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FOREWORD

T h eoretica l p h ysics  is  at present in a stage o f rap id  developm ent. 
This m akes it a v e ry  exciting  fie ld  o f re se a rch  which attracts som e of the 
m ost talented sc ien tis ts  a ll ov er  the w orld . It is  o f  v ita l in te rest to 
th eoretica l ph ysicists  to report on their latest w ork, to d iöcuss the resu lts 
o f recen t re se a rch , and to  exchange ideas on the m any advanced th e o r ie s  
w hich a re  constantly  being put forw ard . W ork  in th eore tica l p h y s ics  can 
be done away from  the gigantic re sea rch  cen tres which are becom ing  ever 
m ore  essentia l in other fie ld s  o f sc ien ce , but which only few  countries can 
afford. T herefore , theoretical physics provides an opportunity for  scientists 
in developing countries to achieve im portant resu lts and to make their m ark 
without suffering the handicaps with which experim entalists in these countries 
have to contend. They depend, how ever, on ways of com m unication and on a 
continuous flow  o f in form ation  w hich w ill keep them  a breast o f  r e s e a r c h  
w hich is  p erfo rm ed  in other cou n tries .

F or  these reason s the International A tom ic E nergy A gency organized 
the Seminar on T h eoretica l P h ysics  which was held at M iram are, near 
T rieste , in July and August 1962. The lectu res given there are now published 
in fu ll. T hese proceed in gs, together with those o f the Summer School on 
Selected T op ics in Nuclear Theory, held in C zechoslovakia in September 1962, 
w ill, it is  believed , make a substantial contribution to the d issem ination  of 
knowledge in this fie ld .

January 1963
SIGVARD EKLUND 
D ire c to r  G eneral



EDITORIAL NOTE

T h e  S e m in a r  on  T h e o r e t i c a l  P h y s i c s  w a s  o r g a n i z e d  s o  th a t p h y s i c i s t s  
c o u ld  d i s c u s s  m u tu a l p r o b l e m s  a s  t h e y  w ou ld  d o in  a r e s e a r c h  c e n t r e .  T h e  
p r e p r i n t s  w e r e  ty p e d , c o r r e c t e d  a n d  d is t r ib u t e d  on  th e  s p o t .  In s e v e r a l  
c a s e s j  f o r  i n s t a n c e  in  t h o s e  o f  P r o f e s s o r s  R . C a p p s , S. M a n d e ls t a m , 
J. J. S a k u ra i, J . S c h w in g e r  and W. T h ir r in g ,  l e c t u r e  n o t e s  w e r e  p r e p a r e d  
b y  p a r t i c ip a n t s  &nd l a t e r  c h e c k e d  b y  th e  l e c t u r e r s .  In o t h e r  c a s e s ,  p a p e r s  
w e r e  p r e p a r e d  b y  th e  a u th o rs , ( P r o f e s s o r s  M . F r o i s s a r t ,  S. F u b in i, T . R egge, 
J. T io m n o , A - P a i s ,  S .H a ya k a w a , A .S a la m , E .W ig n e r ) .

T h e o r e t i c a l  p h y s i c s  i s  a r a p id ly  d e v e lo p in g  s u b j e c t  and i t  i s  t h e r e f o r e  
n e c e s s a r y  t o  p u b l i s h  th e  p r o c e e d i n g s  w ith  th e  m in im u m  d e la y .  F o r  t h i s  
r e a s o n ,  n o  p r o o f s  co u ld  b e  su b m itte d  to  th e  a u th o rs ; h o w e v e r , th e  t e x t s  w e r e  
c a r e fu l l y  p r o o f r e a d  b y  th e  A g e n c y ' s  s ta f f .  T h e  A g e n c y  a p o lo g i z e s  f o r  a n y  
e r r o r s  w h ich  m a y  n e v e r t h e l e s s  h a v e  o c c u r r e d .
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INTRODUCTION

In planning the scien tific program m e fo r  the IAEA sem inar on theoreti
ca l a sp ects  o f h igh -en ergy  and e le m e n ta ry -p a rtic le  p h y s ics , one o v e r 
riding consideration  was kept in view. M ore than at any other sem inar, we 
expected to w elcom e a fa ir ly  large  proportion  of p h ysicists  from  countries 
rather fa r  a fie ld  from  active  cen tres o f re se a rch . Instead o f sp ec ia liz in g  
in a lim ited  fie ld  it was fe lt that the plan of the sem inar should prov ide fo r  
a synoptic rev iew  of the whole span of the subject at a fa ir ly  high lev e l. In 
this d ecis ion  we w ere re in fo rced  by the fee lin g  that apart fro m  the Annual 
High E nergy P h ysics  C on ferences at R och ester , CERN and Dubna no such 
review  has recently  been attempted. The re co rd  of the proceedings re fle cts  
this decision .

In m id -1962, one can distinguish three m ajor areas of ferm ent in theory; 
firstly , there is  the intensive development of quantum field  theory; secondly, 
the sea rch  fo r  the sym m etry  p ro p e rtie s  o f stron g  and weak in tera ction s ; 
and th ird ly , the exp loration  o f the analyticity  o f the sca tterin g  m atrix  in- 
energy and angular momentum variables. The first four books of this volume 
survey these developments.

B ook I is  con cern ed  with quantum fie ld  theory in its axiom atic as w ell 
as lagrangian form ulations. Part 1 is  a survey by Wightman o f the recen t 
achievem ents of the axiom atic approach follow ed by an account from  W igner 
of som e of the le s s  known representations of the Lorentz Group (continuous 
spin and im aginary m ass representations) which may possib ly  acquire re lev 
ance in connection  with th eories  o f R egge p o le s . P art two o f B ook  I co n 
s ists  of Schw inger’ s lectu res  on the structure of Gauge T heories  of V ector 
P a rtic les  and an account o f h is recent ideas about gauge invariance and its 
connection with m ass.

B ook II is  devoted to the sym m etry prop erties  of elem entary partic les  
with an experim ental review  by Capps and a survey o f the form alism  of L ie 
groups by Salam. A num ber o f contributions by Gatto, Sakurai and oth ers 
specia lize to particular Lie groups, exploring the possibility of testing which, 
if  any, o f the h igher sym m etries  are  in fa ct re a liz e d  in nature.

Book III is  con cern ed  with com plex  angular m om enta and M andelstam  
representation, with m ajor lecture courses from  Regge, Fubini, Mandelstam 
and F ro issa rt . A shorter Book IV surveys som e recent dynam ical in vesti
gations o f ttN and NN System s as w ell as com pound m od els  o f e lem entary  
p a r tic le s  (T h irring).

The concluding part of this volum e (Book V) is  different in sp irit from  
the rest. Its concern  is with the em erging topic of very  high energies, with 
a survey of strong in teractions from  Hayakawa, of e lectrom agn etic  in te r 
actions fro m  E r ic s s o n  and oth ers and o f weak in teraction s  at v e ry  high 
en erg ies  from  P ais.

B esid es these m ajor co u rse s , at lea st tw enty-five additional sem inar 
le c tu res  w ere de livered . Some o f these are printed but the m a jor ity  could 
not be rep rod u ced . T h is has inevitably m eant that som e o f the continuity 
from  one topic to another achieved in the seminar is  lost in its record . This, 
however, is the p rice  one has to pay in order to keep the volume to a reason 
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able s iz e . It is  hoped that in spite of th is, the excitem ent of the new ideas 
which we all lived through during the six weeks of the seminar may com e out 
in the published re cord  o f its proceedings.

F inally I wish to express on behalf of the participants our appreciation 
to the International A tom ic Energy Agency fo r  making the sem inar possib le .

Abdus Salam 
Scientific D irector



INTRODUCTION
L ors  de l ’ etablissem ent du program m e scientifique des sem aines d ’ etudes 

o r g a n is e s  par l ’AIEA sur les  aspects theoriques de la physique deshautes 
Energies et des particules elem entaires, une consideration  l ’ a em pörte sur 
toutes les autres. Cette reunion semblait, plus que toute autre, devoir com p
te r  une assez  fo rte  p roportion  de physiciens or ig in a ires  de pays re la t iv e - 
ment 61oignes des centres qui se consacrent activement la recherche. Aussi 
a -t -on  estim § qu’ au lieu de cantonner le program m e dans un domaine parti- 
cu lier, il convenait de p revo ir  une etude g in era le  de l ’ ensem ble de la ques
tion d ’un niveau assez eleve. Cette fagon de vo ir  se trouvait d ’ailleurs co rro - 
bor6e  par le  fait qu’ en deh ors des con fe ren ces  annuelles sur la  physique 
des hautes en erg ies , qui se tiennent & R och ester , au CERN et 'h Doubna, 
aucun e ffo rt  sem ble n ’ a v o ir  £te d£ploye recem m ent dans ce  sen s.

Au m ilieu  de 1962, on pouvait distinguer tro is  principaux dom aines oil 
les etudes theoriques etaient particuliferement poussees : la theorie quantique 
des champs, qui a considerablem ent p rogresse ; la recherche des propriet6s 
de sym 6trie dans les  interactions fortes et faibles; enfin, l ’ etude de l ’ analy- 
t ic ite  de la  m a tr ice  de d iffusion  en fonction  des v a ria b les  d ’ en erg ie  et de 
m om ent angulaire. L es quatre p rem iers  liv res  du present ouvrage rendent 
com pte des progrfes a ccom p lis  dans ce s  d ifferen ts  dom aines.

Le L iv re  p rem ier  porte sur la  theorie  quantique des cham ps, sous sa 
form e axiom atique ainsi que sous la  form e lagrangienne. II com prend deux 
p arties  : la  prem ifere contient une etude de Wightman sur le s  recen ts  p r o -  
grfes obtenus par la  m ethode axiom atique, 'k laquelle  fait suite un expos6 
de W igner sur certa ines des representations le s  m oins connues du groupe 
de L orentz - representations en spin continu et en m asse  im aginaire  - qui 
pourront peut-§tre  se rattacher aux theories des pöles de Regge. La seconde 
partie contient des exposes de Schwinger sur la structure des th eories  des 
particu les v e c to r ie lle s  invariance de jauge ainsi qu’un aper§u de ses  r e -  
centes th eories  su r l ’ in variance de jauge en relation  avec la  m a sse .

L e  L iv re  II est con sa cr6  aux p ropriet^ s de sym ötrie  des p a rticu les  
61em entaires; on y trouve une 6tude experim entale de Capps et un expos# 
de Salam sur le form alism e des groupes de L ie . D ifferentes communications 
presentees par Gatto, Sakurai et d ’ autres physiciens portent sur des groupes 
de L ie  p a rticu lie rs ; ce s  auteurs etudient la  p oss ib ility  de v e r i f ie r  s i  c e r 
taines des sym 6tries d ’ ordre superieur se trouvent rea lisees dans la  nature.

Le L ivre  III porte  sur le s  m om ents angulaires com plexes et la  r e p r e 
sentation de M andelstam , et com prend le texte d ’ im portants ex p oses  de 
Regge, Fubini, M andelstam et F ro issa rt . Le L ivre  IV, de d im ensions plus 
restre in tes , rend com pte, dans une prem ifere partie, de certa ines r e ch e r - 
ches recentes sur la dynamique des systfemes ?rN et NN; sa deuxifeme partie 
est con sacree  & un expose de Thirring sur le s  m odules com poses des p a rti
cu les elem entaires.

L e cinquifeme et d ern ier  L iv re  n ’ est pas redig6 dans le  m 6m e esp rit 
que le s  au tres. II a tra it au dom aine nouveau des trfes hautes E nergies et 
contient une etude de Hayakawa sur le s  in teraction s fortes , une autre 
d ’E ricsson  et de p lusieurs autres physiciens, sur le s  interactions e le c tro - 
magn&tiques et une troisifem e de P a is , sur le s  in teractions fa ib les dans la 
gam m e des trfes hautes E nergies.
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Outre c e s  travaux essen tie ls , v in g t-c in q  autres exposes au m oins ont 
6t6 pr6sen t6s au cou rs  des sem aines d ’ etudes. C ertains d ’ entre eux sont 
reproduits dans le  present ouvrage, m ais la plupart n ’ ont pu y trouverplace. 
A ussi le  com pte rendu des reunions ne re fifete -t-il pas entiferement la coh e
ren ce  qui a m arque l ’ ensem ble des travaux. Ce n ’ est pourtant qu’k. c e p r ix  
qu’ il a ete possib le  de m aintenir les dim ensions de l ’ ouvrage dans le s  Limi
tes  ra ison n a b les . J ’ espfere que, m algre  ce la , il  n ’ en donnera pas m oins 
une id6e de l ’ atmosphfere passionnante qui a regne durant ces  six  sem aines 
d ’ etudes.

En conclusion, je tiens & exprim er, au nom des participants, ma recon 
naissance & l ’A gence internationale de l ’ energie atomique gräce  ^ laquelle 
le s  sem aines d ’ etudes ont pu avoir lieu .

Abdus Salam 
D irecteur scientifique



BBEflEHME

TIpn cocTaBJieHMM HaywHofl nporpaMMH ceMMHapa MArATO no T eop e- 
TMMecKMM acneKTaM (J>m3mkm bhcokmx 3HeprMÜ m <&m3mkm sJieMeHTapHHx 
»lacTMU y^MTHBajiocb oflHO, paHee He npMHMMaBineeca bo BHMMaHne c o -  
oöpaxeHMe. Ha otom ceMMHape, öo jiee  weM Ha KaKOM-jiMöo apyroM , mm 
npeflJiarajiM npuHATb, 6e3ycji0BH 0, öojibine $M3Mkob o t  CTpaH, p a cn o - 
jioxeHHux BAajieice o t  aeftcTByromnx MccjieaoBaTejibCKHx ueHTpoB. KpoMe 
r o r o ,  Öhjio co*iTeno ywecTHHM cocTaBMTb njiaH ceMMHapa TaKMM 0 6 -  
pa30M, 'i t o ö h  B HeM npeaycMaTpMBajica KOHcneKTMBHHÜ oÖ 3op n p e a - 
MeTa bo Baeß e r o  nojiHOTe Ha aocTaTOMHO bmcokom ypoBHe. üphhhtmk 
HaMM TaKoro pemeHMa cnoco6cTB O B ajio t o  oöCTOHTejibCTBO, i i t o ,  He 
OMMTaa exeroflHHX KOHiIiepeHUHß no <J>M3MKe bhcokmx SHepraft, np0B 0- 
rvmivx. b p o 'ie cT e p e , UEPHE h flyöH e, 3 a nocJieaHee BpeMfl He öhjio n o - 
IXHTOK COCTaBMTb nOÄOÖHBlS 0 0 3 0 p .

B cepeaMHe 1962 ro a a  onpeaeJMJiMCb tpm nnaBHux HanpaBJieHMa 
b Teopwm BO-nepBbix, HHTeHCMBHoe pa3BMTne Teopnn KBaHTOBoro nojia; 
BO-BTOPMX, nOM CKM  CMMMeTpM^HHX CBOftCTB CMJIbHHX M CJiaÖHX B 3aMMO- 

seWcTBMft; h , B-TpeTbMx, MCCjieaoBaHMe aHajniTH'iHOCTM pacceMBammefl 
MaTpmjH b 3HeprMM m MCCjieaoBaHMe nepeMeHHHx y r jio B o ro  MOMeHTa. 
B nepBHx neTHpex KHMrax 3 T oro  TOMa aaeT ca  0 6 3 0 p pa3BMTMa stm x 
HanpaBJieHMÜ.

B KHMre I  3aTparnBaeTca Bonpoc o TeopMw KBaHTOBoro nojia KaK 
B aKCvioMaTM'iecKoß $opMyjinpoBKe, TaK m b  <J>opMyjinpoBKe JlarpaHxnaHa. 
HacTb 1 SToft KHiira npeflCTaBJiaeT coöo ft noaroTOBJieHHHft BMTMaHOM 
oÖ3op He^aBHUx a o c T M x e H n ft  b  o ß j ia c T M  a K c n o M a T M M e c K o r o . npnöjmxeHMa, 
conpoB oxaaeM oro pacMeTOM BwrHepa HeKOTöpiix MaJioM3BeCTHHX c n o -  
coÖ ob npeacTaBJieHns rpynn JIopeHiia ( Henpep&iBHHfi cnMH m npeacTaB - 
JieHMe MHMMOß M a C C il)  , KOTOpHe, B03M0XH0, HeOÖXOÄMMH 3aeCb B CB«3M 
c  TeopM H M M  n o jiB O O B  P e r r e .  ' l a c T b  B T o p y io  khmtm I  c o c T a B J ia r o T  j ic k k h m  
UlBHHrepa OTHOCMTeJibHO CTpyKTypw Teopwft M3MepeHMa BeKTopa wacTMii, 
m b Heß ooflepxMTca ynoMMHaHne o e r o  HeaaBHMx Maeax OTHOCMTeJibHO 
M H B a p n a H T H O C T M  M3MepeHMH M erO C B S 3M  c  M a C C O ft.

KHura I I  nocBameHa cMMMeTpM̂ HMM cBotöcTBaM sjieMeHTapHiix 'lacmu. 
B Heft aaeT ca  Taicsce SKenepm/ieHTajibHuft 0 6 3 0 p , caeJiaHHuH KanncoM, 
m oÖ3op $opMajiM3Ma rpynn JIu, caejiaHHiiß CajiaMOM. Psä CTaTeß faTTO, 
CaKypaM m a p y ra x  3aT parnB aeT , b uacTHoc'Tn, rpynnti JIm, M ccjieayn 
B03MoacHocTb m x  npoBepKM, eojiM T a K O B a H  Booöme M M e e T o a ,  x o t h  m x  
HaMÖOJibmaa CHMMeTpMMHOCTb cymecTByeT b n p u p oa e .

B KHMre I I I  pa3öMpaeTCa KOMnjieKC yrjioBHx mombhtob m Moaejiw- 
poBaHMe MaHaejibmTaMa m ip y a c c a p a . B HeßoJibmofi no oßieM y KHMre IV 
aaeTca 0 6 3 0 p HeKOTopwx. HeaaBHMx aMHaMM'iecKMx MccjieaoBaHMÜ cmctcm 
ttN m NN, a Taicxe cocTaBHHX MoaejieK 3JieMeHTapHiix ^acTMU (TMppHHr).

SaicJiBOMMTeJibHaa 'lacT b  3 T o r o  TOMa (KHMra V) oTJmuaeTCH no 
CBoeMy ayxy OT ocTajibHHx. OHa KaoaeToa TeMH o^ieHb bhcokmx SHeprMÜ. 
B hett a a e T c a  0 6 3 0 p CMJibHux BsaMMoaeMcTBMÜ Ha ocHOBe p a ö o T  X a a - 
KaBu, sjieKTpoMarHMTHiix B3anMoaeßcTBMü no 3ppwKcoHy m apyrMx aB - 
TopoB, a Tarace cjiaöHx B3aMMoaeßcTBMft npM o^eHb bhcokmx SHeprwax 
no n a ficy .
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KpoMe 3TMX oönmpHHx KypcoB npeacTaBJieHo, no KpaßHeß Mepe, 

25 ÄOnOJIHHTejIbHHX CeMMHapCKMX JieKmiß. HeKOTOpUe M3 3TMX JieKW-lft 

Hane'iaTaHHjHo öojibiuafl 'lacTt mx He B0cnp0M3B0flMTCH.TaK0e nojioseHHe 

HeMMHyeMO 03HaMaeT to, wto nocjieaoBaTejibHocTb M3yweHMfl TeM, ao- 

CTHrHyTaa Ha ceMHHape, He coÖJiiofleHa b M3flaHKM. OflHaico 3TO ABJiaeT-t 

ch CBoe6pa3Hoft xepTBofi bo mmh Toro, utoöbi coxpaHMTB npneMJieMi>iß 

pa3Mep TOMa. BwpaacaeTCH naaexaa, *itö, HecMOTpa Ha TaKoe coKpa- 

meHMe, HOBHe vinevi, kotophmm Bee mh smjim b Te^eHMe rnecTu Hegejib 

ceMMHapa, noHBHTca b onyöJiHKOBaHHiix Tpyaax ceMMHapa.

M , H aK O H eu, o t  MMeHM ywacTHHKOB ceM M H apa a xo'iy BHpa3M Tb 
Harny npH 3H aTejibH 0CTb M exayHapoaHOM y a r e H T C T B y  n o  a -roM H oft  3H ep rn n  
3 a  t o ,  m to  o h o  npoB eJio Taicofö ceMMHap.

Aöaac CajiaM, 
YueHiiK ÄVipeKTop



INTRODU C CION

H em os elaborado el program a cien tffico  del Sem inario del OIEA sobre 
lo s  aspectos te o r ico s  de la fi'sica  de las altas energfas y de las partfcu las 
elem enta les pensando sob re  todo que en el Sem inario iba a p a rtic ip a r  un 
num ero sin precedentes de fi'sicos de- pafses que no cuentan con cen tros de 
in vestigacion . P o r  e so  re so lv im os  que el plan de la  reunion, en lu gar de 
c ircu n scrib irse  a un campo muy concreto, o freciera  una sinopsis suficiente- 
mente especia lizada  de todo el tem a objeto del Sem inario. E xcepcion  hecha 
de las C onferencias anuales sobre ffs ica  nuclear de las altas energias ce le - 
bradas en R och ester , e l CERN y Dubno, en lo s  u ltim os tiem p os no se ha 
intentado Uevar a cabo un examen general de este genero; esto nos im pulso 
a adoptar nuestra decision, de la que dan constancia las actas del Sem inario.

A  m ediados de 1962 cabfa d istinguir tre s  s e c to re s  p r in c ip a les  en lo s  
que abundaban las  investrgaciones te o r ica s : en p r im e r  lu gar, la  te o r fa  de 
los cam pos cuänticos, que pasaba por una fase de intenso estudio; ensegun- 
do lugar, las investigaciones sobre las propiedades sim etricas de las in ter- 
a cc ion es  fu ertes y  deb iles  y, en te r c e r  lugar, e l estudio de la  p osib ilidad  
de analizar la  m atriz de d ispersion  en las variab les de m om ento angular y 
de en erg ia . De lo s  c in co  lib ro s  en que se divide e l p resente volum en, los  
cuatro p r im eros  estudian esta  cu estion es.

E l lib ro  I trata de la teoria  de los  cam pos cuänticos en sus form ulacio - 
nes axiom ätica y lagrangiana. Su prim era  parte con siste  en un estudio de 
W ightm an sob re  lo s  m as re c ien tes  p ro g re so s  con segu idos con  el m etodo 
axiom atico , seguido de una resen a  de W igner que trata  de algunas de la s  
represen tacion es m enos con ocidas del grupo de Lorentz (represen taciones 
de espin continuo y de m asa im aginaria), que posiblem ente lleguen a tener 
im portancia en re lacion  con las teorfas de lo s  polos  de R egge. La segunda 
parte del lib ro  I contiene las con ferencias de Schwinger sobre la  estructura 
de las  teor fa s  del "gau ge" de las  partfcu las v e c to r ia le s , y una resefia  de 
sus ideas m as recien tes sobre  la  invariancia del "gauge" y su re la cion  con 
la m asa.

E l libro  II estä dedicado a las propiedades de sim etria  de las partfculas 
e lem enta les, y contiene un estudio experim ental de Capps y  o tro  tra b a jo  
de Salam a cerca  del form alism o de lo s  grupos de L ie . Una serie  de m em o- 
rias de Gatto, Sakurai y otros investigadores estudian determ inados grupos 
de L ie  y  exploran  las p osib ilidades de com p rob a r cuäles de las  s im etr ia s  
su p eriores  se dan realm ente en la  naturaleza.

E l libro  III trata de los  mom entos angulares com plejos y de la represen- 
tacion de Mandelstam e incluye una serie  de conferencias im portantes dadas 
p or  R egge, Fubini, M andelstam  y F r o is s a r t . En e l lib ro  IV , m as b rev e , 
se exponen algunas investigsiciones recientes sobre la dinäm ica de los  s iste - 
m as #N y NN, y se  d escr ib en  algunos m od elos  com pu estos de p articu las 
elem enta les (T h irr in g ).

La parte final del volum en (lib ro  V) difier'e en espfritu  de las  restan 
te s . T rata  del n ovfsim o tem a de las  en erg ias u ltraelevadas y  contiene un 
estudio de Hayakawa sob re  la s  in tera ccion es  fu ertes , o tro  de E r ic s s o n  y 
sus co la b ora d ores  sob re  las  in tera ccion es  e lectrom a gn 6 tica s , y  o tro  de 
P a is  sob re  las in tera ccion es  d eb iles  con  en erg ias u ltraelevadas.
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A parte de lo s  cu rs il lo s  p rin cip a les  se  pronunciaron  en e l Sem inario 
otras ve in tic in co  con feren cia s  p o r  lo  m en os. Algunas de e llas  se han im - 
p reso , pero  en la  m ayorfa  de lo s  casos  no fue posib le  h a cer lo . E sto quiere 
d e c ir  que, en e l p resente volum en, al pasar de un tem a a o tro , se  acusan 
forzosam ente  so lu ciones de continuidad que no ex istieron  en e l Sem inario . 
P ero  no cabfa obrar de otra m anera si se queria evitar que la presente pu- 
b licacion  resu ltara  excesivam ente volum inosa. E speram os que lo s  traba jos 
publicados re fle jen  e l ambiente de interes por las nuevas ideas en que todos 
v iv im os durante las seis  semanas que duro el Sem inario.

P erm ftasem e, p or  ultim o, m anifestar en nom bre de todos lo s  p a rtic i- 
pantes nuestro agradecim iento al Organismo Internacional de Energfa Atöm i- 
ca por haber hecho posible que se celebrase el Seminario.

Abdus Salam 
D irector Cientifico
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INTRODUCTION

T hese lectu re  notes are an attempt to d escr ib e  som ething o f what has 
been  achieved in so -ca lle d  axiom atic fie ld  theory in the last couple of years 
with the em phasis on those resu lts  which are particu larly  neat.

Two significant p ro je c ts  cu rren tly  under way which probably are very  
deep and certa in ly  are  v ery  d ifficu lt w ill not be m entioned: Sym anzik's 
stru ctu re analysis and the pursuit o f the s o -c a lle d  "linear p rogram m e" by 
Kc!ll6n and oth ers. Fortunately, these are  excellen tly  sum m arized in [43].

The paper is  divided into two parts. The resu lts presented in the firs t 
half a re  ch a ra cterized  by the fact that, once one has had the proper insight, 
they can be proved  with a few  sim ple m anipulations. In the second part 
there is  a steep r is e  in the d ifficu lty  o f the analysis.

No attempt w ill be made to rationalize  the rather m athem atical p r e 
occupations o f these le c tu res ; fo r  one reason , the author has tried  it be fore
[1 ]. The root-m ean -square deviation from  the mean o f opinion on what is 
a sensib le  thing to try  to  do in elem entary p a rtic le  theory seem s to be one 
o f those unrenorm alizable  in fin ities one hears about.

Of a ll the w ork  reported , the m ost significant seem s B orch er ’ s d is
co v e ry  o f equivalence c la ss e s  o f lo ca l fie ld s  an d R u elle 's  r igorization  of 
Haag’ s co llis io n  theory . The f ir s t  was totally  unsuspected and represents 
the kind o f insight which is  indispensable if  one is  ever going to be able to 
get back to calcu lating c r o s s -s e c t io n s  in re la tiv istic  quantum fie ld  theory. 
The secon d  show s that in re la tiv istic  quantum fie ld  theory the co llision  
theory  (or asym ptotic p a rtic le  descrip tion ) is already uniquely determ ined 
by the fie ld s , a resu lt which a ccord s  with one’ s physica l intuition and sup
p lies  strong evidence that axiom atic fie ld  theory  is  on the right track .

PA R T ONE

This f ir s t  part w ill d escr ib e  a num ber o f resu lts which have sim plicity  
and gen era lity  in com m on. A ll m athem atical techn ica lities w ill be deferred 
to P art 2.

1. 1. RECOLLECTION OF THE PCT THEOREM

The P C T  th eorem  w ill be used  again and again in the cou rse  o f this 
paper so  it w ill be presented  here b r ie fly  in the form  given by JOST [1].

11
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If A(x) is  a charged sca la r  fie ld , its tran sform  under the PCT operation 
is  A (-x )* . The anti-unitary operator © on the states which generates this 
transform ation  o f the fie ld s  th ere fore  sa tisfies

0A (x)0_1 = A (-x )*  . (1)

(A charged  rather than a neutral sca la r  fie ld  w ill be considered  tem porarily 
to  bring out the ro le  o f the H erm itian adjoint in the definition of P C T .)
In any theory  o f a fie ld  (or a deriumerable set o f fie lds) that has the vacuum 
To as c y c lic  v e cto r  (i. e. fo r  which polynom ials in the sm eared fields 
ifi(Mg)• • •) applied to  the vacuum  To y ie ld  a dense set in the Hilbert Space 
o f states), (1) is equivalent to an identity o f the vacuum expectation values:

CPo,A1(x1) . . . . A n (xn)'?o) = [('f0,A 1( - x f . . . . A n( -x n)*¥0)]* (2)

o r  equivalently:

CPoAl(xi). . . .An (xn)'?0 ) = fr0,A„(-Xn). . . . A ,( -x ,)* 0). (3)

This redu ces the p rob lem  of determ ining whether a theory has PC T sym 
m etry  to an exam ination o f its vacuum expectation values. If (3) or equi
valently (2) holds fo r  a ll x i . . , .  xn,we say the n -fo ld  vacuum expectation 
value has P C T  sym m etry . On the other hand, from  the Lorentz invariance 
o f  the fie ld

U(a, A)A(x) Ufa.A)*1 =A (A x + a ) ,  (4)

the vacuum  expectation values satisfy

(^o, A i(A xi + a )------An (A x n + a )Y 0)= (5ro,A 1(x1 )------A n(xn)Y0). (5)

(Only invariance under restr icted  Lorentz transform ations det A = 1, 
sgn A°0 = 1, is  assu m ed .)

F rom  this and the sp ectra l condition it follow s that

( j A i(xx) . . . .  An (xn J'JJq )

= J  [ exp - i  E^pjfxj -  x .+1)] GA» - " Ao(p 1 , ------Pn-,)dP i -------dPn-i *

w here GAl‘ “ An vanishes fo r  px. . . . p n-i outside the physical spectrum  which 
m ust be in the future light cone. F rom  this in turn it fo llow s that there is 
an analytic function F A' " " An o f n-1 com plex from  vector  variables,

zj = (x j-  xj+i) - i  rjj (where j = 1, 2------n -1 ) ,

(7)

F Ai"  " An(z11 . . . .  z „ - ! ) = J [ ex p (-i E^Pj Zj)] GAl"  '■An(pi , ----- Pn-i)dPi--------dpnM,
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analytic in the tube, 3 n - i , which is  the set o f z1#. . .  z n-i fo r  which rjj £V +, 
the future light cone fo r  j = l , . . . .  n-1 and such that

(T0 lA 1(x1) . . . . A n ( x n)T0) = lim  F*1’ ' '  -A" ( z 1j . . .  . zn-, ) .  (8)

in V+

Ai AF  1 " i s  also Lorentz invariant

F ai A"(Zl..........znM) = F Al----A" (A zj, . . . .  A zn-i ) ,  (9)

which im p lies  that F Al— A" p o sse sse s  a single-va lued  continuation to the 
extended tube CJn-i. which con sists  o f all points o f the fo rm  A z j , . . . .  Azn-i 
with A  a com plex  L orentz transform ation  o f determinant one and

z i , . . . .  zn-i •

In particular,

F A- - - An(zlJ . . . . z n. 1) = F Al' - An(-Z i..........-Zn-i) (10)

at each point o f 3n-i . F inally, it should be rem em bered  that the extended
tube contains rea l points, the so -ca lle d  Jost points; is  a Jost
point i f  it is  rea l and E Xj is  sp a ce -lik e  fo r  all X j( j= 1 , . . .  .n -1 )  such that 

j=i

X > Ö and "e  Xs > 0. (H )
j=i J

PCT T heorem

If W (eak) L (oca l) C(om m utativity)

(T 0,A 1(x1) . . . . A ( x n)T0) = (S0>An ( x „ ) . . . . A 1(x1)y0 ) (12)

holds fo r  x i , . , . .  x n such that x j-x 2, . . . .  xn., -  x n fill  a rea l neighbourhood 
o f a Jost point, then (3) holds fo r  all X j,. . . .  xn sind the n -fo ld  vacuum expecta
tion value has P C T  sym m etry .

C onversely , i f  the n -fo ld  vacuum expectation value has PCT sym m e
try. then WLC holds in the neighbourhood o f every Jost point.

P roo f

If WLC holds in the neighbourhood o f the Jost point Xj-Xj ,  . . . .  xn-i -xn,
then

F*1 A" (zu ------znM) = f a" Al( - z „ . i -------- - Zl) (13)

in an open set o f rea l space. T h ere fore , the analytic functions on the le ft-
hand side and right-hand side co in cide  throughout C 7Vi, using the fact that
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two functions analytic in an open set o f com plex  space and coinciding on a 
rea l subset which is  open in the rea l subspace coincide everyw here.

Using (10), this says:

F A," " An(z1, ------zn. , )  = F An" " A,(zn_1........... Zl) (14)

throughout O n - f  (Note that if  z l t . . . .  zn_, is  a Jost point so is  - z nM. . . .  -z  
and if zx. . . .  znM g 0 n -ith e n  zn-i» < —  zi£ c7 n -i ') Passing to the boundary 
values with rjjeV t , one gets

A .j(x i) .. . .  An (x„ )Y0 ) = (¥0,A n ( - x n) . . . . A 1( -x 1)!?o) (15)

fo r  all Xj____x n,w hich is  PC T sym m etry.
C onversely , suppose (15) holds fo r  all X j.. . .  xn, then it holds fo r  a 

rea l neighbourhood o f a Jost point. Then (14) and (13) follow  at every rea l 
point of analyticity, and that is  exactly  W LC at every  Jost point.

Of cou rse , W LC is im plied  by LC:
[ Ai (x), Aj (y)] = [ Ai (x), Aj (y)*] = 0 (16)

It is  im portant in applications that the PCT operator o f an irredu cib le  set
o f fie ld s  is  essentia lly  uniquely determ ined [3],

If OjAj (x )© !1 = A j(-x )*

and ©2 Aj (x)© ^1 = A j(-x )* ,

then 0 20 1A j(x )© i1 0 J 1 = Aj (x) (17)

so by the irred u cib ility  of Aj (x),

0 20 j  = X l  . (18)

Now because (P C T )2 = 1, 0 2 = p 11. with | = 1. (A  p r io r i 0? need only be con 
stant in each coherent subspace of states, i . e .  states not separated by super 
selection  ru les . But (17) im p lies  [0 2, A j(x )] = 0, so, by the irredu cib ility  
o f A j, 0 2 = If one had a m ore  com plicated  transform ation  law, say that 
fo r  appropriate tw o-com ponent sca la r  fie ld , it could be arranged to have 
[0 2, A j(x)]+ = 0, then one would have 0 2 = +1 on states obtained from  the 
vacuum by applying an even num ber o f Aja and -1  on those obtained by apply 
ing an odd num ber to the vacuum . In that case  ©2 generates a super s e le c 
tion ru le. W hile these applications have an in terest of th eir  own they w ill 
not be pursued h e r e .) F or  anti-unitary op era tors  ©j = Axfl with |/u j = 1 im 
p lies ju = ± 1. (0 (0 0 )  = 0 (/j 1) = (0 0 )0  = ß® so  ß is  rea l and th ere fore  = ±1); thus 
(18) im plies

0? = | X |2 0 2‘ 2

so | X |2 = 1 and 0 j and 0 2 d iffer only by a phase fa ctor . It is  custom ary to 
fix  this phase fa ctor  so  that
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0 *o  = *o • (19)

Then 0  is  unique. That the left-hand side of (19) must be proportional to 
the right fo llow s from  a com parison  o f the transform ation  law (4) o f Aj under 
U(a, A ) and (1) under 0 . One im m ediately deduces that 0 _1U(a, A )-1 0U(-a,A) 
com m utes with Aj so

u (a , A)U(a, A ) = 0 U (-a , A) 0 _1(where |u| = 1)>

and since the inhom ogeneous L orentz group p o sse sse s  no one-dim ensional 
representations, u = 1.

U(a, A) = 0 U (-a , A ) 0 _1 . (20)

Thus the energy m om entum  operator satisfies

P M = 0 P M 0 - 1  . (21)

The anti-unitary ch aracter of 0  is  essentia l here; if  0  w ere unitary, (21) 
would have a m inus sign and negative energy states would exist. Finally, (21) 
and the convention (19) im ply that ©Hf0 = T0 . The essentia l point is  that the 
a lgebraic structure o f the set o f fie ld  op era tors , as displayed in the sym m e
tr ie s  o f their vacuum  expectation values, uniquely determ ines a 0 and a 
transform ation  law o f the fie ld s  under 0 .

The relation  o f 0  to scattering theory is  very  sim ple:

0 A in ( x ) 0 '1 = A 0Ut ( - x f  . (22)

This is  easy to see if  one has a theory  in which the sim ple form  of the 
asym ptotic condition is  valid.

A m(x) = A (x ) -J  A r  (x -y ) j  (y) dy ,

0 A i n ( x ) 0 ' 1 = A  A r ( x - y )  j ( - y )  dy

= A (-x )'"  -J "  A A(x -y ) j (y)*dy 

= Aout (-x )*
because

A a ( - x ) = A r (x ) .

(22) is  still true in the m ost general scattering theory we know where the 
corresp on d en ce  between Aj and A-n need not be one to one. This will be 
d iscu ssed  below .

It is  c lea r  from  (22) that 0  is  not the PCT operator fo r  Aout (x); by 
the PC T theorem  there m ust be another anti-unitary operator U satisfying
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UA,°Ut (x)U'1 =A°U‘ (-xf (23)
becau se A m is  lo ca l and the Aj" are irredu cib le , which we assum e for  the 
co llis ion  states to be com plete . Now we know a unitary operator, the S 
opera tor, which sa tisfies

Aout(x) = S_1Ain(x) S . (24)

By com paring (24), (23) and (22) and using the fam iliar argument above, we 
get: 0 ' 1 U = S. The co llis io n  operator is  the relative PCT transform ation 
o f the b a sic  fie ld s  Aj and the out fie lds A°ut . It is  c lea r  from  this that one 
can define a "re la tiv e  S op era tor" o f  two fie lds even when they do not satisfy 
the asym ptotic condition  Sab = ®A0b*.

1 .2 . THE TRANSITIVITY OF WLC AND LC; EQUIVALENCE CLASSES OF
LOCAL FIELDS [3]

One o f the m ost striking recent d iscov er ie s  in quantum field  theory 
was m ade by B orch ers . Roughly, it says (a) that if  A is  an irredu cib le  field  
which is  LC and B is  LC re la tive  to A, i. e.

[A (x), B (y) ] = 0 fo r  (x2 -y 2 ) < 0 , (25)

then B is  LC; and (b ) if  A is  irred u cib le  and is  LC and B and C are LC re la 
tive to A then B is  LC rela tive  to C. This shows that lo ca l fie ld s  fall into
equivalence c la ss e s  (a lso  ca lled  B orch ers  classes),tw o  being equivalent if 
they are re la tive ly  lo ca l. S im ilar statem ents hold fo r  WLC. Finally, 
B orch ers  showed [3] that if  two fie ld s  lie  in the sam e equivalence c lass  and 
satisfy  the LSZ asym ptotic condition they have the sam e S operator. He 
a lso  shows that if  the fie ld s  are A and B, A ln = ± B in. This shows that in 
o rd er  to get th eories  with a n on -triv ia l S operator one must use fie lds  out
side the equivalence c la ss  o f any fre e  fie ld . It should be em phasized that 
each m em ber of equivalence c la sse s  of fie ld s  acts in the sam e H ilbert space 
and has the sam e representation  o f the inhom ogeneous Lorentz group. Two 
fr e e  fie ld s  of different m ass are not com parable in this class ifica tion . It 
rem ains an open question whether there are B orch ers c la sses , other than 
those o f fr e e  fie lds , which have the sam e representation  as fre e  fie lds . Of 
cou rse , there is  nothing now known to prevent different B orch ers cla sses  
from  having the sam e S opera tor. In fact, this happens fo r  free  fields of 
the sam e m ass which are not lo ca l relative to one another. Incidentally, 
it should a lso  be em phasized that one can prove the required properties of 
the equivalence c la sse s  only by assum ing that there is  at least one ir r e 
ducible fie ld  in the c la ss . Thus B and C loca l relative to A need not im ply 
B and C re la tive ly  lo ca l unless A is  irredu cib le .

*  The simple but interesting remark that the S operator is a relative PCT transformation was made by 
SYMANZIK [4], The relative S operator is definable even for models with a space-time containing a finite 
number o f  points [4a],
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B efore  the p roo f o f B o rch e rs ' resu lt, an exam ple o f a B orch ers c lass  
and an application o f h is th eorem s to prove the n on-ex isten ce of solutions 
o f certa in  th eories  w ill be  given.

E xam ple: the equivalence c la ss  o f an irred u cib le  fre e  neutral sca lar field

Denote the fie ld  A. Then DaA is  again a fie ld  (no longer s c a la r !) and 
LC with resp ect to A. H ere

DaA(x) = a1“ 1 A (x )/ (d x ° f ' l d(x1)a' . . .  .3 (x 3)"5, (26)

w here |a| = or0 + « j  + a 2 + a 3 . F urtherm ore, the W ick ordered  product 
: D “A (x)DßA(x) : is  again a fie ld  and LC  with resp ect to A . It is  defined 
by

(■) 00 (0 
lim  : Da A (x!) D01 A (x2 ) . . . .  Da A (x f) :

[e/23 r ( j2r)
= 2  (-1 ) E [D A(x, ) . . . . D “  A(xj )] 

r = 0 cr ti .
( kl )  <kl-2r)

• D“  A (xkl). . . . D“  A (xk ,. „ ) . ,  (27)

w here [ i /2 ]  is  the la rgest integer le s s  than 1/2. The sum ECr is  over all 
partitions of the in tegers St into two subsets j 1# . . . j2r and kt. . . .  k f .2r satisfying 
j j  < j j  . . . .  < j 2r and kj <k2 . . . .  k i - 2t . The Hafnian [ ....................] is  defined by:

' a0 »* 1 TT ' a(k*)D A (Xj1) . . .  . D A (xj?r) = E k n ^ 0,D “  A (x„s )
(k;)

K'l-k'r . j f A(Xk/)I0)

w here, here, the sum m ation is  over elLI partitions (kt, k { ) . . . .  (kr, ki) of
j r . ___jar in d isjoint subsets so  that ks <k^ ( s = l , . . .  r ). Thus the equivalence
c la ss  o f the fr e e  fie ld  m ust include all invariant W ick polynom ials o f the 
form :

E c na0 : E fA (x )D 8A(x):
n, a,ß

w here the in d ices  on the derivatives are sum m ed to give invariant com bina
tions. F o r  exam ple,

l a >  : A (x )i: , : A ( x ) ^ -  A(x) :

SCHROER [5] has shown recen tly  that the invariant W ick polynom ials 
exhaust the equivalence c la ss  o f an irred u cib le  neutral sca lar fre e  fie ld  o f 
m ass m . An obvious p ossib ility ,

£  ff, : A (x)J 
j=i

(28)
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with aj decreasin g  very  fast with j, is  excluded because it describes a theory 
with an infinite num ber of subtractions*. This w ill be discussed in detail 
la ter.

The fact that the invariant W ick polynom ial in a fre e  field  and its de
riva tives Were then the only known exam ples of lo ca l fie lds suggested to 
the author som e y ea rs  ago [7] that one should try to use them as currents,
i . e. to  look  fo r  lo ca l solutions of,

A(x) = Am (x) + J  A R(x -y ) j ( y )d y ,  (29)

w here j is  an invariant W ick polynom ial in a given fr e e  fie ld  .Pf0* (x). Ainis 
a lso  a fr e e  fie ld  but a p r io r i not in any way related  to Â 0) (x). EPSTEIN 
and the author have shown that there are no LC solutions in the special case 
j(x ) = g : A(o) (x)2 [7]. ARAKI, HAAG and SCHROER [8] pointed out that
when j is  irred u cib le , B orch ers  * resu lt enables one to give a very  much 
m ore  general and certa in ly  neater d iscussion .

T heorem  1

If " (D  + m 2 ) A(x) = j ( x ) ,  (30)

one o f A and j is  irred u cib le  and A is  LC, then A and j lie  in the sam e equi
va lence c la ss .

If j is  an invariant W ick polynom ial in a fre e  fie ld  A ^and its derivatives 
and is  irred u cib le , S = 1. Furtherm ore, (29) has no non -triv ia l solutions 
unless j = 0 and A = Ain = A^°\

P roo f

The fir s t  statem ent is  an im m ediate consequence of B orchers* resu lt.
To obtain the second, note that first-d egree  W ick polynom ials in A ^  are in 
adm issib le  in (29) becau se  their retarded potentials do not exist. Because 
o f the assum ed irred u cib ility  o f j and the assum ption that it is  an invariant 
polynom ial in A^0̂  and its  derivatives A, A(o> and j lie  in the sam e equivalence 
c la s s . (A  and A ^  are LC re la tive  to an irred u cib le  j . T herefore , A is  LC 
re la tive  to A(0). ) T h ere fo re , the " in "  fie ld s  associated  with A and A(°) c o 
in cide up to a sign Ain (x) = ±A (°)(x ), and the B orch ers  theorem  im plies S = l .  
If A  w ere lo ca l, this would im ply

A °(x ) +J&R(x-y) j (y )dy  (31)

is  lo ca l which is  im p ossib le  as a d irect calculation shows. S ticklers for 
com pleteness can support this last step by the somewhat m ore  general state
m ent [9],

*  The fact that (28) does not satisfy the ordinary axioms o f quantum field theory if  an infinite number 
o f  rfs ^  0 was pointed out by GLASER [6]. It is a freak that this statement is true in three-and four-di
mensional but not in two-dimensional space-tim e where such expressions occur in the Thirring m odel. That 
operator guage tpansformations give rise to such "unrenormalizable fields" was emphasized by KALLEN[6].
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T h e o re m  2

If A  is  a n eu tra l s c a la r  f ie ld  o f  the fo r m

w h ere  A ^  is  a fr e e  f ie ld  and A  is  LC  then A  is  an in varian t W ick  p o lyn om ia l 
in  A ^  and its  d e r iv a t iv e s .

N ow le t  us c o n s id e r  the p r e c is e  statem ent o f  the B o r c h e r s  th eorem  
and its  p r o o f .  It c o m e s  in  fo u r  p a r ts , the f ir s t  tw o re la tin g  to  W L C  and the . 
se con d  tw o to  L C .

T h e o re m  3

L et A  and B be  n eu tra l s c a la r  f ie ld s  but not n e c e s s a r ily  L C . Suppose 
A  ir r e d u c ib le  and that A  s a t is f ie s  W L C . Then B s a t is f ie s  W LC  i f  the id en 
t it ie s ,

s o m e  J ost point f o r  each  n = 0, 1 , . . .  and each  j ,  1 ■$ j n. F u rth e rm o re , 
the P C T  o p e ra to r  o f  B  c o in c id e s  w ith that o f  A  so  A  and B tog eth er  sa tis fy  
W L C .

P r o o f

A ssu m e  (33) h o ld s . B e ca u se  © is  a n ti-u n ita ry  one has:

T he id en titie s  (33) in  the n eigh bou rh ood  o f  a J ost point im p ly  the id en 
tit ie s

(33)

( 0 $ ,  © B f z j e '1© ?) = [(<£, B (z)¥ )]*  = (¥, B(z)4>). (34)

In p a r t icu la r , (34) h o ld s  f o r  v e c t o r s  o f  the fo r m

fo r  w hich
0 $  = L

k
d*x i ------- d x k( f k ( x 1, . . . .  XU) ) * A ( - X j ) ---------A ( - x k )¥0
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(¥0, A (x j)------ A (x j) B (y) A (x j+I)------- A (x n )¥0 )

= (*o . A ( -Xn )------ A ( -x j+1) B (-y )  A (-X j) ---- A (-X j) T0 ) (36)

f o r  a ll X j . . . .  x n and y . (T he argum ent is  that u sed  in the p r o o f  o f  the P C T  
t h e o r e m .) Thus,

(¥,B(z)d>) = E ------ dxk • [g { ( y i , ------- y { )]*

• f k (x j------ x k) (^0, A (y 0 )------- A (y j) B (z ) A (x x)--------A (x k) <j/0 )

= 0X1--dXk dyi--dY{ fk (Xl’ ----- ^

’  [gc ( y i . ------ y„ )1*(¥0, A ( - x k)-------A ( -x x) B ( - z )  A ( -y x) --------A ( -y { )¥0)

= ( 0 O , B ( - z ) 0 Y ) .  (37)|

S ince by  assu m ption  s ta tes  o f  the fo r m  (35 ) a re  den se  in 'Ä ,  (37) im p lie s

0 B ( z ) 0 ‘ 1 = B ( - z ) ;  (38)j

i .  e . B  has a P C T  o p e ra to r  w hich  is  the sa m e  as that o f  A . T h is  im p lie s  
the sta tem en ts o f  the th e o re m .

It is  w orth  noting that the la st statem ent o f  the th e o re m  is  equ ivalent 
to  the lio n -tr iv ia l r e su lt  that the id en tities  (33) lin e a r  in  B im p ly  the an a lo
gou s id en titie s  with an a rb itra ry  n um ber o f  B 's .  W hen the id en titie s  (33) 
h old , w e  sa y , B  is  w eakly  lo c a l  re la t iv e  to  A; o r  is  W LC  re la t iv e  to  A .

T h e o re m  4

Suppose A , B and C a re  W LC  and A  is  ir r e d u c ib le . L et B b e  W LC  r e l 
a tive  to  A  and C be  W LC  re la t iv e  to  A , then B is  W LC  r e la t iv e  to  C.

P r o o f

B y th e o re m  (3), A , B and C a ll have the sa m e  P C T  o p e ra to r , say  0 , 
w hich  im p lie s  im m ed ia te ly  B is  W LC  r e la t iv e  to  C . In fa ct , it im p lie s  that 
A , B and C a ltogeth er a re  W L C .

T h e o re m s  3 and 4 tog e th er  esta b lish  a kind o f  w eakened tra n s it iv ity  
f o r  W L C . R e c a ll  that a r e la t io n  r  is  tra n s it iv e  i f  a r  b and b r  c im p lie s  
a r c .

T h e o re m  5

If A  is  LC  and ir r e d u c ib le  and B is  LC  re la t iv e  to A , i .  e.

[A (x ), B (y )] = 0



AXIOMATIC FIELD THEORY 21

f o r  s p a c e - l ik e  x -y , then B is  L C .
T h is  th e o re m  is  a s p e c ia l c a s e  o f  the fo llo w in g  (take B = C).

T h e o re m  6

If A  is  LC  and ir r e d u c ib le  and B and C a re  each  LC  r e la t iv e  to  A ,then  
B  is  LC  re la t iv e  to C; i. e.

[B (x ), C (y)] = 0

fo r  s p a c e - l ik e  x -y .

P r o o f

B y T h e o re m  4, A , B and C a re  tog e th er  'W LC . F ro m  th is and the a s 
sum ptions o f the th e o re m  one gets  f o r  any x 1#. . .  x n, y ls y 2 such  that the set 
o f  s u c c e s s iv e  d if fe re n ce  v e c to r s  ( x j - x ^  X j^ -X j, x j - y rj y j - y 2 , y 2 -X j+lJ . .  . .  
xn .j-x,, is  a J ost point

(? 0, A (Xl). . . . A (x j) B (y i ) C (y2 ) A (x j+ i). . . . A (x „ ) \  )

= (* o - A (x n)- - • A (x j+i ) C (y2 ) B (y j) A (x j)---------A (x j) f 0 )

= ( f 0, A (X l)------ A (x j)C (y 2 )B (y i)  A (x j+1)--------A (x n )¥ 0 ) (39)

(the f ir s t  step  by  W L C ; the se con d  by  assu m ption ).
N ow  the f ir s t  and th ird  e x p re s s io n s  in  (39) a re  bou ndary  va lu es  o f  ana

ly t ic  fu n ction s , bein g  •

lim  F( )([x1-x 2 -iT)i].......... [ X j^ -X j- ir j j . , ] ,  [ X j-y ^ ir jj] ,
TJj---TJ" -*• 0

ln V+

[y i -y 2 - i ^ h  [y2 -X j+ i- ir j '] , [x j+ i-x j+ j- in j+ i]------

[x n -i-x n -illn -j)
and (2)lim  F  ( [ x i - x a - i r j j ] , ------ [ (x j-y i - ir j j )  + ( y j -y 2 - in ') ]  *

in V+

-  [y i -y 2 + i n '] ,  U y i-y 2 ) -  in ' + (y2 -X j+ ,- in ') ] ------[xn- i -x n -in n -J ),

r e s p e c t iv e ly . F o r  the next step  in  the argum ent we u se  not the fu nctions 
F ^  and F ^ b u t  tw o fu n ction s  d e r iv e d  fr o m  th em  by  settin g  1 7 ^ = 0  and sm ea r  
in g  in  (y j -y 2) with a test fu nction  <p w h ere  su p p ort c o n s is ts  e n tire ly  o f  sp a ce  
lik e  v e c to r s  f (i) = /q>(yi.-y2 ) d (y i -y 2 ) Fi ( . . . ,  y i - y 2, . . . ). T he f (i) a re  then ana
ly t ic  in ^ n  in  the v a r ia b le s  X !-x 2 - i r j j , ------ [ x j - y i - i r j ] , . . . .  [y2 -X j+1- i r j" ] --------
x n -i-x n -irjn-i* and th e r e fo r e  the sa m e  is  tru e  o f f  = r  -  f^2̂ . F u rth e rm o re , 
the bou ndary  va lu e  o f  f  va n ish es  in an open  se t o f r e a l v e c to r s , at le a s t  i f
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the su pport o f  cp i s  su ffic ien tly  sm a ll. (T h is  Statem ent is  obta ined  by sm ea  
in g  (39) w ith cp in the v a r ia b le  y i - y 2 . )

T h is  van ish ing o f f ' s boundary va lu es  im p lie s  that f j - f 2 va n ish es  id en 
t ica lly , s o  the f ir s t  and th ird  e x p re s s io n s  in (39) a re  equal fo r  a ll x x. . . .  Xn 
when y j - y 2 is  s p a c e - l ik e ; thus

[B (y !), C (y2 )] = 0 fo r  ( y ! -y 2 )2 < 0 .

T he fa c t  that f '  s boundary va lu es van ish in g  in an open set im p lie s  f  = 0 
is  a gen era liza tion  o f  a la r g e  c la s s  o f  th e o re m s  in one co m p le x  v a r ia b le  
o f w hich  the T h e o re m  o f the B ro th e rs  R ie s z is  ty p ica l: le t f (z )  be  analytic 
in  the unit d is c  | z | = 1 and continuous on | z | = 1. If f (z )  = 0 fo r  | z | = 1 and 
a rg  z in  an open in terva l, then f  = 0 throughout the c lo s e d  unit d is c  [44]. If 
one tak es the "E d g e  o f  the w ed g e" th eorem  [10] fo r  g ran ted ,on e has an easy 
p r o o f . fffp.Zj. . .  . Zn ) is  an a lytic in *Jn , [f(<p, zt. . .  . zn ]* in -  7̂n>their boundary 
v a lu es  c o in c id e  in  an open  set S o f r e a l sp a ce  (and a re  z e r o ! ) and th e re fo re  
f(z )  is  analytic th e r e . S ince the value in S is  z e r o , f  = 0 . T h is  im p lie s  tha 
the identity  g iven  by  equating the f ir s t  and th ird  e x p re s s io n s  in (39) is  va lid  
fo r  a ll s p a c e - l ik e  y i - y 2 and a ll x x. . . . x n. S ince A  is  ir r e d u c ib le , th is  m ear 
that B is  LC  r e la t iv e  to  C.

N ow le t  u s  exam ine the question  o f the equality  o f the S op e ra to r  fo r  
d iffe ren t f ie ld s . B o r c h e r s  g iv e s  us the s im p le  c r ite r io n .

T h e o re m  7

L et A  be  L C  and ir r e d u c ib le  and the sam e fo r  B . Suppose

Aia = B in (40)

and the in  f ie ld s  a re  ir r e d u c ib le . Then the S -o p e ra to r  o f the tw o th e o r ie s  
is  the sa m e  i f  A  and B a re  tog e th er  W L C .

R em a rk s

T he th e o re m  has b een  stated  as though th ere  w e re  a s in g le  " in "  fie ld  in 
each  th e o ry . T h is  is  by no m ean s n e c e s s a r ily  so , as w ill be  seen  fr o m  the
p r o o f. What is  assu m ed  is  that the set o f  " in "  f ie ld s  f o r  the tw o th e o r ie s
co in c id e  and a re  d eterm in ed  by A  and B in  su ch  a way that (41) and (42) b e 
lo w  hold .

P r o o f

Suppose A  and B a re  tog eth er  W LC ; then by the P C T  th eorem  both have 
the sa m e  P C T  o p e ra to r  © . Then

0A in ( x ) 0 - i  = Aout ( -x )  (41)

0 B in ( x ) 0 _1 = B°ut ( -x )  (42)



so  = Bin im p lie s  Aout = B outand th e r e fo r e  SaSb1 com m u tes  with Ain,w h ich  
im p lie s  Sa = Sb (s in ce  we n o rm a liz e  SAiP0 = S bT0 = ¥0 ).

C o n v e rse ly , suppose

B out = S _1 B inS = S_1 Ain S = A°ut . (43)

S ince A  and B a re  L C ,th ey  have P C T  o p e ra to rs  ©a and 0B« r e s p e c t iv e ly . Now 
0A and ©b a re  uniquely d eterm in ed  by Ain and Aout and B lnand B outv ia  the r e 
la t ion s

e AÄ n ( x ) ® ^  = Aout ( -x )

® B  B in  ( x ) ® B  1 =  B out(-x )

(the argum ent is  a lw ays the sam e: a ssu m e tw o ©a and ©a , say; then p ro v e
0 A 0A com m u tes  with A in). T h e r e fo r e , by (43), ©a = © b  , and A  and B are
tog eth er  W L C .

One can, o f c o u r s e , m ake th is th e o re m  "c o v a r ia n t " . A ssu m e instead  
o f  (40) that

Ain = R Bln R '1, RW0 = ¥0 (d ed u cib le  as u su a l); (44)

then in o rd e r  that the th eory  o f A  and B shou ld  p re d ic t  the sam e re su lts  
f o r  c o ll is io n  one wants

SA = R SB R _1 . (45)
b e ca u se  then

Aout = SÄ1 Ain SA and B?ut = Se^B^Sg (46)
a re  con s is ten t with

Aout = R B out R _1 (47)

and the S m a tr ix  e lem en ts  a re  the sam e in the tw o th e o r ie s :

(A in(X l)........Ain (X j)T0, SA Ain(x j+1). . .  . Ain(x n)¥0 )

= ( B ^ f x ^ .^ . E '^ x p T o ^ B B 1̂ ^ , , ) . . . ^ ^ ) ^ ) .  (48)

w hich  is  what is  m eant b y  p re d ic t in g  the sam e re s u lts  fo r  c o ll is io n s .
Under assum ption (44) one has m ere ly  to  rep lace  B by R _1BR in Theo

rem  7 to get the appropriate cr iter ion . The covariant form  of T heorem  7 
th ere fore  reads: (45) fo llow s if  A  and R^1 BRjn have the sam e PCT operator 
w here Ain = Rin Bin Rft1. This is  not the situation in p ractice  which may be
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d escr ib ed  as fo llow s: Let

0Ain (x) 0 ' 1 = Aout (-x ); 0 B in(x) 0 ' 1 = B out(-x). (48a)

s ; 1 Ain (x) SA = /eut (x); Sb1 B in(x) SB = Bout(x) (48b)

Rin Ain (x) R jn = Bin(x); R ^ t Aout(x) R0Ut = Bout(x). (48c)
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F rom  (48a) and (48b)

SA ©Ain (x) 0 ' 1 SÄ1 = Ain (-x ),

and th ere fore

[(S .© )2 , Ain (x)] = 0;JAV

so, by the usual argum ent,

©■Sa O ' ^ s; 1, (48d)

and sim ila r ly

0  Sß©"1 = Sg1 . (48e)

(This is  the PCT sym m etry  o f the S o p e r a to r .) F rom  (48a) and (48c),

© R-n* Ain (x) R .n0  -1 = R -lt © ^n (x) 0  -1 R -1 ,

and so

R o u t ^ R in © '1 • <48f)

F rom  (48b) and (48c)

Sb 1 Rfn1 Ain (x) R in SB = R j i  S'A 1 An (x) SA RoUt;

so

R 0ut = s ;1 Rin %  - (48g)

Thus

SB =Rin1SA( 0 R in© -1) .  (48h)

The resu lts  (48d) to (48h) fo llow  from  (48a), (48b) and (48c). C onversely, 
i f  © Ain (x) 0 _1 = Aout (-x ) and SA sa tisfies  (48d), one can define Rout by (48f) 
and Sb by (48h); and then (48a), (48b) and (48c) w ill be satisfied  fo r  any uni
tary  Rin that com m utes with U(a, A ). T his shows that to get [0 , R in] = 0 and 
th ere fore  the physica l equivalence (48) o f the op era tors  SA and Sb, one must 
use m ore  details of the relationship  between A, B, A1̂  t, B ^  and 0 . How 
this w orks out fo r  the H aag-R uelle co llis ion  theory w ill be d iscussed  later.

T he rem a in in g  step  in B o r c h e r s 1 th e o ry  is  as fo llo w s :

T h e o re m  8

L et A  and B be  LC  and A  be  ir r e d u c ib le . Suppose B is  LC  r e la t iv e  to  
A . Then i f  A  and B have a sym p totic  f ie ld s  o f the sa m e  m a s s , Bln = ± A ln.
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The p r o o f  as it stands in  h is  p a p er u s e s  the L S Z  a sym p totic  con d ition  
and w ill not b e  re p ro d u ce d  h e re .

1. 3. GENERALIZED FREE FIELDS AND THE SUPPORT PROPERTIES OF 
FIELDS IN MOMENTUM SPACE

In an effort to get out of the B orch ers  c la ss  o f the free  fie ld , GREEN
BERG introduced the notion o f generalized  fr e e  fie ld  as any fie ld  A fo r  which 
the com m utator is  a c-n u m ber [11]. The standard spectra l representation  
then gives

[A (x ),A (y )] = J d ^ (a ) (1 /i )  A a(x -y ). (49)

It turns out that all the vacuum  expectation values o f a generalized  fre e  field  
are obtained from  those o f a fre e  fie ld  of m ass m by rep lacing  the free  p ro 
pagator iAm* (x) by (1/i)/d/Li(a) A a(x). Although generalized  fre e  fie lds  are 
ph ysica lly  ra th er uninteresting, they illustrate  a num ber of points o f p r in c i
p le . F o r  exam ple, a gen era lized  fr e e  fie ld  m ay be irred u cib le  and its "in" 
and "ou t" fie ld s  ex ist accord in g  to LSZ p rescrip tion s , but the "in " and "out" 
fie ld s  need not be irred u cib le . This m akes evident a com plication  already 
m entioned b e fo re . The B orch ers  c la ss e s  are not str ictly  equivalence c la sses  
unless one re s tr ic ts  o n e 's  attention to irred u cib le  fie ld s . Com pare the r e 
sult o f S chroer alluded to just b e fo re  equation (28) with that of G reenberg 
just quoted. One says that all elem ents o f the equivalence c la sse s  o f an i r 
red u cib le  fr e e  fie ld  o f  m ass m  are of the fo rm  (27); the other says that a 
redu cib le  fr e e  fie ld  can have a gen era lized  fr e e  fie ld  in its  equivalence class 
and that gen era lized  fre e  fie ld  need not be o f the form  (27). When a gen
era lized  fr e e  fie ld  has an " in "  fie ld , it is  LC relative to it so  one does not 
get a new B orch ers  c la ss  except in pathological ca ses  where no "in " fie lds 
exist.

t A principal reason  fo r  d iscu ssing  generalized  fre e  fie lds is  that a num
b er  o f elegant cr ite r ia  have been given which guarantee that a field  is a gen
era lized  fr e e  fie ld . This gives som e idea o f what to avoid in trying to 
make a n on -triv ia l theory.

T heorem  9 [12, 13, 14]

If A is  LC and is  irred u cib le  and

[A(x), A (y)] = B (x -y )

(B m ay be an operator but m ust depend on x -y  and not x + y), then A is  a 
genera lized  fr e e  fie ld .
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C onsider

[B (x -y ), A (z)] [A (x+5), A (y+ ?)], A (z)

which holds fo r  all £.
By the Jacobi identity it is

[A(y + I ) ,  A (z)], A(x + ?) [A (z), A(x + f )], A ( y + 5 ) j

F or su fficiently  large  sp a ce -lik e  ? this vanishes, so

[B (x -y ), A (z)] = 0 »

and by the irred u cib ility  of A, B must be a constant m ultiple of the identity 
operator so A is  a genera lized  fre e  field .

The second  kind o f cr ite r ion  fo r  a fie ld  to be a generalized free  field  
re la tes  to the support o f the fie ld  in momentum space, i. e. the points of the 
spectrum  o f A (p ) = f e ip'x A (x)dx. (This should not be confused with the 
spectrum  o f physica l states,w ith which it is  only indirectly  con n ected .)

• There is another proof of Theorem 9 by J. Katzin [13a] which is about as neat as that by Licht and 
Toll. It goes as follows. Because the commutator is by assumption translation invariant

U(a)[A(x), A(y)] Ufa)'1 = [A(x). A(y)].

Then

U(a)[A(x).A(y)]*0 = [A(x). A(y)]*0 

and therefore by the uniqueness of the vacuum

[A(x), A(yB*0 = b(x-y)*0

where b is a c number.
But then

(4'0lA(x1)...A(Xj)([A(x),A(y)] - b(x -  y)] A(xj+, ) . . .  A(x„) +„ = 0

for all Jost points in the successive differences f(x1...xjxyxj+i...x n) and so by analytic continuation for all 
X j . . . X n .

Therefore

[A(x),A(y)] = b(x-y)
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T heorem  10 [12, 15, 16*]

^  Let A be LC and have the vacuum  as cy c lic  v e cto r . If the spectrum  of 
A  om its an open set o f sp a ce -lik e  p, then A is  a generalized  fre e  fie ld . Two 
lo ca l fie ld s  w hose F ou rier  tran sform s agree on such a set d iffer  only by a 
generalized  fr e e  fie ld  in their B orch ers  c la ss .

The resu lts  of Robinson and G reenberg  have been quoted. Other cases 
are con sidered  by G reenberg and D ell'A nton io. F or exam ple, it is  shown 
that, i f  the spectra l weight of the 2 -fo ld  vacuum  expectation value vanishes 
above som e m a ss , then the fie ld  is  a generalized  fre e  fie ld . The proofs 
involve a system atic use either of the Dyson representation  or holom orphy 
envelope calcu lations. Since these techniques w ill not be explained here, 
the p roo fs  w ill a lso  not be given.

It is  worth noting that, unlike the case  in Theorem  2, sm eared p o ly 
nom ials in generalized  fr e e  fie ld  op era tors  can be LC [11].

1 .4 . THE CLUSTER DECOMPOSITION PRO PERTY

Given a vacuum  expectation value,

<A(xt )------A (xj)A (xj+1+ a)------- A (xn + a) >0 ,

one would expect that, if  a -> oo  in a sp a ce -lik e  d irection , it should approach

<A (xj)------A (x j) >0 <A (xj+i)------- A (xn) >o •

This can in fact be proved  under appropriate assum ptions and is an example 
o f a clu ster decom position  p rop erty . M ore refined statements can be ob 
tained in which the xx. . . .  x n are divided into k clu sters  which are then 
allow ed to separate.

The sign ifican ce  o f c lu ster decom position  prop erties  fo r  the theory of 
co llis io n s  was fir s t  em phasized by HAAG [17], and one of the m ost significant 
developm ents m entioned here is  the work by RUELLE [18]« which puts Haag's 
argum ents on a r igorou s  m athem atical foundation. R u elle 's  resu lts are 
based on a p ro o f that a very  refined  form  o f the c lu ster decom position  prop 
erty  can holds in any th eory  of lo ca l fie ld s  in which the vacuum is cy c lic . 
B e fore  going into detail, I shall g ive two neat resu lts which show the power 
o f the m ethod. Of cou rse , the requ ired c lu ster  decom position  properties 
w ill be assum ed h ere .

T heorem  11 [19]

Let A and B be two fie ld s  which satisfy

U(a, 1) A (x)U _1 (a, 1) = A(x +a) ,
(50)

U (a ,l) B (x) U_1(a, l )  = B (x+  a) ,

*  Borchers has obtained a number o f  the same results independently.
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but not n ecessa r ily  LC. (They could be com ponents of gen era lsp in or fie ld s .) 
Suppose

[A(x), B (y)]± = 0 = [A(x), B *(y)], (51)

hold fo r  all sp a ce -lik e  x -y .
Then either A(cp)T0 = 0 = A((p)* T0 o r  B(tp) T0 = 0 = B ((p )T 0 fo r  all test 

functions <p. If A sind B together have T0 as a cy c lic  vector  and belong to 
som e sets o f op era tors  which tran sform  under hom ogeneous Lorentz tran s
form ation  like sp in ors, then either A = 0 o r  B = 0.

P ro o f

Let cp and 4* be  any two test functions o f com pact support whose supports 
are sp a ce -lik e  with resp ect to one another. Taking

A(<p) = /dxcp(x) A (x), B(ip) = !dyip (y) B(y) ,
then

11 B (i0) A(<p)* T0 112 = (T0, A(<p) B «0 *  B (*) A(q>)* T0)

= - (T0, B «/)*  B (*) A(q>) A(<p)* T0) . (52)

If we let the support o f <p run o ff in a sp a ce -lik e  d irection , the last exp res
sion  con verges  to

-  (T0, B « /)*  B (* )I0) (T0, A(q>) A(q>)* T0)

by the clu ster  decom position  property . (This p roves incidentally that the 
left-hand side a lso  c o n v e r g e s .) But (T0, B (^)B (^)*T0) and (T0, A(cp)A(<p)*T0) 
a re  non-negative, so either

A(q>)*T0 = 0 or B(tf)T0 = 0 .

A p re c ise ly  s im ila r  argum ent starting from  | iBO^Afcp)* ||* y ields

A(cp)* T0 = 0 o r  B t y f  T0 = 0 .

F inally, starting from  the adjoint o f the relations (51), one has the same 
statem ents with A(q>)* rep laced  by A(cp). Thus either

A(cp)*T0 = 0 = A(q>)T0 o r  B « /)*  T0 = 0 = B (<P)\ . (53)

The last statem ent o f the theorem  is  based on an argument which is, 
by now, standard. Look  at an arb itrary  vacuum  expectation value:

(*o ..........A (x ) . . . .  B (y ) .. . .  T0) (54)

If all argum ents are taken as sp a ce -lik e  and the firs t  o f the alternatives 
(53) h olds, take the farthest A o r  A* to the right and m ove it through B 's  and 
B * 's  until it hits T0; conclude that (54) vanishes fo r  such sp ace -lik e  sepa-
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ra tors . But the hypothesis on the transform ation  law of the A 's  and B 's  
guarantees that the vacuum  expectation values are analytic at Jost points, 
so the preced in g  argument shows all vacuum  expectation values containing 
an A o r  an A* are ze ro . T h ere fore  A = 0.

This argument o f D e ll1 Antonio actually firs t  o ccu rs  in a slightly d iffe r 
ent connection  in a paper by ARAKI [20]* in which he d iscu sses  the possib le  
com m utation rela tion s o f d ifferent fie ld s  and shows that a theory with anom
alous com m utation re la tion s, distinct integer spin fie ld s  anti-com m uting 
o r  h a lf-od d -in teger  spin fie ld s  com m uting o r  integer spin fie lds a n ti-com 
muting with h a lf-od d -in teger spin fie ld s , is  always physically  equivalent to 
one with norm al com m utation relations (all integer spin fie ld s  com m ute with 
each other and all half-odd-integer spin fie ld s , all half-odd-integer spin fie lds 
anti-com m ute). These two papers together with the orig inal BURGOYNE 
[21], LÜDERS-ZUM INO [22] p ro o f bring the theorem  of the connection of 
spin with sta tistics  to a dazzling polish .

A s a second  application of the clu ster  decom position  property , an ex 
am ple o f SUDARSHAN and BARDACKI [23] in which it is  v iolated  w ill be 
d iscu ssed .

C onsider two th eories  o f a neutral sca la r  fie ld  labelled  respective ly  by 
1 and 2: H ilbert sp aces  ' i t i , vacua , representations o f the Lorentz group 
Uj(a, A ), fie ld s  A j(x ). F orm  a new theory  with H ilbert space © ^ 2 
representations o f the L orentz group Ux ® U2 and fie ld  A = Aj © A2 . ’ In 
th is theory, the state v e c to rs  are pa irs  (T j, ¥2 ) with the sca la r  product,

( ( ^ 2} , { * 1 , <t>2})  = (? i.® i) + (*2.® 2 ) .

C learly , there is  a tw o-dim ensional subspace o f the H ilbert space
each o f whose v e c to rs  is  left invariant by the representation  of the Lorentz
group:

(U j(a,A ) © U2 (a, A )) (a {T01, 0} + ß [ 0, Hf02})

= a (T 01, 0 }  + /3{0,¥02} ,

which show s a grave defect o f this theory ; the vacuum ought to be unique. 
How does one recog n ize  th is defect in the vacuum expectation values? Pick 
a particu lar vacuum , say = \[a [T01, 0] + -J 1-or [0, T,^}, 0-$ a  <  1, and 
com pute

(T(a), A (Xl) . . . .  A (x n) ^ a)) = a (¥01, A f a ) . . . .  A jfxn) \ )

+ (1 -a )  (¥„2, A2 (x1) . . . . A 2 (x „ )T 02) , (55)

This just g ives the prop osa l o f Sudarshan and B ardacki: one takes two theo
r ie s  and fo rm s  a new one whose vacuum  expectation values are convex linear

*  Note that Araki does not show that the normal case is physically equivalent to the abnormal case, 
but rather that the abnormal case is necessarily very restricted. By virtue o f  its abnormal commutation re
lation it must have selection rules which in turn yield the result that it is physically equivalent to a normal 
case with the same selection rules.
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com binations o f the vacuum  expectation values o f the two th eories . But (55) 
does not have the clu ster  decom position  property even if the th eories of Aj 
and A2 do because

(¥(a), A (Xl) . . . .  A (x j) A (xj+1+ a ) . . . .  A (x„+  a )* '“ ’ )

= a (*oi» A i(x i ) ------A j(x j) A1(x j+,+ a )-------A^xn + a ) ^ )

+ (l-or)(^ 02 » A2 (xx)------A2 (x j) A2 (xj+1 + a)-------A2 (xn + a ) ^  )

-» ff(1F01, A j(Xl)------AjfxjJUfjn) (¥01, A jfxj+j)------- AjtxnJfm)

+ (1 - a ) (¥02 , A2 (x j). . . .  A2 (x j) Tq2 ) (*o2 > A 2 (xj+i )• • • • A2 (xn) Yq2 ),

w hereas it ought to approach

(¥(a), A(Xl). . . . A (Xj)¥(a)) (y (a),A (x j41). . . . A fx ,,)?00 )

= [a (* 01, A ^ x j)------A 1(x j)5f01)+  (1 -a )  (Hf^, A2 (xj)-------A2 (xj )5f02)]

• [o' (*0i, A jfx j+ j) . . . .  A jfxn) ¥01) + ( l - o : ) (5^  > A 2 (x j+i)* • • • A2 (xn) ) ] .

Equating these two and assum ing that som e at least o f the vacuum expecta
tion values are n on -zero , one finds a  = 0 o r  1; i. e. the only th eories of 
this kind with clu ster  decom position  property  are the orig inal constituents.
Of cou rse , there are other things wrong with these m odels but the funda
m ental trouble  is  the non-uniqueness o f the vacuum as was fir s t  shown by 
H E PP, JOST, RUELLE and STEINMANN [24], A ctually, BORCHERS [25] 
has shown that the c lu ster  decom position  property  is  not only n ecessary  
but sufficient fo r  the uniqueness o f the vacuum , if  there is  at least one cy c lic  
vacuum . This point w ill be  d iscu ssed  further in the next section.

A th ird  application o f the clu ster  decom position  property  com es about 
as fo llow s. The author con s id ers  that finding n on -triv ia l exam ples o f in 
ternally  consistent fie ld  th eor ies  is  one o f the m ost im portant p rob lem s of 
the subject at the present m om ent. One approach to this problem  which 
might be attempted is  to s im plify  it m athem atically without losin g  its essen 
tia l nature. F or  exam ple, suppose one assum es that U contains only the 
vacuum  and one irred u cib le  representation . Can one find lo ca l fie lds  which 
tran sform  accord in g  to  (4)? The answer is  no, i f  Y0 is  cy c lic :

T heorem  12 [26]

In a theory  o f a neutral sca la r  fie ld  with cy c lic  vacuum , the physical 
spectrum  m ust be additive.

R em ark

A point p lie s  in the physica l spectrum  if  fo r  each open set W o f four 
m om enta containing p there is  a n on -zero  vecto r  whose energy momentum
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spectrum  lie s  in W. That the spectrum  is  additive m eans pj in the spectrum , 
and p2 in the spectrum  im plies  pt + p2 in the spectrum .

P ro o f

Let Sj be an open neighbourhood o f pi and S2 an open neighbourhood of 
p2 . The f ir s t  step in the p roo f con sists  in choosing fie ld  operators B^x) 
and B2 (x ) satisfying

U(a, 1) B i(x) U-1(a, 1) .= B t(x + a) (56)

and test functions cpj which have F ou rier  tran sform s with supports in Sj and 
S2 such that

B i (9 i ) * o =/= 0 and B 2 (cft>) ¥0 =/= 0 • (57)

It fo llow s from  (56) that the energy mom entum spectra  of these vectors  are 
in S]̂  and S2. resp ective ly . (Note that U(a, l)B j(q)j)'?0 = Bj( [a , 1] cpj) where 
([a , l]cpj)(x) = cpj(x-a), so a mom entum analysis o f the v ector  is  equivalent 
to a m om entum  analysis o f tpj. )

To get the requ ired  B 's , ch oose  open neighbourhoods Tj and T2 of pj 
and p2. resp ective ly , such that the c lo su re s  ^  and T2 satisfy Tj^C S j/I^ C  52- 
Let Ä TJ be the c losed  subspace o f consisting  o f all v e cto rs  whose sp ec
trum  lie s  in T j . Then because T0 is  cy c lic  there exist v ectors  o f the form

L ____ xn) A (x1) . . . .  A (x „ ) dx1#. . .  d x n T0 (58)

which are resp ective ly  not orthogonal to Ä f j .
Define

Bj (x) = E fnj ( x - x i , ------x - x n)A (x j) ------- A (x „)d x x------- dxn. (59)

Then c lea r ly  (56) holds. (Quantities o f the form  (59) are called  alm ost loca l 
fie ld s  by Haag. ) Let qTj have a support in Sj that includes T j. Then Bj(cpj)T0 
^ 0 fo r  som e such <Pjj otherw ise (58) would be orthogonal t o /6  f . . Thus 
the requ ired  Bj(q>j)Y0 =£ 0 can be constructed .

Now con sid er the v e cto rs

Bi(<Pi) U(a, 1) B2 (cp2 ) *0 •

T heir support m ust lie  in Sj + S2 by the sam e argument as b e fore . Can 
they vanish fo r  all a ? To prove  not, assum e the contrary:

0 =  I |B1(cp1)U (a, l ) B 2 (<p,)?0 ||2

= <B2 (< fe )*U (a ,l)*B 1(q>1)* B 1((p1)U (a , l )B 2((p2)>o (60)

Now apply the clu ster decom position  property in a stronger form  than b e 
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fo re . It is  a sserted  and w ill be d iscu ssed  in detail later that, as a -» «  in 
a sp a ce -lik e  d irection , (60) con verges to

0*2 (<P2 )’" ^2  ( ^  ) /to \Bi(cPi)  ̂Bi(<Pi) »

so  either B2 (cp2 ) * 0 = 0 o r  = 0 is  a contradiction . T h ere fore , P1 +P2
l ie s  in the spectru m .

To get a neat statement o f the requ ired  c lu ster decom position  property 
it is  advisib le to introduce the notion of the truncated part of a vacuum ex 
pectation value [27]. This is  defined by induction:

<A(x) >0 = <A(x) >OT ,

C A (x i)A (x 2-)^o = \ A (x j)  A (x 2 ))>qj. +  xAtxjJ^Qrj. \ A (x 2 )̂ >0j  ,

^A(xx) A(x2 ) A (x3))>0 = ^A(xx) A(x2 ) A (x3))>0r + \A(xj)A (x2 ))>0T \A(x3))>0fr 

+ <A(xj) A (x3)>ot <A(x2 )>ot + \A(x2 ) A(x3)>0T (A fx ^ o x  

+ <A(xj)>ot \A(x2 )^it \A(x3)>ot * (61)

o r  generally

<\A(x1) . . . .  A (xn )^q = 2  \A(xj )̂ >crr » (62)

w here the sum is  overa ll partitions o f 1 . . .  n into non-em pty subsets and 
the product is  over  the truncated vacuum expectation values of the subsets,
all x 's  occu rr in g  in the subsets in the ord er  they occu r in 1 . . .  n. The
definition  w orks both fo r  the alm ost lo ca l fie ld s  defined by (59) and fo r  the 
fie ld  A.

The truncated part calcu lated  in perturbation theory is  just the sum of 
all connected d iagram s. The various c lu ster decom position  properties  can 
be stated thus: the truncated parts go to ze ro  as their arguments separate 
(under variou s conditions).

The actual calcu lation  fo r  (60) is  the follow ing:

<B2 (cp2 'Y' B i({ -  a, 1} cpi) B i({ - a, 1} cpi) B2 (q  ̂)/>o

= ( B j f o  ) -  B 1 ((-a ,l}cp 1r  B j({-a , 1 jtpj) B2 (cfe ) \ T 

+ 0 3 2 (<P2 )^ o t  \ B i(["a» l ] cPi) ^ B i({-a . l}P i) B2 (q>2 ))>0T 

+ ^ B i([_a» l } cPi)^/bT \B2 (%  Y  ̂B i((*a, l ) cPi) B2 (<P2 )^ot 

+ <(B l( [_a» l ] lP l)/’0T \ ® 2  (<P2 y B i({-a Jl}qJ1)'r' B2 (%

+ <B2 (q  ̂)̂ >0T <B2 (q>2 y  B !((-a , l}cp1)'<' B j({-a, 1}<Pi)̂ >ot 

+ <B2 (q* ) ' B j( { -a ,  1}(Pi)'‘ \ B j({-a , l}<Pi) B2 (q^
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+ <̂ B2 (<P2 Y B ^ f-a , 1)cPi)/>0T \B l({_a>1] (Pl)^ ®2 (%  )/>0T 

+ i(B 2 (%  Y B2 (cp2 )yoT \ B i((-a , 1}'PiJ''' B i((-a . l } cP1)/>oT 

+ <B2 ( 9 2 f > 0T ( B a f e ) ) ^  <B1((-a,l)}q>l )* B 1({-a Jl}<p1)>ffr (ü)

+ <B2 (q>2 Y y ot \ B i((- a,l}<Pi)^0T \ B j([-a ,ljcp i) '1' B2 (%  ) / 0T 

+ <B2 (q>2 )*>0T <Bi ({■ a, 1) P̂i)*>oT < B i([-a ,l}<p1) B2 (q* )>0T 

+ <B 1([-a ,l]cp 1)*> 0T < B i([ -a , l}cp1)>0T <B2 (cp2 )* B2 (%  )>QT (M)

■*" \ B j({ -a , 1 ] \ B2 (cp2 ))>gj <B2 ( % ) '  B j( ( - a, 1]cpj)/QT 

+ (B jft -a , l j c p j ) )^  <B 2 (q>2 ) / 0T <B2 (%  Y B ^ f-a , l j c p i f /^

+ ( B ^ f - a . l ] ^ ) * ) ^  ( B j l f - a . l j c p j ) ^  <B2 (tfc f > 0T <B2 (q>2)>0T (Uii)

Of all these term s only the num bered ones (i), (ii), (iii), (iiii) are constant 
in a; the re s t  go to ze ro  as a -» °o in a sp a ce -lik e  d irection , because the 
exp ression s separate into two clu sters .

C learly , here one needs the clu ster decom position  property for alm ost 
lo ca l fie ld s  rather than the lo ca l fie ld s  o f which the alm ost lo ca l fie lds are 
constructed . This w ill be developed later.

A much stronger resu lt than T heorem  12 can be derived  from  the work 
o f R uelle described  below . It can be shown that U n ecessarily  contains as 
su b -representation  the representation  belonging to the theory of free  fie lds, 
one fo r  each irred u cib le  representation  contained in U. This shows that 
there are no n on -triv ia l m athem atical idealizations o f lo ca l fie ld  theory 
which sim plify  U. U must be as com plicated  as physics te lls  us it is  in a 
theory  of p a rtic les .

PART TWO

This part w ill be quite p re c ise  m athem atically and w ill begin with axi
om s fo r  a theory  of sca la r  fie ld s .

2. 1. AXIOMS AND THE RECONSTRUCTION THEOREM

Such a theory has a continuous unitary representation  of the restricted  
inhom ogeneous L orentz group (a , A ] -» U(a, A) and a unique vacuum, Yq, in 
a separable H ilbert space . A  fie ld  is  a linear function A with domain ,0, 
and values lin ear op era tors  in It is  assum ed:
I. A s cp runs over A(cp) and A((p)* p o sse ss  a com m on linear dense do
m ain D such that
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A(q>) D C  D 

I £ D

A(cp)* D C D  

U(a, A) D e  D
(63)

A is  an operator valued distribution in the sense that fo r  each $ ,¥ e .D ,
(4>, A(<p)¥) is  a d istribution in JS, i. e. a continuous linear functional on £ f .
II. On D

are m ultilinear functionals in <pj.. .  . <pn separately  continuous in their argu
m ents. The Schwartz N uclear T heorem  a sserts  that these functionals can be 
uniquely extended by continuity to be distributions in the n variab les [28].

C onversely , as was shown som e tim e ago, one can take a set of d istribu 
tions satisfying certain  conditions and construct a theory having just those 
fo r  vacuum expectation values [29], The only reason  fo r  talking about this 
now is  that these have significant recent im provem ents in the sharpness of 
this recon stru ction  theorem .

Let us b r ie fly  recapitulate the conditions fo r  a single neutral sca lar 
fie ld . Then the vacuum  expectation values may be labelled

III. On D

fo r  cp, JET such that

If

U (a,A )A(cp)U (aJA ) -1 = A ({a ,A }cp) 

[A(cp), A « » ) ]  = 0 = [A(<p), A (0 )* ] 

<P(x)^(y) = 0 fo r  (x -y )2 >  0 

A(q>)* = A(cp) on D ,

(65)

(67)

(64)

(66)

A is  ca lled  neutral o r  H erm itian.
It fo llow s d irectly  from  I that the vacuum expectation values

t*o. Ajj (cpi). . . .  Ajn (9„ ) f 0)

F(n)(x i-x 2, ------x n. , - x n ) = (¥0, A (xx)------- A(xn )¥0) ,

w here n = 0 ,1 . . . . F rom  (67) and herm iticity :

( I 0 , A(qpx) . . . .  A («p „ )y 0 ). = U V  A (cp n )* .. . .  A f o ) * ? , , ) ] * ; 

and F (n) ( f i ,  . . . . § , . , )  = [F (n) ( f n-,..........S i)]*.n-u • •• • (68)

The herm iticity  conditions

F rom  S ch w a rtz 's  inequality
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K J oM , ------ x i ) dxi ------------------------------------------dxj A (x j)----A (x j)U (a ,l)

• ........ x n> A <x j+i)-------- A (x n)^o)|

• | \ß<h(x i>------ xj )]* dx i ------------------------------------- dxj A (x j)* ------------A(xx)* 11

' II f i »  (X j+ I ,-------Xn) d x j+ i--------------------------------------- dxn A (x j+ i) --A (x n ) ? o  || ;

th is shows that

( V j i l ( xi> ------ x j) dx j-----------------------------------------dxj A (xx) ----A (x j)U (a , 1)

• J % ( xj+ i .------x n)dx j+1. . .  .d x n A (xj+1)-------A (xn)Y0)

(69)

(70)

is  bounded in a. Since it is  a lso  in fin itely differentiable in a (m oving U (a ,l) 
to  the right, it can be exp ressed  as a translation  o f which is  infinitely 
d ifferentiable) we can F ou rier  tran sform  it and find that the F ourier tran s
form  is  z e ro  except fo r  p in the physica l spectrum  [30]. (These are the 
sp ectra l cond itions. ) The boundedness o f (70) in a also has the consequence 
that Ft“) ^ , . . .  .q>n.,)ca n  be extended to a continuous linear functional o n j ,the 
space o f infin itely d ifferentiab le  functions which, together with their d eriva 
tives , vanish at infinity fa ster  than any pow er of the distance. (Continuity 
is  then defined in the standard m anner o f SCHWARTZ [3 1 ].) F inally,

lim  (70) = (¥0.J^Pi(*i.------x j ) dx i -------d x jA (x x)-------A (xj)¥ 0)

• (* „>fi>2 (xj+»*------xn) dx j+i------- dx„ A(xj+1)-------A (x „ )üf0 ),

which exp ressed  as a property  o f F n is

lim  F (n)(q>!..........(a , l )  tpj,--------<pnJ  = F*,)(cp1#------- q>jM)

• F(“ ' j) (<Pj,....<Pn-i), (71)

as a->oo in a sp a ce -lik e  d irection . This is  the c lu ster decom position  prop 
e r t y  [27, 30, 33].

Lastly , because

l| E «k A(cpk l)------A(cpkk)^0 I f  ^ 0  ,

fo r  any finite set o f com plex  num bers a. ,
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• .«Pkitei)]* [<pn (y i)— <P{{ (yt )1

xk+1 , ------x2 -x j, x j-y j, y i -y 2, ------- (yf -, - y , )

• dxk ------d x jd y i-------dyf £.0 (72)

these are usually r e fe rre d  to as the positive definiteness conditions.
Now the recon stru ction  theorem  can be stated p rec ise ly .

T heorem  13

F or each n = 0, 1, 2 , . . . .  let be a distribution in $  depending on 
(n -1 ) fo u r -v e c to r  variab les  and invariant under the transform ations

5i>------5n-i 5 i , . . . .  A  5nM .

Suppose the F ®  are extendable to - 4  in each o f their arguments, the others 
being held fixed . If the F (n* satisfy  the h erm iticity  conditions, the spectral 
conditions, the positive  definiteness conditions and the cluster decom posi
tion  property , then there exists a H ilbert space ^ , a continuous unitary 
representation  o f the Lorentz group (a ,A }-»U (a , A) with energy-m om entum  
spectrum  in o r  on the future light cone and unique vacuum Sf0, and a H erm i- 
tian sca lar  fie ld  A(qp) satisfying A xiom s I and II with D = D0 and such that

(* o .A (x i) ------A (x„)¥ 0) = F (n)(x1-x 2, ------- xn_, - x n) .

This rea lization  is  unique up to unitary equivalence.
A xiom  III is  a lso  satisfied  i f  in addition the F (n)satisfy the loca l com 

mutativity conditions.
The p roo f w ill not be given here; it is  the sam e as in [29] o r  [25], ex 

cept fo r  the uniqueness of the vacuum which is  obtained from  [25],

2. 2. £f VERSUS J  AS DEFINITION DOMAIN FOR A(cp); DISCUSSION OF 
D; SELF ADJOINTNESS FOR HERMITIAN FIELDS

T hose things which could be proved by assum ing test functions in 
and those which a lso  requ ired  assum ing the fie ld s  defined for  test functions 
in w ere not very  carefu lly  distinguished in Part One. C learly  som e of 
the constructions requ ired  the latter, fo r  exam ple, that in the proof o f Theo
rem  12. P hysica lly , it is  very  natural to assum e fie lds defined fo r  test 
functions in : then A(cp), cp rea l would d escr ib e  a fie ld  m easurem ent in 
a bounded reg ion  o f space tim e. It would be very  satisfactory  if one could 
prove  from  this that A(<p) could be extended to J . F ields defined fo r  test 
functions in ^  are desirab le  fo r  a very  p ractica l reason . They perm it one 
to use F ou rier  tran sform s free ly  and to derive d ispersion  relations for  
scatterin g  am plitudes. It should be borne in mind that what one is  excluding 
in such a p ro o f  that fie ld s  can be extended to J  is w orse than polynom ial

k£ <?k .J[cpkk (xk ), . .

F (k+I)(xk.
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growth in x -s p a ce . The argument in connection  with the spectra l conditions 
(just b e fo re  T heorem  13) shows that the vacuum expectation values are 
bounded in any one d ifferen ce  variab le  with the others held fixed. So the 
w orse-than -exponentia l growth to be excluded appears only when two or 
m ore  d ifferen ce  v ecto rs  go to infinity sim ultaneously. Such a growth is 
w ildly im plausible behaviour fo r  a quantity which m easures corre la tion s 
between fie ld  m easurem ents in the vacuum .

On the other hand, fie ld  quantities do behave in a way which would 
lead one to use test functions with com pact support in p -sp a ce  rather than 
x -sp a ce .

One finds in the perturbation theory of unrenorm alized fie ld  theories 
evidence that one m ust expect mom entum  space vacuum expectation values 
which would grow  fa ste r  than any pow er o f the mom entum . To make sense 
o f these one needs test functions o f com pact support in p -sp a ce  and th ere
fo re  entire functions o f exponential growth in x -sp a ce . The idea that one 
should adapt the axiom s to such p oss ib ilit ie s  has been urged particu larly  by 
GÜTTINGER [34]. It p rov id es a natural way o f making the distinction b e 
tween ren orm alizab le  and unrenorm alizable th eories  independent of any de
ta iled  c la ss ifica tion  o f Lagrangians.

Let us now d iscu ss  the dom ain D, again a subject which was g lossed  
over in P art One. The f ir s t  natural question is : Why not sim plify the 
prob lem  by assum ing the fie ld  op era tors  are everyw here defined, i. e.
D = The answ er is  that fo r  cp rea l (and th ere fore  A(q>) Herm itian) this
would im ply that A(<p) is  a bounded and th ere fore  continuous operator, i. e.

sup I A $  I < oo. This happens to be fa lse  fo r  the fre e  field,and there 
11*11=1 "  "
is  every  reason  to b e lieve  that in teresting  th eories  should be w orse rather 
than better than the fr e e  fie ld . Thus D m ust not be all o f . The best 
we can hope fo r  is  that the H erm itian unbounded A(<p) are self-ad joint,
A(cp)* = A(cp). But it is  known that such operators are everyw here d iscon 
tinuous on their dom ain o f definition, so  it appears that one must face up to 
unbounded discontinuous op era tors .

R eca ll that the adjoint o f an operator T with dense domain D (T )c  , 
and range R (T )C 2 and graph rT, consisting  o f all pa irs ( $ , T $ ]  with 

D(T) is  the uniquely defined linear operator T* from  to ^  i whose 
graph I}.* is  {-¥ * , Y) w here (1?*, 1}  runs over the orthogonal com plem ent 
of I j  in / £ ] ©  That m eans that ¥ lie s  in D(T*) and T*¥ = ¥*, if for
all D(T)

(¥ * ,$ ) = OF, T4>).

An operator T is  H erm itian if  T £ T * , i. e. if  D (T )£D (T *) and T = T* on D(T). 
An op era toF T  is  se lf-ad jo in t if T = T*. It is  essentia lly  self-ad joint if 
T ** = T*. A se lf-ad jo in t operator cannot be extended to any other vector 
without losin g  the property  T = T*. A useful criterion  fo r  the essential 
se lf-ad jo in tn ess o f an H erm itian operator is  that there are no solutions of 
the equations:

T *0  = ± i $•
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In general, when T is  H erm itian the number o f linearly  independent solu 
tions o f these two equations are resp ective ly  the defect indices o f T . If the 
defect in d ices  o f T are equal, then T p ossesses  at least one self-ad join t ex 
tension . Evidently, in the f ir s t  half o f these notes the p re c ise  distinctions 
m ade in this paragraph w ere not noted, but they w ill be from  here on [35].

The very  best we can presum e fo r  the operators A(cp), <p real, is  that 
they are essentia lly  se lf-ad jo in t on the domain D0, whose v ectors  are of 
the form  P (A ((£ ).. . .  )¥0 w here P  is  a polynom ial in the sm eared operators 
fo r  C learly , D0GD. so  I w rite A(cp)|D|) fo r  the restriction  of A((p) to
D0 . W ritten out, the requ ired  essentia l se lf-ad jo in tness is

[A.(cp)|Do ]** = [A M Iq, ]*.

It is  p oss ib le  to p rove  this fo r  the fr e e  fie ld .

T heorem  14

If A is  a fr e e  fie ld  and <p is  rea l a n d e ^ t h e n  Aftp)^ is  essentially se lf- 
adjoint.

The p roo f is  not long but m akes very  exp licit use of a configuration 
space rea liza tion  o f the fr e e  fie ld  [36].

F or  a general fie ld  satisfying I, II o r  I, II and III, there is  no such r e 
sult proved  at present. H ow ever, one can prove that the defect indices of 
A(<T>)|eh, are equal. In outline, the p roo f is  as fo llow s: F rom  the d iscussion
just b e fo re  T heorem  13, it fo llow s that F ^ i s  the boundary value o f an analy
tic  function in each o f its variab les , the others being held fixed  and sm eared 
with test functions in The analyticity in question is  in the tube . It 
then fo llow s from  a theorem  o f ZERNER [37]* that there exists a unique 
function analytic in 3/n-i which redu ces to F (n̂  . This function is  invariant 
under the hom ogeneous Lorentz group so  that one can use the theorem  of 
Hall to  p rove  the PC T theorem  as at the beginning o f P art One Thus the 
PC T theorem  is  valid  fo r  an irred u cib le  fie ld  satisfying I, II and III. The 
PC T operator 0  leaves D0 invariant.

Now suppose (p is  not only rea l but even under x -> -x . Then 0  satisfies

© A t e ) ^ - 1 = A fo )!*  .

But then if  0 sa tis fies

(A(q>)|D|)* 4  = ± i® .
©i> w ill satisfy

(A(cp)L )* ®<b = Ti04>.
Do

(If 0  com m utes with A(<p) and lea ves  D0 invariant, it m aps D0 one to one 
onto itse lf and com m utes with A(cp)|^ as can easily  be verified  d irectly  from

*  la the simplest case o f  two com plex variables Zemer's result is as follows: if  f(xlv z 2) is analytic 
for z 2> 0 for each real value o f  x 1 and is analytic in z , > Ofor each real x 2 and f(xt , x 2) is continuous,
then there exists a unique function f analytic for z ,>  0 and z 2> 0 which reduces to the given data on z t= 0, 
z 2>  and z 2= 0, Zj^O .
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the d e fin ition s .) Thus, there are as many solutions with the plus sign as with 
the m inus sign and the defect in d ices o f A(q>) are equal when <p is  rea l and 
even. The general case  o f  <p rea l is  easily  reduced to this.

T here does not appear to be any evidence against the con jecture that 
is  essentia lly  se lf-a d jo in t in the general case . At the m om ent, how

ever, the best we have is  the follow ing:

Theorem  15

If cp is  rea l and cp€«^and A is  an irred u cib le  fie ld  satisfying I, II and
III, then A(<p)|d0 has equal defect in d ices and th erefore  p ossesses  at least 
one se lf-ad jo in t extension.

