analogy between gravity and
electromagnetism discussed in the second chapter of this thesis, the two
polarizations which could be present in the cosmic microwave background
are called E-mode and B-mode, which are respectively the curl-free and
grad-free components. The latter can not be produced only by the physics of
the plasma (Thomson scattering) and are interpreted as a signal coming from
the cosmic inflation quantifying the presence of possible primordial
gravitational waves. The perturbations in the CMB can then be classified in
scalar, vectorial and tensorial with different consequences on the temperature
anisotropies. Looking at the temperature pattern BICEP2 obtains the
following quantitative result

r = 0.20+0.07
−0.05 , (3.30)

clearly incompatible with Planck’s one

r < 0.11 . (3.31)

At the time of the first submission of paper VII in January 2014 only Planck
results were available justifying my choice of the experimental value to
compare to our Shan-Chen cosmological model.

3.3 Summary

To summarize, in this chapter I have proposed a possible physical
interpretation of the nature of the dark energy in terms of the nonideal
equation of state with asymptotic freedom of Shan-Chen, once I have
assumed that instead the geometric side of the Universe can be well enough
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described by the Friedmann metric. In this original approach the presence of
the cosmological constant and of the vacuum energy is not needed for
accounting for many observational data both in the late time cosmology and
in the inflationary era. In particular the improvements respect to the previous
approaches are:

• We have understood both the numerical formulation of the equation of
state describing the fluid permeating the Universe and its theoretical
meaning; for example this same equation of state can also be applied in
nuclear physics to the extended model for hadrons. Considering the
form of the potential underlying the derivation of this equation of state
we can provide its microscopic interpretation. Thus this is not an ad

hoc formula just derived from the fit of astronomical observations.

• Our model of the Universe exhibits a radiation dominated phase at the
beginning in accordance with the hot big bang model and naturally
evolves to a dark energy dominated one and after we can escape from
this phase; when the dark energy is modeled as a cosmological constant
instead there are no mechanisms available for such phase transition
invoking only one fluid.

• We can fit the distant type Ia supernova data with an appropriate choice
of the free parameters appearing in the model without the need of the
vacuum energy.

• Our model is also stable under small initial perturbations for the same
choice of parameters that allows us to satisfy the point above; not all
the cosmological models are stable, the Einstein static Universe
formulated on the same Friedmann line element like ours and involving
a cosmological constant, a energy density and a pressure is not; our
model is thus a step forward also in this direction.

• We have shown that the repulsive action of the cosmological constant
can be handled with an equation of state describing an attractive effect
with asymptotic freedom.

• We can apply our formalism also to describe the inflationary phase of
the Universe using the quintessence model: we have an exit mechanism.

• In this latter case we can also show the slow-roll conditions to be
satisfied and that we can correctly reproduce the numerical values for
the scalar to tensor perturbations, the spectral index and its running.
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Connecting the first point above with other ones in the list we can say that
we have suggested a possible microscopic interpretation of the dark energy,
interpretation that can also be formulated in terms of a chameleon field. I refer
to the attached papers V and VII for the details of the derivation of all the
statements claimed here.
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4. Applications of the Poynting-

Robertson effect in general

relativity

4.1 Characterizing a spacetime through the motion of

particles

In the previous chapters of this thesis I have tried to characterize a given
spacetime solving the Einstein equations for the metric after fixing an
appropriate matter content of the Universe. A complementary point of view in
the search for the correct modeling of the spacetime consists in the analysis of
the orbit of a test particle moving inside it. The first step in this direction is
the analysis of the geodesic motion, a purely geometric effect which depends
on the metric and its first derivatives (the Christoffel symbols): setting the
acceleration equal to zero the mass of the body drops out and we distinguish
only between the cases of massive or massless test particles. The gravitational
effects on a particle motion are therefore encoded inside the line element
which is coupled to the matter distribution via the Einstein equations. Thus
according to general relativity the test particle interacts with the matter
through this process; reversing this point of view we can reconstruct some
properties of the metric and consequently of the matter distribution generating
it following the motion of a particle. We can refer to this phenomenon as a
kind of indirect interaction between test particle and matter.

To obtain a more accurate picture of the matter content in the region
crossed by our test particle we should also consider its direct interaction with
the fluid. In fact we can suppose that during its motion the body collides with
the fluid elements exchanging energy with them. Assuming that the energy is
transferred from the object to the matter content, the fluid acts as a viscous
medium leading to the presence of a dissipative force term inside the
equations of motion. In classical mechanics the expression for such a friction
effect is modeled by the Stokes’ law, which can be extended to general
relativity using the Poynting-Robertson formula as I proved in section (1.5) of
this thesis. Moreover the general relativistic formalism that I will follow in
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this chapter can describe both the case of motion inside a massive or massless
(photons) fluids that instead was not possible in the classical treatment.