The im portance o f se lf-ad jo in tn ess is  that it m akes available one of 
the m ost pow erful too ls  fo r  the study of operators in H ilbert space, the 
sp ectra l theorem . If A(cp) is  a se lf-ad jo in t extension o f A(cp)]Ê , then

poo

A(<p) = /  X dE(X,cp),
V-00

where E (X , <p) is  a sp ectra l resolution .
T here m ay be physica l requ irem ents which single out a particular se lf- 

adjoint extension (for exam ple, LC fo r  the extended operators). If it 
turns out that even after these additional requ irem ents have been applied 
the A(qp)|Db do not p o sse ss  unique se lf-ad jo in t extensions, one w ill have to 
say that the theory  is  not com plete ly  given by its vacuum expectation values. 
This would not be a catastrophe.

T here is  one additional s im ple rem ark  about dom ains: The ex 
tension o f the vacuum  expectation values from  m ultilinear functionals 
(!F0, A(q>i).. . .  Aftpn)^) to distributions in a ll the variab les,

J d x x------dXn cp(xj,------- X n) (Y0, A (xx)-------A(xn )¥„) ,

perm its an analogous extension fo r  v e cto rs :

A(tpi)------A(<pn )¥0 -»JdXi------- dxncpfxj,-------xn)A (x j)------- A (xn) V  (73)

This last exp ression  is  then a v ecto r  valued distribution where continuity 
fo r  the v e c to rs  is  in the norm  topology  o f H ilbert space [18, 30]. This p e r 
m its an extension o f the op era tors  A(<p) to the domain D o f all vectors  such 
as (73).

2. 3. VON NEUMANN ALGEBRAS ASSOCIATED WITH A DOMAIN OP 
SPAC E-TIM E  AND A FIELD

It is  natural to try  to associa te  an algebra o f bounded operators with 
the fie ld . (This is  the re v e rse  situation from  that custom ary in mathema
t ic s  w here one is  given an algebra of bounded operators and associates un
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bounded opera tors  with it. ) HAAG has particu larly  em phasized the s ign if
icance o f  associating  an algebra of bounded operators R(0) with the set of 
fie ld  operators A(<p) w here the supports o f the <p lie  in a fixed domain 0 
o f sp ace -tim e [38].

T here would be a straightforw ard way to  define fh  (0) if we knew that 
the A(<p)|d0 w ere essentia lly  self-ad joint: take the von Neumann algebra gen
erated by the spectra l projection'^ o f the se lf-ad jo in t o p e ra to rs (A(<p)|d0 )*. 
(R ecall that a von Neumann algebra is  ä set ifta o f bounded operators with 
the properties : l e ^ i ;  i f  A e& > , then A * e £ , ;  if  A and , then AB and
a A+b B e  iRp ; i f  A n (w here n = 1, 2 . . . . )  is  a weakly convergent sequence 
o f operators e. |f a ,  then lim  A ne. Ä > .) This definition would still work with 
our present knowledge but might give different (Rj> (0) depending on which 
se lf-ad jo in t extension of A(cp)|D is used. A lternatively one can proceed  as 
fo llow s [18]. Define: C, a bounded operator, com m utes with A(cp) if

(A(q>)* CY) = (3>, CA(cp) ¥) (74)

fo r  a ll in D. Then define X 6  fb{Q) i f  X  com m utes with all C that satisfy 
(14) fo r  every  A(cp) and A(cp) with support o f <p in 0. The relations among the 
variou s p oss ib le  definitions are w ell worth exploring. The firs t  steps in 
this d irection  are in [39]. One particu lar resu lt is  so  sim ple and important 
that it m ust be given here [40].

T heorem  16

Let A be a neutral fie ld  satisfying I and II, but with test functions in Ä  
(including as usual the requ irem ent that the vacuum be unique). Suppose 
? 0 is  cy c lic . Then A is  irred u cib le  in the sense that any operator C sa tis
fying

(A(<p)* 4 ,C J ) = (®.CA(<p)¥) (75)

fo r  all cpe and all 4 ,  f e  D0 is  a constant m ultiple of the identity.

P roo f

If (75) holds fo r  the A(cp)., it a lso holds with A(<p) rep laced  by

• • d x ^ x j ------xn) A (x j)-------A(xn),

a fact that w ill be used in a mom ent.
Now it m ay be assum ed that C \i=0  because, if C¥0 = 0 , C¥ = 0 fo r  any

o and th ere fore  C = 0.
W rite ||CY0|| = p > 0, (¥0,C¥o) = a . Schw artz's inequality then im plies 

|a|< p . To prove  the requ ired  result it su ffices  to show |orj = p, because 
then C¥0 =a¥ 0 and this im p lies  C4> = fo r  all 4>e D0 , because C com 
m utes with the A(cp) accord in g  to (75).

B ecause ¥0 is  cy c lic  a polynom ial exists in the sm eared fie lds , say 
su ch th at ||(C-(p)Sf0|| < e .  Then
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|(y0, c - C f o  ) -  (to , I?3 * C!F0)| = j((C-|^)S'0,CS'0 )| < PC . (76)

So far the com m utation relation  (75) has not been used.
Now analyse the form  of (P ¥0 in momentum space. Ip may have a p- 

space support which runs over all o f p -sp a ce ; but when it is applied to ¥o< all 
o f  the contribution save that from  the physica l spectrum  is annihilated. By 
m ultiplying the F ou rier  tran sform  of the test function occu rrin g  in by a 
function which is  1 on the physical spectrum  and zero  fo r  points which are 
in the negative o f the continuous spectrum , one can get a new operator, ft) , 
o f the sam e form  as P , which satisfies

= (Py, ( P %  = ( ^ W V  (77)

(C rudely, what is  being done is  this: R eplace

<p|(P|q>by<p|P|q> = e (p ° -q ° )e ((p -q )2)<p|^|q>;
then ^ _______

<p|P*|q> = e (q ° -p ° )0 ( (q -p )2) < q '\<f> |p> »
SO A _______

<p|(P |o> = <p|<ß |0 > but < p | r| 0 >  = 0 ( -p ° )0 (p 2 ) <o|^|p>,

which can only be different from  zero  when p = 0 because \0|(P|p^> = 0 un
le s s  p is  in the physica l spectrum . A ctually, 0 has to be rep laced  by an 
infinitely d ifferentiable function, so  we need the hypothesis that p = 0 is  an 
isolated  point o f the spectrum  in ord er  to get enough room  fo r  the smoothed
0 to fa ll to ze ro  from  the value 1 it has at 0. ) Then, using (75),

p e >  |p2 - (<P?0,C T 0)| = |p2 - ( P \ , C 1 0) | = |p2 - ( v c £ * y 0 )|

= |p2 - a ( ^ * 0 , * 0 )|. (78)

But e can be chosen  arb itrarily  sm all;and when it i s , ( ( p f 0, ¥0) is  arbitrarily  
c lo s e  to ä .  T h ere fore  |<*|=p.

A second  rem arkable  resu lt o f th is type has been produced by REEH 
and SCHLIEDER [39].

T heorem  17

Suppose A is  a fie ld  satisfying l and II with D0 dense in7<# (test functions 
in £ f ) .  Do (0) is  a lso  dense fo r  any open set o f sp ace -tim e 0. Do (0) is  the
set o f all v e c to rs  o f the form  f t  (A (p ).. .  . )¥<, w here P  is  a polynom ial in the 
fie ld s  sm eared  with test functions w hose supports lie  in 0.

P roo f

A m atrix  elem ent of the form

(X. A (x j)------A (xn)¥0)

is  the (d istr ib u tion !) boundary value o f an analytic function G o f the v a ri-



42 A. WIGHTMAN

ables -X j-irjo , X !-x2 - i r j i , . . . .  x n-i-x n-irjn-i defined in"^ n. This follow s im m e
diately from  the argum ents d escribed  above in connection with the proof of 
the PCT theorem  under the weakened hypothesis that test functions are in 

But then the hypothesis o f the theorem  im p lies  that the boundary value 
o f G is  ze ro  in an open set o f  rea l space. Thus by the argument given in 
the p ro o f to T heorem  6, G vanishes everyw here in jT n and th erefore  so do 
its  boundary values (x, A (xx) . . . .  A (xn)¥0). Since D0 has been assumed dense, 
we see  that x orthogonal to Do (0) im plies x = 0, so the theorem  is  proved.

One might think that,by .com bining the arguments o f the preceding theo
rem  with the present one, one could  prove the irredu cib ility  o f the set of 
o p e ra to rs  (P (A(cp).. . . )  with cp restr icted  to have support in any fixed  open 
set o f sp a ce -tim e . H ow ever, this is  not and cannot be so because the r e 
sult is  fa lse . As was f ir s t  shown by HAAG and SCHROER [41], there are 
generalized  fr e e  fie ld s  such that the set of f i  (A(cp)) is  irredu cib le  when q> 
ranges over  all tS but the set o f ^ (A (<p).. . . )  is  not irredu cib le  when the 
supports o f the cp are re s tr ic ted  to lie  in any tim e s lice  - «  < a< x° < b < °o. 
The reason  the p roo f does not go through is  that the construction of the (P 
used in (78) req u ires  test functions cp which cannot be o f com pact support 
in x space.

2. 4. H AAG -RU ELLE COLLISION THEORY; GENERAL ACCOUNT

The fir s t  step in H aag's theory is the construction  of what he ca lls  
alm ost lo ca l fie ld s . T hese are quantities o f the form

B(x) = E J. . . . J f n i x - x i , ------x -x J A fx J ------ A(xn)dx!-------dx„ (79)

which satisfy
U(a,A) B (x)U (a , A )-1 = B(Ax + a)

(5F0,B (x )¥ 0) = 0 .

where f n We assum e fin ite sum s in (79). At one tim e o r  another Haag
has con sidered  using som e kind of lim it of finite sum s but that does not 
appear to be n ecessa ry  and has not been possib le  till now. Furtherm ore, 
it is  desirab le  that fo r  each irred u cib le  representation  contained in U, say 
o f m ass m i, there ex ists  an alm ost lo ca l fie ld  such that Bj(x)¥0 lie s  in 
the subspace o f that irred u cib le  representation . (This actually im plies 
(¥0, B (x)Uf0 ) = 0.) Haag re fe r s  to the construction  o f alm ost loca l operators 
satisfy ing  these requ irem ents as the "solution  o f the one-body prob lem ". It 
would seem  that neither Haag nor Ruelle te lls  one in print how to "so lve  the 
on e-body  p rob lem ". It is  c lea r  that under som e circum stances it can always 
be done. Suppose, fo r  exam ple, that the d iscre te  m ass state in question is  
isolated  in the m ass spectrum . Then the construction  used in the p roo f of 
T h eorem  12 w ill y ie ld  the requ ired  B; . The sam e holds true even if  the 
d iscre te  m ass value is  not isolated , provided that conserved  quantum num
b e rs  exist which label the fie ld s  and the m ass value is  isolated  in the sub
space o f states with definite values o f the quantum num bers. The sort of
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thing meant here is , say, the ca se  o f the deuteron which lie s  in the m iddle 
o f the m ass continuum if  all states are con sidered , but which is  isolated  if 
one con fines on e 's  attention to states of baryon num ber 2. It should always 
be p oss ib le  to "so lv e  the one-body p rob lem " with sufficient accuracy , so 
that the fo llow ing ca lcu lations would work,but the author has not ca rried  out 
the deta ils . (The idea is  that although Bi(x)Y0 is  not a pure one-particle 
state the le ft -o v e r  p iece  can be made sufficiently  sm all not to m a tte r .) For 
the purpose o f the present exposition  it is  assum ed that one can "so lv e  the 
on e-body  p rob lem " exactly.

Now define

b [ (x i ) = i J d x j J fi(x r  Bi (xi ) - g ^ -  f i fx i^ B ^ X i)

w here the F ou rier  tran sform  o f f t is  o f  the form

0(P°) <5 (P2 -m f ) f  (p*) with f e  & .

(80)

Then H aag's a ssertion  is  as fo llow s:

T heorem  18

Let Bj be ain a lm ost lo ca l fie ld  such that B i(x t) lie s  in the subspace o f 
^ b e lo n g in g  to the irred u cib le  representation  [mi( s j  o f m ass nij and spin 
s , . F orm  the states,

$ (t ) = IJ Bf (t)Y0 ;

then lim  4>(t) ex ists  in norm . 
t-»±°°

P ro o f

d$Note f ir s t  that —  = limdt At-i-0
[$ (t+  A t) - $ (t)] exists where the lim it

is  to be understood in the norm . This is  an im m ediate consequence o f the 
continuity p rop erties  d iscu ssed  e a r lie r  in connection with the domain D. 
F urtherm ore ,in  ord er to v er ify  the strong convergence o f $ (t ) it is  sufficient 
to prove  that |t|3/21 |d<3> /dt| | —»0 as t-»±oo , because then

| | $(t')-0 (t" il It-dT
d$(r)

dT r dr
i d$(T)
I dT

rC' dr  
X  t 3/2

and this can be m ade a rb itra rily  sm all fo r  sufficiently  large  t' and t n . Thus, 
to p rove  the th eorem  it is  su fficient to prove

(t|3/2| | d$/dt|b0  .

Now | |d4> / dt| | can be written out as a sum o f term s of the form
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J d xjdx2 ------d x kf 1(x1Jt ) f 2 (x2, t ) ------- f^ x ^ t jF C x j-X z ...........V r x k), (81)

where two o f the fj are actually tim e derivatives of the f 's  appearing in the 
theorem  and F is  the vacuum  expectation value of the B j fie ld s . Note that 
F is  tim e independent because x° = x? = t. F can now be expanded in term s 
o f truncated vacuum  expectation values. Then (81) appears as a sum of 
products o f in tegra ls which are again o f the form  (81); how ever, now F stands 
fo r  a truncated vacuum  expectation value.

T here are now two steps in the p roo f. F irst, one must establish that 
sup |fj(£t)| < C / |t|3/2 fo r  lar-ge (t) and 

x

J dx |f(x,t)| < Cj |t|3/2.

Secondly, it m ust be shown that the (truncated) F 's  fa ll o ff faster than 
any pow er of

k- ‘ I 12L |xj-xj+1| fo r  k > 2 .
j=i

If both these things have been established, then (81) w ill d ecrease  as 
]11(-*/z) (k-z) _ it rem ains to show that no term s with k = 2 contribute. This 
is  a resu lt o f the hypothesis that the B 's  "so lv e  the one-body problem ". The 
tw o.steps in the p roo f w ill be returned to in the two follow ing sections.

Some rem arks about the re la tiv istic  invariance of the procedure are 
n ecessa ry  h ere . What has to  be  shown at this point is  that the sam e lim it
ing state is  arrived  at if  one ca r r ie s  out the sam e procedu res along another 
t im e -lik e  d irection . F or  this it su ffices  to show that ( l  + i€ nt 5f) 0 (t )y ie ld s  
the sam e resu lt as <£(t), where nt fie  is  an in fin itesim al pure Lorentz trans
form ation  along the d irection  n. The term  n. i?$ (t) w ill give r is e  to no con 
tribution in the lim it becau se it w ill involve one extra derivative o f the term  
which approached a constant in the preceding calculation.

The next step is  to define "in "  and "ou t" operators on the "in " and "out" 
states which have just been defined. One w rites

Bin Oin = lim  Bf (t )$ (t )  , t-± «

(82)
b L ) <i>in = lim  (Bf (t ) )* $ (t ) .in

out

To be sure that these equations actually define linear operators one has
t

only to check  the single valuedness; i. e. suppose ¥(t) = 4>j (t) and = 0

or  ¥0ut = 0, then one m ust have lim  B (t)¥(t) = 0 fo r  the appropriate case.t->±

But the fa m ilies  of v e c to rs  'JJ(t) and (Bf (t))* Bf (t) 'i(t) both have a strong lim it,
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that o f the f ir s t  fam ily  being ze ro . T h ere fore  lim  (Y(t), (B' (t))v B‘ (t)S'(t)) = 0,

so B^ Oin = 0 o r  B̂ ut 4>out = 0, w hichever is  appropriate.
The Bin and Bout and their adjoints are resp ective ly  defined on the "in" 

and "ou t" states which span two subspaces o f H ilbert space in and M out 
resp ective ly .

We have no assurance that ^  = ^»0ut nor that ^  in = = ^ 0ut at the
present stage, and in fact exam ples show that the asym ptotic states need not 
be com plete . (T here are generalized  fre e  fie lds such t h a t ^ in ^  and 
$  out • ) That is  A xiom  IV (Ruelle):

iv. %oa
N otice that 0$in is  an "ou t" state; thus i f  \ is  orthogonal to ^ .then 

©X is  orthogonal to ^  out.. Thus it su ffices  to assum e ^ i n = to get
out = •

The Bin and Bout which have been defined are associated  with the co rre ct 
d iscre te  m a sses  m but do not have any sim ple transform ation  law under 
L orentz transform ation . R u elle 's  next step is  to extract from  the B -free  
spinor fie ld s  with the appropriate transform ation  law under Lorentz trans
form ations to d escr ib e  p a rtic les  o f spin Sj. The construction will not be 
d escr ib ed  here,but the author b e lieves  that this is  the fir s t  p lace where the 
co llis ion  theory  o f p a rtic les  o f arb itrary  spin has been treated system atic
ally in so -ca lle d  axiom atic fie ld  theory.

1 There is  one subject not exp lored  in R u e lle 's  paper where further in 
vestigation  would seem  very  valuable. That is  the relation between the do
m ains of the opera tors  Bjn , Bout and the domain of the original operators 
A. A typ ical prob lem  here would be whether one can show that all these 
op era tors  can be extended to the subspace o f i4> consisting of all states 
w hose energy is  le s s  than E<oo.

2 .5 . ASYM PTOTIC BEHAVIOUR OF SOLUTIONS OF THE KLEIN GORDON 
EQUATION [18]

An im portant ro le  was played in H aag's orig inal argument for the 
asym ptotic condition  by an estim ate o f the asym ptotic behaviour fo r  large 
tim es o f the solutions o f  the Klein Gordon equation:

1 P -ik. 
^ J e( 2  JT):

f  (k) dfi(k)

s/m i  ̂ (1 - v 2 ) exp - i  m t  (1 - v 2 ) '
-t/i

7 (mV(l-v2)'*

w here v = 'x / t .  (83)

This was one o f the weak points o f H aag's argum ent,because the c la ss  of 
functions fo r  which it is  valid  was not determ ined. R uelle rep laces this by 
the follow ing:
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Lem m a

Let f  be  the solution o f the Klein Gordon equation (O  + m2 )f(x ) = 0 given
by

f(x ) = (2 tt)'2 J dp0(p°) 6(p2 -m 2 ) f  (p) e Mp' x (84)

w here f(p } is  infin itely d ifferentiable and o f com pact support. Then f  is  
in fin itely d ifferentiab le  and f(Xu) goes to zero  as X-» + oo in two different 
ways depending on whether the v e cto rs  Xu (w here 0<X <oo) in tersect the 
support o f 6(p2 -m 2 ) f  (p*) o r  not; such v ecto rs  determ ine a cone C.

(a) If u e. C ,

|f(Xu)| < A (u )X '0  0 < \ < oo (85)

w here A(u) is  continuous;
(b) I f u ^ C ,

lim  X“ |f(Xu) | = 0 fo r  all n = 0, 1, 2 , . . .  (86)
\-*+cp

and uniform ly  fo r  u in com pact subsets o f (u0 )2 + u 2 = 1.

R em ark

It is  helpful to r e ca ll the Riemann Lebesgue Lem m a and one o f its 
p roo fs  in o rd er  to see why the cone C appears. Consider

f(x) = Jeikx dkT(k)

and suppose f  is  integrable and has an integrable derivative. Then 

f ( x )  . /  ? ( k ) d k ( l / i * ) £  (e “ ‘ ) -  i  / i i M a k  e “ >

s o  | f(x )| -S ^ J | d f(k )/d k | d k  V l x l •

This p roced u re  can be repeated if  f  has m ore  integrable derivatives; each 
y ie ld s  one m ore  pow er o f | x | in the denom inator.

F o r  an in tegra l o f the form

J '  +m2' xe +m f  (k) dk

the situation is  d ifferent because
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ix
Vk* d /  is/k2 + m ! x \ isik* + m ‘ x 

d k ' 6 ' = e

and the square bracket is  singular at 0. Thus the previous argument can
not be repeated indefinitely.

P roo f

(84) can be written

f(x ) = l2(2w)2V 1J d Q m {p )e - iPx f ( p )  , (87)

where the in tegral runs over p2 = m 2, p° > 0 and dn m (p) = dp3/^ ^ 2  + m2 . B e
cause the in tegral runs over a com pact subset o f p> space, one can differen 

tiate with resp ect to xu under the integral sign and always get convergent 
in tegra ls. T h ere fore  f(x ) is  infinitely d ifferentiable.

To study the asym ptotic behaviour in X when x = Xu, rew rite (87) as

f (X u )  e - i s X fu ( s ) d s  ,

where ^u(s) = 2(2?t) *  J (d n (p )6 (s -p -u )f  (p*)

(88)

(89)

Now s = p -u  is  a 3 plane with norm al u. It in tersects  the hyperboloid in a 
tw o-dim ensional su rface , which is  the Lorentz transform  o f a sphere if u 
is  plus t im e -lik e  and s is  su fficiently  large  (F ig. 1). They do not intersect
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fo r  su fficiently  sm all s and in the transition  ca se  the plane is  tangent to the 
hyperboloid . F or ligh t-lik e  u the plane in tersects  in a tw o-dim ensional su r
fa ce  which runs to infinity; the sam e is  true fo r  sp a ce -lik e  u. When the 6 
function is  elim inated, there appears in the rem aining integral over the curve 
a Jacobian which is  analytic in s as long as s does not take the value fo r  which 
the plane b ecom es  tangent. If the support of f does not contain the "p o f the 
jDoint of tangency, fu(s) is  infinitely d ifferentiable. Since whatever u is, 
fu (s) is  of com pact support because the integrand w ill get too singular at 
k = 0. If the support of f does not include zero , how ever, the preceding 
argument is  valid . The analogue o f I?= 0 in the integral is  paXu,which shows 
that one expects different behaviour fo r  u € . C and fo r  u ^  C. (88) shows that 
f(Au) vanishes fa ster  than any pow er o f the distance. F urtherm ore, it will 
be  uniform ly  continuous in u as long as u stays away from  C. This estab
lish es  (b).

To p rove  (a) note that under the assumption u e  C, u is  plus tim e-lik e , 
so by a Lorentz transform ation  it can be brought into the tim e axis. Then 
choosing  fo r  convenience u = (1, 0, 0, 0), we get fo r  (89)

w here g (s -m )  is  in fin itely differentiable and of com pact support on the 
c losed  half axis 0^ s < °o. Then

% f - 7-d-P - - 6(s - Ip2 + m 2 ) ?  (p ) 
- J  m2 V

J s - m  g ( s -m ) , (90)

m

W rite

J s  g (s )  = -Js 1 (0 ) e s + n/s (g (s )  - g-(0) e"ä ) .

The contribution from  the fir s t  can be done exactly because

(91)

while the second  has two integrable derivatives, so that its F ourier tran s
fo rm  is  bounded in absolute value by a(u) | A |-2. Thus
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H ere A(u) can be taken to be continuous because the integral varies  con 
tinuously under L orentz transform ations.

T h is L em m a has as an im m ediate consequence the follow ing:

Lem m a

If f  sa tis fies  the hypotheses o f the preced ing Lem m a, then 

sup | f (x ° , i?) | d ecrea ses  as |x° | ^  when x°-> + oo
X

and p
d x  |f(x°, 5?) | does not in crea se  faster than (x° )ŝ ! 

when x°-> + <x>.

P roo f

B ecause o f the uniform ity o f the estim ates in u one has that sup jf(x°, x)|
x £  C

d ecrea ses  as |x° |
The in tersection  o f the plane x° = const, with C is  a com pact set Q  of 

th ree -sp a ce  which lie  inside a sphere o f radius < x ° .  The integral

J 'd x  |f(x°, x*)| can be split into an integral over Cj and over the rest of space.

The contribution from  the rest goes to ze ro  faster than any power of

x ° , while | ^  | ^  const. |x0 | 5/>2 |x°|3. 
c i

2. 6. THE REFINED CLUSTER DECOMPOSITION THEOREM [18]

F irst, a notation must be introduced to d escr ib e  the n + 1 clusters :

A i(x i) = A (x i0 )A (x h )------A (x ir(i)) . (93)

(The second index labels  the points within a clu ster; xi stands fo r  the set 
o f vector  variab les  xi0 • • • • x ir(i)» i = 0 , . . . .  n. ) Define also

A i(x i+ a i) = U(ai, l ) A i (x i )U (ai , l ) - 1 . (94)

(If we had to deal with a set o f fie ld s  A, an analogous definition could be 
m ade by putting an extra  index on Ai to indicate what the constituent fie lds 
are in the i— c lu ster . Ai would then be ca lled  a B ose or F erm i field  r e 
spectively  i f  the product contained an even o r  odd number of anti-com m uting 
f i e ld s . ) (93) w ill be  re fe r re d  to as a c lu ster product and (94) as a trans
lated clu ster  p rodu ct.

The translated clu ster  products w ill appear in vacuum expectation values 
in d ifferent ord ers , and the next bit o f notation labels these vacuum expecta
tion values. Let it be the elem ent (perm utation) o f the sym m etric group on
n + 1 ob jects  such that 7r(0, 1 , . . . .  n) = (i0, . . . .  i„ ) (and <% = ± 1 accord ing to
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whether, when acting on . . .  A n the perm utation o f the F erm i fie lds is 
even o r  odd). Then define

Tir (x +  a) = T ^ X q + a0, X j+ a j,-------- X n + a n)

= <% < A i jx u  + aio )A (x i i + ait )------ A in(x in + ain )> 0, (95)

^  (a ) = / d x  cp(x) T " (x + a )  (96)

c nw here cp£.^J in the £ [r(iii) + 1] vector  variab les ,

x 0 0 x 0 1 ■ • • • x  0 r( o) •••• x no • • • • x ni<n) •

Note that in (95) and (96) x stands fo r  the set Xi, i = 0, . . .  . n,and a fo r  the
set ai, i = 0, . . . . n.

The a; that w ill be under d iscussion  here are purely space-lik e , so
a - (0, ). The diam eter X of the set a0___a„ is  given by X2 = sup (a* -a*,/)2.

---------------- i.f 1
Let this m axim um  be obtained fo r  i = j and i' - j T h e n  X2 = (aj -a j /  )2. Now
con sid er  the fam ily  o f all partitions o f {0, 1, . .  . .  n} into two subsets X and
X 's u c h  that j€ .X  and j 'G X '.  The m axim um  o f the distance o f the set [li;
i e X }  from  the set {äi' ; i ' e X 1} as X  va ries  over the fam ily  is  given by

H2 = sup [ inf. (ä* - a £/)2 ] .
X ieX, i'«X '

In the fo llow ing d iscu ssion  it w ill be assum ed that this maximum is  obtained 
fo r  the partition X  = Y and X ' = Y ' and that ß2 = ( ? {  - ^ t ')2, i e Y  and £'^-Y'.

T here is  an elem entary but basic inequality connecting ß with the diam 
eter X :

riß X . (97)

P roo f

We divide the points a*, into two c la sses : those which can be joined to 
by  a chain o f points such that 1) no point repeats, 2) the distance between 
su cce ss iv e  points is.$/u , and those which cannot. We cla im  5j lie s  in the 
fo rm e r  c la ss , becau se every  point o f the latter c la ss  lie s  a distance >ß 
from  ev ery  point of the fo rm e r  and if  So belonged to it we would have a 
partition  violating the definition o f ß. T h erefore , there is  a chain o f points 

, 5 ,̂, . . . .  £?j, such that

x =  |ä j-ä j k l ä r ^ p H ^ p ' - - - -  | + ------|---------a j | ^ n /i.

N otice  that nß = X when the ij  are equally spaced along a line.
A final bit o f notation: the truncated vacuum expectation values c o r r e s 

ponding to (95) w ill be denoted TiJ. and
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•F T ?  = J d * 2 ( x '> t t  ( *  +  a )

If
Y = fi0, i i , ---- ik } . Y ' { i 'o .i 'i ,-------4 ' }  w ith k  + k' = n -  1,

w here the elem ents ir within each o f the subsets are written in their natural 
o rd er  as in tegers . Define perm utations I and J by

1(0, 1 , ------ n) = (0, 1 , ------- n); J(0, 1 , -------n) = (i0, ix-------ik,i'o»ii»------- i^).

I is  the identity perm utation.
Now we are ready fo r  the second  step in the proo f. Let A be a field  

satisfy ing I, II and III but with test functions in rather than .

T heorem

Let X be the d iam eter o f the set ____aii ] . Then, fo r  any positive  inte
g er  N,

lim  XN [Ft ( a ) -  F  ̂ ( a )] = 0 (97. a)
*  i

provided  that the configuration  o f the a ’ s rem ains such that the above de
fined j, j ' ,  Y , Y ', and i '  stay the sam e.

R em arks

(1) This th eorem  already has been stated by HAAG [17]. He gave a plausible 
but som ewhat hand-w aving-type p roo f.
(2) It is  th is theorem  which enables the com m utation relations fo r  the "in " 
and "ou t" fie ld s  to be proved .

P roo f

Note f ir s t  that T? (x) - t {  (x) vanishes when all xia, ( i£ Y ) , are space
like to all x i 'a/ , ( i '^ .Y ') , becau se o f III (LC ). Therefore,q>(x) does not con 
tribute to the integral:

Ft^  ( ? )  -  fJ ( a ) = J dx cp(x) [T^.(x + a ) - T *(x  + a )] ,

I |x l« -  Xi'a- |f < (xta -  Xi'a')2 + l (* a  - *i'a ') + (S  -  3 i ') ] . (98)

Now the square bracket is  always greater than ||x*ia - ? i ' a/| -| 3  -  ai'||; and if, 
when [(Xj-a - + - a j/)]2< 0 fo r  all or = 0 , . . . .  r (i),
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a ' = 0, . . . . r ( i ' ) and all i €  Y, i ' e  Y '.

Introducing the Euclidean distance,

I k o  -x 'i 'a 'II2 = (x? « - x ? '„ ' )2 + (Xic (99)

one can get a su fficient condition fo r  (99) to be satisfied  as follow s:
Note (99) can be rew ritten  as

Ilx ia < (Xic -X iV ')2+ [(Xio - Xi'a-) + (ai - a j')]2. (100)

The second term  on the right-hand side is  always b igger than

so  the right-hand side is  b igger than

2 l x icT  X i v f  +  P i  -  ä V  |2 -  2 | x ia  -  x i V | | £\ -  a . /  | .

This takes its m inim um  as |x|a "X i'a/| va ries  when

|?ia -X i'a 'I = (1/2) | äi -  äV |;

then it is  (1 /2) |ä̂  - s^/12; thus (99) is  guaranteed if

l l x i «  - x i v l f  < M 2/ 2 ;

o r , using (97);

one has each | |xia 11 < A/2 \/2n- so ||xi„ - x^/1.|2< [\ / j2n )2 = X 2/2n2 . Thus 
there is  a sphere in x space whose radius is  \\[2n such that >̂(x ) does not 
contribute to the in tegral (98) fo r  x in the sphere.

Next note that the transform ation  x -> x + a, where all a are identical, 
lea ves  Tt invariant, so  one can assum e without lo s s  of generality that the 
c lu ster  labelled  ze ro  has its fir s t  a* at the origin . Then
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To com plete  the p roo f, R uelle in troduces an im portant technical d e 
v ice : a partition  o f unity adapted to the p roblem . Partitions o f unity are 
a standard dev ice  of distribution  theory  [42J, but the one used here has som e 
sp ecia l fea tures. .

What is  wanted is  a fam ily of non-negative functions f „ ( x ) e  J ; v = 1, 2 . .  
such that

(1) sup f„ (x )  is  bounded in v and the sam e holds true fo r  each deriva 

tive  o f f„ ;
(2) f „ (x )  = f„ (  11x11) = 0 both if  J|x11 > v + l and ||x|| < v -  1;
(3) £ f „ ( * )  = 1.

R eca ll that fo r  an arb itrary  open coverin g  of sp a ce -tim e  {O j ; i € . I] 
(w here, a ccord in g  to the definition  o f open coverin g , I is  som e index set,
Oi is  open fo r  all i and every  x lie s  in som e Oi) a partition o f the identity 
is  a fam ily  o f c p i i 6  I o f in fin itely differentiable non-negative functions 
with support o f q)j c  Oi and such that if  C is  any com pact set of space-tim e, 
C in tersects  the support o f a lm ost a fin ite num ber o f cpi. In the present 
ca se , the sets m ay be taken as Oi, the in teriors  o f sph erica l shells o f th ick
n ess (2 + e ) and in teger radius, and one has to look  into the details o f the 
proo f, fo r  exam ple that o f SCHW ARTZ [42], to see that the property  1, 
which is  usually not requ ired  fo r  a partition of unity, can be secured. It 
is  true but w ill not be proved  here.

( i V  ( ? )  1 ,

oo a
w here q>„ = f„ (x) cp(x). (The se r ie s  L con verges to cp in>* . There is  no

contribution from  the term s with i/ + l< X /2n -/2  because support of cp2 is  then 
en tirely  in the sphere ||x||<X/2n>/2).

Since T } -  T-f is  a tem perate distribution .it may be written as Ty - T j 
= D“ g, w here g is  a continuous function o f x o f  at m ost polynom ial growth.
D“  is  the differentiation  operator defined in Eq. (26). Thus

FtI  (a ) = / 'd x f „ ( x ) D ag (x + a )
“1/ —v

- J  dx [D^cPy (x)] g(x + a ) . (102)

Now the num bers sup |Dag>„(x) | d ecrea se  with v faster than any power

o f i/_1. (The reason  fo r  this is  that <p e J  so  sup |x8D ,'(p(x) |< °o. But the

derivatives o f are uniform ly bounded in v. This supplies sup |xBcp,,(x) |<C 
independent o f v so

sup i D ^ M l  < C ( a , ß ) / v 6

fo r  all in teger v and each ß . )
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Thus, sin ce

Ig(x)|< C(1 + l|x||2)k/l

If t> ( a ) - F j  (a )| ^  S(i/ + 1) sup |d°'2 i;(x )|c ,
- v  - v  A

sup (1 + ||x|p)k/2<  S(i/ + 1) sup l^ c p ^ x ) !  C(1 +2(v + l )2 ? /i (l+ 2 X 2L)k/if 
11*11 =v+i

w here S(v + 1) is  the volum e o f the sphere in x space o f radius v +1 and the 
inequality 1+ |.|x + a | J2< (1+21 |x | |2)X  (1+2 || a| p ) has been used.

Now the num bers Cy = m ax |d“ 9 „(x ) | [C S{v + 1)X (1+2 (v + l)2f /r ] de

c re a se  fa ster  than any pow er o f i/_1; th ere fore , in the inequality

| F ^  (a ) -  f / „  (a ) | < (E C ,) (1 + 2 LX2 
~ ' i/>X /2^n -l

the f ir s t  fa cto r  d ecrea ses  fa ster  than any pow er o f X"1.
(ECi/ d ecrea ses  as fo r  i  ^ 2 ;  as p roo f o f this com pare with an

integral which can be integrated e x p lic it ly .) T h ere fore ,

lim  XN [F ‘ ( a ) - F '  (a )] = 0 
f »  T1 Tf?

fo r  all N, as was to be proved .
It is  w ell to look  over the p roo f to see why it w orks. Evidently, it 

u ses  the sphere in x, within which there is  no contribution to the integral. 
F urtherm ore, it u ses the assum ption that the T j  are tem perate in order 
to conclude that they can be written in term s of a derivative of a continuous 
polynom ial bounded g.

The next theorem  is  the one which g ives the title  to this section.

T heorem

With the sam e hypotheses as in the previous theorem  but, in addition, 
the requ irem ent that p = 0 be an isolated point o f the physical momentum 
spectrum , as w ell as D0Ft<p ( ? )  w here D0 is  any derivative with r e 
spect to the a"? a re  functions in 4 .

P ro o f •

Introduce now in x -s p a ce  the new variab les ,

x  = x i„0 > 5  = x i '# 0 "  x i„0  • 5 i  = x *0 "  x i 0O ( i  *0 )•

Si' "  x i' 0  " x i'( 0 » ( i 1 ^ i o ) ;  5 i a  = x i a  “  x i o  ( ®  ^  0 ) ;

= x i ' a ' - x i'0 ( «¥<•)■
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That is , single out one point with index in Y , xio0 and one with index in Y/, 
xj q̂. Introduce the f ir s t  as x and their d ifferen ce  as Then introduce 
the d iffe ren ces  o f the fir s t  points o f the c lu sters  in Y relative to Xj 0 and 
ca ll them f j ;  introduce the d iffe ren ces  o f the fir s t  points o f the clu sters  in 
Y ' re la tive  to Xj< 0 and ca ll them fj /. F inally, introduce the d ifferen ces b e 
tween the Xia and the fir s t  point of their clu sters  5ia =Xia - x j0, and the 
correspon d in g  d iffe ren ces  between the Xj/a/ and the f ir s t  point of their c lu s
te rs  Xj/q/ •

Denote by £  the fam ily  o f all ?i Then T-J is  a function o f 5 and?',
and <p a function o f x, £ . Define F ou rier  tran sform s by

{ j T j ) ( P , P )  = (2 n )'21 Tt (5,5) ,

O  <p)(p,P, P) = (2 tt)'2^ / . . . /  dxd 5d £e+i(Px+^ +-P% ( x , 5 , i ) .

H ere the P 's  are labelled  in the sam e way as the £ 's .  Incidentally, this 
form ula  d isplays what was already c lea r  from  fir s t  prin cip les: F-f  ̂ is  an 
in fin itely  d ifferentiab le  function o f at m ost polynom ial growth. Then

*T2 (a) = (2,r)2/ d P  dP O  2) (0, P, P) (3*  T* ) ( J- T* ) (P , P)

‘k i'k'

Up to this point in the p roo f there is  essentia lly  nothing but notation 
fo r  F ou rier -tra n sform s. Now com es the idea. N otice that ( "3" Tj ) (P, P) = 0 
unless P £  V+M (w here V ^  stands fo r  all v e cto rs  P  with Q2 > M2, <p°>0 and 
the bar denotes c lo su re ). This is  true because P is conjugate to the d if fe r 
ence 5 = x i'0o - x i0o • (Insert U(a, 1) just after A (xi|j0) in the vacuum expecta
tion  value, m ultiply by e ’ *0 ' “  and integrate. The resu lt has to be zero  ex 
cept when Q is  in the physica l spectrum  but has the effect f  ->S + a  so that 
P m ust be in the physica l sp e c tru m .) M is  the assum ed low er lim it on the 
m ass o f the system . The vacuum does not appear as an interm ediate state 
becau se  the vacuum  expectation values have been truncated. A full form al 
p ro o f o f this last intuitively obvious statem ent is  contained in (27). F urther
m ore  if  K is  the perm utation K (0 ,1 , . . . .  n) —̂ (i'o .. . .  i'j,, i0. . .  . ik)> K changes 
5 into £  without changing £  so  ( ^  T ^ ) (P , P) = 0 unless P e  VH Now define
(2> ¥) (p, P, P ) = h (P ) cp(p, P, T ? ) e J  where h is  infinitely d ifferentiable on vi*
and vanishes outside o f V+ . Then, c lea r ly

Frf  (a) = <  (a), F ^  (a) = 0 . (103)

Now the argument o f the preced in g  theorem  was made fo r  two perm utations,
I and J, but it would d iffer only in notation if ca rried  out fo r  J and K. Thus

lim  XN F ^  ( ? )  = 0 (104)
X —> «o
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under the sam e conditions described  in the preceding theorem . Those con 
ditions involve the points j, j', SL, t! and the sets Y and Y '. But if  the ?  have 
a configuration such that j, j', etc. are d ifferent, the conclusion is the same 
and th ere  are only a fin ite num ber o f p oss ib le  ch o ices  fo r  the j, j'.. . .  
Thus, whatever the configuration of the 5  (104) holds. Applying D0 to F 
is  equivalent to changing g>, so  the theorem  is  proved.

F or  the application to Haag co llis ion  theory one needs the preceding 
conclusion  but fo r  alm ost lo ca l fie ld s . Actually, this case  is  covered  by 
the p reced in g  argument i f  a change in notation is  m ade. W rite

Bj (x j) = U(Xj, 1) Aj ( j j )  U(xj, I ) -1

and ca ll x4 the fo rm e r  variab les  a,, and rep la ce  a by x. Then

F(x) = ( ! „ , B0 (xQ) B !(xx)------Bn (xn) ¥0 )

is  a specia l case  of the (untruncated) F 's  con sidered  before  with cp = S
• • ‘ ®  $n- The truncated vacuum  expectation values are defined with 

resp ect to the B 's  as in P art One, not as above with respect to the A 's , but 
one sees im m ediately  from  the above p roo f that the vacuum will be e lim i
nated equally w ell in the interm ediate states by this procedure.

C oro lla ry

The preced in g  theorem  is  a lso  true fo r  truncated vacuum expectation 
values of a lm ost lo ca l fie ld s  built out o f lo ca l fie ld s  (test functions again 
in ^ ) provided  the vacuum  is  an isolated  point of the spectrum .

2. 7. FINAL REMARKS ON THE H AAG -RU ELLE COLLISION THEORY

The preced in g  sections have explained how one can construct co llis ion  
states o f all the elem entary system s associated  with irredu cib le  rep resen 
tations o f the P oin care  group contained in U. A natural question is  then:
A re  the co llis ion  states uhique? The answer is  yes . Suppose that by ch oos
ing two different sets o f B 's , say B and ß , and carry in g  out the preceding 
constructions, one was led  to tw o states 't’ (t) and 4>(t). The argument which 
fo llow s Eq. (81) shows that they actually con verge  to the sam e "in " or "out" 
state. The argument goes just as b e fore , except that instead o f the term s 
with two operators not contributing because their tim e derivatives are zero , 
h ere it is  because the contributions o f <5 and $ cancel. Both ca ses  are 
covered  by the statement that there is  no contribution because the one-body 
prob lem  has been solved , assum ing the-one particle  states Bf¥0 and Bf¥0 
are n orm alized  in the sam e way. Thus, the H aag-R uelle C ollision  Theory 
w ill give a unique set o f  " in " and "ou t" fie ld s  and consequently a unique c o l
lis ion  m atrix .

These statem ents hold even if  Axiom  IV does not hold. Then, however, 
the S operator is  a unitary mapping o f out onto ,$2 jn which is undefined on 
those v e cto rs  of ̂ 2 which' are not in out. T here might be som e point in
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investigating (in the sp irit o f H eisen berg 's  elem entary particle  theory) theo
r ie s  fo r  which A xiom  IV does not hold.
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I. INTRODUCTORY REMARKS

One o f the last few  y e a rs ’ m ost im portant developm ents in theoretical 
ph ysics  is the recogn ition  that it is  useful to extend to com plex num bers the 
definition  dom ain o f in trin sica lly  rea l variab les , such as energy o r  angular 
m om entum . This leads one to review  many subjects which were considered 
to be c lo sed . It should not have su rp rised  m e, th ere fore , when D r. Salam 
asked m e to report, at this sem inar, on equations fo r  elem entary particles 
which are not believed  to exist in nature, such as p articles  with im aginary 
m ass. Even though the equations which d escr ib e  such pa rtic les  will play 
no ro le  in the theory  as long as the variab les  such as energy o r  angular m o
mentum have ph ysica lly  meaningful values, that is , as long as they are real, 
they m ay play a significant ro le  when the definition domain o f these variables 
is  extended.

I was, at one tim e, greatly  in terested  in establishing all linear equations 
which are invariant under the inhom ogeneous Lorentz group and much of 
what I w ill talk about orig inates from  this in terest. The inhomogeneous L o 
rentz group contains displacem ents in space and tim e in addition to Lorentz 
transform ations; it w ill be ca lled  P oin care  group a fter the mathem atician 
who f ir s t  becam e convinced o f the b asic  sign ificance o f this group fo r  physics. 
It turns out that the representations o f a group essentia lly  determ ine all 
lin ear equations which are invariant under the group in question and one is 
thus led  naturally to the theory  o f the representations o f the Poincare group. 
The term  "rep resen ta tion " w ill mean, throughout this a rticle , a group o f 
lin ear op era tors  which is hom om orphic to the group to be represented; the 
space o f  the v e c to rs  on which 'these op era tors  act is  a com plex Hilbert space, 
usually infinite d im ensional, which w ill be ca lled  representation  space.

Only som e o f  the representations o f the P oin care  group w ill be d is 
cu ssed : those which are irred u cib le  and unitary. The fir s t  restriction  means, 
in the dom ain o f  rea l m asses and spins, that only equations fo r  elem entary 
p a rtic le s  w ill be con sidered , and these only on the Schrödinger, that is not 
second quantized, le v e l. In the extended domain o f  the variab les it should 
mean that the R egge p o les  to be con sidered  are p rim itive but at the present 
tim e this point has not been fu lly  elucidated. Naturally, it would be desirable 
to con sid er  a lso  the second  quantized form  o f the equations,but I am notable 
to do th is . My excuse fo r  con siderin g  only unitary representations is s im i
la r : the non-unitary ones present com plications which have not yet been sur
mounted, even though D r. F ro issa rt  has made significant p rog ress  in their 
investigation.
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T here  is  one other resp ect in which m y d iscussion  will be lim ited: by 
the v ery  fact that the P o in care  group w ill be the basic group throughout. It 
would be desirab le  to con sid er equations which are invariant under one of 
the generalizations o f the P o in care  group, in particu lar equations invariant 
under the usual de Sitter group . H ow ever, the d octora l thesis o f T . Philips 
shows that even the interpretation  o f the rea l m a ss -re a l spin representations 
o f the usual de Sitter group encounters seriou s d ifficu lties and I want to 
avoid th ese . H ence, the d iscu ssion  w ill be concerned so le ly  with the Poincare 
group and alm ost so le ly  with the unitary irredu cib le  representations o f this, 
o r  the lin ea r equations which correspon d  to these.

The relation  between representations and equations o f m otion justifies a 
few  rem a rk s. In one sense, the representation  g ives much m ore inform ation 
than the equations o f m otion: w hereas the equations o f m otion, as ordinarily 
con ceived , g ive only the change o f  the state v ecto r  (o r  whatever ch aracter
izes  the instantaneous state o f the system ) with the passage o f tim e, and 
this d ire ct ly  only fo r  an in fin itesim al increm ent o f tim e, the representation 
g ives the change o f the state v e c to r  fo r  arb itrary  P oin care  transform ations, 
and fo r  finite ones as w ell as fo r  in fin itesim al on es. The tim e displacem ent, 
the e ffect o f which is  given by the equations o f m otion, is  only one specia l 
type o f  P oin care  tran sform ation s. Hence, the representation is m ore inT 
form ative than the equation o f m otion in two regards: because it gives the 
e ffect o f finite, rather than only o f in fin itesim al,transform ations, and be
cause it g ives the e ffect o f  a ll P oincare transform ations, not only o f tim e- 
d isp lacem ents. It m ay even happen that it is , on the basis o f the equation 
o f m otion alone, not p oss ib le  to determ ine without further assum ptions how 
the state v ecto r  changes under a proper L orentz transform ation . Thus, to 
mention a rather tr iv ia l exam ple, the D irac equation in empty space is in
variant under L orentz transform ations not only if  the four com ponents are 
con sidered  to be sp in ors, but also if they are considered to be sca la rs .

In another le s s  m athem atical but much m ore  suggestive sense, the 
equation o f m otion is much m ore  inform ative than the representation from  
which it a r is e s . The reason  is  that it invites the application of the methods 
o f second quantization and hence the replacem ent of the particle  by a quantum 
fie ld . Once this is  accom plished , one may be led by analogies to assumptions 
concern ing in teraction s. Without any knowledge o f its interactions, the p ic 
ture o f a p a rtic le  is  rather em pty. A ll these rem arks apply, fo r  the present, 
only to representations o r  equations which d escr ib e  p articles  which exist 
in som e sense in nature. It does not apply to ch a ra cteristics  o f Regge poles 
o r  anything s im ila r ; fo r  these the relation between representations and 
equations o f m otion (if such exist) is  much le s s  c le a r .

It should be m entioned, finally, that the relation o f representations to 
equations o f m otion is  not o n e -to -o n e . W e shall see severa l exam ples for 
th is; one o f the p rin cipa l ob jectives  o f these lectu res being the establishment 
o f a gen era l method to obtain one equation o f motion fo r  every  representa
tion . This equation o f m otion w ill, in som e ca ses , not be the com m on and 
w ell-know n one. H ow ever, one exam ple fo r  the lack  o f uniqueness o f the 
corresp on d en ce  between representation and equation o f m otion is  already 
known to a ll o f  us: the e lectrom agnetic fie ld  can be described  either by the 
s ca la r  and v ecto r  potentials, o r  by the e le c tr ic  and m agnetic fie ld s . The
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representation  is , how ever, the sam e fo r  both: Oj in the usual notation.
In fact, the representation  is  always uniquely determ ined by the properties 
o f an elem entary p a rtic le  because it m erely  ex p resses  the relation  between 
the d eccrip tion s o f the p a rtic le  by ob serv ers  using different but equivalent 
fram es o f re fe re n ce . In particu lar, the two fram es o f re feren ce  whose re la 
tion g ives  the equations o f m otion are at rest with respect to each other, but 
their tim e sca les  have d ifferent starting points.

II. THE UNITARY REPRESENTATIONS OF THE POINCARtf GROUP

One further general observation  w ill be useful fo r  the understanding of 
the connections which w ill form  the subject o f these le ctu res . This o b se r 
vation rela tes to the g rea ter  e ffectiven ess o f invariance considerations in 
quantum than in c la ss ica l theory . The reason  fo r  this greater effectiveness 
was spelled  out already by C .N . Yang: the states in quantum theory con 
stitute a lin ea r  m anifold  w hereas th ere  is  no s im ila r  stru ctu re  o f  the states 
in c la s s ic a l  m ech a n ics . H ow ever, it w ill be  u sefu l to pursue som ew hat m ore  
in deta il the way this d iffe ren ce  m an ifests it s e lf . W e shall ch oose  fo r  this 
a v e ry  s im p le  and e lem entary  exam ple in which only rotational sym m etry  
is  p resen t.

H am el, K lein  and N oether have shown how the con servation  law s fo r  
angular m om entum , fo r  instance, can be derived  in c la s s ic a l  m ech an ics 
d ire c t ly  fro m  the in varian ce  o f  the equations with resp ect to rota tion s. How
ev er , the con sid era tion s  leading fro m  the in variance to the con servation  
law s are  ra th er subtle, being based  on the p r in cip le  o f lea st action . If one 
just co n s id e rs  a p o ss ib le  c la s s ic a l  tra je c to ry , such as a p lanetary  orb it , 
an unsoph isticated  app lication  o f the in variance p rin cip le  on ly leads to the 
con clu sion  that th ere  are o th er s im ila r  o rb its , obtained fro m  the given orb it 
by a rota tion . T h is is  not a v ery  fru itfu l con clu s ion . In quantum theory , 
given  one o rb it , one can a lso  obtain other o rb its  by rotation . H ow ever, all 
the o rb its  obtained in this way form  a lin ea r m anifold  and one can se le ct  
fro m  th is m anifold  a lin ea r ly  independent set in te rm s o f which a ll the 
" o r b i t s "  can be ex p ressed  lin ea r ly . If one then su b jects  the m em b ers  o f 
the se le c te d  set to a rotation , and e x p re sse s  these rotated o rb its  lin early  
in te rm s  o f  the or ig in a lly  se le cted  set, one obtains at once a rep resen t
ation o f  the rotation  grou p .

W hen ca rry in g  out the p roced u re  just outlined, one o f two situations 
m ay be en coun tered . If starting with one o rb it , the o rb its  obtained by d if fe r 
ent rota tion s a re  a ll lin ea r ly  independent, no s ign ificant con clu sion  resu lts . 
The rep resen ta tion  obtained in this ca se  is  the infinite d im ensional s o -  
ca lled  reg u la r  represen tation  o f the rotation  group , but even with a detailed 
an a lysis it is  c le a r  that, in th is ca se , no s ign ificant con clu sion  con cern in g  
the p ro p e r tie s  o f the orb its  can be a rr iv ed  at. In fa ct , the situation is  v e ry  
m uch the sam e as in c la s s ic a l  th eory . The m ost in terestin g  and sign ificant 
con clu s ion s  con cern in g  the p ro p e rtie s  o f  the " o r b it s "  w ill resu lt i f  there 
is  on ly  a fin ite num ber o f  lin ea rly  independent states in te rm s o f which aH 
states obtained by rotation  can be e x p re sse d . In the w ell-know n ca se  when 
th is num ber is  1, a ll states are  sp h erica lly  sy m m etric  and the con clu sion s 
are usually  on ly  litt le  le s s  strik ing .
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L et us now rev iew  b r ie fly  a way in-w hich the represen tations o f the 
P o in ca re  group can be determ in ed . The p roced u re  has actually  been given 
by F roben iu s long b e fo re  the P o in ca re  group was known. Its application  
is  based  on the fa ct that the P o in ca re  group has an invariant subgroup, con 
sis tin g  o f  a ll d isp la cem en ts . M atters b ecom e  p a rticu la r ly  s im p le  because 
th is invariant subgroup is  abelian (com m u tative). The m athem atics which 
w ill be used  is  not r ig o ro u s  beca u se  m em bers  o f the continuous spectrum  
w ill be  treated  as if  they w ere  bona fide v e c to rs  in H ilbert sp a ce . H ow ever, 
the p roced u re  can  be ju stified  r ig orou s ly , p rin cip a lly  on the b a sis  o f  the 
investigation s o f  M autner and von Neumann.

L et us c o n s id e r  states which belong to irred u c ib le  represen tations o f 
the group  o f  d isp la cem en ts . S ince this group  is  abelian, the unitary ir re d u c 
ib le  rep resen ta tion s  are  on e -d im en sion a l. Denoting the d isp lacem ent v ecto r  
by a, its op e ra to r  by T  , th ere  w ill be "s ta te s "  | p, ? >  fo r  which

Ta |p,S > = e ' ip-a |p, £>  (2 .1 )

w here p .a  is  the L orentz s ca la r  p rod rct o f  the two v ectors  p and a :

p . a = p t a t - px a x - py a y - p z ^ j .  (2 .1a)

The reason  fo r  the apparently arb itrary  sign convention adopted in (2 .1 ) will 
b ecom e evident soon . It a lso  fo llow s from  the unitary nature o f the rep re 
sentation that the com ponents o f p must be rea l. O therw ise, T a would not 
be unitary. H ow ever, the existence  o f v e cto rs  fo r  which (2 .1 ) holds would- 
be r ig orou s ly  assured  only if  the com ponents o f  p w ere d iscre te  variab les.
A s we shall see at on ce , this is  not the case  and it fo llow s that the "v e cto rs "
| p, ? >  are not n orm alizab le . This is  the point where the derivation is  not 
r ig o rou s . The variab le  ? was introduced because it is  possib le  that there 
are severa l v e c to rs  which tran sform , under the operations o f the d isp lace
ment group, accord in g  to the representation  ( e ‘ lpa); the index ? distin
guishes these v e c to rs . It can be assum ed to be a d iscre te  variab le  but if 
there are in fin itely many v e cto rs  which belong to the (e 'ip-a ) representation, 
it w ill assum e infinitely many values. Naturally, we do not yet know fo r  
which fo u r -v e c to rs  p there are H ilbert v e cto rs  |p, ? >  , i . e . ,  which r e 
presentations (e "lp-a) o f the d isplacem ent subgroup o ccu r  in the Poincare 
group ’ s representation  which is  being analyzed. A s a m atter o f fact, this 
representation  is  not yet specified .

It w ill be  shown now that i f  a represen tation  o f  the P o in ca r6  group co n 
tains the rep resen ta tion  ( e ‘ ip-a ) o f  the d isp lacem en t subgroup, it a lso  co n 
tains a ll rep resen ta tion s (e " ip' a ) o f  this subgroup if  p ' = Lp can be obtained 
fr o m  p by a p ro p e r  L oren tz  tran sform ation  L . The represen tation  ( e ‘ lp- a ) 
is  contained in a rep resen ta tion  o f  the P o in ca r6  group if  there is  a v e c to r  
| p, £ > in the H ilbert space  o f  the la tter  fo r  which (2 .1 ) is  va lid . S im ilarly ; 
(e -iLp.a) i s contained in  the sam e represen tation  i f  there is  a v e c to r  fo r  w hicl
(2 .1 )  with p rep la ced  by p 1 = Lp is  v a lid . S ince the v e c to r  |.p, 5 > is  expectei 
to d e s c r ib e  a state with four-m om entum  p, one w ill expect that the operatio:
O l , w hich co rre sp o n d s  to the L oren tz  tran sform ation  L , w ill tran sform  
th is state into one with m om entum  p' = L p. H ence, one w ill expect that
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Ta (O l | p, ? > )  = e ' iLp-a O l | p, ? > . (2. 2)

T h is is  indeed the con sequ en ce  o f  the equation

Ta O L = 0 LT L-ia. (2 .3 )

T h is  equation e x p re s s e s  the fact that a L oren tz  tran sform ation  L fo llow ed  
by the d isp lacem en t a is  iden tica l to a d isp lacem en t by L "1a, fo llow ed  by 
the L oren tz  tran sform ation  L . If (2 . 3) is  applied to the v e c to r  | p, ? > ,  the 
le ft  side  w ill be id en tica l with the le ft  s ide o f (2 .2 ) .  The right side b ecom es

O lTl - i J p , ? > =  O L e -iP -^  |p, ? > =  e 'ip L' l a OL|P; ? > .

The secon d  m em b er  is  a con sequ ence  o f  (2 .1 )  as applied to the d isp la ce 
m ent L _1a, the la st m em b er  fo llow s becau se  the exponential is a n u m erica l 
fa c to r  and O l is  lin e a r . F u rth erm ore , it fo llow s  fr o m  the p ro p e rtie s  o f  the 
L oren tz  s ca la r  p rodu ct that

p. L _1a = L p . a (2 .4 )

so  that indeed, (2 .2 )  is  estab lish ed . This then p ro v e s  that if  the H ilbert 
space  o f a rep resen ta tion  o f the P o in ca re  group contains v e c to r s  | p, 5 y  
with four-m om entum  p, it a lso  contains v e c to r s  with a ll the m om entum  Lp, 
w here L  is  any L oren tz  tran sform ation . A cco rd in g  to (2 . 2), O l | p, ? is 
such a v e c to r .

S ince the | Lp, rj^>, fo r  a ll p o ss ib le  va lues o f r), fo rm  a com p lete  set 
o f  v e c to r s  w hich tra n s fo rm  under the d isp lacem en t group accord in g  to the 
rep resen ta tion  (e iLP-a ), one can conclude that

° l |p , ? >  = ^ ci) |Lp , r j> . (2 .5 )

The co e ff ic ie n ts  c n can depend on p, and L . We shall use on ly a sp ec ia l 
ca se  o f  (2 .5 )  to define what has com e  to be ca lled  the "litt le  g rou p ".

IH. THE L IT T L E  GROUP

W e have seen  that the fo u r -v e cto rs  p fo r  which there are H ilbert v e c to rs  
sa tisfy in g  (2 .1 )  fo rm  a set which is invariant under a ll p ro p e r  L oren tz  tran s
fo rm a tion s . In an irre d u c ib le  represen tation , all such v e c to rs  can be o b 
tained fr o m  a s in g le  one by applying a ll p o ss ib le  L orentz  tran sform ation s 
to it. H ence, the L oren tz  length p .p  o f  the m om enta is  the sam e fo r  a ll 
state v e c to r s  w hich are  p resen t in the represen tation  space  o f  an irred u cib le  
rep resen ta tion . A ltogeth er, one has to distinguish  s ix  qualitatively  d ifferen t 
ca se s .
1. p .p  = m 2> 0 , p t > 0. The corresp on d in g  represen tations d e scr ib e  the 
tra n sform a tion  p ro p e r tie s  o f rea l p a r t ic le s  with finite rest m a ss .
2. p .p  = 0, p t > 0. T h ese  represen tations r e fe r  to p a rtic le s  with z e ro  re st 
m a ss . The equations which co rresp on d  to som e o f these represen tations 
are  w ell-know n,but we sh a ll d is cu ss  a ll o f  them .
3. p .p  = m 2 < 0 ,  i . e . ,  p is  sp a ce -lik e , m im aginary . In th is ca se  pt can
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assu m e a rb itra r ily  la rg e  negative (a's w ell as positive) va lu es . It is  a x io 
m atic  that no p a rtic le  can ex ist which corresp on d s  to such a represen tatio i 
b eca u se , if  it ex isted , it could  tra n sfer  any amount o f en ergy  to a p a rtic le  
o f  c la s s  1 by going o v e r  into a state with su ffic ien tly  la rg e  negative pt. Nev< 
th e le ss , the rep resen ta tion s o f this c la ss  w ill be d escr ib ed  and equations 
o f  m otion  given  which co rresp on d  to these rep resen ta tion s . A ls o , som e o f 
the p ro p e r t ie s  w ill be given  which p a rtic le s  corresp on d in g  to these r e p re 
sentations would have, i f  they ex isted . This con fo rm s to the p rog ra m  giver 
in the f ir s t  section .
4. p .p  = 0, p t < 0. A gain , p t can assum e a rb itra r ily  la rg e  negative va lues. 
H ow ever, the represen tations ' o f  this c la ss  are sim ply  con jugate com plex  
to the rep resen ta tion s o f  c la s s  2 and w ill not be d iscu ssed  fu rth er.
5. p .p  = m 2 > 0, pt < 0. T hese  represen tations are conjugate com p lex  to 
the rep resen ta tion s  o f c la ss  1 and w ill not be d iscu ssed  fu rth er e ith er. Agai 
pt can assum e a rb itra r ily  la rg e  negative va lu es .
6. pt = = Py = p t = 0. A ll states would be d isp lacem ent in varian t. A gain, i
is  ax iom atic  that no p a r tic le s  with these tran sform ation  p ro p e rtie s  can 
ex ist .

The p reced in g  enum eration  g ives the p o ss ib le  m om entum  v e c to rs  p fo r  
which states j p, ? ex ist in the irred u c ib le  represen tation  in question . Th> 
tra n sform a tion  p ro p e r tie s  o f these states with resp ect to tran slations are 
given  by (2 .1 ) ; we shall now d iscu ss  th e ir  tran sform ation  p ro p e rtie s  with 
re sp e ct  to (hom ogeneous) L oren tz  tran sform ation s L . T h is  d is cu ss ion  w ill 
be based  on (2 . 5),

L e t  us se le c t  in every  ca se , except the last one which w ill be d is r e 
garded , fr o m  a ll p o ss ib le  m om entum  v e c to rs  a defin ite one which w ill be 
ca lled  p ° . In the ca se  o f c la ss  1, p° is  best chosen  to be p a ra lle l to the tim« 
a x is , in ca se  3, p a ra lle l to the z ax is. In ca se  2, it wiH be the v e c to r  with 
com ponents 1, 0, 0, 1. The ch o ice  o f p° is  a rb itra ry , but it is  u sefu l to ma! 
it in o r d e r  to fix  the ideas.

W e next define the " litt le  group" as the group o f  a ll L orentz  transform ; 
tion s  w hich lea v e  p° in va ria n t.

Lp» = p°. (3. 1)

The L  which sa tis fy  (3 .1 )  evidently  fo rm  a group and this group does not 
depend essen tia lly  on the a rb itra ry  ch o ice  o f p ° . If another m om entum  
pi = Lj^p0 had been  chosen , the tran sform ation s L x L L j1 which leave  it in 
variant w ould have fo rm ed  a group which is  isom orp h ic  to the group o f L 
which lea ve  p" invariant. H ow ever, with the preced in g  ch o ice  o f p°, it is 
c le a r  that in ca se  1 the little  group is the th ree -d im en sion a l rotation  group 
in ca se  3 the 2+1 d im ensional Lorentz group, i . e .  the group which lea ves  
the fo rm  t 2 - x2 - y2 invariant. In ca se  2, the group is  not quite so obvious. 
It c le a r ly  contains the rotations in the xy plane and, as w ill be seen  at once 
it a lso  con ta ins two sets  o f com m uting operations T| (a) and T  ̂ (ß) which 
fo rm , togeth er with the rotations in the xy plane, a group isom orp h ic  to the 
tw o-d im en sion a l E uclidean  group, i . e .  the group o f rotations and d isp lace  
m ents in the p lane. T £ {a) and T n (ß) are :
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T t (a) =

T „(ß ) =

+ 2&2 a 0 - h 2

a 1 0 -a

0 0 1 0

a 0 l  - h 2

+ i ß 2 0 ß - i ß 2

0 1 0 0

ß 0 1 -ß

i ß 2 0 ß i  - i ß 2

(3 .2 )

(3. 2a)

T he f ir s t  row  (and colum n) re fe r s  to the t com ponent, the second , third and 
la st to the x, y and z com pon en ts. No sim p le  argum ent is  known to this 
w r ite r  to show d ire c t ly  that the group o f L oren tz  tran sform ation s which 
lea v e  a null v e c to r  invariant is  isom orp h ic  to the tw o-d im en sion a l E uclidean 
group , d e s ira b le  as it would be to have such an argum ent. C lea r ly , there 
is  no plane in the fo u r-sp a ce  o f  m om enta in which these tran sform ation s 
cou ld  be in terpreted  d ire c t ly  as d isp lacem en ts and rotations becau se  a ll 
tra n sform a tion s  con s id ered  are  h om ogeneous. The s im p lest g eom etr ica l 
p ictu re  known to m e u ses  two v e c to r s  p £ and p i, o f  length -1  and orthogonal 
to each oth er as w e ll as to p°. T hese  v e c to r s  could  be unit v e c to rs  p a ra lle l 
to the x and y a x e s . The Tg(a)then adds ffp °top 5, whereas T̂  (ß) adds ßp° to the 
p i .

In sum m ary, then, the little  groups fo r  the firs t  three cases are 
1.. p .p  = m 2> 0, pt > 0: the th ree-d im en sion a l rotation group
2. p .p  = 0, pt > 0: the tw o-d im ensional Euclidean group
3. p .p  = m 2 < 0: the 2+1 d im ensional Lorentz group.
The little  groups fo r  ca ses  4 and 5 are the sam e as fo r  2 and 1, but we shall 
not be con cern ed  with these ca se s .

The sign ifican ce  o f the operations o f the little  group becom es evident 
if  (2 . 5) is  sp ecia lized  to p = p° and L a m em ber o f the little  group. One then 
has

O l p" ,5 >-I D (L ) ,£ |p*,n >. (3 .3 )

The dependence o f the c n on the rem aining variab les, £ and L, is made ex 
p lic it  in (3, 3). The L  is , how ever, restr icted  to m em bers o f the little group. 
One now con clu des in the usual way, by applying another operation O ^of 
the little  group to (3 .3 ) , that the coe ffic ien ts  D(L)nCform  a representation 
o f  the little  group . This representation  w ill be unitary and irredu cib le  if 
the representation  o f the P o in care  group which we are analyzing is unitary 
and irred u cib le . It can be shown, further, that all the coefficien ts  c,, in (2 .5 ) 
are essen tia lly  determ ined once the D(L) are given. Hence, the unitary i r 
redu cib le  representations o f the P oin care  group are characterized  by two 
entities: (a) the set o f  mom entum  v ecto rs  which can be obtained from  a single
m om entum  v e c to r  p° by applying to it all p rop er Lorentz transform ations 
and (b) an irred u cib le  unitary representation  o f the little group, i . e .  the
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group o f  p rop er  L orentz  transform ations which leave p° invariant. We shall 
take up the three ca ses  o f  the preceding section  separately.

IV . INFINITESIMAL AND CASIMIR OPERATORS

The in fin itesim al op era tors  o f a unitary representation are skew h er- 
m itean; they becom e herm itean when m ultiplied by i and correspond  to 
con served  quantities. B ecause o f  (2 .1 ), the in fin itesim al operators fo r  a 
d isp lacem ent p a ra lle l to the t, x , y , z axes are -ip t , ipx, ipy and ipz. Hence, 
Pt. -Px> -Py> - p z are con served  quantities; they are the covariant com po
nents o f the m om entum . The covariant com ponents o f the angular momentum 
ten sor  w ill be denoted by M y  = -M ^ . The com m utation relations are, then.

and

^kl> ^mn.

= 0  M k*> Pm = K ftm Pk -  SkmPf) (4 - D

^(Sfim^kn " Skm^fin *  Skn ^fim “ £>Cn ^km^

where g is  the m etr ic  ten sor, g tt = - g xx = - g yy = - g zz = 1, all o th e rco m p o - 
nents o f g vanishing.

The sign ifican ce  o f the in fin itesim al op era tors  in the present context 
d er ives  from  the fact that the equation o f m otion g ives the change o f the 
state v e c to r  fo r  an in fin itesim al d isplacem ent o f tim e. Hence, the equation 
o f m otion w ill be  an equation which perm its the calcu lation  o f the in fin itesi
m al op era tor  fo r  such a d isp lacem ent.

Functions o f  the in fin itesim al operators which com m ute with all in
fin itesim al op era tors  — such functions are ca lled  C asim ir operators — 
com m ute with a ll op era tors  o f  the representation. These are, after all, ex
ponentials, and products o f exponentials, o f  the in fin itesim al operators . 
Each C asim ir op era tor  o f an irred u cib le  representation  must be equivalent 
with m ultip lication  by a num ber, at least i f  the C asim ir operator in question 
is  herm itean. In other w ords, a ll v ectors  in the representation space o f an 
irred u cib le  representation  must be a ch a ra cteristic  v e cto r  o f every  herm ite
an C asim ir op era tor  and the correspon din g  ch a ra cter is t ic  value can depend only 
on the C a sim ir  op era tor  and the irredu cib le  representation, not on the vector  
in the representation  sp ace . In fact, the v e cto rs  which belong to a given 
ch a ra cte r is t ic  value o f  a C a sim ir  op era tor fo rm  an invariant subspace and 
the only non-em pty invariant subspace o f an irred u cib le  representation is  the 
whole representation  sp ace .

It fo llow s that the irred u cib le  representations o f any group can be char
acterized , at lea st partia lly , by the values o f  the C asim ir operators fo r  the 
representation  in question, i . e .  by the num bers with which the C asim ir 
op era tors  m ultiply the v e c to rs  in the representation  space o f the irreducible 
representation  in question . The P oin care  group has two C asim ir operators. 
One o f  these was im p lic itly  determ ined b e fo re : it d escr ib es  the m anifold o f 
m om enta
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P = m 2 = p. p (4 .2 )

by the com m on  length o f the mom entum v e cto rs  o f the states o f the rep re 
sentation. The second  C a sim ir  op era tor  is  Lubanski's invariant; this char
a c te r ize s  the representation  o f the little  group. It is  the square o f  the total 
angular m om entum  in the coordinate system  in which the p article  is at rest, 
m ultiplied with the square o f  the m a ss . M athem atically, Lubanski’ s in
variant is  the negative L orentz square o f a v e c to r  w

W = -w .w . (4 .3 )

The contravariant com ponents o f this v e c to r  are

wk = i ek£rnnp £ Mmn, (4 .3a )

e Mmn being the fu lly  antisym m etric ten sor and (3 .3a ) im plying summation 
o f the repeated in d ices .

W e shall not use the C asim ir op era tors  to derive  the various irredu cib le  
representations o f the P o in care  group . H owever, having derived  the i r 
redu cib le  representations, we shall ca lcu late the C asim ir operators and 
ascerta in  the extent to which they ch a ra cter ize  the representation o r  can 
even rep la ce  them .

V . CASE OF POSITIVE REST MASS

The resu lts  a re , in this ca se , w ell known. The irred u cib le  represen t
ations o f the little  group, which is  the th ree-d im en sion a l rotation group in 
this ca se , can be ch aracterized  by a quantity s which can assum e the values 
0» 2 . 1» 2 » • ••» it is  ca lled  the spin . The dim ension o f the representations 
is  2s+l so  that? can assum e 2s+l values and there are 2 s+1 states with the sam e 
four-m om entum . The representation  with p. p = m 2 = P and the s representation 
o f the little  group can be denoted byP , .E quations o f m otion fo r  the particles 
which belong to the representation  Ps have also been given; in fact, there are 
severa l fo rm s fo r  these equations. It should be noted, however, that the solu 
tions o f these equations do not all belong to the representation Ps . They all
have negative energy solutions which belong to the conjugate com plex of 
Ps, i . e .  to the fifth c la ss  o f the section  HI. These spurious solutions are 
then elim inated, o r  rather reinterpreted , when the transition  to the field 
theory  is  undertaken.

The fir s t  C a sim ir  invariant is  m 2, the second one, W, can easily  be 
calculated fo r  one o f the states | p°, ? y . F o r  these, p x = Py = pz = 0, pt = m ,
so that wx = inMyj, w y = m M a  wz = m M Xy and

W = m 2s (s + l) ,  (5. 1)

so that indeed P  and W su ffice  to ch aracterize  the representations with real 
re st m ass, except that fo r  the two conjugate com plex  representations — one 
o f c la ss  1 and the corresponding  one o f c la ss  5 — the C asim ir operators
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have the sam e value. It was m entioned b e fore  that the equations o f motion 
a lso  perm it the v e c to rs  o f these two representation  spaces.

The equations fo r  positive  rest m ass have been discussed in the lite r 
ature repeatedly and w ill not be given in detail.

V I. CASE OF ZERO REST MASS

A . The representations o f the little  group.
The representations o f the little  group, that is the tw o-dim ensional

E uclidean group, are not as com m only known as those o f the three-d im en -
sional rotation group . They could be easily  determ ined, however, by the 
m ethod used fo r  the P o in ca re  group. The operators o f displacem ent, 
Tg(a) Tv{ß) = T n(ß) T j(a ), fo rm  an abelian invariant subgroup and one can 
ch oose  "v e c to r s "  in the space o f the Euclidean group ’ s representation which 
belong to an irred u cib le  representation  o f this invariant subgroup. If these 
are denoted by ] \ti', one has

T s (a) | |tt\ tt">=  e - ^ l  \w', ff" > ,  (6 .1a)

T „(ß ) | | jr ', tt" > =  e - ‘ »’ ß[ | T r * " > .  (6.1b)

It is  good to rem em ber that the "d isp lacem en ts" T| and T ,,a re  not d isp lace
m ents in any ph ysica l space, th eir  m ost visualizable interpretation in term s 
o f  ph ysica l quantities being given after equations (3 .2 ) . S im ilarly, the re 
presentation  space is  not a physica l space but the space o f the coordinate 
axes which w ere denoted b e fo re  by 5 (see (3 .3 )) . The argument proceeds from  
th is point just as in the case  o f the P oin care  group but is  s im pler because 
the group is much m ore  sim ple . The p oss ib le  values o f W , n") can all be 
obtained by an orthogonal transform ation  from  one such tw o-dim ensional 
v e cto r , i . e . , in an irred u cib le  representation  only such | | x 1, i r " y occu r  fo r  
which ir ' 2 + w" 2 = S 2 has a fixed value.

We shall not fo llow  this method but use the sam e one which w ill be used 
a lso  to determ ine the representations o f the little  group in the case o f im agi
nary rest m a ss . This m ethod is based on the solution o f the commutation 
relations o f the in fin itesim al op era tors . Since Garding’ s construction  o f an 
everyw here dense set o f v e c to rs  in representation  space to which all infini
tesim a l op era tors  can be applied, this is  entirely  legitim ate. The only d is 
advantage o f  this m ethod, as com pared  with the usual one, is,that it gives 
only the in fin itesim al op era tors , not those fo r  the actual group elem ents. 
H ow ever, the determ ination  o f  the in fin itesim al operators w ill su ffice for 
our pu rposes.

The in fin itesim al op era tors  o f the little  group are M*y, and, as can be 
seen  from  (3 .2 ) by setting a and ß infinitely sm all, w' = M zx- M tx and 
jr" =Mzy - M ty. The com m unication  relations between these operators are
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The ch a ra cter is t ic  values o f M xy can be either integer, o r  h a lf-in teger. In 
either ca se , these are d is cre te  num bers so that one can assum e a form  of 
the representation  in which M Xy is  diagonal. Let us denote the diagonal e le 
m ents by m a; the aß m atrix  elem ents o f the second and third equations of 
(6 . 2) are then

(m a - m ß)?r'aß= iJr"a8j (n^ - n o ß )/^  = - i f f^ . (6 .3 )

One easily  concludes that 7r'aß = ir'äß = 0 unless | ma - mg| =’ 1, that is , if  one 
arranges the diagonal elem ents o f M Xyin  increasing  o rd er , both jr' and jr" 
have non-vanishing m atrix  elem ents only between consecutive values o f the 
diagonal elem ents o f M xy One can then tran sform  all in fin itesim al elem ents 
by a unitary diagonal m atrix  in such a way that the m atrix elem ents o f ff' 
which are above the diagonal becom e rea l. Since ir' is  herm itean, all its 
m atrix  elem ents w ill then be rea l w hereas the m atrix  elem ents o f tT1""will be 
all im aginary. The f ir s t  o f the equations (6. 2) then shows that all the non
vanishing m atrix  elem ents o f tr’ are equal. Except fo r  this last point, the 
situation rem inds one o f the representations o f the rotation group in the 
form  in which M xy is diagonal.

Two ca ses  have to be distinguished now. These are the analogues o f the 
six  ca ses  encountered in Section III fo r  the P oin care  group. If all the m atrix 
elem ents o f jr' are ze ro , the sam e holds fo r  n " . In these representations 
the unit elem ent corresp on d s.to  a ll the "d isp lacem en ts" Tg(a) T,,(ß) and the 
representation  is  faithful only fo r  the fa cto r  group o f this representation, 
i . e .  the tw o-d im ensional rotation group . The representation can be i r 
reducible  only if  it is  on e-d im ensiona l. It coord inates to a rotation by 0 in 
the xy plane the m atrix  (e ‘s0 ) where s can be an integer o r  a half integer, 
positive, negative o r  ze ro . T hese representations are denoted by 0S; they 
are the w ell-know n representations associated  with a null-m ass Klein- 
Gordon p a rtic le  (s = 0), neutrino o f positive  o r  negative ch irality (s = ±£), 
a right o r  left c ir cu la r  p olarized  light quantum (s = +1). The quantity | s| 
is  ca lled  the spin o f the p a rtic le . Both C asim ir invariants P and W vanish 
so  that they cannot be used to distinguish these representations. Since the 
representations ofrthe little  group are one-d im ensional, there is  only one 
state with any definite m om entum ; the doubling o f the num ber o f states for  
s f  0 is  a resu lt o f re fle ction  sym m etries . These representations have been 
adequately d iscu ssed  in the litera tu re .

The non -sin gu lar ca se , in which it1 and it" do not vanish, is le s s  well 
known. The non-vanishing elem ents o f 7r ' w ill be denoted by so  that it’ 
and it"  are  given by

. . . 0 1„2Ü 0 0 . . . . . .  0 ÜE 0 0 . . .

. . . u2G 0 2Ü 0 . . .
tl _ . . .  -H e 0 0 . . .

0 1^22 0 1„2Ü • • ♦
, 7T “ . . .  0 -iiE 0 (I] 

•1—1 
HPJ

0 0 1 „  2£ 0 . . .  0 0 -ÜE 0 . . .

(6 . 4 )
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3 can be assum ed to be positive because its sign can be changed by trans
form in g  a ll in fin itesim al elem ents with a diagonal m atrix whose diagonal 
elem ents are , alternately, 1 and -1 . C learly , these representations of the 
little  group are infinite d im ensional; they can be characterized  by the C asi
m ir  op era tor  ir'2 + it"2 = H 2 o f the tw o-d im ensional Euclidean group. How
ev er , this invariant does not ch aracterize  them com pletely : the diagonal 
elem ents o f  M Xy can be either the integers . . .  -2 , -1 , 0, 1, 2, . . . ,  o r  the 
half in tegers . . .  -§ ,  |, | , . . .  . I n  the fo rm e r  case , the representation
is  single valued, in the latter ca se  two valued. A s far as representations 
o f the tw o-d im ensional Euclidean group are concerned, the characteristic  
values o f M xy could be any arithm etic s e r ie s  with d ifference 1. However, 
unless these arithm etic se r ie s  consist either o f the integers, o r  o f the half 
in tegers , the representation  o f the Euclidean group w ill be m ore than two 
valued so that no one o r  two valued representation  o f the P oincare group 
can be constructed  from  these representations o f the little  group. There is 
a th eorem  accord in g  to which all representations up to a factor of the 
P o in ca re  group can be made one o r  two valued by multiplying the operators 
o f  the representation  by suitable fa c t o r s . Hence, the many valued rep re 
sentations are o f  no in terest.

Since the ch a ra cter is t ic  value o f the op era tor M Xy, fo r  a state in which 
the m om entum  v e c to r  is in the tz plane, can extend to infinity, these re 
presentations are a lso  ca lled  "infin ite spin" representations. The values 
o f the C a sim ir  op era tors  P and W are 0 and H2. The single-valued rep re 
sentation, 0 (H ), is  not distinguished from  the two-valued representation 
0 '( 3 )  by the values o f the C asim ir op era tors .

N um erous argum ents can be adduced to show that no real p articles  can 
ex ist which would tran sform  accord ing  to the representation 0(H) o r  0 '(H ). 
The sim p lest o f these argum ents is  that the heat capacity of vacuum due 
to the p oss ib ility  o f the form ation  o f p a rtic les , o r  o f pa irs of p articles , is 
p roportion a l to the num ber o f polarizations of the particle  in question. This 
num ber is infinite fo r  p a rtic les  with one o f the representations 0(H) o r  
O' (H ) becau se the representation  o f the little  group is  infinite dim ensional. 
H ence, the m ere  p oss ib ility  o f the existence o f any o f these particles  would 
g ive an infinite heat capacity  to vacuum .

B. Equations

The equations fo r  the w ell-know n zero  m ass cases  0S are adequately 
d iscu ssed  in the litera tu re . Again, all known equations perm it not only solu 
tions which belong to the representation  0S, but also solutions which belong 
to the conjugate com plex  o f 0S. These are the negative energy solutions which 
are then elim inated o r  rein terpreted  in the second quantized form  o f the 
th eory . H ow ever, equations fo r  the 0(H) and 01 ( H) cases  w ere obtained only 
a fter a gen era l p rocedu re  fo r  obtaining equations from  representations was 
dev ised . This w ill be describ ed  next and illustrated also on one o f the ea rlier , 
w ell established ca s e s . It should be admitted, though, that the procedure to 
be d escr ib ed  can be used only in conjunction with single valued representa
tions. The reason  fo r  this w ill be evident at on ce . If one wants to derive 
s im ila r  equations fo r  the two valued representations, one has to use a space 
appropriate fo r  these representations: a tw o-dim ensional com plex space
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in which the two valued representations o f the Lorentz group are isom orphic 
to unim odular m a tr ices . H ow ever, this w ill not be spelled out in detail.

The term  "equation fo r  a representation" is not c lea r ly  defined and, 
in fact, we have seen that severa l equations may correspond  to the sam e 
representation . The quantity to which the equation applies w ill be called 
wave function; it m ay have one o r  m ore  com ponents. The wave functions 
which satisfy  the equation, o r  equations, should transform , under the opera 
tions o f  the P o in ca re  group, accord in g  to the representation  in question, 
but this condition  does not yet determ ine the equation, not even the v a r i
ables on which the wave function depends. It is  always p ossib le , fo r  instance, 
to introduce extraneous, that is  unnecessary , variab les and then neutralize 
these by equations as a consequence o f which the wave function is either 
independent o f these u nnecessary  variab les , o r  depends on them only in a 
tr iv ia l fashion. We shall postulate, how ever, that the variab les be of such 
a nature that they c le a r ly  indicate how the wave function transform s under 
the operations o f the P o in care  group. This means that the variables are 
either the com ponents o f a four v e c to r  x, o r  o f  the d ifferen ce  o f two v ectors . 
A  fou r v e c to r  x goes ov er , under a d isplacem ent by a, into x+a, under a 
L orentz transform ation  L into L x . The d ifferen ce  o f  two v ectors  is invari
ant under d isp lacem ents and tran sform s like a four vecto r  under Lorentz 
tran sform ation s. Since I do not know a better expression  fo r  vectors  of this 
nature, I w ill ca ll them d ifferen ce  v e c to rs . The position  v ecto r  is  an ex 
am ple fo r  the fir s t  ca se  and one is  indeed inclined to interpret the com po
nents o f a v e c to r  which o ccu rs  in a wave equation as the position  vector . 
This m ay o r  m ay not be ju stified? The mom entum v ecto r  is  a d ifference 
v e c to r . It is  because o f this restr iction  o f the variab les which are admitted 
that the equations w ill always correspon d  to single valued representations.

We shall determ ine next the num ber o f v ectors  and d ifferen ce vectors  
which are needed as variab les  o f the wave function. One w ill be sure to have 
introduced enough variab les  into the wave function only if every  Poincare 
transform ation  changes the set o f values o f the variab les . If this is not the 
ca se , som e P oin ca re  transform ations w ill n ecessa r ily  leave the wave func
tion unchanged, w hereas it m ay follow  from  the representation that the wave 
function is  changed by the transform ation  in question. Hence, the variables 
should be able to d escr ib e  com plete ly  a fram e o f re feren ce . A fram e o f r e f
eren ce  can be given by an ord inary  v e c to r  which d escr ib es  the origin  of 
the coordinate system , and fou r d ifferen ce  v ecto rs  which give the direction  
o f  the four coordinate axes. T hese v e cto rs  have, together, twenty com 
ponents — su rely  too many variab les, but it w ill not be difficu lt to elim inate 
the u nnecessary  ones by restr ictin g  the variab ility  domain o f som e and by 
pointing out that the wave function is  independent o f the oth ers. Neverthe
le s s , we do not want to go too fa r  with such an elim ination because the final 
variab les  should be quadruplets o f  v e cto r  com ponents.

L et us con sid er fir s t  the d ifferen ce  v e c to rs . One o f these may be iden
tified  with the m om entum  v e c to r  and it is  convenient, then, to give it the 
length o f the m om entum  v e c to r . This is purely a m atter o f convenience,

* In a recent article,(Dubna report P 939), M.I. Shirokov criticizes the replacement of the variables 
of the wave equationby other position operators, as proposed byT.D.Newton and the present writer. 
Unfortunately, his considerations contain a serious error.
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giving the final equations a slightly s im p ler  form ; the fram e o f re ference 
could be sp ecified  a lso  if a ll the d ifferen ce  v e cto rs  w ere norm alized  in 
som e other fashion . The other d ifferen ce  v ecto rs  can be assum ed to be 
m utually orthogonal, orthogonal to the momentum vector , and o f length 1 
o r  -1 , w hichever is  p oss ib le . Since these conditions com pletely  specify  the 
last d ifferen ce  v e c to r  in term s o f the firs t  three, the com ponents o f this 
are  su re ly  u nnecessary  variab les  and can be om itted. Even the third d iffe r 
ence v e c to r  contributes only one independent variable — since it is  norm al
ized  and is  perpendicu lar to two other v e c to rs . It turns out, although this 
is  not evident at this point, that it is  also "u n n ecessary", i . e . ,  its om ission  
does not autom atically entail the invariance o f a function o f the remaining 
va ria b les  under a P o in care  transform ation  under which it should not be in
variant. H ence, we are le ft with two d ifferen ce  v e cto rs , one o f them p. The 
other w ill be denoted by g ; its condition o f norm alization  and perpendicu
la r ity  to p give the wave equations

(p. p)ip = m2i£ , (6.5)

( g . ? ¥  = - 0 ,  (6-6)

(p . f  V  = 0. (6. 7)

At this point, ip depends on the eight com ponents o f two d ifferen ce vectors , 
p and g, and the fou r com ponents o f a norm al v ecto r  which will be denoted 
by x and which w ill perm it ijj to change under d isp lacem ents. The equations 
(6 .5 ), (6 .6 ), (6 .7 ) are com m on to the equations o f a ll representations; the 
rem aining equations with one exception  w ill be ch a racteristic  of the rep re 
sentation accord in g  to which the solutions o f the equation should transform . 
O ur rem aining task is , th ere fore , to exp ress the equations o f the rep re 
sentation in term s o f  the variation  o f the wave function. We shall ca rry  
this out in detail at this point fo r  only two ca ses : the K lein -G ordon equation 
fo r  a finite m ass Po, and the ca se  of present in terest 0(H).

The f ir s t  representation  equation, still com m on to all representations, 
is  (2 .1 ) . A ccord in g  to this, an in fin itesim al displacem ent by ha changes 
the state v e c to r  by a fa cto r  1 - ih p .a . H ence, if  we use a v ecto r  notation 
fo r  the variab les  o f ip

0(x  + h a , p ,? )  = (1 - ihp .a) (x, p ,| ) (6 .8 )

o r , s in ce  this is  valid  fo r  a ll a,

-| ^ -. = - i p ^ .  (6 .9 )
o Xk

It fo llow s from  (6 . 9) that the com ponents o f  x  are "unnecessary  v a ria b les". 
If ip is  given  as function o f  p and 5 fo r  one v e c to r  x, say x=0, it is  deter
m ined by (6. 9) fo r  all other x . One has

^(x, p, |) = e ' ip-x^(0, p ,| ) . (6 .10)

H ence, ip can be con sidered  to depend only on p and f .
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A lternately , one can integrate (6 .10 ) ov er  p and obtain a function of x 
and f  only:

F rom  $ (x , 5), the orig in a l ^ (x , p, 5) can be recovered  by F ou rier  inversion,

The relation  between ^ (0 , p, 5 ) = ^ ( p , f )  and $ (x ,5) is ,excep t fo r  a p ro p o r 
tionality  factor, the usual one. It fo llow s from  (6 .5 ) and (6. 7) that ip (x, p,£) 
contains the fa ctors  6 (p .p  - m 2) and 6 (p .f )  (as w ell as 6 ( 5 . 5  + !))> but 
these do not in terfere  with the integrations in (6 .1 1 ). It fo llow s, however, 
from  these equations fo r^  that

The relation  betw een ^(p, 5 ) and $  (x, 5 ) is  so sim ple that it makes little 
d ifferen ce  which o f these wave functions one u ses. In the present note 
the m om entum  space representation , tp( p , f ), w ill be p re fe rred .

L et us now con sid er  a representation  with finite rest m ass. Equation
(6 .7 ) re s tr ic ts  5 to a th ree-d im en sion a l sp a ce -lik e  m anifold which is  p e r 
pendicu lar to p. In particu lar, i f  p = p°, i . e . ,  is  para lle l to the tim e axis, 
5t' = 0 and (6. 6) fu rther re s tr ic ts  the spatial part o f 5 to the unit sphere,
5x + ?y + ? !  = 1. It = 0. If we apply an elem ent o f the little group to the 
two v e cto rs  p °an d  5 , the fo rm e r  w ill rem ain  unchanged, the latter point 
to another point o f the unit sph ere. H ow ever, if  the representation is Po, 
the representation  o f the little  group is  the identical representation, tp has 
the sam e value fo r  any two positions which can be transform ed into each 
other by an elem ent o f the little  group . Since the little  group is  the group of 
a ll th ree-d im en sion a l rotations, tp has the sam e value no m atter to which 
point o f the unit sphere 5 po in ts . It fo llow s that ip is independent o f 5 within 
the dom ain o f  this variab le , as restricted  by (6 .6 ) and (6. 7). Hence, 5 is 
an u nnecessary  variab le  in this ca se  and can be dropped. Thus, fo r  the 
representation  Po, the wave function depends only on p and obeys the single 
equation (6 .5 ) . T h is, o r  rather the F ou rier  tran sform  o f this, is  theusual 
K lein -G ordon  equation so that our proced u re  led , in this case , to the usual 
equation.

It would be quite interesting to derive  the equations fo r  the other r e 
presentations Ps , and also fo r  Os . Instead, we proceed  at once to 0(H). In 
this ca se , (6 .6 ) and (6 .7 ) re s tr ic t  the variab les f  to a cy lin d er-lik e  stru c
ture the axis o f which is p. At f t = 0, the spatial com ponents o f f  are re 
stricted  to a unit c ir c le  in the plane which is perpendicular to the d irection  
o f  the spatial part o f p. If we denote by 5 ' and 5“ two perpendicular purely 
spatial v e c to rs  ( i . e . ,  whose t com ponent is  0) which are orthogonal to p, 
the gen era l purely  spatial f  v e cto r  w ill be cos  0 + f "  s in 0 . The other 5

e ' ip x d4p. (6 .11)

ip(x, p ,5 ) = $ ( 0 , p ,5 ) e nP x = (2tt)‘ 2 /d V  ^ (x 1, 5 ) e ip-(x "x) . (6 .11a)

(6 .5a)

9 *
= °-

(6 .7a)
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v e cto rs  w hich,are consistent with (6. 6) and (6. 7) can be obtained by adding 
to one o f the purely  spatial f  v ectors  an arb itrary  multiple o f p. This, then, 
fo rm s the aforem entioned cy lin d er-lik e  structure. Since p is orthogonal 
to itself, the v e cto rs  just obtained are a lso orthogonal to p . It follow s sim i
la r ly  that the length o f a ll v e cto rs  g1 cos  6 + f "  sin0 + cp is -1 .

We yet have to exp ress the condition that the representation o f the little 
group is  given by (6 .4 ) so that W = S 2. In o rd er  to express this condition, 
we re ca ll that the in fin itesim al operators o f the Lorentz transform ations 
o f  the wave function are

M m n - i(pm 0  pn “ Pn 0  pm"*" q gn " Cn g"|m) • (6 .1 2 )

Both p and £ a re  v e c to r s , hence both change upon a Lorentz transform ation. 
On the other hand, (6. 9) shows that the in fin itesim al operator o f d isp lace
ment is  sim ply  m ultip lication  by - ip . Hence, the wk o f (4. 3a) will have two 
types o f  term s: those arising  from  the fir s t  two term s o f (6 .12 ), involving 
only p, and those arising  from  the last two term s. However, because of 
the antisym m etry o f  the e, all the term s vanish which involve only the p. 
This is natural since a ll w vanish if there is  no spin variable as in the case 
o f the representation  Po. H ence, we have

W k = i i  e kimn( _ ± _  5m |n)p£

= i ektan- ^ r  Cmft- <6 1 3 )

If one now ca lcu lates W

W = -w* wk = imps ? m' PJ' (6 .14)

one can make use o f the identity

^kEmn - _ figji ( 6mmi6nni- 6tnn‘ ^nm') ~ ( ^m' n ^ n'f - ^m'c^n'n)

- ^i'n ( n̂'m ” ^m' n’ t ) • (6 15)

If one in serts  th is into (6 .14) and applies both sides to ip, the first two term s 
give ze ro  because both pl pe ijj and p£ \jj vanish. Hence one can set in any 
sca la r  product:

One can now push the a cro ss  the 9 /9  and obtain using again (6. 5), 
(6 . 7), and also (6. 6)
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(6. 16)

where

(6. 16a)

It now fo llow s from  W (// = H 2 ip that the linear space of the \p can be decom 
posed  into two su bspaces. In one o f these subspaces

in the oth er subspace (6 .1 7 ) holds with the opposite sign. Evidently, both 
subspaces are re la tiv istica lly  invariant — and also equivalent as the rem ark 
a fter (6 .4 ) show s. Hence, we may adopt as w ell (6 .17 ) as the last equation 
fo r  \p (p, f ) .  It determ ines the variation  o f f  along the lines in ? space which 
are paraU el to p. We re ca ll that | is confined to a cy lin d er-lik e  structure 
the axis o f  which is  para lle l to p . It fo llow s that tp can be free ly  chosen only 
on a line around this cy linder, fo r  instance on the line |t = 0. This is , as 
was a lso  m entioned b e fo re , a unit c ir c le  in the plane perpendicu lar to the 
d irection  o f  the spatial part o f  p. The reason  why tp is  defined not only on this 
c ir c le  — where it can be chosen a rb itra rily  — but all over  the cylinder is, 
that the re la tiv istic  invariance is m anifest only i f  the variab les o f f  are 
restr icted  only in a re la tiv istica lly  invariant fashion . This is done by (6 .6) 
and (6 . 7). On the con trary , (6. 5) is  m ore  prop erly  an equation o f m otion.

T here are altogether fou r equations fo r  ^ (p , f ) :  (6 .5 ) with m=0, (6 .6 ),
(6 .7 ) and (6 .1 7 ). The com m on  solutions o f these equations actually give two 
invariant lin ear m anifolds: the positive  energy solutions belong to 0( E ), the 
negative energy solutions to the conjugate com plex  o f 0( 3 ) .  These can be 
obtained from  the positive  energy solution by com plex  conjugation and r e 
p lacem ent o f $ by - f  . It is  o f  in terest to apply the com patibility cr iterion  
to the fou r equations fo r  \p which postulates that the com m utator o f the 
op era tors  o f any two o f them shall vanish if  applied to and that this shall 
be a consequence o f the orig in a l equations. Evidently, (6. 5), (6 .6 ) and (6 .7 ) 
com m ute so  that these do not-lead to any condition. However, the com m uta
to r  o f (6 .6 ) and (6 .1 7 ) g ives just (6. 7) w hereas the com m utator o f (6. 7) and
(6 .1 7 ) g iv es  (6 .5 ) with m =0. H ence, the com patibility  cr iterion  is satisfied
— but it would not be satisfied  fo r  s im ila r  equations with a non zero rest 
m ass.

It is  c le a r ly  p oss ib le  to tran sform  the equations from  momentum space 
into coord inate sp ace . The in fin itesim al opera tors  o f  the little group in (6 .4 ) 
use the coord inate system  in which the f  dependence o f ip, on the unit c ir c le  
d escrib ed  b e fore , is  expanded into harm onic functions e ime, 0 being the polar 
coord in ate . A ctually , had we determ ined the representations o f the two- 
dim ensional Euclidean group by the method outlined at the beginning of this 
section , using equations (6. 1), the cru c ia l equation (6 .17) would have ap
peared as a m ore  d irect translation of the little  group ’ s representation. How
ever, the method here used is  somewhat qu icker.

(6 .17)
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VII. CASE OF IMAGINARY REST MASS

A . The representations of the little  group.
T he case  of im aginary rest m ass w ill not be treated in as much detail 

as the ca se  o f z e ro  rest m ass. It is believed that the general princip les are 
adequately illustrated  in the preceding section  and their detailed application 
should not be too  d ifficu lt. The little  group in this ca s e  is  c learly  the 2+1 
dim ensional L orentz group, the group of th ree-d im ensional linear tra n s
form ation s which leave  the form  p 2 - p 2 - p 2 invariant.*y

The representations of the 2+1 dim ensional Lorentz group can be d e 
term ined in the sam e way in which the representations of the tw o-d im en 
sional E uclidean group w ere determ ined in the preceding section. Actually, 
even the representations of the 3+1 dim ensional Lorentz group w ere deter
m ined by L .H . Thom as, using this m ethod. The representations of the 2+1 
dim ensional L orentz group w ere investigated in m ost detail by V . Bargmann. 
At the tim e he ca rr ie d  out this investigation it was not c lea r  that he obtained 
all representations because he used in fin itesim al operators in his calculation. 
H ow ever, G ard ing 's  construction  subsequently fully justified Bargmann’ s 
w ork .