We can also distinguish between two more approaches to this problem.
In the first one a background is fixed and described by the metric gµν and
we superpose to it a test fluid whose stress-energy tensor is a function of this
background:

Tµν = (ρ + p)uµuν + pgµν , (4.1)

ρ and p being its pressure and density energy connected to each other by a
specific equation of state, while uµ denotes the fluid four-velocity. This
expression shows that the formalism is enough general to describe both the
cases of massive or massless media. The quantity (4.1) is the stress-energy
tensor which enters the Poynting-Robertson formula that I recall here for the
sake of completeness

f(fric)(U)α = −σP(U)α
β T β µUµ . (4.2)

In the formula above the sign minus accounts for the dissipative nature of the
force, the cross section of the process σ contains the details of the
interactions between test particle and fluid, Uµ is the body four-velocity and
P(U)α

β projects orthogonally to this four-velocity. In a first attempt we can
consider the weak field approximation assuming that the fluid field does not
perturb the spacetime. The derivation of the expression of the stress-energy
tensor for a fluid placed in a curved background can also be seen as an
interesting application of the kinetic theory and of the Boltzmann equation in
general relativity [79]. We have followed this procedure in particular in paper
I studying the motion of a massive object around a Schwarzschild black hole
to which we superpose a test photon field comparing and contrasting the
geodesic and scattered motions. Our original analysis was necessary for the
clarification of the role of friction and of radiative pressure in the
Poynting-Robertson formula [80; 81]. The literature is rich of examples of
this kind of applications: from the motion of meteors to the modeling of an
accretion disk around a star due to this phenomenon [82–84].

The first question which arises at this point is: how good is the
approximation of a test field for the photon gas? Can the motion of the test
particle deviate also qualitatively and not only quantitatively when we leave
this regime? To answer this question we must solve the Einstein equation
(1.5) to describe a system of a black hole surrounded by a photon gas. This
analytical solution is not known yet. Thus we have decided to “switch off”the
black hole and to consider a spacetime generated by a photon gas in
equilibrium. The Tolman metric is the solution of the field equation in this
case [85]. Inserting the same stress-energy tensor in both the Einstein
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equations and the Poynting-Robertson formula (4.2) we can compare and
contrast the geodesic and the modified motions in the Tolman spacetime. The
geodesic case is what we have called the “indirect”interaction between test
particle and fluid, while the scattered motion accounts also for the
“direct”interactions. The analysis allows us to separate the role of the
curvature of the spacetime to the true friction effects inside this phenomenon.
This is the subject of paper II. The analysis can also be compared to a similar
one in the Vaydia metric which instead mimics a photon field not in
equilibrium like a radiating star [86].

In paper III we have extended the Poynting-Robertson formula, which was
initially proposed for the motion inside a massless fluid, to the motion inside a
massive fluid. In fact there can be gas clouds in the Universe which distort the
orbits of particles crossing them acting as a gravitational lensing. The goal of
this specific analysis is the evaluation of the deflection angle which quantifies
the difference between the case of a particle moving in vacuum and a particle
traveling this region. Also in this case the geodesic and non-geodesic cases
can be compared and we have proved that when we add a viscous term to the
equations of motion the body can not escape the gas cloud once it has entered
it because it dissipates all its initial energy and it is consequently condemned to
fall at the center of the configuration. The friction effects are thus much more
important than the space curvature ones. To be specific, for this derivation we
have considered the Pant-Sah metric as a background.

In the cosmological modeling our formalism can be applied to the
quantification of the peculiar velocities, which is the motion of a particle with
respect to an observer in a rest frame. In paper IV we have considered a
Friedmann expanding Universe whose matter source driving its evolution
influences also the friction force (4.2). In this case when we add the
Poynting-Robertson formula to the geodesic equation of motion we can
therefore speak of direct interaction between the test particle and the fluid. In
the case of a closed Universe the asymptotic behavior of a particle moving
geodesically and geodesically plus friction is completely different: in the
former the object accelerates to the speed of light, while in the latter it
dissipates all its initial energy approaching zero velocity. As for the previous
analysis of the gravitational lensing, the friction term plays a fundamental
role in driving the long-term result and should not be neglected in a realistic
modeling of the motion.

In this chapter I will review all these astrophysical applications of the
Poynting-Robertson formula leaving the details of the complete derivation to
the attached papers at the end of the thesis and [46; 47; 80–84] and references
therein. I would like to stress that in this analysis we have assumed that all the
noise effects are negligible even if they should be accounted by the
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relaxation-dissipation theorem: this opens a line for future possible
investigations which will provide a more complete picture of this
phenomenon. Our formalism is also enough general to be applied to non
astrophysical systems in which friction effects anyway occur.

4.2 Motion inside a photon gas in the Schwarzschild

metric

In this section I am interested in describing the motion of a massive test
particle around a Schwarzschild black hole to which I have superimposed a
test photon gas (the strength of the field is sufficiently weak not to perturb the
fixed background metric). The first task is consequently to derive the
stress-energy tensor describing such a gas in a curved spacetime and then
insert it inside the Poynting-Robertson formula (4.2). This can be seen as an
application of the relativistic kinetic theory in a generic curved spacetime.

We can follow for example [87]. I start from a generic line element

ds2 = gαβ dxαdxβ . (4.3)

Assuming then that all the particles of the gas are indistinguishable with the
same mass m, which can be set equal to zero at the end of the computations
without problems, we have the following constraint in the momentum space:

pµ pµ = −m2 , (4.4)

where pµ is the four-momentum of the particles. Introducing the phase space,
the gas is characterized by the distribution function f (xµ , pµ), xµ denoting the
coordinates in the real space, whose evolution can be followed along a line
parameterized by τ :

d

dτ
f (xµ(τ), pµ(τ)) =

∂ f

∂xµ

dxµ

dτ
+

∂ f

∂ pµ

d pµ

dτ
. (4.5)

This relation reduces to the homogeneous relativistic Boltzmann equation

L( f ) =

(

pµ ∂

∂xµ
−Γµ

αβ pα pβ ∂

∂ pµ

)

f = 0, (4.6)

where L is referred to in the literature as the Liouville operator, in the case that
the gas particles interact only gravitationally moving along geodesics

d pµ

dτ
= −Γµ

αβ pα pβ . (4.7)
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Generalizing the previous result accounting for the collisions between the gas
molecules, assumed to be elastic (the total four-momentum is conserved) and
binary, we obtain

L( f )(xµ , pµ) =
∫

Cd4 p̃d4q̃d4q, (4.8)

where I have introduced

C ≡ C( f ;xµ , p̃µ , q̃µ , pµ ,qµ) = ω[ f (xµ , p̃µ) f (xµ , q̃µ)− f (xµ , pµ) f (xµ ,qµ)],
(4.9)

where ω = ω(xµ ; p̃µ , q̃µ , pµ ,qµ) represents the phenomenological cross
section of the process; here xµ denotes the point in the physical space where
the collision takes place and pµ , qµ , p̃µ , q̃µ the four-momenta of the colliding
particles before and after the collision. Summarizing, the collision integral
describes the variation rate of the number of particles in a given region of the
phase space [68].

The physical properties of the gas considered are contained in the momenta
of the distribution function: the current of particles density, the stress-energy
tensor and the current of entropy density:

Nµ =
∫

f 2δ+(p2 +m2) pµ

√−gd4 p

(2π)3
=
∫

f
pµ

|pt |

√−gd3 p

(2π)3
(4.10)

T µν =
∫

f 2δ+(p2 +m2) pµ pν

√−gd4 p

(2π)3
=
∫

f
pµ pν

|pt |

√−gd3 p

(2π)3

Sµ = −kB

∫

( f ln f )
pµ

|pt |

√−gd3 p

(2π)3
,

where g is the determinant of the background metric and kB the Boltzmann
constant. It can be proved by direct inspection that in a generic spacetime the
solution of the collisional relativistic Boltzmann equation is given by
f = αeβξµ pµ

, ξµ being a timelike Killing vector of the background metric, α

a normalization constant and β = 1/kBT the inverse temperature. In the
specific case of the Schwarzschild spacetime such Killing vector is
ξµ = (∂t)µ . For the explicit evaluation of the statistical momenta, the
functional generator technique

Nµ =
1

β

∂ I

∂ξµ
(4.11)

T µν =
1

β 2

∂ 2I

∂ξµ∂ξν
=

1

β

∂Nµ

∂ξν
(4.12)

Sµ = −kB

∫

( f ln f )
pµ

|pt |
d3 p

(2π)3
= −kB

[

ln(α)Nµ +
∂Nµ

∂ξν
ξν

]

,(4.13)

71



where I have introduced

I =
∫

f (ξµ pµ)2δ+(p2 +m2)
√−gd4 p , (4.14)

is of great help. After some algebraic manipulations [79], the stress-energy
tensor for a massless gas in a curved spacetime is reduced to

Tµν = (ρ + p)uµuν + pgµν =
C

3(βξ )4
[gµν +4uµuν ] , (4.15)

where uµ =
ξµ

ξ
is a unit vector where ξ =

√

−ξµξ µ . In equation (4.15) we
have reobtained in a more formal way both the expected equation of state for
a photon system p = 1

3 ρ , and the Tolman law β → βξ for the temperature.