The 2+1 dim ensional Lorentz group has three infinitesim al elem ents. 
T h eir  com m utation relations are

They d iffe r  from  the com m utation relations o f the rotation group only in 
the sign s. S ince the representations in which we are  interested are either 
single o r  double-valued, the ch a ra cteristic  values of Mxy are either integers 
o r  half in tegers . At any rate, they are d iscre te  num bers so that we can 
assum e, as in the preced in g  section, that M xy is  diagonal. Since the equations
(7 .1 ) are the sam e as the last two of equations (6. 2), with it' and 7t”  r e 
p laced  by Mxt and Myt, we can in fer again that Mxt and My, have non-vanish
ing m atrix  elem ents only just above and just below the main diagonal and 
that it is  p oss ib le  to tran sform  M xt into a rea l m atrix . My, w ill then be purely 
im aginary and both w ill have the form  illustrated in (6 .4 ) except that the 
| S w ill be rep laced  by num bers which are in general different from  each 
oth er. W e denote the diagonal elem ents of MXy by m ; the non-vanishing e le 
m ents of Mxt and My, w ill be denoted, then

[Mxy, Mxt ] = i M y,, [M xy, My,] = - i  Mx, , (7 .1 )

[M xt> Myt] -  - i  M Xy. (7 .1a)

(M xt )jn,m+l= (M x, )rm-l,m = , (7.2a)

(Myt )ni,ni+l= "(M yt )nwl,m “  i  N^n. .̂

The last com m utation relation  (7. la ) now gives

(7.2b)

Nm+i - 2m J (7 .3 )
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Nm = U m *  + c . (7 .4 )

Since Nmmust be rea l, only such m must occu r  as a diagonal elem ent of 
M xyfor which m 2 + c > 0. This w ill be autom atically satisfied  if m2 + c > 0 
fo r  a ll m and this g ives r is e  to the firs t  type of representations o f the 2+1 
dim ensioned Lorentz group. F rom  (7 .2 ) and (M Xy)mm' = m 6mm' one can c a l 
culate the C a sim ir  op era tor of this group;

Q = Mxt2 + Myt2 - Mxy2 = c + i .  (7 .5)

In the present ca se , the ch a ra cteristic  values o f MXy are either a ll the in 
teg ers , positive , negative, and ze ro , o r  a ll half in tegers, positive and nega
tiv e . In the latter ca se , c  > 0, Q > £. In the fo rm e r  case , c need^not be 
p ositive  but only la rg e r  than - j ,  the sm allest p oss ib le  value of -m 2. Hence, 
Q >  0 holds fo r  single-valued representations o f this c la ss , Q >  {  holds fo r  
the tw o-valued representations of th is c la s s . The fo rm er  are ca lled  Cq, the 
la tter Cq .

It might appear, f ir s t , that this exhausts a ll the representations. This 
is  not so, how ever, because if  an Ns.^ vanishes, the m atrices  whose rows 
and colum ns are  labeled  by m =s, s+1 , s+2, . . .  a re  disconnected from  the
row s and colum ns with low er m^and provide in them selves a solution of the
com m utation re la tion s. H ence, if

c = - ( s  - |)2

so  that

Q = c + \ = - s ( s  - 1) (7 .6 )

we have a second  c la ss  of solutions of the com m utation relations. F o r  these, 
the ch a ra cter is t ic  values o f Mxy are  s, s+1, s+2, . . .  so that s is  the lowest 
ch a ra cte r is t ic  value. C learly , s > 0  must hold, otherw ise would b e 
com e negative. H ence, s can assum e the values 1, § , . . .  and the values 
o f the C a sim ir  op era tor a re  quantized in this ca se . The representations 
o f this su bclass are  denoted by D f . (The ca se  s=0 w ü l be treated separa
te ly .)  S im ilarly , if m assu m es only the values -s , -s -1 , - s -2 ,  . . .  and

= 0, the m a tr ices  Mxt, Myt given by (7 .2 ), (7 .4 ), and the diagonal m a
tr ix  MXy, w ill satisfy  the com m utation re lations. The representations of 
this su bclass  are  conjugate com plex  to the representations o f the previous 
su bclass . The value o f the C a sim ir  operator 9 . and of the param eter c , w ill 
be the sam e as fo r  the representations just d iscu ssed . The representations 
o f th is su bclass are  denoted by D j.

The ca se  s=0 rem ains to be d iscu ssed . It fo llow s that, in this case , not 
only Ns.$ = N.$ but a lso  Nw$ = N$ van ishes. The m atrices  with the single row 
and colum n m=0 th ere fore  separate from  the rest and we obtain the trivia l 
solution M Xy = Mxt = Myt = 0 o f the com m utation relations and the triv ia l r e 
presentation in which every  group elem ent is  represented by the unit op era 
to r . This representation  w ill be denoted by D^.

The preced ing  d iscu ssion  assum es, im p licitly , that the 2+1 dim ensional 
Lorentz group has only one and two-valued representations up to a fa ctor .
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This is  a p erm iss ib le  assum ption because only these representations o f the 
little  group can be used to form  a representation  of the P oin care  group.

Let us return b r ie fly  to the P oin care  group in o rd e r  to calculate the 
C asim ir invariant W, defined by (4. 3). Since this invariant has the same 
value fo r  all v e cto rs  which belong to an irred u cib le  representation, we may 
as w ell ca lcu la te d  fo r  a state o f mom entum p°. Hence, we set pt  =px = p y  = 0, 
pz = m in (4 . 3a) and obtain

wl = nj MXy, wx = m Myt, w? = -m  M xt, w z = 0.

It fo llow s that

B . Equations.
It would seem  offhand that one should be able to obtain the equations 

fo r  the im aginary m ass case  by replacing m by im  in the equations for  p os i
tive rest m a ss . Thus, one can rep lace  the K lein -G ordon  equation by

It is c lea r , on the other hand, that this p rocedure cannot work because it 
would y ield  equations with a finite num ber, 2 s+1, o f polarizations (linearly 
independent states o f the sam e m om entum ). Since the representations of 
the little  group are, with one exception, infinite dim ensional, there will be, 
except fo r  that single case , infinitely many "d irection s  o f polarization ".

A s a m atter o f fact, the replacem ent o f m by im  gives a self-ad join t 
expression  fo r  the in fin itesim al operators o f the P oincare group only in case 
o f the K lein -G ordon  equation — and this correspon ds to the representation 
o f  the P oin care  group fo r  which the little  group ’ s representation  is the iden
tica l one, D 0. Thus, if  one rep laces m by im  in D ira c ’ s equation, the ex 
p ress ion  fo r  i 8 /8 t  w ill not be se lf-ad jo in t any m ore . This reso lves  the 
paradox o f the preceding paragraph but shows, at the sam e tim e, how 
strongly the resu lts derived in these notes depend on the assumption o f the 
unitary nature o f tne representations.

It is  o f  som e interest to investigate the behavior o f the solution o f the 
equation (7. 8a) and to contrast it with the solutions o f the equations with 
positive  rest m ass. We can further sim plify  the situation by assuming that 
there is only one sp a ce -lik e  dim ension x . The positive rest m ass Klein- 
Gordon equation is  then

W = -w . w = m 2Q. (7 .7 )

(P? - Px - Py - P z ^  = (7 .8 )

o r

(7 .8a)

(7 .9 )

It is  w ell known that if, say, at tim e t=0, the wave function and its t im e d e r i-
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vative vanish outside the in terval (a, b), they w ill vanish, at tim e t (or have 
vanished at tim e -t ) , outside the in terval (a - | t| , b + 11|). This expresses 
the finite propagation v e lo c ity  o f d isturbances and can be proven  in a 
variety  o f w ays. The p roo f which is  perhaps sim plest starts from  a D irac 
equation

and identifies the f ir s t  com ponent o f <p, that is <Pj, with the solution o f (7. 9) 
which van ishes, together with its tim e derivative, outside the interval (a, b) 
at tim eO . The second com p on en t^  w ill then be equal to m _1( i9 /9  t + i 3 /3  x) cpx 
and have the sam e p rop erty . Hence, the tim e com ponent o f the D irac current 
| tpi |2 + | cp2 12 vanishes at tim e 0 on the half line x > b . Applying now the 
d ivergen ce  theorem  to the shaded region  in F ig . 1, one sees that the

9 x cp = me

b b' 

F ig.l

in tegral o f  the current a cro ss  the tilted line, which goes through the point 
b ',  t, a lso  van ish es. If the tilted line is  sp a ce -lik e , the current a cro ss  it 
is  positive  defin ite. H ence, it vanishes at every  point. F rom  this, the van
ishing o f both com ponents o f cp fo llow s, just as both com ponents o f cp vanish 
on a t = const line if  the cu rrent a c ro s s  this line, | q>x |2 + | cp2|2, vanishes. 
T his, then, p rov es  the theorem  on the finite propagation velocity .

Interchanging now x and t in (7 . 9), we note that if  tJj, together with its 
x derivative, is  z e ro  at x=0 outside an interval (a, b) o f t, it w ill be zero 
at x a fter b + | x|, and was zero  b e fore  a -  | x| . H ence, ifr w ill be zero  this 
tim e in the shaded area  o f F ig . 2. Instead o f the maxim um  velocity

Fig. 2

o f propagation, one has a m inim um  v e lo c ity  o f propagation. This is , 
o f  cou rse , what was to be expected . A ctually, one is  m ore  interested in the 
in itial condition  which underlies the fir s t  figu re : that tp and dip/d t a re  zero
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fo r  a fixed t, say t=0, in an in terval o f x . In this case  it is  not true that ip 
is  ze ro  in the shaded area  o f F ig . 3. How ever, as t in crea ses , ip goes to 
z e ro  in this area fa ste r  than any pow er o f t.

A s was m entioned b e fore , the equations fo r  all other representations 
w ill g ive an infinite num ber o f polarizations so that the introduction o f a 
second  v e c to r  f  as a variab le  into the wave function is  quite appropriate.
The equations (6 .6 ) and (6 .7 ) define in this case  a hyperboloid as the domain 
o f the variab les  This is  u nn ecessarily  com plicated  as there are nuH v e c 
to r s  which are perpendicu lar to the sp a ce -lik e  vecto r  p . We th erefore r e 
p la ce  (6 .6 ) by

( M )  i, = 0 with ^ = 0 fo r  |t < 0 , (7 .10)

retain  (6 .7 )

(p .5 )tf = 0 (7 .11)

and in o rd e r  to denote a rea l num ber by m , we set

(p .p )^  = -m 2 ip (7 .12)

instead o f (6 .5 ) . The ca lcu lation  o f the C asim ir operator W then becom es 
very  s im ila r  to that in the p reced ing  section, with the ro les  of f  and p in ter
changed. The only d ifferen ce  is  that the non-com m uting nature o f and 
9 /3?ro  has to be taken into account. The resulting expression  is

= ^ <7-13)

The variab ility  dom ain o f ip is now a light cone in the th ree-space  of 
£ which is  perpendicu lar to p. We can transform  (7. 13) in such a way that 
it contains on ly the op era tor  £ d/d%t which is  the derivative along the 
straight n u ll-lin es o f the cone. Further, we can express by ( 7 . 7 )  the C asim ir 
op era tor W ö f the P o in care  group in term s o f the C asim ir operator Q o f 
the 2+1 dim ensional Lorentz group . This gives
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(7 .14)

V = V ? { 9 / a ? r ( 7 .14a)

This V is  d ifferent from  that defined by (6. 16a) fo r  the equations fo r  theO( H ) 
representations. H ow ever, we can conclude again, just as we did when 
deriv ing the equations fo r  the 0( H) representations, that the linear set of 
wave functions fo r  which (7 .1 0 ), (7 .1 1 ), (7 .12 ) hold and fo r  which the second 
C asim ir op era tor  has the value W, d ecom poses into two invariant linear 
su bsets. F o r  the fir s t  o f  these

We re ca ll that Q = W /m 2 is  a function o f the two C asim ir operators W and 
m2. These equations are quite s im ila r  to (6. 17) but w hereas the latter gives 
the change o f ip fo r  an increm ent o f the vecto r  5 which is  para lle l top , (7 .15) 
g ives the change o f ip fo r  an increm ent o f | which is paraH el to f  itself.
Both increm ents are , how ever, along the straight lines o f the developable 
surface which is  the definition  dom ain o f f  . The resultant set o f equations, 
(7 .1 0 ), (7 .1 1 ), (7 .1 2 ), (7 .1 5 ), was not d iscu ssed  in detail.

VIII. PROBLEM S WHICH REMAIN

The preced in g  d iscu ssion  o f the equation fo r  representations with im a
ginary m ass is  even m ore  perfunctory  than the d iscussion  o f the 0(H) equa
tions. F urtherm ore , apparently, no m ore  com plete d iscussion  is avail
able in the litera tu re . W hereas fo r  the 0(H) equations severa l equivalent 
fo rm s o f the re la tiv istica lly  invariant s ca la r  product are known, the p re 
ceding d iscu ssion  g ives no exp ression  th ere for . This should be supple-

A m ore  seriou s om iss ion  is our fa ilu re to give equations fo r  the two
valued representations, that is fo r  the representations which d escribe  par
t ic le s  with half in teger spin. In o rd e r  to do this, one should again introduce 
a space in which a re la tiv istic  transform ation  can be defined. Such a space 
is , in this ca se , a tw o-d im ensional space with com plex coord inates. In that 
space then the total m anifold o f functions must be lim ited by as many re - 
lativ isticaH y invariant lin ear equations as p oss ib le . A "re la tiv istica lly  in
variant" equation in this ca se  is  invariant under com plex  unim odulartrans
form ation s. The statem ent "as many as p oss ib le "  m eans that the elim ination 
o f  a single fu rther function, by a new equation o r  otherw ise, together with

(7 .15)

holds, fo r  the second

( 7 .15a)

m ented.
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the postulate o f re la tiv istic  invariance, elim inates a ll functions from  the 
lin ear m anifold so  that this b ecom es vacuous. The task o f obtaining equa
tions fo r  the tw o-valued representations in this way has not been carried  
out.
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With the w ord vacuum  a state shall be meant which is invariant under 
the inhom ogeneous restr icted  L oren tz -g rou p .

The resu lt o f the follow ing p ro o f w ill be:
If there are sev era l vacua, the a lgebra (X  o f fie ld  operators w ill be fully 

red u cib le . This m eans, speaking lo o se ly , that you have as many invariant 
subspaces o f the H ilbert space under (X  as you have vacu um -states.

F o r  s im p lic ity , the follow ing is  written down only fo r  a sca la r  field  
which m ay in teract with itse lf . The p roo f is  still c o r r e c t  if  one has a m ani
fold  o f fie ld s , if one assum es that each o f the fie lds  com m utes spacelike 
with itse lf  and with each of the other fie ld s  o f the m anifold.

The assum ptions we make are essen tia lly  those given in the axiom s of
W ightman:

(1) L orentz covarian ce  o f the fie ld ;
(2) E xistence o f one o r  sev era l vacua;
(3) The spectru m -cond ition  fo r  the m om entum -operator;
(4) The vacuum  expectation values o f products o f the fie ld -op era tor

are tem perate distributions;
(5) L oca lity : [A (x), A (y)] = 0 fo r  (x - y) spacelike.
(6) Definite m etric  in the space o f states.
The follow ing p ro o f uses a stron ger spectrum  condition:
(3a) £ p 2 2  m 2 with m 2 > 0 fo r  a ll states except the vacuum -states;

this m eans pM = 0 is  an isolated  point in the mom entum spectrum . The c o l 
lection  o f a ll vacu um -states  defines a subspace of'the Hilbert s p a c e d ; 
we assum e <40 to be separable and notate the p ro je ct ion -op era tor  on to /$ f; 
by Pn:

= 4  .

With the a lgebra  o f fie ld  op era tors  CJ- we m ean the co llection  o f linear com bi
nations o f p rodu cts o f fie ld  op era tors :

(E c  A (f1 )A (f2) . . . A ( f .  )} with A (fx ) = f  A (x)f! (x)dx .
m m Km J

fi (x) is  a testfunction  from  D o r  S .
It is  assum ed that the elem ents o f-(fl, are defined everyw here in-^Q, and 

that is  a generating subspace fo r  £  if we apply (X to This means that 
the lin ea r  space built from  {A kf2j ] ,  A e.01, f i je S n  is  dense in-$ . W ritten 
sym bolica lly :

0 4  = A  .
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A fte r  these p re lim in a ries  we can start with the p roo f fo r  the reduction
o f a .

- We use the p roperty  o f c lu ster  decom position  [1] which follow s from  
the assum ptions m ade above. We write it down fo r  a specia l case and only 
in the weak form  we need:

l im y 'f1 (x1 ) . . . f n(xn)g1 (y1 - X a).. . gm(y„ - Xa)[(Q, A (x i) . . .  A (xn)A(y: ) . . .  A(ym)n)

-  ( n A ( x i ) .  . . A ( x n) n ) ( n A ( y i ) .  . • A ( y  m )f2)] dxdy = 0 (1)

with X rea l and "a a sp a ce -lik e  v e cto r .
If one look s  to the p roo fs  o f this c lu ster  decom position  one sees easily  

the gen era lization  o f (1) fo r  the ca se  o f severa l vacuum -states:

lim  f h { x i ) . . . t a{x a)gli y l -  All). .  . gm (ym - Xa)(f2kA (x !) . . .

. .  . A (x n)( l  - Pa )MYi ) -  ■ • A (y m)nt )dxdy = 0 . (2)

L et us take , . . . f n, . . . g i , . . .  g m with com pact supports that means 
from  D. With the p roperty  o f the loca lity  o f the fie ld  (assum ption (5)) we 
get the equation:

lim  / f i ( x 1 ) . . . f n(x n)g1 (yJl - X a ) . . . g m (ym -  X a)(nkA (xt ) . . .

. . . A (xn)A (y i) . . .  A (y m )n { )dxdy

= ^  f fl ( xl ) ” - fn(xn )g l(y i - XI?)... g m (ym ‘  X^)(nkA (y i ). . .

. . . A (ym )A (xx ). . . A (xn )f2c )dxdy

and applying (2):

1 (xx ). . .fn (x n)gi (yi - X'ä). . . g m (ym - Xa)(Qk A (x !). . .

. . •A(xn)P fiA (y1). . .A (y m)fis)dxdy 

= lim  Tfi (xi ). . . f n(xn)g! (yi - X a ) . . . g m (ym - Xa)(QkA (y !). . .

. . . A (ym )Pn A (X l). . . A (xn )dxdy .

The obtained equation does not depend on X, so we get:

(f2[(A (f1 ) . . .  A (fn)Pn A (g l ) . . .  A (g m )fi{ ) = (nkA (y i ) . . .A (g rn)P0 A (f1 ) . . .A ( fn)n l ) (3) 

with A (fx ) =J A (xt )fi (xj )dx2 . . . ,  A (gt ) =

L et us w rite down (3) in a sh orter notation and m ore  im p ressive ly  with

84 S. SCHLIEDER

JA(yi )gi (yi )dyt

lim /f 
X -* -» /
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A (f1 )A (f2) . . . A ( f n) = A 
A (g l )A (g2 ) . . . A ( g m) = B

(^kPßAPjjP^BPQnj) = ( ^ P qBPjj Pfj APnf2 j) . (4)

Equation (-4) is  c o r r e c t  fo r  each pa ir o f  vacu um -states. T h ere fore  the op er 
ators  Pfi A  Pn , Pq B Pjj, . . .  . now taken as op era tors  in h n are com m utative. 
O r in short notation:

The algebra

a  = Pßa P Ci is

(a) C om m utative; ^  ^
(b) It is  involutive. This m eans with A is  also the adjoint A in (X-,
(c) It con sists  o f  bounded op era tors . F o r  one can w rite:

Ä = \ (k  + A *) + h. (iÄ - iA ‘S).

The two op era tors  on the right side are H erm itian op era tors  defined 
everyw here in & ^and are th ere fore  bounded, which follow s from  a theorem  
o f H ellinger and T oep litz  [2] . F rom  (a), (b), (c) and the separability 
o f -8 jj one con clu des [3] , that a ll op era tors  o f (X can be expressed  as func
tions o f the sam e bounded se lf-a d jo in t operator which we will ca ll S (S can 
be taken with a s im ple spectrum ):

S =  X d E x, A k = /S k (X)dEx

This m eans in the ca se  that one has a n -d im ensional choosing an 
appropriate base in ^ a, the elem ents o f (X are  represented by n-dim ensional 
diagonal m a tr ice s .
If we have an in fin ite -d im en sion a l the form  of the decom position  depends
on the spectrum  o f S. If it is  a pure point spectrum , the operators of (X are 
represented  by in fin ite-d im ensional diagonal m atrices  if one ch ooses the 
appropriate base .

T hese two ca ses  give the sam e structure o f (X in /■& .
L et . . be the appropriate base (finite o r  infinite). Then A kf2{
is  orthogonal to Ajf2'm fo r  m f  j2; fo r

(A knJ, Aj Q'm) = (n iA kAj n'm) = toiA 'ti'm ) = (n {PnA rp Qn'm) = o

with A k, Aj , A r e  (%.
In these ca ses  we can split /$ into a d irect sum

h = . .  © ö ö l  © . . .

0 k= C?Qk is invariant under the a lgebra (X and dense in /5 k = £?fik . If S has 
a lso  a continuous spectrum  one gets correspondingly  a lso  a d irect integral 
fo r  . If fo r  instance one has a continuous spectrum  from  Xt to X2



86 S. SCHLIEDER

Xj di d2 d3 d4 X2

and takes as an exam ple the two orthogonal p ro ject ion -op era tors

A (dr d2)E = V - . F - /
d E x

one gets at f ir s t  the two orthogonal subspaces

o f and then the orthogonal subspaces

/5 (1.2) = a /5 >(1.2)i *C3.4)= a /i> (3.4)

o f  A. The fo rm  o f the spectrum  o f S w ill depend on the m anifold o f fie lds, 
which operate in

F inally  the follow ing further rem arks should be m ade:
(1) If there are a lso  anticom m utative fie ld s  in the m anifold o f fie lds,

in the f ir s t  step one can ch oose  the greatest su b -a lgebra  Clc o f Cl with op er 
a tors  in (X c which com m ute spacelik e . CXc is  reduced in the way mentioned 
above. The rem aining elem ents o f (X, i f  applied to a vacuum -state, produce 
a state with h a lf-in teger spin . If C is  such an elem ent Pß must be ze ro . 
T h ere fore  the p ro o f is  a lso  co r re c t  in this m ore  general ca se .

(2) The c lu ste r  decom position  p roperty  can be proved [1] without using 
lo ca lity . If one w ishes to go from  E q. (2) to E q. (3) one only needs the weaker 
condition

To get the resu lts  o f  the p roo f, th ere fore , only this w eaker condition (instead 
o f loca lity ) is  needed.

(3) The reduction  o f (X can also be proved , i f  one does not assum e that 
p M = 0 is  iso la ted  in the spectrum , but if  one assum es CPT - invariance [4] .

[1] ARAKI, H. , preprint (1961); JOST, R. and HEPP, preprint (1961).
[2] RIESZ-NAGY,'Vorlesungen über Funktionalanalysis" Berlin (1956) 114.
[3] RIESZ-NAGY,"Vorlesungen über funktionalanalysis; Berlin (1956) 130.
[4] BORCHERS, H. J . , Phys. Rev., preprint (1961); REEH, H. and SCHLIEDER, S ., Nuovo C im ., preprint

lim  [ A(x + X'a), A (y )]_ = 0

where X rea l, a sp ace lik e .
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1. INTRODUCTION

The general top ic  o f th is paper is  the vecto r  theory o f gauge fie ld s , but 
I like to think that these le ctu res  are rea lly  concerned  with the future o f the 
re la tiv is t ic  fie ld  th eory  as an e ffective  fo r c e  in the developm ent o f funda
m ental p h y sics . Tw o basic  positions are at present under investigation as 
the p oss ib le  organ izing fo r c e s  fo r  the rapidly grow ing em p irica l data on 
elem entary p a rtic le s . T o  put it as extrem ely  as p ossib le , we might ca ll 
these two p o s it io n s :

(i) The p article  point o f v ie w ,
(ii) The fie ld  point o f view .
By the p a rtic le  point o f view,I mean those investigations in which the 

physica l p a rtic le s , as we see them , are the basic  elem ents. This is the 
whole line o f developm ent associa ted  with the S -m atrix , with the idea that 
the only function o f the theory is  to com pute and to corre la te  the results of 
scattering m easurem ents. It a lso  underlies those further attempts intended 
to give a physica l content to th is essentiaH y empty fram ew ork , such as d is 
p ers ion  re la tion s, R egge p o le s , e tc . And, to adopt this point o f view system 
a tica lly , one must n ecessa r ily  accept the O rw ellian philosophy that no parti
c le  is  m ore  fundamental than any other. That is  the strict particle  point of 
v ie w ; the p a rtic les  are unanalysable. To our mind it is  an extrem ely con 
servative position .

Opposed to this is  the fie ld  point o f view  which supports the idea that 
there is  a deeper dynam ical le v e l , that the em p irica l inform ation we have 
is  very  com plicated  and that the purpose o f theory is  to d iscov er  sim plicity - 
not n ecessa rily  in te rm s o f the observed  p rop erties , but in term s of con 
cep ts, o f  p rop erties  which are  at the m om ent not d irectly  observable but 
which undoubtedly w ill becom e so in the cou rse  of future developm ents. This 
is  the way that ph ysics  has always p roceed ed . The fie ld  point o f view is  thus 
the idea that there ex ists  som ething m ore  fundamental than the phenom eno
lo g ica l p a rtic le s . T h is is  a very  general statement and we should say that 
fie ld  theory as it now stands is  based upon the tentative identification o f these 
m ore  fundamental entities with som e loca liza b le  fie ld s . We would alm ost 
try  to make a d istinction  between the idea that there is  something dynam ical
ly  deeper than the p a rtic le s , and the p articu lar.associa tion  of the deeper 
structure with lo ca liza b le  fie ld s . Such fie ld s  m ay be what is  required , but 
the im portant thing to our mind is  the alternative between accepting the 
p a rtic les  as they are  and seeking fo r  som ething m ore  fundamental. At the

*  Based on notes taken by A.P. Balachandran, B. Jaksic, I. Saavedra, J. Kvasnica, P.W. Nielsen.
D. Boulware, C. Bollini and P. Rastall.
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m om ent, the latter is  identified with the idea of fie ld s which are operator 
functions o f the space and tim e coord in ates. But even within this fra m e
w ork ,there are various p oss ib le  view points. T here is  the extrem e viewpoint - 
this is  H eisenberg ’ s attitude - that there is  only one fundamental fie ld . E very
thing we know must com e  out o f th is one fie ld . This is  rather hard to a c 
cept, and I m yse lf w ill adopt here the interm ediate position  that there are 
severa l fundamental fie ld s . A s to which fundamental fie ld s  are necessary  
I would say that the clue must be found in the exact, o r  alm ost exact, con 
servation  law s we know in nature. This is  the line of thought that leads to 
the idea o f v e c to r  gauge fie ld s  which I am going to exp lore.

It should be em phasized that in the fie ld  viewpoint the fundamental fie lds 
are  not im m ediately corre la ted  with observable  things. This is  the deeper 
dynam ical le v e l ; out of the interplay o f the dynam ics that govern these en
tities  em erges  the w orld  o f p a rtic les  as we know it. In other w ords, the 
im portant thing is  to recogn ize  that the fie ld s  we begin with in this v iew 
point are  not n ecessa r ily  d irectly  corre la ted  in a sim ple way with the o b 
served  p a rtic le s . It has becom e fasionable to d escr ib e  fie ld  theory as "o ld - 
fash ion ed". I would insist upon the fo llow in g : what is  old -fash ioned  is  the 
naive con fusion  o f these two points o f v iew , in which one speaks in d iscr i- 
m inatly of p a rtic le s  and fie ld s  and a ssoc ia tes  with every particle  a fie ld  
which is  inserted  in som e Lagrangian fo r  the purpose of applying pertu r
bation th eory . This is  the o ld -fas ion ed , naive point of view but it is  not the 
one I am  advocating h ere . We must c lea r ly  understand that we are dealing 
with a much m ore  sophisticated  approach, in which the fundamental fields 
a re  not sim ply co rre la ted  with p a rtic les , although there may be an ardent 
relation  in som e individual ca s e s . The basic  physica l problem , from  this 
point o f v iew , is  to exp lore  the p oss ib ilit ie s  o f postulating various funda- <> 
m ental fie ld s  with th eir  dynam ics and by proving the existence of specia l 
states of definite o r  a lm ost definite energy-m om entum  relations to identify 
these with physica l p a rtic le s .

Such are the two extrem e view points, and obviously it is  the second one 
which is  adopted here. I shall try  to indicate som e o f the p ossib ilities  that 
are  inherent within it. Now, I said that the clue to which fie ld s  are funda
m ental is  given by the exact, o r  perhaps alm ost exact, conservation  law s. 
And I point h ere , inevitably, to the exam ple upon which the whole fie ld theory  
has been built m ore  o r  le s s  by analogy, i . e .  e lectrodynam ics. The e le c tro - 1 
m agnetic fie ld  has the very  sp ecia l feature o f gauge varia tion ; while it might: 
be p oss ib le  to advocate, as H eisenberg does, that there is  no fundamental I 
e lectrom agn etic  fie ld , I regard  th is property  of gauge variation to be so 
b a sic  that it seem s n ecessa ry  to postulate a fundamental electrom agnetic 
fie ld .

It should be rem em bered  that the electrom agnetic fie ld  is  one such that 
the v ecto r  potential must be aUowed freedom  o f transform ation  by gradients 
o f an arb itrary  sca la r  function, at the mom ent a num erical sca lar function, 
s a y :

Aj,(x) A(j(x) + a ,A (x ). ( i - 1)
Now we know that as the theory has been constructed  to be invariant under 
such a gauge transform ation , it fo llow s autom atically that the current vector 
jw(x), which is  the sou rce  of th is fie ld , must be conserved  :
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ajijKx) = 0. ( i .2 )

This is  the im portant aspect o f  gauge in v a ria n ce : the concept o f the absolute 
conservation  o f the e le c tr ica l charge is  not explained as the result of sp ec i
fic  dynam ical re s tr ic tion s  on every  con ceivab le  system , but is  understood 
in te rm s of the structure o f the M äxw ell fie ld  itse lf. To put it in another 
way, we know that the fie ld  strength ten sor F ,J,; is  antisym m etrical and obeys 
the equation :

(1 .3 )

and in virtue ofthat antisym m etry, ä structural property of the fie ld , it 
fo llow s autom atically that the current obeys

-  o • (1.4)

That is , the equation o f lo ca l e le c tr ica l charge conservation  is  an identity 
ch a ra cte r is t ic  o f the structure o f the M axwell equations,and, th erefore , once 
the M axwell fie ld  is  introduced, n on-con servation  of the e le ctr ica l charge 
is  in con ceivab le . T h is is  the p erfect m odel o f a dynam ical explanation of 
an absolute con servation  law .

One may attempt to build an explanation of another absolute con serva 
tion law along these lin es . One may say that what has been explained here 
is , in a sense, the absolute stability of the e lectron . The electron , being 
the lightest ob ject that c a r r ie s  an e le c tr ica l charge, is  a stable ob ject in 
virtue of the con servation  o f the e le c tr ica l charge, since there is  nothing 
lighter fo r  it to  go into while m aintaining its ch arge. T here is an analogy 
between the stability o f the e lectron  and the conservation  of e le ctr ica l charge, 
on the one hand, and the stability o f nuclear m atter and the conservation 
o f the nuclear charge, on the other. This nucleonic charge must be possessed  
by a ll the heavy baryons and is  handed on from  the cascade particle  to the A, 
the £ and the nucleon in the p ro ce s s  o f a ll their d isintegrations. But with 
a nucleon, o r  m ore  p re c ise ly  with a proton, as the lightest object carrying 
this nucleonic charge, the p ro ce s s  o f decay cea ses  because there is nowhere 
e lse  to transm it the nucleon ic ch arge . That is , in the absolute conservation 
o f nucleonic charge we have a descrip tion  of the stability of matter and one 
would like to have an understanding o f th is m ost fundamental o f all con serva 
tion law s on som e general dynam ic grounds rather than m erely  as a state
ment, since it is  a ru le which has to be superim posed on every possib le  
in teraction . It is  natural, then, to introduce a hypothetical vector  field , a 
gauge fie ld  analogous to the electrom agn etic fie ld  and to insist that its dyna
m ics  be governed by the requirem ent of gauge invariance from  which would 
follow  the ex istence  o f an absolute conservation  law . This dynam ical expla
nation involves a new fie ld  and the question now is  what w ill be the dynamic 
con sequences o f that fie ld . H ere is  w here the idea appears to run into im 
m ediate d ifficu lties . If the analogy with the electrom agnetic fie ld  is  co m 
plete, a ph ysica l p a rtic le  with z e ro  m ass, analogous to the photon should 
exist, and we know o f no such p a rtic le . One could assum e that the coupling 
to the new fie ld  is  arb itrarily  weak, there are argum ents that the field  must
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be unobservable even on a co sm o log ica l s ca le . That is  hardly the kind of 
fundamental fie ld  which should be introduced to explain the conservation of 
the strongly interacting p a rtic le s . T his was the great ob jection : gauge in
variance should im ply the existence of a z e ro  m ass p a rtic le . And this is 
the d ec is iv e  point at which we want to introduce the ideas o f the new field  
theory .

It may be helpful to give a sim ple fo rm  of the argument relating gauge 
invariance to a m a ss less  p a rtic le . Using the notation o f electrodynam ics, 
we have the charge density equation

V .  E = p (1. 5)

and an integration over a la rge  volum e g iv e s :

ßdr)p = Q =Jd S . E (1 .6 )

w here Q is  the total charge of the system  and a constant o f the motion. T h ere 
fo r e , the e le c tr ic  fie ld  at la rge  d istances must fa ll o ff like

E ~  (Q /4 tt) (n /r 2) (1 .7 )

which is  a long range fie ld . T h is  is  a static fie ld , but one could argue, not
in co rre ct ly , that if one finds a static fie ld  which is  long range, there must 
be a z e r o -m a s s  p a rtic le  o r  the fie ld  would be o f finite range. But it is  im 
p lic it ly  assum ed h ere  that the total charge Q is  different from  z e ro . And 
it is  p re c ise ly  at th is point that the argument fa ils . When a charge is  in 
serted  into ,the vacuum , the accom panying e le c tr ic  fie ld  p olarizes  the vacuum 
producing a partia l com pensation  o f the ch arge . That is  the origin  of charge 
renorm alization . But it is  con ceivable  that the com pensation o f charge is 
not partial, but com plete  is  p resen t. That is , if a charge is  placed in the 
system , there m ay com e  into being in the cou rse  o f tim e a vacuum p o la r i
zation in which, lo o se ly  speaking, one part o f the charge escapes to infinity 
and the com pensating charge exactly balances the charge that was originally 
in serted . Under th ese conditions, the constant total charge, that w ill be ob 
servab le  in any a rb itra rily  la rge  volum e w ill be z e r o . This is  not intended 
as a convincing argum ent, but m erely  an indication that there is  a loophole 
in the assertion  that there must be a lon g-ran ge fie ld  - o r  m assless  p artic le - 
fo r  th is depends upon the assum ption that there is  no com plete com pensation 
ch arge . The m a ss le ss  ph ysica l p article  d isappears when a n on -zero  total 
charge can no lon ger be maintained in the vacuum .

2. THE ONE DIMENSIONAL MODEL

Rather than indicate by genera l agreem ents that this is  a very  rea l p os 
sib ility , a very  sim ple ph ysica l m odel w ill be used to show that such a new 
situation can o ccu r .

The m odel I want to d iscu ss  is  com pletely  physical, in the sense that 
no general p rin cip les  o f ph ysics are v iolated . On the other hand, it is  an 
unworldly one, sin ce  it is  a specia l ca se  o f electrodynam ics in one spatial



GAUGE THEORIES OF VECTOR PARTICLES 93

dim ension . Of cou rse , a ll the argum ents we have given until now about gauge 
invariance apply equally w ell to  one spatial dim ension, apart from  sp e c ifi
ca lly  geom etrica l fa c to rs .

Let m e w rite  down the basic  equations we shall be concerned with fo r  
e lectrodynam ics, and then we shall sp ecia lize  and solve exactly in on e -d i
m ensional space . We shall begin with the Lagrange function

w here we have introduced two fundamental fie ld s , a gauge fie ld  ch a ra cter i
zed  by a v ecto r  A,j and an antisym m etric tensor and a F erm i field  ? .  
The m a trices  a and ß a re  connected with the usual D irac y -m a tn ce s  by 
itt^s ß yP. The a  ̂ a re a ll rea l and sym m etrica l, and a0 = 1; ß is  rea l and anti- 
sym m etrica l; e is  the coupling constant and m 0 the m ass constant a sso 
ciated with the fie ld*?. The antisym m etric m atrix

is  sp ec ifica lly  associa ted  with the charge, and is  introduced here in order to 
w ork with Herm itianYfields-Under the transform ation  AM-» e A^F^y - » (i/e)FM„, 
the L agrangian^  goes back to its m ore  fam ilia r  fo rm  (i .e .th e  coupling 
constant e appears at its usual p lace  in the coupling term  e AMjp).T h e  F erm i 
fie ld  obeys the anticom m utation relation

w here the in d ices  a  and ß r e fe r  to spin and ch arge.
The one essen tia l point to be em phasized about the distinction between 

three d im ensions and one d im ension  is  the question o f the dim ensionality 
o f the ch arge, i . e .  o f the coupling constant. The action operator

is  d im ension less in the system  o f units w here h = 1. Then the dim ension 
o f the Lagrangian

w here L  is  length and n the num ber o f spatial d im ensions. F rom  this, we 
obtain the d im ensionality o f e2:

and hence fo r  the particu lar ca se  n = 3, e is  d im ensionless, while fo r  n= 1,

*  = - ( l / 2 ) F ^ A w- ^ A ^  + (e2/4)F»«'F(1I,

+ (i/2 )S 'c/3M'J' + ( im o /2 W Y  + ( l /2 )A (JYa,JqY ( 2 . 1 )

O -1

[£ ]  = 1 /(L W1)

[e2] = 1 / (L3"n)

[e®] = 1 /L 2,

i . e .  the coupling constant itse lf c a r r ie s  a length, ca r r ie s  a m ass.
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W e shall now show that it is  possib le  to find an exact solution of the 
on e-d im ensional p rob lem  in the specia l case  in which the m ass constant 
associa ted  with the F e rm i fie ld  vanishes, m 0 = 0. In this one-dim ensional 
m odel there a re  only two a -m a tr ice s , cP = 1 and a 1 = a lt which can be r e 
presented by 2 X 2 m a tr ices . The spatial m etric  adopted is  positive and 
the tim e m etric  negative.

3. EXACT SOLUTION OF THE ONE-DIMENSIONAL PROBLEM

What we want to do now is  to  solve-a  prelim inary p ro b le m : the p o la r i
zation of the vacuum  o f a F erm i fie ld  Y by an externally im posed field  A^.
We must then introduce a certa in  requirem ent o f s e lf -co n s is te n cy : the charge 
brought in crea tes  a fie ld , this fie ld  p o la rizes  the vacuum which creates a 
charge that p o la r izes  the vacuum  and so on. The problem  can be solved 
exactly in our m odel, because of the assum ption o f one spatial dim ension 
and the z e ro  m ass of the ferm ion  fie ld . This is  fam iliar, fo r  exam ple, from  
the d iscu ssion s that have gone on about the T h irrin g  m odel which is  also 
a one-d im ensiona l m odel though not e lectrodynam ic.

Our prelim in ary  p rob lem  is  then a D irac fie ld  Y plus an external (e le c 
trom agnetic) fie ld  A jj. In te rm s o f its solution we shall have the exact solu 
tion  to our p rob lem . W e begin with a sim plified  Lagrange function

& = (i/2)?ttt‘ (a(1- i q A (1)Y. (3 -1)

W e want to find the current induced in the vacuum  by the external field  
A jj . Let th is be :

< j(J(x )>  = l/2 < '? (x )a q 'T (x ) >A. (3 .2 )

S ince jM(x) is  a b ilin ear com bination of fie ld s  taken at the sam e point x, we 
construct its expectation value by firs t  solving another prob lem , which is 
to find the expectation value o f a b ilinear com bination of fie lds  at arbitrary 
points o f space and tim e . T h is is , in other w ords, the construction  o f the 
G reen ’ s function associa ted  with the fie ld . We define this G reen ’ s function 
as

G (x ,x '; A) =<(i'(x)'J'(x'))+) e ( x -x ')  (3 .3 )

which is  the vacuum  expectation  value o f the tim e ordered  product of the 
f ie ld s . e(x-xO  is  a sign function. This is  the basic  physical quantity in term s 
o f which we extract p h ysica l inform ation about the states that are created 
in the vacuum  o f the fie ld  ¥, and in term s of which, by a lim iting p rocess  
with x ' “ » x, we shall construct the current op era tor .

T he G reen ’ s function obeys an inhom ogeneous differentiell equation which 
in corpora tes the fie ld  equations and the anti-com m utation relations

-iqA u (x))G (x , x') = 6 (x -x '). (3 .4 )

Under a gauge transform ation  Eq. (1) this G reen 's  function transform s 
accord in g  to
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G(x, x') = exp [iqA(x)]G(x, x 'jexp [ -iqX (xOJ. (3-5)

The current operation  j^ x ) is  given by :

j^ x ) = (l/2)'i(x)a ttq y (x ) .  (3 .6 )

This is  a singular exp ression  and th ere fore  it must be defined by a suitable 
lim iting p ro ce ss  as stated above. We must let x '->  x along a space-like  
d irection , sin ce  we do not want to bring  dynam ics into the definition o f an 
op era tor . We must ca rry  out this definition  in such a way that gauge in 
variance is  guaranteed and then we must check  the covariance of the p ro 
cedure.

W e now rew rite  the expectation value Eq. (3. 2) in term s of a G reen 's  
function. We g e t :

< j|J( x ) ) = - ( l /2 ) T r  a,, G (x, x) (3 .7 )

w here G (x, x) is  defined by :

G (x, x) = lim  G(x, x') e x p [ - iq  f d ? A M(£)], (3 .8 )
x /_ >x J,x '

the lim it being taken fro m  a spatial d irection  maintaining a ll sym m etries,
i . e .  taking an average o f the values of the lim its  attained from  the left and
fro m  the right. The exponential fa cto r  is  requ ired in ord er to maintain gauge 
invariance fo r  x  ^  x .

The solution  o f E q. (3 .3 ) can be w ritten as :

G(x, x )  = G°(x, x') exp iq[$(x) -$ (x ')] (3 .9 )

w here $ (x ) s a t is f ie s :

o ^ S K x )  = aM A ^ x ). (3 .10)

and G° is  the G reen ’ s function fo r  A^ = 0

G°(x, x )  = 6 (x -x '). (3 .11)

The solution  o f th is equation with the p rop er boundary conditions i s :
oo

G°(x, x') = (1/2 jr)J' dp ex p [ip  a^Xp-Xp) , x°> x 0'
0 p "

= - (1 /2  jt) / dp ex p [ip  aPix^-xfl , x°<  x 0'. (3 .12)
0

T o p er fo rm  the lim iting  p ro ce s s  (a long  a sp a ce -lik e  d irection ), let us con 
s id er  the right hand side o f E q. (3. 8) fo r  x 0 = x 0' :

But, fo r  equal tim es

G(x, x') (exp iq [$  (x) -<J>(x ')]}^exp[-iq^  d C A j j .  .



G °=  ( l /2 ^ )[a 1/ ( x 1-x')] .

Expanding the exponentials in a T ay lor se r ie s  fo r  Xj-> x\, we g e t :

G 3= ( i /2  7r) [a j/(x j-x j') ]  [1 + iq (x 1-x i)(310 -A j). (3.13)

Taking now the sym m etrica l lim it as explained above, we obtain:

G(x, x) = • (1 /2  ttJoj q ^  ^(xJ-A ^x)] = (1 /2  n) q {d ^ (x )-A ^ (x )). (3 .14)

Inserting this into Eq. (3. 7), we obtain the covariant exp ress ion :

< j„ (x )> =  -d A ) [A (I(x ) -a (J( l /4 ) T r $ ( x ) ] .  (3-15)

W riting explicitly  Eq. (3 .10)

0 „  + »1 3i)<D(x) = A 0(x) +<*! A j(x) (3.16)

and m ultiplying it from  the left by (Oq- o1 ), we obtain the second order 
d ifferentia l equation :

- a 2$ (x )=  -a^AM(x) + a1[9oAi W - a 1A0(x )] . (3.17)

By taking the tra ce , this redu ces to

- a2(1 /4 ) T r f ( x )  = - a M A(*(x) (3 .18)

which we can so lve  fo r  T r $  by m eans fo r  the corresponding G reen ’ s func
tion D(x, x ' ) :

(1 /4 ) T r  0 (x ) = - J(dx')D (x,x')dv A'’ (x') (3 .19)

o r , sym bolica lly  :

( l /4 ) T r $ ( x )  = -D a ^ jy fx ) . (3.20)

H ence, our final result in this notation is :

< y x ) > =  -(l/T T jtA ^ x j+ a^ D a^ A "]. ( 3 .2 1 )

This is  an obviously covariant expression , it is also conserved  and it is 
gauge invariant. To show that it is  conserved , let us take the divergence 
o f Eq. (3. 21). We g e t :

3̂  j(i = - (1/tf) [9" Ajj - a« A J  = 0.

Let us now indicate som e of its physical im plications by a sim ple but 
not w rong m ethod. We w ill then justify it. Let us think o f the idea of se lf- 
consistency  in the sim plest p oss ib le  way. A^ has been until now an external
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fie ld , but suppose this fie ld  som ehow is  brought into existence propagating 
in a ccordan ce  with M axw ell’ s equations. Then this fie ld  induces a current 
and th is current in turn rea cts  back to change the nature of the fie ld . What 
then is  the condition  o f se lf-con s is ten cy  ?

W e go back to M axw ell equations

•

3|1 Ajj -  e2 Fjjy ■

F rom  here, e2 j»1 = - 9 2Afi ±9^ A*-. Adopting now the Lorentz gauge A(* = 0.
and using Eq. (3 . 21), we get the propagation equation fo r  the vector  potential:

( -82  + m2)A(i(x) = 0 (3 .22)

w here

M2 = (e2/7T). (3.23)

This is  an equation d escrib in g  non-in teracting p articles  o f finite m ass 
p = r) and shows that gauge invariance of a ve cto r  fie ld  does not n eces 
sarily  requ ire  z e r o -m a s s  p a rtic le s .

The exp ression  found fo r  the vacuum expectation value o f the current 
in the p resen ce  o f an external vector  potential A is

< ^ (x )> A = -(I/ttH A ^x) + f& D (x -x ')d 'v Av(x ’)}, (3.24)

w here j 1' is  the e le c tr ica l current ca rr ied  by the ferm ion  fie ld . This may be 
sym bolica lly  written

<j>A= - (1 /tt)(1 + 3D 3)A , (3.25)

where the p ro jection  operator (1 + 3d] 3 guarantees the conservation  of 
charge and gauge invariance. We a lso  found, by a sim ple se lf-con sisten cy  
argument, that the condition  fo r  the v ecto r  potential to maintain itse lf is 
that it satisfy  the fie ld  equation

[92 - (e2/jr)]A = 0. (3.26)

H ere e 2/ir = p2 p lays the part of the square o f a m ass; so  the result is  - at 
least in a sim p le-m in ded  way - that the propagation equation fo r  A is  the 
sam e as that fo r  a p a rtic le  o f m ass p . We shall g ive a p re c ise  derivation
o f this resu lt here and a lso  show how to calcu late elLI other p rop erties  of
the system .

But b e fo re  we begin  the p re c ise  derivation , let m e com e back to an
other general qualitative rem ark  that I m ade. The equation V .E  = p im plies 
that at great d istances from  the sou rces  the e le c tr ic  fie ld  E satisfies E ~ Q
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in the on e-d im ensional case  and E ~ Q /4 7 rr2 in the three-d im ensional case, 
w here Q is  the total charge. It is  argued, quite co rre c t ly , that a long-range 
e le c tr ica l fie ld  can only be m aintained and propagated by z e ro -m a ss  parti
c le s . H ow ever, the cou rse  o f the argument is  that the total charge should 
be d ifferent from  ze ro , and this is  not the case  under the conditions we are 
talking about becau se the vacuum  polarization  effect acts to annihilate any 
given charge.

Suppose that we in sert a static external charge density J° whith total 
charge Q0 into the vacuum . A charge density j°  w ill then be induced, whose 
expectation value, in the Lorentz gauge, is  given by our previous equation

<J°> = -(1  / tt) A0 . (3.27)

The potential A0 has its sou rce  in the total charge density J° +\j°)>*

-a2 A0 = e (J ° +<j°>). (3.28)

Substituting fo r  \j0X  and using the fact that the fie ld s  are tim e independent, 
we get

(d2/d x '2-M2 )A ° = - e 2J °. (3.29)

The solution o f this is :

A 0 = (e2/2ß ) J (dx '1) (exp  [ - M (x '- x '1)] }J °(x ') . (3.30)

The total charge induced in the vacuum  is  th ere fore

[ ( .  j° (x ')> d x '=  [ - e2/(2ju 7r)[ Adx'dx'1 ( exp [-  /n |x'- x '11 ]} J° (x;) = -Q 0
J (3.31)

which exactly  can ce ls  the inserted  charge Qq. Thus there is  no long-range 
fie ld  and no lon ger an argument fo r  a z e ro -m a s s  p article .

4. SOLUTIONS OF THE GENERAL EQUATIONS WITH EXTERNAL
SOURCES AND THE G R E E N 'S  FUNCTIONAL.

Now we m ust w rite down the general equations o f this rela tiv istic  field  
system  and so lve  them  exactly . The m ethod we shall use is  that o f external 
sou rces  and the G re e n 's  function. This is  the general technique fo r  dealing 
with any fie ld  p rob lem . It depends on the idea o f introducing sim ple e x c i
tations into the system , in term s o f which all p oss ib le  states can be created. 

To the Lagrangian w ritten down prev iou sly  we add the sou rce  term s

A»(x)Jß(x) - i^ (x )n (x ). (4 .1 )

The total Lagrangian m ust still be gauge invariant, which im p lies  that the
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external current «ly is  con served  (this external current can be considered 
sim ply as an idealization  o f other dynam ic system s which act upon our sy s 
tem ). A s fo r  the F erm i sou rce  term  rj, it is  a fu lly  anticom m utative quantity 
(just as the boson  sou rce  is  fu lly  com m utative). The sou rce  rj(x) anti
com m utes with rj(x') and <p(x ') f ° r  all x and x'. Such quantities can be perfectly  
w ell rea lized  in te rm s of fam ilia r  a lgebraic structures. The change in r?(x) 
under a gauge transform ation  m ust be just such as to com pensate the change 
in tp.

With the addition o f the sou rce  term s, the fie ld  equations becom e in 
hom ogeneous. That fo r  the F e rm i-fie ld _  written fo r  the case  of ze ro -m a ss  
constant -  is

a ^ - i e  A^ip -  n, (4.2)

while that fo r  the electrom agn etic fie ld  ten sor is

= j m + jg . (4.3)

N otice that this is  j£, and not j T h e  quantity j(* = ^ipaVqip is  no longer con 
served  in the p resen ce  of sou rces  and th ere fore  it would be inconsistant to 
w rite J*1 + j** as the right hand side of our previous equation. A proper ca l
culation, which takes account o f the fact that there is  a transfer of charge 
from  outside the system  we are considering, shows that one must extract 
from  j1* its con served  part j*1.

The point o f introducing these external sou rce  term s is  that one can 
convert the H ilb ert-sp a ce  operator fie ld  equations by their aid into nume
r ic a l functional d ifferen tia l operator equations. F or our problem  the latter 
equations turn out to be soluble. But how do we m ake the transition from  
one kind o f equation to the other? W ell, we con sid er  that the system  begins 
in the vacuum  state and the sou rces  are, so to speak, turned on. The sy s 
tem  is  then d isturbed and by choosing the disturbance co rre c t ly  one may 
generate any state into which the vacuum  m ay be thrown by the action of 
the fie ld  op era tors . By watching how these states propagate in tim e we see 
their p rop ertie s . F inally, we sw itch o ff the sou rces  and return to the vacuum 
state. The m athem atical quantity which contains all the inform ation about 
this p ro ce s s  is  the transform ation  function which re la tes  the vacuum state 
10 . y  b e fo re  the d isturbance to the vacuum  state 10 +)> after it. I shall ca ll 

this transform ation  function the G reen 1 s functional: it is  the generating 
functional o f all the G reen 1 s functions, o r  propagation functions, which d e s 
cr ib e  p r o c e s s e s  in our system . We w rite it:

G[rj J] = < 0 +|0l>,J . (4.4)

We m ust find how the G reen 1 s functional depends on the external sou rces 
r) and J. The idea is  to con sid er  its respon se  to in fin itesim al changes 

5 JJi. T hese produce a change in the Lagrangian:

6vjJ= 617,

and a change in the G reen 1 s functional

(4.5)
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ÖjjjG [n j] = 6tf<0+|0./ =i >0+\J(dx)A»6 |o_>. (4.6)

(The m atrix  elem ents are always taken between vacuum  states). If one im a
gines a disturbance 6 Jj,, 6rj lo ca lized  around the point x and if  one som e
how knows 6nJG[r) J], then im m ediately  one gets the m atrix  elem ents of the 
opera tors  Pt(x)  and ^ (x ). If this can be repeated at all points o f space-tim e, 
one gets a general correspon dance  between m atrix  elem ents o f the field  
opera tors  and functional derivatives o f G[r] J]. This g ives the general d if
ferentia l op era tor representation  o f the fie ld  op era tors , very  much analo
gous to the representation  o f p 1 s by d ifferentia l op era tors  with resp ect to 
q 's .

Now we com e to an im portant point. I have written down the variation 
6J*1. To find one d ifferentia l operator representation  we should like to make 
arb itrary  in fin itesim al variations of the J14. But this we cannot do: the 
are not independent. If we vary  the m independently we shall violate charge 
conservation  and th ere fore  gauge invariance. The way to overcom e this 
d ifficu lty  is  to w ork in a sp e c ific  gauge. By choosing a suitable gauge we 
shall be able to vary, our J*4 arb itrarily  while conserv ing  charge.

How is  th is to be accom plish ed? Take an arb itrary  vector  J and p ro ject 
it by- m eans o f a p ro ject ion  op era tor II into a v ecto r  Jc which is  conserved

Jc = 7T J . (4 .7 )

I want to make this p ro jection  so that it does not upset the tem poral de
velopm ent o f the system , so we shall ch oose  a p ro jection  operator which 
is  lo ca l in tim e. Let us introduce, in addition to the usual space-tim e gra
dient 9m, the purely  spatial gradient V^. The spatial com ponents, or com 
ponent since what we say applies to both one and three d im ensions, of
are the sam e as those o f 9 ,̂ but the tim e com ponent is  zero . The projection  
equation w ill be taken to be

Jc = (l + vJ)ö)J, (4.8)

w h e r e ^ i s  the G reen ' s function associa ted  with the spatial gradient

y22)(x,x') = - 6(x-x'). (4.9)

The conservation  equation 9 J C = .0 fo llow s im m ediately .
The conservation  o f charge can now be ensured by rep lacing 6J by 6JC 

in the J term  of our variational in tegral

i J (d x )A (l  + v ß a ) 6 J .  (4 .1 0 )

We cam now certa in ly  p erfo rm  arb itrary  variations o f J, but at the cost of 
som e awkwardness. H ow ever, if  we now ch oose  the radiation gauge, in 
which V. A = 0, and p erfo rm  an integration by parts (this must be validated 
b v a p p rop ria te  re s tr ic tio n s , which we w ill not go into), then the extra term  
V^/0 sim ply d isappears. So we have exploited the gauge freedom  of the the
ory  in such a way that we can rep la ce  the variation  o f the conserved  current
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by the variation  o f an arb itrary  v e cto r . This is  true only fo r  our specia l 
ch o ice  o f gauge. Other gauges are p oss ib le , but the p ro jection  operator 
w ill no longer be lo ca l in tim e. H ow ever, once we have presented the whole 
fo rm a lism  in term s o f functional d ifferen tia ls, we shall be quite free  to 
change the gauge as we whish. In fact, I shall im m ediately switch over from  
the radiation  gauge to the L orentz gauge, which is  m uch m ore  sym m etrical.

T reating J as arb itrary , which is  ju stified  with our particular choice  of 
gauge, we can w rite  down a corresp on d en ce  between the variational d e r i
vative with resp ect to and the vecto r  potential AM

i
( l / i ) [ 6 / 6JJ1(x)] ^ A M(x). (4.11)

(The coe ffic ien t o f 6 JM in the variational in tegral is  just iAM). In the same 
way, con siderin g  the ip 6 rj term  in the variational integral, we find the c o r 
respondence

- 6c / 6rj(x) i//(x). (4.12)

The i  su ffix ind icates that this is  a le ft derivative. In making the c o r r e s 
pondence we m ust bring 6rj to the left o f ip, which accounts fo r  the minus 
sign {ip 6tj = -6r].<p).

These corresp on d en ces  suggest that one can convert the fie ld  equations 
fo r  \p and A*' into functional d ifferentia l equations fo r  Gin J] by sim ply substi
tuting 6 /6  Jjj fo r  i A*1 and 6 / 6rj fo r  ip. F irst , from  the D irac equation we get:

- q } T f c )  + n(x)]Gl nJl = °- (4 -13)

Secondly, there is  the M axwell set and at this point we shall change over 
to the L orentz gauge. The radiation gauge was d escribed  firs t  because it 
is  m ost im m ediate, but now let us define the con served  current Jc by

Jc = (1 + 3D3) J, (4.14)

w here D is  the G re e n 's  function associa ted  with -  ä2. This equation fo r  Jc 
is  not lo ca l in tim e, but it does have the advantage o f being m anifestly r e 
la t iv istica lly  invariant. I shall not go through the m echanics of the gauge 
transform ation , but the resu lt is « *

[94 g j - a?f ^ - e?(i + 3Da)(j+^ aq^ )1Gt,,JIr0- (415)

w here J is  the external current, ( i ) (6 / 6r])a q (6 / 6rj) corresp on d s to the physi
ca l ferm ion  cu rrent \ipaqip and the p ro jection  operator (1 + 3D 3) ensures - 
charge con servation . We still have to w rite the transcription  fo r  the last 
equation, corresponding  to the ch o ice  o f gauge. The final gauge equation is

3 —  G b jjJ  = 0 . (4.16)

which says that the L orentz gauge is  the chosen  one.
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We must now so lve  the functional equations fo r  the G re e n 's  function.
Let us f ir s t  con sid er the D irac equation. The variational derivative 6 / 6J
can be treated  as c-n u m bers (and they behave like c-n u m bers in the sense
that they are  com m utative). F or  the mom ent we shall ca ll them iA^, i .e .

f a F - V  (4 ' 17)

The G reen 1 s function now obeys an equation in the p resen ce  o f an external 
fie ld  Ajj. T reating this fie ld  as a param eter we can convert the differential 
equation

G [17 J[ = - J d x ' G ( x , x ' , A ) n ( x ) G [ i l J ] ,  (4.18)

w here G(x, x'. A) i s  the G re e n 's  function fo r  the D irac equation in the p re 
sence of an external potential A^.

The form a l solution of'the last equation can im m ediately be written 
down. It is , o f cou rse , an exponential

GfrjJ] = G [J ]e x p j^ - i  J d x d x 'G (x ,x ',  y  ̂ )r j (x ') j  (4.19)

where G[J[ is  a constant of integration. We can now transfer this partial 
solution to the M axwell equation in ord er to determ ine also the J dependence 
of G:

[aa-j--|r - d2-—  - e 2( l+  a D 3 ) (J - iT r a r q G (x ,x ,, ~ ) ] G [ J ]  = 0.
(4.20)

Taking this equation with the ch a ra cteristic  condition fo r  the Lorentz gauge

9 (6G /6J) = 0, (4.21)

we see  that the prev iou s equation is  equivalent to

G = 0 (4.22)(-9  + e 2/w ) ( l / i )6 / 6J - e 2 ( l  + 9D9)J

in which,upe has been m ade o f the known structure o f the current

( i ) T r  a q G (x ,x ';A )  = j (A) (4.23)

in the case  o f the external potential, fo r  which the current (in the Lorentz 
gauge) was proportion a l to A^. Again, the d ifferentia l equation can be r e 
p laced  by an in tegral functional equation by using the G reen 1 s function for 
the problem :

(-a2 + e2/^) G(x, x') = 6(x, x'). (4.24)

The G reen 1 s functional G[J] is  th ere fore  given exactly  by

G[J] = exp J d x  dx' Jp(x) Gjjyfx, x') f  ( x ) (4.25)



GAUGE THEORIES OF VECTOR PARTICLES 103

where

Gmw = (1  + 9 D a )(1„G . (4.26)

A ll the physica l ch a ra cte r is t ics  are contained in G. The p ro je cto r  (1+9D9) 
a ssu res the fu lfilm ent o f the Lorentz gauge condition.

The expansion of the exponential in the solution of the G re e n 's  functional 
p rodu ces, in a sense, all the p oss ib le  states of the system . The coefficien ts 
o f the expansion re fe r  to the physica l propagation o f the system  giving the 
m ultiple G re e n 's  functions fo r  them.

At this point it m ay be instructive to con sid er  one exam ple: This is 
the com parison  of:
(1) The quantum electrodynam ic ca se  with its gauge invariance; and
(2) The v ecto r  fie ld  case  with new zero  m ass and no gauge condition.

5. COMPARISON OF THE QUANTUM ELECTRODYNAMIC CASE AND THE 
VECTOR FIELD CASE

It has been shown that one m ay, under suitable physical conditions, have 
a gauge invariant theory , exact conservation  law s and yet no z e ro  m ass v e c 
tor  p a rtic le .

In the two sim ple th eories  which have been con sidered  (pure e le c tro 
dynam ics which is  gauge invariant sind a v ecto r  fie ld  which already has a 
m ass constant and th ere fore  is  not gauge invariant) a distinct d ifference 
in the nature o f the sp ectra  has been found. In the gauge invariant case  one 
has a p article  with a n on -zero  m ass, which depends on the coupling con 
stant, w hereas in the non-gauge invariant ca se  one has both a vector  p a r
t ic le  with n on -zero  m a ss  and a s ca la r  p a rtic le  with m ass z e ro .

The com plete  set o f G reen ’ s functions, which in princip le  contain the 
answ ers to a ll p oss ib le  ph ysica l questions, are  finite in the electrodynam ic 
ca se  and m eet a ll gen era l requ irem ents in a perfectly  reasonable way.W ith 
these G reen ’ s functions one can go on to d iscu ss  scattering and radiation 
prop erties  o f the F erm i p a rtic les  in interaction  with the B ose fie ld .

In the non-gauge invariant ca se  one m eets "d iv e rg e n ce s " , which does 
not mean that anything is  infinite, but rather that alm ost everything is  ze ro . 
The system  does not respond to F erm i excitations in a way that is  form ally  
ch aracterized  by the vanishing o f the F erm i fie ld  renorm alization  constant.

This does not m ean that we have just two different th eories . We have 
the ch o ice  between one fie ld  theory , w here everything is  finite and reason 
able, and another fie ld  theory which is  unphysical, even though it is  " r e -  
n orm a liza b le ".

The m ere  poss ib ility  o f ren orm alizab ility  is  not sufficient fo r  physical 
acceptability  if the ren orm alization  constants are z e r o . Renorm alization 
is  part o f the p ro ce ss  o f physica l interpretation, not a m athem atical means 
o f suppressing d iv erg en cies .

The general technique in the investigation o f the sim le  m odel has been 
the use o f the G reen ’ s functional G[rj, J ] which is  the response of the s y s 
tem  to elem entary d isturbances.

The dependence of the G reen ’ s functional on the F erm i sou rces is  given
by:
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G[r), J] = G [J) e x p - { j n ( x ) G( x ,  x,  ^  f j )  n ( X<)K

This form ula  is  com pletely  general. In the sim ple m odel G [J] is  given by:

G [J] = e x p j - Y /  JM (x) Gm1/ (x , x /) Jv (x')k (5.2)

It is  p oss ib le  to evaluate a ll the F erm i G reen ’ s functions. In the e le c tro 
dynam ic ca se  they w ill be fin ite, w hereas in the non-gauge invariant case  
they a ll vanish.

The G reen ’ s function in the presen ce  of an external e lectro-m agn etic  
fie ld  A)j (x) is :

G ( x ,x ' ;A )  = G° (x, x') e x p jiq [ ($  (x) -<j> (x')]|i (5.3)

where

exp [ip< / (xM - Xp')] , fo r  x° > x'o

G °(x , x ' H  J°o (5-4)
-|E  exp [ ip a " (x M -x ; ) ]  , fo r  x° < x'„ •

is  the G reen ’ s function fo r  the non-in teracting ca se . This G reen ’ s function 
corresp on d s to a F erm i particle  with z e ro  m ass m oving in one dim ension. 
T here is  an invariant d istinction  between a p a rtic le  m oving to the right or 
to the left.'

The function <£ (x) sa tis fies  the differentia l equation

a 11 dp 0 (x) = o M A p (x) (5.5)

fro m  which we can construct 0 (x) as a lin ear functional of A M (x). M ulti
plying Eq. (5. 5) from  the left with the op era tor ( do - a ^ i ) one obtains the 
second  o rd er  d ifferen tia l equation:

-d 2<l> = O o -a ^ iJ a t 'A ,, (5.6)

This equation has the solution:

® (x )=  j r ( d f ) D ( x - C ) ( J ö - a 1- | j ) ^ A M( i ) .  (5.7)

The exponential in Equ. (3. 3) may now be written:

exp iq [$ (x ) -<fi (x')] = exp i f( d f)A M (f)  JM (£ ; x, x ')  (5.8)
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w here x, x') is  a definite n um erica l function, which acts as a current 
in connection  with the v ecto r  fie ld . The fo llow ing explicit expression  fo r  
the current is  obtained from  E q s /5 . 7) and (5 .8 ):

The current is  seen  to have two sou rces  with opposite signs at x and x ' r e s 
p ective ly , correspon d in g  to the effect o f the F erm i fie ld  at these points.

The different G reen ’ s functions may be constructed  by expanding the 
G reen ’ s functional G [n , J] in p ow ers  o f the sou rces  n and J. Expanding the 
G reen ’ s functional in pow ers of the F e rm i sou rces  17 one obtains:

The integrands contain, apart from  the F erm i sou rces , products of the 
G reen ’ s functions. The product in the third term , fo r  exam ple, may be w rit
ten:

dependence on the external potential is  contained in the exponential, which 
is  o f the form

j ) [ D ( x - f ) - D ( x '- 5 ) ]  . (5.9)

The d ivergence of the current is :

f  ( i ;x ,  x ')  = q [6 (x -S ) - 6 (x ' - £)] . (5.10)

I' f

G (x j , Xj'JG (x2 , x 2')  = G °(x1, x / )  GD(x2, x 2 ')

• e x p l  J ( d  %)[}(% ; x l t x { ) + j ( f ; x 2 , x 2 )]{/< I (5.12)

w here G° (x 1 , x / )  and G° (x 2, x 2')  are the fr e e  fie ld  G reen ’ s functions. The

(5.13)

so that the exponentials act as sim ple displacem ent operators . 
The fir s t  purely ferm ion  G reen ’ s function is

G (x, x') = G°(x, x )
J J = 0

P erform in g  the variational differentiation, one obtains in the lim it 
J-» 0:
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This expression  is  still purely fo rm a l. The question o f existence depends 
on the sp ec ific  fo rm  of which has a ten sor structure and may thus be 
written:

= gM,G 1( f , r ) +  a p ^ G a ß .r ) (5.16)

w here gMy is  the m etric  ten sor and Gj and G2 are sca la r  functions. Sub
stituting E q .(5 .1 6 ) in E q. (5.15) one obtains

G (x, x') = G°(x, x') exp -yHy jM (?,- x, x')a(Ja;G2(?, r )  n r ;  x, xo :5.16a)

w here use has been m ade of

f j p  = = 0

A fter perform in g  partia l integrations Eq. (5.16a) becom es

(5.17)

G (x, xO = G (x, x1) exp - y -  J x, x') G2fe, §0 du j ü(?; x, x') (5.17a)

w here the d ivergen ce  o f the current is  given by E q. (5.10). What is  really  
involved in the ca lcu lation  o f the G reen ’ s function G (x, x7) is  thus the stru c
ture of the sca la r  function G2( f , f ' ) *

In the electrodynam ic ca se  the function G ^  in the Lorentz gauge is  
given by

GM„ = ( l  + a D a J ^ - G (5.18)

w here (1 + 3 0  3 )^  is  a p ro jection  op era tor and G is  a sca la r  function c o r r e 
sponding to the m ass /u = e/JF . In the non-electrodyn am ic situation the 
function G^v is :

G jjj, = ( i  + aD a)uu - G - d / ^ j s ^ D>liV (5.19)

w here the sca la r  function G corresp on d s to the m ass s/p20+ (e2/jr) while the 
D function is  a ssocia ted  with m a ss  z e r o . In the e lectrom agnetic case  the 
exponential in E q. (5.15) may be written:

exp ^ - i e ^ J - ^ l - e x p  ip (x -x ') ]  (p2-i<0 (p2 + nJ- i o j \  (5. 20)

The in tegral in the exponent is  convergent, i . e. neither ultraviolet nor in fra 
red  d ivergen ces o ccu r . The s im plest G reen ’ s function has now been con 
structed . It is  entirely  fin ite and one would now ask fo r  its physical in ter
pretation.
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The G reen ’ s function G° has a pole  at m ass z e r o . The exponential fa c 
to r  changes th is pole  into a singular branch point. This corresp on d s to the 
fact that we are  dealing with p a rtic les  o f m ass z e r o . When the sou rce  o p e r 
ates, it m ay produce one p a rtic le  with m ass ze ro , but in addition it may 
produce any num ber o f pa irs  o f p a rtic le s , i .e .t h e r e  is  a continuous sp ec
trum .

The physica l p a rtic le  with m ass z e ro  can be identified only to the ex 
tent that one can e ffective ly  iso la te  the in itial point from  the continuous spec 
trum . Thus, in ord inary  quantum electrodynam ics the e lectron  can, strictly  
speaking, not be uniquely identified . If a charge is  created , any number 
o f photons o f a rb itrary  sm all frequ en cies  may a lso  be created . The identi
fica tion  of the e lectron  is  actually the identification  o f a lo ca lized  excita 
tion  ca rry in g  a unit ch arge and with a certa in  lattitude in the m ass set by 
the experim ental c ircu m sta n ces .

In the on e-d im ensiona l situation there is  a z e r o -m a s s  particle  super
im posed  on a continuous background of p a irs . T h is is  the approxim ate phy
s ica l tran scrip tion  o f the structure o f the G reen ’ s function in which there 
appears, not a p ole  at z e r o  m ass, but a singular branch point. The physical 
interpretation  is  thus com plicated  by this quite irrelevant question, as far 
as the genera l p icture  is  con cern ed , o f the "in frared  p rob lem " which in 
vo lves  the identification  o f z e r o -m a s s  p a rtic le  states, despite the fact that 
m a ss  z e r o  is  not separated by any fin ite gap from  the other m a sses .

One can now go on to com pute a ll the other G reen ’ s functions and to 
calcu late how p a rtic les  m oving along on a line interact with each other and 
with v ecto r  p a rtic le s  of m ass ß .

F o r  the n on -e lectrom agn etic  vecto r  fie ld , w here a "b a re "  m ass has 
been inserted , the exponential in Eq.(5.15)may be written:

exp-< -ie
l

-2r  dp
(2ir? 1 -exp  ^ip (x -x ') pZ" 1£ Mo (5.21)

T his integral is  convergent fo r  -p2-» 0, but logarithm ica lly  divergent for  
-p?->oo. F rom  E q.(515)it then fo llow s that the G reen ’ s function G (x ,x ') v a 
n ish es. This is  a lso  true fo r  every  F erm i G reen ’ s function, i . e .  the s y s 
tem  cannot be excited  as fa r  as F erm i resp on ses are concerned. This con 
trad icts  the form a l p rop erties  o f the G reen ’ s functions as vacuum expec
tation values of fie ld  products, so that th is theory must be re jected  d e s 
pite the fact that the theory  would be con sid ered  renorm alizable .

A fter th is d iscu ssion  o f a sim ple m odel we shall turn to som e general 
con siderations o f which the m odel can be taken as an exam ple. The one
dim ensional m odel is  o v e r -s im p lifie d  in one essentia l resp ect, since it con 
tains no c r it ica l dependence on the coupling constant. We have two different 
situations. One is  e lectrodynam ic, i . e .  a vecto r  fie ld  coupled by a gauge 
invariant m echanism  to a ch arge . In this ca se  there is  a zero -m a ss  particle . 
The other is  a hypothetical v e c to r  fie ld  coupled to a nucleonic charge also 
by a gauge invariant m echan ism . In this ca se  there is  no z e ro -m a ss  particle  
In other w ords, there must be a c r it ica l coupling strength such that below 
this the z e r o -m a s s  p a rtic le  rem ains and above this the z e ro -m a s s  particle 
d isappears.
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Now I w ill g ive a genera l d iscu ssion  o f the sim plest G reen ’ s function, 
which gives an account of the v ecto r  particle  spectra . If one has a weak 
external current , the expectation value o f A*1 (x) m ay be written as

w here non-linear term s have been om itted since the external current is 
assum ed to be weak.

The G reen ’ s function G ^ fx -x ')  d e scr ib e s  fr e e  p a rtic le s . The F ourier 
tran form  o f C^v m ay be written:

w here (p) is  a p ro jection  operator, which is  determ ined by the choice 
of gauge. The sca la r  function G (p) contains the sp ec ific  propagation prop 
e rties  of the system . We a re  studying h ere the response of the system  to 
excitation by an external cu rren t. The excitation  w ill in general produce 
a spectrum  o f p oss ib le  states. T his spectrum  w ill be represented by the 
spectra l structure of the G reen ’ s function. The sca la r  function in E q.(5 .23) 
may be represen ted  by

w here B (m2) dm2 is  the probability  that the excitation produces a transfer 
of energy and m om entum  which is  ch aracterized  by the m ass m . S inceB (m 2) 
is  a probability  density it must be non-negative

w here J is  the external current and j the other physica l cu rren ts . These 
currents would o f cou rse  in turn be determ ined by suitable fie ld s . I want 
to insist that the fundamental ve cto r  fie ld s  shall be observab le  fo r  very  
short tim es (or very  high freq u en cies). The tim e intervals must be so short, 
that the in teraction  e ffe cts  do not Jiave tim e to obscu r the underlying fie ld .

(5.22)

g v̂ (p) = (p) g  (p) (5.23)

(5.24)

(5.25)

The probability  density B (m 2) is  assum ed to satisfy the sum rule

(5.26)

T his assum ption may be justified  in the fo llow ing  way. 
In the L orentz gauge

(5.27)

and the propagation equation is

-a 2A = j + j (5.28)
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The respon se  of the system  to the current of the G reen ’ s function must then 
have the follow ing asym ptotic behaviour:

G ~ l / p 2(l + . . . )  fo r  -p2->oo (5.29)

w here the om itted te rm s vanish fo r  -p  -» oo. The rate at which these term s
vanish depends on the dynam ics o f the system  and cannot be asserted  in
advance. It now fo llow s from  Eq. (5.24) that th is asym ptotic behaviour is 
only p oss ib le  if Eq. (5.26) holds. No other sum rule can be stated in general, 
because that depends on an assum ption o f how the current behaves, i . e .  
o f the dynam ics.

It is  o f in terest to find a representation  o f G (p) which incorporates the 
requ ired  asym ptotic behaviour. Introducing the com plex  variable z , Eq.
(5.24) may be w ritten

G (z) = r B ^ 2 ).dlP-  . (5.30)

This function is  regu lar everyw here except on the positive rea l axis. The 
singu larities corresp on d  to the physica l values o f m . The boundary value 
o f the function G (z) is  G (p) fo r  z2-> -p 2+ ie . If z tends to infinity, except 
along the rea l ax is, one has:

G (z) ~  - l / z  . * (5.31)

F o r  the in verse  function we have:

G_1( z ) ~ - z .  (5.32)

Since G (z) has no com plex  z e r o s , G (z ) '1w ill have no com plex  poles o r  com 
plex  s in gu larities . In addition

(1 /zH G '1 + z) -* 0 (5.33)

fo r  z tending to infinity.
The function ( l / z ) ( G '1+ z) has only singu larities along the positive real 

ax is, which includes a pole  at z = 0. Hence

( l / z ) ( G _1 + z ) = X2 / z  - J'drc?s(m f/(n?  -z ) ’ 1 (5.34)

from  which we obtain the fo llow ing  representation , on placing z =-p?+ ie;

G (p) p2 - ie + X2 + (p2 - i e )J -
2 , 2 vdm s(m  

p 2 + m2 - ie (5.35)

This representation  o f G (p) has the co r r e c t  asym ptotic behaviour. C om -
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paring Eq. (5.24) and Eq. (5.35) one sees that s(m 2) must be non-negative 
sin ce  B (m 2) is  non-negative:

(5.36)

F rom  Eq. (5.24) one obtains

G (0 ) =/
d ^ B (m lL >  Q

m  * (5.37)

w hereas fr o m  E q. (5.35) it foH ow s that

G(0) = 1 /X2 (5.38)

so that A.2 > 0. '
A s fa r  as the ph ysica l p rop erties  we have inserted  are concerned, any 

non-negative X2 and any non-negative s (m 2) fo r  which the integral in Eq^5.34) 
ex ists , w ill g ive  a p oss ib le  G reen ’ s function . If one req u ires  z e ro  m ass to 
be part o f the ph ysica l spectrum  the param eters X2 and s(m2 ) can no longer 
be chosen  a rb itra r ily . If z e r o  m ass is  in the spectrum  it fo llow s from  Eq.
(5.37) that G(0) is  infin ite. C om paring with Eq. (5.38) one then obtains A=0 
as a n ecessa ry  condition . F o r  X= 0 Eq. (5.35) m ay be written:

F o r  m ass z e ro  to be present in the physica l spectrum  as an isolated sin 
gularity, the residue o f the pole in E q .(40 ) must not vanish, i . e .

I now want to exam ine what dynam ical changes are n ecessary  in ord er  to 
go from  a situation w here these conditions a re  satisfied  to a situation where 
they cea se  to be va lid . That would be the continuous change from  e le c tro 
dynam ics w here there is  z e r o -m a s s  p a rtic le  to a theory where this particle  
ce a se s  to ex ist.

W e have found the fo rm  (see  5. 35):

(5.39)

F or  p 2 ~  0 th is equation leads to:

(5.40)

(5.41)

T o  x 2 , / 2 • » ['“ dm2 s(m 2 ) "I G(p) = 1 / p2- ie + X  + (p ? -ie )J o (5 .4 2 )
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fo r  the gauge independent part o f the "photon G reen ’s function", where A.2
and s(m 2 ) a re  non-negative quantities. The (-it ) r e fe rs  to the boundary con 
dition of outgoing w aves in tim e. The sum rule /(“ dm2 B(m2 ) = 1 requ ires that 
/,*dm 2 s(m 2 )<  oo. If we put p2 = 0, we obtain 0 < l /X 2 = /,"[B (m 2 )/m 2 ] dm2 ,

sary conditions fo r  the existence of a physica l p article  with z e ro  m ass, so 
that we can  im agine conditions under which such a particle  would cease to 
ex ist. Then, we cou ld  suppose a continuous variation  as we go from  the 
electrom agn etic fie ld  with its physica l photon to  the hypothetic vector  fie ld  
associa ted  with nuclear charge which does not p o sse ss  a z e ro -m a ss  particle, 
and investigate how the photon ce a se s  to ex ist.

If we have a photon, then it is  n ecessa ry  that X2 = 0. The resultant G reen ’ s 
function is  then

is  the second  n ecessa ry  condition  fo r  a physica l particle  o f ze ro  m ass. The 
in tegral up to infinity certa in ly  ex ists , s in ce  the representation itse lf was

physica l situation to another is  the integration  down to z e r o . Then we must 
have

assum ing the ex istence  of / ”  [s (m 2 ) /m 2 ] dm2 . Now we want to find the n eces -

(5.43)

and, in the neighbourhood o f p2= 0 ,

(5 .44)

Then, the residu e of the pole , Bp, is

(5.45)

which must be g rea ter  than z e ro  fo r  the existence  of a pole, i. e.

based  on the existence  of the in tegral Jo”  dm2 s(m 2 ). What can vary from  one

(5.46)

The structure o f B(m2 ) when a photon exists is  

B(m2 ) = B0 6 (m2 ) + Bj (m2 ) 

w here (m2 ) is  continuous and

(5 .4 7 )
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1  = Bq +J dm2 Bj (m2 ). (5 .48)

The photon exists only if 0 < Bq . (In the usual language, Bo=z3). If we 
ca lcu late  the lon g -ran ge  C oulom b interaction , we find that the effective 
ch arge  is  given by

e2 = B 0 e02 (5 .49)

A z e ro  ren orm alization  constant is  not to be interpreted as a m athem atical 
p rob lem  but as a ph ysica l statement o f the absence of a p article .

The function B(m2 ) can be interpreted as the probability  that a source 
w ill produce excitations in the vacuum  of m ass m2 . Now, we want to find 
a physica l interpretation  fo r  s(m 2 ). s(m 2 ) is  the m easure o f excitations by 
an established fie ld . C onsider the vacuum state with an external current. 
Now, we ask fo r  the probability  that the vacuum  is maintained, then the 
relevant quantities

<|;> «  exp [ ( i / 2 ) J V

w here we have taken J to be w eak,ignoring m ore  com plicated  p ro ce sse s .
W e use the exponential to take into account the possib ility  that many weak 
p ro ce s s e s  are  occu rr in g  a ll o v e r  space . If we use a conserved  current, 
dß Jß = 0, then the 7ryU m ultiplying the sca lar  G reen ’ s function becom es 
e ffective ly  gllV and

< | ^ «  e x p [ ( l /2 )  J**1 (p) G (p) Ju (p )dp ]f (5.50)

w riting the in tegrals in m om entum  space . Now, we introduce the vector 
potential

A" (p) = G(p)J<' (p). '  (5 .51)

thus:

< | e x p [ ( l / 2 ) j A * * 1 (p )G '1*(p)Au (p) dp], (5 .52)

the probability  o f the vacuum ’ s rem aining unexcited is :

|<| >|2=; ex p l-J ^ d p lA " (p)|2 Im G*1 (p)], (5 .53)

Im G 'B (p) = - 7rp2 f  dm2 s(m 2 ) 6(m2 +p2 ). (5 .54)
Jo

We have tra n sferred  our attention from  the current, which may lie  fa r  out-
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side the reg iop  o f in terest to the fie ld  which lie s  in the region . In doing so, 
we find that the in verse  G reen ’ s function becom es the important quantity 
and s(m 2 ) m easu res the excitations o f the vacuum . The resultant expression  
is

l<| ]> l2^ exp [ - f f  J  dp dm2 6 (p? + m 2) s(m 2) ( - 1 / 2 )| F ^ p )  f ] . (5 .55)

t
The exp ress ion  in the exponential g ives a m easure of the probability o f e x c i
tation o f m ass m by an external fie ld  F(il' .

The condition  s(0) = 0 is  ch a ra cteristic  o f a norm al threshold, i. e. (at 
the beginning o f the excitation  spectrum ) there is  a ze ro  probability o f ex c it
ing the vacuum  by an external fie ld . T o put it another way, the condition 
fo r  the existence  o f a photon is  that nothing unusual happens at the z e r o -  
m ass threshold . On the otherhand, if the photon is  not to .ex ist, then som e
thing must happen at z e ro  m ass.

If we have abnorm al behaviour, we have two p oss ib ilities :
( 1 ) s (0 ) is  fin ite o r  singular such that g /  dm2 s(m 2) / (m 2 -g)z~ff

Then, we have no pole  at p2 = 0, but m = 0 is  still in the spectrum , i .  e. we 
have a branch point at p2 = 0, no pole and B(0) has a non-vanishing weight. 
Then, there is  no recogn izab le  partic le  of m ass ze ro .

(2) The second  p ossib ility  is  that s(m 2) p o sse sse s  a delta function singu
la rity  at m2 = 0 :

s(m 2 ) = X2 6 (m2 ) + Sx (m2). (5.56)

Then m2 = 0 is  not in the spectrum  at a ll. The in verse  G reen ’ s function is 
then

G’ ^ p ) = p2 - i e + X 2 + ( p ? - i € )£  p L J h A E p - , (5>57)

our orig ina l fo rm . Now, B(0) = 0.
T o see th is, we w rite:

B(m2 ) = ( l / f f )  Im G(p) = (1/tt) Im G1* (p)/  | G(p) |2

= m 2s i (m 2 ) /R (m 2) + [jrm 2si (m2) ] 2, (5. 58)

w here

then:

m2- A2 + m2 P  p dJ^  J L( f 2 ) ,R(m
J 2

B(0) = lim  m si (m )/X 4 = 0. 
m2->o

Now, con sid er  the ca se  w here st (m2 ) is  z e ro  fo r  m2< m j .  In the real 
w orld , we might expect that this is  never true, but it could  be true as an 
approxim ation fo r  strong in teractions. If R(m2 ) = 0, we w ill have a stable 
p a rtic le  fo r  m  < mo . At -oo, R(m2 ) = - a>. Then, if  R (m j))>0 , we have a
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stable p article , sin ce R must pass through z e r o . On the other hand, if 
R(m$) < 0, th ere  cannot be a stable p article , sin ce R is  a m onotonic function 
fo r  m < mo . If there is  no stable p article , there must be an unstable parti
cle , s in ce  R must pass through z e ro  in the continuum. W e would only be 
able to recogn ize  it as such if  the width is  su fficiently sm all. The width is  
given by

7  = 7rmz Si (m2 ) /(d R /d m 2 ). (5 .60)

It is  p oss ib le  that R m ay c r o s s  through ze ro  sev era l tim es, giving m ore 
than one reson an ce . T hese would em erge from  the sam e G reen ’ s function, 
re flectin g  the long dynam ic chain from  the com plicated  spectrum  o f the ob 
served  p a rtic le  to the s im p ler  underlying fie ld s .

In the on e-d im ensiona l m odel, we had s(m 2 ) = (e2/ 7r) 6 (m2 ). This re flects  
the poss ib ility  o f creating  p a irs  o f ferm ion s travelling  along a line. The 
function s(m 2 ) is  .an exam ple o f the second ca se , and we find a single stable 
p artic le  of m a ss  e2/ir. This s im plicity  depends on two things: the geom etry 
o f one dim ension and the fact that we only con sidered  z e ro -m a s s  ferm ion s. 
The dynam ics are not so sim ple, it is  m ere ly  the elem entary kinem atics 
which allow ed us to find solutions which fit the general dynam ic fram ew ork. 
The delta function o f s(m 2 ) at m2=0 is  so because a ferm ion  pair is. still 
a partic le  o f z e ro  m ass as opposed to the case  in three dim ensions, where 
the pa ir has a m ass spectrum . In three dim ensions, the probability o f a 
photon going into three photons goes as som ething like the eighth power o f . 
the available energy assuring us that s(0) = 0 We would expect the photon 
to disappear as the s (0 ) becom es an abnorm al threshold , i . e .  som e threshold 
m oves down to z e ro  m ass as the strength of the interaction builds up.

A crude m athem atical m od el might be given by a ch a ra cteristic  resonance 
function

s0 (m2 ) = (X2 / 7t2 ) m r /[ (m 2 -mjj K )2 + m2 T 2 ] (5 .61)

w here
mo= 2me ,K =  1 -a 2 /2, T ~  a 5 . (5 .62)

In e lectrodynam ics , So certa in ly  con sists  o f such contributions. This could 
be the positronium  contribution, which fo r  m2 < m<j K, would be the three 
photon contribution (or v irtual positronium ). As the coupling in crea ses , K 
must d ecrea se  since the binding energy o f positronium  in crea ses . At som e 
c r it ic a l strength, K would becom e zero and p would a lso  be zero since there 
is  nothing into which the positronium  can decay. By then the language is  
appropriate, sin ce  the m ultiple photon contribution would not be distinguish
able from  the "positronium "', but we shall continue our term inology ana
ly tica lly .

Since the binding en erg ies  are so large, we would a lso  expect to find 
other bound states correspon d in g  to pa rtic les  o r  resonances. Such particles 
as the sp in -ze ro  m esons would then appear as a result of the com plete 
strongly  in teracting  set o f fie ld s  and there would be no need fo r  a separate 
fie ld .
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We have not d iscu ssed  the com plete  set o f p articles  - there is  m ore 
than one type o f baryon and the list o f conservation  laws includes such quanti
ties  as isotop ic  spin. This is  not an absolute conservation  law, however, 
so we would not in sist strongly on a dynamic explanation. But we can ask 
if  a theory  with a non-A belian  invariance group can be given a dynamic expla. 
nation in term s o f what we might ca ll a non-A belian  gauge fie ld . In ord er 
to investigate such a theory, we m ust investigate the m athem atical-physical 
prob lem  o f the form ulation  and quantization o f such a theory.

In the case  o f e lectrod yn am ics the fie ld  is  the dynamic means o f m ani
festing  an e le c t r ica l charge. But the c .m .  fie ld  itse lf does not ca rry  a charge. 
On the other hand, the gravitational fie ld  in teracts with a ll energy and m o
mentum, including that which it c a r r ie s  itse lf. The non-A belian  gauge fields 
are interm ediate in that they ca r ry  the quantity o f which they are the dynamic 
m anifestations, but this quantity is  not a sp a ce -tim e  property . B efore we 
can ask ph ysica l questions about the theory, we must v er ify  that it fits within 
the fram ew ork  o f p oss ib le  quantum m echanical fie lds . In a theory in which 
the question o f com m utation  rela tion s is  not faced, there is  no difficulty in 
writing down a theory . S im ilarly, there is  no d ifficu lty  in assuring appropri
ate three d im ensional invariance p rop erties . The difficu lty a r ises  in assuring 
the con sistency  o f the com m ptation relations and the Lorentz invariance of 
the theory. T here is  a cr ite r ion  which states in one line a sufficient and, fo r  
a certa in  c la ss  of th eories , n ecessa ry  condition  fo r  re la tiv istic  invariance.

The statement o f  re la tiv istic  invariance m eans that there exist operators, 
constructed  from  the fundamental variab les  o f the theory, whose com m utators 
obey  the structure relations in the inhom ogeneous Lorentz grou p s. The entire 
structure o f the theory  w ill then rem ain invariant under the unitary trans
form ations generated by the op era tors . What is  specia l about field  theories 
is  that these gen erators  are constructed  additively from  contributions by 
sm all reg ions o f space. That is :

P M = J d 3x T ^  (x), (5.63)

JMV = J d 3x { ^  T 0" - x v T 0IJ ). ' (5.64)

The requ irem ent that P *1 and Jt“J obey the structure relations o f the 
L oren tz-grou p  im p oses  re s tr ic tion s  on the com m utation relations o f the 
den sities . Since the th ree -d im en sion a l ca se  presents no problem s, we a s 
sume that we know T ok and that it  g ives Jw and P k which generate the in 
hom ogeneous rotation  group in the c o r r e c t  way.

[Pk, pi] = o, (5.65)

fP k j° i]= iP 06M (5.66)

a re  a ssu red  by the th ree -d im en sion a l invariance. In ord er to assure such 
rela tion s a s .

[P°, J ok] = iP “, (5.67)
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[Jok, J0{] = i j k {, (5 .68 )

the equal-tim e energy density  com m utator m ust have the follow ing form  fo r  
0_ ' 0 .

( - i l t T ^ lx J jT 00^ ' ) ]  = (T °k(x) + T ok(x ')3 k6 (x -x ') + ̂ (x ,x ')  (5.69)

w here
^(x, x ') = - 0 (x,' X .)

J ' d3 x i//(x, x  ) = 0 .= J ' d3 x x k 0 (x, x7) . (5.70)

T here i s  a c la ss  o f th eories  fo r  which t  vanishes identically, which 
includes spin 1 /2  and spin 1 fie ld s . Within this c la ss  then, the relation

is  a n e ce ssa ry  and su fficient condition  fo r  Lorentz invariance.

6 . FUNDAMENTAL COMMUTATION RELATIONS

W e are now going to give a general derivation  o f the fundamental com 
mutation re la tion  which re la tes  the energy densities o f a re la tiv istic  field 
theory  at variou s points o f space  and the sam e tim e. We want to see in a 
general way that there ex ists  a c la ss  o f ph ysica l system s, for which a sim ple 
com m utation relation  relating  the energy and mom entum densities o f a physi
ca l system  is both n ecessa ry  and sufficient fo r  re la tiv istic  invariance. Much 
o f what we shall be doing w ill be entirely  by analogy to and in para llel with 
s im ila r  con siderations re fe rr in g  to the e le c tr ic  current vector .

Let us start with som e rem arks on the analogy between the e lectr ic  
current vecto r  on the one hand and the ten sor o f energy and momentum on 
the other, with regard  to the question o f equal-tim e com m utation relations. 
Com m utation relations are , o f  cou rse , interpreted in quantum m echanics 
as statem ents o f m easurability . M easurability is  fundamentally a dynamical 
p ro ce ss  and th ere fore  the underlying general dynam ic properties that charac
te r ize  these two sets o f op era tors  should be pointed out. We are not talking 
about any vecto r  o r  any sym m etrica l ten sor, but about these very  special 
quantities with their dynam ical s ign ifican ce . F irs t o f all, the vector  and 
the sym m etrica l ten sor Tf1" are lo ca lly  con served  quantities:

Secondly, these v ecto rs  are not just m athem atically conserved  quantities, 
but they are a lso  o f im m ediate physica l s ign ifican ce , because we understand 
the e le c tr ic  current v e cto r , fo r  exam ple, to have a dynam ical meaning as 
the sou rce  o f  the e lectrom agn etic  fie ld . The Operators j  ̂ and T M" have thus 
in com m on the fact that they are the sou rces  o f im portant fie lds; ĵ  is the 
sou rce  o f the electrom agn etic fie ld  and T*“ * the sou rce  o f the gravitational

x°= x /0 ( . i ) [ T 00(x ) ,T 00(x^] = - (T oh(x')) 9k fi(x -x ')

(0 . 1)
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fie ld . That is  their essentia l unique dynam ical sign ificance and it is  upon these 
facts that we want to base the theory  o f their com m utation relations. We 
shall understand what can be ca lled  the kinem atics o f specia l relativity  -  
the equal-tim e com m utation relations - in term s o f the dynam ics o f som e
what m ore  general system s.

Now, the fact that these physica l op era tors  (or sets o f operators) are 
re sp ective ly  sou rces  o f the two fie lds  ,x e lectrom agnetic and gravitational 
a lso  g ives us the general basis for understanding why they satisfy  conserva
tion law s. T hese are not arb itrary  re s tr ic t io n s , they flow  from  the structure 
o f the fie ld  equations, from  the requirem ent o f what we shall ca ll generally 
"gauge" invariance, although this w ill o f cou rse  take different fo rm s. It 
is  ch a ra cteristic  o f both o f these fie lds that they make use o f m ore field  
com ponents than are n ecessa ry  to d escr ib e  the physical inform ation and 
there are correspon d in g  freedom s o f "gauge" transform ations. This c o r r e 
sponds in the electrom agn etic ca se  to the usual gauge invariance, while 
for the gravitational ca se  it is sp ec ifica lly  the freedom  o f coordinate trans
form ations. Under these general "gauge" transform ations it follow s that 
the operators which are the sou rces  o f the fie ld s  must obey certain  identities; 
these are the law s o f conservation  o f e le c tr ica l charge and energy-m om entum  
in ord inary flat space , resp ectiv e ly . We now want to exploit, not just the 
fact that these op era tors  are the sou rces  o f the fie lds , but the re c ip roca l 
aspect, that these op era tors  are a lso  m easures o f the response o f a given 
p hysica l system  to external fie lds .

Imagine a given physica l system  in an external e lectrom agnetic field 
or an external gravitational fie ld . How do these two basic properties  enter? 
T o  answer this question, one m ay think o f the action operator *

Let the external v ecto r  potential be A j  and G(ji/ be the external gravitational 
potential. Infinitesim al variations o f these external potentials produce c o r 
responding variations in the action operator

w here, as usual, g = det gMU . This is  a way o f defining the operators j  ̂ and 
TßV . H ere we are studying the resp on ses o f the system  to external potentials, 
which must o f cou rse  be such that they are consistent with the requirem ent 
o f general gauge invariance. A gauge transform ation  is not a physical trans
form ation; i f  the change o f a ve cto r  potential is

(6 .2 )

(6.3)

(6.4)

*  All these ideas, of couise, are characteristic of the local theory of fields.
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öAp = dß ö X

then the action  in tegra l w ill not change, with appropriate boundary con 
ditions, which im p lies  the con servation  law

8 j"  = 0 . (6.5)

S im ilarly , an in fin itesim al co -ord in a te  transform ation

t  = x M - (6 .6)

induces an in fin itesim al change in the sym m etrica l tensor gliV:

6gßv = 6 5 \ g , , „  + 9 M6CXgM!/ + B v6SKgv„ .  (6.7)

and the action  integral is  invariant under this transform ation . Then, upon
inserting E q. (6.7) into E q. (6.4) and integrating by parts with appropriate
boundary conditions, we get:

W R g t o l 1" ' )  = d / 2 ) 9 x g (J„ T MW. (6 .8)

If we now sp ec ia lize  to the ord inary  space tim e, the left-hand side vanishes 
and we com e back to the conservation  law:

a (1T '“ ',=  0 . (6.9)

This ex p resses  the fact that in an external e lectrom agnetic field , charge 
conservation  still has its usual form , w hereas Eq. (6.9) takes a slightly 
different form  given by Eq. (6 .8 ) owing to the fact that the gravitational field 
itse lf  ca r r ie s  energy and mom entum . H ere we see how the response o f the 
system  to an external fie ld  is  the orig in  o f these conservation  laws.

Now we com e back to the connection  with com m utation relations; we 
want to base the theory o f com m utation relations for equal tim e on these 
conservation  law s (E qs. (6.5) and (6 .8 )). Both o f them are equations of m o
tion o f the form

30 A(x) = B (x ) (6.10)

which maintains its structure independently o f the values o f the external 
param eters (external potentials). The meaning o f A and B will, o f course, 
change.

I want to  show now that when we have such a situation, it im m ediately 
im plies an equ al-tim e com m utation re lation . This is  the connection be
tween the dynam ics im plied  in the con servation  law s and the com m u
tation rela tion s . T o  do this we shall firs t  o f aH use the action princip le
in the follow ing way. C onsider the exp ression

90< t 1 |A(x)|t2 > = < t 1 |B(x)|t2 > (6 .11)
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where t i > t  > t 2 the m atrix  elem ent of Eq. (6.10) between the states at tim es
1 1 and 12. Let us now p er fo rm  an in fin itesim al param eter variation. The 
m atrix  elem ents would change for  two rea son s . F irst, A (x )  and B(x) may 
be explicit functions o f the param eters; we shall denote by 6 'A (x ), say, the 
corresponding  variation . Then, there would be a change associated  with 
the change in dynam ics o f the system  as a resu lt o f  this param eter varia 
tion. The change in the transform ation  function w ill be given by

6< t i| t 2 >= i<  t j  | J  (dx)6 '£ | t 2 > . (6 . 1 2 )

T h ere fore  E q. (6.11) would change into:

30< t 1 |6,A (x )+  i J W )  (A (x)6t ( x ' ) )  + |t2 >

= < t 1 |6 'B (x ) + i J ( d x ' ) ( B (x)6£ ( x ' ) ) + |t2 > (6.13)

where we have dropped the "dash " on 6 because this is  the only change 
in the Lagrangian we con sid er . Now, from  E q. (6.10) and the definition of 
tim e ord ered  products we have

30 (A (x)6X(x>))+ = (B (x )6 1 (x '))+

+ 6 (x° - x0' ) [A (x), 6 £ (x ')]

and this gives us the equal-tim e com m utation relation , written in operator 
form  as

d3x ') [A (x ) , 6 ^ (x ' ) ] x0 = x0. = 30 6 *A -  6 ’ B. (6.14)

Here we have an instrum ent, whenever we have an equation o f motion 
involving som e param eters , to  find a com m utation relation  at equal time 
between the ob ject that obeys the equation o f m otion and the m easure of 
the resp on se  o f the system  to the variation  o f param eters.

An alternative derivation  (without using the action princip le) can also 
be given. We have:

a 0A = B

= ( l / i ) [ A ,  P°] + O 0A ) exp (6.15)

where the last term  re fe r s  to any exp licit tim e dependence.
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(6.16) 

(6.17)

and th ere fore : ,

j  [ A , ß < ? x ' ) ö X ( x ') ] x, = x0, = 3 06 ’ A - 6 «B,

as established above. As an illustration , let us con sider the electrom agnetic 
fie ld . We have

90 j°  = - 3 kj k , (6.18)

i . e .  A (x) = j° (x )  and B(x) = -3k j k (x). The external param eters are the con 
tinuous set o f values o f the com ponents of the external v ector  potential.
T h ere fore , E q. (6.14) gives the equal-tim e com m utation relation

\ J { d x ') [ j ° ( x ) ,  jM (x ')äA  ( x ' ) ]

= 90 6 ' j ° ( x ) +  ^ 6 *jk (x ) . (6.19)

B efore  evaluating the right-hand side we use firs t  E qs. (6.12) and (6.3) to 
obtain

6 A < tl l t 2 > =  i < t .1l v/ i d * ) i (|«A '1 |t2 > .  (6.20)

A  second  variation  g ives:

6A < t i l t 2 > = - < t 1\ffttx)Wx')6A>i(x)6Av{x')

• (j|i(x)ji;(x'))+ - J|t2 >. (6.21)

Now, the in tegral on the right-hand side is  a quadratic form , sym m etric 
in x, ß  and x ',  v .  The fir s t  term  can also be taken as such. We thus obtain 
the r e c ip ro c ity  relation :

A change in the param eters w ill induce the change:

6 'B  = ( l / - i ) [ 6»A, P°] + (1 /i ) [A , 6 'P ° ] + 6 ’ (30 A )exp

but

6 ’ P ° = - /d 3x &t(x)

[ö'j^ (x)] / [6 A w(x')] = [6 (x1)] /[6 Au ( x )] (6.22)
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We shall con sid er  a sp ecia l c la ss  o f  physica l system s in which jM (x) is loca l 
in tim e in its exp licit dependence on the extrem e potential, i. e. in which 
the current does not depend exp licitly  upon the tim e derivative o f the ex
ternal potential, d oA v (x). Under this assum ption it follow s from  Eq. (6.19) 
that the charge density j0 (x) does not depend exp licitly  on the potentials at 
all.

[S 'j0( x ) ] / [ 6A "(x ') ]  = 0 

and th ere fore , the re c ip ro c ity  relation  g ives:

[6 ’ j k (x1)] / [ 6A° (x)] = 0, (6.23)

i. e. the spatial current density is  not an exp licit function o f the sca lar po
tential, A 0 . In what fo llow s we shall show that the spatial current must 
depend exp licitly  on the spatial part o f the v ector  potential. T herefore  6*jk(x) 
m ay be written as

5 'jk (x) = /(d 3 x ' ) [ 6 ' j k ( x ) ] / [ 63 A c (x')] 6Af (x ') (6.24)

where the sub-index 3 indicates a th ree-d im en sion a l variational derivative. 
Inserting this into Eq. (6.19), we find the equal-tim e com m utation relation

[ j° (x ) , j ° ( x ') ]  = 0 (6.25)

and

(«• * »

where the right-hand side has been rew ritten  using the re c ip roc ity  relation.
The com m utator o f E q. (6.26) cannot vanish, because i f  it w ere zero , 

it would v iolate  the ph ysica l requ irem ent that there should be a vacuum state. 
In ord er to p rove  th is, we take the three-d im en sion a l d ivergence o f Eq.
(6.26) and use Eq. (6.18) to  obtain:

[j° (x), - ia o j° (x ') ]  = ( x ' ) ] / [ 63 A 1 (x)] . (6.27)

Now, the com m utator o f an operator and its derivative is  in trinsica lly  p os i
tive , as can be seen  in the follow ing way. If A (x °) is  a herm itian lo ca l opera
to r , a spatial average o f j° (x) over an a rb itrary  test function, then

[i30 A , A] = [ [ A ,  P ° ] ,  A ].

Taking the vacuum  expectation  value o f this expression  and using the property 
o f the vacuum  state o f having zero  energy, we get.
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< [ i9 0 A , A ] >= 2 < A P °A >

and,as the operation  o f A on the vacuum produ ces higher excited states, the 
right-hand side is  in trin sica lly  p ositive . T h ere fo re , the com m utator of Eq.
(6.27) cannot vanish identica lly  and this im p lies  (Eg. (6.26))that the vector 
current is  an exp licit function o f the external potentials.

This resu lt apparently con trad icts what one knows about the D irac field , 
w here a v ecto r  current is  given by

j = ( 1 / 2 ) ipa qp = ^  7  <P
M M M

and does not depend exp licitly  on the external fie ld s . What in fact happens 
is  that this product is  not re a lly  defined, and can be given a meaning only 
by separating the points spatia lly  and defining a suitable lim iting procedure 
which m ust maintain gauge invariance as in paragraph 1. In this lim it the 
dependence on the external potentials w ill appear.

Let us now give a s im ila r  d iscu ssion  fo r  the case  o f an external gravita
tional fie ld . The situation here is  som ewhat m ore  com plicated  because the 
correspon din g  con servation  law  (eq. (6 .8 )) contains exp licitly  the external 
potential.

Eq. (6 .8 ) can be rew ritten  as:

\ l e x y v ) = { i / 2 ) T J i V (h  g M„ - g x „ g a V « ß > -  ( 6 - 2 8 )

We now sp ecia lize  to a p articu lar gravitational fie ld  where

and g00 is  an arb itrary  function o f x . Eq. (6.28) then red u ces , fo r  X = 0, to

9 ( ( - g nn)T°° ) = -9 ( ( -g  )T ok ) + ( l / 2 )T ok 8 g (6.29)
00 k 00 k 00

w hile, fo r  X = k, Eq. (6 . 8 ) g ives

V " / r g ^ T°k ) = d / 2 )  ^ 7 T 00 9k g00 . (6.30)

We shall use these relations to derive  the com m utation relation . As 
in the electrom agn etic ca se  we shall con sid er a specia l c la ss : T15* may (in 
fact, it m ust ) be an explicit function o f goo at the sam e tim e, but it does 
not depend on goo at d ifferent tim es, i . e .  it does not depend explicitly  on 
the tim e derivatives (tim e loca lity ). F rom  this assum ption it follow s (Eqs. 
(6.29) and (6.30)) that the com binations (gQo ) T 00 and ■J-goo T ok are not ex
p lic it  functions o f goo at all. P erform in g  the corresponding variation and 
using Eq. (6.14), we obtain, after setting g0Q = -1 :

( l / i ) [T ° °  (x ),T °° (x')] = - 9 k 63 ( x - x ' ) ( T ok (x ) + T ok(x '))-  (6.31)

This is the fundamental com m utation relation  which the energy density must 
obey fo r  the assum ed c la ss  o f physica l system s . It is a lso  a n ecessary  and
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sufficient condition  to guarantee the re la tiv istic  invariance for these system s. 
Upon integration, we obtain from  it the com m utation relation  fo r  the genera
to rs  o f the L orentz group.

7. CONSTRUCTION OF A RELATIV ISTICA LLY INVARIANT, CONSISTENT 
THEORY OF NON-ABELIAN GAUGE FIELDS

We should m ention here a few  things about gauge invariance, because 
this w ill again be the m otivating consideration  in the construction  o f such 
a m ore  general th eory . F or  e lectrom agnetic gauge invariance, we have

A „(x ) -» A m(x ) + 0M X ( x ) ,

Fm (x) -> F v (x), (7.1)

^  X (x ) -> e iqX(x) X (x)

where X (x) is the fie ld  carry in g  an e le c tr ica l charge. This transform ation 
form s an Abelian group.

Let us im agine a situation in which we have severa l ch arge-lik e  p rop er
tie s , fo r  instance the various com ponents o f isotop ic  spin, which are carried  
by som e fie ld  but which are also ca rr ie d  by the gauge fie ld  itse lf. Let Ta , 
a = 1 , .  . . .  ,n , be the charge like m atrices  associa ted  with the fie ld  Xand t 
the m atrices  associa ted  with the gauge field  and G ^ .  C onsider the 
the c la ss  o f in fin itesim al gauge transform ations

X -> [1  + i E T a6Xa(x )]X , (7.2)
a=l

GmV -» [1  + i j M . f i X . W ]  G m„ ,  (7.3)

$  -» [1  + iE  t a x  (x )]$  + a  6X (x). (7.4)
M a=l a a M M

Note that the fie ld  Gm„ tran sform s now accord in g  to Eq. (7.3), while in the 
electrom agn etic ca se  the correspon d in g  fie ld  strength F ^  rem ains un
changed because it does not ca r ry  an e le c tr ica l charge. A lso , the tran sfor
m ation o f (Eq. (7 .4)) ex p resses  the fact that it ca rr ie s  a charge and is 
a gauge fie ld . T hese  transform ations must fo rm  a group (which we assume 
to be com pact). This requ irem ent im plies com m utation relations for Ta and
t : 
a

[ T . . T 1  = E T  t . , (7.5)L b * c  1 a-  a abc '

and

t v y  ^ V a b c  (7-6>
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where the t^ ,. are the stru ctu re constants o f the groups. A lso , for the in- 
hom ogenous transform ation  (Eq. (7.4)) to  belong to this group, we must have

( V a c ^ a b c -  (7-7)

In ord er  to keep the fie ld s  G jlv herm itian, the finite herm itian m atrices 
t m ust be im aginary and th ere fore  antisym m etrica l. F rom  this last p rop er
ty fo llow s the antisym m etry o f the structure constants in the indices a and 
c . F urtherm ore , the com m utation relations im ply their antisym m etry in 
the indices b and c . T h ere fo re  the structure constants are antisym m etrical 
in a ll in d ices . F rom  here fo llow s the im portant rem ark  that for  a group 
to be n on -abelian  (tabc *  0), it must at least be a three-param eter group.
In the th ree-d im en sion a l ca se  t abc = i^abc > e abc being the totally antisym
m etric  unit ten sor, and the com m utation relations becom e the fam iliar angu
lar mom entum  com m utation relations fo r  isotop ic  spin.

The in fin itesim al gauge transform ations which ch aracterize  a non- 
abellian gauge fie ld  are  :

X -* ( l + i T 6X)x,

G ĵT* (1 + it6X)G(jV, (7 .8 )

-» (1 + it6X)$(J+ 9)j6X.

X is  a F e rm i fie ld . The T ’ s are m atrices,and  in T 6 X we understand that there 
is  sum m ation ov er  the n gauge functions :

T 6 X = E ^5X a (7 .9)

(som etim es, to  avoid am biguity, we shall use the bracket notation T 6X = 
’ T 6X'). In the electrom agn etic  ca se  the fie ld  G is  gauge invariant, but here 
it a lso  undergoes gauge transform ation  with the ch aracteristic  n dim en
sional m a trices  t . Thus GM„ i s  a vecto r  with the n com ponents (GMl)a. The 
com ponents o f the m a tr ices  t a re  given by the set o f structure constants 
t abcthat are ch a ra cte r is t ic  o f the group :

( U c  = w  ( 7 - 1 0 )

The v e c to r  fie ld  $ is  on the one hand a gauge fie ld  - to  th is property c o r 
responds the term  dß 6X in the gauge transform ation  - and on the other hand 
ca r r ie s  the internal p rop erties  and so responds linearly  to gauge tra n sfor 
m ations in the term  (1 +itöX)$M.

8 . NOTATIONAL DEVELOPMENTS

Suppose that in an n dim ensional space we have v ectors  A, C and m atri
ces  tb and we fo rm  the sca la r  product A t C . This has com ponents c o r r e s -  
sponding to the n m a t r ic e s ^  and we may fo rm  its sca la r  product with a third 
vecto r  B :
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(A tC )B  = £ cA atabcC cB b. (8 -D

täte is  totally  antisym m etric in the indices a, b, c so £ tabc A aB bC c is  a t o 
tally antisym m etric function of the three v e c to rs . The product (A tC )B  is 
unchanged by c y c lic  perm utation of its fa c t o r s :

(A tC )B  = (B tA )C  e t c . ,  (8 .2 )

and is changed in sign by a n ticyclic  perm utations of its fa c t o r s :

(A tC )B  = -(B t C )A e t c . ,  (8 .3 )

If we rem ove one o f the v e c to rs  fro m  these tr ip le  sca la r  products, say we 
rem ove A from  (A tC )B  = - (A tB )C , we get a v ecto r  equation which can be 
expressed  in our prev iou s notation as :

' t C 'B  = - ' t  B 'C .

Now we return to  the gauge transform ation  fo r  $ :

= 4>fj + O ij -  i 't  4v')6A.. ( 8 .4 )

We have used the last resu lt to w r it e 'töX1̂  = -'tO^ 6X. The gauge tra n sfor 
m ation th ere fo re  in volves, not just a sim ple gradient, but a sort o f ex 
tended gradient in which a term  involv ing«^  has to be added (c f .e le c t r o 
m agnetism , w hence one in troduces the electrom agn etic interactions by re>- 
p lacing 3jj by 9M - e A^). W e m ay ca ll  9M - 'i  t the "gauge covariant deriva 
t iv e " .

C onsider now som e p rop erties  o f the gauge covariant derivative. The 
gauge tran sform ation  can be introduced in  the fo llow ing algebraic way. Let 
us take 9 - i 't  (suppressing  a ll ind ices) and apply to it an orthogonal tran s
form ation  in n d im ensional space :

( l - i t 6 X ') (9 - it< f ) ( l+ it6 \ )  = 9 - i t ($ - (9  - i 't O ') ^ ) .  (8 .5 )

We shall ca ll th is an orthogonal transform ation  because the m atrices  t are 
antisym m etric and im aginary . (The 6X are a set of n arbitrary functions). 
In the derivation  o f th is equation we have used the com m utation relation

[>t 4>7t«V] = -t(d> t 6X ). (8 . 6)

W e see  that the effect o f the orthogonal transform ation  on 9 - i t $  is  to m ain
tain its  stru ctu re but to rep la ce  $ by the gauge-transform ed  operator c o r 
responding to the gauge functions -<5A. The invariance of 9 - i t  0 w ill thus 
be m aintained under the orthogonal transform ation  provided that we sim ul
taneously subject $ to  a gauge transform ation  correspond ing to the gauge 
function + 6A..

A nother im portant exp ress ion  involving these gradients is :

[9p - i ’ tfcj', 9„ - i 't  ${,] = - i ' t f 2G'My (definition of ^ G ^ ) , (8 . 7)
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from  which em erges

PGpv  = + i ( ^ t $ „ ) .  (8 . 8)

Note that th is com m utation relation  re fe r s  only to the n -d im ensional m atri
ce s . The com m utation rela tion s o f the <5 's  con sidered  as operators w ill 
be treated  la te r .

Let us con s id er  the effect of an orthogonal transform ation  on G^p.Multi
plying [fy -  i 't  du - i 't  fro m  the left by l - i t 6A and from  the right by 
1 +itSA is  equivalent to tran sform in g  the $ ’ s by the gauge transform ation 
- 6A . What w e find is

(1 - i 't 6A')t G (l-H .t'6A/) = t(l-i'tSA ')G , (8 .9 )

and the gauge transform ation  of G under the gauge transform ation  - 6A is

G -*  ( l - i 't ö V )G . (8 .10)

Replacing - 6A by 6A, we see that the transform ation  law o f the G introduced 
there is  the sam e as that w ritten down at the beginning o f this part. Later 
we shall com e  to identify ou r present G with the previous o n e ; but fo r  the 
m om ent the result is  just that when $ undergoes an inhom ogeneous gauge 
transform ation , the structure G undergoes an hom ogeneous one.

Now we turn fro m  the defining o f ob jects  with sim ple transform ation 
prop erties  and go to  dynam ics. The dynam ics, o f co u rse , consist of our 
F e rm i fie ld s  which ca rry  a property  we m ay as w ell ca ll isotop ic spin, in ter
acting with the v ecto r  fie ld s . F irst  we con sid er the F erm i fie ld  by itself, 
treating e ffective ly  as an extended fie ld . O f cou rse , $ jj is  not really  an 
extended fie ld , but we tem pora rily  treat it as such. The Lagrange function 
is

■£ = (i/2)Va',(dll - i 'T  $M')* +  (i/m )® ß* (8.11)

w hichcontains the gauge covariant derivative 9̂  - i ’ T This Lagrange func
tion  is  invariant under the in fin itesim al gauge tra n sform a tion :

*  -» (1+i’ T ÖA')*,
(8. 12)

-* + (ajj - i ’ t$,5)6A.

Note the two kinds o f m a tr ices  : T fo r  the sp inor fie ld  and t fo r  the vector  
fie ld . H ow ever, the ch arges induced involve the com m utators o f the m atrices 
and the com m utators o f the T are  given in term s o f the t, so that the charge 
produced by the variation  o f >£ can, and does, can ce l that produced by the 
variation  o f $ . ,

Let us con sid er  the charge in the Lagrange function induced by an in 
fin itesim al ch arge  in the v ecto r  $ .  W e can w rite  it

6$ JC = 'S  kM' (8 .1 3 )
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w here each is  a v e c to r  with n com ponents k  ̂ and

k£= ( l / 2 ) * ^ T a* . (8.14)

The k{J fo rm  a set o f cu rren ts , s in ce  cu rren ts  a re  always identified through 
the effect of a change of potential. It is  a great advantage o f our way of w rit
ing cu rren ts  that w e c le a r ly  separate the kinem atic vecto r  which is  a sso 
ciated with flow  fro m  the ob ject that flow s. This is  usually observed  when 
talking only about an e le c tr ica l charge because it can be d iagonalized ; but 
when there a re  n non-com m uting ob jects  they cannot all be diagoftalized.

' We next ask what restr iction s  a re  im posed on these currents kM by the 
requirem ent o f gauge in variance. The action operator of the system  is

and the in fin itesim al in the action operator associa ted  with an infinitesim al 
charge 6 in the external fie ld  is  :

If the variation  6 is  chosen  to be that tr iv ia l charge which is  associated  
with a gauge transform ation

with appropriate boundary conditions at infinity, ,then the variation  of the 
action  must vanish loca lly  and we find

which is  a kind of gen era lized  conservation  equation. Thus the current kP 
is , s tr ictly  speaking, not c o n s e r v e d : there is  an analogy here with the stress  
ten sor T*1", which is  not con served  in an external gravitational fie ld  because 
the gravitational fie ld  tran sports energy and m om entum . So here the cu r 
rents k  ̂o f  the F e rm i fie ld  a re  not con served  because, if you like, they tran s
fe r  isotop ic  spin to the B ose  fie ld .

Our gen era lized  con servation  equation im m ediately im plies com m uta
tion rela tion s fo r  the W*. W e em ploy the sam e d ev ice  as used in the previous 
section s to derive  the com m utation relations fo r  the e le ctr ica l charge den
sity and fo r  the energy density . W e regard  th e $ M as an external property 
which is  entirely  consistent fo r  the derivation  o f  the com m utation relations 
fo r  the F e rm i fie ld s  a lone. P roceed in g  as b e fore , we w rite down the equa
tion o f m otion fo r  k ° :

(8.15)

(8.16)

0 u - i ' t ^ ) 6 X (8.17)

On - i ’t ®;)kf* = 0 (8.18)

do k° = i 't  $o k° - O t - i t  <Sf )k f. (8.19)

Now we m ake use of two things : a param eter $ 0 appears in this equation 
o f m otion, and the e ffect upon the equations o f m otion of a variation  o f $o, 
which is  coupled to  k° in  the Lagrange function, te lls  one the com m utators
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at the sam e tim e betw een the ob ject, k°, which obeys the equation of m o
tion , and the generator of those in fin itesim al transform ations. The com 
mutation relations can be read o ff from

L f(dx 'H l/i)[k°a(x), kg(x'J]6 $ ob(x') = - i  E tabc6 $ab(x)k°(x)
b J  uu b,c

which im p lies , sin ce  the 6®*s are  arb itrary , that at equal tim es

[kO(x),k^(x')] = 6 (x -x )E  t abckO(x). (8 . 20 )

Thus the k° at different points com m ute and at the sam e point they obey som e
thing like the group com m utation re la tion s. If we define quantities Ka by in 
tegrating k§ ov er  a ll space :

K a = J (d 3  x)kO(x) (8 . 2 1 )

then the satisfy

[K a, K b] = E  t ab c K c = £  K c tcab ( 8 .2 2 )
c c

which a re  just the group com m utation re la tion s. O r in other w ords, the Ka 
furnish a representation  of the group. But it is  im portant to recogn ize  that 
the K a a re  not constants of the m otion K a f  0. This is  because the k° do not 
obey conservation  equations o r , in other w ords, K a is  only a part of the 
total iso top ic  spin (the v ecto r  fie ld  ca r r ie s  the rest).

9. DYNAMICS OF THE FU LL SYSTEM

Now we turn to the dynam ics of the fu ll system . We use the notion of 
-gauge invariance as a guide in w riting down a tentative Lagrange function 
fo r  the w hole system . Then we attempt to find the com m utation relations 
o f the fundamental op era tors . F inally, we must ask whether our tentative 
Lagrange function is  rea lly  com pletely  sa tisfa ctory ,in  the sense that it p r o 
duces a Lorentz invariant theory . We w ill find that the orig inal Lagrange 
function was am biguous within a certa in  c la ss  of Lagrange functions and 
a particu lar one must be se lected  if we are to m eet the requirem ent of r e 
la tiv istic  in variance. T here  is  no guidance here to be gained from  the c o r 
respondence p r in c ip le : the am biguous term s are of the ord er  of Planck’ s 
constant squared and are  sim ply not determ ined by any requirem ent other 
than that of re la tiv istic  in variance. We shall have to apply the test we de
veloped in te rm s of the com m utator of the energy density.

The tentative Lagrange function is  constructed  so as to give first order 
fie ld  equations; It must th ere fore  contain firs t  derivatives

JC = - ( l / 2 ) G ^ ( 3 M$ „ - a u ^  + i ( % t  % ) )

+(f2/4 )G (i'/G(J„ + (i/2)%Er 0̂ (9̂  - i 'T  ^ ')¥  + (i/2)*|3*m 0. (9.1)

f  is  a ch a ra cter is t ic  coupling constant (d im ension less in the three-d im en -
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sional ca se ). The question of the ord er of m ultiplication  of operators is  of 
cou rse  ba sic , but we cannot yet usefully d iscu ss  it.

Let us now take the Lagrangian function and w rite down the equations 
of m otion. If we vary  G ^ w e  obtain :

f 2GMI,=  (9.2)

It must be said at this point that we are  using the variational principle 
in a fo rm a l way. The purpose is  to  com e back la ter to th is point and c r it i 
c iz e  and rectify  what we are doing. At the mom ent we are applying a c la s 
s ica l action p rin cip le  without im posing any particu lar ord er  upon the products 
o f op era tors .

If we vary we get :

-(3„ - i 't  = kM.

This com pletes the fu ll-set of the vecto r  fie ld  equations. We also have the 
D irac equation obtained by variations of \t:

(a*' a(J- i 'T $ (J' + ß m )* =  0 ,

com pleting the p relim inary  set of fie ld  equations.
W e have always said that the structure of the M axwell fie ld  equations 

must guarantee as an identity the conservation  o f charge. The sam e condi
tion  must be im posed h ere . The structure of the non-abelian vector gauge 
fie ld  m ust guarantee as an identity the extended conservation  equations of 
the v e c to r  cu rren t. O b serve  that if  we take the gauge covariant d ivergence 
o f k*1 we w ill have :

(df, -  i 't  äpW1 = (9m - i ' t $ ; ) 0 I/- i 't $ ') G 11'

= ( l / 2 p M - i 't  $ ') ,  (3,, - i ’ t $£)]G,i1'

= ( l /2 ) ( i 'tG M/I,)G,i'/= ( i /2 )0 a'tG M1>=0. (9.3)

In the e lectrom agn etic  ca se  the t e r m 't$ 'is  absent and the result is  e v i
dent. H ere it fo llow s fro m  the antisym m etry o f Gt“ ' and the fact that t is  to 
tally  an tisym m etrica l. The resu lt obtained is  so fa r  form al, because it is  
n ecessa ry  to take into account the p ossib ility  that the different com ponents 
o f 4 may not com m ute. In other w ords, the question o f operator m ultip li
cation  o b scu res  the sim p licity  o f the derivation  and the sim ple result no 
lon ger obviously  fo llow s  within the fram ew ork  o f operator equations, although 
it is  true in the c la s s ic a l derivation . A ll this is  prelim inary to an actual 
derivation  o f the identification  o f the fundamental variab les  and their basic 
com m utation re la tion s .

W e w ill now introduce sou rce  te rm s in the Lagrangian, to make use 
o f  a uniform  technique and exploit the d ev ice  we have been using so fa r , in 
which, from  equations of m otion in the p resen ce  o f a suitably disturbed 
system , we in fer com m utation rela tion s in such a way that we can identify
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the fundam ental v a r ia b les . W e go back to the Lagrangian and introduce there 
the s im ple lin ear sou rce  term s

w here M ^ is  the external sou rce  fo r  the fie ld  intensities G ĵ, and-Sjj is  the 
external current fo r  the potential 4*1. H ow ever, the addition of these term s 
must not v io la te  the gen era l gauge invariance o f the Lagrangian. This means 
that and 3  ̂must respond to the gauge transform ations of the vector  field  
and fo r  that reason  the sou rces  a re  functions of ®*. Note a lso  that here the 
situation is  m o re  com plica ted  than in the electrodynam ic ca se  because $ 
undergoes an hom ogeneous as w ell as an inhom ogeneous gauge tran sform a
tion. But the rela tion  betw een the sou rces  and the v ecto r  fie ld  must be sim ple 
in o rd er  not to destroy  the utility o f th is technique. W e have to exhibit, fo r  
exam ple, M($) in such a way that it responds p roperly  to a gauge tra n sfor 
m ation but a lso  in such a fo rm  that, at least fo r  particu lar calcu lations, 
the $  dependence d isappears. That m eans that in a particu lar gauge the 
sou rces  are independent of $. In other w ords, we shall not insist upon full 
gauge invariance fo r  M, but only explicit invariance in the neighbourhood 
o f the sp ec ific  chosen  gauge. We a lso  want the connection  betweenthe sou rces 
and the fie ld  quantities to be instantaneous, i .  e . we must im pose tim e lo ca 
lity . A ll the relations betw een sou rces  and the v ecto r  fie ld  must then be 
lo ca l in tim e.

Let us again w rite  the in fin itesim al gauge transform ation  properties
of

+ (â i - i ' t $ ; ) 6X. (9 .4 )

We see  that the tim e com ponent changes by the tim e derivative, so that if 
we want tim e loca lity , we must use only the space part and not the tim e 
com ponent which c a r r ie s  the tim e  d erivative . The spatial part is :

$ ->$ + (V-i't$')6A. (9.5)

W e are in terested  in exhibiting a function o f the v ecto r  $ which finally 
w ill depend only on Isolating this dependence to counter the gauge tran s
form ation  o f $, the gauge variation  o f the v ecto r  i> contains the gradient 
o f 6A, but we want to construct a sca la r  equation and, naturally, we take 
the d ivergen ce  of

V . *  - » V . ?+ V .(V -i't$ ')(5 - (9 .6 )

Having once done that, the natural gauge about which we have to perform  
the in fin itesim al variation  o f gauge appears to be the one in which V . $ = 0, 
i . e .  the radiation gauge. In an in fin itesim al neighbourhood of this gauge 
we h a v e :

V .$  = V . (V - i 't $ ')6A. (9 .7 )

The ch a ra cte r is t ic  G reen 's  function fo r  this d ifferentia l equation s a t is f ie s :
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-V .(V - i 't  $')£>(x, x ’) = 63 (x -x ') ( 9 .8)

where £) is  rea l and sym m etric

0 ab(x ,x9  = £>ba(x', x) (9 .10)

and rep la ces  the Coulom b-gauge function fo r  the electrom agnetic case . The 
solution fo r  6X is

6X = - ®. f9 - 11)

T his solution  g ives  the gauge variation  6X fo r  an in fin itesim al neigh
bourhood o f the radiation  gauge V . $ = 0.

W e can now w rite  down exp licitly  what M ^^ijm ust be , not fo r  any gauge 
but sp ec ifica lly  fo r  the con sideration  o f in fin itesim al variations about the 
radiation  gauge. It m ust be such a function o f $ that it responds by the coun
te r  transform ation

M ^ ® )=  ( l - i t 0 * V .  * )M „ „  (9 .12)

w here the M^v a re  just sim ple num bers. This fo rm  fo r  the sou rce  satisfies 
a ll our th ree  requ irem en ts. F irs t  o f a ll, th ese gauge variant sou rces are 
related  to arb itrary  n um erica l quantities only at the sam e tim e. Secondly, 
in the radiation gauge that dependence d isappears and the sou rces  are a rb i
tra ry  num bers. T h ird ly , fo r  in fin itesim al variations about the radiation 
gauge, they vary by the fa cto r  (1 +itöX) which just com pensates the gauge 
variation  o f G tiW. W e have ach ieved gauge invariance in an e ffective com pu
tational fo rm  fo r  in fin itesim al variations about the radiation gauge. And 
when we actually w ork  in the radiation gauge the $ dependence disappears.

Let us now con stru ct 3(i($) by the sam e p ro ce d u re :

3 m($) = (1 - it  * )3 m. (9.13)

is  independent o f $ but, sin ce there are two parts to the gauge variation 
o f 4, one is  inhom ogeneous and fo r  the gauge invariance o f this part it must 
be dp 3 11 = 0. Thus we have invariance under in fin itesim al gauge tran sfor
m ation about the radiation gauge.

Returning now to the equations of m otion and adding the extracontribu
tions from  the external sou rces , we can read a ll the equal tim e commutation 
relations by m ere ly  inspecting the structure of the fie ld  equations.

The new equations are , f ir s t  fo r  $ :

9(i ^ u-  dv i  ̂ t  -  f  ̂ Ĝ i/ Mpy. (9.14)

The Mjjy are  here num bers independent o f ® because we are now working 
in the radiation  gauge. Secondly, the equation fo r  G^:

(9„ - i  t % )G »V = k»  +3M + VH S# [ (1 / 2)GXvi t MXi + i t (9.15)
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w here is  the fou r com ponent v ecto r  of which the tim e component is  zero . 
Let us now take the two term s involving 3^:

J+V i>  ( - i t * ) 3 =  [ l+ v £ > 0 - i 't $ ') ]  3 . (9.16)

the derivative 31 has been added to obtain the "covariant gradient" 9 - i t $ .
Its contribution is  z e ro  because 3  is  con served . This last equation interests 
us because the op era tor that acts upon 3 is  a p ro je cto r  operator that picks 
up exactly  the right p rop erties  o f the v ecto r  3v, in the follow ing s e n s e : we 
ob serve  that the right side, as a current, should be con served  in the e x 
tended sens that, applying the gauge covariant d ivergence, one must obtain 
z e ro  and th is is  in fact the ca se  :

( 9 - i t * ) - [ l + V Ä ( 9 - i t $ ) ]  = (3 - i t ® ) - (9 - i t $ )  = 0, (9. 17)

because

(9 - i t # ). V = V .(V - i t $ )+ i t V .  ®. (9.18)

The f ir s t  te rm  on the right-hand side is  the d ifferentia l operator defining 
i^and in the radiation gauge V . $ = 0. This is  the im portance of the p rojec - 
tion op era tor  that guarantees charge conservation  in the extended sense.
The derivative 9  ̂ acting upon 3^ may be said to be optional, but if we use 
the p ro je c to r  in the fo rm  we w rote it, then fo r  a ll variations of 3m the con 
straint equation dß =0 needs no longer be con sid ered . Obviously, since 
the d ivergen ce  of 3^ is  equal to z e ro , not a ll variations of 3>* can be inde
pendent. In p a r t icu la r :

90 6 J° = -V . 6 J (9. 19)

and the variation  o f the longitudinal part V . 3 is  com pletely  determ ined by 
the constra in t. But now, the s tru c tu re :

[1+ V Ä  (9 - it® ) ]3  (9.20)

does not depend at a ll upon the longitudinal part of 3.

[ l+ V Ä (9 - i t$ ) ] .  v  = V -V  = 0 (9 .21)

(an integration  by parts is  involved in the p roo f of this equality). So it is  
not n ecessa ry  to m ake use o f the constraint equation and we can vary 3 ** 
fre e ly .

W e Will now exam ine the fie ld  equations to see which o f them are equa
tions o f  m otion  and which of them  are  only equations o f constraint. Let us 
firs t  w rite  down the fie ld  equations which are  equations o f m otion, i .  e. equa
tions having tim e d eriva tives in it. They a r e : -  \

d0\ =  (E k -i t® k)$0 +f2G 0k + M 0k,
(9 .2 2 )
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O 0 - i t * 0)Gk0= - O - i t « ) G <k+ k * + [ l+ V .0 O - it ® ) ]3 + a f ( l /2 )G X!'i t M Xj/.

On the other hand, the constraint equations a r e :

f 2Gkc + M k«= 3k® f* 9f $k+ ($ki t ®{) 2 3 )

Ok - i t 3 k)G0k = k °+ 3 0 .

They te ll us o f co u rse  that neither the d ivergen ce  of the "e le c tr ic  fie ld " Gok 
nor the com ponents o f the "m agnetic fie ld "  Gk{ can be treated as independent 
v a r ia b les .

W e w ill now look  at the equations o f m otion and vary the param eters.
W e then autom atically get a com m utation  relation  with the operators a sso 
ciated  with the p aram eters  in the Lagrange function . And since we have 
equations o f m otion  fo r  the fie ld s  %  and Gok, we w ill get com m utation r e 
lations betw een th ese op era tors  and the op era tors  that appear in the action 
in tegral.

It should be m entioned that the fir s t  equation o f m otion contains a hidden 
constraint, becau se in the radiation gauge V . $ = 0 and so , taking the d i
v ergen ce  o f that equation, the tim e derivative d isappears and we are left 
with

- V . ( V - i t •)•„*» ak(f2G0k + M 0k) (9.24)

which elim inates $ 0 as an independent variab le . T h is is  an indication that 
only the tra n sv erse  part o f 4  and the tra n sv erse  part o fG 0kcan be considered 
to be the fundamental v a ria b les , and a ll th is o ccu rs  exactly as in the e le c tro 
m agnetic ca se .

W e w ill now look  at the structure o f the equations o f m otion and sim ply 
read  o ff the com m utation re la tion s . Let us vary  the chosen  set of para
m eters  starting with 3 k. Looking at the equation o f m otion fo r  $k we see 
that 3 k does not appear nor is  it even hidden in the dependent variable so 
that the coe ffic ien t o f the variation  o f 3 k is  z e ro  :

öO o'fc) = (°>6 Jk <9*25)

and fro m  th is fo llow s  the equalH im es com m utation relation

[• i ix ) , » ,W ]  = 0. (9 .26)

Next, look ing at the equation o f m otion fo r  Gok and con siderin g  the effect 
o f the variation  o f 3 f, which only appears explicitly  and m ultiplied by a p ro 
je ction  op era tor , we see  that

6 do G 0k = -  6 (P ro jector).?  (9 .27)

fro m  which we can read o ff the com m utation relation

i[G ok(x), $ { (x )] = k( l + (9 - i t  $'))( (x, x 1), (9 .28)
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or, showing exp licitly  the d ifferent com ponents o f G ok and

ifG ^ x ) ,  ®{b(x0] = 6f 6ab 6 (x -x ') + ak[J04(x, x ')(-a 't - i 't  ®'f(x')]ab. (9 .30)

Last o f all, w e should find the com m utation relations betw een the Gok them 
se lv e s . Once we know th ese , the other com m utation relations can be co m 
puted, knowing the way in which the other fie ld s  depend upon the fundamen
tal on es . The last com m utation rela tion s can be obtained considering the 
variations o f M ok. The f ir s t  equation o f m otion does not give anything new, 
it m ere ly  repeats the com m utation relation  just found (showing, o f cou rse , 
that the p roced u re  is  con sisten t). The other equation o f m otion gives the 
in form ation  we req u ire . It contains M ok exp licitly  in the last term  and also 
im p licitly  in the dependent variab le  $0. Taking into account both dependences 
we a rr iv e  a t :

i [G ok(x), G m(x')] = 3kS (x, x ')it  G°*(x') + it  Gok(x )# (x , x ')3 f'. (9.31)

T hese com m utation re la tion s seem  to be com plicated  but it must be realized  
that w e have derived  them  fo r  the fu ll op era tor G0k which con sists  of a de
pendent longitudinal part and the independent tra n sverse  part GokT which is 
the fundam ental v a r ia b le . It is  p oss ib le  to extract the com m utation relation 
fo r  G okTonly. We can see  that the right-hand side o f the com m utation r e 
lation  does not contain any purely tra n sv erse  part and th ere fore

[GokT(x), G0{(x )T] = 0 (9 .32)

w hich,together with

[« l /x ), 4{ (x'j] = 0 (9 .33)

and

i [ G 0kT(x), ®f (x')] = 6k[6 (x -x ')]T, (9.34)

fo rm  the canonica l com m utation relations between the fundamental fie ld  
quantities. By com p arison  with the electrom agn etic ca se , we see that it 
still contains the essen tia l sim p licity  which con sists  o f the fact that the 
fundamental variab les  a re  exactly  the sam e tra n sverse  parts of the potential 
and the e le c tr ic  f ie ld . The com m utation relations have the sam e appearance 
except o f cou rse  fo r  the fact that in the e lectrom agnetic fie ld  we have only 
one such equation and h ere  we have n X n such equations. In other w ords, 
the equations just found are  rea lly  m atrix  equations in the "internal" vector 
space .
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I would like  to d iscu ss  som e approxim ations which m ay be significant 
in the dom ain o f strong coupling in a fie ld  system  analogous to quantum 
e lectrod yn am ics. The m otivation  o f this w ork  is  the idea that the strong 
couplings and e lem entary  p a rtic le  spectrum  m ay be the consequence o f the 
dynam ics o f a system  w hose underlying descrip tion  is  in term s o f a set of 
F e rm i fie ld s  gauge invariantly coupled to a single ("b?ire") m a ssless  neutral 
v e c to r  fie ld . The b a sis  o f  this gauge invariance would o f cou rse  be the exact 
con servation  law  o f  baryons o r  "n u cleon ic ch arge". It seem s to m e that a 
coupling sch em e based on an invariance p rin cip le  is  m ost attractive if  that 
invariance is  an exact one. It would then be n ice  to try  to account fo r  the 
approxim ate invariance p r in cip les  in the sam e way one would d escrib e  " a c c i 
dental d eg en era cie s" in any quantum system .

A s is  w ell known, the outstanding ob jection  against the attempt to a c 
count fo r  the strong in teractions on the basis o f such a m echanism  is  that 
it has usually  been  assum ed that a system  which is  based upon an originaU y 
m a ss le ss  v e c to r  fie ld  coupled to a con served  v e c to r  always would be capable 
o f v e c to r  excitations o f z e ro  m ass. H ow ever, we have learned from  P ro£  
Schw inger that, in fact, such reasoning is  faulty. T o put our considerations 
in the appropriate context let m e begin by paraphrasing som e o f his rem arks.

W e shall d iscu ss  the dynam ics o f a single F erm i fie ld  gauge invariantly 
coupled to a neutral v e c to r  field . Of cou rse  the world o f the strong in ter
actions m ust involve m ore  than a single F erm i field  but we w ill sim plify  the 
d iscu ssion  by con siderin g  only a single field . Thus, the m odel we shall con 
s id e r  is  p e r fe ct ly  analogous to quantum electrodynam ics except that we shall 
assum e that now the coupling is  strong rather than weak.

If a weak external current Jjj (q), where

w here ^ ( q 2 ) is  the v e c to r  G reen ’ s function. It is  appropriate to relate the 
total fie ld  F to the part o f the total fie ld  which appears as a consequence 
o f the polariza tion  o f the vacuum . Thus,

acts in the vacuum  it induces a net fie ld

= i(qMJi/(q) - qy J„(q))§(q2) ( i )
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( f ^ )  = (F g 0,1)  + f £x; (2)

F^ 1 = i(q ĵ J„ - qvJM) /q 2 . (3)

Then,

)  = ( ? w)  - i ( ^ J ,  - q „V > /q 2

= <f , u)  -  — —  (F ,,,)
7 q2S(q2 )

= - P (q2) <F„„) (4)

w here the vacuum  p o la r iza b ility  is

P(q2 ) = i / q 2S(q2 ) -  i .

I  = q2 (l  + P (q2 )). (5)
S .

If we ex p ress  the current induced in the vacuum  in term s o f the effective  
fie ld  F , we find sin ce

< J5 ? >  = iq2« }

= - iq Z P (q2 )< F ,„ )  

and if  we ex p ress  <F) in term s o f the potential which generates it,

< Fur,> = ( A u) -  ( A U>

then,

= " iq 2 K  <M  - ^  <a m))

= (-gut-q2 + p (q2 ) ( A" )

Since we have assum ed that fie ld  external current is  weak, this equation 
can be written as a variational derivative in the form :

6 <jg0l>
«< A „>

= ( - g ^ q 1 + q pq„) p (q )• <6)
(A>=0

Thus, the p resen ce  o f the fa cto r  q2 in front o f P in the expression  fo r  % 
can be attributed to the conservation  law obeyed by the sou rce  jM. Further, 
the "additive  q2 " in the ex p ress ion  can be attributed to the gauge invariance 
o f the Lagrangian. In the norm al case , these two fa ctors  ensure that as 
q2 —> 0 , 'S '1 —> 0 so  that there are m a ss le ss  v ecto r  excitations o f the coupled



STRONG COUPLING 137

system . H ow ever, if  the coupling b ecom es su fficien tly  strong to produce 
a p o le  in P (q2 ) at q2 = 0, then these excitations w ill be com pletely  suppressed. 
It was in not allow ing fo r  the p oss ib ility  that a pole could appear in P that 
p rev iou s treatm ents o f the photon m ass question w ere deficient.

W e see th ere fore , it would be singu larly  inappropriate to m easure the 
coupling by the usual "re n o rm a lize d " coupling constant which is  defined by 
assum ing that a m a ss le ss  state always o ccu rs . Thus, suppose we examine 
the coupled chain o f equations fo r  the G reen ’ s functions. The vacuum current 
can be ex p ressed  in term s o f the p a rtic les  G reen ’ s function, calculated in 
the p resen ce  o f an external fie ld , o r  the potentisd- (A )  which d escr ib es  the 
resultant e ffective  fie ld  by the equation

(jpol (x ))  = i e ,  h (7 m G (x , x)) (7)

where naturally, suitable lim iting  p roced u res  must be applied to ensure 
the m eaningfu llness o f the above expression . The dependence o f G upon a 
weak e ffective  fie ld  <A ) is  usually expriessed in term s o f the "vertex  function"

r > ■ » G " ! < » . .  (8'

using (6) and (7) we obtain fo r  P  the fa m ilia r  form ula

( -g Ml,q 2 + qfiq ,)P  = i e .2 ft { TMG(P+ q /2 ) r i/(P + q / 2 , P - q/2 )G (p -  q /2 )} (9)

Now the equations fo r  G f  Tcontain  the Lagrangian coupling constant only 
in  the com bination , e2<§ .  H ence, let us redefine ‘S so

and at the sam e tim e let

P e02 P.

Then, we obtain the equations

l/< 9 =  q2 (l/eo2 + Ptq2 ;^ ) )  ( 1 0 )

and

(-g"U q2 + q,q,)P(q2, ‘S) = i J {fjj* h <7, Gr„G) (11)

w here we have w ritten P (q2 ; ^ ) to em phasize that P m ay be regarded as 
a functional o f ‘S s in ce  the in tegra l equations fo r  G /r in v o lv e  “S . Thus, the 
Lagrangian coupling constant e2 now enters only through equation (10) which 
m ay be regarded  as a functional equation fo r  *3. The perturbation theory 
m ethod o f solution o f ( 1 0 ) is  to define the renorm alized , o r  "p h ysica l" coup
ling constant as the weight o f the " assum ed" pole at q2 = 0  in ^ , i. e. ,

1 /e 2 = 1 /e2 + P(0; <8). ( 1 2 )
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If we elim inate e2 in favour o f e2 we obtain

l/<8 = q2 ( l / e 2 + [P (q 2 ,^ )  - P(0i «§)] ) 

= q2 ( l / e 2 + P (q2, ^)). (13)

This equation is  so lved  in perturbation theory  by an expansion in e2. How-

c r ib e  the coupling would c le a r ly  be m ost unsuitable. In fact, the sort of 
behaviour o f  e2 con sidered  as a function o f e2 in the situation that is con 
tem plated h ere  can be represen ted  graph ica lly  in Fig. 1. That is , we shall 
attempt to obtain approxim ate solutions o f the above equations assum ing that 
e2 = 0 fo r  e2 >  e2 , w here e2 is  som e cr it ica l coupling strength.

N aturally, in o rd e r  to obtain approxim ate solutions fo r  e2 la rge  we 
m ust make assum ptions as to the nature o f the system  that resu lts as the 
coupling b ecom es  strong. That is , we m ust try  to use som e se lf-con sisten t 
approach. I shall assum e that if  the above schem e is  to be su ccessfu l, then 
it m ust account fo r  the fact that when the fie lds are coupled strongly there 
still resu lts  a p a rtic le  spectrum  and these p a rtic les  are phenom enologically 
stron gly  coupled. In other w ords, the spectrum  contains sharp and heavily 
weighted peaks. We shall assum e that the peaks in the boson  spectra  are 
a con sequence o f strong "p a ir  co rre la t io n s "  in the F erm i fie ld  system . It 
is  not unreasonable to suppose this sin ce  a neutral v e cto r  fie ld  coupled in 
the way o f e lectrod yn am ics  is  just the kind o f thing which should produce 
strong co rre la tion s  betw een p a irs . In fact, if  we could calcu late, with high 
p rec is ion , the function “8 (q2 ), in the weak coupling case  we should find that 
it has an approxim ate p ole  in the neighborhood o f q2 = - ( 2m - e )2 where 
2m -  e is  the m ass o f the sSi state o f positronium . This pole in *3 would 
corresp on d  to a ze ro  in l / e 2 + P (q2 ), which in turn would result from  a 
nearby p o le  in P (q2 ). This pole  would lie  at a position  between 0 a n d -(2m + e ) 
We shall assum e that as the coupling ef  in crea ses  that this pole  in P (q2 )
(o r  P) m oves to ze ro  and the associa ted  p ole  in ^ (q 2 ) m oves to q2 = -a 2. 
F urther, we shall assum e that this p o le  in $ dom inates the v e c to r  spectrum . 
Thus, we assum e that if  e2 is  su fficien tly  large  P (q2 ) has the form :

ev er , if P  developes a p ole  at q2 = 0, the use o f e2 as a param eter to d es -

e'.2

Fig.l

(14)

We shall fu rther assum e that the v e c to r  p a rtic le  is  stable o r  alm ost so. That 
is , we shall assum e that if, as we in crea se  the coupling, sca la r  states m ove



STRONG COUPLING 139

down m uch m ore  rapid ly than the v e c to r  state, the v ecto r  state nevertheless 
still rem ains narrow . Thus, fo r  s im p lic ity  we assum e that the equation

I / 'S  = 0 fo r  q2 = -  ß 2

i. e. ,

ß 2 = ------------ ^ — 2T
m 2 - p2l /e §  + ^  dm2

has a solution (i. e. , we assum e the threshold  on s is la rg e r  thann). Further, 
we shall assum e that this state dom inates the v e c to r  spectrum . Thus as
q2- V

» (q2 + p 2 ) ji

SO

1 / f 2 = 1 / e f  + f) dm 2 s(m 2 ). (16)

W e assum e f2 is  la rg e  when e2 is  large .
In term s o f the "cou p ling  constant" f2 we can rew rite (15) in the form

P 2 = X2 /  [ 1 /  f2 -  p 2 ^  dm2- s(m 2 ) / (m 2 - M2 )2 ] (17)

Equations (14), (16) and (17) are the basis o f our approxim ation schem e, 
s in ce  we have m ade the fundamental assum ption that the state with m ass 
p2 and weight f2 dom inates the spectrum  o f v ecto r  states, we shall solve 
(10) s e lf -co n s is te n t ly  by calcu lating the vacuum  polarization  P, assum ing 
fo r  “S the fo rm

«S ~ f2 / (q2 +ß2).

Thus, using this ex p ress ion  fo r  <3, P and hence, X and s becom e functions
o l  p and f. In this way, equations (16) and (17) g ive two relations between 
three p aram eters , p , f  and e , . The third condition  to be im posed is that 
P  have a p o le  at q2 = 0 . W e expect this to happen fo r  a c r it ica l value of e9 
and to continue to be true fo r  e0 la rg e r  than the c r it ica l value.

It m ay also be consistent, and is  certa in ly  in the sam e sp irit to rep lace 
(17) by the approxim ate form

p2 = f2 X2 (n , f ). , (18)

In this ca se , it would be p oss ib le  to obtain two conditions on p , f without 
an actual ca lcu lation  o f s (m 2 ), but only X2. (18) ex p resses  one condition, 
the other would be that f2 m ust be such to produce the pole at q2 = 0.

F inally , if  we assum e that as long as e2 > e2 , where ec is the cr it ica l 
coupling the pole  rem ains at q2 = 0 , then it would be possib le  to pass to the 
lim it e,2 —> <». In this ca se , we can obtain both f and u uniquely by solving 
(17) and (16) in this lim it, nam ely
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d s(m  ̂ (18a)
In this instance, we would have a s o -ca lle d  "b ootstra p " in the sense that 
the pole  in “5 at q2 = - ßZ would be en tirely  respon sib le  fo r  itse lf since no 
fr e e  p aram eters  rem ain  in the theory in this lim it.

Of cou rse , in o rd e r  to make further p ro g re ss  it is  n ecessa ry  to make 
m ore  approxim ations to obtain P. We shall make these approxim ations based 
on the assum ption o f the dom inance o f the "p a ir  co rre la tion s".

We m ay f ir s t  note that it is  p oss ib le  to exp ress the condition that P have 
a p ole  at q2 = 0 , in term s o f a correspon din g  condition  on the vertex  function 
r .  Thus, it is c le a r  from  (11) that P w ill develop  a pole  at q2 = 0  only if 
the v ertex  T developes such a pole  as q2—► 0. Thus, it must be that as q2—>0

r M(p + q / 2 , p -  q / 2 ) —> l / q 2 f M(p + q / 2, p - q / 2 ).

In this ca se , we obtain fo r  T  from  the equation fo r  T the exact equation

f M(p +  q /2 , p - q /2 ) = - P' )2K G(P' + q /2 ) fM (19)

X (p '+  q /2 ,p ' - q /2 )G (p 2 - q / 2 ) r x(p ' - q /2 ,  p -q /2 )

which is  a hom ogeneous, lin ea r integral equation. Thus, the condition that 
P develops a pole  at q2 = 0  can be rephrased in term s o f the requirem ent 
that the lin ea r  equation (19) have a solution. The firs t  step in our approxi
m ation sch em e is  to rep lace  ^  by

^ ~ f 2 / [ ( p - p ) 2+M2 ]

in the kernel fo r  this in tegra l equation. Our second step must be to rep lace 
G and r  by suitable approxim ations in the above kernel.

Our b a sic  assum ption is  that the corre la tion s  between pa irs  predom inate. 
Thus, in the equation fo r  the G reen ’ s function in a weak external fie ld  which is

G '1 ((A)) = g ; 1 - /  (Am) +  i J  i  yx(G +  GrM<Ay G)rx

+ i J  ̂ TxGr^<A>" (20)

where

r (2) = s r /6  (A) <A> = 0

we shall assum e that we can drop the last term  which m eans that we drop 
a te rm  corresp on d in g  to corre la tion s  between m ore  than p a irs , and also 
we rep la ce  the T on the end above by y  x[const. ] .

The secon d  assum ption is  not independent o f the firs t  sin ce  it is  the 
expansion o f  the v ertex  on the end in (A ) which produ ces the last term  in 
the above equation. Since the mom entum  tran sfer  that takes p lace at the 
second  v ertex  is  p' -  q/ 2 - (p - q / 2 ) = p' - p, if the argument o f ‘S is  p' - p,
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this tra n sfe r  is  pos itive  ((p ' - p )2 > O) when 'S produces an attractive force . 
Thus, the "s ig n "  o f the charge that enters and leaves the vertex  on the end 
is  the sam e and th ere fo re  we may assum e a slow  variation  o f this T in the 
dom ain o f integration  which is  im portant in (20). The equation fo r  ^ then 
takes the form

w here G j 1 = -yp + m „ , m 0 = bare m ass o f ferm ion .
C learly , we have maintained gauge invariance, if  we use this equation 

to obtain the equation fo r  r , thus

In fact it can be tr iv ia lly  ve r ified  that W ard’ s identity holds. The equation 
fo r  G is  then

W e shall ch oose  the constant in (22) and (23) in such a way that we suppress 
m axim ally  the contribution o f the high energy states in the integrations. Thus, 
we fir s t  w rite

w here G is  the ren orm alized  G reen ’ s function in the sense that its pole at 
p2 = -m 2 , is  n orm alized  to unity.

Z 2 is  given  by

and is  the m ost sen sitive  param eter to high energy states. We can then write

w here now G ' 1 = yp  + m , where m is  the physica l m ass o f the ferm ion , and 
the ' denotes a subtraction  o f the in tegral at YP = - m. We then must im pose 
the n orm alization  condition  on G and this is  equivalent to a second sub
traction  (denoted by ") so

Thus, we can com p lete ly  suppress the high m ass contribution (Z 2 ) i f  we 
put const. = l / (Z | ) ,  and hence obtain the equation

G " 1 ( ( A ) )  -  G,"1 - 7 <A) + i J  <$ 7x(G + GI\A> G)7 X ^ on st  (2 1 )

(22)

(23)

G -1 -  G,,1 + i Z 2 const. \ *5 yx G y X

(24)

The correspon d in g  equation fo r  the ren orm alized  vertex  is
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r M = 7 „ Z 2 - n G r „  G y \  (25 )

Thus, it is  these equations which we m ay regard  as ou r firs t  approxim ation. 
We m ay v iew  this treatm ent o f  the vertex  on the end as the firs t  step in an 
iterative p roced u re , w here the next step would be to so lve  a s im ila r  linear 
in tegral equation fo r  the next approxim ation which would use the vertexgotten  
fro m  the f ir s t  step on the end and a G reen ’ s function gotten from  an equation 
using that vertex .

If we requ ire  T to  develop  a pole  as q2—* 0,

r M- r „ / q 2
i

then

? „  = - i j  ^ Y xG fpG Y ^, (26)

so the approxim ation  to the kernel o f  (19) involves solv ing the non-linear 
equation (24). We note that to obtain the condition  that (26) p o sse sse s  a 
solution it is  not n e ce ssa ry  to so lve  a 4 d im ensional integral equation.
Thus, the condition  that

f M( p +  q / 2 ,  p  -  q / 2 )  = - i f 2 ^  .  p , )2 + ß 2 Yx G( p'  + q / 2)

X fjj fp 1 + q /2 , p 1 -  q /2 )G (p ' -  q / 2)yX,

have a solution, can be expressed  sim ply  in term s o f the lim iting form  of 
the equation as q*1 —»0. Hence, it com es out to be n ecessa ry  and sufficient that, 
as q  ̂ —> 0 , an in tegra l equation, which can be reduced to a one dim ensional 
in tegral equation have a solution. The solution  o f this equation also allows \ 
to be com puted.

We m ention that if  the solution  o f the n on -lin ear integral equation fo r  
G is  such that Z 2 = 0, then the in tegral equation (25) reduces to a hom o
geneous form ,

‘ r M = - i  <5 7 x G r (IG Tx

hence in this ca se  the hom ogeneous equation w ill have a solution fo r  all 
values o f q2. Thus, in this ca se  it is  n ecessa ry  to requ ire  that such a hom o
geneous equation develop  a pole  at q2 = 0 , in o rd e r  that a corresponding 
p o le  in P at q2 = 0  can exist. This leads to a new set o f integral equations 
which also can be reduced to one-dim ensional equations. I shall not further 
d iscu ss  th ese com p lica tion s here. I w ill conclude by saying that the solution 
o f  (24) w ill be com puted by reducing (24) to a on e-d im ensional non-linear 
in tegra l equation fo r  the sp ectra l weight. Thus, we write

d k - ^ - r  yp + k

w here k runs fro m  -oo to - (m  + n) and from  (m +|U ) to oa. If this representation

G = 1
y p  + m ■
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is  inserted  into (24) we obtain a n on -lin ear one dim ensional integral equation 
fo r  A(k). If the n u m erica l solution  o f this equation has the feature that k A(k) 
—*0 as k —too, we shall take that to mean Z 2 is  finite. If k A(k) —»co n s t  as 
k —kjoj we shall take it to mean Z 2 = 0 in this approxim ation. We shall then 
investigate the two p oss ib le  sets o f lin ear integral equations in these separate 
instances.
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INTRODUCTION

The general top ic  under d iscu ssion  is  the strange p articles  and som e 
o f the reson an ces and in teractions o f strange p a rtic les  that are particularly 
in teresting . A s is  w ell-know n, experim entell developm ents are com ing very 
fast in th is fie ld  nowadays so there is  som e advantage in being located  near 
an experim ental cen tre , such as CERN, o r  near one o f the United States 
experim ental ce n tre s . H ow ever, those fro m  m ore  isolated  p laces who are in 
th is fie ld  should not be too d iscou raged . F o r  one thing, having either been 
to  the CERN con feren ce  o r  talked to many people who have, they are c e r 
tainly not behind on experim ental developm ents now. A lso  it is  true that 
sev era l o f the very  significant th eoretica l developm ents in th is fie ld  have 
been suggested by experim ents ov er  a y ea r  old , so that it is  not really  n e c 
essa ry  to  be "on  top  of the new experim ental data".

TABLE I

ESTABLISHED RESONANCE WITH S /  0

B S I Name M r i

0 1 11 K* 888 ~50 !

1 -1 0 YO 1405 50? ?

1 -1 0 Y0* * 1520 16 3/2

1 -1 0 Y0* * * 1815 - ?

1 -1 1 $
Yl 1385 ~50 3/2

1 -2 i -  * ~ 1535 n  ~ 30) !

T able I is  a lis t I m ade o f the w eH -established  resonances of strange
n ess unequal to  ze ro , and th is paper w ill include a ll these resonances and 
w ill be divided into fou r parts:

*  Text based on notes by E. Ferreira and G. Wolters.
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(1) The spin and p arities  of the strange p a rtic les ;
(2) The P -w ave m eson -baryon  resonances and their sign ificance;
(3) T h eS -w a v em eson -b a ry on in tera ction sa n d th e irp oss ib le  sign ificance;
(4) The 1815 MeV reson an ce .

T he fourth part is  very  short and is  n ecessa ry  because this resonance 
does not fit into what w ill be said in the fir s t  three points.

1. SPINS AND PARITIES OF THE STRANGE PARTICLES

T he parity o f the ca sca d e  partic le  is  not yet known, but quite a bit 
happened last y e a r  about the parities  of the A and E hyperons.

The usual convention a y ea r  ago (and even now) was to assign  a rb itra r i
ly p ositive  parity  to the A p a rtic le , as to the nucleon, and then have the 
parities  of K and E taken from  the experim ents. This was a natural con 
vention when it w as not known whether the neutral and charged K m esons
w ere m em bers o f an iso top ic  spin doublet, having the sam e p arities . It is
now reasonably c le a r  that iso top ic  spin is  a good quantum num ber, that the 
K is  a doublet, the E a trip let and so on. So, we adopt here the convention 
of ca llin g  K pseu d osca lar and then determ ining the parities of the A and 
E p a rtic les  fro m  the experim ents.

1 .1 . The A parity

Som ething new happened last y ea r  on the experim ental side concerning 
the A  parity, although the argum ents involved are a couple o f y ea rs  old . 
When K~ is  absorbed  in helium , it can produce, among other things, the 
AHe4 and AH4 hyperfragm ents:

K - + .He4 -  ^He4 + it- ( 1 )

-  XH 4 + 7T° (2)

Since the spins o f the K ", He4 and u a re  z e ro , if the spin J of the hyper
fragm ent is  a lso  z e ro  (we assum e from  charge sym m etry that the spins 
o f aH4 and AHe4 a re  the sam e), the conservation  o f angular momentum im 
p lies  con servation  o f orb ita l angular mom entum . Hence if J=0 and parity 
is  con served , the very  existence of the interaction  im p lies  that the A p a ri
ty is  even. T h is  resu lt is  independent o f the angular mom entum  E o f the 
state from  w hich the capture takes p lace.

It is  not known whether the ground state o r  an excited  state of the hyper
fragm ents is  produced in reaction s (1) o r  (2). If an excited  state is  produced, 
y  rays may be em itted b e fore  the decay o f the hyperfragm ent takes place; 
how ever, the experim enta lists have not yet looked carefu lly  to see them .
W e can d iscu ss  our doubt about the spin o f the states of the hyperfragm ents 
produced  in the K -  capture by considering two p oss ib ilit ie s , either o f which 
would invalidate the argument fo r  even A parity:

(a) The ground state is  produced directly, and its spin is  J f  0;
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(b) The ground state m ay have spin J = 0, but what is  actually p r o 
duced is  an excited  state with J  ̂ 0.

M ost o f the things that happened during the last y ea r  con cern  the spin 
o f the ground state o f the^He4 andyfl4 , and they show that m ost likely  it is 
J = 0.

D A LITZ and LIU [1 ] ,  assum ing that the m echanism  o f the pionic de
cay o f aH 4 is  the sam e as that o f the fr e e  A , com puted the ratio:

R = [ aH4 -* v -  + He4] / [ AH4 -»aH  7t~ m odes]

(an exam ple of one o f the other m odes is  aH4 -♦ it" + p + H3). Calling J the 
spin o f aH4, they found that

if J = 0, R = 1. 4 1 1 S |2 [1 . 84 | S |2 + 0. 35 | P |2
and
if J = 1 , R = 0 . 761 P p  [0.43 |s|2 + 1 . 1 2 1 P |2 ]_1,

w here S and P  a re  the m agnitudes of the S and P -w ave amplitudes fo r  
the A -» 7i— + p decay .T h e point then is  to  m easure experim entally the ratio 
R and the ratio  P /S  and see  which o f these form ulae  fits  better.

The ratio  R has been m easured  by AMMAR et a l . [2] in nuclear em ul
sion s. They found R = 0.66 ± 0.06, a rather high value. Using the fo rm u 
la e  above this im p lies  that fo r  J = 0 one should have | P /s|  SL 1.5, and fo r  
J = 1 th ere  should be a la rg e  amount o f P -w a v es , with | P /S  ] Si, 1.2. A m ea s
urem ent o f the polarization  of the protons in the decay A-» p + may give 
in form ation  on the ratio  P /S . The param eters that are usually re ferred  to 
a re

2 Re (S*p) 2 Im (S*p) I s |2 - | p |2

|s|2 + |p|2 ’ P " |s|2 + |p|2 ' Y ’  | s|2 + |p|2 '

By m easuring the polarization  o f the em itted protons, B EALL et a l. [3] 
have recen tly  obtained

a  = -0 .67  ±  0.2 , y  = +0.74

By com bining th eir  resu lts  with those o f A m m ar et a l . and taking as ba
s is  the ca lcu lations o f Dalitz and Liu, they found that the assignm ent of 
J = 0 to the ground state o f AH4 is  strongly favoured .

Thus we can im agine that what happens is  that the A decay goes e s 
sentially through S -w aves and there is no need of spin flip  in the A-» p + n~ 
decay that o ccu rs  inside the hyperfragm ent, since both the in itial AH4 and 
the residual H4 have spin z e r o . The n~ just goes o ff in an S -w ave. This 
sim ple m echanism  is  perhaps what m akes th e AH4 -» He + ir~ so predominant 
am ong the other m odes o f decay into .

T here  is  still another experim ent that has been done concerning the 
determ ination o f the spin o f the aH4 . BLOCK et a l . [4] made the absorp 
tion o f  K* at rest in helium  and then looked at the angular distribution of
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the products of the tw o-body decay m odes o f AH4 with respect to the d ir e c 
tion o f the jt° f ir s t  produced (produced in the capture p rocess ):

K f + He4 aH4 + 7T°
I f  He4 + 7T- 

H 4 + 7T° .

Let us con s id er  that the capture o f K " o ccu rs  from  an S-w ave (th is w ill 
be d iscu ssed  la te r ). The spins and the total angular mom entum in the left- 
hand side o f the above reaction  are  a ll z e ro , so that if  ^H4 had spin 1 , the 
7T° and aH 4 would have to  be produced in a state o f rela tive  orb ita l angular 
mom entum  £ = 1. If we quantize along the d irection  o f the orig inally  p ro 
duced flO ,the z value o f the AH4 spin must be z e r o . When the AH4 decays, 
the ir~(or 7r0) and He4 (or  H4) then produced, both having spin ze ro , would 
be in a state o f re la tive  orb ita l angular m om entum  1 , with component zero  
along the d irection  o f the fir s t  ifi. The angular corre la tion  between the it0 
produced in the capture and the n~ (o r  jtO) em itted in the decay would then 
be o f the fo rm  c o s 2 0 . A ctually  with about 50 events it seem s that there is  
isotropy  in the angular co rre la tion . The sta tistica l data a re  not overwhelm ing 
but do give som e support to  the assignm ent o f spin z e ro  to the ground state
o f aH4 .

Let us now look  at p oss ib ility  (b) w here the capture p ro ce ss  may p ro 
duce an excited  state with quantum num bers that a re  not known and that can 
not be studied by looking at the decays o f the ground state. No theorist can 
te ll whether excited  states o f these hyperfragm ents exist o r  not. If such 
an excited  state ex ists , it is  probably not very  weakly bound since the hy
perfragm ent form ation  probablilty  here is  above that expected from  a bind
ing energy o f about 2 Me V (which is  the binding energy in the ground state). E x
perim entalists w ill have to look  fo r  -v rays carefu lly  to try  to plug this loophole 
in the A parity  argum ent; it seem s probable , how ever, that the A parity  is  even.

Something should be said h ere about the orb ita l angular momentum state 
in th e 'K " capture, becau se  th is is  im portant fo r  severa l argum ents to be 
m ade la ter . This w ill be based  essentia lly  on the theory of DAY et a l. [5] 
which was produced  th ree  y e a rs  ago and which was one of the m ajor theo
re tica l contributions to strange p article  ph ysics  that particu lar y ea r , even 
though it had little  to do with the strong in teractions. Only a very  s im p le- 
minded explanation o f the argument w ill be given h ere . This is  one o f those 
things that is  very  com plica ted  in detail but very  s im ple in e ffect. The question 
con cern s , what happens to a K’ m eson  caught in a high cou lom b orbit: what is  the 
angular m om entum  o f the state from  which it is  captured? Let us suppose 
the K " m eson  is  in an S -state orbit o f som e prin cipa l quantum num ber. We 
can ask the question o f how long it w ill live  b e fore  being captured. Knowing 
the probability  fo r  the K ” m eson  in such a cou lom b orbit being found at the 
orig in  and a lso  knowing the strength of the S-w ave capture interaction from  
doing experim ents on the capture of K “ in flight by nucleons, we can have 
an idea of the K~ life tim e  in any S-w ave orb it. We can a lso  estim ate the 
life tim e o f the m eson  in a P -w ave  orb it. This is  a rather rough estim ate b e 
cau se , in the available data fo r  K “ nucleon capture c ro s s -s e c t io n  in flight.



KN AND KN INTERACTIONS 151

the P -w ave  contribution seem s to com e in very  slow ly, but an upper lim it 
fo r  the life tim e can be obtained. By doing th is.w e find that fo r  a given prin 
cip a l quantum num ber the S -state lifetim e is  much sh orter than the P -state 
life tim e .T h is  is  a resu lt o f the fact that the range of the strong interaction fo rce  
respon sib le  fo r  the capture is  m uch sh orter than the radius of the coulom b 
orb it . In a P -sta te  the probability  o f the K “ being within the fo r c e  range is  
v ery  sm all com pared  with that in the S -sta te . The ratio o f the ranges essen 
tia lly  gets cubed in the exp ression  fo r  the rates of the p ro ce sse s , so that 
there is  in fact a 105 o r  106 d ifferen ce , the S-w ave being much m ore  pow er
fu l in capturing the K " m eson  than the P -w a v e . This might make one think 
im m ediately  that the K ” is  alw ays captured in the S -w ave, and that in fact 
would be the ca se , un less fo r  som e reason  the P -sta tes  have a trem endous 
head start in the ra ce  to capture the K. What w orried  the ph ysicists for  
quite a w hile w as that the P -w a ve  might have that head start, because it 
w as believed  that the m echanism  n ecessa ry  fo r  the K ” to change from  one 
cou lom b orb it to another w as sim ply radiative tran sition s. A  particle  
reach es a P -s ta te  b e fo re  an S -sta te  by cascad in g  down from  a state o f high 
£ va lue. It can a lso  be argued that the P -sta te  reached this way is  alm ost 
alw ays the 2P -sta te , and unfortunately the life tim e fo r  radiative transition 
in th is 2P -sta te  is  o f the sam e o rd e r  o f magnitude as the lifetim e fo r  cap 
tu re . What Day, Snow and Sucher did was sim ply to show that in a liquid 
the K~ m o le cu les  going near the e le c tr ic  fie ld s  o f the other nuclei would 
be subject to a strong Stark e ffect, which cau ses transitions between the 
sev era l -s ta tes . The m echanism  of these transitions is  quite com plicated, 
but the essen tia l point is  that the transitions caused by this Stark effect o c 
cu r in m uch sh orter tim es than the lifetim e fo r  P -w a v e  capture. Thus, 
even if  a P -w a ve  is  reach ed  f ir s t , it is  m ost likely  that there w ill soon be 
both P -an d  S -w aves , and the natural pow er o f capture from  S -w aves w ill 
a ssu re  that the capture w ill a lm ost always be from  an S -state. In detail 
this argum ent is  certa in ly  m ore  valid  fo r  hydrogen (o r  deuterium ) than fo r  
helium , but it is  probably valid  in a ll these ca ses .

1 .2 . The £ -parity

T h ere  are no stationary states of total spin z e ro  in which the £ -hyperon 
is  bound. Thus the m ethod used in o rd er  to determ ine the A parity cannot 
be applied h ere . The reaction

K ' + p -» £ + 7T (3)

is  a s im ple as we can find to study the £ [6] . The existence o f the in ter
action  does not indicate the E -p arity  becau se of the possib ility  o f sp in -flip .

It is  w ell established  that fo r  K " mom entum  (lab) < 250 M eV /c  the an
gular d istribution fo r  a ll three final charge states in (3), as w ell as fo r  the 
e lastic  and charge exchange p ro ce ss , are  essentia lly  is o t ro p ic [7] . However, 
at 400 M e V /c  a strong forw ard -backw ard  peaking is  observed . We now know 
that these are  the resu lt of a J = 3 /2  resonance (called  the ”55)**) [8] . How
ever, we cannot distinguish am ong fou r p oss ib ilities  from  the angular d is 
tribution m easurem ents in the resonance energy region . The resonance
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could be in any of the amplitudes P3/2 -» P3/2 . D3/2 -+ D3/2 » P3/2 -* D3/2 or 
D3/2 -» P3/2 . where the first symbol represents the K '-P  state and the sec
ond symbol the it- £ state.

The ambiguity is reduced to two-fold by the following argument. The 
large isotropic cross-section  below 250 M eV /c follows the 1/\ law and 
therefore must result from  an S-wave of the K -  N system. The absence
of odd term s in cos  0 in the angular, distribution anywhere in or below the
resonance region then indicates that the resonance has the same parity as 
this low energy amplitude and must result fron a K - M  D-wave. The two 
possibilities for the two important amplitudes are

®l/2 •* ^ 1/2 ® i/2 "* P 1/2
or

^  ^ 3 /2  ^ 3 /2  ^ / 2  "*■ P 3/2 ’

The angular dependence of the polarization in the £*+ v~ events, measured 
later, supports this assumption of two strong amplitudes of the same parity.

The remaining ambiguity is a generalization of the Minami-ambiguity 
for ttN scattering. In this particular case it says that if the angular d istri
bution and polarization data can be described in term s of the transitions,

S 1/2 -► S 1/2
(4)

•D3/2 -► D 3/2 •

then an equivalent description can be obtained by replacing these amplitudes 
by the amplitudes,

Pi*/2 -  P l /2

(5)
3/2 -* 3/2 ,

where the £-parity has now beenchanged. The asterisk indicates complex 
conjugate amplitudes. This ambiguity must be resolved if the £ -parity is 
to be determined. A distinction between (4) and (5) is possible because the 
Wigner theorem  [9] applied to the phase shift of a resonant state with nar
row width has the form :

dn / dt  > 0 . (6)

The CM energy is called t.
If one also makes the reasonable assumption that the phase of the large 

non-resonant amplitude is changing less rapidly than that of the resonant 
amplitude, then the sign of the change in the relative phase is predicted, 
and this can be used to eliminate either possibility (4) or (5).
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The radius of interaction  must not be too la rge  fo r  (6 ) to be valid. As 
a consequence o f the narrow  width o f ~ 1 6  MeV the upper bound is as much 
as 15 fe rm i.

One can prove  (6 ) by con siderin g  the am plitude fo r  (3) as an analytic 
function o ft  in the upper half plane of the com plex  energy plane. The pole, c o r r e 
sponding to the resonance, lie s  (in the unphysical sheet) just below the 
branch line in the t-p lan e  which is  along the rea l ax is. (Causality forb ids 
a pole  above the branch  l i n e . ) It is  easy to see that a pole just below the 
rea l axis leads to a positive  energy derivative o f the phase, provided this 
pole  is  the dominant singularity.

If one wants to apply the W igner theorem  fo r  the two possib le  cases
(4) and (5), it is  n ecessa ry  to know som ething about the in terference b e 
tween the J = 1 /2  and the J = 3 /2  transitions in each ca se . This can be done 
by con siderin g  the p o la r-eq u a tor ia l ratio:

p = ( p -E ) / (p  + E) .

p and E stand fo r  num ber o f events, fo r  which | cos  e| >|, resp . <
H ere 0 is  the p olar angle in the CM system .

The m easured  values o f p are as foH ows:

Energy
(MeV) 370 390 410

P 0.36 0.50 0.36

fo r  the E+ it '  events. T his is  very la rg e . In fact even fo r  a pure Y = 3 /2  
transition , p is  only 0.375; and when one con sid ers  that the resonance bump 
h ere  is  sm a ller  than the non- resonant background, one would expect a p
o f only about 0.15, i f  there is  no i n t e r f e r e n c e . This suggests that the in ter
fe ren ce  is  very  im portant in the resonance reg ion . The in terference term  
in the angular d istribution  is  given by

(6  C O S 2 6 - 2 ) f j / j  f  3 /2  c o s  n  . ( 7)

The m agnitudes o f the 1 /2  and 3 /2  am plitudes are represented by f ^ a n d  
f 3/ 2 , w hereas th e ir  re la tive  phase equals n . F rom  the large  m easured 
value o f p one can conclude that

co s  rj > 0 (8)

in the resonance region .
F inally , the E -p o lariza tion  w ill a lso contain a term  analogous to (7). 

T his term  is  proportion a l to

* fiA f 3/2 s ilir>- (9)
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T his d iffe rs  fro m  (7) in that the angular dependence is  left out here. It is 
not n ecessa ry  to the argum ent, although it has to be taken into account in 
the experim ent [10] . M oreover, a ± sign stands in front,w hich corresponds 
to the ca se s  (4) and (5) resp ective ly .

A ssum ing that the m agnitudes f do not change rapidly with t near the 
resonance peak, the energy derivative o f (7) is

T f l / 2f 3/ 2COS n (dr)/d t). (10)

It can be seen  by using (6 ), (8 ) and (10) that in crea se  of (9) correspon ds to 
odd E -parity, and d ecrea se  corresp on d s to even L -parity . One expects the p o la r i
zation  to change rapidly with t going through the resonance energy and this w ill 
enable one to distinguish experim entally whether (9) in crea ses  o r  d e c r e a s e s .

The experim ental resu lt is  in agreem ent with even E -parity  only [10] . 
Of cou rse , the evidence obtained has still to be con firm ed  by independent 
determ ination o f the E -p a rity . The experim ent on the E° decay into Dalitz 
pa ir,

E° A0 + e+ + e" , 

seem s to be the m ost p rom isin g  attempt.

1 . 3.H -sp in

Severa l y e a rs  ago the spins of the baryons N, A and E w ere all de
term ined  as 1 / 2 ; but only lim ited evidence ex ists  fo r  the spin o f ~ exclud
ing spins £ 5/ 2 . SAMIOS et al .[11 ] and TICHO et a l.[12 ] have studied the 
chain of reactions:

K '  + p -> S ~ + K  + 7r, (11)

K '  +  p 5 °  + K  + tt, (1 1 a)

S A + 7T, ( 1 2 )

A -* p + 7T-. (13)

The ca sca d e  p a rtic le  w ill be po larized  perpendicu larly  to the production 
plane. One can m easu re  the up-down asym m etry in the decay p ro ce ss  (13). 
This asym m etry w ill depend on the product of the p arity-m ix ing  param eters 
a c  • a A . The resu lts  obtained are

f - 0.63 ± 0.20, SAMIOS et a l. f l l ]
’ a\ = 1

1 -0 .30  ± 0 .8 ,  TICHO et a l . [ 12]

F o r  A separately  one has [3]

aA = 0.62 ± 0.07 .
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T his indicates that m ost probably the value of a~ lie s  in between ~  - land
—  0.4 .

The test by LEE and YANG [13] can serv e  to elim inate values of 
the spin J >  3 /2  only if  the asym m etry  |o p | , p = average polarization , is  
> 1 /3 .

A s ap  in th e c a s e o f  optim al polarization  (p= 1) still may have a value 
~  1 /3 , it is  not p oss ib le  to exclude J = 3 /2  on the basis  o f the present data. 
H ow ever, J = 1 /2  seem s to be m ore  Hkely than J = 3 /2 .

2. THE P -W A V E  INTERACTION

Let us now d iscu ss  the strong P -sta te  in teractions. I shall try  to be 
ob jective  about the experim ental data, but the grouping together of certain  
reson an ces under the title  o f P -w a ve  resonance is  rather sub jective. That 
is , not everything d iscu ssed  here is  n ecessa r ily  a P -w ave resonance, but 
it is  hoped that there w ill be  no d ifficu lty  in distinguishing the subjective 
statem ents fr o m  the oth ers.

The f ir s t  P -w a v e  resonant in teraction  known was of cou rse  the 3-3 pion 
nucleon reson an ce . G lobal sym m etry p red icts  two spin 3 /2  pion-hyperon 
reson an ces, one with isotop ic  spin 1 = 1 , the other with 1 = 2 .

A  pion -lam bda resonance, which we are now ca lling  Y * , was d isco v 
ered  two y e a rs  ago by ALSTON, GOOD, A LV A R E Z et a l.[14] and reported 
at the 1960 R och ester  C onference  [15] . Even though a lot of experim ental _ 
w ork  has a lready been done in studying this resonance, its parity and spin 
a re  not yet known. T h is is  an exam ple o f a ll the pain and struggle that are 
som etim es n ecessa ry  to determ ine whether a little  num ber is  1 /2  o r  3 /2 . 
A lston  et a l. looked  at the reaction

K " + p -* A + 7T+ + 7T" (14)

produced by a beam  o f 1.15 G e V /c  K " in a hydrogen bubble cham ber and 
studied the energy distributions o f the two pions in the- K "p  cen tre -o f-m a ss  
system . They found sharp peaks in these distributions and tr ied  to interpret 
them  in te rm s  o f the p oss ib le  m echan ism s o f the reaction  (14). They found 
that these peaks a re  th ose expected if  f ir s t  a tw o-body system  is  form ed:

K "  + p  -  Y** + 7T*, (14a)

w here Y f  has a q u a si-w e ll defined m ass o f about 1385 M eV and decays into 
a lam bda and a pion:

Y?* -  A + jt* + 130 M eV • (14b)

The iso top ic  spin o f the Y i state is , o f cou rse , 1, sin ce it decom poses into 
a A and a it. Then the question of determ ining the spin of this particle  a rose . 
The f ir s t  p rob lem  w as whether J = 1 /2  o r  J >  3 /2 . Several kinds of an iso-
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trop ies  and angular co rre la tion s  betw een the d irection  o f production of the 
Y *  and the d irection  o f em ission  o f its decay could possib ly  be observed 
fo r  J > 3 /2 , thus m aking a distinction  betw een J= 1 /2  and J>  1 /2  p ossib le . 
Thus, fo r  spin J= 3 /2  it is  expected that the A’ s w ill have an angular d is 
tribution o f the fo rm  A + B  co s 2rj, w here n is  the angle between the d irection  
o f em iss ion  o f the A and the norm al to the plane in which Y f  and ir are 
produced . Thus, the polar-to-equatoria l ratio  about the norm al to the p ro 
duction plane m ay be different from  1 fo r  J > 3 /2  but must be equal to l f o r  
J= 1 /2 .

At that tim e, with lim ited  sta tistics , A lston  et a l. thought they had 
seen  a definite polar-to-equ atoria l ratio different fro m  1 , thus giving an 
indication o f spin 3 /2  to the Tfr* . But shortly  a fter that, a lot o f exp eri
m ents w ere  m ade applying severed kinds o f analysis o f angular corre la tion s, 
fo r  exam ple the fam ous ADAIR analysis [16] , and they seem  to have rather 
favoured  spin 1 /2 . BLOCK [17] produced Yi* in He and a lso  seem ed to get 
argum ents f o r  spin 1 /2 . But then a few  people began to point out that a lot 
of these experim ents w ere  not very  significant. P articu larly  DALITZ and 
M ILLER [18] showed that,because they neglected  the e ffects  of the sym - 
m etrization  o f the two p ions to be introduced to account fo r  B ose statistics, 
m ost o f th ese experim ents did not say anything about the spin o f the Y* . 
M ore  recently  in the last CERN C onference, B lock presented new data, but 
still noth ing-conclusive could  be extracted from  them [4] .

T here  is  one experim ent, how ever, which is  fa ir ly  significant, though 
not con clu sive . That is  the experim ent by E LY  et a l. [19] , with 1.11 G eV /c  
K “ m eson s in a propane bubble cham ber. They looked at the distribution 
o f the A’ s with resp ect to the norm al to the production plane and found that 
the best fit fo r  the law

1 + a c o s 2 (A , K X Yi)

is  obtained with
a = 1.5 ± 0.4 .

T h is resu lt favours J>3/2  but is  not con clu sive .
So it is  still a m atter o f opinion what the Y * spin, is , but there is  som e 

evidence in favour o f J= 3 /2 . One o f the reason s why people tend to believe 
in th is is  that things a re  fitting togeth er. F o r  exam ple, this fits  our argu
m ents that the A -a n d  £ -p a r it ie s  a re  probably positive , sin ce  in this case 
globed sym m etry p red icts  such a J = 3 /2  reson an ce . A lso , there is  no longer 
any reason  to expect that the resonance might be a J = 1 /2  resonance of the 
D alitz-Tuan type, s in ce  the m ost recent analysis o f low  energy K -N  data 
does not y ie ld  a solution consistent with such a resonance in the 1 = 1  state. 
This S -w ave analysis w ill be d iscu ssed  la ter .

The next resonance we shall d iscu ss  is  one which has not been d is - 
covered ,and  thus it is  not known if it ex ists  o r  not. This is  the isotop ic spin
2, P3/2 » reson an ce . This resonance is  im portant because it is  predicted  
by global sym m etry .

, T here  a re  som e hints of the ex istence o f this resonance which w ere 
reported  about a y e a r  ago at the A ix -e n -P ro v e n ce  C onference, but nothing 
has happened s in ce  then and it seem s that nobody has rea lly  seen it. The
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A lston  group at B erkeley , who saw the Yi* resonance, has a la rge  number 
o f events of the type:

K -  + p -► L+ + 7T+ + IT ' + r

and the sam e with a ll the ch arges in the final state reversed ; the 1 = 2 , 7tL 
reson an ce could  show up in the analysis o f these events. T herefore  it 
begins to appear that the thing may not exist, although we cannct be sure 
sin ce  we do not know what would be the c r o s s -s e c t io n  fo r  producing it in 
th is particu lar p r o c e s s .

Now let us d iscu ss  one m ore  resonance, the 1 = 1 /2  resonance. It 
is  very  sub jective to group this together with the P 3 /2  resonances, since 
its spin has not been m easu red .

T his new resonance has been d iscov ered  by both TICHO et a l.[12j and 
the S yracuse-B rook h aven  co llabora tion  group and reported  at the last con 
fe ren ce  in CERN. The two groups found about the sam e m ass o f 1535 MeV 
(80 M eV above the jtH threshold) but very  different widths: T icho et al. 
found 7 M eV and the other found 30 M eV . The surprising  thing is  that ex 
perim ents seem  to have indicated isotop ic spin 1 /2  fo r  this resonance. G lob
al sym m etry  b e lie v e rs  again expected that there should appear an 1 = 3 /2 , 
it S reson an ce analogous to the v N one, because E and N are both isotopic 
spin doublets .

Now, let us exam ine som e num bers which w ere  given by Sam ios at the 
CERN C on ference . (The only reason  fo r  giving these num bers rather than 
those o f T ich o  et a l. is  that Sam ios talked firs t  and the author was wide 
enough awake to w rite  down h is n u m b ers .) They absorbed a beam of 2 G e V /c  
K " m eson s in a hydrogen bubble cham ber, producing the reaction:

K ” + p _ > S + 7 r + K .

They found by kinem atic analysis o f the final products that there should be 
an interm ediate tw o-body  system ,

K " + p _» S* + K ,

with im m ediate decay o f the ST into 3 and ti. They looked at the charge state 
2*0 + k °  , m easured  the ra tio ,

R i =(H°*-> S '  + *+)/(S<>* -» HO + *°).

andfound5/0. Then they looked  at events producing the charge state + K+
and by observ in g  the fina l products, they m easured
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R2 = (H*- -> S° + 0 / ( 5 * '  -» S‘  + *°) = 3 /2 .

By just w riting C lebsch -G ordan  coe ffic ien ts ,w e  find that,if the H*isotopic 
spin is  1= 1 /2 , we obtain Rj = R 2= 2, and if  I = 3 /2 , we obtain Ri= R 2= 1 /2 . 
The experim ental resu lts  given above seem  to indicate m ore  the value 2 
than the value 1 /2 . So we shall accept 1= 1 /2 .

In the p r o ce s s e s  studied here there a re  only fou r possib le  charge states, 
two in the K "p  system  and two in the 5* K system , so that we can form  only 
three independent ra tios , the H*"/s * °ratio being independent of the two a - 
b ove . Now, if  H* is  an 1= 3 /2  ob ject, then with the K produced it can form  
either isosp in  2 o r  1 . If S* has 1= 1 / 2 , then the final state may have isotopic 
spin 1 o r  0. But in the in itial state we have 1 o r  0, so that in the case of 
H* being isosp in  3 /2  the only possib ility  is  that o f total isotop ic spin 1, and, 
s in ce  one has only one am plitude, the 5*' /~*° ratio can be predicted  under 
the conditions and turns out to be 1. The experim ental value fo r  this ratio 
is  about 1. Of co u rse  no definite pred iction  can be 'm ade fo r  the case  of 
isotop ic  spin 1 / 2  assignm ent to H*, sin ce  then two am plitudes are involved. 
Thus this third ratio does not say anything.

E ssentia lly , this is  the evidence, which is  m eagre but supported by 
two independent groups, the evidence o f T icho et al. being sim ilar to the 
above except they have m ore  events. V ery  little  can be said about the spin. 
Sam ios has reported  that by m easuring the polar-to-equatorial ratio with 
respect to the norm al to the production  plane o f the final 5 ’ s, they found 
P /E =  1 5 /5 ,which is  s till m eagre evidence in favour of spin 3 /2 .

We group this%resonance together with the P 3 /2  resonances only b e 
cause experim ents slightly suggest it and because nobody has a theory which 
p red icts  an S -w ave ttE reson an ce . T h ere  might be som ething like a D alitz- 
Tuan type resonance, but in this ca se  the resonance energy is quite a way 
below  the K j threshold , so that it look s as if  this cannot be so . It has also 
been suggested that this might be the second ir E resonance and not the firs t  
one. But it seem s probable  that,if this is  the second resonance, the first one 
should have been seen  in the sam e experim ent. So we shall group the E * 
with the P  3 /2  reson an ces just because this is  how som e people have expected 
it to be. T h is reson an ce seem s to fit into a multiplet which is  predicted 
by the ten -fo ld  representation  o f the unitary sym m etry.

Let us now very  b r ie fly  exam ine the sign ificance of this and in order to 
understand th ese things it is  very  im portant to know about both dispersion  
relations and group th eory . Even if  one p re fe rs  the fo rm e r , som ething should 
be known about the la tter . If one p red icts  som ething by group theory, a knowl
edge o f d isp ers ion  rela tion s -  though m aybe not m uch m ore  than Chew-Low 
equations- is  essen tia l to  check  the pred iction  by experim ents, because 
m eans o f th is som e relations between widths o f resonances and coupling 
constants, and so forth  can be obtained. One can see from  unitary sym m etry 
that the tt is  analogous to the K ’ s and the n , but they have quite different 
m a sses  and this m akes quite a d ifferen ce ; and these d ifferen ces can best 
be seen when po les  and d isp ersion  relations are w ritten down. A lso  if the reason 
fo r  these m ass d ifferen ces  is  not known, the coupling constants, fo r  the n
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let us say, cannot rea lly  be known by com parison  with the coupling constants 
fo r  the 7r and K. This must be seen from  the data.

On the other hand, if one has to operate with d ispersion  relations, there 
are  certa in ly  advantages in knowing in what sym m etries  to believe . F or 
instance, con sid er  the p rob lem  o f the 7tN resonances as it was first d is 
cu ssed  by Chew and L ow . They cou ld  w rite  down a d ispersion  equation and 
so lve  it essen tia lly  by the N /D  m ethod. They could  not predict the position 
of the resonance, sin ce  it depended upon the radius o f arbitrary  cu t-o ff they 
put in . But knowing the position ,they cou ld  pred ict the width in term s of the 
coupling constant. T h is m ethod was im proved  by Frautschi and W alecka, 
who m ade it re la tiv is t ic  and at the sam e tim e put in som e other fo r c e s . By 
m aking it re la tiv istic ,th ey  did not have to use an arb itrary  cu t-o ff, but one 
can see  that the con vergen ce  obtained cam e about at en erg ies in the integral 
o f the o rd e r  of the nucleon m ass, so  that essentia lly  in an attempt to predict the 
position  o f the resonance, fo r c e s  com ing in at higher en erg ies , i . e .  in term s 
o f configuration  space fo r c e s  o f short range, are  im portant sind nobody knows 
what the short range fo r c e s  a re . T h is is  very  physica l o f cou rse . It is  w ell 
known that both long-range and short-range fo r c e s  a re  im portant fo r  deter- 
m ing whether p a rtic le s  are  bound o r  w here a resonance is . But som e
thing that has to do m o re  with the details o f the shape, like the width, may 
depend m ore  particu larly  on the long-range fo r c e s , i. e . on the c lo se  singu
la r it ie s  in the energy plane. So one cannot rea lly  pred ict the resonance p o s i
tion . On the other hand,people who w rite  down form ulae in group theory 
w rite  down these m agic m ass form ulae and say at what m asses they expect 
reson an ces to' ex ist, so it is  worthw hile asking if there is  any sense in these 
form ulae, which there should seem  to be. If only one resonance is  being d is 
cu ssed , m ere ly  guessing about the high-energy region  is  a little wild, a l
though it m ay be w orthw hile. But if one has two resonances which belong 
to the sam e sym m etry  m ultiplet, it might be a little  m ore  reasonable to 
assum e that the high-energy contributions might be the sam e fo r  both. One 
might com plain  about th is and point out that the long-range fo r c e s  are very 
different fo r  d ifferent m em bers  of the sam e sym m etry m ultiplet, because 
7r and n and so forth  have different m a sses , but it could  be that the short- 
range fo r c e s  being m ade o f many different contributions might be the sam e, 
o r  nearly  the sam e. In try ing  to predict the position  o f the things, it might 
be that m uch can be learnt by com paring the different resonances which are 
at the sam e sym m etry m ultiplet.

H ere a re  a few  specu lative rem arks about the fo r c e s  that might be im 
portant in p red ictin g  the P -w ave  reson an ces. P eop le  like to believe that in 
the 7tN reson an ce the n p o les  which a re  c lo s e  act as the main fo r c e s  that 
produce the reson an ce . T h is is  a hope, m ade because things are s im pler 
if  it is  true than if it is  not true.

Let us suppose then that it is  true that in th is whole fam ily  o f resonances 
the poles  which are  caused by the interchange o f the pseu dosca lar m esons 
(tt, K, r/) a re  the main fo r c e s  which cause the reson an ces. What can we learn 
from  th is? W hich reson an ces exist, and which do not ex ist?  We shall be con 
cerned  with the J= 3 /2  reson an ces only because they seem  to be the m ost 
im portant ones.
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Let us w rite  the s im plest d iagram s, as in F ig . 1, making the static ap
proxim ation . If we do not w orry  about isotop ic  spin fa cto rs  and the signs 
they introduce, a d iagram  like  that in F ig . la , with interm ediate state of

v/\

\

Cal Cb)

Fig-1

le s s  energy than the in itia l state, g ives r is e  to a repu lsive fo r c e ; and a 
d iagram  as in F ig . lb , with interm ediate state with higher energy, con trib 
utes an attractive fo r c e . Both these diagram s contribute to a J = 1 /2  am pli
tude. But fo r  a J= 3 /2  am plitude only the attractive graph ex ists . When we 
include the isosp in  fa c to rs ,F ig . 1 (b) may not always be attractive; but it 
is  still true that the J = 3 /2  is  the m ost attractive in general.

Now let us look  at som e states that can be produced by som e pairs of 
p a rtic le s . Let us fir s t  con sid er  those with hypercharge 2, which can be 
produced by a KN system . W e know that in the K+p system , which is  a pure 
1 = 1  state, no P -w a ve  resonance o ccu rs . Let us see  what the pole term s 
would be, that is , what we“would expect to com e from  diagram s of the above 
type. F o r  the 1 = 1  state, neglecting m ass fa cto rs  and the AE m ass d iffe r 
ence (because w e do not know how big  the coupling constants are anyway), 
the residue is  p roportion a l to

3 ( g | zn + G ^AN).

T his g ives an attractive fo r ce , but we know from  experim ent that it is  not 
strong enough to produce a resonance. _

Now let us look  at the Y  = -2  states, which can be created  by the KS 
system . A resonance is  pred icted  fo r  I = 0 by unitary sym m etry. In this 
state the residue of the pole  is  proportional to

' * ( 3 G ^ - G | Ha).

This is  o f p articu lar in terest b eca u se ,if this pole term  is  strong enough to 
p roduce a resonance, th is might be an evidence fo r  a strong K m eson in ter
action. T ill now there has been no indication that the pseudosca lar K -m eson  
baryon in teractions a re  strong.and th is would be the firs t  evidence o f it.

Now, if we look  at the other states, we run into the difficulty that we
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m ay have many p a irs  of p a rtic le s  that can produce them  and so many chan
nels open. F o r  exam ple, fo r  hypercharge Y  = -1 , we have the follow ing 
system s: ttS, KE, KA, pH. In these ca ses  the correspon dence  between poles 
and graphs is  not so s im p le . If we use som e N /D  m any-channel d ispersion  
relation ,w e get a denom inator that starts out with 1 , includes term s that 
a re  quadratic in the coupling constants and have an energy dependence of 
the fo rm  (W -W0), and then fo llow  term s which are of the fourth order in 
the coupling constants, and so forth . If there is  only one channel open, then 
there are only the term s that are quadratic in the coupling constants. W here 
the denom inator is  z e r o  we say that we have a resonance. The quadratic 
term s are what we have when we look  at the e lastic scattering diagram s 
separately, not w orry in g  about th eir  being coupled. T o  get an idea o f what 
cou ld  happen, let us assum e that a resonance can o ccu r  only if  one o f the 
e lastic  scattering diagram s is  strongly a ttractive . This does not mean that 
the resonance would have to show up only in that particu lar state, since the 
states are a ll coupled . In other w ords, what we want to assum e is  that we 
need to have a strongly attractive term  in one o f the elastic  diagram s to 
obtain a resonance in one o r  m ore  o f the coupled  states.

Now fo r  the Y  = -1 system s in the 1= 1/2 (the state of the recently d is 
cov ered  S * ) state we have the follow ing fa cto rs  in the low est ord er  elastic 
diagram s:

jtH - ( 2 /3 ) G l a .

KE - ( 2 /3 ) r  2 G  N£K

K A (2 /3 ) r  2
u  NAK

.3 [I] (2 /3 ) G 2„ h h

The fir s t  term , being strongly negative, is  not able to  produce a resonance 
in our m odel. The K £N  and the K A N  interactions w ere  not strong enough 
to produce a reson an ce in the Y  = +2 states, and so we m ay assum e that they 
are not strong enough h ere  either, although we have to admit that the poles 
a re  a little  c lo s e r  to the ph ysica l region  h ere .

In the nSS in teraction  we have the sign and perhaps the strength to p ro 
duce a reson an ce . If th is resonance o ccu rs  at an energy below K A , K E and 
rj 3 th resh olds, it w ill decay into the only open channel, nZ .

^Now let us look  at the Y  = 0 states. T here  we have, fo r  1 = 2 ,  only 
the ttE channel, with a fa cto r  § (G 2az;+ G * ^  ). Since this is attractive, 
there a r is e s  the sam e question we had in the 1 = 1  state o f the KN system : 
why is  there no reson an ce? P erhaps, again, the coupling constants are  not 
strong enough.

F o r  1 = 1 ,  we have

ttE : (2 /3 ) (G in  -G *a£),

ttA  : (2 /3 ) g \ al  ,
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n £  t ( 2 / 3 ) G 27)m .

H ere the n E in teraction  might weH be partly respon sib le  fo r  the appear- 
.ance of a reson an ce in one of the above states. Hence strong n interactions 
a re  one p oss ib le  explanation fo r  the fact that a Y * ex ists , while a Yg does 
not seem  to  ex ist.

Thus in the future, with m ore  and m ore  data com ing in, we shall p e r 
haps.have to start being w orried  with the rj and K in teractions. P articu 
la rly ,w e shall perhaps have to see whether they are coupled to resonances 
that may be found in future experim ents.

Let us look  at one m ore  argum ent. If the irA E coupling is  strong enough 
to produce a resonance, what happens to the analysis o f the A -nucleon forces!? 
De Swart and Iddings have analysed the AN interaction  in term s of a few 
sim ple d iagram s,and fr o m  that they constructed  a potential to  d escribe  the 
AN  in teraction . F rom  a com p arison  of these resu lts with a potential obtained 
fro m  hyperfragm ent data they conclude that the strength of the >rAE cou 
pling is  o f the o rd e r  o f the ?rNN coupling:

fff̂ AE ■» 0 .0 8  .