Finally the constant C = π2

15 has been determined requiring to be in agreement
with the black body theory in a flat spacetime. Direct inspection of the
expression (4.15) shows that the conservation law T µν

;µ = 0 and the tracefree
condition of an radiation field T µ

µ = 0 hold.
Considering a Schwarzschild spacetime

ds2 = −N2dt2 +
1

N2
dr2 + r2dθ 2 + r2 sin2 θdφ 2 , N = N(r) =

√

1− 2M

r
,

(4.16)
M denoting the mass of the central black hole, then the explicit expression for
the Poynting-Robertson formula (4.2) is reduced to

f (U)α
rad = −mÃ

N4
γ3[ν2uα +να ] , (4.17)

after inserting the stress-energy tensor (4.15). In this expression m is the mass
of the test particle moving inside the photon gas around the black hole, Ã a
constant of proportionality containing information about the temperature of
the photons, the cross section of the process, and other numerical constants, γ

is the Lorentz factor and να the spatial part of the test particle four-velocity
(1.22).

I recall that the equation of motion are given by the superposition of the
geodesic part and of the friction term:

mUβ ∇βUα = f (U)α
rad . (4.18)

Numerically integrating this set of equations we observed that:

• The motion is still planar as in the pure geodesic case.
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• Considering as initial condition the circular geodesic orbit for a pure
geodesic case with r = 4M and νK = 1√

2
, here νK being the keplerian

velocity, the test particle falls inside the black hole crossing its horizon.
Thus the circular motion is modified to a spiral one. This behavior can
be understood in terms of the physical nature of the
Poynting-Robertson formula: it is a friction effect and consequently the
test particle is condemned to dissipate its initial energy.

• Our analysis can be compared to a previous one in which the stress-
energy tensor for a null dust around a Schwarzschild black hole was
written as

T µν = Φ2kµkν , kµkµ = 0 , (4.19)

where kµ is a vector tangent to a null geodesic, while Φ is a function
to be determined imposing the conservation law T µν

;µ = 0 in a specific
spacetime. In this previous analysis the null dust acts as a wind and
the test particle, whose motion is based on the same initial condition as
in the point above, reaches an equilibrium point (outside the horizon)
where the gravitational attraction of the black hole equates the radiative
pressure of the field.

• Our original result based on a statistical modeling of the photon gas was
fundamental in separating the two parts, the radiation pressure and the
friction term inside the Poynting-Robertson effect.

• According to our analysis the Poynting-Robertson effect can play some
role in the formation of an accretion disk in the vicinity of a star or a
black hole because the test particle stops its motion closer to the horizon
than the innermost stable geodesic circular orbit (classical description of
the photons moving along a preferred direction), or crosses it (original
approach).

I would like to mention that I started studying the topic presented in this section
with my master thesis [88], but it has been completed only during my Ph.d. In
the future this same analysis should be extended to a rotating Kerr black hole.

4.3 Metric curvature versus friction effects

In the previous section the photons were considered as a test field which does
not perturb the Schwarzschild black hole. However also the strong limit case
is physically interesting. To study a configuration in which the presence of the
photons models the spacetime, we have eliminated the black hole and on the
other hand we have solved the Einstein equation (1.5) for a photon system in
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gravitational equilibrium as a matter source. Since the gas is assumed to be in
equilibrium the metric must be spherically symmetric and we can start from
the ansatz

ds2 = −eν(r)dt2 +

(

1− 2M(r)

dr

)

dr2 + r2dθ 2 + r2 sin2 θdφ 2 . (4.20)

Its explicit expression can be derived using the Tolman-Oppenheimer-Volkoff
formalism once a specific matter content is assumed. The TOV set of equations
are given by [89; 90]:

d p(r)

dr
= − 1

r2
(ρ(r)+ p(r))(M(r)+4πr3 p(r))

(

1− 2M(r)

r

)−1

(4.21)

dM(r)

dr
= 4πρ(r)r2

dν(r)

dr
= − 2

ρ(r)+ p(r)

d p(r)

dr
.

In this set of equations p(r) and ρ(r) are the pressure and the energy density of
the fluid function only of the radial coordinate and related to each other by an
equation of state which reflects the fluid we are considering, while M(r) can
be regarded as the mass of the configuration inside a sphere of radius r. In the
case under examination we choose p(r) = 1

3 ρ(r) and the Tolman metric gives
the solution we are looking for [85]:

ds2 = −ardt2 +
1

a
dr2 + r2(dθ 2 + sin2 θdφ 2) , a =

4

7
, (4.22)

and the energy density

ρ =
3

56πr2
, (4.23)

is in agreement with the Tolman law for static spacetime [91]. Three features
of the line element (4.22) are evident:

• The energy density approaches zero as a function of the radial coordinate
only asymptotically: we can not have a bounded photons configuration
in equilibrium from which photons can not escape otherwise we will
have a black hole.