A  rough argum ent fo r  rem em berin g  this result is  the follow ing: W e know 
that the A in a hypernucleus is  bound le s s  deeply than a nucleon in a 
n orm al nucleus. But this does not mean a la rge  d ifferen ce  in potentials 
because,in  a three-body nucleus, a reduction of the depth o f the potential by 
a fa c to r  o f two cau ses the nucleons to fly  apart, the binding energy being 
so sm all. And in fact the hyperfragm ent data indicate that the A-N potential 
is  about 2 /3  as strong as the N -N  potential. On the other hand, the A does 
not have the on e-p ion -exch an ge diagram . If we take out the on e -p ion -ex - 
change te rm  in the nucleon fo rce ,th e  depth o f the potential is  reduced by 
about 1 /3  (this rea lly  depends on the spin state; in the deuteron th is number 
is  about tru e ). So h ere  in the A -N  ca se , as there is  no one-pion -exchange 
and the potential depth is  just about 2 /3  o f the nuclear potential, we may 
have the other things about equal, which im plies f f ^ i  ~  fj-NN ■ But if this 
is  so , why does no reson an ce o ccu r?  M aybe it is  because G„££ is  sm all, 
because the reson an ces are  produced by other singu larities, because this 
analysis is  w rong o r  because n and K ’ s a re  im portant in the A nucleon 
potential too .

3. THE S-W AVE INTERACTIONS

The strangeness +1 system  w ill be firs t  considered : the K + p interaction 
in the pure T = 1 state. No P -w ave reson an ces are present; in fact the e la s 
tic  c r o s s -s e c t io n  is  iso trop ic  to 640 M e V /c  K+ m om entum . Some new data 
have recen tly  em erged . GOLDHABER, GOLDHABER et a l . [20] have made 
an analysis fo r  scatterin g  length. F rom  data, fo r  m om enta up to 355 M eV /c , 
they get

KN, KH : 0 ,
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a j = -0 .2 9  ± 0. 2 f e r m i .

The e ffective  range cou ld  not be m easured  very  w ell,and the resu lt obtained 
was

r2 = 0 .6  ±  0 .6  f e r m i .

The entire  m om entum  range up to 640 M e V /c  y ie ld s

a2 = -0 .2 9  ± 0 .2  fe rm i
and

r2 = 0. 5 ± 0 .1 5 fe r m i.

The phase shift rji goes up to -36°. T h is is  just what is expected from  a 
repu lsive c o re  in teraction .

The T = 0 in teraction  fo r  the strangeness +1 system  cannot be m easured 
as sim ply  as the T = 1 in teraction . A ll that is  known is  that it is  very  much 
w eaker than the T = 1 in teraction , and probably one has fo r  the scattering 
length

a0 < 0 . 1 0  f e r m i .

T here  has been a hint fro m  optica l m odel analysis that there might be som e 
P -w ave  in teraction  h ere . A lso  the T ich o  group has found som e indication 
that the P -w ave  might be as im portant as the S-w ave fo r  T = 0, but the 
strength o f the P -w ave  effect is  not known. Anyway, in the T = 1 channel 
there certa in ly  is  not appreciab le  P -w ave  in teraction .

Next we w ill d is cu ss  the strangeness -1 KN system . L arge S-wave 
in teraction  w as observed  in m eson -baryon  system s fo r  the firs t  tim e in this 
system . _

One can a ssocia te  a resonance with the la rg e  S-w ave KN interaction, 
as f ir s t  suggested by D ALITZ and TUAN [21] , and at the moment the only 
resonance one can think o f in this connection  is  Yo* at 1405 MeV and width 
~  50 M eV . H ow ever,till now there is  rea lly  no strong evidence that spin 
Y(f = 1 /2 . ALEXANDER et a l. [22] have observed  that the resonance peak 
is  cut o ff m ore  abruptly at the high-energy side than at the low -energy side, 
and th is must be expected  fo r  a D alitz-Tuan type o f resonance not fa r  b e 
low  th resh old . But as th is data is  sp arse ,th is  effect cannot be considered  as 
strong ev iden ce . T he m ain reason  why the Yo* -sp in  is  thought to be 1 /2  is 
that th is fits  with other experim ental evidence on the KN system , as 
w ill be explained sh ortly . H ow ever, there is  at least one argument in favour 
o f the assignm ent P3/2 to  the Yo* . That is , assum ing that pion couplings are 
predom inant in p ion -hyperon  in teractions, one m echanism  that might explain 
why the Y * at 1305 M eV d isin tegrates a lm ost com pletely  in A +  tt (the ratio 
Ect/Act is  le s s  than 3%) is  that f  Iae »  f \zt‘ . The residu e of the C hew -Low 
p o le -term  fo r  T = 0, irL scattering in the P 3 /2  state, is  essentially



164 R. CAPPS

C learly , if  f?A£ »  ffr££ » this would give attractive interaction in the P3/2 
state, and a resonance Yq is  th ere fore  expected  in the P3/2 state.

R ecently som e p ro g re ss  in  understanding the S-w ave interaction  has 
been m ade. But b e fo re  d escrib in g  it let m e review  a little . We con sider the 
absorption  p ro ce s s e s :

K " + P E+ + TT~ , (15)

K ' + P -> £° + 7r° , (16)

K " + P -* £ ’ + , (17)

which can be d escr ib ed  in te rm s o f two am plitudes fo r  isosp in  0 and 1: T0 
and Tx resp ectiv e ly .

At threshold , experim ental data give | T0 1 »  | Tj_ | and the relative phase 
(ftt = $0 -  $ 1  betw een th ese  am plitudes can be determ ined in magnitude:

<j>t = ± 60*. (18)

At 175 M e V /c  K " m om entum  (la b ), one finds about equal c ro ss -s e c t io n s  
fo r  (15) arid (17). Thus at th is mom entum the in terference  term  between T0 
and Ti vanishes, and th ere fore

<j>, = ± 90°. (19)

One expects that the positive  phases at threshold  and at 175 M eV /c  belong 
together and sim ilar ly  the negative phases, because the phase should not 
change too  rap id ly . In o rd e r  to get in form ation about <f>, at an interm ediary 
energy the K °n system  is  con sid ered . The threshold  is  here 5. 3 MeV higher. 
The R°n - K 'p  m ass d iffe ren ce  causes a cusp, as can be deduced using the 
D alitz -Tuan z e r o  range approxim ation [22] . B ecause the T = 0 absorption 
is  m uch b igger  than the T = 1 absorption, one finds that the phase <j>t must 
in crea se  betw een the K p  and K°n th resh olds. So one has at least the two 
sets o f phases:

K p threshold K°n threshold 175 M eV /c

OOC
O ~  80° 90°

- 60° ~  -  50°

eO

S everal y e a rs  ago it was observed  that K " capture on deuterium  gives the 
va lue 1 o f <j>r below  threshold  [21] . A ssum ing that the K ” is  caught from  an 
S atom ic state, in accord an ce  with the Day, Snow, Sucher argument, it was 
deduced fro m  equal £ + and L ~ ra tios  in
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K ' + d -» £ + + V  + n , 

K ‘  + d -» £ ’  + a* + n

that <j>t = ± 90° at E —  10 MeV (below K "p  th resh o ld ). The £ +  7r energy 
in the deuterium  experim ent is  that much below  the hydrogen experim ent 
becau se  o f  the deuterium  binding energy and the energ ies o f r e c o il  o f the 
neutron sind the £  +ir p a ir . It was assum ed in [23] that a strong dependence 
on the £ + n energy w as resp on sib le  fo r  the d ifferen ce  in the H and D ex 
perim ents.

Now, in the z e r o  range approxim ation, one cannot have <4r firs t d e 
crea sin g  and then in creasin g  around th resh old . This th ere fore  ru les the 
positive  set o f phases out. _

H ow ever, the fact that <j>t changes so rapidly below  the K p threshold 
suggests a reson an ce Y * . In fact the YJ w as pred icted  in this way [23] .

Additional in form ation  has been  obtained recently  [24] . The £ + sind 
E” ra tios  fo r  the Y0’ '* a re  such as to give <j>t = ±  110° . The sign can be ob 
tained by studying the in terferen ce  between the S -w aves and the resonating 
D j wave am plitude. The con clu sion  is  that <j>, = -110° th ere , strongly sug
gesting the negative sign at low er  en erg ies  as w ell. It is  n otices  that this 
a lso  in d irectly  supports the point of view  that Y0* is  an S-w ave resonance.

Last y e a r  Humphrey and R oss  determ ined two solutions in a zero -ra n g e  
approxim ation fo r  low  energy K N  in teraction . The solutions I and II c o r r e 
spond to the m entioned two p oss ib ilit ie s  o f sign  of $r .

One has com p lex  scattering length in th is analysis because there is  ab
sorption  into the Ett channels, even at threshold  A = a + ib . A ll the am pli
tudes have the energy-dependent fa cto r  1 /(1 -iR A ) above threshold .

Below  threshold  one has to rep lace  k b y + i | k | . l f a < 0 ,  then one might 
have a pole  below  threshold  in the low er half plane which correspon ds to 
a bound state o f the KN system . If there w ere  no connection with the L it 
channel, b= 0, which then g ives a bound state pole .

Solution I seem s to be ruled out, becau se fo r  this solution ao ~  a i~  0.
So again th is con firm s fa < 0. Solution H reads as fo llow s:

ao ~  - 0 .6  fe rm i , 

a jÄ  1 . 2  fe rm i .

This is  the m ost acceptable  solution . However, the negative value o f ao is  
not too w ell determ ined. It depends on the assum ption that the effective 
range is  very  sm all. It may be that ao Ä  -1 . 2 f, as pred icted  by Schult and 
Capps. A  la rg e  negative a 0 can give a resonance o f the D alitz-Tuan type, 
and th is may be the Yo* .

The nature o f the fo r c e s  leading to S -w ave resonances is not too w ell 
understood. T h ere  is  one m odel which tends to predict the signs o f things 
co r r e c t ly . T h is m odel, based on the exchange o f ve cto r  m esons p and u, 
has been d iscu ssed  by Sakurai.



166 R. CAPPS

If the m odel is  c o r r e c t , the fact that the KN system  is coupled to the 
E 7r system  suggests that the graph in F ig . 2 is  im portant where the in ter

m ediate line is  a v e cto r  m eson  o f strangeness 1 o r  -1 . It would be hard to apply

Fig. 2

the m odel if one only had z e ro  strangeness v ecto r  m eson s. Some years ago 
the A lston , T icho group d iscov ered  the tt-K  resonance K *. H ow ever, its spin 
is  not, yet known, so we shall now d iscu ss  the evidence fo r  the spin of K*.

Two kinds o f m easurem ents have been done on the K* spin, and the r e 
sults w ere  presented  at the CERN C onference, 1962. The T ich o group 
studied the p ro ce sse s

K " + p -» K* + p 

K*-» K +  7T

by looking fo r  any sort o f  asym m etry in the K* decay. If spin K *= 0, no 
asym m etry  can o ccu r , but asym m etry can exist fo r  spin 1. No asym m etry 
was found.

The second  m easurem ent is  the experim ent on pp annihilation by Arm en - 
te r o s  et al. at CERN. The analysis requ ires  knowledge of the orbita l state 
fro m  which p is  caught. If the Day, Snow and Sucher argument applied,this 
would be an S -sta te . T h ere  is , how ever, a better argument in favour of an 
S -sta te . C onsider the p ro ce s s  p + p -* K° + K°. The K° and K °being m ix 
tu res o f the eigenstates K° and K§ o f Cp, one expects to see the decay 
m odes of the fo llow ing com binations:

K? K? (20 )

K°2 4 (2 1 )

K°! K°2 (2 2 )

Suppose the in itial state is  an S -sta te . B ecause p and p have opposite p a r i
tie s  w hereas K° and K° have the sam e parity, the final state has odd orbital 
angular m om entum . It has to be a p -sta te , and the in itial state is  3S1 . This 
state is  odd under ch arge  conjugation . B ecause in the final state only Kj 
K°2 is  odd under C , only the decay m odes o f (22) should o ccu r . The exp eri
ment g ives

(20) : (22) = 0 : 54 

The Padua group has seen  one event.
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If the in itial state is  a P -sta te ,on e  finds in a s im ila r  way that type (1) 
is  a llow ed. The experim ent th ere fore  g ives strong evidence fo r  annihilation 
in an S -sta te .

B e fo rea d iscu ss ion o fth em ea su rem en ton th eK ''' spin, it is  noticed that 
the experim ental result excluding (20 ) and (2 1 ) seem s to contradict the 
Sakata m odel. In th is m odel K° and K° are  com posite  pa rtic les  (NÄ) smd 
(NA) resp ectiv e ly . A s p, n and A fo rm  the b asic  trip let o f the m odel, there is  
sym m etry fo r  interchange o f neutron and A and hence o f K° and K°. In p a r
ticu la r  the am plitude fo r  the p ro ce s s , in which K° m oves in a given direction, 
is  equal to  the amplitude fo r  K° going the sam e way. This is  not the case 
i f  the final state is  a P -s ta te .

A fter having determ ined that the p + p capture o ccu rs  in the S-state, 
A rm en teros et a l. com plete  the argument about the K* spin in the follow ing 
way: They look  at the fo llow ing type events:

p + p -» K j  + K *0 and 

-» K l  + K * .

They detect these events fro m  the tt+ + it~ decay of the JC® and con sider even 
events w here the K j energy corresp on d s to K* form ation . Let us assum e 
now that the K *spin  (and K'1' spin) is  0. S ince the K -1' decays into a ir + K, and 
the tr is  p seu dosca lar, the K*m ust then have the opposite parity from  the K, 
so the in trinsic p arities  o f p + p and K + K* (o r  K + K*) are  equal. Hence 
the K +  K’r must o ccu r  in the S -sta tes , and angular mom entum  conservation  
im plies that the in itial state is  a singlet, i. e . .

The -teo state is  even under charge conjugation so the final state must 
a lso  be even under ch arge  conjugation . T h is, together with the fact that the 
observed  K produced with the K* is  a Kj , im p lies  that the neutral decay m ode 
o f the K *(or R*) must be K0! + 7r« . No + 7r® is  allow ed. A rm enteros et a l. 
m easure the ratio ,

K® + [K j (v is ib le ) + it0 ]
K® + [ K (invisib le) + 7r0] '

w here the K in the square brackets is  the K fro m  the K* d eca y . A KSj w ill 
live  so long as to be invisib le  and the + ir° decay m ode of the K® w ill be 
in v is ib le . Now, if J(K*) = 0, the K of the K* decay is  always the K f ; this 
ratio w ill be sim ply the ratio  o f the (tt++ Tr~)/(i° + ir° ) decay rates of the K®, 
i . e .  2. R cannot be m easured  exactly  by experim ent because of the d iffi
culty o f separating K* events from  the non-resonant background, - but the 
data (with lim ited  sta tistics) c lea r ly  shows that R is  appreciably le s s  than 
one. H ence, it is  reasoned , the J(K*) = 0 assignm ent must be wrong.

T his m easurem ent is , o f cou rse , a long way from  conclusive;and since 
the. C a liforn ia  data favou rs J(K*) = 0, we must conclude that the spin of the 
K* i s  not yet known.
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The 1815 reson an ce  has baryon num ber one and strangeness -1 and 
lie s  above the K + N th resh old , so it may be produced without accom panying 
p a rtic les  in in teractions such as K + N -> K + N and K + N -» ir + L [25].
T he I-sp in  o f th is reson an ce was prev iously  known to be z e ro . Keefe et al. 
exam ined angular distribution  in the resonance region  carefu lly  and concluded 
that, if  w aves o f J >  7 /2  can be neglected , the resonance must have angular 
m om entum  5 /2 . P erhaps this resonance is  part o f a fam ily  that includes 
the F 5 /2  7r -N  reson an ce .

In conclu sion ,th ree  o f the m ost interesting questions about strange p a r 
t ic le  ph ysics  w ill be repeated sin ce  much th eoretica l and experim ental work 
should be done on these questions in the next few yea rs :

(1) Is the exchange o f v e cto r  m esons the sou rce  of the large S-wave 
m eson -baryon  in teraction s? If not, what is ?

(2) A re  the p seu dosca lar i)-baryon  in teractions strong and is  the rj
a brother to the pion in som e sym m etry schem e such as the un itarity-sym - 
m etry?

(3) A re  the pseu d osca lar K -m eson  baryon interactions strong? The 
fact that certa in  p r o c e s s e s  involving K m esons are strong clea rly  shows 
that som e K m eson  in teractions a re  strong, but there is  still no very  good 
evidence that the pseu d osca lar K baryon in teractions are la rge  at a ll. They 
m ay be n early  z e r o . A ccord in g  to unitary sym m etry, o f cou rse , they are 
la rg e .

A s has been dem onstrated, it would seem  that the E and A parities are 
even. In any ca se  it is  c le a r  that the rapid developm ent o f strange particle 
ph ysics is  not going to slow  down in the next y ea r  o r  tw o.

4. THE 1815 MeV RESONANCE
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1. IN TRODUCTION

T hroughout the h is to ry  o f  quantum  th eory , a ba ttle  has ra g ed  betw een  
the a m a teu rs  and p r o fe s s io n a l grou p  th e o r is ts . The a m a teu rs  have m a in 
tained that every th in g  one n eeds in the th eory  o f  g rou p s  can  be  d is c o v e r e d  
by  the light o f  nature p ro v id e d  one know s how to m u ltip ly  two m a tr ic e s . In 
su p p ort o f  this c la im , they o f  c o u r s e , ju s t ifia b ly , poin t to the s u c c e s s e s  o f 
that p r in c e  o f am a teu rs  in this fie ld , D ira c , p a r t icu la r ly  with the sp in or  
r e p re se n ta tio n s  o f  the L oren tz  g rou p .

A s an am ateur m y s e lf , I s tro n g ly  b e lie v e  in the truth o f  the n o n -p r o -  
fe s s io n a lis t  c r e e d . I think perh aps  th e re  is  not m uch  one has to lea rn  in 
the way o f  m eth od o logy  fr o m  the grou p  th e o r is ts  ex cep t cau tion . But this 
d oes  not m ean  one shou ld  not b e  a w are  o f  the r ic h e s  w hich have been  a m a sse d  
o v e r  the c o u r s e  o f  y e a r s  p a r t icu la r ly  in  that m ost h igh ly  d ev e lop ed  o f  a ll 
m ath em atica l d is c ip lin e s  -  the th eory  o f  L ie  g rou p s .

M y le c tu r e s  then a re  an a m a te u r 's  attem pt to gath er som e  o f  the f a s c i 
nating re su lts  fo r  co m p a ct  s im p le  L ie  g rou p s  w hich  a re  lik e ly  to be o f  p h y s i
c a l in te re s t . I sh a ll state th e o re m s ; and with a p h y s ic is t 's  ty p ica l u n con cern  
r a r e ly , i f  e v e r , sh a ll I p r o v e  th ese . T hroughout, the em p h a sis  w ill be  to 
show  the c lo s e  s im ila r ity  o f  these g e n e ra l g rou p s with that m ost fa m ilia r  
o f  a ll g ro u p s , the grou p  o f ro ta tion s  in th ree  d im e n s io n s .

In 1951 I had the g ood  fortun e to lis ten  to P r o f .  R a ca h  le c tu re  on L ie  
g rou p s at P r in ce to n . A fte r  attending th ese le c tu r e s  I thought this is  r e a lly  
too h ard ; I cannot lea rn  th is; one is  h ard ly  e v e r  lik e ly  to need a ll this c o m 
p lica te d  m a tte r . I w as co m p le te ly  w ron g . E leven  y e a r s  la ter  the w h eel has 
gone fu ll c y c le  and it is  m y  turn to le c tu re  on this s u b je c t . I am  su re  m any 
o f  you w ill fe e l  a fte r  th ese le c tu r e s  that a ll  this is  too  dam ned hard  and un
p h y s ica l. The on ly  thing I can sa y  is : I do v e r y  m uch  hope and w ish  you do 
not have to lea rn  this beautifu l th eory  e lev en  y e a r s  too la te .

2. SOURCES

A  w ord  about the s o u r c e s  [ l ]  and the s ch e m e  I w ish  to fo llo w . T he ch ie f 
s o u r c e s  in this th eory  a re  the fa m ou s th esis  o f  C artan  in w hich m o st  o f  this 
su b je c t  was c re a te d  H erm ann W eyl and h is  c la s s ic a l  tex t  on " C la s s ic a l  
G ro u p s "  and R a ca h 's  P r in ce to n  le c tu r e s  [2 ]. H ow ev er , I b e lie v e  con cep tu 
a lly  the m ost c o n c is e  ex is t in g  treatm en t o f  the su b je ct  is  in the w ork s o f  
DYNKIN [3 ], D yn k in 's  p a p er  has a m a g n ificen t appendix w hich  g iv e s  a r e 
v iew  o f  the known re s u lts  and this appendix is  m y m a jo r  s o u r c e . F r o m  the 
poin t o f v iew  o f  a p h y s ic is t  w ork ing  on sy m m e try  p ro b le m s  p erh a p s the best

1 73
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r e fe r e n c e  is  to the re v ie w  p a p er o f BEH REN DS, L E E , FRO N SD A L and 
D R E ITLE IN  [4 ], I have ch eck ed  with L ee  that apparently  w hile these authors 
knew o f D yn k in 's  w ork  they did not have it a c c e s s ib le  when they w ere  w riting  
th e ir  re v ie w . Thus th e ir  trea tm en t o f the fu n dam en ta ls r e s e m b le s  C artan  and 
R acah  m o re  c lo s e ly  ra th er  than D ynkin. A nother e x ce lle n t  p a p er  fo r  p h y s i
c is t s  is  SPEISER and TARSKI [5 ]. F o r  a fu lle r  ex p os it ion  o f D ynkin, r e f e r 
en ce  m ay a ls o  b e  m ade to two Im p e r ia l C o lle g e  th eses  -  those o f  N E 'E M A N  
[ 6] and IONIDES [7].

3. DEFINITIONS

The gen era l theory o f L ie groups fo llow s c lo se ly  the pattern o f the one 
group we are  a ll thoroughly fam iliar with, the theory o f the three-dim en
sional rotation group 0 3. It is indeed a m atter o f deep regret that the e le 
m entary expositions o f this fam iliar case  do not em ploy the sam e term i
nology as that o f the genera l theory. Half the conceptual d ifficu lties of the 
subject would sim ply disappear if this had consistently  been done in our 
undergraduate co u rse s . T o  illustrate and to anticipate notation we sum 
m arize  known facts about the rotation group 0 3. (A ll statem ents made here 
w ill be form a lized  later. ) We know that this group is  com pletely  determ ined 
by three in fin itesim al gen erators:

J* = 1 /^2 ( J j ± i  J2), J3 

and their com m utation relations:

U\ J3] - f,  U\J3] ■ -J', = J3.

The com m utation relations tell us that
(i) The num ber o f operators (out of these three) which can be diago- 

nalized  is  one (J3). C all this num ber the "ran k " of the group. Thus the rank 
o f  P 3 = 1 .

(ii) C all the eigenvalues o f J3 ( i .e .  the magnetic quantum num bers) by 
the name " weights" .  The highest eigenvalues j o f J3 uniquely labels a re p 
resentation. We shall ca ll this " the highest weight" .

(iii) The com m utation relations tell us (from  [.T, J3 ] = ± J3) that, i r r e 
spective  o f what the weights a re , the d ifferen ce  o f two consecutive weights 
is  ± 1. These num bers ± 1 which are ch a ra cteristic  o f the comm utation r e 
lations o f the group and not o f any particu lar representation  are called 
" ro o ts " .  In the subsequent general study o f L ie groups these three concepts, 
" rank" o f the group, " ro o ts "  o f the group and "w eights" (and particularly
the highest weight) w ill be gen era lized  and w ill play cru c ia l ro le s .

(iv) Another way o f labelling the representations o f 0 3 is  to use the op er
ator J2. This operator com m utes with a ll other op era tors  and thus fo r  a 
given representation  equals a constant m ultiple o f unity. If j is the highest 
weight, J 2 = j( j  + 1) I, This operator is  ca lled  the " C asim ir o p e ra to r " . We 
shall find that the concept o f a general "C a s im ir  op era tor" is not as highly 
developed, and fo r  this reason  we shall treat this concept at an early  stage 
feection 5) and then not m ention it at a ll la ter.
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4. M ATHEM ATICAL PRELIMINARIES

4. 1. A group G is  a set o f elem ents a, b__  with a com position  law (multi
p lication) such that the follow ing conditions are fu lfilled:

(i) if  a and b are elem ents o f the set, then a lso  the product c = ab be
longs to the set,

(ii) the com position  is  a ssocia tive : a (b c) = (a b) c ,
(iii) the set contains a unit elem ent e such that a e  = ea = a,
(iv) to any elem ent a o f the set, there exists one and only one element 

a' 1 o f the set such that a' 1 a = a a"1 = e.
The definition o f a group does not im ply that the two elem ents ab and 

ba are  equal; i. e . , the com position  is not n ecessa r ily  com m utative. A group 
in which a ll elem ents com m ute is  ca lled  abelian .

A  sub-group  H o f a group G is  a su b -se t o f elem ents o f G, which again 
fu lfils  the group postu lates. G and the group consisting  o f the unit elem ent, 
e , are ca lled  triv ia l su b -grou ps o f G . A sub-group  N is ca lled  an invariant 
sub-group o f G if  fo r  any elem ent n o f N (neN), sns"1 is  again an elem ent
o f  N where s is any elem ent o f G (seG ).

A group is  ca lled  sim ple if it contains no non-triv ia l invariant sub-groups, 
except p oss ib ly  d iscre te  ones.

A group is ca lled  se m i-s im p le  if  it contains no non -triv ia l invariant 
abelian su b -grou ps, except p oss ib ly  d iscre te  ones.

4. 2. A  representation  o f a group G is  a mapping o f the group into a set of 
linear transform ations D o f a vector  space R such that

if  ab = c

then D(a) D(b) = D (c),

D(a_1) »• ET1 (a),

D(e) = I,

where I is  the unit operator.
A representation  is reducible  i f  it leaves a su b -sp ace  o f R invariant. 

Then every  transform ation  m atrix can be brought into form :

Ta  b '[
.0 D_

A representation  is  fully reducib le  if every  transform ation m atrix can 
be written as

' a  o "

_° D_

4 .3 . A  L ie group is a group whose elem ents fo rm  an analytic m anifold in 
such a way that the com position  ab = c is  an analytic mapping of the manifold 
G X G into G and the in verse  a -» a' 1 is  an analytic mapping o f G into G. A 
L ie  group can thus be view ed from  an a lgebra ic , topologica l o r  analytical
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point of view . The topologica l concepts o f im portance are connectedness, 
com pactness and invariant in tegra l on the group (see SPEISER and TARKSI 
[5 ]).

A group G is  com pact if  every  infinite sequence in G has a lim it point 
in G. F or  a com pact group one can define a finite total volum e which is in
variant under the group.

F o r  exam ple, the group o f rotation in three dim ensions O 3 without r e 
flection s is  a connected and com pact group. The prop er Lorentz group is 
connected but not com pact and the im proper Lorentz group is neither con 
nected nor com pact.

The study o f sim ple groups is  im portant because every  sem i-sim p le  
connected group is  essen tia lly  a d irect product of sim ple groups, and any 
connected com pact L ie group is  essentia lly  a product o f a sem i-s im p le  and 
a on e-param eter (abelian) com pact group.

Ex. 0 4 5: 0 3 X 0 3 ; s im p le ; 0 4 sem i-s im p le .

The sym bol ~  means lo ca lly  isom orp h ic . F rom  now on we consider only 
sim ple com pact L ie groups.

5. SIMPLE COM PACT LIE GROUPS

So far as a physicist is con cern ed , a L ie group is a group of transfor
mation o f variab les which depend analytically on a finite set of N param eters. 
The fundamental idea of L ie was to con sid er not the whole group but that 
part o f it which lies  c lo se  to the identity consisting  o f the so -ca lle d  infini
tesim al transform ations. To form a lize  this, we have T heorem  I.

T heorem  1

E very  representation  o f a com pact L ie group is equivalent to a unitary 
representation  and is  fully redu cib le  (RACAH, WEYL [2]). Thus, since the 
m atrices  D(g) can be taken as unitary, they can be put into the form :

D = exp(ie“ Xa ),

where X„ are constant herm itian m atrices  (X* = Xa ), which are called infin
itesim al generators o f the group. €a (a = 1, 2 . . . ,  N) are N rea l param eters 
on which the set o f transform ations D depend.

The group is ca lled  unim odular if  fo r  any D(S), det[D (s)] = 1.
Then tr X  = 0.

T heorem  2

Fundamental Theorfem o f Lie
The lo ca l structure o f a L ie group is com pletely  specified  by the com 

mutation relations between the op era tors  XQ:

[Xa, Xfi] v C j B Xy ; a .ß .y  = 1 ,2 .......N, (5 .1 ),

where the coe ffic ien ts  C<£g which are independent of the representations of
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the group are num bers (called  the structure constants of the group). These 
num bers satisfy  two requ irem ents:

(a) antisym m etry in the two low er indices

(b)

^aß + Cya C§g + Cgy C$a -  0 .

Note that conditions (a) and (b) are  equivalent to the antisym m etry o f 
the Com m utator bracket [Xa, Xg] and the Jacobi identity:

[[X ^ X ß ], Xr] + [ [ X r, X j ,  x B] + [ [ x 8. x y] , x B] = 0.

R ew rite (b) in the form :

(Cejg (Cß)* -  (CBf6 (CJ y = c ‘ ß (Q )J . .

Thus, we have shown the follow ing:

T heorem  3
The N m a trices  Ca with m atrix  elem ents (Ca)y form  the so -ca lle d  regular 

o r  adjoint representation  o f the L ie  a lg eb ra * .
The p rob lem  o f c la ss ifica tion  o f L ie groups is the prob lem  of finding 

the num bers c 's  which satisfy  (a) and (b) and then o f finding N constant m a
tr ices  which satisfy  the fundamental com m utation relation o f T heorem  1.
This p rob lem  was com plete ly  solved  by Cartan in 1913. B efore however 
we state C artan 's  resu lts , we fir s t  wish to reca st the fundamental com m u
tation relation  (5. 1) in a "ca n on ica l"  form  and a lso  get over a number of 
auxiliary  resu lts  connected with C a sim ir  op era tors .

6 . CASIMIR OPERATORS

F rom  the structure constants we can define a m etric  tensor:

g = C8 C aa
S ( J K  ^ l l O i  ' - ' v ß  •

T heorem  4
The n ecessa ry  and su fficient condition fo r  a L ie group to be s e m i-s im 

ple is  that

*  The set of N matrices Xa span a linear vector space over the field of complex numbers and define a 
Lie Algebra; the sum of two matrices is an element of the algebra and so is their commutator. Lie algebras 
and Lie groups possess a one-one correspondence, and it is possible to go freely from Lie groups to Lie algebras. 
The study of Lie algebras (first introduced by Weyl)is in effect the study of the infinitesimal aspect of Lie 
group theory. Even though it is galling to bring in a new concept (of a Lie algebra) at this stage, this ap
parently improves the mathematical rigour of the statements made in these lectures!
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det tgjjyJ /  0 (Cartan).

Thus fo r  a sem i- sim ple group we can define an inverse m etric  such that

g ^ g  = ?  ■° ®yp p *

and we can use the m etric  tensors for  ra ising and low ering indices.
Now define an operator F = ga1,a1 X“ 1 x “ z. This is called  the C asim ir 

operator and has the property  that it com m utes with all the generators of 
the group:

If . x j  = ö .

The p ro o f o f the resu lt is triv ia l. The sign ificance of the C asim ir operator 
lies  in reca llin g  that by Schur's Lemma any operator which com m utes with 
all the generators of the group must be a multiple of the identity.

F or  Cfc this operator is the total angular momentum J2. One can define 
genera lized  C asim ir operators :

fl2 8, 8, «  a a
T7»n 1 4 p  /-I 1 V  1 v  * V  “* -  <-a !S! .... Coinj&n. X X  ..........X  .

It is  easy  to see that a ll these com m ute with X“ .
F o r  O3 a ll inequivalent irredu cib le  representations can be ch aracter

ized  by giving different values o f X where A. I = J2. The question arises  if this 
is  true in general. Racah g ives the follow ing partial answ er: W rite the set 
{Jl1} defined by^-kI = F k . F or  sim ple groups if  the representation  D and(D_1)T 
are equivalent representations, then the set {AM gives an unequivocal ch arac
terization  o f all the inequivalent representations.

7. CANONICAL FORMS OF THE COMMUTATION RELATIONS AND RANK 
OF A GROUP

T heorem  6 (P .Ion ides)
By a suitable ch o ice  o f linear com bination o f the X 's , the Cg^can be 

made antisym m etric in a ll three indices and pure im aginary; i . e .  one can 
w rite the com m utation re la tion s in the form :

[X *  Xg] = iijjgyXy,

with ljjgj, purely  antisym m etric and rea l.
In the usual theory o f angular m om entum , the firs t  step is to rew rite 

(the Ionides type of) com m utation re lations,

tJa- = i caßyJ r  * a , ß , 7 =  1 , 2 , 3 ,  ( 7 . 1 )

in the so -ca lle d  "can on ica l fo rm " . Defining the non-herm itian operators ,
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we rew rite  (7. 1) as

[J*. JJ  * ±

tJ+f JJ  a J3 •
(7.2)

T here are  two virtues o f this canonical form :
(1) If J3 is  diagonalized (J3 | m) = m |m ), we infer from  (7 .2 ) that the 

op era tors  J± act as "cre a t io n "  and "annihilation" operators .
(2) (7. 2) shows that the consecutive eigenvalues m o f J3 d iffer by ± 1. 

Our fir s t  task is to cast the com m utation relations (5. 1) in the "canonical 
f o r m " .

A ssum e that among the N gen era tors , there are £ which mutually com 
mute and can thus be sim ultaneously diagonalized. This num ber & is called 
the rank, and we shall designate these £ (herm itian) operators as Ha, H2... 
...H |. (F or 0 3, £ -  \). T hese opera tors  have a d irect physical meaning since 
their eigenvalues fo r  any representation  provide us the quantum num bers.

Let us con sid er Hj, Hg__ Hf as the com ponents o f an i-d im en sion a l
op erator-va lued  v ecto r  H. The com ponents o f H c lea r ly  satisfy  the com 
mutation relations:

[H j, Hjl = 0  fo r  i, j = 1 ,2 , ......

If the dim ension o f the a lgebra is  N (i. e. the num ber o f param eters o f the 
corresponding  group is N), we s t ill need (N - i )  elem ents to com plete a basis 
o f the a lgebra. A suitable ch o ice  of these is provided by the following:

T heorem  7
There exists a basis  o f the L ie a lgebra consisting  o f the elem ents Hj,

H2 .. ., Hf ; E±1, E±2 .. .E ±(N- t)/ 2 su ch th at the follow ing com m utation relations 
hold:

[H , Ea] = r (a ) Ea, (7 .3 )

[Ea,E .al = r  (a )  H , (7 .4 )

[Ea,E ß] * Na0Er fo r a ? (  - ß , (7 .5 )

withar, ß = ± 1, ± 2 , ... ± (N -£ )/2 . E 's  are non-herm itian m atrices and r (a) 
a re  rea l v e cto rs  in an I -d im ensional space . The r 's  are ca lled  roots o f the 
a lgebra; they have the property  that

r (a) ■ - r  ( - a ). (7 .6 )

C learly  the total num ber of the roots  is  (N -£) .
The sca la r  product appearing in (7 .4 ) is the usual Euclidean sca lar prod

uct provided  the H 's are  chosen in such a way that the follow ing norm ali
zation conditions hold:

E Tj (a) rj (a ) = R ; ij = 1, 2 ... 1 , (7 .7 )
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with an a rb itra ry  sca le  constant. F inally, a re  rea l num bers which are 
d ifferent from  ze ro  i f  and only if  r  (a)  + r  (ß ) is a lso  a root.

The roo ts , being essen tia lly  our old friends the structure constants, sp ec
ify  com plete ly  the group (at least in the lo ca l sen se). They p ossess  a twin 
ro le  in the theory. F irst, as may be in ferred  from  (7. 3), the roots 
a re  the d iffe ren ces  o f the eigenvalues o f H. Second and m ore important 
fo r  our presen t pu rposes, the roots  allow  us to c la ss ify  Lie groups. In term s 
o f the roo ts  we can state C artan 's solution o f the prob lem  o f finding all sim ple 
L ie groups. The c ru c ia l theorem  here is Theorem  8 which lists further 
p rop erties  o f the roo ts  and in term s o f these gives a com plete classification  
o f L ie groups.

8. CLASSIFICATION OF LIE GROUPS

A root is  said to be positive  if  its firs t  non-vanishing component (in an 
arb itrary  basis) is  p ositive . A röot is  ca lled  sim ple if  it is a positive root 
and in addition it cannot be decom posed  into the sum o f two positive roots .

T h eorem  8
(i) F or  a sim ple group o f rank £ there exist £ sim ple roots  and they are 

a ll linearly  independent. (We shall ca ll the set o f sim ple roots  the ff-system .)
(ii) E very  positive  non -sim ple  root can be expressed  as a lineär com 

bination £ R „ r (a)  where R a a re  non-negative in tegers. 
r(a)eir —

(iii), If r ( a )  and r((3) are  two sim ple roo ts , the angle 0^ between these 
can take only the follow ing values:

90° 120° 135° and 150°,

so  that 2 r (a )  • r  ( ß ) / r  (a)  • r  (a)  and 2 r  (a ) • r  (j3 )/r  (ß)  • r  (ß ) are both inte
g e rs .

(iv) F or every  sim ple group, a ll the sim ple roots  either have the same 
length o r  their length ra tios  assum e sim ple values. M ore explicitly  one has

1 if 6 ^  120°

2 if 0 *  = 135°

3 if 9 ^ *  150».

If ®oa a 90°» the ratio  o f lengths is undeterm ined.

Dynkin diagram s
As we shall see  in a m om ent, the geom etrica l properties of the sim ple 

roots  in the ’’'-sy s te m  ch aracterize  in a unique manner the corresponding 
L ie groups. T h ere fore  it is m ost convenient to incorporate them in a sch e
m atic diagram . These diagram s (the so -ca lle d  Schouten-Dynkin diagram s) 
are  drawn in F ig. 1.

F rom  T heorem  8, the lengths of the sim ple roots o f a given sim ple Lie 
group can assum e at m ost two different values. This fact together with the

r  (a)  |2
k W p  =
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CLASSICAL GROUPS

A. 0 - 0 ........... - 0 - 0

bi C H H > .......— - 0

ci C E » - # - # - ......

0 , ( l * 2 ) ^ X > - O - O - - ' ........- O

N=NUMBER OF 
PARAMETERS

I2 -t- 21 

2l2 +  l 

212 + 1

212-  I

EXCEPTIONAL GROUPS

g2 O K

0 - 0 - 1 52

E6 O —0 — ^ . 78

E| O - O - g - O - O - O 133

Es C K O g - O - O O - O 248

Fig. 1

Cartan solution of all possible single Lie groups.

p rop erties  about the angles enum erated above can be sym bolically  described  
by associating  with each sim ple root a sm all c ir c le . For the roots o f great
est length the c ir c le  is  m arked in black. If the angle between two con secu 
tive sim ple roots  is equal to 120°, 135° or 150“ , the corresponding c ir c le s  
are joined by sim ple, double or tr ip le  lines resp ective ly . If the angle is 90°, 
the c ir c le s  are not jo ined . F or  a group of rank i  there are I sim ple roots 
and therefore I c ir c le s  (black or white).

In term s o f these diagram s we give now the Cartan solution of all p o s 
sib le sim ple L ie groups. B roadly these fall into two ca tegories : the so - 
ca lled  "c la s s ic a l grou ps" and the five "exceptional groups” .

T o anticipate we shall find that the c la ss ica l Lie groups are som e of 
the well known ob jects:

Af is the group o f unitary unim odular m atrices  in com plex space of 
(£ + 1) dim ensions (SUf+1).

Bt and Df are groups o f orthogonal transform ations (rotations) in real 
spaces o f 2,0 + 1 and 2£ dim ensions resp ective ly  (0 2C+1 and 0 2^.

C» is the group o f unitary m atrices  U in com plex space of 2i dim ensions 
which fu lfil the condition U J U = J where J is a non-singular antisym m et
r ic  m atrix (the sym plectic  group)*.

*  Note from the Dynkin diagrams:

^  ° s >  isomorphic °  °  0 Aj

Also i- e- 0 6 SU4 .

(ii) C2 = 0  »  %  c r p  = b2

i. e. 0 5 % C2 .
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To take sim ple exam ples o f root structures:
F or I = 1 ( i .e .  group O3) there is just one sim ple root + 1. The space 

spanned by sim ple roots (the space) is {1} . F or 1 - 2 ,  the space is a plane, 
the relevant groups being

O----- O Two sim ple roots  o f equal length, and the 
angle between them is 120° .

B2: <)

C2: () •

G2: —()

Two sim ple ro o ts . Their length ratio is 2. 
The angle between them is  135°.

Two sim ple roots  with length ratio equal to 
3, and angle 150° .

is  s em i-s im p le , D2 ** A j X A2

Sum m arizing this section  then, from  the Dynkin diagram s we read o ff im 
m ediately the rank £ o f the group, the lengths o f the sim ple roots and their 
mutual angles (and o f cou rse  the dim ensionality o f the Euclidean space 00 
spanned by these £ independent vectors)*»*  *. The sim ple roots  r ( l ) ,  
r  (2 ),____ r  (Ü), are given by the follow ing form ulae:

*  It is perhaps worthwhile to make the reminder at this stage that not all roots are simple. In fact the 
total number o f  roots is (N-jP ), the distinct ones being (N -f ) /2 in  virtue o f  r(a) = -  r[ -  a), a =  1 , 2 .. . . ,
The remaining (N-3{)/2 distinct non-simple roots can easily be constructed, and in Footnote * *  we give a 
complete ansatz for drawing a complete root diagram (for 1=2  for example in a plane; for f = 3 in {3} 
space and so on). Personnally, I consider these diagrams pointless. However, to satisfy current prejudice the 
root diagrams for A2. Bz and G2 are reproduced in Fig. 2.

b 2

N = 10 

Fig. 2

Root diagrams for A2,B2 and G2

* *  The following scheme incorporates all the requirements about angles and lengths of simples roots 
specified by the diagrams.

For Aq define the following vectors:

— 2 - j  + i
by the conditions

+ *1+1 = °-

& = & =.

^p- -A ,  q =  1,2........ t + i .
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r  ( i )  = Aj -  Aj+j , 

r ( f - l )  = ^ :t. 1-A { ,
(8. 1)

r (1) -  ^  -  X2.

o — o — o — o  — o
I J-l 1

F or  B{ : the s im ple roo t structure is as fo llow s:

r ( i ) =  A{J (This is  the sm allest root) 

r  (£-  1) = A j-j-A p , (8 .2 )

r  (1) = Aj -  Ag ,

where

“  ° -  p /  (8- 3)
3D------O--------- O

e i -1 i

F or  C{ : the sim ple roo ts  a re  given by:

r (£) 3 2 Aj , (This is  the greatest root.)

r  (-£-1) » A{. 1 - Af_2 , (8 .4 )

r (1) * A2 - Aj ,

n  w — •  — •
i i -1 i

where the A 's  satisfy  (8 .3 ).

F or  : the sim ple roots  a re  given by:

r  (ü) = ^ c - i + »

r ( i - i )  = Af . r  Af (8 .5 )

r  (1) = Ap - A2 

L i -2

c-i

The A 's sa tisfy  (8 .3 ). So m uch fo r  sim ple ro o ts . A ll roots  are given for the 
c la s s ic a l groups by the follow ing exp ression s:

Ai : £ P- V  p- «J3 J' 2........ i + 1
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B| : ± V  ‘ P' * m l - 2 ...........1
Ct : ± 2Xp , ±Xp ±Xq ; p ,q  * 1 ,2 ,........ i

D : ± X p ±Xq ; p ,q  = 1 ,2 , ............£.

Sim ilar exp ression s can be given fo r  the exceptional groups. A lso one 
can give a full corresp on d en ce  between the "can on ica l" expressions for the 
com m utation relations and the m ore  fam iliar manner in which one writes the 
com m utation relations for  the orthogonal, sym plectic groups, etc.

Thus, fo r  the orthogonal group in (2f + 1) dim ensions which leaves in
variant the quadratic form

c xpx'p 
p=-f

one m ay w rite the in fin itesim al operators:

Xpq = " Xqp = XP 6X-<f '  ^  6X 'P  ’

with the com m utation relations:

^ i k '  ^ m r J  = ^ + m  ^ in  "  X im “  fy+m  ^kn "  fy+n ^km

where 5q = 1 if q = 0 and zero  otherw ise. These operators correspond to the 
E 's  and the H 's of B{ if  we mak-e the follow ing identifications:

^p-p = ^ p ’ ^±p±q ~  ^±Xp±\q. * o ±p -  ®±\p > P-Q"*

Sim ilar corresp on d en ce  can be stated for  A {, C t , D t etc. (R acah 's notes).

9. REPRESENTATIONS OF LIE GROUPS: WEIGHTS

9 .1 . Now we com e to physica lly  the m ost im portant prob lem  of all - the 
prob lem  o f finding representations of the group, i. e. the m atrices c o r r e 
sponding to H and Ea.

C onsider a representation  o f dim ension (or degree) d. Since H2, Hj, .. 
, . ,H t are herm itian m a trices , and since they com m ute with each other, we 
can sim ultaneously diagonalize these. Let Im )1 be a sim ultaneous eigenket:

H Im )1 = m |m)>. (9.1)

Since H 1 s are d X d m a tr ices , the total num ber o f such eigenkets |m)> is  d.
The m_'s in Eq. (9. 1) are rea l num bers and are called  "w eights". They 

fo rm  i -d im ensional v e cto rs  in a Euclidean space fo r  whose basis one may 
take the n-sp a ce  o f the group (the space spanned by the i  sim ple roots). 
Sum m arizing, fo r  the ca se  o f a group o f rank I  and fo r  a given representa
tion  o f d im ensionality d, there are

The ± signs are to be taken in 
arb itrary  com binations.
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£ : sim ple root v e cto rs

(N-3.Q/2 : distinct n on -sim p le  root v ectors

d weight v e cto rs  (provided we count each weight
vecto r  as many tim es as its m ultiplicity indi
cates, the m ultip licity  being defined as the 
num ber o f independent eigenkets |m) c o r r e 
sponding to a given weight m).

Note that root v e cto rs  are ch a ra cter is t ic  o f the group. They are rea lly  the 
structure constants. The weight v e cto rs  on the other hand are ch aracteristic 
o f the representation . T here are only i  lin early  independent roots (sim ple 
roo ts ). T here are also only i  lin early  independent weight v ectors . The sim 
p lest (oblique axis) basis  fo r  the weight v ecto rs  is  that provided by the s im 
ple root v e cto rs .

A ll this intertwining of weights and roots  is  exciting enough, but still 
further and the m ore  exciting resu lt com es when we look  fo r  the analogue 
of the resu lt in that all weights are either in tegers or half-integers. The 
analogous resu lt is  T heorem  9, which g ives the "com ponent" of any weight - 
ve cto r  along a s im ple ro o t -v e c to r .

T heorem  9
F or  every  weight m , the num ber m- r  (a)/r (a) - r  (a), where r  (ct)e.n, is 

an integer o r  a h a lf-in teger, ^  0.
T heorem  9 prov ides the ju stification  for  Dynkin's insistence on sim ple 

roots  as the p rim ary  entities on which a ll conceptual em phasis should be 
p laced . Dynkin ca re s  neither fo r  the non -sim ple  roots  nor for the weight 
v e c to rs . Given the s im ple roo ts , T heorem  9 tells us what the weights look 
like through the sim p lest p oss ib le  generalization  o f the fam iliar resu lts for 
the {3} rotation  group*. In this insistence on sim ple roots  possib ly  lies  the 
su periority  o f Dynkin's presentation of L ie group theory.

10. IRREDUCIBLE REPRESENTATIONS AND THEIR DIMENSIONALITY

Definition: A weight m is  said to be higher than m' if m -m ' has a p o s i
tive num ber fo r  its fir s t  non-vanishing com ponent in an arb itrary  basis. The 
weight A which is higher than all the others is ca lled  the highest (or greatest] 
weight.

T heorem  10
A representation  is uniquely ch aracterized  by its highest weight A , and 

the highest weight always has m ultip licity  one. —

*  Earlier it was mentioned that roots are differences of weights.' The formal result is: If | n̂ >is an 
eigenket of H corresponding to a weight m, Ea |n£> is also an eigenket with weight m * The result fol
lows from

[E„,H] =r(a)Ea .

Note the role of E  ̂ as a creation operator.
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T heorem  11
In ord er  that a vecto r  A be the highest weight ot som e irreducib le  rep 

resentation , it is  n ecessa ry  and sufficient that ja, d e fin e d a s ja = A -r  (a)fr (a )-r(a ), 
is  a non-negative integer o r  half-in teger.

Thus to get the irred u cib le  representations o f any Lie group, we should 
m ark each c ir c le  in the Dynkin diagram  with a non-negative integer or half
integer j a. These num bers ch aracterize  uniquely the irreducib le  representa
tion with A as its highest weight, the "com ponents" A  - r  (a ) /r  (a)-  r  (a)  of
A being just (jj, j 2........). The dim ensionality o f this representation is given
by the follow ing theorem  o f Weyl:

W ey l's  T heorem : Theorem  12
Let E+be the system  o f a ll positive roots o f a sem i-s im p le  L ie algebra, 

and let an irred u cib le  representation  be uniquely ch aracterized  by the highest 
weight A . Then its dim ensionality d is given by the form ula:

If one w rites the v ecto rs  A and g in term s o f the auxiliary quantities X's 
prev iou sly  introduced in the third footnote o f  section  8,

The W eyl form ula above g ives the exp licit expression s listed  in Table I.
A s exam ples con sider som e o f the interesting physical ca ses , namely, 

the ca se  o f rank I = 2. In this ca se  the num ber o f com m uting m atrices in 
the a lgebra  is  two, and we can associa te  them, fo r  exam ple, with the third 
com ponent o f the isotop ic spin and the hypercharge. The only sim ple com 
pact L ie  groups o f rank 2 are  A2, B2 , C2 and G2 . Any irreducib le  rep resen 
tation o f these groups can be labelled by means o f two non-negative integers 
jj ,  j2. The form ulae for the dim ensionality given in Table I can be written 
exp licitly  in a sim ple way and is  shown in T able II.

F o r  instance, fo r  the sim p lest ch o ices  of the arrays jj , j 2 one gets the 
follow ing d im ensions:

A 2 : d (0 ,0 )=  1 : d (0 ,0) = 1 G2 : d (0 ,0 )=  1

where
S = 2 r_(fe£+ I  ^  •'

A n L i ^ ,

g = %  K

d (l , 0) = 3

d(0 ,| ) ■ 3

d (l , 0) * 6

d ( i , D »  8

d(l,-§) -  15 
d ( l ,  1) = 27

d ( i ,  0) = 4 

d (0 ,1) = 5 

d ( l ,  0) = 10 

d (0 ,1) = 14 

d ( i , i )  = 16

d (i , 0) = 7 

d (0 , i )  = 14 

d ( l ,  0) = 27



TAÖLfc 1

( j j 's  a re  n on -n eg a tiv e  in te g e rs  o r  h a lf- in te g e r s )

Group
N

number of 
parameters

Dynkin diagrams Dimension of the irred. represent. Expressions 
for f and g

A{ l2 + 21 it i t - 1 ii * ( 1 + apq) 
p. q ^

where 

fp " fq 
aP q = ^ — iL 

Sp " gq 

ß uu- fp+fq

8
*k = f  ff+i+ 2 H

f*+1=i7 i i V h

gk = T  + <*-k+1>

8 j+i = - « /2
Note f t + . . .  +fj +1 = 0

gp + gq

yP = fp/gp

2 f2 + t • n n ----------n
if i{ - i  Si

^(1+ yp)(i+apq)(i+epq) " fk = J* + 2i£ k M 
gk = (S-k + i)

c j 2 f2 + I
ij- i  ii - "

fk = 2 I ,  Si i=k

gk = (i-k + i)

D« 2{z - I • '" 'v .  ________ .
, °  J*-2 Si Jjj-1

£.(q + V (1 + V
" fk = j{-i +S{ + 2 Y  Si

f« = jf-i "S{- g* = ° -  gk= « -k fo r k ^ f -l

T he products here range over a ll possible values o f  p  and q; the indices denoted by distinct letters must have distinct values, 
and o f  a ll sets o f  values obtained from one another by permutations o f  indices only one must be chosen.
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TABLE II

Group
Number of 

parameters N
Dimension of the in. rep.

8 (J,) (J2) [Ji + J2]

10 -k Oi> 0 ,)  [Ji +J2] (21: +Ji)

G2 14 ■b (Ji) (J2) Oi +J2) [2J2 +JJ x
[312 + I,] [3JZ + 2Jj]

{ Note: Here Jt = (2j, + 1) and J2 = (2j2 + 1) }

T hese num bers d(j j, j2)* represen t the num ber o f p articles  which can be 
accom odated  in any given m ultiplet in physica l applications.

The adjoint (or regu lar) representation  R plays a very  important ro le  
in v ector  m eson  th eories . F or  the ca se  o f £ = 2, these representations are 
the follow ing:

: dR= d ( i , i ) =  8,

B2 (C2) :  dR = d ( l ,  0) = 10,

G2 : dR-  d (0 ,| ) = 14.

These groups, th e re fo re , can accom m odate 8, 10 and 14 vector  gauge m esons 
resp ective ly  if these m esons correspon d  to the adjoint representation.

11. COMPUTATION OF A L L  WEIGHTS OF A GIVEN IRREDUCIBLE 
REPRESENTATION

Notwithstanding the fact that the greatest weight uniquely ch aracterizes 
an irred u cib le  representation , it is im portant fo r  physical applications to 
be able to com pute a ll the weights o f an irredu cib le  representation. Later 
we shall construct weight diagram s for som e irredu cib le  representation of 
low dim ensionality fo r  the case  o f rank 2 groups (A^ B2, C2, G2). In con
trast to the root d iagram s, the weight diagram s are d irectly  o f physical 
in terest.

An exp licit method to fa lcu la te  a ll the weights in term s of the highest i 
weight and the sim ple roots  is  given by the next theorem . We have learnt 
e a r lie r  that the roots  equal d ifferen ces o f weights.

*  I have introduced a small change of notation in the labelling of representations. Dynkin and Behrends
et al. label irreducible representations with numbers a,, a2.......a j where a, are (non-negative) integers. I
have used for labelling the numbers j , ,  j2.......jg where the j's are (non-negative) integers or half-integers.
The new notation possibly brings out still more the fact that a general Lie group of rank f is a simple "gener
alization" of Oj and has C distinct "angular momenta" j , ,  j 2.......rather than just one (jj).
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Let A and W be the highest weight and the set of aH weights r e sp e c 
tively  o f a given irred u cib le  representation.

An elem ent m eW  is  said to belong to the layer A ^  if it can be ob 
tained by subtracting K sim ple roots  from  A . C learly  A(°) con sists only 
o f A , and

W = A {0) U A (1) U A < 21.......

Note that all the la y ers  are disjointed.

T heorem  13
E very  elem ent e A ®  can be expressed  as

in(k) = n # " 1) - r  ( a ),

w here m M  b A H )

and . ,r (a) e n -.

H ow ever, if  m ^ '1) belongs to AM  and r(a ) is  an arb itrary  sim ple root, the 
d ifferen ce  m(k' 1) - r (oJeA M  if and only if  the follow ing condition is  satisfied:

2 m ^ ' 1) ■ r  (a  ) / r  (or) • r  (a) +  Q  > 0,

w here the num ber Q is  defined by the requirem ents:

mf1*"1) + q r ( a )  eW  fo r  q <  Q, 

m^ ^ + q r  (a) eW  fo r  q = Q + 1.

Exam ple:

Perhaps the best way to show that the theorem  is  actuaUy quite harm less 
and sim ple in p ra ctice  is  to  construct the weights fo r  a sp ecific  case . Con
sid er  the group A 2 SU3 fo r  which 1 = 2 .  The Dynkin diagram  is  O----- O.
The it-sp a ce  is  tw o-d im ensional; and if  we ca ll the roots  a and ß, the dia
gram  te lls  us that their lengths are equal ( | a |2 = |j3 |2) and the angle b e 
tween them is  1 2 0 ° so that

a • ß / a  • a = -  5 .

C onsider now the regu lar representation  , 5 ). The dim ensionality in 
this ca se  is  d = 8, so that the representation  could accom m odate 8 p a rtic les . 
The "com pon en ts” o f the highest weight A ( ie j j^  jß are given by

jet = A -  a_/a- a = i , (11.1)

h  = A - ß / ß - ß = ± . (H .2 )



190 A. SALAM

N oticing that a  and ß do not fo rm  an orthogonal b a sis , we find from  (11.1) 
and (11.2) that

A  = a + ß.

Now using T heorem  13, i f  we are given an arbitrary  weight M and we 
wish to know whether M -a  is  a p oss ib le  weight o r  not, we proceed  as f o l 
low s:

W rite the se r ie s  M , M + a , M + 2 a , . . .  M + (Q +  1)<* where Q is  an 
in teger. The se r ie s  term inates fo r  a Q defined by the requirem ent that while 
M , M + a ,  , . . .M  + Q a  are weights, M + (Q + l ) a  is  not a weight. Now com 
pute the num ber,

Q + M „ where M„ = 2 M • a/ a- a .

If M „ + Q > 0 , then M -a  is  a weight; otherw ise it is  not. In starting this 
p rocedu re  the cru cia l point to rem em ber is  that A + a where a is  a sim ple 
roo t is  n ever ä p oss ib le  weight.

C onsider now the ca se  when M = A . Since A + a  is  not a weight, Q = 0. 
Since

A a =A.-  a / a-  a = j a > 0 , (11.3)

we see from  (11.3) that A - a  is  indeed a weight. L ikew ise, since jß > 0,
A - ß is  a lso  a weight.

We can now start with (A - a )  and test if (A - a) - a  and (A - a )  - ß are p o s 
sib le  weights o r  not. It is  easy to see that A - 2 a  is  not a weight, but A -a -ß  
is . P roceed in g  in this fash ion , we find that all p oss ib le  weights are given by 
the diagram  shown in F ig . 3.

A

A-2ä-2£

Fig. 3
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Notic e that the weight A - a -ß  is  o f  m u ltip licity  tw o. The diagram  does not 
further fan out, and we obtain a totality o f eight weights. W riting A = a + ß ,  
we have the fo llow ing system  of weights:

a + ß ,  a, ß,  0, 0, - ß ,  - a ,  - ( a + ß).  (11.4)

The m u ltip licities  are spindle-shaped: they in crease , com e to a maximum 
and d ecrea se  again. (The weight ze ro  has m ultiplicity tw o.) This is  a gen
e ra l resu lt which w ill not be d iscu ssed  further.

_ j______i______i______i______i___ ,__
- 1 - ^ . 0  1  1 h

Fig- 4 

Euclidean diagrams

F ig .4 g ives the E uclidean diagram  of these weights. The two rings in 
the centre indicate the two z e ro  w eights. A tentative identification  o f the 
stable baryons with the appropriate weights has a lso  been made in the figure, 
provided  we identify

m 2 = (2 /NT3)U,

where m = (JJJ1) in a Euclidean basis .
F or  illustrative pu rposes, here are som e m ore  weight diagram s c o r 

responding to the representations [4] shown in F ig. 5.
B efore  concluding this section  we state one im portant theorem  and make 

one final rem ark .

T heorem  14
F or the adjoint representation , the root v e cto rs  and the n on -zero  weight 

v ecto rs  co in cide . The weight ze ro  o ccu rs  with a m ultiplicity equal to the 
rank o f the group.

An illustration  o f this theorem  is  given by the weight diagram  of the 
( l .  I) representation  o f SU3 com puted ea r lie r  in this section . B ecause of
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Fig. 5

this rather rem arkable property  c lea r ly  the adjoint representation  has a 
greater cla im  to attention than any other.
R em ark

In 0 3, the eigenvalues of J3 (the weights) are non-degenerate fo r  any 
given representation  and hence su ffice  to label the representation. For gen
era l L ie  g rou p s,' except fo r  the highest weight, all others may possess 
m ultip licities o f > 1 (com pare  the weight (0, 0) fo r  SU3 which has m ultiplicity 
2). If the m ultip licity  is  > 1 we need additional operators all commuting 
with each other and with the H 's ,  whose eigenvalues w ill enable us to r e -
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m ove the degeneracy  and label uniquely the e igenvectors of the f f s ,  belonging 
to the sam e given weight. (A  C asim ir operator which has the sam e eigen
value fo r  all v e cto rs  o f a given representation  is  clea rly  u se less  for this 
pu rpose .) The num ber o f extra  opera tors  needed can be shown to equal (N- £ )/2-i 
= (N -3 i) /2 .  F or 0 3 , N = 3, f  = 1 so  that no extra operator is needed to cha
ra c te r iz e  all the eigenkets o f J3 in a representation  specified  (uniquely) by 
the highest weight j. F or SU3 , how ever, N = 8, £ = 2 so that we need one 
m ore  operator besid es I3 and U to label uniquely the eigenkets of I3 and U.
It is  not hard to show that in this ca se  such an operator is given by ^2. For 
C2, (N -3 i) /2  = 2. Thus, even additional to (and U and I3 ), one m ore quan
tum num ber is  needed to fo rm  a com plete  set o f com m uting observables.
F or  G2, (N -3 i) /2  = 4.

12. REDUCIBLE REPRESENTATIONS

Let us take stock  o f the situation. F or a physicist working in sym m etry 
p rob lem s, the in form ation  n ecessa ry  fo r  p rog ress  is the following:

(i) C lassifica tion  o f  irred u cib le  representation  fo r  a group o f rank £.
We p o sse ss  a com plete  solution o f this problem .

(ii) The eigenvalues o f the com m uting operators H 1, . . . . , H P. This is 
the sam e prob lem  as the problem  of determ ination o f weights. Again 
we p o s s e s s  a com plete  solution o f this.

(iii) D eterm ination o f the e x tra (N -3 l) /2  operators to enable a unique
la b e llin g  o f the eigenkets of H -p ____ H f . F or groups like A 2, B 2,
C2, D2 we know how to construct such operators but a general system 
atic p roced u re  apparently is  not known.

(iv) The reduction  o f a redu cib le  representation  into the d irect sum of 
irred u cib le  represen tations. T here are two parts o f this problem : 
firs t , finding out which irred u cib le  representations make their ap
pearance in this d irect sum; second , to find the C lebsch -G ordon  
coe ffic ien ts . T heorem  15 w ill g ive the procedu re  fo r  solving the 
f ir s t  p rob lem . The second  p rob lem  w ill be dealt with by Ruegg and 
G oldberg in th eir  le ctu res  fo r  som e specia l (fortunately fo r  the 
p h ysicist, extrem ely  im portant) ca ses . No general solution how
ever ex ists.
F irst, som e obvious definitions:

K ronecker products
If R j , R2 , R3 are three lin ear spaces o f dim ensions m, n and mn r e 

spectively , we shall say is  the K ronecker product o f R x and R 2 (Rg 
= R j X R 2) provided  to every  vecto r  f  : )> e R j ,  l ? 2 )> e R 2, there corresponds 
a v ecto r  | § 3 )> e R 3 (notation | ? 3 > = 5 1 X | ? 2_>) such that:

(i) The operation  |f j)> X |f 2 is  linear in each argument;
(ii) R3 is  spanned by v e c to rs  o f the fo rm  I S j )  X |?2 >̂ .
If ^2 and <j>2 are  linear representations o f a L ie a lgebra operating in R : 

and R 2, the representation  <f>3 defined in Rx X R 2 by the form ula,

* 3 f |fj > x  |«2> }  = f * 1 ^ » x  |s2 > + |5 i > x [ *2 |s2> } f
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is  ca lled  the K ronecker product o f and <j>2 and w ill be denoted as

0 3 = <j>1 X 0 2 .

T heorem  15
(i) Addition o f weights

If A 0i is  the weight space of <j>x and A 0t is  the weight space of the 
representation  fa , then A^ = Ap + A<p .

(ii) If A a and A 2 are the greatest weights o f  ̂  and 02, the greatest
weight of <̂ 3 is  A j .+  A 9.

This th eorem  is  an obvious generalization  o f the addition theorem  for 
angular m om enta in 0 3 which we con sider in detail. If j j  and j 2 are the 
highest weights o f two irred u cib le  representations and 0 ( j2),the (r e 
ducib le) product representation  has the highest weight jx + j 2 . A lso the 
totality o f its  weights is  given by

Weight -» Ji"*" J2-2 , ••• ’  ~ J r  2̂
m ulti
p lic ity 1 . 2 3 , . . . ,  1

The m ultip licities are easily  deduced. F or exam ple, j j  + j2- l  a rises  in two 
ways: either as the sum j j  + (j2 - 1 ) o r  equally as the sum of the weights 
(ji -1 ) + j 2 . The usual p rocedu re  to find the irredu cib le  representations 
contained in 0 ( j j )  Xij> (j2) can be stated thus: Take away from  the totality 
o f weights those which belong to the representation  <j> (jx + j2 ). Among the 
rem aining weights o ccu rs  the weight j j  + j2- l  with unit m ultip licity . C learly 
this m ust be the highest weight o f the representation  0 ( j j+  j2 - l )  which 
th ere fore  m ust a lso  be contained in <j> ( jx ) X <j> (jg ). Taking away all the 
weights belonging to $ ( j i + j 2 " l )»  we next identify the occu rren ce  of 
<j> (jj + j2 - 2 ) in the d irect sum from  the fact that the highest weight left is 
(j2 + j2 - 2)- This p rocedu re  is  continued till we reach  0 ([ j i -  J2 |)- At this 
stage all weights are exhausted, lead ingtoth e in ference that

0 (ij)  x  <t> (i2) = «Mjj + j2) + (o1 + i 2- i ) + . . . . +  0 ( I j j -  j j ) .

The p roced u re  is  obviously  com pletely  general. Its only drawback is  that 
in ord er  to apply it we need to know all the weights. A sim p ler version  has 
been  developed  by Racah, Speiser and Ruegg where, if j x >  j2, one adds 
all weights belonging to the representation  <f>(j2 ) (i. e, j 2- l , . . . ,  - j 2 ) to the 
highest weight j j  o f <j>(j 1). F or  0 3, the resulting weights are clea rly  the high
est weights o f the irred u cib le  representations contained in 0 ( j j )  X 0 ( j2). For 
the m ore  general ca se s  this sum may lead to a certain  num ber o f negative 
weights which certa in ly  cannot qualify as highest weights. These then have 
to be excluded, and the p roced u re  fo r  this is  explained in R uegg 1 s lecture.

Cartan com position
If and <j>2 are  two irred u cib le  representations, the K ronecker product 

$2 X <j>2 is  in general a redu cib le  representation. C onsider its greatest com -
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ponent, <l>1 X This is  an irred u cib le  representation  with the highest 
weight A j + Ag, The operation o f K ronecker m ultiplication  o f two irredu cib le  
representations follow ed  by the operation  o f isolating the greatest component 
lead to the form ation  o f a new irred u cib le  representation  (0j X <j>2 ) and is 
ca lled  the cartan  com position  of i r r educible representations.

Those irred u cib le  representations o f an algebra which cannot be obtained 
from  other irred u cib le  representations are called  basic  representations by 
Cartan. T hese representations are ch aracterized  by the fact that their high
est weights cannot be split into the sum s o f two elem ents that are them selves 
highest w eights. C learly  a representation  <j> is  basic  if, and only if, all the 
labelling  num bers j1# j2, . . .,  j c are zero  except one which equals Thus 
every  sim ple a lgebra  o f rank S. has St basic  representations.

One can go further and show that all basic  representations them selves 
can be constituted from  a few  so -ca lle d  elem entary representations by 
K ronecker m ultip lications fo llow ed  by an antisym m etrization procedure 
which is  som ewhat fam ilia r  in ord inary tensor theory and w ill not be de
scr ib ed  h ere in detail. F or  A j and B f there are just two elem entary r e p re 
sentations. Cf has one elem entary representation  and Dc has three. One of 
the elem entary representations <j> o f A f is  rea lized  as the group S L (i+  1) of 
all m a trices  of o rd er  SL +1 with determ inant + 1, the other being given by

F or  Bt, one o f the elem entary representations is  obtained by considering 
the group 0 (2 St + 1) of all unim odular orthogonal transform ations o f the 
(2 i + l )  dim ensional space, while the second elem entary representation  is 
the s o -ca lle d  spinor representation . The realization  of the group Cf in the 
form  of the group Sp(2n) o f the sym plectic  m atrices  o f ord er 2 !  g ives its 
elem entary representation  , while fo r  Dc (St > 5) one elem entary rep resen 
tation is  given by the group of unim odular orthogonal m atrices  o f order 21 
and in addition there are two distinct spinor representations. F or the e le 
m entary representations o f the exceptional groups re feren ce  may be made to 
Dynkin.

This b r ie f descrip tion  o f the resu lts  in representation  theory does not 
even touch the p ra ctica l prob lem  of reduction of representation  in the man
ner the ph ysicist wants it solved . F or  this we m ust fa ll back on our amateur 
m ethods, m ultiplying m a tr ices , sym m etrizing and antisym m etrizing tensor 
in d ices , though perhaps som ewhat em boldened by the knowledge that this 
is  a lso  the en tire , and when I say  entire - I mean entire, s tock -in -trad e  o f 
the p ro fess ion a l group th eorist.
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CONSEQUENCES OF HIGHER SYMMETRY FOR 
ELECTROMAGNETIC AND FOR WEAK TRANSITIONS

R. G A T T O

NATIONAL LABORATORY OF FRASCATI, FRASCATI, ITALY

In my lectu re  I shall review  som e w ork that has been done on the con 
sequences of h igher sym m etry sch em es fo r  e lectrom agnetic and fo r  weak 
tran sition s. The higher sym m etry schem es I shall con sid er w ill be those 
based on the s im ple com pact L ie groups o f rank tw o. The w ork on the subject 
that I shall review  has been done by RUEGG [1], by COLEMAN and 
GLASHOW [2] and by CABIBBO and GATTO [3 ]. F o r  the group theory co n 
cep ts  that w ill be used h ere  we re fe r  to SALAM ’ s le ctu res  [4] and to the 
a rtic le  by BEHRENDS, DREITLEIM , FRONSDAL and LEE [5].

1. GROUPS

W e shall confine our attention to m odels based on the sim ple com pact 
L ie  groups of rank tw o. F rom  the theory o f L ie  groups we know that there 
are  fou r such groups (two of which are isom orphic to each other). They a r e :
- SU(3), the sp ecia l unitary group in 3 dim ensions. It is  ca lled  A 2 inC artan ’s 
notations. It is  the group o f a ll unitary unim odular m a trices  in com plex 
3-d im en sion a l sp ace . The o rd e r  o f SU(3) is  8.
- G2 is  one o f the so-caH ed  exceptional groups. It is  a subgroup of 0 7 
(for its characterization  see re feren ce  [5 ],p . 26). The ord er  of G 2 is  14.
- B 2 is  the orthogonal group Os in fiv e  d im ensions. Its o rd er  is  10.
- C2 is  isom orp h ic to B2. It is  the group of unitary m a trices  in 4 dim ensions 
that leave  a non-singu lar antisym m etric m atrix  invariant. Its o rd er is  10.

T o  define a m odel one has to decide on the assignm ent of the various 
p a rtic les  (baryons and m eson s) to particu lar representations of the group. 
Thus many different m odels can, in prin cip le , be constructed  fo r  each of 
the above group, depending on the way one assigns the p articles  to the re p re 
sentations o f the group.

W e now review  the sim plest m odels one can construct.

2. MODELS

(a) SU (3). W e fir s t  con sid er the sim plest m odels based on SU(3), v iz . 
the Sakata m odel and the G ell-M ann-N e’ eman m odel.

The Sakata M odel - based on the follow ing assignm ent

D 3(1,0) : p, n, A,
D 8( l , l ) :  m esons ( tt,  K, X).

[The irred u cib le  representations are, as usual, denoted by Dn (ax, a.^ where
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n is  the d im ension  of the representation  and aj, a 2 are non-negative integers 
such that the highest weight o f the representation  can be written as a linear 
com bination with coe ffic ien ts  a : and a2 o f the two fundamental dominant 
weights o f the group. ] The weight diagram  fo r  the representation D3 (1,0) 
is  shown in F ig . 1.

Fig.l

Weight diagram for Ihe representation D3(1,0)

In th is diagram  Hj and H2 are  the two com m uting infinitesim al gener
a tors  o f the group. Each v ecto r  in the weight diagram  is a simultaneous 
e igen vector o f the com m uting operators Hj and H2 with eigenvalues as indi
cated  by the co -o rd in a tes  o f its  end-point. A convenient change o f sca le  has 
been m ade by reporting  on the co -ord in ate  axes the eigenvalues o f '/3  Hj and 
o f 2 H2 rather than those o f Hj and 1^. In th is way one seesthat ,/S H jca n b e  iden
tified  with I3 (the third com ponent of isotop ic spin) and particles  can be a s 
signed to each weight v ecto r  in a definite way .One then checks that 2H2 can 
be related  by hyperchange Y  by the relation  2H2 = Y  - 2 /3 . In this way one 
finds the relation , va lid  fo r  the particu lar m odel, between the two con 
served  quantum num bers o f the theory, I3 and Y,and the two comm uting op er 
a tors  Hj and H2 o f the (rank two) group. Note that Y  and I3 are not, in the 
Sakata m odel that we are  considering, sim ply m ultiples of Hj and Hj, but 
the relation  between Y  and H2 is  inhom ogeneous. This circum stance is  quite 
p ecu lia r o f the Sakata m odel and w ill not o ccu r  in the m odels we shall con 
s id er  in the fo llow in g . The relation between I3, Y and Hj, H2, can only be 
hom ogeneous if A0 and E° (which have Y  = I3 = 0) both lie  at the centres of 
the weight d iagram s fo r  the representations to which they belong. In the 
Sakata m odel m eson s belong to D8( l ,  1 ), w hose weight diagram  we shall d iscu ss in 
connection  with the e igh t-fo ld  way. W e a lso  report the m ultiplication rules :

3 X 3 = 1  +GD,

8 X 8 = 1  +GD + [8] + 10 + Hf + 27.

W e have put in a little  square the regu lar representation. The eight
fo ld  way o f G ell-M ann and N e’ em an is  based on the assignm ents
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D8 (1.1) : baryons (N,A, £ ,E ),

D8 (1,1) : m esons (tt, K, x ).

The weight diagram  fo r  D8 (1,1) is  shown in F ig . 2.

Weight diagram for the representation D8 (1,1)

On the side o f each v e c to r  we have reported  the corresponding baryon 
and in b rack ets  the correspon d in g  m eson . The m ultiplication rule is , of 
cou rse , as b e fore

8 X 8 = i + [ u  + []E ]+ io + n r  + 27.

It is  im portant to note that the regu lar representation 8 o ccu rs  tw ice 
in 8 X 8.

(b). G2 The m odel based on G2 that we shall con sid er is  based on the f o l 
low ing ass ign m en t:

D2 (0,0) : A,
D7 (1,0) : N ,£ ,3 ,
D7 (1,0) : m esons (ff, K).

The weight diagram  fo r  D7 (1,0) is  shown in F ig . 3.

Weight diagram for the representation D7(1,0)
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The m ultiplication ru les are

1 X 1  = 1, 1 X 7 = 7 ,
7 X 7 = 1 + 7 +  0  + 27.

In the product 7 X 7  the regular representation  0  o ccu rs  only once. It 
does not o ccu r  in the other products.

(c) B2. The m odel based on B2 is  the follow ing:

D1 (0,0) 
D4 (1,0) 
D5 (0,1) 
D4 (1,0) 
D5 (0,1)

A,
NH,
E X (a new baryon), 
K,
7t x  (a new m eson).

The weight diagram  fo r  D4(1,0) is  shown in F ig . 4, and that fo r  D 5(0 ,l)

Fig. 4

Weight diagram for the representation D4{1,0)

is  shown in F ig . 5. The m ultip lication  ru les that one needs are

1 X 4  = 4,
1 X 5 = 5 ,
4 X 4 = 1 + 5 + I
4 X 5 = 4 + 16,
5 X  5 = 1 + 0  + 14.

W e see that the regu lar representation is  only contained once in 4 X 4 
and 5 X 5 .

(d) C2 . We con sid er two m odels based on C2. We ca ll the firs t m odel 
[C2]L and the second  £C2]u .
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2 y
k

f i x * )

<¥~> (ir#) <n+)

z • Z* 

X- (*-)

— ------- ►
-1  0  1

Fig. 5

Weight diagram for the representation D5(1,0)

[C2h is  based on the foH owing assignm ent:

D5 (0,1) : A, N, H,
D10(2,0) : L + other baryons,
D10(2,0) : it, K, D (a new m eson).

The weight diagram  fo r  D5 (0,1) is  shown in F ig . 6. The weight diagram  fo r

Weight diagram for the representation D5(0,1)

D19(2,0) is  shown in F ig . 7. The relevant m ultiplication ru les are

5;X 5 = 1 + ®  + 14,
5 X 1 0 = 5 + 0 + 3 5 ’

10 X 10 = 1 + 5 + 10 + 14 + 35 + 35',,

Again the regu lar representation  is  only contained once.
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Fig. 7

Weight diagram foithe representation Duf2,0)

[C jljj is  instead based on the follow ing assignm ent:

D10 (2,0} : baryons,
D(10)(2,0) : m esons.

The assignm ent o f baryons to  EK10) (2,0) is  obvious and can be read 
fro m  the weight diagram  that we gave fo r  D(10) (2 ,0 ). Two new baryons are 
requ ired  to fit the schem e. The relevant m ultiplication rule is 10 X 10 given 
above.

3. ELECTROM AGNETIC FORM FACTORS

The e lectrom agnetic vertex  <̂ A| ĵ | A^> where A is  a baryon o r  a m eson 
and is  the electrom agn etic current operator which can be expressed in 
term s o f the fo rm  fa cto rs  of A :

<A| j j  A >  = ua [Fj (k2) T(ifi + . . . ] u F

The m atrix  in the above equation depends on the particu lar group-theoreti
ca l m odel.

F o r  a ll the m odels that we have d iscu ssed , except fo r  those based on 
SU(3)j it is  very  easy to derive  the conditions that the group sym m etry im 
p oses on the fo rm  fa c to rs . In fact fo r  the m odels that we ca lled  G^, B2, [C2h 
and [C2] 11 the fo llow ing c ircu m stance  holds : I3 and Y are m ultiples of Hj and 
H j. T h ere fore  the charge Q = I 3 + | Y  is a linear hom ogeneous function of 
Hj and H2. T h ere fore  a rea lization  of fi is  Q itse lf. But it is  also the only 
p oss ib le  rea lization  sin ce  fo r  G2, B2, [Cg] 1 and [C2]n the regular represen 
tation is  only contained once (at m ost) in the product D“ X D" where D" is 
one o f the representations em ployed to d escr ib e  the p a rtic les . It follow s that 
a ll positive ly  charged p a rtic les  have the sam e form  factor , all negatively 
charged  p a rtic les  the sam e fo rm  fa cto r  (equal and opposite to that of the
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p o s i t iv e ly  c h a r g e d  o n e s )  an d  a l l  n e u t r a l  p a r t i c l e s  h a v e  f o r m  f a c t o r s  o f  z e r o .  
It i s  e a s y  t o  g e n e r a l i z e  t h e s e  r e m a r k s  b y  in c lu d in g  a ls o  t r a n s it io n  m a t r ix  
e le m e n t s  s u c h  a s , f o r  in s t a n c e ,  th a t r e s p o n s ib le  f o r  £ °  — A° + 7 . T h en  in  
G 2 s u c h  a  m a t r ix  e le m e n t  i s  z e r o ,  in  B 2 it i s  a l s o  z e r o ,  w h ile  in  [C 2h  it ca n  
b e  d i f f e r e n t  f r o m  z e r o  (an d  in  f a c t  it  w i l l  in  g e n e r a l  b e  d if fe r e n t  f r o m  z e r o )  
an d  in  [C 2]n  i s  a g a in  z e r o  b y  th e  g e n e r a l  a rg u m e n t g iv e n  b e f o r e .

W e  n e x t  d i s c u s s  th e  m o d e ls  b a s e d  o n  SU (3) w h ic h  n e e d  a  m o r e  d e ta ile d  
d i s c u s s i o n .  It i s  k n ow n  f r o m  th e  g e n e r a l  th e o r y  o f  L ie  a lg e b r a s  that t h e r e  
e x is t s  a  c h o i c e  o f  th e  g r o u p  g e n e r a t o r s  Fm s u c h  that c o m m u ta t io n  r e la t io n s  
a r e

[F m, F J  = i f ^ F j

w ith  f,jjn{ r e a l  and  c o m p le t e ly  a n t i s y m m e t r i c .  F o r  S U (3) t h e f , ^  a r e  a s  f o l 
lo w s  [ 6 J;

f 123 =
fl47 = f246 = f257 = f 345 = f516 = f367 = 1 /2 ,  
f 458 = *678 = ^ / 2 -

and  th e  r e m a in in g  o n e s  c a n  b e  o b ta in e d  f r o m  th e  a n t is y m m e tr y  r e q u ir e m e n t . 
S in c e  ij23 = l , o n e  h a s  th e  c o m m u ta t io n  r e la t io n s

[ ^ , F 2 ] = i F 3 ,
[F2 ,F 3 ] = i F j ,

, Fj ] = 1 K, ,

s u g g e s t in g  th at 3  ̂ , I§ , F3 a r e  t o  b e  in t e r p r e t e d  a s  I 1( I2 and I3.
N e x t o n e  l o o k s  f o r  Fn th at c o m m u te s  w ith  F3 . F r o m

[ F3 > FJ  = ji3n{ F{ = 0

and f r o m  th e  v a lu e s  o f  th e  it  f o l l o w s  th at o n ly  F8 c o m m u te s  w ith  F3 . T h u s  
and  Fg a r e  th e  tw o  c o m m u t in g  e le m e n t s  o f  th e  L ie  a lg e b r a .  F o r  th e  p h y s i 

c a l  in te r p r e ta t io n  o f  F8 o n e  h a s  t o  s p e c i f y  th e  m o d e l .
W e  f i r s t  c o n s i d e r  th e  e ig h t - f o ld  w a y .F r o m  th e  w e ig h t d ia g r a m  f o r  D 8( l , l )  

o f  S U (3 ) ( s e e  s e c t i o n  2) w e  le a r n  that

\[3 H j = F3 = I3,
2 H 2 = (2 /7 5 )  Fg = Y .

In  a n a lo g y  w ith

A  = I3 + I  Y  

th e  e le c t r o m a g n e t i c  c u r r e n t  i s  g iv e n  b y

j = j3 + (iA /3) jg,

w h e r e  th e  c u r r e n t s  j m s a t is fy
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l-^m > Jn (x)l = i^mnC J f (x )<

i . e .  they belong to the 8 -d im ensional (regular) representation.The group 
generator are the space integrals of j m:

Fm =

Now it is  easy to see that F3, Fg, F6 and F7 com m ute with j. It is  ob v i
ous that F3 and F8 com m ute with j, and the only physical im plication of this 
fact is  that j con serv es  both I3 and Y . It can also easily  be seen that

[F6, j ]  = [F 6Jj8] + 1A/3 [F ^ jJ  = 0,

using the values f o r  fmnt; and sim ilarly

[F7J ]  = 0.

The physica l im plications of the conservation  of F, are the sam e as fo r  
the conservation  o f Fg, so we shall only con sid er  these last ones. F rom

[f6 , J (j)] = 0,

w here J (j) is  any function o f j, such as fo r  instance a retarded product etc., 
we have

<A| [F6, J(j)]| B > = 0

or

< 0 1 A [Fg, J (j)] B+| 0 >= 0, 

w here A+ and B* are  the creation  operators of the states | A^>and | B)>.

Now fo r  the vacuum

Fm| o>= o

sin ce  the vacuum  state is  assum ed to be invariant under the group. So we 
can w rite  the above equation as

< 0 1 [A, F6] J(j)| B > = < A |  J (j) [F 6 ,B +]| 0>.

We sp ecia lize  A and B to be on e -p a rtic le  states (baryons o r  m esons). 
In the e igh t-fo ld  way both baryons and m esons belong to the regular eight 
d im ensional representation . By a suitable ch o ice  o f the A ’ s one thus has

tFm. A l = i W C -

Thus we find
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f A b C < C l J « > l  B >  “  f B b C < A l J ^ > l  C > '

w h ic h  c o n s t it u t e  a  se t  o f  id e n t i t ie s  t o  b e  s a t is f ie d  b y  th e  m a t r ix  e le m e n t s  
o f  J  (j)  b e tw e e n  o n e - p a r t i c l e  s t a t e s .

B y  s p e c ia l i z in g  th e  a b o v e  r e s u lt  o n e  f in d s  a  n u m b e r  o f  c o n s e q u e n c e s  
o f  w h ic h  w e  l i s t  s o m e  :

F o r  m e s o n s :
T h e  K° ( o r  K °) f o r m  f a c t o r  i s  id e n t i c a l ly  z e r o ;
T h e  K4  (K " )  f o r m  f a c t o r  i s  id e n t i c a l  t o  th e  it* {irl f o r m  fa c t o r ;
T h e  C o m p to n  e f f e c t  m a t r ix  e le m e n t s  s a t is fy

< K +| j (x ) j  (xO | K +>  = <**| j (x) j  ( x ' ) | tt- ) ,

>/3<K?| j ( x ) j ( x ' )|  K °>  =<X°| j ( x )  j ( x ')|  tt0 > -S<X°\ j ( x ) j ( x ' ) | x ° > ,

-  <K°| j (x ) j  (x ') | K? >  = <^° I j (x ) j  (x ' )| iro >  -  S /S / ,*  | j (x )  j (x ') | X« > .

F o r  th e  2 7  d e c a y  m o d e s  :

(a m p litu d e  f o r  X° — 2 7 ) = ( l /> /3 )  (a m p litu d e  f o r  jt° — 2 7 )-

T h is  la s t  e q u a t io n  w i l l  p r o b a b ly  b e  u s e fu l  in  c o n n e c t io n  w ith  th e  r e c e n t  
e x p e r im e n t s  th at in d ic a t e  a  l a r g e  b r a n c h in g  r a t io  f o r  X° —• 2 y ■

F o r  b a r y o n s :

< 2 + l 3 • • j| 2 +>' = < p|  j • ■•1 P > ,

O H  j • • j | r >  = < s 1  j • S ‘ >.

<H°| j  • • j| s ° >  = < n |  j . .• j|  n > ,

1/V3<Z°| j  . • j |A  >  = < n h . . . j |  n >  -< A |  j  . • • j 1 A ) ,

-  V 3 < A  | j  . • j| 2 ° >  = < n  | j - • - j| n > - < 2<| j •

w h e r e  w e  h a v e  d e n o te d  b r i e f l y  by  j . . . j a p r o d u c t  j (x )  j (x ')  . . .  j ( x ^ ) .
F r o m  th e  la s t  e q u a t io n s  w e  f in d  th e  r e la t io n  b e tw e e n  th e e l e c t r o m a g 

n e t ic  m a s s  s p lit t in g s

6 m  -  6 m  „ = 6 m „  -  6 m „ + 6 m  -  6 m  .
2 " £ 0  p z~ r +

( ju s t  b y  a d d in g  th e  f i r s t  t h r e e  e q u a t io n s ) .
T h e  o n ly  in fo r m a t io n  u s e d  u p  to  th is  p o in t h as  b e e n  th e  co m m u ta t iv ity  

o f  th e  e le c t r o m a g n e t i c  c u r r e n t  j ( x )  w ith  F6 . H o w e v e r  w e  know  m o r e  d ir e c t ly  
th at

j (x )  = j 3 (x ) + - ^  j g (x) 

s o  that i f  w e  h a v e  to  c o m p u te  a m a t r ix  e le m e n t  o f  th e  s im p le  fo r m
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<A| j(x)| B ) w e  can make use of the explicit form  of j and express it in term s 
o f a few  reduced m atrix  elem ents.T he procedu re  is  quite analogous to the 
use of the W ign er-E ckart theorem , very  com m on in problem s involving 
the th ree-d im en sion a l rotation group. E ssentially since A and B belong to 
the 8 -d im ensional representation  o f SU(3) and j(x) also belongs to the regu
la r  representation , one has to extract from  the d irect product 8 X 8  
= 1 + 8 + 8  + 1 0 + 1 0 + 2 7  the regu lar representation  which is  contained there 
tw ice . So one has two reduced m atrix  elem ents. The reduction form ula is 
<A|jm|B> = iABmö + dABm w here fABm has already been reported, dABm is  a 
com pletely  sym m etrica l ten sor (see la ter), and are reduced m atrix elem ents 
(correspon d in g  to the double o ccu rren ce  o f 8 in the product 8 X 8 ,  one time 
as 8 -a n tisym m etrica l and one tim e as 8 sym m etrica l). We shall sketch here 
an inelegant p roo f o f th is reduction form ula by specia lizing  to the th ree- 
d im ensional representation  o f SU(3) (the sim plest non -triv ia l one). In such 
ä representation  one rep resen ts  the elem ents of the L ie  a lgebra Fm by m a
t r ic e s  iA m, which satisfy

[ V Xj l  = 2 i f ijk

An exp licit ch o ice  is  the fo llow ing:

a 1.2.3 0 'o 0 1 0 0 - i
*4 = 0 0 0 X5 = 0 0 0

0 0 1 0 0 i 0 0— —1 L— —1__ __ —
0 0 0 0 0 o1

x =A

1 0 0
0 0 1 X? = 0 0 - i 0 1 0
0 1 0 0 i 0 0 0 -2

The m a trices  X are tra ce le s s  and satisfy

2 d ,ik \  +t v

w here djjj, is  a com plete ly  sym m etric ten sor with com ponents

d j i8 = d228 = d338 = - dggg = l/s/3,

d 146 = d 157 = '  d 247 = d 256 "  d344 “  ̂ 355 "  '  d366 '  ” d 377 * / 2j

d 448_ d 558 ”  d 668 ”  d 778 ~ " i / 2 ' ^ ‘

The m a tr ices  a re  norm alized  such that

T r  pi, Xj) = 2 6y .

Now, fr o m  the tr ilin ea r  product XA Xm XB I can form  two invariants, namely
T r  (XA Xm XB ) and T r  XmXA), o r  better, using the com m utator and the
anticom m utator, T r  (P'-A>Xß]\ 1) and T r  ({XA, Xg} Xm). But

T r  «XA ,XB]Xm) = 2 i f ABK T r ’  2 i f ABK ‘  2 6 Km ”  4 i f A B m ’



T r  =  2 ^ A B K  T r  ^ - K ^ r a )  +  (4 / ^ ) 5AB T r  \ n  "  4 i d ABm*

fro m  which one gets the reduction form ula . Applying the reduction form ula 
to the electrom agn etic  current j one has

j| *  i^ A B 3  +  f  AB8) ® +  (^AB3 +  ( ^ A ^ )  d^gg) it.

In this way one finds :
F o r  the m esons : the am plitudes fo r  transitions

v e c to r  m eson  — > pseudoscal-m eson . + y 

a re  related  by (p* -► it*y) = (K,+ -> K+7 ),

(pO _  r)7 ) = ( (P-*n°y)  = - ( 1 / /3  (u»-* r\y) » (1 /3) (uP— »0 7 ) = - (2/V3) ( K ^ K ^ ) .

F o r  the baryons : one has the exp licit expression  o f the form  fa ctors  in term s 
of the two independent m atrix  elem ents 8 and &

<E0|j|EP>= (1 /3 )4 , <s°| j Is6 > - - ( 2 / 3 ) 1 ,

<A»| j| A°> = - (1 /3 )4 , <P  I j 1 P > = (1 /3 )4  + ft

<E°I j | / P > - - ( l / m  <n| j  |n > = - (2 /3 )1 ,

< E "| j| E ‘ > -  (1 /3 ) 4  - 0 ,  <E+| j | E +> =  ( 1 /3 ) t  + 6 .

<a-| j| S ->  = (1 /3 )4  - e ,* '
W e now d iscu ss  the e lectrom agnetic fo rm  fa ctors  in the Sakata m odel. 

W e have a lready derived  the connection  between I3 and Y  and the two com 
muting gen era tors  o f SU3

I3 =V3 H1(

Y  = (2 /3 ) + 2 H2.

In term s o f the gen erators F

I = P 
3 3  *

Y  = 2 /3  + (2/n/3)F8 .

T h ere fo re  the current is

j = ( j , + (lA /5 )jg )+ (l/3 )j0

w here the current j0 is  associa ted  to the phase transform ation  that, added 
to SU (3),produces U(3). In reducing an electrom agnetic vertex  ^A|j| B > fo r  
the three fundamental p, n, A,we use the m ultiplication rule 3 X 3 =  1 + 8 .

CONSEQUENCES OF HIGHER SYMMETRIES 207
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So there is  a contribution fro m  1 (corresponding to j 0) and a contribution 
from  8 (correspond ing to j 3 and j8). In the e igh t-fold  way we had two reduced 
m atrix  elem ents because 8 was contained tw ice  in 8 X 8. Here we have again 
two reduced m atrix  elem ents but fo r  a different reason  (the appearance of 
a te rm  j0 in j) . If we denote M gthe m atrix  elem ent fo r  8 and Mx that fo r  1, 
we have

< A | j| B > =  (Q - 1 /3 )M 8 + (1/3)M 1

o r  explicitly

<p| j|p>=  (2 /3 )M g + (l /3 )M j,

<n I j|n > = - ( l /3 )M g + (l /3 )M j,

<A|j|A> = - ( l /3 ) M 8 + ( l /3 )M j.

In particu lar we expect fo r  the Sakata m odel that n and X have the same 
anom alous m om ent. On the other hand the eight-fold  way gives fo r  the anoma
lous A m agnetic mom ent on e-h a lf o f that o f n. E xperim ents are still un
certain  to decide in favour o f one o f the two alternatives.

4. WEAK INTERACTIONS

One is  tem pted to assum e that weak interactions are a lso  expressed in
term s of cu rren ts belonging to the regular representation. The AS = 0 vector
current is  then given by g (ji + ifc ) fo r  AQ = + 1 and g (ji - i 32) fo r  AQ= - 1; 
s im ilar ly  fo r  AS = + 1 one has g'(j4 + i j 5) fo r  AQ = + 1 and fo r  AS = - 1 
g '(j4 " iis ) f ° r  AQ = -!• The weak constants g and g 'a re  presum ably not the
sam e. If they were, one would expect, if string perturbations are to be ex 
cluded, a m uch fa ster  rate fo r  hyperon ß -decay than that observed . With the 
sam e reason ings o f the prev iou s sections one derives easily

g < 3 l j 4 + i j s |A > = (1 /- /2 )  (V3 O ' -  (1 / . /3  V),

g<E’lj4 + i j j n  > = - 6 ' +  V ,

g<£°! j4 + i J5Ip > = (1/V2)(- e'-f V ), 

g<A 1 j4 + i j 5lp  > = (1 /• / ! ) (s f3 6 '+  V A /3 ) .

g<s'|j4 + i j 5 |Ep > = ( l / « / 2 ) (6 ' + V ) ,  

g<s°l j4 + i j 5l O  = 0' +

Unfortunately, cu rrents with A S /A Q  = -1 seem  to be present and the point 
o f  view  con sidered  here o f choosing the weak currents as belonging to the 
regu lar representation  does not allow fo r  currents with A S /A Q  = -1 . Cur
rents with A S /A Q  = -1 would require AT = 3/2-One can try to relax the con 
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dition that the weak currents belong to the regu lar representation. This 
might seem  unpleasant in som e resp ects  ( i .e .  strangeness conserving vector  
part) but would allow  som e m ore  freedom . So we shall look  in the following 
fo r  the s im plest way in any o f the m odels we are d iscussing to have currents 
with T = 1, 1 /2 , 3 /2  and which could originate the observed  decay m odes.
In SU(3) the s im plest (low est dim ensionality) representations containing 3 /2  
are D 10(3,0) and D10^ ^ ) ,  ca lled  b r ie fly  10 and Tff. We give the weight d ia
gram  o f D 10(3,0) in F ig . 8.

S = Y

Fig. 8

Weight diagram for the representation D^p.O)

So one can obtain cu rren ts  with AS = 1, AT = 3 /2 , AS = 0, AT = 1, AT = 1 /2 , 
A T  = 0, AS = -2 . F o r  sym m etry  reasons one would then have to introduce 
10 a lso . Am ong the d ifficu lties  o f such a schem e one is  the presen ce  of A S ”  ± 2 
cu rren ts, which would lead fo r  instance to S -* N + ® + y. A ll the amplitudes 
would be related in the e igh t-fo ld  way, w hereas in the Sakata m odel,since 
3 X 3  does not contain 10 o r  TÖ, there would be no ß -d eca y  o f baryons and 
the m odel would be inconvenient.

P assing now to G 2/one needs currents belonging to D7 (1 ,0 ) fo r  
A - > - N + e  + y ( l X 7  = 7) while fo r  ß -d eca y  one has 7 X 7  = 27 + 1 4 + 7  +1 .  
H ow ever D 7(1,0) does not contain T = 3 /2  (isotop ic content o f D7(10) is  1/2,' 
1 /2 , 1). The sim plest "representation containing T = 3 /2  is  D 14(0 ,1 ). So one 
is  lead to a superposition  o f D7 and D14. The isotop ic content of D14is  0, 0, 0, 1 
3 /2 . Note that it does not contain 1 /2 . If one wants 1 /2  and 3 /2  in the same 
representation ,one has to use D 27(2,0) with isotop ic  content 0, 1 /2 , 1 /2 , 1,
1, 1, 3 /2 , 3 /2 , 2. But in this ca se  one has to invert a particu lar treatment 
A ß -d eca y  which only goes through D7. With a superposition  o f D14 and D7 
one has two reduced m atrix  elem ents ( 7 X 7  = 27 + 1 4 + 7  + 1) fo r  leptonic 
deca ys , with D27 only one reduced m atrix  e lem en ts .

Things do not get m uch m ore  appealing with the other m odels. With B 2 
it is typ ica l that there are no representations that contain both integer and 
sem i-in teg er  spins. The sim plest ch o ice  containing T = 1 is D5(0,1); the 
sim p lest containing 1 /2  and 3 /2  is D16( l , l ) .T h e  isotop ic contents a r e : for 
D 6(0,1) T = 0, 0, 1-, fo r  D ie(1,1) T = 1 /2 , 1 /2 ,1 /2 ,  1 /2 , 3 /2 , 3 /2 . With 
such ch o ice  Aß decay ( 1 X 4  = 4) would requ ire a separate explanation. Eß-
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decay and N ß -d eca y  would be com pletely-unrelated. One would need two 
reduced m atrix  elem ents and a separate explanation fo r  A ß -d ecay .

In [Cali we need fo r  decay som e representation  in the product 5 X 5  
= 14 + 10 + 1, fo r  £ ß -d eca y  som e o f 10 X 5 = 35' + 10 (- 5, and fo r  m eson - 
decay som e o f 10 X 10 = 35 + 35 '+  14 -*■ 10 + 5 + 1. The regular rep resen 
tation 10 is  contained in a ll o f the products but does not contain T = 3 /2  (its 
isotop ic content is  0, 0, 0, 1 /2 , 1). The sim plest to have a com plete is o 
top ic content is  D20(3,0) (isotop ic content 0, 0, 0, 0, 1 /2 , 1 /2 , 1 /2 , 1, 3 /2 ). 
but it is not contained in any of the products so it is o f no use. D 35(2 ,l) =  35' 
has a sufficient isotop ic content but does not lead to nucleon ß -decay. A p o s 
sib le  way out would be a superposition  of 10 and 35 or o f 10 and 35'(the s e c 
ond ch o ice  (10 + 35') would allow  £ ß -decay  with A T  = 3 / 2  while the first 
one would not).

F inally  in [C2] n we have only to ch oose  one representation  in the product 
10 X 10 = 35 + 35' + 1 4 + 1 0 + 5 + 1  that has a com plete isotop ic content 
(T = 1 , 1 /2  and 3 /2 ) . Both 35 and 35' can do it (35 has T = 0, 0, 0, 0, 0,
1 /2 , 1 /2 , 1 /2 , 1 /2 , 1, 1, 1, 3 /2 , 3 /2 , 2 ; 3 5 'has T = 0, 0, 0, 1 /2 , 1 /2 , 1/2, 
1 /2 , 1 /2 , 1 /2 , 1, 1, 1, 1, 3 /2 , 3 /2 ). By choosing 3 5 '(no T = 2) one would 
have only one reduced  m atrix  elem ent fo r  a ll the leptonic decays of baryons.
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EXPERIMENTAL TESTS OF SU3 AND G2 SYMMETRIES 
IN STRONG INTERACTIONS

H . RUEGG 
UNIVERSITY OF GENEVA, GENEVA, 

SWITZERLAND

1. INTRODUCTION

One knows that isosp in  invariance entails relations amongst the scattering 
am plitudes. The m ost sim ple o f them are equalities o r  triangular inequali
ties . F or  exam ple the p ion -nucleon  scattering

N + ff-»N '+  It'

would be d escr ib ed  by 8 independent am plitudes i f  there was no sym m etry, 
but only two if  charge independence holds, because N and n can com bine 
only into isosp in  T = 1 /2  and T = 3 /2 . T h ere fore  one gets six  relations amongst 
the scatterin g  am plitudes. S im ilarly , if  the strong interactions are invariant 
under a la rg e r  group than the isosp in  group (SU 2), then one gets new r e 
lations.

At this point we should em phasize that, w hereas the isospin  invariance 
is  violated  by known and re la tive ly  weak interactions (i. e. electrom agnetic 
and weak in teraction s), the higher sym m etry is  violated by unknown but 
su rely  strong in teractions, sin ce  the m ass d ifferen ces  between particles 
belonging to  the  sam e m ultiplet are  quite la rge . T h ere fore , one can only 
exp ress  the hope that at high energ ies and high m om entum tran sfers , where 
the m ass d iffe ren ces  should not play a great ro le , the v iolations are negli
g ib le . But this question is  not yet solved  in a satisfactory  way.

If one n eglects the in teractions which v iolate the sym m etry, one gets 
r ig orou s  relation s.

We shall con sid er as exam ples a baryon -m eson  scattering and a baryon- 
antibaryon annihilation into two m eson s. P ro ce sse s  like production of one 
v ecto r  m eson , fo r  exam ple B +  M -^B ^ V, are quite s im ilar from  the mathe
m atica l point o f view . As applications, we shall d iscu ss the Pomeranchuk 
con jectu re  and the Pom eranchuk theorem .

2. BARYON-M ESON SCATTERING B +  M -» B '+  M '

2. 1. G eneral considerations

Suppose B and B ' belong to an irred u cib le  representation  D 1, and M and 
M 'to  the representation  D2 o f the group considered . In order to find the in
dependent am plitudes one has to study how the d irect product

D 2(g)D2

211
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decom p oses into irred u cib le  representations. In the exam ple of isospin  given 
above:

N+ ir -» N*+ it'

T = 1 /2  1 1 /2  1

d ’ ^ d 1 - d , / ! © dm

So there are two p oss ib le  amplitudes:

A , : T = l / 2 - » T  = l /2 ,1/2 ' '

A3/2: T = 3 /2  -* T = 3 /2 .

T h ere fore  we have to study how, in the different m odels, the product of 
the two representations red u ces  [ l ].

2 .2 . Sakata m odel (SU3) [2]

Sakaton ( n (be longs to representation  3.
\ A  /

M esons ^ K  ^ b e lo n g  to representation  8 .

A T = 0, Y = 0 m eson  denoted by x is  predicted , which could be the r) m eson. 
The decom position  o f the d irect product into irredu cib le  representations

3 (g )8  = 1 5 ® 6 ® 3

gives 3 independent am plitudes.

2. 3. O ctet m odel (SU3 ) [3]

In this ca se  8 baryons belong to representation  8 and 8 m esons belong 
to representation  8. The m eson  fam ily  is  the sam e as in the Sakata m odel. 
W e have the fo llow ing decom position  of the d irect product into irreducib le  
representations

8 <g)8  = l ® 8  ®  8a® 1 0 ®  1 0 * ® 2 7

w here 8S and 8a are resp ectiv e ly  sym m etric and antisym m etric com binations 
o f B and M. 10 and 10* are inequivalent representations.

T here are 8 independent amplitudes but, because of tim e reversa l in 
variance, A ( 8S -> 8a) = A ( 8a -> 8S), so there are only seven left.
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2 .4 . M odel o f B ehrends and Sielen (G2)[4]

In this m odel N, £  and E belong to representation  7 and 7r and K belong 
to representation  7.

The decom position  o f the d irect product into irredu cib le  representations

g ives 4 am plitudes.
Now that we have found the num ber o f independent invariant amplitudes 

we m ust find how a physica l p ro ce ss  can be expressed  in term s of these 
am plitudes. This amounts to calcu lating the C lebsch -G ordan  coefficien ts 
[5 ,6]. F or  exam ple, con sid er the follow ing scattering p ro ce ss  in the octet 
m odel _ .

pK -» A  7T .

Let us ca ll ip^a.n e igen vector o f SU3 , w here n designates the representation 
o f SU3 to which it be lon gs, and T the isosp in . F or exam ple ipi21 is  an eigen
v e c to r  o f SU belonging to representation  27, and whose isospin  is  T = 1. 
Then

Of cou rse  transitions like ipfr ^8S are forbidden by isospin  conservation.

2. 5. B aryon-antibaryon  annihilation B +  B '->  M + M '

This can im m ediately  be found from  the c ro sse d  channel (Fig. l).T he 
num ber of independent am plitudes is  the sam e. This is a group-theoretical 
fact and has nothing to do with analytic continuation [7],

7 ® 7  = 2 7 ® 1 4 0 7 ® 1

C alling the invariant am plitudes A27, etc. we are allowed to write:

A  (pK _ -> A  tt° ) = - ■

B + M —  B' + M' B + B'-— M + M'

Fig.l
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2. 6 . P roduction  of v e cto r  m eson s B +  M -» B '+  V

In the two m odels based on SU3 , both the vector  m esons and the pseudo
sca la r  m eson s belong to the representation  8, so, from  the mathem atical 
point of view , there is  no d ifferen ce  between this problem  and the previous 
one, except that we now have two different pa rtic les  M and V in the initial 
and final states. The resu lts can be found in [6 ,8 ,9 ,10]. Amongst the tr e 
m endous numbdr of rela tion s one gets, we give a few  typical ones.

3. BARYON-ANTIBARYON ANNIHILATION INTO TWO MESONS [10]

We start with this exam ple fo r  the follow ing reasons:
(1) Due to the la rge  baryon rest m ass, the kinetic energy available 

fo r  the m esons is  m uch la rg e r  than the kaon rest m ass.
(2) The pred iction s o f the Sakata m odel are in contradiction  with ex 

perim ent.
The Sakata m odel p red icts  (am ongst other relations) 

cr(pp -> 7r+ 7T~) = <j(pp -> K+K‘ ),

and forb id s  pp-> K1°K 2°. This last p ro ce ss  is  experim entally observed with 
a rate com parable  to pp -> K + K" w hereas cr(pp -> -ntT) is  la rg er  by a factor 
o f about 3. One can easily  deduce this equality and the selection  rule p re 
d icted  by the Sakata m odel if  one con sid ers  the sym m etry properties of the 
weight d iagram s (F ig. 2). R eflection  with resp ect to the axis { l } ,  {2}, {3 },are  
operations o f SU3 . The above rela tion s are obtained by reflection  with r e -  

® ® ®
I

" x n i P*'" -v I

I '©  p i n ©  x ,J  X -. ©
I k' i  K

Rg. 2

spect to { 1 } and by noting that in antisym m etric with respect to K °K °.
In the octet m odel o f SU3 , no such sim ple relations hold, except if one 

assum es the further invariance under the R operation defined by

p < -» S  n i H  5 *  E « S  £ ° « - » £ °  A  « -»A

+ 0 —0 + - 0 0K K K h K I  » I  TT OTT X<-»X

H ow ever, R is  not an operation  o f SU3 , so it does not n ecessa rily  hold.

G 2 m odel

The weight d iagram  fo r  the representation  7 is  shown in F ig. 3.
H ere there are 6 re fle ction s  axis, the angle between two adjacent axis being 
30° C. Note a lso  that the weight (0,0) o ccu rs  only once (it correspon ds to 
re sp ectiv e ly  ir°).

p and p lie  on the sam e re fle ction  axis (5) ,  th erefore
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' b
-1 -1/2 0 1/2 1 T3

Fig. 3

0-(p+ p_> 1T+ + TT~+ xir°) = cr(p + p-> K °+  K °+  xir°) 

fo r  an arb itrary  x.

4. M ESON-BARYON SCATTERING

We give only rela tion s w here the target is  the proton and the pro jectile  
is  ir±, K i , eventually K °.

Sakata m odel (relations fo r  the corresponding  amplitudes in which K‘pei 
m eans K"p-> K 'p  e t c . )

K'Pe{ = ■
Tr-+ +K p = 7T p ..

O ctet m odel SUQ

G 2 m odel

(K p  K °n) = -  (tt"p  -> K°A), 

etc.

(K ’p -» 3 °K °) = (K p ->  E V ) ,  

v~Pel = K 'Pef “ (K'P E V ) ,  

ff+Pet = K +pe{ -  (?r+p K + £  +),

(tt*p -> K +E ) = (K p  -* 5 TC+) + (K p  -* E V ), 

etc.

(1)

(2)

(3)

(4)

(5)

(6) 

(7)

A ll p red iction s of the octet m odel o f SU3 , which do not involve A, are 
a lso  given by G2 . B esid es  these one gets many m ore  relations like

p jt+. = pK °.^ r  elt*

P 'e 'l=P KeV

(p k~ -> n7T°) = (pff' -> E °K °),

(p K '-> n K °) = (pK '->  e V ) ,  

P^ef = Pvli  + ^ 2 (Pff'  E ° K °)»

(8)

(9)

(10)

(1 1 )

(12)
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PKt i = P,re { + ( P ^  E"K +). (13)

P 'e V p K e V  (PK' ^  S °K °), (14)
and rela tion s (4) to (7) etc.

The re la tion s (3), (4), (7), (10), (11) could help to d iscrim inate between 
the 3 m odels, but m easurem ents are very  difficult.

One gets m ore  in teresting  conclusions if  one assum es that the higher 
sym m etry sch em es are valid  in the forw ard  d irection , because one then 
gets a relation  to the Pom eranchuk con jecture and the Pom eranchuk theorem .

5. POMERANCHUK CONJECTURE AND POMERANCHUK THEOREM

I. The Pom eranchuk con jectu re  says that at high energy in the forw ard 
d irection  the p ro ce s s e s  are negligible where charge o r  hypercharge 
is  exchanged.

F or exam ple
p + ir~-* n + jr°

o r
p + jr* -> L- + K + 

which are sm all against the absorptive part of

p + ir~-> p + 7r\

II. The theorem  says that 0tot (AT) = atot (AT) at high energy.
F o r  exam ple

< V  ^ 'P J ^ to t  (*+P)-

By the optica l theorem , P om eran chu k 's  theorem  gives relations between 
the im aginary part o f the am plitudes in the forw ard  d irection .

In particu lar ca se s , I and II are identical because the forw ard scattering 
am plitudes are essentia lly  im aginary.

E xam ple: N7T scattering

A ccord in g  to I, A (p+  7r'-> n +  7r°) = 0 g ives the relation A x/2 = A 3/ 2 , and 
accord in g  to II, A(p + ir~ p + ir~) = A(p + ir* -» p + 7r+) gives the relation Aj/2 
= Ag/2- In general the two statem ents are not equivalent.

E xam ple: NK scattering

F or  the NK scattering, we have the amplitudes A x and A 0 whereas fo r  
the NK scattering, we have the amplitudes A^ and A'o.

A ccord in g  to I, A ^ A o ;  A\=A'q , and accord ing to II, A 1 = 1 /2(A 'i+  A'o) 
and A i - 1/2  (A i+  A o). In the second  case  the d ifferen ce  between the r e la 
tions based  on I and II com es  from  the fact that K and K are not in the sam e 
isom ultip let.

A s a consequence of P om eran ch u k 's  con jectu re , one sees that the ab
sorptive  am plitudes in the forw ard  d irection  becom e independent of isospin . 
T h ere fo re , all the absorptive e lastic  am plitudes o f A +  B A '+ B 'a r e  equal
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fo r  all A, A' belonging to som e representation  o f SU2 , and B, B' to som e other. 
H ence, by the optica l theorem , the total c ro s s -s e c t io n s  are also equal.

This consequence is  not pecu liar to SU2 , but is  true fo r  any sim ple 
com pact L ie  group [11].

If only the Pom eranchuk theorem  II is  used, one gets le s s  stringent 
re s tr ic t io n s  [7] (see  T able . 1).

TABLE I

Group
Meson-meson 

scattering
Meson-baryon 

scattering

N Np 2 2 *o

fSakata; (3,8)
Sus l[.Octet: (8 ,8 )

6 4 

6 4

3 2 

7 4

Gz (7,7) 4 2 4 2

N is the number o f independent amplitudes without theorem 
Np is the number o f independent amplitudes with theorem

This resu lt can easily  be obtained by looking at the theorem  fo r  the crossed  
channel

(M j + M 2 -» B3+ B4) = (M a+ M 2 -> B3 + S 4 ),

which shows that the T -m a tr ix  is  sym m etrica l with resp ect to the in ter
change o f M and K .

By looking at the sym m etry p rop erties  o f D(M )(^)D(M ) one im m ediately 
finds the resu lt.

APPENDIX

We give here a simple rule, due to D. Speiser and H. Ruegg, for finding the irreducible «presentations 
dW  contained in the product of two irreducible representations D and D' of a simple Lie group.

Let A, A', A(i) be the highest weight vectors of D. O’, D W;let R be half the sum of the positive roots, and 
K= R+ A.

Suppose A' 2  A. Then add all the weight vectors of D to the vector K. The resulting vectors belong 
to the girdles of the representations d W - They have positive or negative weights if they can be transformed 
into a certain vector K ®  by an even or odd number of reflections of the Weyl group (see [1] ). These vectors 
determine uniquely the representations dM appearing in the product D®D', but they should be counted with 
their respective positive or negative weight. Of course, due to some compensations, only positive weights 
will appear in the final formula.

As an example, we give the explicit prescription for SU3. An irreducible representation of SUsis charac
terized by two non-negative integers Xj, X z) which are the components of A, in a suitable co-ordinate system.

We want to find the irreducible representations contained in (X,, X2) ®(X'j, X').
Suppose A' 2  A. By adding all the weight vectors of the representation (Xj, X?)to the vector A' with 

components (X,', X'2) one gets a set of vectors with components, \ij, Xi2). (We work here with A instead of 
K since they differ only by the constant vector R and since we know explicitly the reflections of the Weyl groups
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Four possibilities may happen:
(a) If X?) »  0, =: Othe vector (X'j ,X*) is the highest weight A ^  of one of the representations which

may appear in the product. See however (c).
(b) If \\= -1  or X‘2 = -1 , the corresponding vector lies on a reflection axis and corresponds to no repre

sentation (we could say that its weight is zero).
(c) If + 2 > 0 and I'j + K O perform the transformation |i,i= 1 ; ) i = - \l2 - 2. This is

precisely one operation of the Weyl group and ensures that - 0  and pi, aO. One then gets a vector (p>, , (i‘2) 
which must be subtracted (negative weight.) from a vector with the same components appearing in (a). In 
other words, not all representations which appear in (a) have to be counted, but some of them are compensated 
by representations which appear in (c) with "negative weight”.

(d) If X*] + X.'2 +2 > 0 and + 1<0, define p', = - xjj - 2 and n'2 = + 1, which is again a reflection
of the Weyl group. Then proceed like in (c). *

Example: (1,1)8(3, 0) (i.e. 8 ®  10).
In the oblique co-ordinate system we have chosen, the weights of the fundamental representations are: 

For the representation 3 (1,0):(1,0);(0,-1);(-1,1).
For the representation 3* (0,1):(0,1); (-1,0): (1,-1).
Therefore, the weights of the representation £(1,1) are (3 8 3 ^  = 8 + 1);(1,1); (2,-1); (-1,2); (0,0); (0,0); 
( -2 ,1); ( 1, - 2); ( - 1, - 1)
Adding these weights to (3,0) one gets:

(4.1); (5,-1); (2,2); (3.0); (3.0); (1,1); (4,-2); (2,-1)
case (a) (b) (a) (a) (a) (a) (c) (b)
There is one vector belonging to case (c):

X\=4,Xi2 = -2 .
(i,= Xj + X 2+ 1 = 3; (i2 = - X 2 - 2=0,
<Mi .M2)=(3. 0).

This representation has to be "subtracted", and therefore one gets the final result:
(1.1) ® (3 ,0)= (4,1) ©(2,2) ®(3, 0) ® (1 ,1)

or
8 ® 10 = 35 ® 27 ® 10 © 8
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INTRODUCTION

In what fo llow s, m ost o f the in form ation  w ill be brought without p roo fs . 
Although the m ethods are exposed fo r  ca ses  relevant to the octet m odel only, 
they m ay be gen era lized  fo r  any sem i-s im p le  group in quite a sim ple fashion.

1. THE ADJOINT REPRESENTATION OF SU(3)

This group is  generated by the follow ing in fin itesim al operators:

The op era tors  Tz = ( l /2 )H i ,  T + = E?> and T_ = Ef generate the isospin  group. 
The H’ s and the E ’-s operate on covariant as w ell as on contravariant v e cto rs . 
L et x1 , x2 and x3 be the basic  contravariant v ecto rs  and y i , y2 and y3 the 
b a sic  covariant on es . The resu lts are  shown in T able I.

The resu lts o f  a ll other operations are 0.
The representations o f SU{3) on the x ’ s and the y*s are contravariant 

to each other.
C onsider the d ire ct product o f  the x -sp a ce  and the y -sp a ce ; this consti

tutes a basis  fo r  another representation  o f SU(3) which :is, how ever, reducible. 
In o rd e r  to ca rry  on the reduction one has to know the way infin itesim al op er
ators act on a product. The ru le is :

O an in fin itesim al op era tor  s im ila r  to the operation  of a derivative; 
the extension  to products with any num ber o f fa cto rs  is  obvious. Choose the 
follow ing b a s is :

O  • (v x v 2 ) = ( O .v J v j j  + v 1 ( 0 . v 2 ) . ( 1)

219



I = s /( l /3 ) (x 1y1 + x2 y2 + x 3y3 ),

ai = x 1 y 3 ; a2 = x 2 y 3 ; a3 = x x y 2 i a4 = v/ ( l / 6 ) (x 1 y i  + x 2 y 2 -  2x3 y s ) ; (2) 

as = > / ( l / 2 ) (x 1 y i  -  x 2 y 2 ) ; ae = x 2 y 1 ; a7 = x® y2 ; a8 = x 3y t .

TABLE I

E FFE CT OF THE OPERATORS H AND E ON VECTORS x AND y
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_ 1 3 „1E3x -  X 3 yi -  -ys HjX = x H iyi = -y i
E?X> = X iII

eüj’ .1 2 2 HjX = -x Hi Yz = ys
E2V  
^  1

= X E2yi = - i t  
2

u 2 2H2 x = x H2yz = -yz
Eax

3 2E2x
3 1 EjX

-  X

-  X 

= X

Ety2 = - yi

e! yj = -y j 

E?ys = -y i

H2 x = -x n 2ys = ys

It fo llow s from  (1) that the v ecto r  I is  invariant under SU(3). S im ilarly, 
the v e c to rs  a i(1 ^ i^ 8 )  span a space which is irredu cib le  under SU(3). The 
e ffect o f the H 's  and the E ’ s in th is 8-d im ensional space is  shown in Table ü .

TABLE II

E FFE C T OF THE OPERATORS H AND E IN A 8-DIMENSIONAL SPACE

Es a4 ->-,frS7 Z)a 1 E23 a3 -> -a l E,1 a2 -> a!

a5 -> - V ( l /2j a 1 a4 -V (3 /2 ) a2 35 -> V"2 a3

ae -» " a2 a5 _» V (T/Sj a2 a6 -> V"2 35

a7 -> a3 a7 V(3/2) a4 - 'fUM a5 a3 ->

a8 V(3 /2 ) a4 + V ( l /2) a5 a8 —* a6

E? -V(3 /2 ) a4 - V( 1 /2 ) 35 Eg ai -*• -as Ei al-> a2

a2 -> -a6 a2 ~^(3/2) a4 + VTT72) as a3 ^ - / 2 a5

a3 -> a7 a4 -> iT(3/2) a7 a5 -> V"2 a6

^4 V (3/2) a8 a5 -> - V ( l / 2)a 7 a7 -> -a 8

a5 V ( l /2) a8 a6 a8

Hj aj -> a j; a2 -> “a2 ; a3 2^2 j a6 <—̂ ™2s6 * a7 “>a7 » a8 -> “a8
H2 a1 _>a1; a2 2a2; a3 -> ~a3; a6 a6 ; a7 “ 2a7 ; a8 -> "a8

The resu lts o f a ll other operations are 0.
B y the definition  o f weights, the correspon dence  between weights and 

ve cto rs  o f this representation  is :
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a2 a3 a4 a5 ag a7 a8
(1 1) (2 -1 ) (-1  2) (0 0) (0 0) (1 -2) (-2  1) (-1  -1 )

The representation  is  ca lled  "the adjoint representation" because its non
vanishing weights are the roots  o f the group SU(3). They correspond to the 
E 's  in the follow ing way:

E3 Ejj E2 El  EI E j
( 1 1 ) ( 2 - 1 ) ( - 1 2 ) ( 1 - 2) ( - 2  1 ) ( - 1 - 1 )

2. WEIGHT DIAGRAMS O F IRREDUCIBLE REPRESENTATIONS OF SU(3); 
M U LTIPLICITY

L et £  be the la ttice  o f  a ll points [X,p)  in plane, where X andp are integers 
and X-p is  d iv is ib le  by 3. If both X and ß are non-negative, there is  an i r 
redu cib le  representation  o f  SU(3), the highest weight* o f which is [X,p),  and 
this representation  appears in the reduction o f a certain  product o f the form :

(1 1) X (1 1) X . . .  X (1 1).

C onversely , if  an irred u cib le  representation  appears in the decom position  
o f such a product, its highest weight (X,p)  is  such that X, p > 0 and X-p is 
d iv is ib le  by 3.

Given (X,p) ,  draw the hexagon defined by the points:

(X,ß) ,  (X + p, -p) ,  (p, -X - p) ,  (-X, X +p) ,  { - X - p ,  X), { - p - X ) .

It is  read ily  seen  that a ll these points belong to 4, .  E very point o f ^  lying 
on the s id es o r  inside the hexagon is  a weight o f the representation  (X, p);  
no weight o f the representation  lie s  outside the hexagon. The hexagon shrinks 
into a triangle when either X = 0 o r j i  = 0 ; yet the statement rem ains true.

D ifferent v e cto rs  o f an irred u cib le  representation  m ay correspond to 
the sam e weight; e .g .  a4 and a$ in the adjoint representation  correspond 
both to (0 0 ). The num ber o f independent v ectors  corresponding to a weight 
is  ca lled  the m u ltip licity  o f  this weight.

Suppose X > p >  0, and con sid er the set weights:

(X, p) ,  (X -  1, p -  1), (X - 2, p - 2), . . . .  (X - p,  0).

One m ay draw fo r  each such weight a hexagon in a way sim ilar  to the original
one; e . g . ,  ( X - l , / u - l )  determ ines the six  points:

(X -  1. p -  1), (X +p  - 2, --p + 1), (-X  + 1, X +p -  2), {p - 1, -X -  p + 2),

(-X  -lß + 2 , X -  1), (~p + 1 , -X + 1).

*  A weight (a, ß) is positive when either a + B >0 or a + ß = 0, ß>0 .  (a, 8) is higher than (y, a) when 
(a - y> Ö -  6) is positive.



2 2 2 H. GOLDBERG

The rule is  that a ll weights lying on the (X - k, ^ - k) hexagon have multi
p lic ity  k + 1; and those lying on the innerm ost triangle o r  inside it have the 
m ultip licity  /j + 1.

When ß s X > 0 we deal with a set o f  weights:

(X, ß ) f (X -  1, ß -  1 ) , . . .  (0, ß -  X);

yet the rule rem ains unchanged. S im ilarly , when either X = 0 o r j j  = 0, we 
have a triangle and the m ultip licity  o f each weight is  1.

E xam ple: (5, 2) defines a hexagon the v ertices  of which are (5, 2), (7, -2), 
(2 , -7 ) ,  ( -5 ,7 ) ,  ( -7 ,5 ) ,  ( - 2 , - 5 ) .  (Its weights diagram  is  drawn in F ig . l ) .

Fig. 1

The weights diagram of the representation (2 2)

3. THE CALCULATION OF THE REPRESENTATIONS

(a) Exam ple

A s weights have in general m ultip licity  > 1, one has to use additional 
quantum num bers in o rd e r  to sp ecify  uniquely a vecto r  corresponding to a 
given weight. It was shown by Racah that one needs (N - 3 i ) /2  such additional 
quantum num bers fo r  a group o f o rd er  N and rank i .  In the case  o f SU(3) we 
have (N - 3j0)/2  = 1, and the labeling accord ing to T 2 so lves the problem .

The follow ing lem m a is  im portant fo r  calculation : If the vecto r  | m >  
corresp on d s to the weight m , the v e c to r  E a | m > correspon ds to the weight 
m + a .

P roo f: H iEa| m >  = [H jE a] | m > +E„Hj| m >  = {ai + m i)E a | m > Q .E .D .

It fo llow s that knowing a v ecto r  o f  the representation corresponding to 
a given weight, we may "w alk" a ll o v e r  the diagram  with the aid o f the E ’ s 
and get v e c to rs  corresponding  to a ll other weights of this representation.
The method seem s to be best explained by an exam ple. We have:



DECOMPOSITION OF DIRECT PRODUCTS 223

(1 1) X (1 1) = (2 2) + (3 0) + (0 3) + (1 1) + (1 1) + (0 0 ) ____ (3)

Let ai and bk (1 s i, k s 8) span the bases o f the two representations appear
ing on the le ft and suppose one has to calcu late the basis o f (2 2). The vectors  
belonging to this basis  are com binations o f products o f the form  a, bk in such 
a way that each com bination corresp on d s to a definite weight and has a defi
nite T . It is  readily  seen that the weight corresponding to a product is the 
sum o f the weights which corresp on d  to the fa cto rs . Hence a jb i is  the only 
product which corresp on d s  to (2 2).

B y Table Hand using (1):

T_(a j  b i ) = a2bi + a^b2> T_(a2bj + ajbz)  -  2 a2b2-

4 ( l / 2 ) ( aib2 + a2b i)  corresp on d s to (3 0), a2b 2 to (4 -2 ) . It can be seen from  
F ig . 2 that together with axb i they form  an isosp in  trip let, because

Fig. 2

The weights diagram of the representation (2 2)

The v ecto r

■s/ ( l /  2)E| (ax b j ) = \l(1 / 2)(ai b3 + a3b i)  

corresp on d s to (0 3). T ogether with:

-v/PT^T.s/TTT^Xaj b3 + a 3b1)= vrfI73)(a1b5 + a5b]. ) - JTT ß)(a2b3 + a 3b2 ), 

■JJXß)T. [JJJJTUeubs + a 5b1) -J T T ß )(a 2b3 + a 3b2 )] = ,/TT76](a1b6 t a ^ )

V T l/3 )(a 2 bs + a 5b2 ),

4 U ß ) T .  [v /(l /6 )(ai b6 + a 6b !)  +v/TT73)(a2b5 + a 5b2)] = J (T [2)(a2b6 + a 6b2 ),

which correspon d  to (1 1 ) , (2 -1 ) and (3 -3 ) respectively , they form  an isospin  
quartet. H ow ever, the m ultip licity  o f (1 1) (and o f (2 -1 )) is  2; i . e .  (1 1) 
corresp on d s to another v ecto r  with a different T . Certainly, this T is 1 /2 . 
The v e c to r
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-E ft a ib i )  = *JT3j2)(a.i b4 + a4b !)  +>JTT]D(a1 b5 + a5 b !)

corresp on d s also to (1 1), and th erefore  it is a com bination of the T = 3 /2  
and T = 1 /2  v e cto rs  corresponding to (1 1). By the Grahm -Schm idt procedure 
one finds the T = 1 /2  v ecto r , which is  orthogonal to the T = 3 /2  one:

■>/(l/30)(3s/(3 /2 )(a 1b4 + a4 b j)  + ^ (1 / 2)(aj bg + a jb i )  t ^ b j  + a3 b2)}

Operating on this by T . we get the second m em ber o f the doublet:

+ a 6b1) +3/{372)(a2 b4 + a 4b2j - ^f(I72l(a2 b5 + a5b2)}.

which is  the second  v ecto r  corresponding to (2 - 1 ).
The v e c to r

- s / ( l / 2 )E ;» /(l /  2)(ai b3 + 3 3 ^ )  = a3 b3

corresp on d s  to (-2 , 4). T ogether with NM T*(a3 b3) where i = 1, 2, 3, 4 and 
where are norm alization  fa ctors  we get an isospin  quintet. The T = 1 
v e c to r  which corresp on d s  to (-  1, 2) is  obtained by operating with E| on the 
T = 1 /2  v e c to r  corresponding  to (1 1)* ;the other m em bers of the triplet 
are obtained with the aid o f T .

O perating with E j on the T  = 1 /2  v ecto r  corresponding to (1 1) we get 
a com bination o f the T = 1 and T = 0 v ecto rs  which correspond to (0 0). By 
the G rahm -Schm idt method we again p ick  out the T = 0 vector .

The continuation o f the p rocedu re  is  obvious (F ig . 3).

Fig. 3 

The root diagram.

(b) The general method

In o rd e r  to p erform  the decom position  o f (X1 X2 )X(^1 /u2) one needs the 
follow ing inform ation:

(1) The representations ( X ^ )  and Ip,Xß 2) ° f  the E ’ s . The bases o f these 
representations con sist o f polynom ials in baryons, antibaryons, m esons 
and v e c to r -m e so n s . T h ere fore  rule (1) m ay be used to get these represen 
ta tion s.**

*  The reason is that E* (as well as El, Ej, Ej1) can change T only by i .
^-'However, G. Racah calculated explicit formulae for the matrix-elements of the E's in any irreduble 

representation (private communication).
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(2) W hich representations appear in the decom position . Define:

P(x) = (1/2)(| x| + x ) ,

A = Min Ĉ -i (1 / 3 ) [  (Xj -  X2 ) + { (ll + ^ 2 ) - (Vl - v 2 ) ] , ( ! / 3)[ (2Xl + X 2 )

+ (3u i + ß2 ) - (21/! + V2 )] ],

B  = Mo-x Cp [ ( X i  -  I / i )  + ( 1 / 2 ) P ( ( 1 / 3 ) | ( X 1 + 2 X 2 ) -  2 (m ! - M2) -  ( y t + 2 i/ 2 )|

+ (vi - X1 ))] ,(1 /3 )[2 (X 1 - X2 ) + ( ^ x + M2) - (2vi + r/2)] ( l /3 ) [  (Xx - X2)

+  (ß  1 +  2 ) -  ( v i  +  2 v 2 ) ] ]  . '

The num ber of tim es {v\v2 ) appears in (Xj X2 )X(/ui^2) is  P(A  - B + 1 ).
(3) The v ecto r  corresponding  to the m axim al weight of such a represen 

tation. L et i  be a weight o f (Xi X2 ) and m a weight o f ( ß i ß 2 ) such th ati +  m = 
(i/l v%). If | I  , T j > is a v e c to r  o f the basis o f (XiX2) corresponding to t ,  
and I m, T 2 >  a v ecto r  o f the basis of { ß i ß 2 ) corresponding to m, then the 
product | I ,  T j > | m, T 2 > corresp on d s to ( v i v2 ).

We look  fo r  a linear com bination o f such products which is the vector 
corresponding  to the highest weight o f (i/1 v2). Such a com bination must vanish 
under E j , E§ and E J, as fo llow s from  the lem m a o f part (a) (since (i/j + 1 , 
v2 + 1 ), (vi + 2 , v2 -  1 ) and (vi - 1, v 2 + 2) are not weights of the represen 
tation (i/1 y2 ). The com bination w ill also vanish under E f , if v2 = 0, and under 
E| if  vy = 0 .  C onsidering the coe ffic ien ts  o f the com bination, we get fo r  them 
a set o f hom ogeneous equations when E^, E§ and E£ (m ay be EJ, o r  E| also) 
are applied. If the solution is  not unique, the representation ( v i v2 ) occu rs 
severa l tim es, and one ch ooses an appropriate basis arb itrarily .
Exam ple: The v e c to r  corresponding  to the highest weight o f (1 1) in the de
com position  of (1 1)X  (1 1). This v e c to r  is o f the form :

a (a 1 b4)+ ß (a 1 b5 ) + 7 (a2 b3 ) + 6 (a4bx) + £ (35 ^ )  + £(a3 b2 ).

It w ill vanish under the operations o f E 3, E§ and E2 . Hence:

E* : -JJ3J2)(a + 6) (a ib i )  - J U / 2j(ß + 0 ^ ^ )  = 0 ,

EI : - « / p / 2 )a (a ib2) +sfH7 2 )ß(a 1 b2 ) -  7(a2b i)  -  a a ^ ) ,

+ J (T ]Y je(a2b1) -  ? (a !b 2) = 0,

E2 : -J 2  ß(aj b3 ) + 7 ^  b3 ) -  J2 e (a3 b i ) + ? (a 3 b i ) = 0- 

F rom  these equations we get:

\I(3 / 2)(a + 6) +%/(l /2 )(ß  + e) = 0 ,
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- 7 -  sl(3/2)5 + s/XT7 2 )e = 0 ,

- s [ 2 ß  + 7  = 0 ,

- n/2 6  + ?  = 0 .

The set o f solutions is  two d im ensional. Adding the condition 7  = f  or
7  * one gets two m utually orthogonal solutions.

4 . REMARKS

(1) A ccord in g  to the usual exposition  o f the L ie  theory one should write 
E (i i) instead o f E j , E(2 -i) instead o f  E§ e t c . . The present notation empha
s ize s  the fact that the E ’ s operate in a 3-dim ensional vecto r  space .

(2) The highest weights (A,n) are associated  with Y oun g-sch em es. An 
irred u cib le  representation  o f SU(3) m ay be ch aracterized  by a Young-schem e 
o f not m ore  than 3 row s . Denoting this schem e by [ax a2 a3 ] (where aj is
the length o f the i ’ th row ) we have X = ai -  a2 , /J = a2 -  a3 .

(3) A s T+ and T . com m ute with the hypercharge, it follow s that vectors  
belongiiig to the sam e isosp in  m ultiplet have the sam e hypercharge.

(4) The decom position  procedu re  d escribed  above does not determ ine 
any gen era l phase convention.
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INTRODUCTION

I am  going to talk about the v ecto r  theory o f strong interactions, the 
universality  of the v e c to r  m eson  couplings and then about the various decay 
m odes of the w m eson . The last part o f this paper w ill be concerned with 
unitary sym m etry , esp ecia lly  F and D type couplings and the m ysterious 
m ass form ula  w hich seem s to w ork rather w ell.

1. VECTO R THEORY (GAUGE THEORY) OF STRONG INTERACTIONS

The b a sic  philosophy behind the v e c to r  theory o r  gauge theory of strong 
in teractions can be sum m arized  in the fo llow ing way. It is  essentially  an 
attempt to construct a theory  of strong interactions in analogy with e le c tro 
m agnetism . W e know that, from  a certa in  point o f view , quantum e le ctro 
dynam ics is  rem arkably sim ple and elegant. The notions of conserved 
current, universality  and what we might ca ll  the prin cip le  of m inim al e le c tro 
m agnetic couplings play im portant r o le s . S im ilarly , in the realm  of weak 
in teractions, it has becom e  apparent that the weak interactions are also 
vecto r ia l, apart from  parity n on -conservation , and there have been specu 
lations on the d iv erg en ce lessn ess  o f the cu rrents involved in weak p rocesses . 
M oreover, we know that the notion of universality  has been successfu lly  
applied to  som e dom ains o f weak in teractions of non-strange p artic les . F inal
ly , th ere  a re  con jectu res  on the p oss ib le  ex istence of spin -one particles 
(W p a rtic le s ) which m ediate variou s weak p ro ce s s e s .

If we now turn ou r attention to the strong interactions, the follow ing 
questions very  naturally a r is e . Why are  the strong interactions also v e c to r 
ia l?  Why do we not have a un iversa l theory  of strong interactions based on 
con served  cu rren ts?  The v e c to r  theory o f strong interactions is  an attempt 
to answ er these questions by constructing  a theory o f strong interactions 
which sh ares the variou s  elegant features of the electrom agnetic and weak 
in teractions.

Now let us go back to som e speculations made by WIGNER [1] many 
y ea rs  ago. He noted that there a re  essentia lly  two ways to determ ine the 
e le c tr ic  charge o f a p a rtic le .

F irs t , e le c tr ic  charge is  regarded  as a pure num ber - a purely additive 
num ber - which is  con served  in any reaction . F o r  instance, take the reaction

.M+_> e + + v)1 + ve .

If we know fro m  som e other experim ents that the e le c tr ic  charge of the p os i-
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tron  is  plus one and that the e le c tr ic  ch arges of the neutrinos are ze ro , 
then, by con servation  of charge, the e le c tr ic  charge of the p + is determined 
to be plus one. But the m eaning o f e le c tr ic  charge is  m ore than that. We 
can p lace  a beam  of charged p a rtic le s  in an e le c tr ic  fie ld  and see how much 
the beam  d e fle cts . So e le c tr ic  charge is  not only countable but also m eas
urable, and it is  in th is second  sense that we say that the charge of the elec - 
tron  is  equal in magnitude to  the charge o f the proton to a fantastic degree 
o f a ccu racy , to a few  parts in 1019 . (This charge equality is  one of the m ost 
rem arkable  equalities in m odern  p h ysics . Quantum electrodynam ics says 
that,if the bare  ch arges a re  equal, then the corresponding renorm alized 
ch arges a re  a lso  equal. Yet nobody can explain the equality of bare  chargesl).

W igner argues in the fo llow ing way. Both the e lectron  and the proton 
are  highly stab le . The stability o f the e lectron  can be attributed to the con 
servation  law o f e le c tr ic  ch arge  s in ce  the e lectron  is  the least m assive p a r
t ic le  that bears  e le c tr ic  ch arge . S im ilarly , the stability o f the proton can 
be attributed to  the con servation  law of what we might ca ll "baryon ic charge" 
sin ce  the proton  is  the least m assive  p article  with baryon num ber one. N o
body understands the deep reason  fo r  the existence of the conservation  laws 
o f e le c tr ic  ch arges and of baryon ic charges, but, says W igner, let us 
assum e that the two con servation  law s have s im ilar  causes, and these causes 
have s im ila r  con sequ ences. With this in m ind, let us ask what we mean by 
"baryon ic ch a rg e "?  Take, fo r  instance, the reaction

A ”* P+7T“ .

If the baryon ic ch arge  o f the proton  is  one and that of the pion is  ze ro , then 
we argue that the baryon ic charge o f the A hyperon must a lso  be one. This 
is  how we determ ine the baryon ic charge o f a p a rtic le . So we are  using the 
notion that baryon ic charge is  som e additive num ber which is  conserved  in 
any reaction . The point to  be em phasized is  that in the conventional theory 
there is  nothing analogous to  W igner*s second  way of m easuring the charge 
o f a p a rtic le , i . e .  the notion o f coupling constant is  com pletely  m issing.
So although the e le c t r ic  charge and the baryonic charge are s im ilar  in the 
sense that they a re  both con served  to  a fantastically high degree of accuracy 
(the proton  life tim e  >  1 0 24 y r , the e lectron  lifetim e >  1 0 19 y r), they are 
quite d iss im ila r  becau se  in one ca se  the "ch a rg e" m eans both conserved  
additive num ber and coupling constant, w hereas in the other ca se  the 
"ch a rg e " m eans just con served  additive num ber. This asym m etry is  quite 
ugly and disturbing.

The asym m etry betw een baryon ic charge and e le c tr ic  charge can be 
seen fro m  a somewhat m ore  form a l point o f view as fo llow s. In the e le c tro 
m agnetic ca se  the charge conservation  is  an im m ediate consequence of 
M axw ell's  equations in the sense that the continuity equation

0 / a x M) = v  • j + (aP/at) = o

fo llow s from

V - B - (9E /9t) = j, V* E = P .
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In the baryonic ca se , how ever, baryon conservation  stands by itse lf, so to 
speak.

H istorica lly , W igner tr ied  to rem ove the asym m etry between e lectr ic  
charge and baryon ic charge by postulating that the pion is  coupled un iversa l
ly to the various baryon s. T h is is  the orig in  of "g loba l sym m etry". This 
analogy, h o w e v e r ,, is  rather su perficia l, and it cannot be pursued much 
further. The reason  is  that the quantity to which the phöton fie ld  is  coupled 
is  a con served  current density, w hereas the quantity to which the pion is  
coupled is  a pseu dosca lar density which has little  to do with baryon con 
servation.

A m uch m ore  natural way is  to assum e that there is  a vector  m eson 
coupled un iversa lly  to the baryon  current just as the photon is  coupled uni
versa lly  to the e le c tr ic  charge current. If the m ass of the vecto r  m eson 
w ere ze ro , we would get into d ifficu lties  because there would be a kind of 
long - range, anti -  gravity  e ffect (analogous to the Coulomb repulsion) 
betw een two m a cro sco p ic  ob je cts , which has been d iscu ssed  by LEE and 
YANG [2].

Such an e ffect, i f  it ex ists  at a ll, can be  shown to be much weaker than 
the gravitational in teraction ; in any ca se  it would have nothing to do with 
the strong in teraction s. So we assum e that the vector  m eson coupled to the 
baryon  cu rrent is  m a ssive .

We m ay naturally gen era lize  this idea of associating  a vector  m eson 
to a con served  current to other con served  cu rrents o f the strong interactions. 
F or  every  con served  quantity we postulate the existence o f a vector m eson 
coupled lin early  to the appropriate con served  current in question. This is  
the b a s ic  idea o f the v e c to r  theory  o f strong in teractions.

H istor ica lly , a num ber o f peop le  have tried  to " ju stify " the vector  theory 
on the b a s is  o f  what we m ight ca ll the gauge p rin cip le . The requirem ent 
that the gauge transform ation  associa ted  with the conservation  law of baryonic 
charge, e tc . be  lo ca l (sp a ce -tim e  dependent) in character demands the 
existence  o f a v ecto r  fie ld  with ze ro  bare  m ass coupled universally  to the 
baryon  current. We can argue end lessly  whether o r  not such an approach 
m akes sen se ,becau se  the physica l m ass o f the vecto r  m eson  associated  with 
the v ecto r  fie ld  m ust be fin ite in ord er  that we have a physically  interesting 
th eory  o f strong in teraction s. But I shall not d iscu ss this very  im portant 
prob lem .

F rom  a p ra ctica l point o f view  there are a few  im portant points. F irst, 
is  the idea that fo r  every  con served  current there exists a strongly in ter
acting v e c to r  m eson  right? If so , are the vecto r  m esons coupled universally 
to the appropriate con served  currents in the sam e sense that the e le c tro 
m agnetic fie ld  is  coupled un iversa lly  to the e le c tr ic  charge current? How 
can we test the un iversa lity  p rin cip le?

I should em phasize at th is m om ent that, given a sym m etry o f conserved  
op era tors , the num ber and the nature o f the vecto r  m esons are determ ined.
If you are just concerned  with the exactly  conserved  currents of the strong 
in teractions, then there are only three - the isospin  current, the baryon 
current and the hypercharge current. Of cou rse , we may take any linear 
com bination o f the strangeness current and the baryon current instead of 
the hypercharge current, but in higher sym m etry m odels, such as the unitary
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sym m etry m odel or  any m odel in which there is  som e sym m etry between N 
and S , it is  natural to  take the hypercharge current, as we shall show later. 
We can easily  v e r ify  that the isosp in  current is  isov ector  and even under G 
con jugation , w hereas the baryon current and the hypercharge current are 
iscrscalar odd under G. So we are led to con jecture that there exist one T = l, 
even G vecto r  m eson  and two T=0, odd G v ecto r  m esons.

So fa r  we have con sid ered  only the exact sym m etries of the strong 
in teractions. Perhaps there a re  hidden sym m etries  which are approxim ate.
If there a re , there m ay be m ore  currents which are conserved , but only 
to the extent that this m ass d ifferen ce  between the nucleon and the A etc. 
can be ignored. Indeed, in the unitary sym m etry  m odel to be d iscussed 
la ter , there is  a strangeness changing current with isospin  1 / 2  which is 
approxim ately  con served . So we m ay con jectu re  on the existence o f a T= 1/2 
v ecto r  m eson  coupled  to the q u a si-con served  strangeness changing current.

B efore  p roceed in g , I would like to g ive cred it to the people who are 
involved in this line o f thinking. The fir s t  suggestion that there ought to be 
a v ecto r  m eson  coupled to  the isospin  current was made by YANG sind 
MILLS [3] as ea r ly  as in 1954. It was FUJII [4] who firs t  suggested that 
there should be a strongly  interacting v e c to r  m eson  coupled to the baryon 
cu rren t. Subsequently I form ulated  a theory  in which the vector  m esons 
coupled to the baryon  current, isospin  current sind hyper charge current play 
v ita l r o le s  in the ph ysics  o f strong interactions [5 ], F o r  the currents gener
ated by gauge transform ations of unitary sym m etry  based on the Sakata 
tr ip let, SALAM and WARD [6] have shown that we must have an octet of 
v e c to r  m eson s. T here is  another vers ion  o f the unitary sym m etry m odel 
w here we again have an octet o f v e cto r  m esons as shown by GELL-M ANN 
and NE'EM AN [7].

When this kind o f theory  was proposed .th ere was no d irect experim ental 
evidence fo r  o r  against the existence o f strongly  interacting vector  m esons. 
A s is  w e ll known, there a re  now two v ecto r  m esons whose existence has 
been firm ly  established  by num erous experim ents -  the p m eson  with m ass 
**750 M eV with T = 1, G = +1 decaying into three p ions. The p m eson can 
be identified  with the vecto r  m eson  coupled to the isospin  current whereas 
the u> m eson  can be one o f the candidates to the two T = 0, G = -1  vector 
m esons p rop osed  by the v ecto r  theory  o f strong interactions. If one sub
s c r ib e s  to the philosophy that fo r  every  con served  current there should be 
a v e c to r  m eson , it would be better to have another T = 0, G = -1  vector  
m eson . In spite o f their s im ilar ity  the two T = 0 vecto r  m esons are quite 
distinct because the baryon current is  very  different from  the hypercharge 
cu rren t. F o r  instance, the one coupled to the hypercharge current would 
not be em itted o r  absorbed  by A since the A has hypercharge = zero, w here
as the A can em it or absorb  the v ector  m eson  coupled to the baryon current. 
This d istinction  a lso  b ecom es apparent in the octet version  o f the unitary 
sym m etry  m odel to be d iscu ssed  la te r ; the one coupled to the baryon current 
is  an unitary singlet w hereas the one coupled to the hypercharge current 
is  a m em ber o f a unitary octet. In any case  I would like to urge the experi
m entalists to look  fo r  another T = 0, G = -1  vecto r  m eson . Perhaps it is 
relevant to m ention that if the con jectu red  T = 0 m eson  has m ass greater 
than 2 mic, then its m ain decay m ode m ay be K+ + K" and K° + 1 ?  . Since
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the m ode and the K?2 m ode are forbidden  by B ose statistics and
a lso  by G conjugation invariance, we should see  a bump in the K°1( K°2 Q 
value d istribution but not in the K j K°j distribution. The con jectured  m eson 
m ay be looked  fo r  in the reactions K + p -»K^ + K 2 + A, K+ + K" + A.

In the unitary sym m etry  m odel there is  room  fo r  a vector  m eson with 
T = S = ±  1 which m ay be identified with the 880 MeV K. There is  som e 
p re lim in ary  evidence from  pp annihilation experim ents ca rr ied  out by the 
CERN - C ollege de F rance group that the spin of K* is likely  to be one.

TABLE I

Isospin G
Hypercharge or 

strangeness
Unitary symmetry 
classification

Isospin current 1 + 0 Member o f unitary octet

Hypercharge current 0 - 0 Member o f unitary octet

Baryon current 0 - 0 Unitary singlet

S changing current £ no meaning ± 1 Member o f unitary octet

The p red iction s o f the v ecto r  theory* are sum m arized in Table I. The 
ex istence  o f p = u and K* is gratifying esp ecia lly  if we re ca ll that when the 
th eory  was prop osed  there was no d irect evidence fo r  any of these m esons. 
T h ere  are, how ever, two pred iction s that have not yet been checked:

(i) The spin o f K* m ust be one (for which there is som e evidence); and
(ii) T here m ust exist another T = 0, J = 1", G = -1  vector  m eson whose 

m ajor decay m odes m ay w ell be K i + K° and K+ + K" (but not K i + 
K °, Kg + K »).

2. UNIVERSALITY

F ro m  the quantitative point o f view  the m ost important question in the vector 
th eory  o f strong interactions is the one o f the universality  o f the interactions 
betw een the vecto r  m esons and the baryon and m eson currents. In the o ld - 
fash ioned way the in teractions o f the p m eson  with the nucleon and pion can be 
w ritten as _

L i = f ^ P (I( ^ 9 ^  + fpN^M(iN7)J(^72)N) (2. 1)

U niversality  means

f  = f  pmr pNN'

Now we may argue en d lessly  about whether this kind o f equality is supposed 
to hold at zero  m om entum  tran sfer , as in the ca se  o f the electrom agnetism , 
o r  on the m a s s -sh e ll mom entum  tra n sfer . In this elem entary discussion we 
sh a ll leave aside this question.

In ord er to test the universality  hypothesis we shall calcu late from  the 
experim ental data fpira and fpj^ F rom  the width fo r  the decay p~* 2ir, we can 
obtain f^nr/4jr. This p roced u re  is  good if the width o f the p particle  is very  
narrow  (fpim is  very  sm all). A ctually p m anifests itse lf as a resonance in
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J = 1, T = 1, irff scattering, so  we would like to  know how to determ ine 
fpirir/4,r from  the tttt scattering amplitude.

Let us r e c a ll  how we usually define the coupling constant fo r  the in ter
action betw een two pions and a stable p artic le , which fo r  sim plicity  we 
suppose to be sca la r . Let us denote this partic le  by <J and suppose that its 
m ass is  sm aller  than tw ice m „ . Near the a pole the T m atrix  can be written 
as:

- T~ g 2 / s  - m20,

SO

<2- 2»
The rate at which 1 /T  v a r ie s  with the energy square d near the (m ass)2 

o f the interm ediate p a rtic le  m easures the coupling constant. Note that (1 /T ) 
vanishes at s = m §.

In the unstable o  ca se  (i. e. mö > 2m 7r), the cr m eson m anifests itse lf as 
a reson an ce in s -w ave  scattering.

Since

e l6sin ö  1
k k cot 6 -  ik

and

k co t  6Re
( t ) =‘ 8jt y~s ’

the re a l part o f  ( l /T )  goes  through zero  near the resonance just as 1 /T  goes 
through zero  in the stable or partic le  ca se . This suggests the definition

d_
ds Re £  = g ^ . (2 .3 )

Now, fo r  a su fficien tly  narrow  resonance, the phase shift is given by

i6 . , m or  2e s in !  = - ; -------- , .-—, s ^ m .,,( s - m g j  + i n ^ r ’

s o  we obtain

1  ___^  res.

g2 ~ ‘
or

\ 4 fl J  4

It is  im portant to note that exactly  the sam e expression  can be obtained by 
com puting the li fe -t im e  o r  the decay width by perturbation theory using the 
e ffective  Lagrangian g otrT. So we see that the w ell-know n form a l identity 
betw een the p o le  term s in the sense of d ispersion  theory  and the renorm alized  
Born term s in the sense o f perturbation theory can be extended to the case 
o f unstable p a rtic le s  [8 ] .
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In a s im ila r  m anner we can com pute the decay width fo r  p -»  2it.
We obtain fo r  the width

2 3 2 2 3
r  _ 2  fßjnr P _ 1  W  f , 4 m  it \  5  . .
r p 12  4>r ^  m 2P j  mp ' (2- 4)

w here p is  the pion m om entum  in the rest system  of the decaying p particle , 
and Ip is  the fu ll width. E xperim entally  Tp is 100-125 M eV ; then

f  pmr/47,1 ~ 2. 0 -  2. 5. (2 .5 )

How do we get the fpNN coupling constant? One possib ility  should be 
through nuclear fo r c e s , but the related  calcu lations would be very  com plicated. 
The potential is best known fo r  p -p  scattering but in this ca se  it is not p o s 
sib le  to d iscrim inate between the p and u contributions. They appear in the 
sam e way. A dditional com plications com e from  an anomalous magnetic 
m om ent-like term , and, what is  m ore  im portant, we do not have a reliable 
calcu lational method fo r  the other contributions (e .g . contributions as a 
resu lt o f  the exchange o f an uncorrela ted  pa ir o f pions). The best we can 
do is  to look  at tt-N  scattering . Let us see the contribution from  F ig . 1, 
which g ives  the product fpmr fPNN-

\
fynrr

Fig.l

The effect of the p m eson  on low  energy ttN scattering has been estim ated 
by many people. Let us f ir s t  do the m ost naive thing, i. e . , to see the con 
tribution o f the above Born graph in the s-w ave nN scattering amplitude.

Fortunately the anom alous m agnetic mom ent term  does not contribute 
to s -w ave at low  energy, and we get som ething like th is:

tan 63 tanöi 3 fpmr-fpNN u m N  1
k " k " 4  4?r W 'k2 g

w here 63 is the phase shift o f the isosp in  3 /2  s-w ave amplitude and 61 the 
phase shift fo r  isosp in  1 /2 ; W is the total energy in the C. M. system , u is 
the energy o f the pion  in the C. M .system . The log  term  com es from  the partial 
wave p ro jection  o f the p m eson  propagator, l / [ 2k 2( l  -  c o s 0 ) + m ^ ].

If we assum e that the p m eson  exchange dom inates as k -» 0, Eq. (2. 6 ) 
g ives the d ifferen ce  between the two scattering lengths a 3 -  a j ,  from  which 
it fo llow s:

f pmr ‘ f pNN / 4,r ~  2 - 5 - (2 .7 )
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In a m ore  soph isticated  approach HAMILTON, SPEARMAN and 
WOOLCOCK [9] tried  to fit the energy dependence of the phase shift instead 
o f scattering length, and in the notation o f Bowckok et al. they obtained:

i  1 W fpNN= _ 0. 7 ± 0 .  1,* 3 4  JT

or

f  /4 tt ~  2. 1 ± 0 .3 , (2 .8 )
p i r i r '  '  '

which agrees with (2. 7). This shows that fpm r- fpNN. as requ ired  for  uni
versa lity .

It would be n ice to test the universality  hypothesis in other reactions, 
fo r  exam ple, in KN and KN scattering. To isolate the p contribution in these 
reactions is a very  difficu lt task  since we do not know how to calculate other 
contributions.

We can, how ever, make an interesting speculation. Whenever the one 
pion exchange is  forbidden by sym m etry considerations, then the isospin  
dependent amplitude fo r  any low  energy scattering is dominated by the ex 
change o f a p particle  coupled universally  to the isospin  current. This hypo
thesis can readily  be shown to im ply the sim ple ru le : the p-exchange fo rce  
is  attractive when isosp ins are antiparallel, repu lsive when they are par
a lle l.

It is  amusing to n otice  that this rule w orks n ice ly  in five ca ses . Thus 
in the ffN, T = 1 /2  state we have attraction; in the T = 3 /2  state, repulsion.
In KN,T = 1 repu lsion  is  very  strong as it is  ver ified  in the K+p scattering 
experim ents.

F o r  KN nucleon scattering, the T = 0 state is m ore  attractive than the 
T_= 1 state sin ce  the Y j resonance of 1405 M eV is m ost likely  an s-wave 
(KN) bound state w hereas the 1385 MeV Y f  resonance is  not likely  to be 
rela ted  to the s-w ave KN channel. A lso  there seem s to be an attractive 
s -w a ve  in teraction  in T = 0 KK scattering. F inally, in the jttt case, T = 0 
is  m ore  attractive than T = 2.

2. 1. to m eson

Let us assum e fo r  the sake of argument that the u m eson is coupled 
to the hypercharge current. And let us do the sam e kind of thing fo r  the KN, 
KN. K and N have hypercharges + 1, K has hypercharge -1 . If in the low 
energy domain the idea that the u_exchange dominates is  c o rre c t , then on 
the average KN is  repu lsive and KN is attractive. This follow s because the 
exchange o f a u m eson  coupled  to the hypercharge current generates Coulomb 
like in teraction  at short d istances; i. e . , fo r  s im ilar  hypercharges we have 
repu lsion , fo r  opposite h ypercharges, attraction . Then the "potentia ls" for 
KN and KN can be w ritten in the follow ing form  if we take into account only 
p and u exchange:

KN: Vu + Vp^K*

K N :-V w + Vp t - ^ N
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w here ^  ^  f  -3  fo r  T = 0
K » '  [  1 fo r  T * 1

The signs o f Vw and Vp are  determ ined to be positive  in the vector 
th eory  based  on the un iversa lity  p rin cip le  (but are arb itrary  in any other 
th eory ). T here is  som e experim ental evidence that the sim ple description  
g iven  here corresp on d s to rea lity . With the u m eson  we may hope to under
stand nuclear fo r c e s  at short d istances. Again in N -N  interaction the ex 
change o f a T  = 0 v e c to r  m eson  g ives a C oulom b-like repulsion  at sm all 
d istances. This might g ive r is e  to the phenom enological hard co re  in 
nucleon -nucleon  scattering.

To end this section , I would like to show how the universality  princip le 
m ight be form ulated  on the basis  o f d ispersion  theory.

Let us go back to the p m eson . Suppose that the p m eson  dominates the 
charge fo rm  fa c to r s . This m eans that the nucleon or pion form  factors  could 
be approxim ated by the F ig . 2. -

Fig. 2

If we are fa r  from  the reson an ce we can essentially ignore the com p li
cations due to the instability o f the p m eson  [8]. We then have:

(q2) = Trp fp„ / ( q 2 + m =)

w hile fo r  the iso v e cto r  nucleon charge form  factor  F ($

f nV >  = frrp W 2)/(q 2 + M p)’

w here jy p  is  the coupling constant o f the p partic le  to the photon. Now for  
q? 0, we have Fff -» p and p /2 , because at zero momentum transfer
e le c tr ic  charges are un iversa l. Thus fpNN = fpmr.which agrees with the con 
cept of universality .

Now there is  another final point which is extrem ely  interesting. We 
have here

yp ~ e m p  / ^ p N N  “  e m p / ^ p m r "  (2 .9 )

•yyp is  in versely  p roportion a l to the strong interaction constant, a very  
d ifferent resu lt from  the perturbation resu lt. In perturbation theory we con 
sider

fir + ir 1
7 " { n + n ;
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so  we would expect y y P proportion a l to the strong interaction constant 
(fpmr, fpNN ). The fact that y yp is in versely  proportional to the strong coupling 
constant is  analogous to the w ell-know n G old berger-T re im an  relation . There 
again the pion decay rate is in versely  proportion a l to the strong coupling 
constant.

3. DECAY MODES OF THE u MESON

A p a rtic le  with the quantum num bers T = 0, J= 1" was pred icted  by Nambu 
in 1957 to explain the iso s ca la r  e lectrom agnetic fo rm  factor  o f the nucleon. 
This m eans that F ig . 3 m ust be im portant.

ITyta 

Fig. 3

Then, through the photon which is coupled to any pa ir o f charged particles 
the u m eson  can decay in the follow ing w ays:

e+e '

If the u contribution dom inates the iso s ca la r  form  factor , we can readily 
show that

' (3>1)
in com plete  analogy to what we did fo r  the p m eson.

The constant f  u is  defined through the interaction

L I = f wuM(äfTrJ1N + . . . ) .  (3 .2 )

We can give the follow ing sim ple ru le. W henever u dominates,then we insert
in the corresponding diagram  the fa ctor  y ^  = e m 2 / 2 fw between y  and u;
p o ccu rs ,w e  insert Yyp = e m p /fp  . So the decay rate f o r u  -» e++e~ , n+ +n~ 
is  given by

<3- 3 '

w hich is  in versely  p roportion a l to the strong coupling constant f 2 . N um erically 
we get:

r ( ü ^ e + e - ) - r  ( W-»M + +M ‘ ) = | ^ ,  (3 .4 )

as shown by NAMBU and SAKURAI [10].
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If u) does not dom inate, we have to m ultiply the above expression  by 
| | 2 w here is the coe ffic ien t o f the u contribution to the isosca lar  
charge fo rm  fa ctor .

r i V ) =p i &  + 1 - “ w- <3- 5)^ u
If the muon had an anom alous interaction , then the u -> ß + +n~ and u -» e+ + e" 
ration  would not be equal. If, fö r  exam ple, there exists a m eson which in ter
acts som ewhat strongly  with the muon but not with the electron , then we 
expect a v e ry  different resu lt fo r  the branching ratio

[r (w  -> ii + M ')] / [ T ( u  -» e+ e ")] .

This would be a sensitive test of the idea that the muon is a pure D irac p a r 
t ic le . So fa r  there is no experim ent on leptonic decays of the u m eson.

Now the situation is  som ewhat m ore  com plicated  fo r  the u -» 2it d ecay .
It is a p ro c e s s  w here we have violation  o f  T conservation  and G invariance.
So u can decay into 2jt v ia  e lectrom agn etic interaction :

u -» y  -» 2 ff.

In calcu lating the decay ra te , one must take into account the final state in ter
action  between the two p ions, and this can be expressed  by F ig . 4, where 
F ,  is  the pion  fo rm  fa cto r . The resu lt is

if //

Fig. 4

0. 7
r ( u ^ 27r)^ fJ 7 ^ F  k e V lF - (q '  = m- ) l ’ (3' 6)

w here the pion  fo rm  fa cto r  F¥ is given by

F (q2 ) -  r ------, fo r  q2«  - m 2* (q + m ‘ ) i r pm p M <”

if  we assum e that only the p m eson  contributes to the pion form  factor. Since 
the p and u m asses  a re  v ery  near, the enhancement factor | fw |2 in (3. 6) 
can be v ery  la rge  -  som ething like 50.

Let us next con sider decays o f the w m eson  which have been observed. 
F o r  the (J —» n ° y  decay, we assum e that the dominant graph is as in Fig. 5. 
Although we do not know the upn coupling constant, we can com pare this 
p ro ce s s  with the u)-»3ff decay which we suppose to be dominated by the diagram as 
shown in F ig . 6 . In this way, in the branching ratio  [r(u-»fl'0Y)/r(u-»3fl’ )] the unknown
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ir,S’
em 2p

w

Fig. 5

fpmr /^1r

N îr 

Fig. 6

upjr coupling constant is  can celled  out, and only known quantities rem ain. 
F o r  p-> y  we use im p /2 fp  and for p -* 2ir we use fpttK /Air -  2. 0, c o r r e 
sponding to Ip -  100 M eV.
We then get:

r ( u  v0y)/r(u -» 3*) = 17% [11].

E xperim entally , _both the C E R N -P aris group (f? + p -* K° +K° + u) and the 
B erkeley  group (K + p -»  A  + u) give fo r  the above ratio  15 - 20% in excellent 
agreem ent with the p dom inance m odel. The upTT coupling constant can be 
ca lcu lated  i f  we assum e that in the ttO _> 2y decay the dominant graph is as 
shown in F ig . 7.

ir°

Fig. 7

This was f ir s t  pointed out by G E LL-M AN N  and ZACHARIASEN [8]. We 
obtain the absolute value fo r  the decay rate o f u -» 3 ir, which com es out to 
be approxim ately  400 keV, if  we assum e fä  /4?r -  1. 5,as suggested by the 
unitary sym m etry.

Let us con sid er a m ore  d irect method fo r  m easuring the u decay rate. 
F o r  exam ple, F(u-> tt° 7 ) can be obtained from  ?r0 photo-production. Some 
p re lim in ary  study o f 7 + p - » p + 7f0 has revea led  a pecu liar angular distribution 
which cannot be explained with usual phenom enological term s like a reason 
able num ber of pow ers o f co s  0. There is  som e evidence that the angular 
distribution  at Ej ~  1. 1 BeV is  com pletely  dominated by the diagram  shown 
in F ig . 8 .

This experim ent is  s t ill  in p ro g re ss  at the C aliforn ia  Institute of Technology. 
Note that the above graph g ives the product of fa, and fuy*.
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Fig. 8

It was shown experim entally  that the p ro ce ss  is ± +p -» p+u+Jr* is  very  
strong so we might try  the approach in F ig . 9, and in this way we 
cou ld  obtain the vertex . Unfortunately, the experim ental resu lts at 
p îab) ~ Q ev / c do not g ive any indication o f the im portance o f this one- 
pion exchange graph. E xperim entally, the above p ro ce sse s  a re  dominated 
by u + N*. P erhaps at m uch higher energ ies the one-p ion -exchange mechanism  
w ill becom e im portant.

\p

Fig. 9

F inally , there is  an experim ent p roposed  by CABIBBO and GATTO in 
which we study oj production  in e le ctron -p os itron  collid ing beam  annihilation
[12]. Then the total c r o s s -s e c t io n  fo r  the p ro ce ss  e+ + e " - »  final statef,w here 
the interm ediate state is  u, is given by

a  f e + e - - »  f )  = 3?rX2 r ( ^ 2_eJ r ( u ^ ) / la (e  e - » l)  (E - m J 2 + r 2 /4  l}

w here r ( “ -»f)  is the partia l width fo r  u-* final state in question and T[u~* 2e) 
is  the partia l width fo r  the id-* e+ + e~ decay. What one experim entally m eas
ures is not the peak but rather the c r o s s -s e c t io n  averaged over som e energy 
interval.

m w+AE

f  cr(E)dE. (3 .8)
■AE

N um erica lly  a (e + e ‘ -> 3i r ) - 6 .  5 juB if  we assum e AE = 10 MeV, T= 500 keV 
and the branching ra tio  [ r (u  -»  2e)] /  rtot— 1%. This is much la rger than the 
usual e lectrodynam ic c ro s s -s e c t io n s .

4. UNITARY SYM M ETRY

Let us start with som e fam ilia r  con cep ts : charge conservation  and is o 
spin conservation . In the charge conservation  ca se , we have a unitary group 
with one param eter which corresp on d s  to the gauge transform ations e ia .
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F o r  the isosp in  conservation , we have S three-param eter unitary group which 
corresp on d s to  rotations in a th ree-d im en sion a l Euclidean space. It is  just 
an accident that the isosp in  rotation is usually d iscussed  in analogy with the 
E uclidean rotation ; we can approach isospin  rotation in an entirely different 
way. We fir s t  con sider two prim itive ob jects , the proton and the neutron;

Any isosp in  rotation can be com pletely  ch aracterized  by its effects on the 
two prim itive  ob jects  p, n. The usual way of writing the isospin  rotation is 
as

w here Te are  the usual Pauli m atrices  and 0e specify  the rotation. But we 
can a lso  w rite

com p lex  num bers and one constraint).
The above m atrix  generates a unitary and unimodular (det= 1) tran s

form ation  in tw o-dim ensional space. The group o f the unitary unimodular 
2X 2 m atrices  is denoted by SU2 (S stands fo r  sim ple and U2 for  unitary and 
unim odular).

Then, instead o f considering  the group of the transform ations O 3 
(Euclidean rotation in re a l 3-dim ensional space), we may as w ell consider 
the equivalent group SU2. We may note that (4. 2) is  not the m ost general 
unitary two dim ensional m atrix,but it is the m ost general unitary unimodular 
m atrix . The m ost gen era l unitary m atrix  is obtained by multiplying (4. 2) 
by the one-param eter gauge transform ation  e iot with rea l a .

M ore  com plicated  ob jects  like the pions can be built up from  the outer 
product o f (pn) and ({ j):

But this has m ixed  p rop erties  under isosp in  rotations or equivalently under 
SU2 : the reason  is that the tra ce  part tran sform s like a singlet. To obtain 
the trip let we subtract the tra ce :

(4 .1 )

(4 .2 )

with |a |2+ |ß |2 = 1. Note that we again have 3 independent param eters (two

(4 .3 )

pp + nn
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Although we can construct a ll non-strange p a rtic les  in s im ilar  ways, 
we can never build up strange p a rtic le s  by starting with the prim itive ob jects 
p and n, which are  both non-strange. If we w ork with SU{2), it is  im possib le  
to in corporate  the degree of freedom  that corresp on d s to the gauge trans
form ation  fo r  strangeness or hypercharge conservation .

Now SU3 is  a slight generalization  o f SU2 . We can again con sider in
fin ites im a l gen erators  l  + iX j(6 0 i/2 ) instead o f l  + iT i(6 0 i/2 ) o f  SU2 . ^ i here 
a re  3 X 3 tr a c e le s s  m a tr ice s : their representation  can be found, fo r  exam ple, 
in G E L L-M A N N ’ s paper [7 ] .

F o r  SU3 we have three p rim itive  ob jects . F o r  exam ple, in the Sakata 
m odel, they are the p, n and A . This m odel was extensively  studied 
e sp ec ia lly  by Ikeda, Ohnuki and Ogawa. In this approach £  and S belong 
to different representations fr o m p , n, A . If the A  £  parity  w ere odd.then 
th is would be v ery  p rom isin g . T here a re  now good indications that the £A  
parity  is  even, so  it is  natural to put E and A  together. Another thing is  that 
in th is m odel the m ost likely  assignm ent fo r  the cascade spin is 3 /2 . So 
fa r , there is  no argument against this assignm ent, but som e prelim inary  
experim ents indicate that there is  an asym m etry  in the S decay with respect 
to the norm al to the production plane; i f  this p e rs is ts , the spin 3 /2  assign 
ment w ill be ru led  out by the s o -c a lle d  L ee and Yang test. (If we have a 
higher spin ob ject, there w ill be m ore  tendency fo r  any decay A produ cts 
to be em itted in the production  plane rather than in the d irection  norm al to 
the production  p la n e .) T here are a lso  som e pred ictions on the decay of 
pp-»2ir, KK etc., and som e experim ents on this seem  to contradict the Sakata 
m odel as w ill be d iscu ssed  in other papers.

We shall d iscu ss the octet m odel the "e ig h t-fo ld  w ay" introduced by 
G ell-M ann and Ne§m an independently. H ere the prim itive ob jects  Eire hidden. 
F o r  pedagogica l pu rposes, we shall introduce a m athem atical lepton 
m ultiplet £=  (j;-] w here ve~ fo rm  a doublet and M " a singlet with baryon 
num ber B = 0. Let us now introduce a lso  a m athem atical boson multiplet 
with baryon  num ber equal to one (B = + 1 ): L = (D ° , D+ , S+) where D°, D+ 
fo rm  a doublet and S+ is a singlet, Isotop ica lly  th is m ultiplet transform s 
like an antilepton m ultiplet. In the preceding case  of SU2 where we con 
structed  the pion out o f the nucleon-antinucleon doublets, we considered 
the outer product (p, n) X (pn) out o f the nucleon-antinucleon doublets. Let 
us do the sam e kind of thing taking the outer product o f L and 1. We then 
obtain the m atrix :

D° D+ S+

V D° v D+v S+v

e~ D °e - D+e- S+ e -

M ” D°m ' D+/i- S+M'

Note that the tra ce  o f the above m atrix  is invariant under unitary trans
form ation s. If we subtract from  the above m atrix  the corresponding trace 
which is a unitary singlet,
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Tfiv + D+e " + S+M" 
3

0

we obtain

0

(idem )
3

0 (idem)
3

(4 .5 )

2D° v -  D+e ~ -  S+M '  
3

D°e~

d V _

D v

-D° v + 2D+e _ - S+M"

d +m -

S+i/

S+e ’

-D P i/-D °e -  + 2 S V

(4 .6 )
Now one can easily  identify the various elem ents o f this m atrix  with stable 
baryons

S+ v = p  1 D ° M ' =  S ' !

S+ e " = n J D + M “ = H<> J

sin ce  they fo rm  an isosp in  doublet; a lso  E1- = T)+v, = D°e~ and by charge
independence we identify the neutral m em ber

E° = (DO v -  D+e “ ) 1/2 .

What is  le ft over must be an isosin g let:

A0 = (D°i/ + D+e ‘  - 2S+M-)/^f .

Let us note that we obtain the right strangeness fo r  the above particles  if 
we put S (e ,v , S+ ) = 0 and S(D°, D+ , M~) = -1 , where S is the strangeness. As 
a resu lt we obtain the baryon octet:

0 > 0 r» +
/ 6

L * P

E° A °E~ ' / 2  V r n

H" 5 °

<M
|l$o
1

We have used  1 and L  only as a device  to keep track  o f transform ation  prop 
e rtie s . Once you have obtained the unitary octet,you  can forget about them. 
Any unitary octet m ust have the sam e structure.
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Now, the observed  pseu d osca lar m esons a lso  fo rm  an octet.

7r0 rj°
y t + 7 T

K '

ir^

-7T® rfi

K°

KT

K°

2

(4 .8 )

w here rj° is  an isos in g let as the A0 , which m ay be identified as the 560 MeV 
ob ject. S im ilarly , the v ecto r  m esons might be put in a unitary octet u, and 
they can be obtained fro m  m  by the follow ing substitution:

u£m (4 .9 )

In this m odel K* has spin 1 which m ay be the 880 MeV Kjt resonance.

5. INTERACTIONS

Now we can w rite the unitary sym m etry  Yukawa type interactions. This 
can  read ily  be done if  we r e c a ll  that the tra ce  o f a m atrix  product is  in 
variant under unitary tran sform ations. Omitting y  m a trices , we have the 
tra ce s :

w here

B =

T r(B m B ) and T r (BBm)

Ä . ^  
/ T  JT

"0

£° A0
s°

Let us ob serve  that B was chosen  in such a way that it is  obtained from  B 
by transposing and taking the bar. O therw ise, we do not have conservation 
o f e le c tr ic  charge.

We can con sid er two types o f unitary sym m etric  interaction :

D type: TRACE (B m B + B B m ) and 

F type: TRACE* (B m B -B B m ).
(4. 10)

These types o f coupling are  a lso  invariant under the follow ing d iscrete  
operations:
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D type is  invariant under B -» BT , m -» mT and 

F  type is  invariant under B -* B T, m  -* - m T 

(w here the su p erscrip t T stands fo r  " tra n s p o s e d " .)
So the m ost gen era l interaction  is  a linear com bination o f the above. To 
ch oose  an in teraction  o f D o r  F  type m eans to im pose invariance under som e 
d iscre te  operation  ca lled  R (or hypercharge re flection ). The R operation 
corresp on d s  essen tia lly  to interchange N and S and charge conjugate the 
m eson s. The D type couplings have the follow ing p rop erties :

4 a s  = (4/ 3) ^ nn '  = 0 - <4- n >

In the F  type couplings the pion is  coupled to the pseu d o-sca lar  density that 
tra n sform s like isosp in . Then g^zi, 4 0 and g|/iE = 0. In choosing between 
the two types o f coupling, the D type is  probable m ore  reasonable because 
there is  som e evidence from  hypernuclei that gt/y£ = 0 gets into difficulty.
The AN fo r c e s  seem  to requ ire  som e sizab le  g^AE •

In the D type coupling we have girNN = -gnss while in the F type coupling 
girNN = gn23 • Then if  our interaction  is  an equal m ixture of D and F types, 
the S would not in teract strongly  with the p ions. This point might be 
o f som e in terest in the dynam ical approach to the recently  d iscovered  5 r e 
sonance.

W hether one has the pure D type, the pure F type or a m ixture of both, 
it is im p ossib le  to have the K couplings m uch weaker than the pion couplings. 
If one com pares p seu dosca lar constants, there is  som e evidence from  photo
production  o f K m esons that the KAN  and KEN  couplings are weaker than 
the ffN couplings. But it is  known that unitary sym m etry is  broken by large 
m a ss  ra tio , e .g .  m x, = 3 .5 . Now, if  one uses a pseudovector coupling, 
this m ass ra tio  is  exactly  com pensated and the pseudovector coupling con 
stants are p ra ctica lly  equal fo r  n and K interactions.

Let us now con sid er the couplings o f the v ecto r  m esons. Again we have 
two p oss ib le  lin early  independent couplings:

D type : T race  (B v B + B B v )

F  type : T race  (BvB +B B v).

The D type couplings bear no resem blance w hatsoever to  the vector 
th eory  (or gauge theory) d iscu ssed  ea r lie r  in which the v ector  m esons are 
coupled  to the various con served  currents o f the strong interactions. On 
the other hand, with pure F type couplings the vector  m esons are coupled 
to the cu rrents generated by the gauge tranform ations o f unitary sym m etry:

l  + iX ,(6 0 j /2 ) .

M ore p re c is e ly , the p is coupled  to the isospin  current and the u is  coupled 
to the hypercharge current. M oreover, we a lso  have the K* which is coupled 
to the q u a s i-con serv ed  strangeness changing current:



VECTOR MESONS AND UNITARY SYMMETRY 245

( - - j  N A + N ? - 2  + ____)K * .

As is  w ell known, it m ight be p oss ib le  to detect this kind o f interaction in 
a ssocia ted  production  experim ents provided  that reactions such as 
ir~ + p-> A °+ K °  are  dom inated by the exchange of K* .

In the unitary sym m etry  schem e with F type couplings of the vector 
m eson s, there is  a re la tion  between the coupling constants fu and f p:

fu2/47T = (3 /4 )(fp2/4 jt), (4. 12)

which does not appear in the usual ve cto r  theory  without unitary sym m etry. 
F ro m  the width o f the p m eson , we have

fp /4JT ^  2. 0 (for Tp«* 100 M eV),

which leads to

fI  /4sr -  1. 5.

R ecently  p erform ed  nuclear fo r c e  calcu lations seem  to give a la rger value 
fo r  this coupling constant. This d iscrepan cy  might be due to the possib le  
ex istence  o f another T = 0 v ecto r  m eson  d iscu ssed  ea rlie r .

It is  a lso  interesting to note that the couplings o f the vector  m esons 
to the pseu d osca lar m esons of the form  vm m  must be of the F type. F or 
instance, the p m ust be coupled  un iversa lly  to the sum o f the ir m eson is o 
spin current and the K m eson  isosp in  current. If the D type couplings were 
assum ed, there would be term s like p°r)°ff0 which would not be invariant 
under charge conjugation.

T here are two couplings of the vecto r  m esons which may "d ire ctly " 
be ob served : p-*  2 ir and K* -> K+tt. Using (m vm -  m m v), we can readily 
obtain

r ( K * ) / r ( p ) = ( 3 /4 ) [ p 3KJ m 2* ] / [ p 3 „ /m 2 ].

If the K* m ass is  assum ed to be 880 M eV, then from  Tp = 100 MeV we obtain 
r (K *  ) = 30 MeV, which is  not fa r  from  the observed  K* width ( r eXp~ 47 MeV).

In the unitary sym m etry  m odel there is  an open possib ility  fo r  a vector 
m eson  coupled to the baryon current. This w ill be a unitary singlet vector 
m eson  sin ce  the baryon current is o f the form

(pp + nn + A A + ............) = T race  (BB),

which is  obviously  a unitary singlet. Note a lso  that it is im possib le  to con 
struct a vecto r  current that tran sform s like a unitary singlet with pseudo
sca la r  m esons (nor with vecto r  m eson s). F or  instance, we cannot construct 
a vecto r  current b ilinear in the t) m eson . So if there exists a unitary singlet 
v e c to r  m eson , it must n ecessa r ily  be the kind coupled to the baryon current.

Let us now sum m arize the pred iction s of the unitary sym m etry m odel 
based  on the G ell-M ann -  Neuman octet. F irs t  o f all, a ll m em bers of a unit
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ary  sym m etry  m ultiplet must have the sam e sp in -parity . F rom  this point 
o f v iew  the m ost c ru c ia l test is the spin of S , which in the octet m odel must 
be 1 /2 . A lso  the K* spin must be 1 (or e lse  there must be som e other Kir 
reson an ce with spin 1).

A s fo r  the p arities  o f the baryons and m esons, once we define the parity 
i. e. r  E even, and NS even. The K m eson  must be pseudoscalar with r e -  
to be even by convention, then all baryons m ust have the sam e parity, i. e. 
A £  even, and NS even. The K m eson  must be pseudosca lar with respect to 
both NA and N £. When the octet m odel was proposed , the parity was not 
known to be odd, nor was there any evidence fo r  the T = 0 pseudescalar rj 
m eson .

The second  p red iction  o f the unitary sym m etry  m odel is  that all m em bers 
o f a unitary sym m etry  m ultiplet m ust have the sam e m ass. Experim entally, 
we know that this "p red ict ion " is  not fu lfilled  (otherw ise unitary sym m etry 
would have been d iscov ered  many years  ago). H ow ever, if unitary sym m etry 
is  broken only in low est o rd er, there a re  many interesting m ass relations 
that can be checked experim entally .

Let us go back to our "m athem atica l"-m odel o f baryons in which the 
baryons are com posed  o f £ and I p a rtic le s . If unitary sym m etry is broken, 
the D -S  m ass d ifferen ce  and the (ev)-M  m ass d ifferen ce need not be zero . 
But let us assum e that the fo r c e s  that bind £ and I are independent of 
strangeness and isosp in ; otherw ise, we would be considering higher order 
vio la tion s o f unitary sym m etry . Assum ing fo r  sim plicity  that the binding 
en erg ies  a re  zero , we have

m^ = m s+ m e

m A = (2 /6 )(m D + m e ) + (4 /6 ) (m s + m (1) 

m E =mD + m e 

mg = mo + m ^ .

F ro m  these re la tion s, it fo llow s:

(mN+ m s )/2  = (3m A + m £) /4 ,  (4 .13)

as f ir s t  noted by G ell-M ann. E xperim entally, the left-hand side gives 1127 
M eV  while the right-hand side is  equal to 1134 MeV.

A  s im ila r  rela tion  holds fo r  the pseu dosca lar octet, but, as suggested 
by Feynm an, it is  better to w ork  with (m a ss)2.

m| = (3mJ + m * ) /4 . (4 .14)

E xperim entally , fo r  the left-hand side we have (495 M eV )2 ; fo r  the right- 
hand side, (480 M eV )2.

The m ass relation  is  not so  good fo r  the vecto r  m esons. The m ass 
form ula  with the observed  p and K* m ass p red icts  the T = 0 m em ber of
the octet at 920 M eV (rather than at 780 M eV). Perhaps the observed  u
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m eson  is  a unitary singlet and a secon d  T = 0 v ecto r  m eson  yet to be d is 
cov ered  is  the T = 0 m em ber o f the v ecto r  m eson  octet. Or e lse  it may 
w ell be that the two T = 0 v e c to r  m eson s get m ixed up in a com plicated  way; 
perhaps this kind o f m ixing is respon sib le  fo r  breakdown of unitary sym m etry. 
But a ll this is very  specu lative.

If we take unitary sym m etry  seriou sly , baryon isobars must a lso  be 
c la ss ifie d  a ccord in g  to various unitary sym m etry  m ultiplets. The representation  
8 is  obv iou sly  inadequate.to d escr ib e  the 3-3 resonance. It is  possib le  to 
build up m ultiplets with higher dim ensions by decom posing 8 X 8  just as 
we decom posed  3 X 8  into 1 + 3. It can be shown that

8X 8 = 1 + 8 + 8 + 1 0 +  10 + 27.

E ach representation  can further be decom posed  into various ordinary 
m ultip lets with hypercharge and isosp in . This is  sum m arized in Table II.

TABLE II

1

©(i>
* T  = 0

8 Y  = 1 T  = 1 /2

Y  = 0 T = 0, 1

Y  = -1 T = 1 /2

10 Y  = 1 T  = 3 /2

ii o T  = 1

Y  = -1 T  = 1 /2

Y  = -2 T = 0

10 Y  = 2 T = 0

Y  = 1 T = 1 /2

Y  = 0 T = 1

Y  = -1 T = 3 /2

27 Y  = 2 T = 1

Y  = 1 T  -  1 /2 , 3 /2

Y  = 0 T = 0, 1, 2

Y  = -1 T = 1 /2 , 3 /2

Y  = -2 T = 1

V arious excited  baryons can be d iscu ssed  within the fram ew ork of the 
represen tations listed  above [13]. If we use the follow ing p ieces  of in form 
ation taken from  exp erim en ts:

(i) The Y f  (1385) spin is m ost likely  3 /2 ;
(ii) The YJ (1405) is  probably  an s-w ave KN bound state,

Y f  spin f  Yg= spin ;
(iii) T here is  no reson an ce in K+p scattering,
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then it is natural to  let the 3 -3  resonance and the 1385 MeV Y f  belong to 
the representation  10. Note that we then p red ict a T = i  Y = - Iff 5 resonance. 
This m ay be identified  with the recently  d iscovered  3| at 1530 MeV.

M eanwhile Okubo was able to gen eralize  the Gell-M ann m ass form ula 
to any unitary sym m etry  m ultiplet as fo llow s:

m = mo { 1 + aY+b [T (T +  1) - (Y2/4 )]} . (4. 15)

F o r  the representation  8, the form ula redu ces to (4. 13) and (4. 14). But for 
the representation  10, because o f the linear relation  T = 1+ Y /2  , the quadratic 
term s in (4. 15) can cel each other. So we are led  to the "equal-spacing ru le " 
(em phasized by G ell-M ann at the CERN con feren ce ):

m  = m/0 ( l  + a’Y).

E xperim enta lly ;

N|/2 1238 MeV
Y f 1385 M eV
Sf/2 1535 M eV

in  fantastic agreem ent with the m ass form ula . (M oreover, if we assum e 
that the param eters a and b are  com m on fo r  the baryon octet and the 10 is o 
b a rs , then even the spacing param eter is  co rre c t ly  p re d ic te d .) If we take 
the m ass form ula  ser iou sly , there sould be a Y =  -2  (strangeness = - 3 ) singlet 
at ' ' ,_1685 M eV . But the p red icted  m ass o f this ob ject (denoted by Z~) is  below 
the KS threshold . T h ere fore  Z "  should be stable against decay via strong 
in teractions.

It m ay be produced  via

K '+ p  -> Z _ + K° + K+
S~ + p -» Z~ +_p + K? 
p + p -» Z~ + Z~ etc.

It is  expected  to decay into

Z ' - »  Jr + S , K + A , K + £

v ia  weak in teractions (long lifetim e). Should the Z "  be found experim entally, 
our con fidence in unitary sym m etry would grow  by an ord er o f magnitude.
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OCTONIONS AND SUPER-GLOBAL SYMMETRY

J. TIOMNO
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RIO DE JANEIRO, BRAZIL

INTRODUCTION

It has been recently  pointed out by PAIS [1] that the use o f  the octonions 
(Cayley num bers) fo r  the descrip tion  of the baryon ic and m eson ic fie lds leads 
to the in teraction  with the 7 -d im ensional orthogonal sym m etry (O7) proposed 
a few  y e a rs  ago [2] and which is  ca lled  G_ by P a is .

Although this "su p e r -g lo b a l"  interaction  has too  many sym m etries, thus 
leading to som e unwanted se lection  ru les as w ell as a ll the needed ones, it 
m ay be present as part o f the strong interactions and may play som e ro le  in 
weak in teractions.

T his paper w ill con sid er  p rop erties  of the octonion algebra, its relation 
to the G . in teraction  and som e useful tr ick s  in playing with doublet symm etry,

1. QUATERNIONS AND GLOBAL SYM M ETRY

It is  w ell known that quaternions may be used to d escrib e  spin and that 
their use fo r  building strong in teractions leads to global sym m etry.

A  quaternion is  a h ypercom plex  num ber of the form

(sum m ation ov er  i * 1, 2, 3 is  here understood), where the ej's have the fo l 
low ing m ultip lication  property  :

with Ejjk totally antisym m etric (E123 = 1).
F o r  rea l quaternions (x0, Xj real) the follow ing property , true a lso  fo r  

rea l and com plex  num bers, holds :

X  = x 0 +  Xj et (1)

e i e j = -  6ij +  s ijk e k (2)

N(AB) = N(A) N(B), (3)

w here N(X) * x|j + Xj Xj = x2 is ca lled  the norm  of the quaternion. 
If we define the sca la r  of a quaternion by S(X) = Xq we have

N(X) = S (X X ) = x jx o  + ^ x j , (4)

w here X  is  the adjoint o f X :

(5)

251
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xj, Xj+ representing the com plex  conjugates o f xQ and x ; fo r  c-quaternions 
(x j = Xq, x* = Xj fo r  rea l quaternions) and the herm itian conjugates fo r  q -qua- 
tern ions ( i .e .  quaternions having q -num ber fie ld s  as com ponents).

F rom  the product ru le (2) it fo llow s that

The quaternion algebra fo rm s  a group and is  isom orphic to the algebra 
o f Pauli m a tr ices  (of square -1 ).

A lso , as the substitution

leaves the product rule in varian t:

if (ajj)are orthogonal (3 X 3) m atrices , we find that the continuous autom or
phism  of e ;g en era tes  the group 03.

(6)

and thus quaternion m ultip lication  is  a ssocia tive  :

A (B  C) = (A B) C .

Let now

B -  b0 - e; b; ; b0 = A, b; -  + i ^ ,
(7)

(8)

D b0 = g($0 b0 - i$, bj) -> DA = g(n0A + n • E)

D bk = g (4>0 bk + i b 04>k + i£ . jk 4>. b .) -* DE = g fr }^  + vA  + i ? X  £).

T hese equations m ay a lso  be written

Db^ = g(4>0 bM - i<S\ Fißv b„); ß.v = 0, 1, 2, 3,

w here

Fjjk = Eijki EJok “ - Fiko “ Diooa 0

or , in m atrix  notation,

D b  = g(<t0 - iFj 4>i)b = g(3>o + 0*- £ )b , (9)
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w here

b = (F iW  = Fi1̂11/ *

The ©i m a tr ices  are 

/ c
e.

0 - i 0
°\

i 0 0 0

0 0 0 - i

0 0 i 0 / \°

0 - i
° \ r

0 0 - i

0 0 J  1 (  0 0 - i 0

0 0 0 ;% ■ 0 i 0 0

i 0 0 / \ i 0 0 0

that is,

= 1 X o^; &2 ~ °2 *  **3' ®3 "  °2 ^ °1 (10)

(the cr’ s being the Pauli m a tr ice s ). F rom  (10) and the prop erties  o f the inner 
p rod u ct,

(Q X  R)(Q'X R') * Q Q 'X  R R '

Q = T0 + R = T0 + a  e tc ., 

and of the P auli m a tr ices , it fo llow s :

6i 6, = 6  ̂ + i E ijk ek. (1 1 )

N otice that in (7), B and $  a re  written d ifferently . This was done in order 
to obtain the s im p ler  representation  (10) fo r  . Now if we write

B' = b ' -  i®/ . e,; b ' - A ,  bf *

we get, instead o f (9 ),

D b '=  g($0 + 6*'. 3>)b'

(7a)

(9a)

with

b' = U b; U =
1 . - l

- 1 /

A s b and b ' in (9) and (9a) a re  connected by a unitary transform ation, also 
6' sa tis fies  the m ultip lication  ru le.

e[ = 6;j + iE ijk ek'. (H a)



254 J. TIOMNO

The advantage o f using firs t  the representation  (7) was that (11) follow ed 
straightforw ardly  fro m  (10). H ere it would be alm ost as sim ple to prove 
(11a) d irectly  from  the m a tr ices  0■ This would be, how ever, cum bersom e 
in the ca se  o f octon ions, in which case  the s im p ler representation  0, w ill 
lead im m ediately to the m ultiplication  p rop erties .

W e now con sid er the doublet representation . Due to (11a), it is  p o s 
sib le  to find a unitary tra n sform a tion :

¥ = T b (12)

such that

T e[ T -1 = TU 0, U-'J T -1 = \  = 1 X q  . (13)

Now we can easily  show that

b = (b0 + b • 0 ) wQ , Wq =

Thus as b ' = U b ; U w0 = w0 , we a lso  have

b ' = (b'0 + b ' . 0') Wq

and, finally

¥ = (bj + b ' - T ) n 4 . o 0 = T Uo = t u u 0. (14)

W e have th ere fore

O'? = i g 75 ($0 + ?•■$)¥ . (9b)

In o rd er  to determ ine f2Q we w rite

0; = Mj + N i; i = 1 ,2 ,3 , (15a)

w here Mj is  obtained from  0j by making a ll elem ents of the firs t row and
firs t  colum n vanish. We see that

X j - M j - N j j  j * 1 ,2 ,3 , (15b)

com m utes with a ll 0; and a lso  satisfies

Xi Xj = 64j + i £ ijk xk.

Thus Xj must be tran sform ed  as

T U x j  U"1 T  _1 = rjj = ^  X 1.
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F inally , as M w. = 0, we get

Thus one finds that

(f + n)f20 = 0.

/ °  \
1
1
0

(16)

(17)

This cou ld  be found, o f cou rse , d irectly  from  TU, which tran sform s 0 into 
t . A lso , as w0 0 w0 = 0, we get

q 0 T n0 = 0.

Now we can build the doublet Y from  (14) and (16):

I b l - i b 2

b0 ■ b3

b + b3 o

i b 9

h\v

\ E-

Yn =_ A-Eq

(18)

A + £ 0 / i  q\ 
(19)Zo =

It should be m entioned that from  (14), (16) and (18) we obtain, without 
having to use (19) explicitly;

f l  = Ä A  + E. Ej » b b , 

(1 /2 ) ? ( t  +~n)Y = iE X  E, 

(1 /2 ) ? ( t  - n)Y = EA + A E, 

Y t 'F  = i ?  X £  + £  A +Ä E  = bl5b;

(19a)

(19b)

(19c)

(19d)

(19a) and (19d) are  a lso  easily  obtained starting from  b o r  b ' representations. 
Thus we have fo r  the in teraction  Hamiltonian density :

Hin= i g l ß y 5(%  + « • ■ ? )? =  i g b  ß y 5(% + I  • 0)b = ig S (B ß Ys$ B ) .  (20)

This is  invariant in 0j as it is  obvious in quaternion notation :

B = b0 + ej bi = bo + ef b ,̂

with

ei ” e j ' bi -  aik hk' aik ” ^jk‘
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Thus b tran sform s as :

b ------ » exp (iM  • <p)b. (21a)

and ¥ as

(21b)

H ow ever, it is  a lso  invariant in 04» in view  o f the additional tran sform ation :

In (21) and (22) A , E tran sform  as a 4 -v e c to r , 4  being a se lf-du al tensor 
and a sca la r  [3],

Hjn is  then a lso  invariant in S U2 X SU2, firs t  by the i-sp in  rotation :

which m ix ¥a and f b .
Thus if interaction  (20) holds both fo r  (A, E) and fo r  (N, S)(global sym 

m etry), the i-sp in  p rop erties  o f baryons would be undetermined [2, 3, 4 ] , 
Additional le s s  sym m etrica l in teractions would make the ch o ice  of (21) for  
(A, t )  and (22) fo r  (N, S).

2. OCTONIONS

An octon ion  is  a h ypercom plex  num ber

with Ejjktotally an tisym m etric, with values ±1 and 0 and with only one non
vanishing Eijk fo r  a given pair ( i j ) .  They have the additional property

(22)

(23)

fo r  which f ,
transform ation

tran sform  as two spinors, and by the

(24)

(25)

(sum m ation over i = 1 , ..........7) with the m ultiplication property

(26)
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erfejA) + e ,(e i A) -  - 26i, A , (27)

which a ssu res  the norm  property  :

N(A B) = N(A) N(B) (28)

fo r  rea l octon ions (notation is  the sam e as fo r  quaternions except fo r  the 
fact that sum m ations are now from  1 to 7).

In o rd er  to prove  (28) we notice  firs t  that

ej(e.ek) -  (eie j) e k = fijkrer. (29)

So that

Steifejeu)] = S[(eiej) e j

o r

S [A (B C )] = S [(A B )C ] , (30)

T h ere fo re  we get

N(A B) = S [(B Ä )(A  B)] = S[B(Ä(A B))]

= a2 S(B B) = a2 b2 = N(A) N(A).

H ere w e used A (A  B) = a2 B (for  rea l octon ions A) which resu lts from  (27), 
thus showing that (27) im p lies  (28). It should be noted that (30) is co rrect 
even if the octon ion  m ultip lication  is  not associa tive , as we shall find ( f ,^  
in (29) is  not z e ro , as fo r  quaternions).

Now we p roceed  to build the m ultiplication table fo r  octon ions. F rom  
the m ultip lication  ru le (26) the product of two octonion unities is  another 
one, except fo r  a sign which may in som e ca ses  be absorbed in the unity. 
So we p ick  two unities ej and e2 and define

Now we p ick  another unity e 4 different from  e^  e2 and e3 and define

V V l '  e6 “ e4 e2 ' e7“ e4 e3* (32)

Indeed, from  (26) these products should give hypercom plex unities and they 
should be a ll d ifferen t. We now obtain the other m ultiplication rules from  
(31) and (32) by the use o f (27 ):

e t e6 -  e j(e4 e2) * - e4(e1 e^

e2 e 5 = e 2(e4 ea) = - e j ^  ej) * e4 e3 = e7, (33)

e 3 e 5 = e3 ( e4 e i> = -  e 4<e 3 e i }

e4 e3 “ 1 a> -J

e 4 e3 =

e 4 e 2 = -  e 6'
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Thus we have found the non-vanishing ’ s :

E 123.= ^415 = £ 4 2 6  = E437 = E 176 = ^257 = E 365 = 1 • (34)

A ll other products give the sam e result as (31 - 33) if the antisym m etric 
p rop erties  o f E ^  are  taken into account. The m ultiplication coe ffic ien ts  (34) 
are different from  those of C AY LE Y [5] but reduce to them by the change of 
the sign o f the basic unit e4 (e4 -* - e4). They d iffer  also from  those given
by PAIS [ 1 ] but becom e  identical by the substitution

e4 *  e5 e e *  e 7-

The n on -associa tiv ity  o f octonion m ultiplication can be shown im m ediately.
Thus we find

(ei ep ek = q (e j % ) = - Eijk

if (i j k) belongs to a triad  represented  in (34) o r  if two o f the indices are 
equal, and

(ei ®j) ~ ®i(®j

fo r  a ll other tr iad s .
Although the octonion  algebra does not fo rm  a group because of the non- 

associa tiv ity  o f m ultiplication, it generates the group G2. Indeed if

e i ----------> e ' = a ijej)

e| e /  > - 6 ij + Eijk ek',

w e must have

a ij a ik a 5jk

afi asj E ijk a kt "  E 2st

(35)

3. NON-EXISTENCE OF OTHER H YPERCOM PLEX ALGEBRAE WITH THE 
PR O PE R TY  (3)

If we try  to gen era lize  the octonions including additional units but keep
ing (25 - 27), we run im m ediately into contradiction . Thus if  we have m ore 
than seven units o f square ( - 1 ), we build e j . . . .  e1 by the same procedure 
as b e fore , thus obtaining the m ultiplication coe ffic ien ts  (34). Now, calling 
e8 a unity different from  these, we form

7.
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Thus we shall have 16 h ypercom plex  unities. Ln particu lar

e 8 e4 "  e i2 e i2^e 8 e 4̂  "  ■

W e now fo rm

x = e1[e2(e3[e12(e8 e4)])} = - e 1[e 2(e3. 1)] = - e2 = +1.