• The metric exhibits a naked singularity in the point r = 0 as it comes
from the evaluation of the Kretschmann scalar

K = Rαβγδ Rαβγδ ∼ 1

r4
. (4.24)
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• The metric describes a photon gas configuration in equilibrium and not
a radiating star (it is static) and consequently its form is completely
different from the Vaidya metric [86]

ds2 = −
(

1− 2M(v)

r

)

dv2 +2dvdr + r2(dθ 2 + sin2 θdφ 2) . (4.25)

To quantify the relative importance between spacetime curvature and friction
term in the modeling of the Poynting-Robertson effect three different situations
for the motion of a massive test particle must be compared:

• We consider a test photon field superimposed to a fixed Minkowski
background: only friction effect, no curvature (being the Riemann
tensor identically zero).

• We consider a geodesic motion inside the Tolman metric (4.22): only
curvature, no friction; we can refer to this case as an indirect interaction
between test particle and photon gas through the Einstein field equations.

• We consider a Poynting-Robertson effect in the Tolman metric: both
friction and curvature of the space are accounted for; in this case there is
a direct interaction between the test particle and the fluid generating the
space since there are collisions between them (which microscopically
can be regarded as a Thomson scattering).

I would like to mention that the analysis of the motion of a particle in such
a metric should not be considered only as a theoretical exercise because the
Tolman metric can also describe a static Universe radiation dominated. The
characteristics of the motion are the following.

• Only friction, no curvature: the massive test particle moves along a
straight line, as in the case of Minkowski metric without the
Poynting-Robertson term, but decelerating and reaching a motion
endpoint with zero speed. As in the classical mechanics counterpart in
which the friction force is given by the Stokes’ law, the velocity is
exponentially decaying. On the other hand we have observed that in a
relativistic context, contrary to the newtonian one, the object crosses a
maximum distance independently of its initial speed:

dmax =
π

2A
, A =

4ρ0σ

3m
, (4.26)

where ρ0 is the constant energy density of the photon gas, σ the cross
section of the process appearing in the Poynting-Robertson formula
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(4.2), while m is the mass of the test particle. The quantity A can
therefore be interpreted as an effective coupling constant between test
particle and field which quantifies the energy absorption and
re-emission from the photons. The upper limit stated above opens the
question if a similar condition holds also in a curved spacetime in
which the energy of the photon gas is not anymore constant but goes to
zero asymptotically with r (4.23).

• Only curvature, no friction: considering a geodesic motion in the
Tolman metric, the test particle orbit is bounded between two specific
values of the radial coordinate whose numerical values depend on the
initial condition of the motion. The radial coordinate plotted as a
function of the proper time exhibits an oscillating behavior.

• Curvature plus friction: in this case the massive test particle reaches the
center of the configuration following a spiral with vanishing speed for
all the numerical tests analyzed. The speed of the test particle shown in
terms of the proper time exhibits a damped oscillating behavior.

To summarize we have showed that in this specific spacetime the friction
dominates over the curvature because asymptotically the massive object stops
its motion, as in the case in which the curvature non-linearities were sent to
zero. The assumption of test field for the photons consequently does not
influence the long-time modeling of the motion. A stronger analytical proof
of this claim opens a direction for future possible research.

4.4 Extending the Poynting-Robertson formalism to

the case of a massive fluid

In this section I will report about the results of the second part of the attached
paper III; the first part has already been discussed in section (1.5) where the
extension of the Poynting-Robertson formula from the motion inside a
massless gas to the motion inside a massive fluid has been derived. This
proves that their formalism is the correct general relativistic counterpart of the
Stokes’ law. I will focus here instead on the physical application of this
interpretation studying the motion of a body inside a massive gas cloud
formally described by the exact Pant-Sah solution of the Einstein equations.
Thus I start reviewing how the solutions of the field equations have been
constructed in general relativity to describe a system of self-gravitating
particles in equilibrium [89; 90; 92; 93; 95–97]; in particular I will follow
closely [94] since this set of solutions received poor attention in literature so
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far. In this latter paper the authors start from the general form of the line
element in isotropic coordinates for a spherically symmetric system:

ds2 = −eν(r)dt2 + eω(r)(dr2 + r2dθ 2 + r2 sin2 θdφ 2) , (4.27)

and the well-known expression for the stress-energy tensor as function of the
energy density and pressure of the fluid:

T t
t = −ρ , T r

r = T θ
θ = T φ

φ = p . (4.28)

Then Pant and Sah have proved that the Einstein equations for such a system
are reduced to:

8π p = e−ω

[

ω ′2

4
+

ω ′

r
+

ω ′ν ′

2
+

ν ′

r

]

(4.29)

8π p = e−ω

[

ω ′′

2
+

ν ′′

2
+

ν ′2

4
+

ω ′

2r
+

ν ′

2r

]

(4.30)

8πρ = −e−ω

[

ω ′′ +
ω ′2

4
+2

ω ′

r

]

, (4.31)

where a prime denotes, as usual, derivative with respect to r. The first two
equations of the system above can be combined together to give:

ν ′′ +ω ′′ +
ν ′2

2
− ω ′2

2
−ν ′ω ′− 1

r
(ν ′ +ω ′) = 0 , (4.32)

which admits the solution

e
ν
2 = A

1− kδ

1+ kδ
, e

ω
2 =

(1+ kδ )2

1+ r2

a2

, (4.33)

where

δ = δ (r) =

(

1+ r2

a2

)
1
2

(

1+b r2

a2

)
1
2

, (4.34)

with A, a, b and k numerical constants. This is exactly the procedure followed
by Pant and Sah for deriving their namesake solution. The pressure and energy
density can then be expressed in terms of this set of quantities as

8π p =
4(bk2δ 6 −1)

a2(1+ kδ )5(1− kδ )
(4.35)

8πρ =
12(1+bkδ 5)

a2(1+ kδ )5
, (4.36)
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which are consequently connected by the equation of state

p = p(r) =
ρ

6
5

1+2qc(1−ρ
1
5 )

, a =
2qc

1+qc

, (4.37)

which should be regarded as a generalized polytropic equation of state of index
n = 5. The sound speed for such a system is:

cs =

√

∂ p

∂ρ
=

p

ρ

√

2

5ρ
1
5

(3+6qc −5qcρ
1
5 ) . (4.38)

This last expression motivates why the Pant-Sah solutions have been looked
for: they are more realistic than the interior Schwarzschild solution (which
can be derived from the Tolman-Oppheneimer-Volkoff equations (4.21) for a
sphere of constant density everywhere):

ds2 = −N2
1 dt2 +

dr2

N2
2

+ r2(dθ 2 + sin2 θdφ 2) (4.39)

N1 ≡ N1(r) =
3

2

√

1− 2M

R
− 1

2

√

1− 2Mr2

R3
, N2 ≡ N2(r) =

√

1− 2Mr2

R3
,

M denoting the total mass of the configuration, to have a system in which the
sound speed assumes physical values. I would like also to mention that the
particular case for which b = 0, implying that

δBuchdahl =

√

1+
r2

a2
, (4.40)

is referred to in the literature as the Buchdahl solution.
Figures (4.1)-(4.2)-(4.3) picture what I have explained so far in this section.

The first two plots show the equation of state p as a function of ρ and the sound
speed versus the energy density for the set of values a = [0.1, 1.0, 1.4, 1.5].
The third instead gives an estimate of the radius of the configuration for the
specific values k = 4, a = 1.5 and b = [0.010, 0.050, 0.000, −0.002], where
the first two numerical values of b correspond to bounded Pant-Sah solution,
the third to the unbounded Buchdahl solution and the fourth to the unbounded
Pant-Sah solution.

Moreover it is important to stress that the case b > 0 describes a finite
boundary fluid distribution, while b ≤ 0 (being the Buchdahl one part of this
second class) models unbounded distributions. Thus if we would like to
interpret the Pant-Sah solution as a modeling of an astrophysical gravitational
lensing we must restrict ourselves to the former case. Literature also explains
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Figure 4.1: Equation of state for a Pant-Sah star. The figure shows the
generalized polytropic equation of state of index n = 5 (4.37): the pressure
is plotted versus the energy density for a Pant-Sah star for the set of values
a = [0.1, 1.0, 1.4, 1.5].
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Figure 4.2: Sound speed inside a Pant-Sah star. The figure shows the sound
speed inside a Pant-Sah star (4.38) for the same numerical values of the free
parameter a as in the plot of the equation of state.
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Figure 4.3: Radius for a Pant-Sah star. The figure shows the pressure in terms
of the radial coordinate (4.35) for a Pant-Sah star for the values k = 4, a = 1.5 and
a set of values for b. The case b = 0.000 corresponds to the Buchdahl solution in
which the pressure approaches zero only asymptotically. For b = 0.010 and b =
0.050 the radius of the configuration is given by the value at which the pressure
switches its sign. Moreover it can be noted that p is a monotonically decreasing
function of the distance from the center of the star, as expected.
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in details how the interior Pant-Sah and exterior vacuum Schwarzschild
solutions are matched on the surface for the bounded case and also analyzes
the ranges of validity for the numerical values of the free parameters to have a
physical meaningful solution.