Now, using su ccess iv e ly  (27) we find, how ever,

X "  -  ei 2 ^ (e4[e i (e2 e3 > ^ }  ’  e i2 (e 8 e4> “  -  1 ’

Thus we cannot gen eralize  the octonions if we keep relations (26) with the 
condition  that the product of two units e; ej g ives another unit ek (except fo r  
a sign) as w ell as condition  (27).

Thus, instead of (26), we take the m ore  general re la tion ,

e , ej = -  6 ij +  f ijk e k <3 6 >

with fijk totally antisym m etric but not vanishing fo r  severa l k*s fo r  a given 
(i j) p a ir .

W e a lso  take instead of (27)4he norm  condition (28) fo r

A = a 0 + a; e j, B = b0 + b; ei

with a0, ai( bQ, bs rea l.
We shall prove  fir s t  that even in this m ore  general case  (28) im plies

(27). Indeed,

C = A  B = (a • b) + (a0 b; + at b„) ei + fijk ^  bj ek

with (a • b) = a0 b 0 - aj bj.
If we w rite  (28) and expand, we find

a- a b- b Q. = 0 . (37)i r “ s ^lrus ‘  '  '

w here

9 ir :js = = Qir;sj "  fijk frsk +  ^ k  frjl<

+  *ij 6rs + 6 is 6jr -  2 ö ir V  (38)

Thus, as (37) m ust vanish fo r  arb itrary  a^ b-, (28) is  equivalent to

Qir:js = ° -  (3 » )

But sin ce  (27) is  true fo r  A  = ag, it is  enough to prove it fo r  A * er(r a rb i
tra ry ). Expanding it, we find
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T his m ay be w ritten

Qijits es = ° /

which is  true if (39) holds. Thus (27) is  a consequence o f (28). T herefore  
the only rea l change fr o m  the previous schem e was in the substitution

^ijk ^ fijk •

Now we shall p rove  that (38) and (39) exclude any hypercom plex number 
with n - 1 anticom m uting unities except fo r  n ■ 2 (com plex num bers), 4 (qua
tern ions) and 8 (octonions)[5J. Indeed, if we con sider the antisym m etric 
m a tr ic e s ,

f̂tv * n, v -  0 .1 , . . . .  n - 1,

defined by

“  îjk » * îj * 0? )j0 * " 

then (38) -  (39) may be w ritten

(Ej Fs + F S FjJt, -  -  2 6js 6,r •

A lso , as

(F. F  +  F  F  )„ ■ - fiis ; (F  F  + F  F. L  ■ 0
'  J 8 «  J ' 0 0  15 '  j  s  S j 'O l

we have

Fj Fs +F S Fj -  -  2 6sj. (40)

Thus the Fj’ s fo rm  a set of anticom m uting n X n m atrices  o f square -1 , all
an tisym m etric. Thus n is  even.

C onsidering a ll antisym m etric products of two o r  m ore  Fj m atrices,w e 
obtain 2“ ' 1 independent m a tr ices  (including the unit m atrix) if n ”  0 (mod 2), 
and 2n"2 if n a 0 (mod 4 ). The reduction  by one-half in the last case  com es
from  the fact that EJ F2 ..........Fn.j is  a m ultiple of unity. Now as there can
be only n2 independent m a trices  of rank n, we have

2n-l s n2, n * 0 (mod 2)

2n-2s n2  ̂ n ,  o (mod 4).

In the firs t  ca se  we get n s 6. In the second ca se  n s 8. Thus, besides the 
p oss ib ilit ie s  n * 2, 4, 8 m entioned, we might have a lso  n * 6. This is , how
ever, excluded because we would then have 16 independent antisym m etric 
m a trices  (5 F j's , 10 [Fi, F j]’ s and the m atrix Fj F2 F3 F4 F5). This is  not 
p oss ib le  becau se th ere  a re  only 15 antisym m etric m atrices  of rank 6.
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W e m ay p roceed  as in the quaternion ca se  and take the equation

(i  ̂+ m )B = i g 75$ B (41)
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with

Then we get

with

B K b 0 - e; b; ; 4  -  - i® ,

( i0  + m )b = g($0 - i  F; 3} )b

(42)

(43)

b = flUk = %  ; (FI )ok = - (Ft )k0 = 6 k ; ( i p = 0

If we build the - il^ m atrices, we find

- i F2 3 cfj X I X  a 2 

- i F 2 * a3 X cr2 X a3

; - i F5 = aj X ct3 X a2

; - i F 6 = a 1 X a2 X 1

- iF 3 = a3 X ct2 X a1 ; - i F 7 = a , X aj X a 2

- iE  = cr .
4 2

W e thus easily  v er ify  that

(Ff, E} -  -  2 6^,

which we know is  a consequence of (27).
A lso  if we w rite

- iFj = ct3 X e; , - i l ^  ■ - CTj X ; i = 1, 2, 3 ,

w here 6̂  are  given by (10) and

X-̂ = “ cr3 X o"2 j X2 “ — a2 X I  t X3 3 — X 0 2  *

The Xj m a trices  a re  the same given by (15b). Thus we can find a canonical 
transform ation  which takes (43) into

(i 0 + m ) f  = ig($0 + 5®ifr5ü' (44)
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with

r  = <X3X Tt ; r4 = a2 X 1 ; r44 = CTj X (i = l .  2, 3). (45)

T hese are the sam e m a trices  rM used in [2], E q .(44 ) being the sam e then 
obtained if the sca la r  interaction  i '?y 5 'F4> is  added.

Another interesting way of obtaining d irect ly  equation (44) is the f o l 
low ing. Although the octonion algebra is  not associa tive  and the I] algebra 
is , there is  an isom orph ism  between products from  the left of octonions and
p ro jected  products of lin ear com binations of E ’ s. Indeed, if we make the c o r 
respondence among the quantities

A = a0 + e jS i« ----- a0 + i l ^ ,

we shall a lso  have

A(BC) * AD * E <— <P = -A  $(P  = t(P

if a P exists with the property

( l /2 ) r , . I J ] P =  - i E ljkrk P (i, j ,k  = 1, . . . . 7 ) .  (46)

We find im m ediately that (46) is  true fo r  I; given by (45) if

e3P  = (a3X I X  1 ) P > - P ,

( ? +  f?)8 - [ l X  ( ?  + Tf)4] P =  0.

Thus P is  given by

P = [ ( l+ e 3) /2 ] [ ( l + r .  n )/4 ] ; P 2 = P .  (47)

w here we used fo r  short 1 X t* — > t , I X  if — The  relation 

A(BC) + B(AC) = (a • b)c ; a • b = a0bQ - ajb;

correspon d in g  to (27) a lso  leads to

[Jt 8  C, + 8Jt \<P = (a • b )&<P,

this being a consequence of the anticom m utation property of I^ s . Thus if

B = b 0 - i eibi ; 4> = 4>fl -  i^ e i

B - b o + r ^  ; cp = O0 + r i®i .

Eq. (41) leads to

( i r + m ) ^ P  = i g 7 5 3 P •
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If we now take

n -  P m.

M -

we obtain (44) with

*■ n/2

l  b 5 + ib 6^ 
- b7 + i b 4

b 7 + i b 4

 ̂ b 5 - i b 6j

*2 =

N otice that

w here

l  ij b, n  >A *■ *
(+ ib 4+ ~r . l j ) n ' ; n'= + i r 2n =

b * (b5, bg ,b7).

A lso

i=0 1

E f E « = i ( - k + i | '  kW0 + h. c.
i=4 1 * i

= Yj ( -  i<4 + Tj • 7?)(A +T • £ )n 0 + h .c .  

= \ { A  + t -L)k + h . c . .

w here

* = (- i*4 + "n -"icjno“ - (i*4 + "t • î n0
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\ [ 2

I *1 + iK2\
- k3 + i/c4 

/c3 +  i(c4

y K1 * iK2

Thus

¥ - i?X  E 4
-E  A $ - A E ' }  + f j  (A + ~r • 1d)k + iT(A + f  . i£ J'J'j

Y Y $d = $0(^ ^  + t  • E + AA).

Thus only using the p rop erties  of J2 and Qq we have been able to w rite the
su p er-g loba l interaction  in the Gell-M ann N ishijim a multiplet notation.
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1. INTRODUCTION

Pom eranchuk has con jectu red  that the c r o s s -s e c t io n s  fo r  ch a rg e -e x 
change p r o c e s s e s  vanish asym ptotica lly  as the energy tends to infinity. (By 
"ch a rg e "  it is  meant any in ternal quantum num ber, like e le c tr ic  charge, 
hypercharge, . . . ) .  It has been stated by severa l people [ l ]  that this con 
je c tu re  im p lies  equalities am ong the total c r o s s -s e c t io n s  whenever any sym 
m etry  schem e is  invoked fo r  the strong in teractions. But to our knowledge 
no exp licit gen era l p ro o f o f this statem ent has been given so  far. We want 
to give th is p ro o f fo r  any com pact L ie g rou p * . We a lso  prove, under certain 
assum ptions, that the equality o f the total c ro s s -s e c t io n s  im p lies  that s _{ 
tim es the ch arge-exch an ge forw ard  scattering  absorptive am plitudes tend to 
ze ro  as s -► oo.

The Pom eranchuk con jectu re  is  usually stated in the follow ing way:

CTch. ex. (s ) ~ °  a s  s  ~  ( !)

F o r  our purpose, how ever, we have to sharpen this either by assum ing for 
the absorptive am plitudes in the forw ard  d irection  that

A ch. ex.(s, 0) = 0 (A ab> e l.(s, 0)) (s — cc) (2)

o r  by stating that

A ch. ex.(s ’ ° ) / s —’ 0 as s — oo . (3)

(A ab.el. stands fo r  the absolute e la stic  am plitudes, without charge exchange 
and without spin flip ). It is  w ell-know n that both behaviours (2) and (3) are 
p red icted  by som e dynam ical m odels [2 ].

We prove  f ir s t  that fo r  the tw o-body  p ro ce ss

A + B — A' + B ' (4)

w here A, A’ belong to the sam e irred u cib le  m ultiplet o f the sym m etry group 
G and lik ew ise  B, B’ to another one, either (2) o r  (3) im ply that

*  Actually this can be proved for any compact continuous group; examples can be given which show that 
for a discrete symmetry group this may not be true. On the other hand, it is essential for our purpose to assume 
that the symmetry is valid also for scattering in the forward direction.

2 6 5
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Qtot. ( A B) (S) Ä  CTtoL ( A' B') (s  —  oo) . (5)

Secondly, we prove  that, under certa in  hypotheses, (5) im p lies  (3).
Although we derive  these resu lts  by using only grou p -th eoretica l argu

m ents, we would like to rem ark  that if  one sticks to the Chew -Frautschi 
in terpretation  o f high energy phenomena, then the assum ption that there 
ex ists  a vacuum  pole sca la r  under G which dom inates reactions (4) leads 
im m ediately  to (1) and (5). C onversely , i f  one assum es (1), an underlying 
sym m etry  group and the existence o f dom inating Regge poles fo r  each r e 
action (4), then it fo llow s easily  that a ll these poles must be sca la r  and 
iden tica l.

Section 2 is  devoted to establishing som e n ecessa ry  m athem atical theo
re m s . F inally , in Section 3, we prove the above statem ents.

2. M ATHEM ATICS

Let G be a com pact L ie group, and let $ and be any two irredu cib le  
unitary finite representations o f G. Denote by R$ the representation space 
o f $ , and let d<$) be its  d im ensionality . Le.t us ca ll the "ph ysica l" basis 
B$ o f R$ the set o f n orm alized  v e cto rs  in R$ with definite quantum num bers 
associa ted  with G. (If som e weight v ecto r  is  degenerate, one can always add 
to the Cartan su b -a lgebra , which prov ides us with the firs t  0(0 = rank o f G) 
quantum num bers, further observab les  so as to have a com plete set o f co m 
muting m a tr ice s ). F inally  let A , A' be the highest weights o f $ , r e sp e c 
tive ly .

T h eorem  1. Let

be the d ire ct  orthogonal decom position  o f the K ronecker product $ ® into 
irred u c ib le  represen tations , w here and ®/l). ( f c ^ i s
the irred u c ib le  representation  with highest weight & + & ' ) .  Let |â >, | b^>£Rj> 
and | a^>, | b '€ r R $ ' .  I f ' j j (aa ') denotes the m inim al subspace containing 
| aa'^> = |  â >| a' and invariant under G, then | bb' J>has a non-vanishing 
pro j ection  on {a a ').

P ro o f: The irred u cib ility  o f ® im p lies  the existence o f som e Y G G  such
that

C learly  | cc'^> €E (a a 'l^ a n d  <^b| c^> f 0.
Let us suppose now that | bb ’ >̂ Then, a fo r t io r i, | bb'^> J_ V  (c c ')
and hence

r

s = 1

(7)
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<^bb'| X $ 8 4 ,| cc^>  = 0 fo r  an  X €E G  (8)

i .  e.

b| X $ | Cy><Jb' | X $-| c'^> = 0 fo r  a ll X £ G .  (8.a)

Since <^b| c ^ f  0 and the representation  ® is  continuous, we in fer the ex 
is ten ce  o f a neighbourhood N o f the identity o f G such that

b| X $ | c^> f  0 fo r  a ll X ^ N .  (9)

F r o m (8 .a)and (9) it fo llow s

< jy | X $.| c ’)> =  0 fo r a H  X<GN

and th ere fo re ,
< b '| A $.|c’ >  = 0 (10)

fo r  a ll A*s belonging to the L ie a lgebra  o f G. This resu lt is  in c lea r  con 
trad iction  to the irred u c ib ility  o f . We conclude th ere fore  that |bb'^> cannot 
be orthogonal to (aa '), Q. E . D.
C oro lla ry  1. Let A s be the highest weight o f $ / s) and let | A^>, Jx'^>, j AA’)> 
be the v e c to rs  in  R $ ', having the quantum num bers specified  by
A , A ’, Ax( = A + A ’ ). Then

^ ( a a  ' ) ^ y ( X X ' )  (11)

To prove  (11) it su ffices  to note that A j is  sim ple a n d ^ ; (X X ') = R $ (i) .
Since T h eorem  1 im p lies  in particu lar that l). (aa') and (XX') cannot be
orthogonal, jJ  (aa') must contain (X X ')*  .
C o ro lla ry  2 . " A ll  the weight d iagram s Ws o f $ / s) (s = 2, . . . ,  r) are contained
(as point sets) in W j . " C onsider ju st any weight v e c to r  M s Ws and take 
any state | aa'^> having as its  fir s t  f quantum num bers those given by M s . 
T h eorem  1 im p lie s  that |aa'^> has a non-vanishing p ro jection  on R$0) and 
hence one con clu des that M s must belong to W j. (The m ultiplicity, however, 
o f  M s as an elem ent o f Ws has not to be n e ce ssa r ily  le s s e r  than o r  equal to 
its  m ultip licity  as a weight v e c to r  o f $^1)).

T h eorem  2. Let T be an op era tor in R$® #•, given by a m atrix (Tij ) in 
the ten sor ia l basis  B$ ® B $ ', and suppose that T com m utes with a ll X $ 8 $'. 
Then

T,j = 0 ( i  = j)  (12)

im p lies  that

T a = Tjj . (13)

^ Note that the projector associated with X.*) belongs to the group algebra L 2 (G).
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P ro o f: A ssocia ted  with the decom position  (6) one can ch oose  an orthonorm al 
b a sis  B in R $$$ ', con sistin g  o f elem ents

| « « >  ; ( s = l . . . r ;  i = l . . . i /  ; j = l . . . d ( # (W )) (14)

such that

K s )> « s R * f > ; <15>

w here U  ̂ j is  the m atrix  intertwining $ /s) and $ k(s). The invariance o f T 
under G im p lies

/ a (s) |T ja f] >  = T .'s) 6 6 (16)'  ij k { '  ik st ] {

w here are  the so -ca lle d  invariant T -m a tr ix  elem ents. Let V s denote 
the subset o f B$ ® B $ ', w hose elem ents are eigen vectors  o f H =  (H1( . . . ,  H{ ) 
with eigenvalue A s . ( H l j . . H t i s a  norm alized  basis  o f the Cartan subalgebra 
o f  G). F inally, let us o rd e r  the representations appearing in (6) in such a wa 
that

>  4 ,  I” )

and let P^8) denote the orthogonal p cr je c to r  onto R$;(s) .
Take now |v2 >̂ e V 2 . F rom  T heorem  1 and C oro lla ry  2 we know that

P (1) |v2 >  i  0. (18)

On the other hand

|v2> =  P (1) |v2>  + P (2) |v2 > ,  ( P (S) -  Y l P (iS)) <19>

and hence,

T | v2>  = T P (1) |v2>  + T P (2) |v2>  . (20)

But since v 1 -  1, it fo llow s from  (16) that

T P (1) |v2>  = T < f P (1) |v2> . (21)

By com paring  (12), (18), (19), (20) and (21) one gets

T P  (2 )|v2>  = T ^  P (2) |v2> . (22)

A s (22) is  true fo r  any |v2^ > e V 2, and [ T , X $ 8 $ -]= 0. f o r a l l X S G ,  
we can conclude that

T P (2) |v )>= T 1(11)P (2) |v >  (23)

fo r  any ]v)> belonging to the linear c lo su re  o f the set { X$® 4 ,Jv2)>} ,  ( X ^ G ,
| v 2 >̂ €  V2 ), and hence
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T P (2) = T ^  P (2 ), (24)

l .  e .

T L2 ) = T n 6ik* (25>

Suppose now, in general, that we have proved  that

Tile0  = T i i ) ö ik< (t=  1, 2, . . . s -  1). (26)

Then, take any |vs)> e  Vs . Once again P^1) |vs)> j  0 and by using (26) 
we get

k >  = P (1) |vs>  + . . . .  + P (S) |vs> ,  (27)

T | v s>  = T P (1) | vs >  + . . .  + T P (S) lvs >

= T ^  ( P (1) | vs>  + . . .  + P (S_1) |vs>  ) + T P (s) |v> (28)

and the sam e argum ent used above a llow s us to conclude that

T P (s) = T ^ ) P (S) (29)

i . e .

Tf.} = T.^ 6 (30)ik 11 ik

We have th ere fore  proved  by induction that

T  = T (n) I - (31)

T h eorem  3. With the sam e notation as in T heorem  2, we cla im  that the 
equalities (13) im ply  (12), provided that a ll v s = 1.

P ro o f: Take I v j ^ e V j .  Then, from  (16)

T k >  = T ^ l v , )  (32)

and th ere fore ,

< v J t  |Vl> =  T ™ .  (33)

Take now jv2̂ e V 2 ; from  (16), 20), (33) and v2 = i one gets

< v 2| t | v 2> =  T 1(11)< v 2| p (1) |v2>  + T 1(r < v 2|P(2 )|v2> . (34)

On the other hand

1 = <  v 2 l V 2 >  = <  V2 I p(1> IV 2 >  + < V2 i p ( 2 )  l V2 > '  <3 5 >
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A sim ple m anipulation o f (33), (34), (35) and T j v j ) ^  ^ v 2j t |v2 /> 
(see (13)) leads to

T ^ = T ^ .  (36)

By repeating this argum ent one proves  ,by induction that

T = T ^  I. (37)

One should note that T heorem  3 is  not, in general, the con verse  o f Theorem
2, sin ce  the assum ption is  m ade therein  that a ll appear only once in 
$ ® It is  known that this is  always the case  fo r  sim ply reducible groups 
like  A j = SU2. F or  B2, C2 and G2the above assum ption is  satisfied  provided 
that the degrees o f <j> and are reasonably low . The c la ss ica l groups
SUm(m)> 2) are not sim ply redu cib le  and it is  a well-know n fact that the r e 
presentation  ^ o f SU3 is  such that 8 ® 8 contains 8 tw ice.

N evertheless it is p oss ib le  to prove T heorem  3 without the assumption 
Vs = 1 provided  that som e new requ irem ents are made. These are essentially 
n ecessa ry  sin ce  one can see that whenever

T „  = t JJ’ ( i = l . . . v - s = 1 . . .  r) (38)

T Ü  = 0  ( i / k )

one has Tu = Tjj even though Ty m ay be d ifferent from  zero . H owever, if  
we assum e that there ex ist us v e cto rs  in  Vs ( s =z. . .  r) such that:

(i) they have non-vanishing pro jection s  on P<s> which are mutu
ally  orthogonal;

( i i)  fo r  each coup le  o f these v s v e c to rs  there ex ists  som e vecto r  in Vs 
the p ro jection  o f which on P R$®$' is  a linear com bination o f them with 
coe ffic ien ts  which are both different from  ze ro ; and

( i i i )  T is  a sym m etric  m atrix  in B$ ® B$-, 
then it can be proved  with just slightly d ifferent argum ents that (13) im plies 
(12).

3. PHYSICS

We want now to apply these m athem atical resu lts to the physical p rob 
lem s stated in the Introduction.

F ir s t  o f a ll it is  c le a r  that T heorem  2 m eans that

Tu - ; T<J - T {7  ; and ( i f  k)

a re  lin ear com binations o f T mn’ s (m i  n).
Secondly, T h eorem  3 im p lies , under the conditions stated therein, that 

each  Tmn ( m /  n) is  a linear com bination o f the d ifferen ces  T ;i - T jj, and 
s im ila r ly  that each  Ty| is  a linear com bination of T u' s  (the unitary in vari
ance o f the tra ce  is  involved here).
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Let us now identify  T jj ( i / j )  with the charge-exchange absorptive am pli
tudes in the forw ard  d irection  A ch_ ex- (s, o) fo r  the tw o-body reaction  (4)

A + B — A ’ + B'.

w here the p a rtic le s  A A ',  B E ' a re  m em bers o f irred u cib le  m ultiplets 4, 4 ’ 
o f an a rb itra ry  sym m etry  group G. S im ilarly  Ti; w ill be the absolute elastic 
absorptive am plitude A  ab. ei.(s, o) fo r  the correspon d in g  p ro ce sse s

A + B — A + B.

T h ere fo re  i f  re la tion s (2) are satisfied  the above statem ents prove that

A  ab. 0) A’ab el (s. 0) .  A"ab> e] (s, 0 ) .
-----------------------------------------------=  0 ( m a x ----------------------- ) fo r  (s —- oo) (39)

S  S V s  /

and hence, by applying the op tica l theorem ,

CTtot. (AB) (S )  - ^tot. (A* B') (S ) = 0  ("m a X -CTtot.(A" B ") f° r  (S ~  °°)- (4 0 )

CTtot. (AB) (S) ~ CTtot. (A ’ B ') (B) f o r  (S  ^  « )  (5)

It can be. proved  in a s im ila r  way that (3) im p lies  (5). An analogous applica
tion  o f T h eorem  3 shows that (5) im p lies  (3) w henever the product of the two 
m ultip lets $ and is  sim ply redu cib le , i . e .  a ll vs = 1. In the case  8  ̂ ® 8 o f 
SU3 one can ch eck  that the requ irem en ts a) and b) appearing in the com m ents 
fo llow ing  T h eorem  3 are  fu lfilled . F o r  instance, i f  we con sid er baryon- 
m eson  scatterin g  in  the octect m odel, the physica l v ecto r  j A 7r+/ >has no co m 
ponent on but it has a non-vanishing p ro jection  on 8S. The situation is  
re v e rse d  fo r  | L°rr+y. F inally, ] s ° K t )  has non-vanishing pro jection s on both 
j iA and 8 S. On the other hand, requ irem ent (c) is  autom atically fu lfilled  
w henever tim e r e v e r s a l invariance is  assum ed. T h ere fore  (5) im p lies  (3) in 
th is c a s e .

This w ork  has been perform ed  during our stay in T rieste  as participants 
in  the IAEA Sem inar on T h eoretica l P h ysics . It is  a pleasure fo r  us to thank 
P r o fe s s o r  Salam and the IAEA fo r  their hospitality. One o f us ( A .G . ) thanks 
the IAEA fo r  its  financia l support. ( A . M .) and ( H. R . ) are  indebted to CERN 
fo r  the sam e reason .
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MATHEMATICAL THEORY 
OF POTENTIAL SCATTERING

T . REGGE

IS T IT U T O  DI*FISICA DELL' UNIVERSITA DI TORINO, TO RIN O , IT A L Y

INTRODUCTION

B efore  we go into a detailed d iscu ssion  o f the potential scattering we 
would like to spend a few  w ords on the reason  potential scattering is 
in teresting . We think that one o f the main reasons o f su ccess  of the potential 
m odel is  that we can d iscu ss  it quite r ig orou s ly  and that at the same time 
it g ives  a fa ir ly  intuitive p icture o f the scattering p ro ce ss  and it provides 
in a way the language fo r  a fu lly re la tiv istic  theory. We do not think that 
the potential m odel has been particu larly  satisfactory  in explaining quanti
tatively  the known experim ental data, fo r  instance the nucleon-nucleon sca t
tering ; yet we have good reason s to believe  that at low  energy any field  theo
ry  w ill u ltim ately y ield  som e sort o f spin-dependent potential, containing 
spin orb it coupling and exchange term s. How this can be done and how far 
one has gone in this d irection  has nothing to do with the subject of these 
le ctu res  which are m ere ly  con cern ed  with the d iscu ssion  of the solutions of 
the Schroedinger equation fo r  a given c la ss  of potentials. That is,w e assum e 
from  the v ery  beginning that a potential ex ists although we do not know it 
o r  we know only broad features like the range and its  analytic properties as 
function o f the d istance. F o r  sim p licity  we do not deal with spin o r  exchange 
term s although they can be taken ca re  o f with little  m odifications. We just 
want to find those features of potential scattering which are to a large extent 
independent o f the particu lar se lection  o f the potential.

In so doing we shall need a large  m athem atical apparatus in order to 
derive  those p rop erties  o f the scattering amplitude which have been suggested 
by the genera l fie ld  theory , like d isp ersion  re la tion s. Unfortunately although 
it  has not been p oss ib le  to elim inate en tirely  from  these lectures this appa
ratus, we have tried  how ever to use as much as possib le  standard mathe
m atica l tr ick s  and we have endeavoured to co v e r  them with the largest amount 
o f p roo fs . T here are d ifferent m athem atical approaches to the theory of 
potential scattering. H istorica lly  the firs t  approach was developed by 
H eisenberg  in his f ir s t  attem pts to crea te  a theory  o f the S -m atrix. But the 
m ost r ig orou s  and extensive resu lts  on this particu lar subject w ere actually 
found by JOST and BARGMANN [1 ] . The starting point o f their approach 
is  the partia l wave expansion o f the wave function and of the scattering am pli
tude. A ctually they did not derive  any interesting feature-of the fu ll am pli
tude, but rather o f  the partia l phase shifts only. The amount o f work a fter
w ards done on the p rop erties  o f phase shifts as function o f the energy has 
been con siderable , and it has c la r ified  the ro le  of the potential in determ ining 
them .

This was not how ever the end o f the story . When the first dispersion  
rela tion s fo r  fixed  transm itted mom entum w ere d iscovered  in fie ld  theory,

2 7 5
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it was a natural question to ask whether these properties  had a counterpart 
in potential scattering. This was found to be true by KHURI [2 ]. The paper 
o f Khuri avoids en tirely  the use of partial waves and uses F redholm 's theory 
on the G reen in tegra l fo rm  o f the Schroedinger equation written in fu ll three- 
d im ensional fo rm a lism . A lternative and s im p ler proofs  then appeared in 
the literature [3 ,4 ,6 ] ,  The reason  the partial wave expansion is  totally 
unsuitable fo r  this purpose is  that it fa ils  to converge in the interesting region 
where we want to prove analyticity in the energy. The advent of the Mandelstam 
con jectu re  o f the double d ispersion  relation  ra ised  the question as to whether 
these rela tion s w ere true fo r  potential scattering. Mandelstam representation 
can be proved  today fo r  a sp ec ia l c la ss  o f potentials (super-position  of Yukawa 
potentials).

A p roo f o f  GOLDBERGER et a l . [3 ] u ses the pertubative expansion o f the 
scatterin g  amplitude as w ritten in mom entum  space (as derived from  the 
L ippm an -Schwinger equation). They prove  that each term  of the expansion 
sa tis fies  the M andelstam  representation , and they also succeeded in going 
around the question o f uniform  con vergence . Incidentally, an incom plete 
p roo f, without uniform  con vergence , was given firs t by B ow cock and Martin. 
A paper by KLEIN a lso deals w iththis su b je ct[4], The partial wave expansion 
how ever can be used su ccess fu lly  in providing analytic properties in the m o
mentum tran sfer  fo r  fixed  energy. The usual fo rm  of it is  apparently un
suitable fo r  the job , but fortunately about fifty years ago WATSON [5] found 
a m ethod o f transform ing it into an in tegra l which is  a highly flexib le tool 
in these kinds o f p rob lem . With som e ca re  the W atson in tegral can be used 
to prove a lm ost a ll o f  the analytic p rop erties  o f the scattering amplitude, 
including those o f Khuri’ s paper. It is  fo r  this reason  that we decided to 
re st the whole theory  on the partia l wave expansion in the Watson form  b e
cause we fe e l that in this way the whole structure o f the lectures w ill be 
m ore  hom ogeneous.

1. THE FORMALISM OF POTENTIAL SCATTERING. ELEMENTARY
THEORY

The starting point o f the theory is  the Schroedinger equation:

i 4 , ( r ) + E ,i ( r )  = V i ( r ) .  (1.1)

In this equation r  is  the position  v ecto r  o f the scattered particle , r  its 
length, r  has com ponents x, y, z . We use natural units h = c = 1 and 2M = 1, 
w here M is  the m ass o f the scattered partic le . The scattering of two parti
c le s  o f  d ifferent m ass m x, m 2 can be treated by the sam e equation where 
M is  now the reduced  m ass m 1m 2 /  (m i + m 2) o f  the system . In our units 
the energy has the d im ension o f an a r e a '1. The lo ca l potential V(r) depends 
on r  only.

V (r) is  supposed to be a short range potential; that is, we suppose it 
to  d ecrea se  exponentially. T ru ly  this is  a rather restricted  hypothesis; but 
i f  we have in mind a com parison  with the fie ld  th eoretica l resu lts ,a ll in 
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terestin g  potentials satisfy  this cr ite r ion  apart from  the Coulomb potential. 
We shall not exam ine here C oulom b-like potentials because there is  no ex 
tensive and deep w ork  done on this subject. Under these conditions [7] we 
may define the (tota l) scattering amplitude f(E ,0 ) once we know the solution 
o f eq. (1. 1) with the follow ing asym ptotic behaviour ( r — <»):

*  ~  e ik-r + f ( E , f l ) ^ - .  (1.2)

T his wave function rep resen ts  a th ree-d im en sion a l scattering process_of 
a plane wave against a fixed sca tterer . The plane wave is  given by e11* 
w here k  is  the ingoing m om entum . We have (F )2= E . The second con tr i
bution com es  from  the scattered  waves and depends of cou rse  on the poten
tia l. The angle 0 is  the angle between k and the d irection  in which we take 
the asym ptotic lim it r  — oo. In other words, we put 7  = r  n* into ( F )  and 
we let r  -*<» while i f  is  a fixed  unit v e cto r . Then It- n" = k cos  0. dQ |f(E,0)j2 
is  then the probability  o f finding the particle  scattered in the solid  angle 
d  with the outgoing mom entum  k = k n .

T here is  no potential of the c la ss  con sidered  by us fo r  which eq. (1.1) 
is  exp licitly  solvable . F or  any p ra ctica l purpose o f num erical evaluation one 
so lv es  instead (1.1) with the method of the separation of variables due to 
D ’ A lem bert. One tr ie s  to find the solution of (1.1) o f the form

* =  ^ r -  Q ( 0> $)■ ( 1 3 )

It is  w ell known then that Q has to be a sph erica l harm onic,

Q ( M )  = Y™ ( 0 ,4 ) ,  (1.4)

and that <j> sa tis fies  the ord inary  d ifferen tia l equation

VI + E<ftt 0 e ,  v<j>e = 0. (1 .5)
r

(1.5) depends on t only and not on m . 0£ must a lso  satisfy  the boundary con 
dition o f vanishing at the orig in . M ore precise ly ,th e  analysis of (1.5) a c 
cord in g  to the Fuchsian c la ss ifica tion  o f singu larities shows that any solution 
o f (1.5) behaves when r  is  sm all like

<£{ fa a r l +1 + ß r "1 (1 .6)

under som e re s tr ic t iv e  hypothesis on the potential to be examined c lose ly
la ter . If we want to avoid singu larities at r  = 0, we are fo rced  to choose ß = 0.
In th is ca se  the C-th partia l wave function vanishes rapidly fo r  sm all r. 
P hysica lly  we m ay in terpret this fact as due to the repu lsive centrifugal 
b a rr ie r  f(C + l ) / r 2 which b ecom es v ery  large when the orb ita l momentum 
£ is  a lso  la rge . This b a rr ie r  keeps the p article  from  approaching the origin.
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T his boundary condition  defines each partia l wave apart from  a m ultiplicative 
fa cto r . Take now r  la rge . We have good reason s now to suppose that both 
V (r) and ?(C + l ) / r 2 can be neglected in com parison  with E so that (1.5) be
com es

+ E (j>e = 0. (1.7)

This equation is  tr iv ia lly  solved  by oscilla tin g  exponentials ( E > 0) and the 
correspon d in g  asym ptotic behaviour o f <j>i w ill-be o f the form

~  C j sin [k r  + 6 £ (k) ]. (1. 8)

We have introduced on purpose the term  ? 7r/2 in this asym ptotic behaviour. 
Indeed,when V = 0,eq. (1.5) can be solved  exactly  in term s o f B esse l func
tions o f sem i-in teg er  ord er  and the asym ptotic behaviour at infinity ex 
p lic itly  evaluated. This behaviour corresp on d s to having 6( (k) = 0. The 
phase shift 6 j(k) th ere fore  d e scr ib e s  a cum ulative effect of the potential
on the wave function in the whole in terval 0 ..............« .  A large part Of these
lectu res  w ill be devoted to the investigation of the properties of 6 j(k). The 
im portance o f is  evident from  the w ell-know n R ayle igh -Faxen form ula:

oo

f (E , 0) = ^  Y ,  ( e 2i5' (k!- 1)(2£ + 1) Pf (c o s  0). (1.9)
c=o

We shall r e fe r  to this fundamental form ula as the expansion of the scattering 
am plitude in partia l waves o r  m ore con cise ly  as the RF expansion. A full 
account o f (1.9) is  contained in any elem entary textbook on quantum m e
chanics and we shall not go into this m atter further.

In (1.9) the functions P$ (co s  0) are Legendre polynom ials which form  
an orthogonal set n orm alized  as fo llow s:

l
J p c (x) Pm (x )  = 6mC.
-1

The total c r o s s -s e c t io n  is  given by

oo

a ( E )  = C dQ  |f (E, 0 ) ]2 = i ?  Y ,  (21 + 1> s i n \ -
^ 5 = 0

2. THE S WAVE

The S wave scattering is  the firs t  that has been extensively d iscussed, 
and this is  fo r  the sim ple reason  that the m athem atics o f it is  considerably 
s im p ler  than that o f the higher w aves. A num ber of potentials have been
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produced which are exp licitly  solvable fo r  the S wave and which give quite 
a num ber o f c lu es  concern ing the general dependence of <5 on the energy E. 
One such potential is  o f cou rse  the square w ell potential defined as

V (r) = A if  r  < R,

V (r) = 0 if  r  > R; we put k = VE - A.

It is  s im ple e x e rc ise  to find the corresponding  phase shift:

co s  k,R + (ik /k ,) sin k,R
2 i o ( k )  _  . .  = - 2 i k R  1 1 1 ( 2  in

co s  kxR - (ik /k j) sin kjR

Some features o f this form ula are the follow ing:
(1) the form ula is  a lso  valid  when E is  not positive. S(k) is  the ratio 

o f two holom orphic functions of k and is  th ere fore  m erom orph ic.
(2) S(-k) = S"1 (k); that i s , 5 is  an odd function of k. It is  m ore convenient 

to study S(k) instead o f <5 because 6 has logarithm ic singularities at every 
pole o r  zero  o f S(k).

(3) [ S(k*)]''' = S '1(k). This im p lies  that 6 is  rea l when k is  rea l. We 
re fe r  to this p roperty  as unitarity.

(4) lim  S(k) = 1  o r  lim  6 = 0  when k -»  oo . How do we understand this 
resu lt?  If k (or E) is  v e ry  large,the speed o f the incom ing particle , which 
in our units is  given by 2k, a lso  in cre a se s . The tim e of transit o f the parti
c le  inside the potential w ell is  o f the ord er  o f R /k . Presum ably the in ter
action  is  proportion a l to the transit tim e and the phase shift w ill be also o f 
the ord er  of magnitude o f R /k  o r  rather o f the d im ensionless param eter 
A R /k . Indeed,for large k we have from  (2.1)

AR = - • J  V(r) d r . (2.2)2k

This resu lt is  naturally fa lse  in the re la tiv istic  region,and it is  already d if
ferent fo r  the D irac o r  K lein -G ordon  equation. The lim it is  much m ore com 
plicated  i f  we m ove to infin ity along any d irection  o f the com plex k plane.
It m ust be pointfed out that although k j is  a two valued function of k it does 
not m atter which value we use in (2.1). If A > 0, the potential is  repulsive 
and pushes out the wave function. We expect 6 to be negative in agreement 
with the asym ptotic behaviour (2.2).

Take now eq. (1.5) when E is  negative (and 0 = 0):

- V <f> = 0. (2.3)

This equation does not d escr ib e  any scattering state and it will have solutions 
which are bounded at infinity and at the orig in  only fo r  specia l values of E. 
Putting E = - b 2 w here b is  rea l,w e have fo r  large r
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<j> ~  ju(b) e~br + v (b) e br.

If b is  not restricted , we shall have an exploding exponential term  at large 
d istances. If how ever fo r  a particu lar value of b we have y(b) = 0,the solution 
b ecom es square integrable and represen ts  a bound state of the system . Great 
p ro g re ss  in the theory  o f bound states was achieved when it becam e clear 
that bound states corresp on d  to poles o f S(k); i . e .  if a bound state of binding 
energy - B 2 o ccu rs ,th ere  is  a pole o f S(k) in k = iB . Unfortunately it is  not 
in genera l true that a ll poles  o f S(k) corresp on d  to bound states. This makes 
it d ifficu lt to deduce the bound states from  the analytic continuation of S(k),
o r  at least it made it d ifficu lt before  the advent of the m odern ideas of d is 
p ers ion  theory . B efore going into a detailed d iscussion  of this connection,we 
point out that our statement can be verified  d irectly  on the explicit form ula 
which we have just given fo r  the square w ell potential. We leave this as an 
e x e rc is e  fo r  the rea d er. Other exam ples o f soluble potential can be found 
in [1 ] . Jost defines a particu lar solution o f eq. (2.3) with the boundary con 
dition  (the Jost solution)

f"(k , r) + E f(k , r) - V f(k , r) = 0,

f  (k, r) ~  e '11<r, r  oo. (2.4)

This solution w ill not satisfy  in general the boundary conditions in r  = 0; 
that is ,f(k , 0) j  0. Let us define the Jost function as f(k) = f(k, 0). If f(k) = 0, 
the Jost solution is  regu lar in r  = 0. B esides f(k, r ) ,f ( -k , r) a lso is  a solution 
o f (2 .4 );and sin ce  the W ronskian o f these two functions does not depend on r 
and equals -2 ik ,they  fo rm  a pair o f independent solutions of (2.4). Take now 
the "re g u la r "  solution 0 (k, r) defined by the boundary condition in r  = 0:

<j> (k, 0) = 0; <j>' (k, 0) = 1. (2.5)

$ is  not lin early  independent o f f(k, r) and f(-k , r) so that we have with som e 
coe ffic ien ts  C, D

<j> (k, r) = C f(k , r) + D f ( -k , r).

Now W (<j>, f) = 0’ f  -  f<j> is  independent o f r  and we calcu late it fo r  r = 0;

W (*. f) = f  (k, 0) f(k, 0) - <j> (k, 0) f  (k, 0) = f(k).

On the other hand,

W (*, f) = C W [ f(k, r ), f(k, r) ] + D W [ f(-k , r ), f(k, r) ]

=  D W [ f( -k , r ), f (k ,r ) ]  = 2ikD = f(k),



MATHEMATICAL THEORY OF POTENTIAL SCATTERING 281

so that D = f(k )/2 ik . S im ilarly  C = - f ( -k ) /2 ik . It follow s that

* ( k ,r )  = [ f(k) f  ( -k ,r )  - f  (-k ) f  (k ,r ) ] /2 ik =  * ( - k , r ) .  (2.6)

The asym ptotic behaviour o f <t> is  then

<j>(k, r) ~  [ e ^  f(k) - e '* 1 f(-k ) ] /2 ik .

But from  the definition  o f phase shift we have

<j> ~  con st. sin(kr + 6) = const. (e lkr e l5 - e_il<r e"10).

By com parison  we get

e 2i6(k) = f (k ) /f ( -k ) .  (2.7)

If V = 0,then f(k, r) = e _ikl, <f> (k, r) = (1 /k) sin kr, f(k) = 1. If V is  the already 
defined square w ell potential, we have

f(k) = e ' lkR(c o s  kjR + i(k /k j) sin k jR ). (2.8)

In this ca se  f(k) turns out to be the entire function o f k. Bargmann has in 
vestigated the gen era l behaviour o f f (k) as a function of the com plex variable 
k, paying sp ec ia l attention to the ro le  o f the range of the potential. His start
ing point is  the in tegra l equation fo r  f(k, r ) :

oo

f(k, r) = e ' ikr + - i  J  V (x  sin k (x -r) f (k, x) dx.
r

We shall prove and d iscu ss  this equation in the next section.

3. THE ANALYTIC PROPERTIES OF JO ST’ S FUNCTION

In the last section  we exam ined the in tegra l equation fo r  f(k, r ):

oo

f(k, r) = e 'ikr + | J  V (x ) sin k (x -r ) f (k ,x )d x . (3. 1)

This equation can be proved as fo llow s : C learly  we have

f "  + k2f = Vf,
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dx2 sin k (x -r ) + k2 sin k (x -r) = 0. (3.2)

T h ere fo re ,

V f (k, x) sin k (x -r ) = f "  (k, r) sin k (x -r ) - f  (k, x ) -----  sin k (x-r)
dx2

= [ f' (k, x) sin k (x -r) - f  (k, x) sin k (x -r) ].

If we use the above fo rm  o f the integrand in (3 .1),the integration can be c a r 
ried  out exp licitly  and the resu lt is

I V (x) sin k (x -r ) f  (k, x) dX

oo

■ I dx [ f  (k, x) sin k (x -r)

-f(k , x) —  sin k (x -r ) ] d x  = k [f(k , r ) - e _U(r

QED.

We regard  (3.1) as the proper definition o f the Jost solution because it im 
p lies  both the d ifferen tia l equation and the appropriate boundary conditions. 
Putting f(k, r) eikr = g(k, r), we find

so

g(k, r) = 1 + ^  V (x)

(x-r)

2l g(k, r) dx . (3.3)

A form a l solution o f (3.3) is  given by the perturbative expansion:

g(k, r) = ^  r ) ; So(k' r ) = 1> (3 - 4)
n »

where

g n+1(k, r) = ^ J  -1" 6 2. f \ g n (k, x) V (x) dx. (3.5)
r

This expansion defines a solution o f (3.3) only when it converges. In order 
to decide whether it rea lly  does so we need som e prelim inary bound on the 
kernel o f (3.3). T here is  no rea l com plication  and much to be gained in sup
posing k com plex . We put Im k = b. The p roo f and a lso  the result are quite 
d ifferent fo r  the ca se s  b > 0  and b < 0 . Let us firs t  suppose b < 0 , but k /O .W e  
have the bound (rem em ber that x > r):
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l _ e -2ik (x-r) e  2b (x-r) I 1
--------  <2ik I

(3.6)+
2 ik

CO

l g n+l ( k ' r ) l <  j T T j  I  I V ( X ) I | g n ( k ' X ) l d X ’

A second  iteration  y ie ld s :

CO «

|g2(k' l i p  I  | V ( x ) | dxM (x) = - jY|2- j*

co

This suggests that we have the follow ing inequality fo r  the general term :

We prove it with the induction m ethod; that is ,it  is  supposed to be true for 
gn(k, r) and we deduce the resu lt fo r  gn+1(k, r ). We have

What is  the outcom e o f  (3 .9 )?  We have proved at least the follow ing resu lts :
(1) A solution  ex ists  fo r  b <  0, k /  0 i f  f  | V(x)| dx < oo, because the per- 

turbative expansion con verges .
(2) Each term  o f the expansion is  analytic in k as long as the c o r r e 

sponding in tegra l con v erg es ; this is  true by the above p roo f in b < 0, k f  0. 
The sum  is  th ere fore  a lso  analytic because we have uniform  convergence.

(3.7)

(3.8)
QED.

By sum m ing up a ll these inequalities we find

MIL)

g  -  l| <  e lk| - 1 . (3.9)
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(3) We have the lim it g(k, r) 1 when k —■ oo in any d irection  in the 
low er half plane o f k and along the rea l axis.

(4) Since c le a r ly  g(k, 0) = f(k), points (1), (2), (3) a lso  hold fo r  the Jost 
function i f  M(0) < °°.

A d ifferent condition  can be obtained i f  we rep lace  (3. 6) by

x-r
I l _ e -2 ik (x -r )  I ' I f* I

= \ e '21*"1 dr? < x - r < x. (3. 10)2ik

T here is  o f cou rse  no d ifficu lty  in repeating the proof with the new bound 
and we find in lieu  o f (3. 9)

GO

|g - l| < eN{r) - 1; N(r) = J  x| V(x)|dx. (3.11)
r

This last evaluation im p lies  a slightly m ore stringent condition on V(r) for  
large  r , but it includes k = 0 and it re laxes the condition on V(r) fo r  sm all
r .  To this purpose we notice that fo r  a ll short-ranged potentials both M(r)
and N(r) ex ist but M(0) d iverges fo r  the Yukawa potential.

We turn now to the case  b >0. Here we cannot use (3. 6) or (3. 10) but 
rather

| [ l - e " 2U<(x' r) ] /2 ik  | < e 2b<x' r) /|k| . (3.12)

We have correspon d in gly

oo

I S i(kJ r ) | < j j" e '2br p (r); P (r) = j  | V (x  ) | e 2bxdx.

By induction we can sim ilar ly  check that

S.<k-r>l < pM  r F T e’!b'- ,313)

This im p lies  again analyticity in k if  P (r) < » .  (M converges if  P con v erg es .) 
This is  by no m eans tr iv ia lly  satisfied ,as we had before fo r  M and N. If 
V (r) d e cre a se s  exponentially, we can always choose b large enough to have 
P diverging. If V (r) ~  e 'mr/r , we find b < m /2 . If V is  a Gaussian potential 
o r  a square w ell,then we have unrestricted  convergence. But the interesting 
potentials are  usually superposition  of Yukawa potentials,and therefore we 
expect f(k) to have singu larities in the upper half-plane. With a slight m odi
fica tion  o f the p roo f the orig in  can be included in the analyticity domain.
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Concluding: f(k) is  analytic in k in the half-plane b < m /2 . T herefore  S(k) = 
f (k ) /f ( -k )  is  m erom orph ic in the strip  | b | < m /2 . This is  BARGMANTNf’ s 
resu lt [1 ] . In the above Bargm ann’ s strip  S(k) can have poles only when 
f( -k ) van ishes. We shall d iscu ss  the sign ificance of the poles o f S(k) in the 
next section . H ere we ju st wish to give som e kind o f p ictoria l view of the 
analyticity o f f(k ). A s we said ,f(k , r) is  that solution which behaves likee-ikr 
fo r  large  r . A s long as k is  rea l,th is  is  perfectly  sufficient to define f(k, r) 
from  a ph ysica l point o f v iew : if  k > 0 (< 0), f(k, r) represents a sink (source) 
in r  = 0 which absorbs (em its) a set o f stationary purely ingoing (outgoing) 
w aves. If b < 0  the waves are damped at infinity. f(-k , r) waves are exploding; 
there is  no way o f having f( -k , r) waves accidentally  m ixed with f(k, r ),b e - 
cause fo r  large r  they would violently  predom inate. A damped wave is  there
fo re  quite uniquely determ ined. This in turn corresp on d s to the full solva
b ility  o f the in tegra l equation. If instead we take b >  0,there is  apparently 
no safe way o f defining an exploding wave because we are entitled to add to it 
any damped wave without disturbing the behaviour at infinity. It is  possib le 
to get round part o f the d ifficu lty  by defining as a purely exploding wave f(k, r), 
b >  0 in such a way that f(k, r) - e _üu d ecrea ses  fa ster  than e 11“  . It is  quite 
poss ib le  to do so fo r  the potential w ell; in fact, there we have f(k, r) - e _ikr= 0 
iden tica lly  outside the potential. But in general this procedure w ill meet 
som e difficulty, because the potential ta il perturbs the exploding wave by 
roughly the amount e _mr e "ikr. If this part is  already la rg er  than the damped 
w ave,w e have little  chance o f going further. The condition |e"mr _Lkr | «  | e ikr| 
fo r  large  r  is  p re c is e ly  b < m /2 . This is  Bargm ann’ s condition. We went 
into som e detail o f this p ictor ia l view  o f the analyticity p roo f because with 
th is kind o f reason ing one often anticipates the final analyticity domain and 
paves the way to a r igorou s  p roo f.

4. POLOLOGY OF S(k)

We want now to d iscu ss  in detail the physical meaning of S(k). If V is  
a rea l function (we wish to point out that Bargm ann’ s p roof holds even if  
V is  not real), we have the follow ing h erm iticity  p roperties :

f(k, r )*  = f ( - k * ,r ) ,

f(k)* = f ( -k * ) ,  (4.1)

S (k*)* = S(k)"1.

These p rop erties  can be broadly  re fe rre d  to as unitarity. They follow  from  
the fact that f ( -k * ,  r )*  sa tis fies  exactly  the sam e in tegra l equation as f(k, r).

Suppose now f ( -k 0) = 0 within the Bargmann strip . F rom  (2. 6) we have
<j> (k0, r) = f (k 0) f ( -k 0, r ) /2 ik 0. f ( - k 0, r) is  th ere fore  regu lar in r  = 0. If k 0= ib,
b re a l > 0, f ( -k  , r) behaves like e br fo r  la rg er  r  and is  the wave function 
o f a bound state. T h ere fore  poles  o f S(k) occu rin g  on k = ib, b > 0 
corresp on d  to bound states.

The res tr ic tion  o f the Bargm ann strip  is  essen tia l; otherw ise a pole 
o f S(k) cou ld  a r ise  from  a singularity o f f(k) and not from  a zero o f f(-k ).



286 T. REGGE

T his was regarded  as a seriou s  objection  to the theory in the early  tim es,and 
there w ere quite a num ber o f attem pts toward the elim ination of these false 
p o le s . (Actually they d iscu ssed  the zeros  of S(k),but this is  just the same by 
S(k) S (-k) = 1.) What about the other poles not lying on ko = ib, b>  0? If there 
is  a pole in ko = h + ib , b >  0,we must have a pole in -ko = -h + ib  by unitarity. 
By the sam e d iscu ssion  used above both f(h - ib, r) and f( -h -ib , r) are square 
integrable solutions o f our d ifferentia l equation corresponding to different 
eigenvalues of the energy E = (h ± ib )2. They are orthogonal. This im plies

^ d r  f (h - ib, r) f (-h  -ib , r) = 0. (4. 2)
o

This is  c le a r ly  im p ossib le  because f ( -h -ib , r) is  the conjugate of f(h -ib , r) 
and the above in tegra l is  positive . T h e re fo re ,if b >  0,the only way out is  h = 0. 
This p roo f is  the usual quantum m echanical p roo f that a herm itian operator 
has rea l eigenvalues. The sam e p roo f breaks down if  b < 0 because then the 
wave function is  no lon ger square integrable. The b < 0  poles of S(k) occu r 
either on k = ib, b > 0 or in pa irs  of conjugate poles. There is no 
com m only  accepted  name fo r  the purely im aginary poles; either antibound 
states o r  v irtual states have been used, and we suggest the firs t one. Nu
m e r ica l investigation on solvable exam ples [4] shows that they actually occu r 
fo r  reasonable ch o ice s  o f potentials. Experim entally they have no outstanding 
identity like the boynd states;bu t, as we shall see, they can be seen as rather 
in d irect e ffe cts  on the low -energy c r o s s -s e c t io n . Indeed, suppose that an anti
bound state o ccu rs  with a sm all value of b. If k is  sm all,w e can expand f(-k ) 
in pow ers o f k -ib . We have

f(-k ) «  iC  (k -ib ).

C h ere  is  rea l because o f unitarity. It follow s

S(k) = e 2*6 = f (k ) /f ( -k )  *  - (k + ib ) /(k - ib ) . (4.3)

At low  en erg ies  the c r o s s -s e c t io n  is  alm ost entirely  due to S-w aves:

a (E) = 47t sin 2 6 /E .

In our approxim ation we have

<r(E) = 4?r/(E  + b2). (4 .4)

If b is  sm all,the c r o s s -s e c t io n  should be abnorm ally large at E = 0. This



MATHEMATICAL THEORY OF POTENTIAL SCATTERING 287

is  what we see in the singlet state o f the proton-neutron  system  where we 
know that there is  no bound state. Of cou rse , since b is  squared in (4.4), there 
is  no way o f te llin g  from  the c r o s s -s e c t io n  whether we have a bound o r  anti
bound state. The pa irs  of conjugate poles are named (in [9] there is  som e 
d isagreem ent with our convention) resonances. The reason is  that they are 
quite v is ib le  in the c r o s s -s e c t io n  if their b is  s m a ll Incidentally, we cannot 
have b = 0, because then a lso  f(k 0) would vanish and th erefore  also 0 (ko, r) 
and <£'{k0,0 )  = 1,and this is  contradictory. In ord er  to see how the c r o s s -  
section  behaves near a resonance we calcu late the phase shift fo r  an energy 
which is  v ery  c lo s e  to the location  o f the poles. If f(-k ) has a zero  ink=  h + ib , 
b< 0 , f(k) w ill have a ze ro  in k = h -ib . Taking into account unitarity, we see 
that 6 can be represented , when k is  c lo se  to h, by the form ula (E 0 =h2,
T = -4bh):

If we plot the phase shift as function o f E in the neighbourhood of E 0,w e find 
that it starts from  the value rj if  E q - E » T / 2  and it rapidly jum ps up to rj+ tt/2  
when E passes through the value E 0 . If rj = 0, 6 takes the value it/2  when 
E = E 0 ; this corresp on d s to a m axim um  o f the cross -se ction ,b eca u se  s in 2 6 
takes then the m axim um  value 1. The sam e behaviour is  evident from  (4. 6) 
and shows up as a sharp peak in the plot o f the c r o s s -s e c t io n . If o f cou rse  
b is  not so sm all,the peak broadens and lo se s  its  identity by mixing up with 
nearby peaks. Eq. (4 .6 ) is  a s im plified  version  o f the B re it -W igner one level 
form ula . C orrespondingly, the wave function fo r  an energy c lo se  to E 0 is  
v e ry  sm all outside the range o f the potential. This we see from  (2 .6 ). Indeed, 
i f  k * h,we know that both f(k) and f(-k ) are nearly  vanishing. As 0(k, r) inside 
the reg ion  o f in teraction  is  reasonably  la rge , i . e. <£(k, r) *  r, i f  we norm al
iz e  the solution from  the asym ptotic behaviour fo r  large r  by choosing a 
unit flux o f ingoing and outgoing particles, the amplitude inside the potential 
w ill in  turn becom e abnorm ally  la rge . (Incidentally we notice that <j>(k, r) is  
norm alized  in the o r ig in .) We may p icture the p ro ce ss  as fo llow s: the in 
com ing p a rtic les  spend a long tim e inside the potential w ell before com ing 
out. T heir in teraction  is  th ere fore  quite stron g  and this explains the o c 
cu rren ce  o f la rge  c r o s s -s e c t io n s . R esonances are often called  metastable 
states, and in sev era l ways they can be approxim ately considered  as states 
in the usual quantum m echan ica l sense, like bound states.

5, YUKAWIAN POTEN TIALS. THE RESTRICTED CASE OP S WAVES 

A potential w ill be named Yukawian if  it can be written in the form :

6 T) + arc tg — -g.
r /2

(4.5)

Suppose fo r  s im p licity  r) = 0. The c r o s s -s e c t io n  w ill be given by

(4 .6)

(5. 1)
m
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w here a (p) is  a suitable weight distribution . Yukawian potentials can be 
continued fo r  com plex  values o f r in the half-plane R e(r) > 0. This follow s 
from  the p rop erties  of L aplace tran sform s which are analytic in the half
plane o f con vergen ce . If a potential is  Yukawian,then the Jost function has 
rem arkable analyticity p rop erties . The standard theory o f d ifferential equa
tions te lls  us that,if the potential is  analytic in som e domain,then the wave 
function is  a lso  analytic in the same dom ain. The Jost solution can be con 
tinued then in the com plex  r  domain R e(r) > 0. Take now p as a new variable 
in eq. (1. 5) where r  = p e io and a is  a fixed angle, |cr|<7r /2 . We have (£ = 0)

2
dip 2io T-, , 2io io , , ,r^  + e Ei// = e V (p e  )4>. (5.2)

This equation looks form ally  the sam e as (1 .5) with a new distance p, a new 
wave function i//, a new energy E j = E e 2i0, anew (com plex) potential V j(p )
= V (p e l0) e 2i0. We are still able to define a new Jost solution fi(ki, p) such 
that f j  sa tis fies  (5. 2) and f-j ~  e'&iP fo r  large p. But f(k, p e 10) a lso satisfies 
(5. 2) with the sam e boundary conditions* so that

f 1 (k j, p) = f  (k, p e ‘°), kj = k e ‘° .

N ow ,fi is  analytic in k : in the Bargmann domain Im k 1 < m 1/2  where mi is  
related  to the range o f Vi ( p) ju st as m is  related to the range of V (r). If V is  
given by (5. l),th e  low er lim it in this in tegra l has already been chosen to 
y ield  m as the c o r r e c t  value fo r  the Bargmann proof; that is ,P (r ) o f eq. (3.13) 
con verges  i f  b < m /2 .  N ow ,if r  is  large,the main contribution to V(r) from  
(5. 1) is  o f the kind

V (r )~  ct(m) e mr/ r 2.

It fo llow s that

\y1 (p) | ~  cr (m) e - ^ e / p 2

C learly  the c o r r e c t  value fo r  m j is  m cos  a . f lf and th erefore  f is  analytic in 
Im k i < (m co s  cr)/2. This dom ain is  different from  the original Bargmann 
dom ain o f f(k, r ) . The union o f a ll these dom ains fo r  a ll | crj < 7r/2  is  the k 
plane with the cut k = ib , where m /2  < b < °o.

S(k) is  th ere fore  analytic in the k plane with two cuts k = ib, with M /2
< |b ! < oo. T here are o f cou rse  different and m ore interesting ways of de-

'r This result implies that the analytic continuation o f the asymptotic behaviour o f f coincides with the 
asymptotic behaviour o f  the analytic continuation o f f. This seems to be evident but it is not,and it has to be 
justified It can best be proved using the Phragmen+Lindeloef lemma See CARTWRIGHT [8].
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riv ing  the sam e resu lt. We did it here just because the result was very  cheap
ly  obtained. T here is  one ca se  o f Yukawian potential which can be solved 
exactly  [9 ] : the Bethe potential V (r) = -Vo e '1™

ip" + Eip + V0 e"mr ip = 0. (5 .3 )

This equation can be reduced to the standard B esse l equation by going to 
the variab le  | = 2(V01//2 /m )e ' mr/2 . We obtain fo r  the Jost function

f(k) = e‘ (il</m)ln(vo/m2) r ( l  + 2ik/rn)J2ii</m (2V()1/ 2 /m ). (5. 4)

This exam ple was con sidered  by Jost in his d iscu ssion  o f the fa lse  poles.
Our Jost function has nam ely an infinite set o f fa lse  poles in the points 
k = in m /2 , n in teger > 1 , these poles being what rem ains o f the cut along 
the im aginary  axis o f k. F o r  the pure Yukawa potential how ever there is  a 
logarithm ic singularity in k = im /2  and m ore  com plicated  ones farther on.
It is , how ever, m uch sim p ler  to study these singu larities with M artin ’ s method, 
which shows the v e ry  in teresting  fact that higher perturbation term s produce 
s in gu larities m oving farther and farther away with increasing  ord er  of the 
term .

M artin ’ s method w orks as fo llow s: he defines

g(k, r) = e * 1 f(k, r) 

and starts from  the follow ing Ansatz:
oo

g(k, r) = 1 + y  p(k • a) e ' a! da . (5.5)
m

Inserting g(k, r) into the Schroedinger equation,one finds fo r  it the differential 
equation,

g " (k • r) - 2 ikg '(k  . r) - V (r) g (k. r) = 0.

In this equation we rep lace  g(k, r) by its  in tegral representation  (5. 5), and 
we use fo r  V (r) an expansion o f the kind

V (r) = JC & i) e '^ d n . 
m

Of cou rse  this representation  fo r  V (r) is  just equivalent to (5. 1) provided
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H 7TC (m) = '  0(m )-

We get then the in tegra l equation,

ß (ß +2ik) p ( k -ß) -  C(ß)  + \ C(ß  - a) p (k • a) da. (5 .6)
m

The m ain point about eq. (5.6) is  that the value o f p(k,ß) in a given interval 
n m s/us(n+  l)m  can be calcu lated  from  the knowledge o f the values o f p(k-ß) 
when (i< n m . This p rov ides an in teresting method o f construction  of p(k- ß) 
sin ce  we know already that p(k- ß) = 0, ß ^ m  and p(k ß )  = C (ß )/ß (ß  +2ik) fo r  
m ^/n^2m . One can see the above situation a lso  by saying that fo r  values 
of ß ly ing in the in terval n m . . . (n + l)n  the (n + 1 ) m perturbation term  and 
the follow ing one vanish identically  so that the perturbation expansion always 
term inates. It is  c le a r  then that this a lso  m eans that the support of the n-th 
term s m oves away with in creasing  n. Martin has carefu lly  examined this 
expansion,and a detailed account can be found in the H ercegnovi lectures.

6 . THE HIGHER WAVES

A ll the resu lts  that we have so far derived fo r  S waves can be extended to 
higher w aves [9 ] . T here is  no sim ple method fo r  doing this like the one we 
have fo r  S w aves. The reason  is  that the Green in tegral functions, which 
are used in ord er  to define particu lar solutions o f the wave equation, contain 
B esse l functions in their kernels and these are clum sy to handle.

We intend to quote here the corresponding results, and we also give a 
list o f the m ost im portant functions used in the form alism  o f higher waves. 
The p roo f o f these resu lts  actually does not teach anything newer than what we 
already know fo r  S w aves. A fa ir ly  com plete review  o f this subject is  in 
[9 ] ,  The reason  we skip these lengthy m athem atical p roofs is  that for 
Yukawian potentials Martin has much s im p ler m ethods.

H ere fo llow s a list o f  the m ost im portant functions o f the theory:
(1) The Jost solution. It can be defined with an integral equation sim ilar 

to (3.1) (see App. I ) :

J  sin k (x  - r) [ V (x )  + ^  ] f { (k, x ) d x .  (6 . 1)

r

If we put V = 0, we have •

(6.2)



We have a lso  the equation (see App. I) 
t

co

f , (k, r) = fc° (k , r) - i |  J  s /T [H (tV1/2 (k ?) Hf(2)1/2 (kr)
r

- H t% 2 (k ?) h / ^ 2  (kr) ] V (5 ) f { (k, ?) d f . (6.3)

(2) The Jost fim ction is  defined as

f { (k) = lin j r ' f { (k, r ). (6.4)

If V = Q we have the fre e  Jost function,

f°(k) = 7r'1 / 2 e ' iC,r/2 T ( f + 1/2) (2 /k )C. (6.5)

The regu lar solution is  defined as

f  (k) f  (-k , r) - ( f  )(-k) f . (k, r)
j. n \ 1 * { *
$ 1  (k, r) =-
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n  v“ * 2 ik

<ße (k, r) = (-k , r ) ;  0 { (k, r) *>rJ+1 , r — 0. (6.6)

C om paring the asym ptotic behaviour o f this solution with the definition o f 
phase shift, we find the fo rm u la ,

f { (k)

fTTk)
S{ (k) = e2i6t = ei,rt m  ■ (6 . 7)

We quote here som e resu lts  concern ing the analyticity domain o f  these func
tions. A ll these analyticity p roo fs  run exactly  in the sam e way as fo r  S waves 
(see App. I I ) ; that is, we place upper bounds on the perturbative expansion 
o f f e (k, r), and we show that it con verges uniform ly in the Bargmann domain 
and that each  term  has the p rescr ib ed  analytic p rop erties :

(1) kc f{ (k, r) is  analytic in b < m /2 .  If the potential is  Yukawian the 
p oss ib le  singu larities lie  on the cut m /2  < b <  ° ° , with k = ib .

(2) The sam e resu lt holds fo r  k cf{ (k). F or  large k in the low er half
plane we have l im f t (k )/fjj(k ) = 1 .

(3) S { (k) is  analytic in the cut k plane: k = ib, m /2  < |b | <  °o. The d is 
cu ssion  o f the po les  o f S(k) is  exactly  the sam e as the one we gave fo r  P = 0.



292 T. REGGE

(4) The only strik ing d ifferen ce  between higher waves and the S wave 
rega rd s  the behaviour o f the phase shift at low  en erg ies . This property is 
linked with the so -ca lle d  scattering length approxim ation. It a sserts  the 
valid ity  o f the expansion,

This expansion w ill be a byproduct o f the com plete theory o f the properties 
o f S { (k) as a function o f both k and o f (com plex) f which w ill be worked out 
in the next section s . P hysica lly  (6. 8) has its orig in  in the existence o f a 
repu lsive  cen trifugal b a rr ie r  which pushes the wave function out of the region 
o f in teraction . A param eter which decides the ord er  o f magnitude of the 
phase shift is  the im pact param eter (distance o f c loses t c la ss ica l approach)
T = C/k. If k d e cre a se s  while ( is  kept constant,the wave function w ill scan 
the potential at in creasin g  d istances and the interaction  w ill becom e n eg li
g ib le  when t /k  »  1 /m .

(5) If we let £ in crea se  while we keep k constant, we provide another 
m echanism  which in crea ses  T and d ecrea ses  the phase shift. The phase 
shift can be estim ated fo r  large  5 with the follow ing argument: We know 
that i f  T  »  1 /m  the bulk o f the wave function lie s  alm ost totally outside the 
potential, and it is  a good guess that the wave function is  only slightly 
perturbed by the potential. We take now the exact form ula,

and we rep la ce  <j>i (k, r ) /  | f c (k) | by (k, r) /  | f° (k) | . This y ields the so - 
ca lled  Born approxim ation. The general re liab ility  o f the Born approximation 
has been repeatedly  questioned,and now it is  agreed that it g ives at most 
only the o rd er  o f magnitude o f the scattering  amplitude i f  blindly applied 
to low  w aves and it in crea ses  in a ccu ra cy  at high en erg ies. Anyway if 
T »  1/m  and k is  la rge ,w e  can confidently use it. To us it is  interesting 
ju st because it g ives  a re lia b le  estim ate o f the phase shift fo r  large 5,and 
we need it  in o rd e r  to d iscu ss  the con vergence  o f the R ayleigh-Faxen ex 
pansion outside the ph ysica l range o f c o s  6. This argument can be made 
som ehow  m ore  rigorou s,but it then becom es so dull that we p re fer not to 
interrupt our main flow  o f ideas with insipid m athem atics. Anyway the general 
theory  which we shall w ork  out in the next lectu res w ill bring new argu
m ents to support our con clu sion s. We would just like to mention that Carter 
in an unfortunately unpublished thesis has proved rigorou s equivalent results. 
(See [9], p. 333 o r  [3 ] . )  He states that fo r  i  — ■ <x> the bound holds:

k2J+1ctg 6 f (k) = a 0 + a ak2 + (6 . 8)

o

«I I < C| 6,| (6.9)

where C > 1 is  som e constant. This is  enough fo r  our purposes.
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7. LEVI SON’S THEOREMS

T here is  a c la s s  o f v e ry  elegant th eorem s which relate the number of 
bound states fo r  a given partia l wave to the total variation o f the phase shift 
in the in terval 0 < k < °° .

We know that fo r  a ll reasonable  potentials lim  S» (k) = 1 (k rea l). Atk-+ oo *
infinity we can alw ays ch oose

S{ ( 00 ) = 0.

Even within the Bargm ann str ip  6f (k) is  not analytic, because in general it 
has logarithm ic branch points w h erever S { (k) has poles o r  zeros . We define 
6 „(0) as the value we get by continuing (k) analytically along the rea l k axis 
fro m  k = + w. We know that, unless there is  a bound state at k = 0, which we 
exclude fo r  s im p lic ity  sin 6e (0) = 0 so that Sc (0) is  a m ultiple of jr. Levinson ’ s 
th eorem  then states that

6f (0) - 6 ,(00) = n f w, (7.1)

when n t is  the num ber o f bound states o f angular momentum t . The proof 
we p re fe r  here has been somewhat shortened (for a fu ll d iscussion  see [9], 
p. 332). Take the function

g « (k) = f a(k ) /f j(k ) . (7 .2)

(Incidentally g x (k) is  named Jost function in [9] and written f { (k ).) We know 
that in the low er half-p lane o f k we have lim  g { (k) = 1 .  By unitarity it is  
obvious that fo r  rea l k k_>"’

6t (k) = arg g t (k).

M oreover 6t (k) is  an odd function o f k. This se m ic ir c le  in b < 0 (b  = Im k) is
indented on the re a l axis o f k. This s e m ic ir c le  en closes  a ll zeros  o f g t (k)
which corresp on d  to bound states. We define arg g £(0 + e) = 6£(0) = nff, where 
n is  an in teger which we do not identify yet with the num ber o f bound states. 
We now m ove along the rea l axis o f k until we m eet the sem ic irc le , here by 
definition  arg  g t (k) = 0. On the whole se m ic ir c le  we a lso  have arg  g f (k) = 0. 
We m ove along the se m ic ir c le  until we a rr iv e  on the rea l negative axis. If 
we m ove now tow ard k = 0 - e, we have the relation  6f (-k) = -6 e (k). When we 
a rr iv e  at k = 0, we have Sj (0 - e) = -n r  and 6t (k) is  c lea r ly  discontinuous in 
k = 0. The discontinuity a r ise s  from  the fact that we have enclosed  the bound 
states in the se m ic ir c le  and we have gone c lock w ise  around the zeros  o f g j(k ). 
During the tr ip  arg  g ^ k ) d ecrea ses  by the amount 2 tt n t ,where n 8 is  the 
num ber o f ze ros  o f g f(k ) inside the contour. But 6 c (k) has just decreased  by 
6 j (0 + e) - 6t (0 - e) = njr - (-n7r) = 2mr. T h ere fore  n = n f. QED.
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In the other le ctu res  we have d iscu ssed  the scattering amplitude for  
in teger values o f 5. This is  easily  understood because we cannot associate 
any d irect ph ysica l meaning to unrestricted  values of 0; 5 cam e from  the 
expansion in  partia l waves, and in teger values o f f are  a natural consequence 
o f  the quantization o f angular momentum. M oreover, we apparently need to 
con sid er  6{ (k) when C is  in teger only in ord er  to know the scattering amplitude.

We want to oppose this general attitude and the reasons are the following:
(a) i  is  quantized because sph erica l harm onics are considered  on the 

sphere, that is  fo r  | c o s  6 1 < 1, where 0 is  the scattering angle. Truly one 
can make experim ents only when | co s  ö| < 1, however, the cross in g  p rop er
t ie s  im plied  by the re la tiv istic  M andelstam  representation  also mean that, 
fo r  instance, the p ion -nucleon  scattering is  d irectly  related to the nucleon- 
antinucleon annihilation into two p ions. In a way, therefore, the process, 
N + W - ’- f f + f f i s  sim ply the p ro ce ss  n + N — v + N view ed in a region  con 
sidered  unphysical b e fore . In other w ord s ,if we m easure the first p rocess  
we actually m easure the second fo r  | c o s  0 | > 1. Now the natural way of 
expanding a function o f a hyperbolic angle is  to use the set Pi(1-i/2 (cos 0) 
which is  the correspon d in g  harm onics fo r  a Lorentz invariant hyperboloid 
in an indefinite m etr ic . T herefore ,M an delstam ’s representation is  naturally 
a ssocia ted  with n on -in teger angular mom enta. The potential scattering r e 
tains part o f the fu ll in form ation  of the orig inal re la tiv istic  scattering,and 
there should be no su rp rise  if  unphysical angular mom enta turn up.

(b) Even without the previous argument the technique has been used 
fo r  y ea rs  in the d iscu ssion  o f d iffraction  phenomena; a typ ica l problem  in 
th is fie ld  was the theory  o f the rainbow o r  the theory o f propagation o f waves 
around the earth  [5 ] . It is  th ere fore  a highly su ccesfu l too l in a wide range 
o f p rob lem s.

The basic  idea  o f the technique a r ise s  from  a transform ation, due to 
Watson, o f the R a y le igh -Faxen form ula :

8. THE TECHNIQUES OF COMPLEX ANGULAR MOMENTA

f (E , 0) = 2lk  ^  (2C + l ) [ S f (k) - 1] P (c o s e ) . (8.1)
t=o

This transform ation  is  su ccess fu l only if  one su cceeds in proving the ex 
isten ce  o f an analytic function S(X, k) o f the com plex  variable X which takes 
the values S j(k ) o f (8.1) when X = C + 1 /2 . We use the variable X because 
in the follow ing it w ill have a m ore sym m etrica l ro le  than f and corresponds 
m ore  c lo s e ly  to the c la s s ica l angular momentum than f . In this hypothesis
(8.1) can be tran sform ed  into

( 8 . 2 )
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The path C o f integration en closes  a ll the positive zeros  o f cos^ X  but avoids 
the s in gu larities o f S(X, k). (See F ig. (1).) If we calcu late the integral (8.2) 
with the contour m ethod,w e find the expansion (8.1).

A x - p l a n e

Fig. 1
The path o f  integration for the Watson integral

Eq. (8.2) contains a ll the in form ation  o f eq. (8. 1) and it has additional 
features o f its  own. Indeed,in constructing it we use properties o f S(X, k) 
which depend rather c r it ica lly  on the potential. The path C o f integration 
can be deform ed  in accordan ce  with the analytic properties  o f S(X, k). The 
ensuing con vergence  domain o f (8.2) depends on P ^ -j^ a n d  this allow s us to 
extend the analytic p rop erties  beyond the Lehmann e llip se .

The n e ce ssa ry  steps which we have to ca rry  out in ord er to establish 
the valid ity  o f W atson ’ s transform ation  are the follow ing:

(1) Definition o f S(X, k) fo r  general values o f X and k. Analytic proper
tie s  and asym ptotic behaviour o f S(X, k) fo r  X large . A ll these properties 
w ill be derived  fo r  the res tr ic ted  case  o f Yukawian potentials.

(2) The convergence o f (8.2) is  investigated fo r  the sp ecific  case  of 
Yukawian potentials. The M andelstam  representation  then follow s fo r  the 
total amplitude.

In ord er  to ach ieve our goa l we shall en large the definitions which we 
have used so  fa r  fo r  S waves and higher waves. We think that those defini
tions are se lf-ev id en t i f  one keeps an eye on the previous section.

The starting point o f our theory  is  the partia l wave Schroedinger equa
tion:

<//" (z) + k 2<Mz) - (X2 - ^ z - ^ z )  - V (z) (z) = 0. (8.3)

We shall use the attribute "p h ysica l" fo r  the variab les  X = C + 1 /2  and k when 
is  in teger and k is  rea l.

M oreover we assum e the fo llow ing conditions fo r  the potential:
(a) V (z) has the representation

f  e 'MZ
V (z) = j  dp ,

m>0

with a suitable weight d istribution
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(b) V (z) can th ere fore  be continued into the half-plane Re z > 0.
(c) On any ray  arg z = a, | a | < n j2, we have

We exclude the value cr= ir/2 because the last condition would rule out 
the in teresting  ca se  o f the Yukawa potential. M ore refined assumptions w ill 
be made in ord er  to derive  specia l resu lts if  needed.

We intend to study eq. (8.3) and the associated  quantities when X and 
k are both com plex . This program m e has been partly ca rried  out in previous 
papers [3 ,4 ,10 ,11], and we m ay group previous resu lts into two c la sses :

(a) Analyticity in k when X is  physica l;
(b) A nalyticity  in X when k is  physical.
We repeat here som e o f the already known definitions and form ulas 

which w ill be used extensively  in the lectu res. Most o f these definitions are 
purely  fo rm a l since there are in volved ,for instance, variables defined through 
solutions o f an in tegra l equation, whose existence has only been proved in 
the ca se s  (a) and (b). The p roo fs  w ill be given in the next sections* and the 
form ulas listed  should be regarded rather as a fram ew ork  fo r  the parts to 
com e. T here are two ways o f defining particu lar solutions of eq. (8.3).

(i) We define X, k, z) as that solution which behaves like z ^ 1/2 when 
z is  sm all. M ore rigorously , we define <£ through the integral equation,

1+1/9 1 C ?Xn/2 z M 1/2  20 (X ,k , z) =z 1/2- w  ----------- — - [ v ( 5 ) - k  ] 0 ( x , k , f ) d ? .
2 X J  x-1/2 .1 -1 /2

0 z ? .
(8.4)

If is  the solution of eq. (8.3) when V = 0 (free  solution), we have

<h0(X ,  k, z) = T (X  + 1) ( 2 / k ) V /2 Jx (kz) »  z X+1/2, z — 0. (8 .5)

Sim ilarly,

p -  z

* (X ,k ,z )  = Z x + 1 / 2 -  j V ? [ J x (k 5 )J _x (kz) - J x (kf) J x(kz)J
0

X V ( 5 ) * ( X , M )  d f . ( 8 - 6 )
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The derivation  o f these equations is  quite sim ple (s e e A p p .I ) . C learly 
<t> (X, k, z) = <£( X, -k, z). However, 0 (-X , k, z) is  a new solution. I f R e X > 0 ,  
<M+X, k, z) w ill be regu lar at the origin , and-any other independent solution 
w ill be irreg u la r . On the line Re X = 0, <j>( X, k, z) and <̂ >(-X, k, z) exchange 
their regu larity  ro le s  and both have an o sc illa to ry  ch aracter. It is  evident 
from  this and other features o f (8.3) that X dom inates the behaviour in the 
orig in  while k determ ines the behaviour at infinity. So far we have not co m 
m itted ou rse lves  to any theorem  o f existence o f these solutions. In fact, 
unless one m akes a sp ecia l hypothesis on the potential, the region where both 
<t> (X, k, z) and k, z) exist and are analytic is  in general very  lim ited.
The line Re X = 0 w ill be seen to belong to this region. Of som e use is  the 
W ronskian:

k, z), k, z ) ]

= <ftX, k, z) k, z) - <t>(-X, k, z) 0'(X, k, z) = - 2 X. (8 - 7)

(ii) The second  c la s s  o f solutions is  defined through the boundary con 
ditions at infin ity. Such a c la ss  o f solutions was firs t  introduced by Jost fo r
S w aves. We define f(X , k, z) as that solution which behaves like e _ikz for 
la rge  z . M ore r ig o ro u s ly ,

f(X , k, z) e-ikz +

OO

iS sin k (? -z ) V (? ) +
X2- l /4 f (X ,k ,? )d | . (8 .8)

If fo (X , k, z) is  the fre e  solution,w e have

f0 (X, k, z) = e ilr(X+1/2)/2 (7 rk z /2 )1/2H(2) (kz) ~  e_ikz. (8. 9)

S im ilarly ,

f(X , k, z) = f fl(X, k, z) - i j  J 5  fk f)  (kz)
Z

*H\ (k f) H x (kz)] V ( f )  f  (X, k ,f) d ? . (8.10)

We can a lso  define f (X , ke"m , z). H ow ever,in  general f(X , k, z) has a 
oranch point in k = 0 and f(X , ke"ilr, z) w ill be different from  f(X , k, z). This 
a lready happens fo r  free  solutions. F o r  instance,
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f0 (X, ke "i,r, z) = e i,r(x+1/ 2)/2 (7rk z /2 )1/2 Hx«  (kz) ~  e*2 . (8.11)

The W ronskian is  uniquely defined:

W [f (X , k, z), f  ( X ,k e ' ilr, z )] = 2ik. (8 . 12)

F rom  the gen era l theory  o f d ifferentia l equations we know that the ana
ly ticity  dom ains in z o f tf(X, k, z), f(X , k, z) and V(z) are  the sam e. If we take 
the conjugate o f each o f the prev iou sly  written equations,we find (if V(z) is  
re a l on the rea l positive  axis o f z):

The h erm iticity  requ irem ent on the Hamiltonian needed fo r  the above results 
w ill not be used in the p roo fs  on the convergence of the perturbation ex 
pansions which we shall derive  in the next section . This we do, not in view 
o f  p oss ib le  application  to absorbing potentials, but just as a m athem atical 
a rtifice  in o rd e r  to extend the analytic p rop erties . This w ill be apparent 
in the fo llow ing.

9. THE JOST FUNCTIONS AND ANALYTIC PROPERTIES OF THE PAR 
TIAL WAVE FUNCTIONS

Once we have defined the functions $(±X, k, z) and f(X ,±k , z), we p ossess  
four solutions o f the sam e d ifferentia l equation. The W ronskian o f any two 
solutions is  o f co u rse  a constant. We have already given such a W ronskian 
between two $ ’ s and two f ’ s in (8.7), (8.12); these two W ronskians do not carry  
any in form ation  about the potential, and they are th erefore  useful but trivia l.
A m ore  usefu l quantity (the so -ca lle d  Jost function) is

B esides f(X , k), we con sid er  f ( -X , k), f(X , -k) and f( -X , -k) too. The Jost func
tion is  in teresting  because, as we shaH see, it is  d irectly  related to the 
scattering m atrix . In o rd e r  to show this let us firs t  notice that, according 
to genera l p rin cip les , there is  always a linear relation  between any three 
solutions o f  (8 .3). In particular, we must have

4 (X, k, z) = ( f (X " , k", z), f(A .k jZ ) = f*(X*, - k * ,z ) .  (8.13)

W [f(X ,k , z), <MX,k, z)] = f(X , k). (9. 1)

k, z) = A f(X , k, z) + B f(X , -k , z),
(9.2)

k, z) = C f(X , k, z) + D f(X , -k , z).

H ere A, B, C, D are  independent of z, but they are expected to be functions



MATHEMATICAL THEORY OF POTENTIAL SCATTERING 299

o f  X and k. In o rd e r  to evaluate them  we introduce the form ula (9. 2) fo r  
$(X, k, z) into (9 .1 ),thus finding:

2ikA-= - f(X , -k ). (9.3)

Sim ilarly,

2ikB = f(X , k), 2ikC = - f ( -X , -k ), 2ikD = f( -X , k).

T hese values can be reintroduced  into (9.2), and we find

k, z) = [ f(X , k) f(X , -k , z) - f(X , -k) f(X , k, z)] /2 ik . (9. 4)

F inally  we ca lcu late  the W ronskian W[ i^(X, k, z), (M-X, k, z) fu s in g  eq. (9. 4),
and we com p are  it with the known v a lu e ,

f(  X, -k ) f (-X , k )-f(X , k) f (-X , -k) = 4iXk. (9.5)

T his is  an im portant iden tity* . F rom  (9. 5) and (9. 4) we can find easily

f(X , k, z) = [ f ( -X ,  k)<MX, k, z) -f(X , k )0 (-X , k, z)]/2  X,
(9.6)

f(X , -k , z) = [ f ( -X , -k )$ (X , k, z )- f(X , - k ) ( - X, k, z)] /2  X.

The fre e  Jost functions are  given by the form ula ,

f „ U , k )  ■ (2 /» )1/22 Xr ( X - H ) k '" ' / 2 e " <M /W ^  (9.7)

They are m ultivalued in k.
We now proceed  to find the connection  between the Jost functions and 

the scattering phase sh ifts. It is  a lm ost unnecessary  to point out that what
we shall define is  actually a function which in terpolates fo r  unphysical values
o f  X (and k) the known and m easurable phase shifts. It is  a lso c lea r  that there 
cou ld  be no other in terpolations. The one we se lect is  convenient m erely  
because it retains part o f the prop erties  of the physical phases. Our d e fi
nition starts from  the known behaviour o f the "reg u la r" free  solution $ 0(X, k, z) 
at infin ity:

$o(X , k, z) ~ e 1,r(X"1/2)/2 ^ f Q(X ,k ) s in [k z - jr (X -l /2 ) /2 ] . (9.8)

jj-
This is identity (1.8) of [10] . The functions C(X)and S(\) are linear combinations of Jost functions.
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This theory  fo llow s im m ediately  from  the theory  o f B esse l functions. We 
com pare it with the behaviour o f the perturbed regu lar solution (9.4):

<MX,k, z) ~ [ f (X ,k )e ikz-f(A -k )e 'ikz ]/2 ik  

_ e «r(X i /2 ) e i6(X,k) I f  (x , k) s in [k z -7 r (X -l/2 )/2  + 6(X, k )], (9.9)

w here we have defined

S (X , k) = e2t5(X’ k) = [ f ( X ,k ) / f ( X , - k ) ] e ilT(M/2). (9. 10)

This form ula  we retain  even when the com parison  is  no longer valid ,in  parti
cu la r  when one deals with exploding expotentials (k not r e a l) . So far this 
definition  is  purely  form al, since we know very  little about the existence 
and the analyticity o f the Jost function when both k and X are not physical. 
T his w ill be d iscu ssed  in the next section s .

We give here, fo r  com pleteness, a relation  that w ill be used later.

P z) z)
e 1 ( ’ } sin 6(X, k) = - k j  V(z) f ^ k) dz, (9.11)

and that has been deduced from

( W 0 - # £ * )]=  - e i,r(M/2) e ' i5(X,1<) ^ f Q( x, k)f(X, k) sin 6(X, k)

= Jv(z)<£0 (X, k, z)0(X, k, z) dz.
o

The existence  th eorem s and the analytic p rop erties  o f the partial wave 
functions are usually derived  by the follow ing m ethod:

(a) We iterate  the defining in tegra l equation, and we define a form al 
perturbation expansion.

(b) The analytic p rop erties  o f each term  o f the expansion must then 
be exam ined in o rd er  to find the analyticity domain o f the solution.

(c) Bounds are  p laced on the solution in such a way that the se r ie s  are 
seen to con verge  uniform ly  inside the analyticity dom ain. We give the p ra c
tica l ca lcu lations in Appendix II, and we m ere ly  state here the m ost im 
portant resu lts :
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(i) ij>(\, k, z) and $ '(A , k, z) are in tegra l functions of k (i. e., regular for 
a ll k with the exception  o f an essen tia l singularity at k = °o) and are analytic 
in  A fo r  Re A > 0; the expansion a lso  con verges fo r  Re A = 0 (in fact, we think 
it is  p oss ib le  to show that the analyticity region  can be pushed inside the 
reg ion  Re A< 0 under v ery  sp ecia l assum ptions on the potential). <MA, k, z) 
is  analytic in both variab les  in the topo log ica l product o f the k plane (k = °o 
excluded) with the half-plane Re A > 0 (and continuous fo r  Re A = 0).

(ii) f(A , k, z) is  analytic in the pair o f variab les A, k in the topologica l 
product o f the whole A plane (A = 00 excluded) with the half-plane Im k < 0 
(and continuous fo r  Im k= 0). This allow s one to define f  (A,-k ,z )  a s f(A ,k e -_ijr, z) 
unam biguously when k is  re a l; in o rd er  to avoid confusion we shall retain 
the c le a r e r  notation f(A_, k e ‘ ilr, z). C orrespondingly in (8.13) we have 
f(A, k, z) = f*(A*J k ^ e '1” , z). It fo llow s that f(A, k) is  analytic in A, k in the 
product on the half-planes Re A > 0, Im k < 0 and is  continuous on the bounda
r ie s  Re A = 0,1m k = 0. The branch point at k = 0 w ill be d iscussed  later.

Under the stated assum ptions on the potential it is  possib le  to enlarge 
the analyticity dom ain o f f(A, k, z) and consequently that of f(A , k). fo r  
this purpose let us con sid er  eq. (8.3) along a p rescrib ed  d irection  in the com 
plex z = x + iy  plane. Let th ere fore  z = p e10, where a is  a constant angle 
| a | < 7r/2. Eq. (8.3) can be written in the variab le  p:

This equation is  still o f the sam e kind as eq .(8 .3), with a new wave number 
k j = ke»11 and a new (com plex) potential Vi = V (p e io)e 2ia. The previous analysis 
can be ca rr ie d  out on the new equation,and we shall a rrive  at a new set of 
wave functions ^(A , kj, p), f 1(A) k1( p) and at a new Jost function f 1(A) k j ) .

The Jost solution fj(A, k1; p ) is  defined as the solution with the following 
behaviour:

fo r  any value o f a. On the other hand,the Jost solution f(A, k, z), already 
defined fo r  z rea l, may be continued analytically in the half-plane Re z > 0 
with the sam e boundary condition  because o f the conditions on the potential 
V (z). So the analytic continuation o f f(A, k, z) co in cides  with f: (A, k^pj.and 
we have

(9. 12)

fj(A, kr p) ~ e  lklP

fjfA, kr p ) = f(A, k, z), 0 (A, kj, p ) = e

fj(A, k^ = e -io(X + l/2 )
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But the sam e genera l analysis used before  fo r  the variable z (for rea l values), 
i f  used fo r  the variab le  p, im plies that the new Jost function is  analytic in 
Im  k : < 0 and Re X > 0 and that the old Jost function is  also analytic in this 
domain, in view  o f the above relation. This domain depends on a, where 
| cr | < tt/ 2. The Jost function is  th erefore  analytic in the union of a ll domains 
o f the kind Im (kei0) < 0 ;  this union is  sim ply the k plane cut along the upper 
im aginary  axis k = irj { rj > 0). Previous resu lts (see Appendix II) actually 
state that, when A is  physical, the cut starts at rj = m /2 , m being the low er 
lim it o’f  integration in the integral defining V (z).

Sim ilarly, f(X, ke^ta) is  holom orphic in the topo log ica l product of the whole 
k plane, cut along the low er im aginary axis (when I  is  integer, the cut starts 
at rj = - m /2 ), with the half-plane Re X > 0.

F inally  we d iscu ss  the branch point o f the Jost functions at k = 0. From  
(8.9) it fo llow s that

f 0(X, ke"2lr , z) = f Q(X, k, z) + a(X) f Q(X, ke‘ u , z), 

f 0(X, ke 3liI, z) = [1 + a2(X)]f0 (X, ke 1B , z) + a(A) f Q(X, k, z), 

a(X) = - 2i co s  (<rX).

Introducing this relation  now in definition (9.1), we have that the result o f a 
c ircu it around the orig in  can be written as fo llow s:

f 0 (X, k e '21" )  = f Q(X, k) + a(X) f fl(X, k e '1"),

(9. 13)

f 0(X /k e '31" ) = [1 + a2(X)] f fl(X, ke ) + a(X) f Q(X, k).

If we think o f eq. (8.10) written fo r  f(X, ke"u , z) and make the linear com 
bination f(X, k, z) + a(X) f(X, k e nlt, z), we find that, if one fo llow s a path which, 
without c ro ss in g  the m /2  < rj < x c u t , e n c irc le s  the origin , then, when X is 
rea l, f(X, k) has exactly  the sam e law of transform ation  as f 0(X, k).

L ater on it p roves convenient to use the function F(X, k) = f(X, k ) / f0(X, k). 
In term s o f F(X, k) one w rites

F(X, k e  2l1) = 2 c o s  ~X e ^ F fX ,  k e  L") -e  2l” F(X, k)

o r

F(X, ke 2‘ IT) - F(X, ke"171) F(X, ke"1" )  - F(X, k)
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One could  argue that it would be ea s ie r  to represent everything with a 
single cut starting from  the orig in . This is  not true since we would lose the 
in form ation  that the branching properties  at the origin  do not depend on the 
potential and are  purely kinem atical. On the contrary, the other cut depends 
c r it ica lly  on the potential,and it is  useful to separate the contributions.

F o r  the S m atrix (9.13) g iv e s*

S(X, ke -2lff) = ----------S(X,k) - 2 c o S ( , X ) e - V --------  ̂ (g 14)
[ 1 - 4  c o s 2 ( t t A ) ]  +  2 cos  (~X)e ^S(Xk)

or

S(X, k '1')  =
e 2 i - ( \ - l / 2 )

S(X, k) - 2i co s  (ttX) e irr(.V-l/2 )
(9.15)

It is  usefu l to introduce a new function,

Z(X, k) = ik2^[S(X, k) - e2l7TXJ / [  S(A, k) -1 ] ,  (9.16)

The function Z  can be linked to the so -ca lle d  scattering length expansion.
This expansion represen ts k 2c+1ctg 6(0, k) at low energies as a power series . 
F rom  this expansion it is  evident that 6(P, k) tends to vanish,like ~ k 2c+1, when 
k -* 0 in the 0th wave. Now, i f  X is  physica l (X = fl + 1/2), we have Z(X, k)
= k2f+1ctg  6(0, k). This shows that Z(X, k) is  the natural generalization of 
k2c+1ctg6 (p , k) because it retains the property  o f admitting a power series  
expansion in a neighbourhood o f the orig in . It must be noticed that Z(X, k) is  
not only regu lar in k = 0 but a lso  an even function of k; its m erom orphy 
dom ain is  the sam e as that o f S(X, k).

The follow ing form ula is  a lso  useful:

S(X,k) = [Z (X , k) - ik2^e2i,rV] / [ z (x . k) - ik2Y  (9-17)

Finally, we wish to point out that eq. (9.5) im p lies

e "ilrAS(X, k) -e ^ S f -X , k) = -4kX /[ f(X, k e 'iIr) f(-X , ke_i" ) ]. (9.18)

This equation only holds when X is  im aginary; otherw ise one of the two func
tions f(X, ke"llr), f(-X , ke‘ llr) is  not defined. We also have from  eqs. (3.13)

*  In the following when we write f(X, k) we mean the Jost function on the sheet: -3V2 < arg k < i/2.
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f(X, k) = f*(X*, k V i,r), S*(X, k) = S ' V \ k V i71). (9.19)

If we define Z(X, k), when X is  not rea l, by eq. (9. 16), we find that it is  m ero - 
m orphic in half-planes Re k > 0 and Re k < 0. There is  at the moment no way 
o f jo in ing  the left and right dom ains of Z(X, k), because there is  no gap through 
the cut o f e ither f(X, k) o r  f(X, k e 'i,r) unless X is  rea l. F rom  Appendix II we 
can prove  that actually the resu lt holds fo r  any rea l positive X. Indeed, if  
X is  rea l positive,

But we know that in general D(X) is  analytic in X fo r  Re X > 0. It follow s that 
D(X) = 0 fo r  Re X > 0 and | § | < m /2 . This resu lt enables us to jo in  the right 
and left dom ains o f m erom orphy o f Z(X, k) (and of cou rse  o f S(X, k) and of 
related  functions) through the gap | ?| < m /2 . This shows that actually the 
branch point o f S in k = 0 is  a purely kinem atical one: that is , it does not 
depend on the potential.

10. THE ASYM PTOTIC BEHAVIOUR OF THE PHASE SHIFT

The behaviour fo r  large  values o f X and k o f the phase shift can best be 
investigated with the help o f the WKB m ethod. In the current practice  the 
use o f this method has been lim ited fo r  obvious reasons to the physical values 
o f k and X. We w ish to point out, how ever, that the extension to the unphysical 
range o f these variab les  does not add anything essentia lly  new to the method 
and that the only d ifficu lty  is  an in creased  com plexity  and variety in the 
c la ss ifica tion  and behaviour o f the turning points. The m ost rigorou s paper 
on this subject is  certa in ly  K EM BLE’ s paper [12],and we could alm ost quote 
his resu lts  with obvious changes. A s K em ble ’ s analysis is  in som e cases 
in com plete  fo r  our purposes o r  it becom es too com plicated ,it w ill not be 
reported  h ere . A m ore  rea lis tic  view  o f the situation has suggested that 
these details should be published elsew here [16] and that we should d iscuss 
here the final resu lts  only.

The gen era l idea o f the WKB method is  that of constructing a differential 
equation, which is  very  c lo se  to the Schroedinger equation, and whose solu 
tions are w ell known. Such an equation is  satisfied  by the functions:

ü m Z (^ , i ?  - e) - Z (X ,if  + e) = D(X) = 0, | £ | < m /2 .

X

( 1 0 . 1 )

p2(z) = k2 - X2/ z 2 - V (z), p 2(z) = k2 - X2/ z 2.
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The approxim ation is  gen era lly  good on the whole com plex  z plane except 
in the neighbourhood o f the points where p(z) vanishes. These points are 
usually nam ed turning points T . If k and X are very  large,there is  only one 
turning point in the dom ain Re z > 0 and this o ccu rs  very  c lo se  to T0 o r  
-T 0, T0 = A /k , which are exactly  the two turning points when V = 0. The 
ch o ice  between To and -To is  dictated by the fact that only one o f these points 
is  on the good side Re z > 0 where V (z) is  analytic. The turning points are 
branch points o f p(z).

The m ain prob lem  o f the WKB is  to connect the solution (10.1), which 
is  good approxim ation at large  d istances. These solutions cannot in general 
be represented  by the sam e form ula because the approxim ation schem e fa ils 
near the turning point. An appropriate connection form ula can be found in 
the literatu re [7 ] .

The resu lt o f the above analysis is  that when k and A are large we have 
the follow ing asym ptotic form ulas:

eo

[ PQ (z) - p (z)]dz^ ,

(10.2)
eo

f(A , ke"1,r) ~  f Q(A, ke’ 1*) exp f i  ^  [ p Q (z) - p (:z)]dz\

° ’ rh

f(A, k ) ~ f  (A ,k )e x p ( - i‘ i
o.r.

The integration paths r f and Ti, connect the orig in  with the infinity in the 
half-plane Re z > 0. r 5 passes below  and r h above T (see F ig s . 2 and 3). The

rh /

Fig. 2 Fig. 3

Diagram for the asymptotic formulas Diagram for the asymptotic formulas

proposed  form ulas are valid  under the restr iction s  that paths satisfying 
these cr ite r ia  actually ex ist. If Re T0 > 0/then we can. obviously trace  both 
paths. Suppose now that we let arg  To gradually in crea se  toward it/2 . When 
arg  Tq = tt j 2, the high path gets pinched between the turning point and the
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im aginary ax is. F o r  arg T 0 > 7r/2 the correspon din g  second form ula is  no 
longer valid . Only one form ula th erefore  rem ains because it is  still possib le 
to define the low paths (see F ig. 3). C learly , how ever, these low paths run 
high with resp ect to - T 0, which is  now in the Re z > 0 plane. If in the form ula 
we now rep lace  k by ke"ilr, we see that the second form ula has been replaced 
by the firs t . C onversely, i f  we let arg To d ecrease  toward -7r/2,we find that 
the firs t  form ula is  now m eaningless and that the second one takes its place. 
An im portant com plem ent to these form ulas is  that p(z) is  made single-valued 
in Re z > 0 by cutting the z plane with a cut which jo ins T to the origin . On 
the opposite sides o f this cut p(z) takes opposite values.