Moving ahead to our original analysis, we have compared and contrasted
the geodesic and geodesic plus Poynting-Robertson effect (where we have
plugged the same expression of the stress-energy tensor both inside the
Einstein equation (1.5) and the friction force (4.2)) for the Schwarzschild
interior solution, the Buchdahl solution and the Pant-Sah one. These cases
can be considered as examples of indirect and direct interactions between the
test particle and the background respectively in the meaning introduced in the
previous section.

• We have considered a massive test particle moving in a vacuum space,
then entering a Schwarzschild interior region. If the orbit is geodesic the
body deflects its motion and can escape from the massive configuration;
when also the friction term is accounted for this behavior is not possible.

• Similar qualitative result has been obtained when the fluid has been
modeled by the Pant-Sah line element.

• In the presence of a direct interaction between test particle and fluid
through scattering, the test particle entering the gas cloud reaches the
center of the configuration both for the Schwarzschild interior and Pant-
Sah metrics following a spiral orbit (consequently the radial coordinate
of the motion exhibits a damped oscillating behavior as a function of the
proper time). The shape of the spiral is different reflecting the different
matter distribution of the two cases, being constant in the former and
smoothly approaching the vacuum region in the latter.

• For a test particle moving inside the Buchdahl and unbounded Pant-Sah
solutions we have re-obtained qualitatively the same motion as in the
previous section of this chapter where I have considered the Tolman
metric for a photon gas. The geodesic orbit is confined between two
specific values of the radial coordinate, while the friction does not allow
the body to escape to infinity and condemns it to fall to the center of the
configuration.

• In all the cases considered the motion is planar meaning that the friction
term does not change this symmetry of the system.

• We have also analytically proved that the equation of motion admits an
equilibrium (constant) solution for the angular coordinate φ : the
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presence of a gravitational lensing along the path of an object does not
necessarily distort its motion.

I would like to conclude this section recalling that evaluating the angular
distortion for the orbit of the test particle in terms of the radial distance from
the center of a cluster of galaxies, we can reconstruct the mass of this
self-gravitating system [98; 99]. Moreover the evaluation of the observational
distortion can also provide an indirect estimate for the coupling constant
between the test particle and the background fluid.

4.5 Peculiar velocities in astrophysics

The formalism used in the previous sections of this chapter for the description
of the motion of an object inside a gas cloud can be extended to the case of an
expanding or contracting spacetime, like the Friedmann one (1.8) about
which I have spoken in the third chapter of this thesis in the framework of the
construction of an original class of cosmological models. Thus this section is
meant to deepen the understanding of the concordance model of cosmology
considering the motion of a galaxy inside a homogeneous and isotropic
Universe when its direct interaction with the intergalactic medium is
accounted for. The motivation for this study is that the search for the correct
model for our Universe is a hot matter of debate in the context of general
relativity and the motion of a galaxy strongly depends on the description of
the relativistic spacetime. A complementary analysis about peculiar velocities
and matter horizons has recently been discussed in [100]

The explicit form of the Poynting-Robertson formula (4.2) is in this case
given by

f (U)rad = −σ(1+w)γ2ρνŪ , (4.41)

where σ is as usual the cross section of process, w = p
ρ describes a

one-parameter polytropic equation of state for the fluid driving the dynamics
of the Universe (we have assumed the presence of only one matter
component), p and ρ being its pressure and energy density respectively; γ

represents the dilation Lorentz factor, ν the magnitude of the spatial
component of the test particle four-velocity and finally Ū is a spacelike vector
orthogonal to U in the plane of motion. It is interesting to note that in the
exotic case of dark energy the motion reduces to a purely geodesic one
because of the vanishing of the r.h.s of equation (4.41).
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The system of equation to be integrated can be shown to reduce to

ν̇ = −ν

γ

[

A(1+w)ρ +
1

γ

ȧ

a

]

,

α̇ =
νΣ′ cosα

aΣ
, ṙ =

ν sinα

a
, φ̇ =

ν cosα

aΣ
,

ȧ =

√

−k +
8

3
πρa2 , (4.42)

where α is the inclination of the motion, A = 8πσ
m

the effective coupling
constant between test particle and field, while k and Σ have been defined in
section (1.2) of this thesis. The energy density depends on the scale factor of
the Universe as in the concordance model of cosmology:

ρ = ρ0

(a0

a

)3(1+w)
, (4.43)

where ρ0 and a0 are the initial values for the energy density and the scale
factor respectively. I have presented explicitly this system of equation to
explain what I mean by direct interaction between test particle and field: the
spacetime is evolving (equation for the scale factor) because of the presence
of a time-dependent energy density; this same energy density appears
explicitly also in the equation for the evolution of the magnitude of the spatial
velocity of the particle (it enters only indirectly the equation for the
inclination). The equations governing the time evolution of the scale factor
and the velocity must consequently be integrated simultaneously.

The first equation of the system (4.42) enlightens also the two separate
contributions in the spatial acceleration, the friction and gravitational ones:

ν̇ = a(fric) +a(grav) , (4.44)

with

a(fric) = −A(1+w)ρ
ν

γ
, a(grav) = − ν

γ2

ȧ

a
, (4.45)

whose ratio can be considered as a function of time to evaluate which one is
dominant in the different epochs of the Universe. In particular the friction term
will always decelerate the test particle, while the gravitational one can also
accelerates it during the re-collapsing phase of a closed Friedmann Universe.

According to our analysis, the motion exhibits the following
characteristics:

• The motion is radial for all the cases of hyperbolic, closed and flat
Universe.
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• Hyperbolic Universe: the test particle velocity is approaching zero both
in the pure geodesic (A = 0 in the system of equations (4.42)) and
geodesic plus Poynting-Robertson effect cases. The friction effects thus
play a more minor role than in the case of a closed Universe.

• Flat Universe: qualitatively the same behavior as for the hyperbolic
Universe.

• Closed Universe: the motion undergoing friction effects radically
deviates from the geodesic one; in the latter case the test particle
returns to the ultrarelativistic equilibrium limit for the velocity ν → 1,
as expected from the big crunch model, while in the former goes to
zero. This is true because in the recollapsing phase of the Universe the
energy density increases causing a dominant effect of the friction
deceleration versus the gravitational (positive) acceleration.

• Our formalism does not allow us to discriminate between different
equations of state for the fluid permeating the Universe because of the
great ignorance inside the modeling of the effective coupling constant
between test particle and field (namely inside the cross section of the
process σ whose value must be sharply refined in a possible future
extension of this work).

The analysis of this section could be applied to deepen our knowledge of the
standard model of cosmology as follows. I begin introducing the
time-dependent proper distance between an observer and a galaxy D = ar

where r indicates the matter comoving radial coordinate and a = a(t) the
scale factor at a specific instant. The so-called coordinate velocity between
galaxy and observer is then derived from the Hubble law v = Ḋ = ȧr = HD,
where I have introduced the Hubble function H = ȧ

a
[31]. In our case instead

also r depends on the time t with the matter non comoving, implying that the
Hubble law should be modified as v = HD+ν , where I have explained in this
section how to determine quantitatively the contribution of ν . The observed
astronomical structures consequently deviate from the Hubble motion and are
expected to approach it only as a limiting case. It is expected that future space
missions will quantify experimentally the deviation theoretically derived here
[101; 102] increasing our knowledge of the line element of the Universe and
its matter content.

To summarize, in this chapter I have dealt with the scattered motion of a
massive body in a given spacetime undergoing geodesic plus friction effects.
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This latter term has been modeled à la Poynting-Robertson. Both the cases of
motion in static and non-static spacetimes have been treated, as well as the
motion inside a viscous massless (for which the formalism we followed was
initially proposed in the standard literature) or massive medium. Physical
applications have been discussed to the modeling of the formation of an
accretion disk around a star, motion distorted by a gravitational lensing and
astrophysical peculiar velocities. A possible future analysis requires the
extension of such formalism to other contexts in which friction has been
neglected so far: we want to move from the indirect interaction between test
particle and fluid contained in the geodesic equation to the direct interaction
(collisions between test particle and fluid generating the spacetime). Also its
more realistic modeling accounting for the noise effects will be addressed in
future. The technicalities of the derivation of all the results briefly presented
in this chapter can be found in the attached papers I, II, III and IV at the end
of this thesis.
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Sammanfattning

Denna avhandling behandlar de öppna frågorna att ge en kosmologisk modell
som beskriver ett accelererat expanderande universum utan att bryta mot
energivillkoren eller en modell som bidrar till den fysikaliska tolkningen av
den mörka energin. Det första fallet analyseras med hjälpav en sluten modell
baserad på ett regelbundet gitter av svarta hål med användning av Einsteins
ekvation i vakuum. I det senare fallet kommer jag att förbinda den mörka
energin med Shan-Chens tillståndsekvation. En jämförelse mellan dessa två
förslag diskuteras därefter. Som ett kompletterande ämne diskuterar jag
rörelse av testpartiklar som i en allmänrelativistisk rumtid genomgår
friktionseffekter. Detta är modellerat efter Poynting-Robertsons formalism,
vars koppling till Stokes formel presenteras. Fallen av geodetisk och
icke-geodetisk rörelse jämförs och kontrasteras för metrikerna Schwarzschild,
Tolman, Pant-Sah och Friedmann respektive.
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