Let us now evaluate the asym ptotic form ula fo r  the S function. We insert 
the exp ression s (10.2) into (9.10) and use (9.7). Thus we obtain

S (X ,k )~  exp ^-i J  J[P0(z) - P(z)Jdz) \  (10.3)

° 'rf «■rh'

It is  obvious that the sum o f a high and a low in tegral can be reduced to a 
single com plex  in tegra l which com es from  infinity, passes a cross  the 
cut o f p(z) and goes back to infinity on the other sheet of the function p(z) 
a fter having en circ led  the point T. A fter this has been understood,it is  c lear  
that the WKB form ula fo r  the phase shift is  just the one we already know 
from  m ore  elem entary treatm ents:

oo

6(X, k ) ~ - J [ p o (z) - p (z )]d z . (10.4)
T*Tn

The domain o f valid ity  of this form ula is  the in tersection  o f the validity do
main o f the form ulas (10. 2); that is ,R e  T 0 > 0 (see F ig. 4 ). There is  no

arg A

n
7

arg k

Fig. 4

The regions of validity of the WKB method (shaded) and of the bounds (10.5) (unshaded)
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point anyway in trying to use (10.4) when Re T 0 < 0,because the corresponding 
in tegra l is  in gen era l m eaningless (it im p lies  the knowledge o f V(z) when z is  
equal o r  at least v e ry  c lo se  to T, but V(z) is  defined only when Re z > 0). 
F rom  this form ula  it is  apparent that lim  S(X, k) = 1 when | X |, | k |-* oo, under
the quoted re s tr ic tio n s . If Re T <0, we have no p roo f o f the validity o f the
above lim it and we actually con sid er  it not to be true. F or our d iscussion  
it is  n ecessa ry  to know som e upper bound on S(X, k). These bounds are d e 
rived  in a paper by BOTTINO, LONGONI and REGGE [16 ]. They re fe r  to the 
behaviour when X is  la rge  and k is  constant. (If A is  kept constant and k is  
la rg e ,lim  S(X, k) = 1.) The d esired  bounds are

| S(A, k)| < /u(A, k) e 2(arg To + ,;/2>IrnX; arg T q < _ T/ 2, Im X < 0

(10.5)

|S(X, k)_1| <p(X ,  k )e2(argTo' ;l/2)Im\ Im A > 0, arg  TQ > tt/2.

The indicated dom ains o f validity o f these two bounds are the two unshaded 
reg ion s in F ig . 4. |u(X, k) is  here a function which is  bounded above by a con 
stant independent o f k and X. Both bounds are equivalent to each other through 
the use o f unitarity.

In using (10.4), one must always be aware that there is  an e r r o r  a s s o c i
ated with it. If 6 vanishes very  rapidly with X, the above form ula becom es 

’ m eaningless, because it can easily  happen that the e rro r , although sm all, is  
s t ill la rg e r  than 6. The usefu lness of the WKB method here is  that it yields 
a p roo f that 6 vanishes fo r  la rge  X whenever Re T0 > 0. This is  already 
enough to obtain resu lts  concern ing the analyticity in the variab les s = k2 and 
t (momentum tra n sfer). B esides these asym ptotic evaluations,we want to 
quote a m ore  p re c ise  resu lt which states that fo r  large angular momenta 
the Born approxim ation (see (9. 11)),

n (X, k, z)
6 ~ 6 b = - k e - ‘ ^ - 1/2) J V (2 )p - -k) )  dz, (10.6)

o 7
is  a very  re liab le  one. The reason  fo r  this is  that the wave function fo r  large 
X lie s  totally  outside the potential and is  p ractica lly  unaffected by it. T h ere 
fore,qi ~  0o fo r  la rge  X. This can be shown m ore  exactly  from  the WKB analy
s is . F or  z fixed  we find lim(0/<j>o) = 1. We would have to prove uniform  con 
vergen ce  in o rd e r  to derive  lim (6 /6 B) = 1.

We do not want to cram  the paper with an uninteresting p roo f* .
It is  w ell known that the Born form ula can be integrated for the c lass  

o f Yukawa potentials and y ields

6b "  2k

oo

i  I QM (1+M2/2k2) a iß )d ß -

* In [3] it is stated that an equivalent rigorous proof has been obtained by D.S. Carter (Princeton thesis), 
but unfortunately this proof has not been published. Of course,a proof follows from the three-dimensional 
formalism and from the existence of the small Lehmann ellipse.
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If X is  large, the asym ptotic behaviour o f 6 is

, /„ I 1/ 2 cr(m) , , . , . 1/2 e( tt/2) iL .  k(sin h a '
-a k

2m 3/2
; c o s  h a = 1 + m 2/2k 2.

( 1 0 . 7 )

The standard WKB method y ie ld s  infetead

s r\ { _mVk6 = 0(e ).

The last evaluation is  fo r  our purposes too optim istic at low  energies but 
b ecom es re lia b le  at large  en erg ies .

11.. THE POLES OF S(X, k)

E a r lie r  analysis o f the poles o f S(X, k) have been ca rried  out in the fo l
low ing ca se s :

(1) X physical, k com plex . The current nam es given to these poles are
(a) bound states i f  k = i rj (r) rea l > 0),
(b) anti-bound states o r  virtual states i f  k = -ir),
(c) reson an ces i f  Im k < 0.

The reson an ces o ccu r  in pa irs  o f conjugate po les . Except for  bound states, 
the reg ion  Im  k > 0 is  forbidden to p o les . It is  evident from  the existing 
literatu re that the anti-bound states and m etastable states (resonances) are 
not states in the accepted  fram e o f definition o f quantum m echanics because 
th eir  wave functions a re  not square integrable. However, they share many 
o f the p rop erties  o f ord inary  states.

(2) k physical, X com plex. The poles  occu r  only when X > 0. They have
been named shadow states in [11] *. In the fu ll com plex domain of k and X 
shadow states and reson an ces are particu lar in tersections o f the same singu
la r  su rface  o f S(X, k). F o r  we rem em ber that analytic functions o f two v a r i
ab les are n ever singular on isolated  points but always on analytic surfaces 
(of d im ension  2). In [11] a num ber o f inequalities was derived concerning 
the distribution  o f the shadow states.

The d iscu ssion  w ill now be extended to com plex X and k. Roughly speaking, 
there are two kinds o f lim itations on the position  o f the poles: the first follow s 
from  the equation o f continuity and applies equally well, under very  weak 
conditions, to any kind of potential; the second uses specia l properties of 
V(x) like lim itations on the depth and width of V(x) and analyticity.

The continuity equation can be used as fo llow s: We suppose that, for  a 
particu lar set of values o f X and k, X = X0 , k = ko, inside its m erom orphy 
domain, S(X, k) has a sim ple pole. Then c lea r ly  f(X0, k0e-ilT) = 0. Under this 
hypothesis,

*  Recently we have found a paper [13] where the name "spiralling states" has been adopted.
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f(X k )

ko> z) = “2l k ^  f(V  V ' " '  z)- ( U - 1]

If Re X0 > 0 and Im k0 > 0, the above function vanishes as a function of rea l 
z at zero  and at infinity. Its com plex  conjugate <j>* w ill a lso  vanish in the 
sam e points; </>* sa tis fies  the conjugate equation (z rea l):

- 1/4
0*" + k*2 <f - ----- - V(z)4>* = 0. (11.2)

z 2

It fo llow s that:

( f  ** - * * '* ) ' = (k*2 - k2)]0  I2 - (X*2 - X2) l i l 2 . ( l l !  3)
z

This identity can be integrated from  zero  to infinity. The contribution of 
the fir s t  term  vanishes with <f> and at both ends. What is  left yields the 
equation,

Im k Re k \o o J 
0

F rom  (11.4) it is  c le a r  that, where Re ko and Im X0 have opposite signs, 
po les  do not o ccu r . T h ere fore  we obtain two dom ains of holom orphy of

Re k0 > 0 

Im X0 < 0

having a com m on  boundary where Re k 0 = 0, Im X0 = 0.
A com plete  d iscu ssion  o f dom ain o f analyticity beyond what is  stated in

(11 .5 ) is  contained in a paper by BOTTINO and LONGONI [17]. A prelim inary 
d iscu ssion  can be found in [11 ]. We just notice that, while (11. 5) holds for  
any o f the potentials con sidered  by us, any other inequalities w ill contain 
som e m ore  detailed in form ation  on V (r). P articu larly  interesting are the 
upper bounds on R eX 0 when k is  rea l, because they insure a finite number 
o f subtractions in the scattering am plitude. I f,fo r  instance.

Re kß < 0

Im XQ > 0
(H .5 )

dz - Im X Re Xo o dz = 0. (H .4 )

| V(i-y) | < y y - j , then R e X < | - .



310 T. REGGE

12. THE TO TA L AM PLITUDE AND THE LEHMANN ELLIPSE

We have re ca lled  so far a num ber of p rop erties  of the partial wave am 
plitudes. The next task is  to relate them to the properties  of the total sca tter
ing am plitude. A fter M andelstam ’s w ork it has becom e fashionable to use 
the notations s = E and t = -A 2= -2E  ( - co s  6). We define f (s ,t )  through (1 .9) 
o r  the equivalent tran sform s.

The property  o f the total amplitude which we shall d iscu ss is  the ex 
istence  o f the so -ca lle d  sm all Lehmann e llip se .

The m athem atical theory  o f  Legendre polynom ials teaches us that any 
expansion in these polynom ials;

F (co s  6) = af Pf (co s  6), (12. 1)
«= o

con verges in the co s  0 plane within an e llip se  o f fo c i ± 1. It may happen that 
the e llip se  o f con vergence  redu ces to the segm ent joining -1 to 1. It always 
happens that the function represented  by (12. 1) is  analytic within the con 
vergen ce  region . This is  quite analogous to the corresponding theorem  fo r  
pow er se r ie s  where we have c ir c le s  instead o f e llip ses . The magnitude o f 
the e llip se  o f con vergence  must be such that the sum o f the expansion does 
not have singu larities inside the e llip se . T herefore  the singularities which 
are nearest to the fo c i are those which dominate the convergence. Without an 
attempt to m ake our argum ents rigorou s  but only the suggestion that they 
are reasonable, a ll the above resu lts can be understood from  the asym ptotic 
behaviour o f Pf (cos  0) when f is  large and fixed. This behaviour is  of the 
kind

,1/2
( 12 . 2)

f  2 V /2(cos  0) ~  l  sin Q j  co s  [((  + 1/2)0 - tt/4 ].

If c o s  0 is  com plex  and C is  large and rea l, P0 (cos 0) w ill be dominated by 
Im 0. P t (cos  0) is  th ere fore  always exploding fo r  high rea l C, unless 0 is  
rea l, in which ca se  it is  oscilla ting .

If we con s id er  the expansion (12. 1) and we suppose it to be convergent 
fo r  a given value o f 6, it fo llow s that the general term  of it must vanish for  
la rge  t :

lim  a{ e c Îm = 0 , o r  a( < Ce ^ Irn 6 .̂ (12. 3)
Q -*oo

The general te rm  is  th ere fore  dom inated by a decreasing geom etric p ro 
g ress ion . C learly  the expansion a lso  con verges fo r  sm a ller  values o f Im 0, 
and it rep resen ts  there an analytic function because it is  a uniform  con 
vergent se r ie s  o f analytic functions.
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In the c o s  0 plane the curve Im 0 = const, is  an e llip se . Suppose namely 
that z = c o s  0 = x + iy  and 0 = a + i ß . We have

x =  c o s  a cosh  ß,  , „  ..
y = - sin a sinh ß .

F rom  these equations we deduce easily

(x2/co s h 2M) + (y2/s in h 2p) = 1; (x2/ c o s 2 a) - (y2/s in 2 o) = 1.
(12.5)

The firs t  o f these equations does not depend on cr and represents the locus 
o f  a ll points in the z plane which have the sam e Im 0 = ß . This locus is  e v i
dently an e llip se . The other equation is  the locu s of the points where 
Re 0 = a = const.

This locu s is  obviously  a hyperbola with foci ± 1 . The sets of e llipses 
and hyperbolas are mutually orthogonal. The hyperbola which corresponds 
to a = 0 degenerates into the upper and low er lim it o f the cos  6 > 1, the one 
with <j = ir into the line c o s  0 < -1 . Any value o f o between these extrem es 
corresp on d s to  half a hyperbola; th e 'other half obviously com es from  ir- <r. 
The whole z plane can be mapped into the strip  0 < a < n o f the 6 plane. How
ever, it is  better to map it into - x  < a < it and ß > 0. A given value o f a is 
then associa ted  with a quarter of a hyperbola. By taking all the com binations 
±cr and ±ir ±cr within the in terval (-it, ir)twe  get a ll quarters of the hyperbola. 
The line ß = con st.is  then a fu ll e llip se . This kind o f mapping is  very  sim ilar 
to the usual polar co -o rd in a tes  w here ß plays the ro le  o f a radius and a the 
ro le  o f the polar angle. We p re fer  this mapping a lso  because it is  the natural 
one when we want the asym ptotic behaviour o f the Legendre functions when 
the index £ is  la rge . As long as £ rem ains an integer, there is  no doubt about 
the meaning o f (12. 2) because it is  unessential which determ ination we take 
o f Re 0 = a + n ir when co s  6 = z is  given. But i f  £ is  no longer an integer, we 
are fo rced  to sp ecify  the value o f n. This turns out to be the one o f our m ap
ping. This fact is  very  im portant when used with W atson’ s integral.

The size  o f the ellip se  can now be estim ated fo r  large C with the help 
o f (10.7) and (12.3), The partial wave expansion clea r ly  con verges if  Im0= ß <a, 
where cosh  a = 1 + m 2/2 k 2. We re fe r  to the e llip se  ß = a as to the sm all 
Lehmann e llip se .

The term  large  Lehmann e llip se  is  com m only used instead for  the ana
lytic continuation o f the im aginary part o f f(s , t). We define it in the physical 
reg ion  as

F (s, t) = Im f(s , t). (12 . 6)

We take s rea l and 0 < -t  < 4s. We con sid er then the analytic continuation 
o f F (s , t) when s is  kept fixed and t is  com plex. People re fe r  to F (s, t) som e
what im p rop erly  as the im aginary  part o f f(s , t), but this is  true only under the 
stated conditions. The partia l wave expansion o f F (s, t) is  then
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F (s, t) = |  y  (2 P + 1) sin 6{ (k) Pf (cos 6) (12.7)

This expansion con verges in an e llip se  which is  la rg er  than the sm all Lehmann 
e llip se , because the gen era l term  contains sin 2 6 and vanishes m ore rapidly. 
This new e llip se  is  given by ß = 2 a. This fact cou ld  have been deduced from  
unitarity d ire ct ly  i f  the correspon d in g  resu lt fo r  f(s , t) were known, without 
passing through the partia l wave expansion fo r  F (s, t).

13. ANALYTICITY IN t FOR FIXED s

In this section  we want to exp lore with new techniques the fu ll domain 
o f analyticity o f f(s , t) in the t plane. We already know of the existence of 
Lehmann s ellipse, but we must go much further in order to prove the analogue 
o f the M andelstam  representation  fo r  potential scattering. F or  the sake of 
s im p licity  we w ork  on the assum ption that fo r  rea l positive k

in every  d irection  o f the Re X > 0 half plane, including (and this is  really  an 
additional hypothesis) the im aginary axis o f X. We know that fo r  Yukawian 
potentials the resu lt holds in any d irection  within the above region ; we know 
a lso  that little can be said when X = ia. The p roo f which follow s could be 
ca rr ie d  out without this additional hypothesis, but there is  nothing interesting 
to be gained and the form a l m achinery would be much m ore com plicated. 
Under this sim plification  we apply W atson’ s transform  and we obtain the 
form ula :

The path C has now been deform ed into the line X = ia. The extra term s 
a r ise  from  the poles  o f S(X, k) which we know to exist in the upper half-plane 
o f X only. We exam ine, separately, the contributions o f the integral and of 
the p o les . Sn is  the residue o f S(X, k) at the pole X = C n + 1 /2 . The con ver
gence o f the in tegra l is  now determ ined uniquely by cos  9. If X = ia is  large, 
we have

lim  [S(X, k) - 1] = 0
\ -* 00 (13.1)

2' + 1
(13.2)

n
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I----- ^ j - l  ~  2 e ' " 1 a|; P , (cos  6) ~ 0 ( e la||,' d). (13.3)
I cos  A I X-l/2 '

The in tegra l th ere fore  con verges i f  17r - ex | < tt . The asym ptotic behaviour of 
P \ -i/2(- c o s  0) = P\-i/2 [ co s  (ff - 0)] fo r  large X has been evaluated by keeping 
the condition Iff - ct| < ff in accordan ce  with the d iscussion  of section 12, so 
that 0 < ct < 2 ff is  the range o f a. This includes the whole z plane with the 
cut z rea l > 1. The term s FJn(- c o s  0) have the sam e cut. The cut in the 
z plane actually starts outside the sm all Lehmann ellip se  at the point 
% = 1 + m 2/2 k 2. (This con cern s the cut o f f(s , t) which also includes the con 
tribution o f the poles  .) In the t plane this cut is  mapped into the cut:

m 2 < t < oo. (13. 4)

This is  actually the fu ll resu lt to be expected  from  the Mandelstam re p re 
sentation. Our d iscu ssion  obviously  holds a lso  when [ s(X, k ) - 1] does not 
vanish along X = ia  but grow s at m ost like a pow er o f a.

What about the behaviour when t o r  z is  large? The usual partial wave 
expansion is  rea lly  unsuitable, because it breaks down long before we need 
to use it and anyway its a ccu ra cy  d ecrea ses  with ß . Eq. (13.2) can still be 
used and y ie lds the interesting resu lt that this behaviour is  actually con 
tro lled  by the poles of s(X, k). Indeed if  we now con sider P x -i/2( -c o s  0) when X 
is  fixed  and co s  0 is  now variable and large, we find

p x - i / 2( - c ° s 0 ) ~ ° ( z X 1/2). (13.5)

This term  is  grow ing provided Re X > 1/2 and is  at the sam e tim e oscillating 
i f  X is  com plex, as expected . If z is  very  large, then what counts is  the pole 
with the la rg er  Re X. What about the in tegral? This is  easily  disposed of 
because it is  the superposition  o f decreasin g  term s with strongly oscillating 
fa ctors  when |a | = |X| is  la rge . We expect it to vanish fo r  large z . Con
cluding, we are led to the behaviour:

f ( s , t ) ~ 0 ( t a(s)), (13.6)

w here a(s) = f >(s), P >(s) being the 0n with the largest rea l part. This be 
haviour is  energy-dependent.

What is  the physica l interpretation  o f these poles? We expect a(s) to be 
an analytic function of s in som e reg ion  which we do not need to specify  now 
in detail. We suppose such a pole to  exist fo r  s = So with a sm all Im X and 
Re X alm ost h a lf-in tegra l (physical). This m eans that fo r  som e value s 0 o f s

a(sQ) = 5 + e ( s 0) + ir j(s 0); e «  f , r\« H (13.7)
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If we now exploit the fact that a(s) is  analytic in s in a sufficiently large 
reg ion  around s 0, we can expand a(s) in a pow er se r ie s  in s - sQ:

H Q
a(s) = C + e (s0) + i rj(s0) + (s - sQ) — s = s . (13.8)

We can ch oose  how ever s equal to

s = s o- ( £ ( so) + ir,(so ) ) ( s = sr

- l .

(13.9)

in  o rd er  to make a(s) = 1. It is  c lea r  now that,if there is  a shadow pole, we 
expect a pole to appear when t is  in teger and s is  alm ost rea l, this pole 
being the sam e com plex  singularity in the variab les  X and k (or s) intersecting 
the m any-fold  X - l / 2  = integer. This pole can only be interpreted as a r e s o 
nance a ccord in g  to the d iscu ssion  of section  4 or section  12. Resonances are 
th ere fore  respon sib le  fo r  the high t behaviour o f f(s , t).

In [11] quite a num ber o f inequalities has been derived fo r  a(s) fo r  
a large  c la ss  o f potentials, including the pure Yukawa potential. We wish 
to point out that it is  not at a ll im possib le  to ch oose  potentials such that 
there is  an infinite set o f shadow poles and,even w orse, such that there is  
no upper bound on Re C n. f(s , t) in this ca se  shows an extrem ely com plex 
behaviour fo r  large  t, and one needs an infinite num ber of subtractions in 
o rd er  to w rite the M andelstam representation. It is  a good feature that we 
can ru le out this trouble fo r  the m ost interesting potentials, i . e .  those we 
can fo rm  by choosing fo r  o(n) in (5. 1) a distribution with no higher singu
la r itie s  than D irac’ s functions (positively  no derivatives of i t ) .

14. THE RESULTS OF KHURI

In the previous section  we have investigated the analytic properties of 
f(s , t) when s was held fixed and t was varying. A m ore  difficult task in our 
fo rm a lism  is  to prove analytic properties  in s when t is  fixed. We now keep 
t fixed and rea l negative. None o f the previously  proposed  representations 
fo r  f(s , t) seem s to be working now because they a ll d iverge. We now use 
instead

C - LTT( A+ 1/2)
f ( M ) = 2 k J  " c o s  A  1S(X’ k) - l ] P . - 1/2(cose)XdX . (14.1)

c

The integration  path C is  the sam e as in F ig. 1. The validity of (14. 1) can
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be firs t  o f a ll proved when z < 1 o r  inside the sm all Lehmann ellip se . In 
particular, i f  - 1 < z < l,then t is  negative: 0 < -t < 4s.

H ere the WKB method holds: we have S(X, k) -1 0 when X -* oo. Secondly,
Px-i/2 (cos  0) ~  0(e±lXe),w hichever ch o ice  is  la rger . If

e "iir( x+1 / 2)
Im  X -► + oo. —----- —-r------- ► -2 i and if  Im X -»• -co,cos  ttX

e -ir(X+ 1/2) 
co s  ;rX

a-2|lm\|n

In this last case  the above fa ctor  provides a strong cu t-o ff which 
m akes the in tegra l easily  converging fo r  Im X.» - oo. If Im X< 0,we can m ove 
the path C along the low er im aginary axis o f X. In so doing, even if  Px-: / 2(cos 0) 
now d iverges like el1™^!0 !, we still have convergence since | ct| < n.

We now m ove k into the dom ain R e k > 0, Im k > 0. Now the WKB fo r 
mula breaks down fo r  x = ia, a - oo,but there we have no trouble since 
by the form ula (10. 5) S(X, k) - 1 is  bounded in this domain by el1™^1 . When 
X -*+oo,we have to be carefu l. The fa ctors  here which decide the con 
vergen ce  are P x - 1 / 2(cos  6) ~  0(e±iXe) and s - 1 -* 0. R ecalling  now that 0 = l + t /2 s  
and that t is  re a l and < 0,we see that,if s is  com plex,then cos  0 and 8 are 
a lso  com plex . We expect eiiXS to d iverge in any d irection  o f the X plane with 
the so le  exception  o f arg X = nir - arg 0 where n is  in teger. Is it possib le to 
ch oose  arg  X in 0 < arg  X < 7r/2 such that this happens? The answer is  yes 
because, when k is  m oved from  the rea l axis to the im aginary axis, a and n vary 
in the range n < a < 0, n > 0. A rg 6 is  th erefore  always in the range 
Tt/2 <  a rg  0< ir. We get the desired  resu lt by taking arg  X = n - arg 0. Our 
in tegra l representation  is  convergent in the upper quadrant Re k > 0. If 
Re k < 0,we sim ply use the fact that, i f  k is  rea l and t rea l negative,then 
f *(s + ie , t) = f(s  - ie , t) so that by analytic continuation we have in the whole 
cut s plane f* (s , t) = f(s* , t). This cut plane maps into the upper half plane 
o f k. This equality is  quite adequate fo r  definition of an analytic continuation of 
f(s , t) in the quadrant Re k < 0, Im k > 0.

We are left with the points o f the im aginary k axis (negative s axis).
H ere apparently a new singularity appears, which is  not caused by any failure 
o f (14. 1) to con verge  but rather by the fact that S(X, k) has singularities along 
the im aginary  axis o f k. However, when we are c lo se  to the im aginary axis 
o f k.the WKB form ula  holds along X = ia, a > 0. We can deform  C into the 
im aginary axis o f the X plane, because X and k are im aginary and the integral 
con verges . Now,

----- ^-^r-P. .( c o s  0)COS 7T X x- 1/2

is  an odd function o f  X.and th ere fore  what counts in the integral is  only the 
odd part o f e ' i,r( A'+1/,2)[ S(X, k) - 1 ] ,  But i f  we use identity (9.18),this odd part 
can be written as
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Upon substitution into (14. 1) we find

, i v  f  (X ,-k ) f  ( -A ,-k K

- t F - k R !-XT .k)'J  *8 8>>dX I14- 3»
■i°o

+ the contribution o f po les . But now the function (14. 2) is  analytic in the 
whole upper half k-plane, and there is  no discontinuity associated  with S(X, k) 
on the dynam ical cut k = ib, m /2  < b < « .  This happens because ei,lA-S(X, k) 
and e'i,tX S(-X, k) have the sam e discontinuity an d w h en th eodd p artistak en .it 
d isappears. (14. 3) can th ere fore  be used in defining f(s , t) in a region  con 
taining the im aginary  axis o f k. We have now joined  the right and left part 
o f  Im k >  0, because the f(s , t) defined in  (14.3) c lea r ly  sa tisfies  f* (s , t) = f(s* , t) 
Indeed,

f  (X, -k ) f  (-X, -k)

"ioo

+ (the contribution o f p o le s )*  . But X* = -X, P .x -^ f c o s  0) = P x -j/2(cos 6) and 
f(X, -k )*  = f(-A , k*) so that f*(S(k), t) = f(S (-k * ),t ) = f ( s * ,t ) .  C learly  k and -k *  
a re  both in the upper half-p lane. F orm ula (14.3) th erefore  defines an ana
lytic function o f s in the neighbourhood o f the rea l negative axis of s (apart 
from  the contribution  o f the poles,w hich  we shall d iscu ss later). F or we 
n otice  that accord in g  to the WKB form ula

f  (X ,-k ) f  (-X, -k)
1 ---------------------------------

f(X, -k) f ( -x , _k)

d e cre a se s  exponentially fo r  large X. This is  n ecessa ry  in order to have 
analyticity in a neighbourhood o f the im aginary axis of the k plane rather than 
con vergence  on a line only. The actual s ize  and form  o f this domain is  un
im portant once we have the fu ll analyticity domain.

We now give som e approxim ate argument about the behaviour of f(s , t) 
when t is  held fixed and negative and [ s |-* ooin the cut s plane which maps 
into the upper half k-plane. We use the WKB form ula fo r  f(X, k) and eq .(l4 .3 ). 
We put

co s  0 = 1 -  A2/2 k 2, k = i f ,  X = irj, t = -A 2 (14.4)

! jrX* Px*-i/a<1 + 2? )X*dX*

and we obtain
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1 C fJ V  V ' irl* /  a 2^
f ( M )  -  f  J  1 ~ f(in, -ig ) f(-ir), -ig ) t 8 h ( ">l)Pi , - l / j 1 + I f 2 ^

Using the form ula P£ (cos  0) M J 0 [ (i + 1 /2)6] = J0 (X 6), wMch is  valid for large 
L, 0 «  1, and taking into account that c o s  0 »  l -0 2/2 ,w e  have

P i , - i / 2 ( 1 + A 2 / 2 ? 2 ) a J o ( T o A ) > T o = X / k .

The WKB form ulas (10 .2) give us

f - P 1. - k )  f  ( - X ,  - k )  -2i /(p0-p)dz
o 0 - To u

f(X ,-k ) f ( -X ,-k )

If X, k are large, we deduce approxim ately

00
2 i / ( p - f y ) dz

e

1 - e
( l - T 2/ z 2) l /2 

T 0

It fo llow s that

Putting T = z sin  <j>, dT = co s  <j>d<t>, we obtain [14]

T T J p (T A )  

i l  h  -  t 2/ / ) 1'2
dT

ir/2

' I
J q(zA sin  <j>) sin 0d<£ = sin (zA).

F inally we get the Born approxim ation:
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This resu lt is  independent o f s and can be obtained d irectly  from  KHURI’ s 
approach [2 ], We frankly admit that the above argument is  not rigorous. 
However, there is  no point in being ch oosy  about it, because rigorou s proofs 
exist abundantly and w hoever wants them has only to look  fo r  them in the 
quoted literatu re . H ere we show it just fo r  com pleteness.

What about the contribution o f the poles o f S(A, k) in the form ula (14.3)? 
They give extra contributions to f(s , t) o f the sort;

w here C n(s) are som e s-dependent constants. This contribution has a singu
la rity  when som e o f in(s) becom e in tegral. This happens on the upper im agi
nary k axis when Im  k > 0, accord in g  to our general d iscussion  in sections 4 
and 6, and these poles  represent bound states. f(s, t) is  th erefore  analytic 
in Im k > 0 with the exception  o f a finite num ber o f bound state poles. A ll 
these p rop erties  can be condensed into the single form ula:

where - s n > 0 a re  the binding en erg ies  o f the bound states, f(t) is  the Born 
approxim ation. Cn(t) are polynom ials in t. This result is  due to KHURI [2 ],

15. EXTENSIONS AND GENERALIZATION OF THE THEORY OF COMPLEX
ANGULAR MOMENTA

A num ber o f papers dealing with an interesting generalization and appli
cation o f the idea o f com plex  angular m om ents has appeared since the first 
draft o f these notes was firs t  published. Remaining in the fram e of potential 
scattering, one has tried  to do away with potentials bounded by a power 
A /r 2 ‘ £, e > 0 in the neighbourhood of the orig in . In particular, one has a l
low ed V(r) to have a strong repu lsive c o re  at sm all r . As is  w ell known, 
attractive c o r e s  requ ire  very  disturbing boundary conditions, and it is  gener
ally  agreed  that, i f  anything can be ca lled  physics in the fram e o f potential 
scattering, this has nothing to do with attractive co re s , which produce sy s 
tem s where there are fo r  instance no ground states but there are states of 
a rb itra r ily  low en erg ies .

With repu lsive  c o re s , how ever, FIVE L and others [18, 19, 20, 21] have 
shown that a pecu liar fact o ccu rs  in the angular momentum plane, that is, 
that the scattering amplitude can be continued in the Re X < 0 plane by virtue 
of a sim ple re fle ction  property :

n

e '^ S fX , k) = e iITXS(-A, k).
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This property  form ally  fo llow s from  (9. 18) when the Jost function is  allowed 
to be infinite. A s a m atter of fact, this is  in a way to be expected; because, 
i f  we try  to calcu late  f( X, k) with the usual perturbation expansion, we find 
diverging in tegra ls . The analyticity of (15. 1) m akes it natural to ask whether 
we can postulate it in field  theory. So far we have no evidence either in 
favour o f o r  against it apart from  its  log ica l sim plicity .

Other w ork has been ca rr ied  out on the many channel problem s, mainly 
by CHARAP and SQUIRES [21, 22 ]. They show that, as far as we are con 
cerned  with angular mom entum p rop erties , all previous resu lts extend in 
a straightforw ard m anner. P articu larly  interesting, however, is  the exten
sion o f C lebsch -G ordan  coe ffic ien ts  fo r  the com position  of angular momenta 
to com plex  values of the in d ices . I fe e l that we shall hear m ore o f these 
p rop erties  in the future as soon as the n ecess ity  o f studying m ore co m 
plicated  system s u rges us. In fact, just the interaction  o f a resonance with 
an elem entary p article  (if there are any) o r  with another resonance is  already 
confronting us with such a prob lem . They a lso  produce som e resu lts on 
the wave functions o f the sym m etrica l top, and this is  natural because they 
adopt in their second paper the helicity  form alism  of Jacob and W ick. In ci
dentally, p rop erties  of the many channel amplitudes as functions o f the 
energy and transm itted mom entum  w ere d iscu ssed  in [23].

P a rticu larly  in teresting in regard  to its im m ediate application to field 
theory  is  the s o -ca lle d  factorization  theorem  fo r  the many channel problem . 
This theorem  was firs t suggested by Gell-M ann and proved by Charap- 
Squires.
It states,that barring  accidenta l degeneracy, the residuum  o f the scattering 
amplitude m atrix at a pole in the angular mom entum is  a m atrix Qag of 
ch a ra cte r is t ics  zero ; that is ,a ll  m inors of the determinant o f the m atrix 
vanish. This im p lies  that ST2aß fa cto r izes  as

w here a ,ß  label the channels. This o f cou rse  happens fo r  resonances in the 
energy variab le .

Another type o f prob lem  which has excited  the phantasy o f many, me 
included, is  how to continue the amplitude fo r  Re X < 0. My personal phi
losophy is  in favour o f cou rse  o f the sym m etry (15.1), but there are som e 
who would like to see what happens fo r  ord inary  potentials. W ell, this p rob
lem  has been com plete ly  solved  by two papers by F ro issa rt and Mandelstam. 
F ro issa rt so lves  it fo r  a ll potentials, and he finds indeed a lot of singularities; 
in particular, there are singu larities about any tim e the analytic continuation 
o f the M ellin  tran sform  o f V;

(15.2)
o

is  singular in X. T here are other sou rces  o f singularities, but we stick  to 
(15. 2) just to exem plify . C learly  we can produce alm ost anything by a ju 
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d icious ch o ice  o f V(r), including a natural boundary of Re X = 0. M oreover, 
sm all variations in V do not correspon d  to sm all variations in M(X), and in 
fact M(X) is  com plete ly  unstable in Re X < 0. So no definite V-independent 
con clu sion  can be deduced from  this analysis. Mandelstam solves the Yukawa 
potentials in a very  elegant way, which is  used later by L ovelace in order to 
ca r ry  out n um erica l ca lcu lations on the tra je cto r ie s , that is , on the function 
X0 (s). The M andelstam  method reduces to the tim e-honoured Schroedinger 
method o f solv ing the hydrogen atom where the Yukawa potential reduces to 
a Coulom b potential.

N um erica l ca lcu lations have been perform ed  in large amounts, but un
fortunately much effort has been wasted in calculating tra jector ies  fo r  nega
tive Re X,where, as stated, their physical interpretation is  doubtful and 
where in fact they do cra zy  things. These calcu lations show a definite pattern 
in Re X > 0 which can be sketched as fo llow s: We know that fo r  negative rea l 
en erg ies  the tra je c to r ie s  lie  on the rea l axis and m ove forw ard with increasing 
en erg ies . W here E = 0,the pole leaves the rea l axis forw ard i f  in that point 
X > i , at I. angle i f  X = i (s waves) and backwards i f  X < £. The pole then 
eventually swings backw ards into the Re X < 0 region.

If we let the range m ' i o f  the Yukawa potential grow  to infinity, that is , 
we ca rry  out the transition  to Coulom b potential, the pole leaves the rea l 
axis at very  large  angular mom enta. T h erefore , it c r o s s e s  the integer 
values sev era l tim es, and many bound states a rise . The sw ing-back loop 
is  then v ery  large , and in the lim it m = 0 it plunges into infinity. We have 
then an infinite num ber o f bound states.

Fig. 5 

Swing back loop

APPENDIX I

In this appendix we deduce a ll the in tegra l equations appearing in these 
lectu re  notes. The schem e by which they can be derived  is  sum m arized in 
Table I.
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D d2 X2- 1/4 

dz2 z 2
d 2 . ^ I / ±  + k2
dz2 z2 d z 2

d2 _ A ! l i ^  + k2
dz2 z2

h V (z )-k 2 V(z) V ( z ) + ^ i V(z)

Behaviour 
o f tp at 
z ->z1 = 0

z X+l/2 z Xn/2

Behaviour 
o f ip at
Z -* Zj = °o

-ikze -ikze

\
z X+!/2 (2 /k jr (x + i)

X z!/2Jx (kz)
Äikze

e iir(X+i/2)/2
(itkz\i/2 CD 

Xlv~ j  H x (kz)

\
z -Wl/2

(2/k)’Xr (-X + l)  

Xz1/,2J (kz)
"ikze

e-i7T(X+i/2)/2
/Tkz\l/2 (2)

X ^ -g - )  Hx (kz)

w [ ^ 2] -2X -2X -2 ik - 2ik

Let us con sid er a d ifferen tia l equation o f this kind:

D(X, k, z)ip (X, k, z) = dz^ + g(X, k, z) <p(X, k, z) = h(X, k, z) ip(X, k, z).

(A l.l )

As is  w ell known, the in tegra l equation equivalent to (A 1.1) is

ip(X,k,z) = linup (X, k, z) + W[ \np^ ‘  k< zW X.k.z'Jdz',
zi

w here ipi and ip2 are  two independent solutions of the " fr e e "  equation

D(X, k, z)ip(X, k, z) = 0,

and
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APPENDIX II

H ere we want to give the m a jo r izations o f the in tegral equations deduced 
in App. I in o rd er  to deduce analytic properties  o f the functions <£(X, k, z) 
and f(X, k, z). The in tegra l equations we are dealing with can be written in 
this general fo rm :

Z

g(X, k, z) = g Q(X, k, z) + L(\, k, z ') g(X, k, z ')d z '. (A2.1)

Then

Z

|g(A, k, z)| ^ |g0(X, k, z)| + J  |L(A, k, z ')g(\ , k, z')dz'| .

A1

It is  usefu l to introduce the notations

|g0 (Xj k, z) | ^ M(A, k, z), G (A ,k ,z) =

in o rd e r  to get

z

IgCX, k ,  z ) |  s 1  +  J  |K(X, k ,  z ')  G(X, k ,  z ')d z '| ,

where

K(x- k- z ' ' -  L <x -

By using TITCHM ARSCH's lem m a [15], we obtain

Z

|g(X, k, z) | s  M(X, k, z) exP ^ J  |K (X> k. z ')dz
zi

Let us w rite the solution o f (A 2.1) in the follow ing way:

oo

g(X, k, z) = ^  gn(X, k, z).

n=0

Then T itch m a rsch ’ s lem m a a ssu res  the convergence o f this se r ie s  if  we 
put an upper bound to the in tegral:
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z

fi K(X, k, z ')d z ' . (A2.2)

The com m on  reg ion  o f analyticity o f a ll term s gn represen ts the analyticity 
dom ain o f g(X, k, z). We give in the follow ing the m ajorizations o f the integral 
(A 2.2) fo r  the in tegra l equations p rev iou sly  written:

k, z) = z
o .

A + l /2  X + 1 /2 '
' [ V ( z ')  - k 2]<MX, k, z ')d z ',

X- 1/2 . /\+ 1/2 '

|g0 (X, k, z) | = |zX+1/2| =  M(X, k, z),

>\+ 1/2 z<\+ 1/2 z \+ 1/2

z X- 1/2 z'X - l / 2

.'2X+ 1

2X
- z'\ s  2 z ', Re X s  0,

|v(z') - k*| = Hz'e ‘ 2 + N = Rz'e,e- 2

w here k is  fro m  any finite dom ain o f the k-plane, where the upper lim it o f 
k2 is  N. H and R are constants.

Z

fl K(A, k, z ')dz'| —  f l -  
1*1 J  L

A+1/2

2 I X I J  I z X+ 1/2

Z'X+ 1/2 z X+ 1/2

z X+ 1/2 Z'X - 1/2
V (z ') -k  dz'

R ■ ^  z 'e 2 z 'd z ' R
el X r

It is  now apparent that <f>(X, k, z) is  an in tegra l function o f k, holom orphic 
in the half-plane Re X > 0 (continuous fo r  Re X = 0).

'-z)_e -ik(z'- z) V (z ') f(X, k, z ')d z ',

|g. {K  k, z) | = | e '  z| s  M(X, k, z),

90 OO

j | K ( z ' ) d z ' |  = - - l _ y | e - ik(z ' - z ) | | e ik(z/- z) - e ' ik (z S z ) V (z ') +
,»2

dz ',

|l - e '2lk̂ z "z* I s  N = c o n s t . , Im k i  0.
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Then

2, Z

d z 's  Const.

T herefore , f(X, k, z) is  an in tegra l function of X, holom orphic in the half-plane 
Im  k < m /2  (continuous fo r  Im k = 0 ).

F o r  rea l X and Yukawian potentials this analyticity domain o f f(X, k, z) 
can be extended to Im  k < m /2 , and it is  continuous fo r  Im k = m /2 . This 
can be shown by treating the in tegra l equation

in a way s im ila r  to that used before .
This method cou ld  have been used to derive the game analytic properties 

fo r  the prim e derivatives o f the solutions considered .

We know from  standard textbooks the m ost im portant properties of 
Legendre functions. It is  w ell known that Legendre functions are particular 
ca se s  o f h ypergeom etric functions with singularities located at ± 1 and oo. 
T h ere fore ,th e  only singu larities o f P$(x) and Q t (x) lie  on ±1 o r  » .

F rom  the gen era l theory  o f Legendre equations one finds out at once 
that in  ± 1 the solutions either are regu lar o r  have a logarithm ic singu
la rity . It is  alw ays p oss ib le , how ever, to ch oose  the param eters in the general 
in tegra l o f the equations in such a way as to make the solution regular in 
a given point. In particular, P f (x) is  regu lar in x = 1 and P t (1) = 1 and Q t (x) 
is  regu lar at x = »  provided Re (c) + 1/2 ^ 0. Since f enters in the d iffe r
ential equation under the fo rm  0 ( P+ 1) and since the boundary conditions 
fo r  P j(x ) a re  ( -independent, it fo llow s from  a general theorem  o f Poincare 
that P{ (x) is  an entire function o f f fo r  x fixed  and that R j-i (x) = P £ (x) b e 
cau se  f(C + l) is  invariant under the substitution C—- f -1 .  A lso ,if X = ( + 1 /2 ,

P{ (z) has a cut between -1  and - « .  It is  otherw ise regular in z. Its asym p
totic  behaviour fo r  large  X is  given by

f(X, k, z) = f 0(X, k, z)

Z

APPENDIX III

P\ - l/i*} ~ p-x- i /^ x). (A 3.1)

P i - i f t l c o s h « ) «  . (A3.2)
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F o r  la rge  z P f (z) = 0 (z { ). Q t(z) is  instead defined through its behaviour 
fo r  large  z; that is ,

If Re f + 1 /2  > O.this is  the only solution which does so apart from  a m ulti
p lica tive  fa ctor . We have a lso  fo r  large  X

This relation  says th at-Q*. 1 / 2 (2') has poles in Re C < 0 at the negative half
in teger points. In these points the residuum  o f Q x - i / j i s  given by the c o r r e 
sponding P v i/2 . which turn out to be polynom ials. F rom  the pre-ex isting  
literature one knows already that Qx-1/2 is  regu lar in Re 0 > 0.

We have a lready listed  the sym m etries  arisin g  from  the reflection  
o r  1. But the L egendre equation turns out also to be sym m etric

under the exchange z -» = z. The consequences of this fact are

T here is  am biguity in taking e±i,r because Q v i /2(z) has a cut -1 a 2 a - 00.
It has to be rem arked  that,in en circ lin g  anticlockw ise both points ± 1, 
is  m ultiplied by the fa cto r  e -2™ ^ so  that Q x - i / iz ) 1/,2is  left unaffected. 

We a lso  have:

M ehler has found the follow ing in teresting  inversion  form ula when A is  im 
aginary (con ica l functions): If

(A 3.3)

Q Vi /2 (C0S h a) = (A 3.4)

Q j(z ) has s ingu larities in both 1 and -1 . M oreover,

Q-x-1 / 2^  = Q v i /2(z) + 7 rt§ ^  PV1A <z>- (A3.5)

(A3.6)

(A 3.7)

i f  A is  half integer, it red u ces sim ply to

Pf (-x ) = (- )* P f (x). (A3.8)

(A3.9)

then

0
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valid  under conditions s im ila r  to those of the F ou rier  transform . They can 
be w ritten as

i «

j* XdX tg ttX Px_1/2(f )P x_1/2 fa) = -2 i 6(S - rj). (A3.10)
-ioo

This is  the prototype o f many in tegrals to be derived. F rom  (A3.5) we have

ioo

I  X d X  P X - l / 2  ( 5 )  Q + X - l / 2 (,l) =  ± i 7 r 6 (?  - »»)• (A 3 - n >

-ioo

We notice  that easily

ioo

\ X d A Q  (z ) Q . , ( z j ......... Q , (zn) = 0, (A3.12)J + X-1/2 l '  +X.-1/2 2' +X-1 A n'
-ioo

w here a ll ± are  corre la ted .
(A 3.11) fo llow s from  the fact that the integrand is  analytic in the right 

(left) hand plane and it vanishes there at large d istances.
Take now H eine’ s form ula:

7 ( 2 ^ 1 )  Q t (?) P (rj) = 1/(1 - n). (A3.13)

which holds fo r  Im a > Im ß where co s  a = g, c o s ß  = rj. Take S, rj rea l > 1
and apply to it the W atson-Som m erfeld  transform . We get

i *

J x d A Q iW/!£ )  Pw /2  (n) tg -A  = i / ( ?  - n); (A3.14)
-iac

and using (A 3.5),

iK

J X d A Q x -!/2( ? )  Q-x -i/2(n) 3 r,)- (A3.15)
- i ®

We can have m ore  com plicated  identities as fo llow s: Take the addition theo
rem  fo r  L egendre functions ( 5 integer):

P c (x) P t (y) = P f (xy + V i - x 2Vi - y 2 cos  c)

+ 2 L ^ ^ r ü  + m + i) p ™(x) p ™(y) c o s m ^  (A 3 -16)
m = 1

Re x > 0; Re y > 0; | arg (x - 1) | < " ;  ] arg(y  - 1) | < ~.
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Let us integrate this on ^betw een 0 and x. A ll term s containing co s  m ip 
vanish,and we have

7T

Pf (x) P f (y) = j j  Pf (xy + V 1 - x 2 \fl - y2~ cos  ^)d (A 3.17)
o

Let

z = xy + \]l - x 2 \Jl - y 2 c o s  \p

be a new variab le  instead o f ip.
We have

j , j  j  1 dzdi// = —̂ dz = dz j—/. , = ■ —, —; ------d z  dz/dip / ,  2 . A 2 .
' y  1 - x Vl - y sin ^

but

sin ip = \J 1 - c o s 2i// = \/l - (z - xy) 2/ ( i  - x 2)( l  - y 2) 

= \ /l  - z 2 - x2 - y2 + 2xyz/ \/(l - x2)( l  - y 2)

so  that

d^/ = - d z /V l  - z2 - x2 - y2 + 2xyz.

It is  ea sily  seen that the lim its  o f integration in z are the points where
1 - z2 - x2 - y2 +2xyz van ishes. It fo llow s that.

P, M P, (y) ■ J f  p. (A3.1S)
V I  - z - x - y +2xyz

F rom  th is it is  evident that (x, y, z < 1 and real)
oo

y  (2P + 1) P (x) P (y) P (z)
f = 0

= [ 2 / it) 0 ( 1  - z2 - x 2 - y2 +  2xyz) / \ / 1 _ z2 - x2 - y2 + 2xyz 

= ( 2 / tt) K^x, y,  z) (A3 19)
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[eo

\ F (X) X d X
-ioo

Q (a) Q (ß)
±X-l/2 ±X-l/2

0 (B2.30)

«X -1 /sW  Q-X-l/2®) iiria-ß)1 (B2.31)

Q ±X-1/2(ö) P x-1/2(ß) ±inö(a-ß) (B2.32)

Q iX -l/2^) i (a -ß ) '1 (B2.33)

P X-l/2(®) F \ - l/ 2 ^ tS7rX - 2i6 (a-ß) (B2.34)

^ iX - l /2 ^  ^ ± X -l/2 ^  ^ ± X -i/2 ^ 0 (B2.35)

Q*x-1/2(«) < W ^  <Z±i-u p )

OO

±ijr^du K(u);a, ß) (u-y) 1 
l

(B2.36)

^±X-l/2^^ P X-l/2 ^ ±iirK(y;a, ß) (B2.37)

Q X-1/2^  Q x-1/2®) P X-1/2M i* jK (a ;0 ,7 ) -K (| 3 ;a ,7 ) j. (B2.38)

Q ±X-1/2(q) Q ±X-l/2(ß) P X-l/2('1')tS7rX

00

dco K(u; a, ß) (uj - y ) 1
l

(B2.39)

Q x-1/2(«) Q -x -i/2(ß) p x-i/2W tg r t
. C/K(„;a y)_K(„;ß,y)^ 

J\ u-p u-a J (B2.40)

Q ±x-1/2W  p x-1/2(ß) p x-i / 2M ± i K l (a J ß, y) (B2.41)

Q±X-l/2(a ) -^X-l/2^) ^ X 'l / 2 ^ ^ 1^ i H(a; ß,y) (B2.42)

P X -l/2 ^  P X -l/2 ^  P X-l/2^^t®7rX (2/ffi) K :  (a, ß,y) (B2.43)
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by definition . This rem arkable  form ula cam e to our knowledge through 
P ro f. G oldberger and does not seem  to appear anywhere in the literature.
It gen era lizes  the usual

oO

■£(2P + 1) Pc (x) P f (y) = 2 6 (x -y ) .  (A3.20)
0

We could  try  the W atson tran sform  d irectly  on (A 3.18),but it would be of 
no use because it does not con verge . A better way is  to m ultiply (A 3.18) 
by 1 / ( ?  - x) and integrate on x between ± 1. The resu lt is

£ ( 2 «  + l )  Q { (?) P { (y) P 4(z) = l M 2+ y + z 2 -2 y z C - 1. (A3.21)

t

(A 3.21) is  valid  a lso  when ? ,y ,  z are com plex,w hile in (A3.19) they had 
to be rea l. The only condition  is  that, i f  c o s  ß = y, c o s  y -■ z, co s  a = f, then 
I m ? >  Im ß + Im 7 . Applying to (A 3.21) the Watson transform ,w e get

i "

j V d X t g r X Q ^ G )  p x. 1/2(n) PX. 1/2(S)
-im

= i / v ? 2 + n + ?2 - 2 ?n i + 1 .

Using identity (A 3.11), (A 3.5) repeatedly, one a rr ives  at a large number of 
in tegra ls . We skip here a detailed p roo f and lim it ou rselves to giving a table 
o f them  (Table II). Here K x is  defined by (A 3:19) and

K (€; n, ?) = 0(5 -5>)/V?2+?2 + n2- 2̂ ?? - 1-,

w here f  > is  the la rgest root o f the denom inator;

H (?; ri, S) = K (? ;n , 5) - K (rj;5 ,5) - K (S ;i.n ).

Many other identities can be written, but they would take much m ore space 
and we re fe r  the reader to a com ing paper by V. de A lfaro, T. Regge and 
G. R ossetti to be published in Nuovo Cimento.
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DETERMINANT AL METHOD FOR COMPLEX 
ANGULAR MOMENTA IN POTENTIAL SCATTERING

B. W. LEE

UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, P a ., 
UNITED STATES OF AMERICA

In this paper I would like do d escr ib e  a form ulation  o f the com plex an
gular m om enta in potential scattering based on the L ippm ann-Schwinger 
in tegra l equation rather than on the Schrödinger d ifferential equation. This 
is  intended as a prelim in ary  to the paper by SAWYER [1] on the Regge poles 
and high energy lim its  in fie ld  theory  (B ethe-Salpeter am plitudes), where 
the in tegral form ulation  is  definitely  m ore  advantageous than the differential 
form ulation .

F or  in tegral £, the scattering wave function 'fe (k, r ) sa tisfies

where r< = min r and r ,  = max r .

The extension of the ¥c in com plex  i i s  then achieved sim ply by extending 
the su bscrip ts  i  o f the B e s s e l  functions into com plex  values..

The G reen 1 s function Gc(k; r, r ')  has the follow ing spectra l representa
tion [2]:

oo

(1)
o

where the (outgoing) G reen ’ s function Gj(k <\ r ')  is  defined as

Gf( k ; r , r ' )  = kj^kr^h1”  ( k r j

= i(7 r /2 )(r r ') 'i JH  ( k r j j g  (k r j . (2 )

J„(kr) J „ (k r ')_ L _ (3)

The partia l wave scattering amplitude Tf (k 'k ) is  defined by

Tf (k ',k ) = k ' j  r2dr j,(k ,r ) V ( r ) ’ü| (kr) 
o

(4)

3 3 1



332 B.W. LEE

and sa tisfies  the integral equation

oo tf

T f(k'k) = vf (k'k) + | f  ■tj - ^  v , ( k ; 0 T , (k‘,k). (5)
o

Vf (k', k) is  defined as

oo

V{ (k ',k ) = k' J  r 2dr j {(k 'r)Vf (r j j^ k r ) ,  (6)
o

and, fo r  a Yukawa potential

V (r) = g r "1 e ‘ ,Jr

it has the fo rm  [3]

f ” 00
_ l  J  i - " r JH  (kr) JH (k 'r)dr

0

= (g /2 ) ( l /k )Q f[(k2 + k'2 +M2)/2 k k ']. (7)

Since J„(z) behaves as

J ^ z j - t r ^  + i ) ) ’ 1 ( z / 2 f

fo r  sm all z, the integral

oo

J  dr e "Mr Jy(kr) Jv (k 'r) = ( l /W k k ')Q f [ (k2+.k'2 + v?)/2kk'] 
o

d iverges fo r  R e i /<  - \ , i . e .  Rei<C -1 . H ow ever, the right hand side is 
m erom orph ic in the whole com plex  Si plane and agrees with the left hand 
side fo r  Re Si > -1 , and, th ere fore , is  the analytic continuation o f the left 
hand side to the whole Si plane. The L egendre function o f the second kind 
Qi(z)  has p o les  at negative integer values o f Si. We re co rd  som e properties 
o f Qf (z).

Q" (z) T Z l  - 2 - T - f(y  + l) ,

Q ,(z ) + i ) { 2 z ) v' i / v (v  + f ) ,
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We shall concentrate upon the Yukawa potential for the tim e being; we 
shall con sid er the superposition  o f Yukawa potentials la ter. Eq. (5) can be 
written as in th is case

(8)

T his is  an in tegral equation fo r  T c (p)N/s) with s as a param eter, and the 
kernel is

K »(p ,q ;s ) = (g /? i-) [ l /(q 2-s )] Q I (p 2 + q2+ M2)/2 p q ] . (9)

-k

+

Fig.l

Equation (8) can a lso  be derived  m ore  sim ply by considering the full 
L ippm ann-Schwinger integral equation (F ig. 1):

_ 1 / d q 1___________ g
® (p - E)2 + /j2 + J  (2 ir )3 (q2 - k2) (p - q)2 + fjfiTTT(q, S)

By decom posing the potential

and the T -m a tr ix

T(p, k) = ( tt' / p ) L (2^+1) Tf(p, k) Pt (p. k),

and p erform in g  the angular integrations, we obtain Eq. (8) fo r  integer i.
The " c o r r e c t "  extension-to com plex  Jt is  achieved sim ply by regarding the 
su bscrip t i  o f Q c as com plex. The point of the firs t derivation of Eq. (8) is 
to show that the "prolongation " to the com plex  i  adopted is  indeed the same 
as that of R egge.

The form a l solution to Eq. (8) can be written as

Tj (p , n/s ) = [N{(pjN/s ) ] /[D t(s)]
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w here Df is  the Fredholm  determinant of the operator Kc(p, q; s)

Df (s) = det [6  - K { [p, q; (v/s)2 ] )
(p. q)

exp { t i ln U -K j) ]

oo
a  r  ds'

r , J {

= 1 -

ds'

2 7T J (s ' -  s Jn/sF 
0

>-Qf(l + A<2 /2 s ')

—  I ds" 2 / S*+ s "+  u‘ 
( s ' - s ) N/s 'J  (s"-s )v /s" 2 Js's" '

ds

o

and

N .(p , n/s ) = / B .(p, q) Dt(s),

_  , . _ /  g N _  /p 2 + q 2 + £ 2 \
B j(p, q) (̂ 2 q y i Q j(^ 2pq ) '

(10)

(11)

The above solution is  only form al in so far as we have not established the 
con vergence o f Df and Nf. To prove the convergence, we firs t transform  
the kernel of Eq. (9) into a sym m etric one K which w ill reproduce the same 
F redholm  determ inant:

K„(p, q; s) g 1 Qi
p2 + q2 + î2 \ 1

7T (p2 - s)i ^  y 2pq 

and make changes o f variab le  o f the form

P = f(x), q = f ( y ) ,

The kernel K c is  now to be rep laced  by Hc(x., y; s)

Hc(x, y; s) = [f '(x )P  K ,[f'(y )]2

the function f  is  to be so chosen that

(1) the range of integration  b ecom es finite,
(2) the kernel b e com es  bounded.

(q2- s) (12)
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Once the above two conditions are satisfied , the convergence of the d e ter
m inants! expansion fo llow s tr iv ia lly , H adam ard 's  lem m a being applicable.
A transform ation  which accom p lish es these ends is

x = ( l - ( l  + p)~£f ,  e > 0 .

One can show by a straightforw ard computation that Hc(x, y; s) is  bounded 
in the reg ion  Re i  > " | . It can be shown further that

lim  (D t-(s) - 1 } = 0 (1 / n/s ) . (13)
WI-» °°

It is  a lso  evident from  the construction , Eq. (10), that Df(s) is  analytic in 
the cut s-p lane, the cut running from  0 to *>. This shows that Dc(s) is  just 
the Jost function fo r  com plex  i  and the S -m atrix  can be written as

Sf(s) = exp [2i 6c (s)] = Df(s -  ie  )/Dl (s + ie  ).

The function has pol-es at negative integer values of £ . Since each 
term  in the determ inantal expansion of Dc is  m erom orph ic in i  fo r  Re £ > - 5 , 
D^(s) is  m erom orph ic  in £ in the sam e reg ion . At the firs t  glance, it may 
appear that the term  of o rd er g nin Dj (s) m ight have a pole of the type ( i + l ) " n 
and D {(s) m ight have an essentia l singularity at JL = 1. (S im ilar things can 
be said about other negative in tegers which how ever, are outside the proven 
dom ain o f m erom orphy .) This, how ever, is  not the case. The poles ofh igher 
ord e rs  can ce l. To show this m ore  exp licitly , we decom pose the kernel K£ 
into two parts:

K{ (p, q; s) = [ l / ( p 2 - s ) ] [ l / ( i + l ) ]  + R { (p, q; s)

w here R j is  analytic in the neighbourhood o f i  = -1 . Now D{ (s) may be written 
as

det (1 -  K {) = det (1 -  Kc+ Rc) det [ 1 - (1 -  Kc + R f )_1 R s] .

The f ir s t  determ inant can be evaluated exp licitly  since the kernel is sepa
rable:

det (1 -  K c + R t) = 1 - ( g /2 jr ) [ l / ( i+ l ) ]  f dp /(p 2-s )
\J0

= 1 -  ( i g /2s /s ) [ l / ( i  + 1 )].

The second determ inant is  analytic near £ = -1 and, th erefore , Df (s) has a 
s im ple pole  at Jt = - 1 .

Since the Df(s) is convergent fo r  all values of g, we may try to compute 
the z e ro e s  of Ds(s) (Regge tra je c to r ie s ) from  the low est approxim ation to 
Df (s)

D ! "  o f t ! } ®
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To obtain the expression  asym ptotic in s fo r  the leading (right-m ost) Regge 
tra je cto ry , we note

so that in ord er  to satisfy  D f (s) = 0, i  must approach to -1 in this lim it 
( |s | oo ). Separating the singular and non-singular parts of Q p at £ = - 1 , we 
obtain

(s) = 1 -  ( i g /2 /s )  [ l / ( i  + l ) ]  + p ( s , i )

w here p ( s , £ )  is  analytic in £ in the neighbourhood of I = -1 . T herefore , set
ting (s) = 0, we get

£ = -1 + ( i g / 2 / s ) [ l / ( l  + p ( M ) ) ] .  (14)

Hence to ord er  g, the R egge tra jectory  is  given by

i ' ( s )  = -1 + (ig /2s/i) (15)

sin ce  p (s, £) contributes to ord er  g2 because o f its regu larity  in £.  The 
expansion o f the £'{s) in g is  apparently valid except near the threshold, 
s = 0. A little  m ore  detailed investigation shows that the above way of ex 
pansion is  rea lly  an expansion in the param eters like {g/Js) and (ß/\[s) and
n e ce ssa r ily  fa ils  near s = 0. F rom  works of L ovelace  and M asson, and 
others, we know that fo r  attractive potentials at any rate i ( s )  reaches at 
least to the right of at s = 0 and th is is  the sou rce  of the difficulty a sso 
ciated  with expanding £ (s) near - 1  in pow ers of g.

We w ill b r ie fly  con sider the case of superposition  of Yukawa potentials:

V (r) = [  d ß 2 a (ß 2 ) e ^ l .  (16)
u r
Po

The m ost in teresting case  is

lim  o ( ß 2 ) = Const. X ( 1 7 )

correspon d in g  to the potentials of the form  ( l / r 1+n) at the origin.

The kernel fo r  the superposition-of the Yukawa potentials is

K 6( p , q ; s )  = - ^ / d ^ ff(y 2 ) Q 6 ( P _ L a _ ± J L )  (18)

Mo
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and fo r  the sp ectra l function of Eq. (17), we see that there is a pole at 
£ = - 1  +r), and the leading R egge pole  w ill begin at i  = - 1  + 17, at s = ± oo . 
F or  »7 = 1, the in tegra l in Eq. (18) no longer con verges. If rj = 1, the p o 
tential o f Eq. (16) w ill have the r ' 2 singularity at the origin , and we know 
that there is  a branch cut in the i-p la n e  in this case . F or rj <  0, the first 
R egge tra je cto ry  begins at i  = -1 .

F inally, I w ish to rdm ark b r ie fly  on the R egge behaviour o f the pertu r
bation se r ie s . The low est ord er  term  is

as one can easily  check from  the exact second ord er calculation . Using a 
m athem atical induction, we can show that the nth order term  goes as 
asym ptotically  as

m
g/ (t -n 2 ) -  g /t .

The second  ord er  term  goes as, fo r  large  t,

g2( i g /2 '/s ) (lnt/t)

f l / (n - l ) !J  g [ig /2 N/s J" -1 (In" ’ 1 t /t ] .

So, if  we sum the m ost singular term s o f the se r ie s  we obtain

= (g /t  e x p ( ig /2 v/s) Int = gt[ ‘ 1 + (‘g/2 'ä)]

and we again obtain

£(1) (s) = - 1 + ( i g /2 \/s).
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REGGE POLES IN FIELD THEORY

R. SAWYER

UNIVERSITY OF WISCONSIN, M ADISON, WIS. , 
UNITED STATES OF AMERICA

The investigation  o f  the p rop erties  o f fie ld  theoretic scattering am pli
tudes in the com p lex  angular m om entum  plane probably can be approached 
at present only within the fram ew ork  o f an approxim ation schem e. It is 
doubtful whether general con siderations can provide much inform ation on 
the nature and location  o f the singu larities in the j?-plane, though the a s 
sumption o f a M andelstam  representation  prov ides a certain  domain of ana
ly t ic ity . The present paper is  con cern ed  with the p rop erties  in the i-p la n e  
o f the B ethe-Salpeter scattering  amplitude in the ladder approxim ation, and 
is  based  on w ork  by B .W . L ee  and the author. This amplitude, though c lo s e 
ly related  to  a potential scattering am plitude, has severa l features of fie ld  
theory  which a re  not contained in potential scattering :

(aj 1+ is  fu lly  re la tiv istic  ;
(b) 1+ sa tis fies  a unitary relation  to which states of m ore  than two p a r 

t ic le s  contribute, i . e . ,  it takes account of possib ility  o f particle  
p rodu ction ;

(c) The c ro s s e d  ladder graphs represent a set of Feynman diagram s 
fo r  another scattering p ro ce s s , so  that one may hope to interpret 
the R egge lim it, t o o ,  as the high-energy lim it o f a genuine scat
terin g  am plitude.

In te rm s o f graphs, our aim  is  to d iscu ss  the behaviour in the i-p lane 
o f the sum shown in F ig . 1

Fig.l

and to  investigate the connection  with the high-energy lim it o f the graphs 
shown in F ig . 2

A

4  A
Fig. 2

+ . . .
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F o r  sim plicity  we con sid er  the scattering o f two J = 0 bosons of m ass 
m  through exchanges o f a sca la r  boson  o f m ass ß . We w rite the relevant 
B ethe-Salpeter equation fo r  the scattering amplitude in momentum space 
a s :

< p, u |T(s)| j? ,V >  = <T$,u |b | ? ;u '>

+ j 0 , u  | T (s )| ? " ,u " > < ^ " ,U"|K (s)|-?',U'> d 3p "d o" ( 1 )

w here

< P ,u |b |p 'ju'>  = [g 2/  (2 tt)4] [ ( p - p ') 2 + M2 - i e  -(u -w ')2]-1,

( P , u |k (s )| = - iF '^ P .u , s )< p ,u , Ib Ip ' .u ' ) ,

F (p ,u , s) = [ j?2+ m2 - (n/ s/ 2 + u )2] [ ff2 + m 2 - (*/s/2-w)2] .

T hese  equations define a T m atrix  o ff the m ass shell, s is  the square of 
the tota l energy in the c e n tre -o f -m a s s  system . The solution to E q .( l )  fo r  
ph ysica l scattering is  to  be evaluated at

u = id' = 0,

p=Uf * /Is /4) -  m2, 

p =Uin/(s / 4) - m2.

The partia l wave p ro jection  o f Eq. (1) is of the form

T ,.(s )-B | + T | (s )K | (s ) (2)

w here

< p ,u  | B j p', w'>= [g 2/ (27r)3] Qf {[p 2 + p'2 V  - (u -u ')2] /2  p p '} ,  

< P , w | k c ( s ) |  p 'u '>  = -  i F _1(p, u, s )< p ,u , |Bt| p 'u '> .

O perator products are defined by

/
oo _+oo

dp 'J dw*<p,u| A|p', u '> < p ',u iB | p ;u ') .
o

W e m ake the extension to n on -in tegra l i  from  Eq. (2). We note that in 
the iteration  solution to Eq. (2) £ enters only in the function Qt.T h e function 
Q t is  analytic in the entire i-p la n e  except fo r  fixed poles at the negative inte
g e rs . W herever the iteration  solution con verges we may im m ediately con 
clude that the scattering amplitude is  analytic in the I  plane. The Regge 
po les , o f cou rse , re fle c t  the d ivergen ce  of this s e r ie s . T o prove a domain 
o f m erom orphy  in the j?-plane we use instead the developm ent of the solution 
o f E q. (2) as the ratio o f two se r ie s  via the Fredholm  m ethod. We w rite f o r 
m ally
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T{ = B t(l-K c)-i (3)

and use the identity

(1 -K j) '1 = -(ö /öK T jD f/D f

w here

Dt = D i + (1 -K c) = exp[Tr lo g ( l  -K {)]. (4)

T his w ill be a usefu l representation  w h erever the perturbation se r ie s  fo r  
D{ con v erg es . A s in the ca se  o f potential scattering, it can be shown that 
fo r  Re £ > - 3 /2  the in tegrals o f  the form  T r  K ( in the expansion fo r  D converge 
and a lso  that the perturbation se r ie s  fo r  D (and fo r  N) con verges absolutely. 
The p roo f, which is  somewhat lengthy and w ill not be presented here, in 
v o lv es  finding changes o f variab le  which reduce the integral equation (3) to 
one with a bounded kernel and a fin ite range of integration. Standard methods 
are  now applicable to show the con vergence  of Nt and Dt in this region,
Re £ > - 3 / 2 .

It fo llow s that T t is  m erom orph ic in the half-p lane Re £ > - 3 /2 . The 
R egge po les  a re  z e ro s  o f Dt. Note that Nt and Dc may have fixed singu lari
t ie s  at £ ■ - 1. T h e s e  are  both, in fact, sim ple p o les . The p roo f is  analogous 
to that in the ca se  of potential scattering.

B e fore  proceed in g  to the R egge tra je c to r ie s  and to their applications, 
we note som e p rop erties  o f our N D '1 fa ctoriza tion . F irs t we d iscu ss the 
sin gu larities of D{ as a function o f s.

A  typ ica l tra ce  in the evaluation o f Dc has the f o r m :

a transform ation , fo llow ing  W ick , which considerably  sim plifies the problem . 
In th is reg ion  the z e ro s  of F (p , u , s) in the u plane (giving the m asses a nega
tive im aginary part) a re  loca ted  as shown in F ig .3.

•dp2du2F ‘ 1(p2,u 2, s) . . .

F irs t  we consid< i may perform

x x
x x

Fig. 3
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The W ick  tr ick  is  now to rotate a ll the uj integration contours simultaneously 
cou nterclock w ise  into the im aginary ax is. No singularities of the Q{ functions 
in (5) are  encountered in th is rotation. Now we look  at the new denominators 
in E q. (5), F(pj, iu j, s) and see that fo r  rea l p, and they are non-vanishing 
in the region| Re Js|<2m . Dt(s) is  th ere fore  fr e e  of singularities in this 
region  o f the s -p la n e . W e anticipate that Df (s) has only the right hand cut 
beginning at s=  4 m2. W e must still show, how ever, that no spurious singu
la r it ie s  at com plex  s w ere  introduced by our N D 'i factorization . This can 
be shown by som e further d istortions of contour which w ill not be gone into 
here .

F o r  in tegra l S., Tj (s) is  defined by Eq. (1) with a left-hand cut beginning 
at s = 4 m 2-k 2 and a right-hand cut beginning at s = 4 m 2, with branch points 
at the production  thresholds s=  (2m +n k )2. F o r  non-in tegral S. there is  a 
fu rther kinem atic cut which can be renewed by factoring  out a fa ctor (s -4 m 2)*. 
Let us define n {(s) by N£(s )*  (s -4  m2)4n{ (s) and investigate the singularities 
o f n j(s ) . What can be shown is  that n j(s) has no cut from  s = 4m 2 to the first 
in elastic  threshold , s=  (2m  + k)2. Thus nf(s) has a left hand cut and a right 
hand cut beginning from  s — (2 m + k )2.T h e p roo f can be done in a com pact 
notation by proving the relation

[D { (s - i e ) ] /[D { (s + ie  )] = exp[2  i 6 (s, i ) ]

in the reg ion  4 m <  s < (2  m +k)2.
Using a property  o f determ inants we w r it e :

rl - K t ( s - i e )

(6)

Det
1 - K t(s  + ie )

Det { l  + [ K * ( s + ie ) - K t( s - i e ) ]  [ 1 - K{ (s+i

In the region  4 m2< s < (2 m +k)2 C utkosky's method fo r  evaluating d iscon 
tinuities is  equivalent to the rep la cem en t:

< p ,u | K { (s + ie  ) -K t(s -ie )| p ',u > '>

[g 2/i(27r)3]6[ p 2+ m 2 -  (w - ( l /2 )» /s )2]6[p2 + m 2 - (u - ( l /2 ) s/s)]

q  j~p2 + p'2 + k 2-  ( u -<j ')2~
2 p p ’ (8)

We may then w rite  Eq. (7) as

D ( s - i e ) / D ( s + i e )  = l  + *7*Js[(l/4 )s-ir?11 < p, 0 1 B£(1 - K j) '1! p, 0 > (9)

w here the infinite determ inant w as evaluated by noting that aside from  the 
ones along the diagonal, there is  only one non-vanishing colum n of the m atrix 
o f which the determ inant is  being taken, as indicated by the 6-functions in 
Eq. (8). With our definitions the right hand side of the Eq. (9) is  the S m atrix 
elem ent. Thus E q. (6) is  proved  and it is  fu rtherm ore c lea r  that nt(s) has 
no cut beginning at s = 4 m 2.
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The R egge tra je c to r ie s  a re  given by the roots of the function

D (i, s) =  D j(s).

The two prop erties  of the tra je c to r ie s  which we shall now d iscuss are :
(1) The asym ptote (lim  s _> oo) of the leading tr a je c to r y ;
(2) The developm ent o f the tra je cto ry , a (s), in a perturbation se r ie s .
W e shall need two prop erties  o f Df(s) which can be p ro v e d :
(a) D p(s) has a sim ple pole at i  ■ -1 . This fo llow s, as in potential sca t

terin g , from  the dependence o f the singular (at £ = - l )p a r t  o f the kernel,
Kc, on only the firs t  in d ices :

<P<u lKsinglp'*u '> = - t i /(-£+ l ) ] F -1(p ,u , s)

(b) F o r  £ ^=-1, Dc — > 1 as s — ) oo with the rem ainder term s ap
proaching z e ro  at least as fast as s"1/ 2 . This fo llow s from  the transform ed 
fo rm  o f the kernel, R,c, which we re fe rre d  to above, in which K c is  bounded 
and the range of in d ices fin ite . We find, fo r  this new kernel, K{<(lA/s)n, 
w here n is  som e finite constant. The details are in [1] .

Now Dc(s) may be w ritten in the form

D( (s) = l + [ f ( s ) / ( i + l ) ] + g ( s , i )  (10)

w here f(s ) and g(s, i)ap proach  z e ro  at infinite s and g(s, i ) i s  regular in £ 
fo r  Re £ > - 3 / 2 .  F o r  la rge  s there may be a root, Df (s) = 0, only near i =  -1 . 
The R egger tra jectory  is  given by the solution to

£ = -  l*f(s) - g (s , £)(£ + 1) (11)

and the asym ptote is  c lea r ly  £ = -1 .
The low est o rd er  R egge tra jectory  fo llow s from  computing the lowest 

ord er  f(s)(w hich  we ca ll f j ( s ) ) in Eq. (10). Using the expansion o f Dc( s ) :

D , < s ) . l - T r K . <T r K ^ -T- ^ * . . .

we see that [ f i ( s ) / ( i  +1)] is  given by the singular part of -T r  K,

r i g 2 r  dpdu g2 r _ds|______'
" T rK sing (2 i )3( i  + l ) j F ( p , i 1), s) 8 ir2(£ +1) J (s '-S -ie )N/s '(s '-4  m^

T h ere fo re  a ( s) is  given in low est ord er  by :

<j2 P d s ' , , '
a  s = - l + ^ - ö  : o+ 0(g4) . . .  128 7T2 J ( s '- s - ie )  4 m2 vs

T his is  a valid expansion fo r  sufficiently weak coupling except near threshold, 
s = 4 m2. It is  straightforw ard but tedious to w ork out the next order in the 
expansion of a ( s) and we have not done it. In the next ord er the form ula 
should show som e effect o f the production  threshold .
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Now we shall use our firs t  o rd e r  expression  fo r a ( s )  to determ ine the 
asym ptotic behaviour of the sum of the graphs (F ig . 4) in the Ac3 theoryr

V
+ +

A T T

Fig. 4

T o be able to m ake th is connection  we need, of cou rse , to open up the Watson 
contour as in the w ork o f R egge. That is , we need convergence o f an inte
gra l along a line Re £ = £o and the vanishing o f an integral along an infinite 
s e m ic ir c le . F o r  our amplitude we have proved  these properties  only for 
£g> -1 /2 ,  but we shall need them fo r  £Q slightly le s s  than -1 . So let us sim p- 
’ y  assum e fo r  the mom ent that everything is  a ll right. In addition we require 
a m od ification  o f the R egge form ula, due to M andelstam , to take account 
o f p o le s  to the left o f  £ = -1 /2 .  The outcom e is  sim ply that the leading asym p
totic  term  in the sum o f the above graphs is  sim ply :

T ( s , t ) i= r fß (t )s ‘ w (13)
As

w here T (s , t) is  the T -m atrix  elem ent fo r  the above "c r o s s e d  ladder graphs",
o (t) is  the tra je cto ry  we just com puted (s and t w ere interchanged when the
graphs w ere  c ro s s e d ).

We w r i t e :

a(t)= -1 + g 2o1(t) +g4az(t) + . . .  

ß(t) = g 2ß1(t )+g«ß2(t) + . . .

A ccord in g  to ou r prev iou s calcu lation  :

(t) "  8^2 /  ( t '- t )J t 'f -4 m 4 )  ' (14)
4 m2

It turns out that the low est o rd er  ß is  given b y ;

ß1 = (2 7r)-4

Now expanding E q. (13) in pow ers o f g 2we obtain:

T (s , t) = + e %  <n(t)iog s + g l M i  + O(g0) (15)
$ —> oo s s s

Note that the fourth o rd er  term  which goes as log  s /s 'c a n b e  computed exact
ly  in te rm s o f the second  ord er  a and ß.  W e have checked this connection
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by calcu lating the logs  term  in the fourth ord er  box diagram  d irectly . We 
see a lso  the te rm  in the second  o rd er  diagram  of o rd er g2n(log s)ns"1 can 
a lso  be given in te rm s o f the low est o rd er  ß1 and o 1 functions. It is  sim ply :

g 2nß1(a 1(t))n (log s)n/ s .

Thus it is  seen that the R egge idea coupled with perturbation theory provides 
a very  pow erfu l technique fo r  sum m ing the m ost divergent parts (as s-*  oo) 
o f sets of Feynm an graphs. This technique may be useful in fie ld  theory 
whether the entire scattering am plitude is  an analytic function of £ o r  not.

One tr iv ia l generalization  o f our m odel is  the inclusion of a m ass sp e c 
trum  fo r  the exchanged p a rtic le . W e con sid er a scattering amplitude derived 
fro m  rep lacing  B c in Eq. (2) by :

The in teresting  change in the previous resu lts o ccu rs  when a(y), the m ass 
sp ectra l function, goes to z e r o  m ore  slow ly  than y 2. Let us assum e a b e 
haviour :

cr(y) — » y 'i

as

y  — » oo

w here

0 < rj < 1.

The asym ptote of the leading R egge tra jectory  is  now, £ = - p. This is  the 
generalization  o f a resu lt fo r  potential scattering with a potential given b y :

r"°e ‘ vyr 
V (r) = /  ^  dy cr(y).

T here  is  one d if fe r e n c e ; our method in potential scattering fa ils  when 
n s  + 1 /2 , that is , when the potential is  m ore  singular than r ' 2at the origin . 
In the re la tiv is t ic  theory  a ll rj > 0 a re  a llow ed. In re la tiv istic  theory, th ere
fo re , the asym ptote may m ove as fa r  to the right as £ = 0 in the lim it rj _► 0. 
This would be the ca se  fo r  the Xcp4.theory, in the sum of the diagram s shown 
in F ig . 5.
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H ere the b a sic  bubble exchange has a m ass spectra l function which tends 
to a constant at infinity.

W e see that the asym ptotes o f the tra je cto r ie s  are extrem ely dependent 
on the details o f the short range fo r c e . It is  this that m akes me pessim istic  
about the p ossib ility  o f doing calcu lations of tra je cto r ie s  in a rea listic  m odel 
using present day techniques. One surely must include, in addition to e x 
change o f p ions, nucleon exchanges, hyperon exchanges and exchanges of 
everything e lse  if one sets out to calcu late the asym ptotic parts of the tra 
je c to r ie s  (which would be usefu l in interpreting high-energy scattering at 
la rge  m om entum  tra n s fe rs ). Is there, n evertheless, a reason  why the long 
range term s alone should dom inate the tra je c to r ie s  near a = 0 (the diffraction 
reg ion )? Probably there is  not. Note that what I am d iscussing here is  not

Fig. 6

p erip h era lism . In the h igh -energy diagram  shown in F ig . 6, it is  not a 
question o f  what the m a sses  o f the horizontal lines should be (the peripheral 
question). It is  rather a question o f whether the im m ensely m assive in ter
m ediate state, (m i, m 2 ..........m n), should con sist o f many particles of low
m ass o r  o f som ewhat few er p a rtic les , som e of which are quite m assive.
The f ir s t  poss ib ility  corresp on d s to considering only the long range fo rce  in 
the c ro sse d  (ladder) channel; the second to including shorter range effects 
as w ell.
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INTRODUCTION

A great deal o f in terest, both theoretica l and experim ental, has been 
devoted recen tly  to the study o f h igh -energy interactions. This interest has 
been greatly  stim ulated by the valuable application o f the resu lts obtained 
by R egge in potential scattering to h igh -energy e lastic scattering. This 
paper w ill d iscu ss  an approach to h igh -energy physics which is  to som e 
extent com plem entary to the one based  on Regge poles and has the foUowing 
features:

(1) It is  based  on a m odel fo r  h igh -energy interactions obtained as the 
natural generalization  o f the peripheral m odel which has been su ccessfu l 
in understanding many features o f in teractions between 1 ~  3 GeV. This 
m odel d escr ib e s  the h igh -energy co llis ion s  as the resu lt of the combination 
o f a la rg e  num ber o f  low -en ergy  in teractions.

(2) The techniques used to evaluate the asym ptotic lim its are based 
on the d irect study o f the lin ear integral equations of the m odel and do not 
involve the use o f analytic continuation in the angular momentum explicitly .

(3) The m odel allow s an estim ate of the main features both o f e lastic 
d iffraction  scattering and o f m ultiple production . The resu lts concerning 
e lastic  scattering  are c lo se ly  analogous to the ones obtained on the basis 
o f R egge p o le s .

In o rd er  to explain the m athem atical techniques in the sim plest possib le  
m anner we have d iscu ssed  in detail (Section 1) their application to potential 
scattering which is  a very  useful "la b ora tory " fo r  theoretica l physicists. 
Section 2 deals with the pred iction  o f the m odel fo r  e lastic  d iffraction  sca tter
ing and with the re la tiv is t ic  tw o-body equation. Finally in section  3 the d if
ferent p red iction s concern ing m ultiple production are d iscussed .

The paper by Stroffolin i* is  com plem entary to the present one since 
the m athem atical techniques which can be used in ord er  to evaluate the d if
ferent " tr a je c to r ie s "  both in potential scattering and in fie ld  theory are d is 
cu ssed  th ere .

1. POTEN TIAL SCATTERING

We shall con sid er the case  o f potential scattering firs t . C onsider the 
transition  m atrix  elem ent 0 (1 ? ,TcQ) satisfying the L ippm ann-Schwinger equa
tion

*  These proceedings.

347



$ (k ,k 0) = V(k, k „) + - i -3  f  V(k, k' ) — <&(k'  k0)d3k' (1.1)
(2 „ ) J k -k 2-irj

w here V(fc, Ic0) rep resen ts  the F ou rier  transform  of the static potential. We 
r e c a ll  that

$(k , iT0)=<k|v|50 >

w here |iT)>is an eigenstate of the fr e e  Hamiltonian and pc0 >̂an eigenstate 
o f the total Ham iltonian corresponding  to m om enta £  and ko respectively .
We shall define:

u = k 2, s = k 2, t = - (5  - 5 0)2. (1.3)

On the m ass shell, i. e. fo r  |iT|2= pc0 |2, we obtain the usual scattering am pli
tude

f(k2c o s 0 )  = $£|2=|--|2 (iT0,ic). (1.4)

A ssum e now that the potential V is  given by a superposition  o f Yukawa p o
tentials:

348 S. FUBINI

v { K k l - J  (1.5)
t 0 + (k  - k ' )

We in sert in the right-hand side o f Eq. (1 .1) the follow ing "A nsatz":

_  _  , p <P(k2, k2 t ')d t ' r <p(u, s , t ') d t '
* f c k 0) “ 7 j  --------^ T = - J — ------------- • (1-6)

t ' + (k - k 0) t ' - t

W e in sert E qs. (1 .5) and (1 .6) into Eq. (1.1). The integral on d3k ' can be 
separated into a rad ia l and an angular part giving

JJJdt0v(t 0)dt'du'cp (u ', t' ,  s )J- d3k/ 6(k '2-u)

[ t 0 + ( f ? - K ') 2 ] [ t ' + (ic '-5o )2]

The in tegra l on d3k ' can be perform ed  by standard techniques giving
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w here

and

T,  e U t - s F t ' - s T t o ) e (A )
K =  7 a (1.7)

t0 + u + u ' t+  s + u

A = tfl + u + u ' u '
2

t + s + u t '  + s ' + u'

t + s + u
(1.8)

so  that we finally  get the fo llow ing integral equation fo r  the spectra l function 
cp:

<P (u ,t)»v(t )+Jf Q(u, t; u ', t ')  (1.9)
U U  U  - S  - 1 TJ

w here

Q (u ,t ;u ', t ')  = - —  MC (u, t ;u 't ' ; t  )v (t  )dt . (1.10)
87r2

Let us now d iscu ss  the p rop erties  o f Eq. (1.9)(which has been obtained 
from  (1 .1) through the transform ation  (1.6)).

We see that the ro le  o f the kernel K is  essentia lly  to fix , (through the 
6 functions) the boundaries o f the phase space in which the integration v a r i
ables t , u  can vary , fo r  given values o f t and u. In particu lar, the equation 
A = 0 is  a quadratic equation in u , w hose solutions are the minimum and 
m axim um  value which u ' can attain fo r  fixed  t, u and t '.

The lim itation  \ /t )« /t0 + s /t ' has a very  im portant effect on the structure 
o f the equation. If we so lve  Eq. (1. 9) by m eans o f an iteration procedure:

cp(u,t) = ^ t p n(u ,t), (1.11)
n

<P0 (t) = v(t), (1. 1 2 )

V i W =J J  Ö ,(u ,t ;u 't / )<pi(u ' , t / )du/ dt/ . (1 .12.a)
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This lim itation  has the consequence that fo r  each finite value of t only a 
finite num ber <Pn w ill be different from  zero . So fo r  each finite t the p e r 
turbation expansion fo r  <P(t) not only con verges but also stops after a finite 
num ber o f te rm s. This might at fir s t  look rather paradoxical, since we 
know that the perturbation se r ie s  fo r  the transition  m atrix element

is  indeed divergent in all ca ses  in which bound states are present. The re a 
son of this paradox is  easy to understand: in the spectra l integral (1.13) 
the integration goes until infinity and the num ber o f <pn also becom es infinite. 
This m eans that fo r  fin ite values o f t the perturbation se r ie s  fo r  $ (t) con 
tains an infinite num ber o f term s.

T hese argum ents suggest that the behaviour o f <p(t) when t-*» must be 
very  in teresting  and is  in som e way connected with the p resen ce  of bound 
states o r  reson an ces, since it is  the only p oss ib le  cause fo r  the divergence 
o f the perturbation  se r ie s  o f the S m atrix . We shall th erefore  concentrate 
our attention on the prob lem  o f finding the lim it o f

when t-» oo and the num ber o f te rm s o f the se r ie s  likew ise goes to infinity.
It w ill be seen in the next section  that the re la tiv istic  analogues of the 

<Pn(t) have a very  im portant physica l meaning. In ord er to obtain this asym p
totic  lim it we con sid er the fo rm  taken from  E qs. (1.7), (1.8), (1.9) and (1 .10) 
fo r  la rg e  values of t. F irs t  o f all we note that, fo r  convergent form s of the 
potential (1.5), the integration on u ' is  dominated by values o f u ' o f the order 
o f ß2; this can be checked d irectly  on each term  o f the iteration se r ie s . So, 
fo r  very  la rg e  values o f t we can d isregard  u, u ' and s as com pared to t in 
the determ inant A. We thus get fo r  A the sim plified  form :

A =» -

u

tp + u + u ' 
2

t
2

to + u + u'

2

t
2

2

Note that we have not d isregarded  t' as com pared to t since the ratio x = t '/ t  
can indeed be o f the ord er  o f 1. M oreover, we have assum ed the spectral 
function v(t) to tend to z e ro  fo r  t (-* » ( in  ord er to give a convergent integral 
(1 .5)) so that fo r  la rge  t the contribution o f this term  to the r . h. s o f Eq. (1.9) 
w ill be neg lig ib le . Thus we are led  to the follow ing asym ptotic equation:
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(1.15)

w here

Q J x ,  u, u )  = ~ ~ f '
0 [u ' - u x - t 0x / ( l  - x ) ] r ( t 0)dt0

(1.16)
87r2 ( 1  - X ^ t u '  - u x - t 0x / ( l  - x )]1/2

and where x = t ' / t .  The asym ptotic equation [E q . (1.15)] sa tisfies  a very  
im portant p roperty ; it is  invariant under the dilatation

This p roperty  w ill be com m on to a ll the asym ptotic equations we shall be 
con siderin g  and enables us to obtain a solution o f (1. 15) in the form :

Equation (1.19) is  an hom ogeneous linear integral equation o f the 
Fredholm  kind giving r is e  to an eigenvalue problem . F or a fixed value’ of 
the total energy s,the equation is  satisfied  only in correspondence with well 
defined values of a . F or s > 0, i. e. in the scattering region , the presence of 
the u ' - s - irj denom inator w ill lead to com plex  values of a.  F or s < 0  the 
denom inator u - s cannot vanish and so  the eigenvalues w ill be rea l. The 
eigenvalue o f a having the la rgest rea l part is  o f particular interest since 
th is g ives r is e  to the dom inating term  as t -> oo.

Let us sum m arize the resu lts  obtained. We have started from  the usual 
Lippm an-Schw inger equation [E q . (1. 1)] and we have transform ed it into 
Eq. (1. 9) fo r  the spectra l function ? (t ) . We have then considered  the " r e 
duced" [E q . (1. 15)] obtained by taking the la rge  t lim it on Eq. (1.9). Finally 
the solution  o f Eq. (1.15) leads to the asym ptotic form  (1 .18 ) where the 
fundamental exponent a  is  determ ined by the hom ogeneous equation ( 1 .2 0 ).

t -> Const, t, 

t'-> Const, t'. (1.17)

cp (u ,t)= fa(u)t
a

(1.18)

w here fa (u) sa tis fies  the equation

(1 .19)

w here

0 [u ' - u x - t Qx / ( l  -x ) ]
---------- ------------------------- (1 .20)
[u ' - u x - t 0x / ( l  -  x )]1/2
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We wish to em phasize the heuristic ch aracter o f the derivation of 
Eq. (1.18) s in ce  the p roced u re  o f taking the asym ptotic form  of an equation 
in o rd er  to obtain the asym ptotic solution., although frequently used by physi
c is ts , is  not a r ig orou s  one. We shall, how ever, show that the use of this 
p roced u re  is  indeed justified  in our ca se  and that E qs. (1.18) and (1. 19) lead 
to the co r r e c t  asym ptotic lim it o f <P(t). We shall now turn to the problem  of 
determ ining the asym ptotic lim it of the scattering amplitude 4> itself, r e 
lated to <P by the d isp ersion  integral (1. 6). F or  convergence reasons this 
d isp ers ion  relation  has actually to be written down with m subtractions, 
w here m  is  the m inim um  integer greater than Re o (s )

ra 1 ir j 2,m, ,  .
iiH (t - t )

(1.21)

where Pm-l (t) is a polynomial in t with maximum power (t-1).
F rom  Eq. (1. 21) we obtain the asym ptotic form  fo r  i>(t) by making the 

fo llow ing  approxim ations: f ir s t  o f all we substitute fo r  <p(t) its asym ptotic 
fo rm  (1.18) arguing that term s whose asym ptotic form  is  sm aller than (1.18) 
cannot contribute to the asym ptotic form  of $ (t). We then extend the inte
gration range betw een 0 and °o since the contribution between 0 and n is 
neglig ib le . F inally we neglect in Eq. (1.21) the subtraction polynom ial (whose 
m axim um  pow er is  m -1) and get:

fl-./n m-a a> • ,/o m-ct
^ ( t ' )  ( t ' - t )  J (Z) ( z - 1 )

The in tegra l in z is  a w ell-know n one (see the theory of the T function) and 
we finally  obtain:

i i r o (s )

4>as( M , u )  = f a(u) — - . ^ t “ « -  (1.22)

The asym ptotic fo rm  (1.22) co in cides com pletely  with resu lt of Regge, based 
on theory  o f continuation in the angular mom entum variable.

Equation (1.22) now c lea r ly  shows the relation  between the asym ptotic 
behaviour o f <p(t) and the bound state prob lem . Indeed we see that the am pli
tude $as has p o les  in s in correspon dence  to values o f s fo r  which

o (s )  = S,

i  being any p ositive  integer. Those p o les  correspon d  to bound states or 
reson an ces (depending on whether they corresp on d  to rea l or com plex s) 
in states o f angular mom entum  £ . (this is  because the coefficien t t* r e 
presen ts the asym ptotic lim it o f Pj (co s  0)). This m eans that Eq. (1 .19), 
which determ ines a , a lso  leads through Eq. (1.23) to a determ ination of the
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bound states and reson an ces of the problem . Stroffolin i has shown that fo r  
en tire values o f a, Eq. (1.19) is  just a different fo rm  o f the Schroedinger equation 
fo r  bound states and particu larly  suited fo r  continuation in the com plex angu
la r  m om entum .

This resu lt fu lly  con firm s the validity of the whole p rocedure which has 
led  to the asym ptotic lim it (1.22). Indeed a scattering amplitude has the 
sam e p o les  in s independently on the value o f t and hence also in the lim it 
t -» oo. So the fact that fo r  or en tire ,E q .(l. 19) co in cides  with the exact Schroedinger 
equation fo r  bound states con firm s that Eq. (1.22) gives the co rre c t  asym p
totic  lim it o f <£>(s, t, u).

2. RELATIVISTIC TW O-BOD Y PROBLEM

The sim plest re la tiv istic  generalization  o f the potential m odel d iscussed 
in the p rev iou s section  is  the Bethe-Salpeter equation :in the ladder approxi
m ation. This equation is  sum m ing the se r ie s  o f graphs shown in F ig. 1 which 
rep resen ts  e lastic  scattering

w here 2 A is  the total m om entum o f the system  and Q and N are the r e 
lative m om enta in the in itial and final states resp ective ly . The Bethe-Salpeter 
equation has the form

(2. 1)

w here qj, q2, nx, n2 are the in itial and final m om enta. 
We define

(q j+  q2) / 2 = (nj + n2)/2 = A 

(Qj - %)/2 = Q •

(nx -n 2 )/2  = N.

(2. 2)

( 2tt) [(A+<p)2-#i2][ (A - q»')2 - /i2!

w here the "potentia l" V is  the propagator o f the system s exchanged between 
A i and A 2. If what is  exchanged is  a single particle :

V = 'g 2/ [ ( Q - Q ') 2 + m 2].

If a system  of p a rtic les  is  exchanged, then V is  represented by a weighted 
sum of propagators.
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Finally ;u rep resen ts  the m asses  of A x A 2 (which fo r  sim plicity  are assumed 
equal). The analogy between the re la tiv istic  four-d im ensional scattering 
equation, [E q . (2. 3)], and the non re la tiv istic  one d iscussed  in the previous 
section  is  quite evident. So the method we shall use to treat both equations 
w ill be c lo se ly  analogous.

T here is , how ever, a very  im portant d ifferen ce  because of the field  
th eoretica l nature o f Eq. (2. 3). The sam e amplitude 4 d escr ib es  at the same 
tim e the reactions

(D; A ^ A - A j + A , ,

and

(II); Ai + Ä ^ A 2 + Ä 2.

The in itial m om enta fo r  this second reaction  are q2, - n2 and the final m o 
m enta - q^ n2 so  that in th is new channel 2 A now represents the momentum 
tran sfer  and Q +  N = qx+ n2 = q 2+ n2the total m om entum .

If we define

4 A2 = - t  and (Q +  N )2 = s (2. 5)

we have:
In channel I: t is  the square of the CM energy, s the momentum transfer; 
In channel II: s is  the square o f the CM energy, t the momentum transfer. 

(The notation h ere is  adapted to channel II). The existence of the substitution 
ru le  is  o f the utm ost im portance fo r  the physica l interpretation of the asym p
totic  lim it o f the B. S. equation. Indeed scattering in channel I has a strong 
analogy with potential scattering so that we shall find the asym ptotic lim it 
fo r  sm all energy t and fo r  mom entum tran sfer s oo. On the other hand, 
s p lays the r o le  of energy in channel II and th ere fore  the asym ptotic result 
can be in terpreted  as lim it o f the A i+  A j -» A 2 + A 2 amplitude fo r  large values 
o f energy s and sm all mom entum transfer t.

Let us now d iscu ss  the asym ptotic solution o f Eq. (2. 3). We shall only 
sketch the m ain points, sin ce  it is  very  analogous to potential scattering.
We define the virtual "m a s s e s "  of qj, q 2 as:

q\ = (Q+  A)2 = - u lt

(2. 5a)

q2 = ( Q - A )2 = -u 2 

and we introduce fo r  4> the ansatz:

r.cp(s',u  u t)
4>(s . u ^ . t ^ - J -------- 7̂ 7 ^------ d s '. (2 . 6 )

The in tegra l equation obtained by substituting Eq. (2. 6) into Eq. (2. 3) is:
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cp(s, ur  i^ , t) = v (s ) + J Q(s, ur  u2; s ',  u ', t)cp(s', u ', û , t)ds 'du 'du ', 

Q (s, Uj, u2; s ',  Ul', t) = j - 4f  d s0v (s 0)K(s, u2; s ',  u ', u ,̂ t, sQ )

3 5 5

(2 .7 )

K = /  d4Q 6 [ (Q - Q ')2 - s 0 ]6 [ (Q '+ A )2+ u '] 6 [ ( Q '-  A)2+ u ' ]

(2 . 8 )

• 6 [(Q + N )2- s ' ]  = ( l /8 )  (A )A /Ä . (2 .9 )

u r u 2

V U2

'  4- '
V u2 + 2

u - u1 2

1 2  1 2  1 2 ,  
~ 2------------2--- “  + So

0  s '- ju2 +
W

ui+u2 + ui+u'2 + t
- + s„ s - ß  +

2 V U2 +  t

u  Is -n  + •
“1 2

u  +  U  + 1 t 2 1 2
U + U + —  S - U +  --------
1 2  2 2

u, + u„+t
2m2 - -  
M 2

(2 . 10)

The analogy with the correspon din g  potential E qs. (2.8), (2.9) and (2.10) 
is  quite strik ing. The grea ter  com plication  o f the new equations is  naturally 
as result o f the fou r-d im en sion a l nature of the rela tiv istic  problem .

The kernel K vanishes fo r  ./"£ «C/’S' +N/~s0 , ensuring that fo r  a finite value 
o f s the se r ie s  obtained by iterating Eq. (2.7) stops after a finite number 
o f te rm s . The term s of the iteration  se r ie s  can be represented by the graphs 
of F ig . 1 in which each exchanged particle  propagators l/[($  -$ ')2 - s0] are 
substituted by 2ff6[ ($ -$ ')2 - so] . In other w ords, in the iteration ser ies  of 
cp a ll exchanged p a rtic les  are taken on the m ass shell. The physical meaning 
of this im portant fact w ill be d iscu ssed  in the next section.

F ig.l

W e turn now to the problem  of obtaining the asym ptotic lim it of cp(s, t, ux, u 2). 
H ere there w ill a lso be nothing new, as com pared  with the preceding section.
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W e can d isregard , in the determinant A,  up  u2, u£, t, s0 as com pared to
s . W e then get:

t_ 
' 2

1 2

Ul+U2+ |

1 2  1 2  1 2
- + S„

U -  U1 2

U + U  + U  +  U + t  1 2  1 2
+  S„

V u2+ 2

(2 .11)

w here x  = s'/s . M oreov er  we can neglect the contribution of v(t0) fo r  large s 
so  that we get the asym ptotic fo rm  o f the equation

<pas(s ,U l, u 2) - -  Q J x , u v u2;u'1u'2) •
(u ' + ju2 )(u' +^2)

(2 . 12)

w here

w here

i P 0 [ H(z, z , z )]
Qas= -------- J  v (s0)d s fl ---------------- (2.13)

2(2?t)J [H (z , z j , z 2)]

H (z ,z  , z  ) = - ( l / 4 ) [ z  + z  + z  - 2zz - 2zz - 2z z 1 (2.14)1 2 ' 1 1 2  1 2 1 V  '

and z = - t ( l  - x ) ,

\  = u' - u i x - s 0x / ( 1 - x ) ,  (2.15)

Z2 = U2 - U2X - S0X/< 1 - X)V

W e re ca ll fro m  elem entary geom etry that ( l/2)Jtt  represents the area of 
the plane triangle  w hose sides arejz, Jzlt>fz2- A lso here we find the r e 
m arkable invariance o f the equation under the transform ation :
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s -> e s and s '- »  e s ' ,  (2.16)

which a llow s to fa c to r iz e  in the form

'Pas(s ' u i ’ u2 ' t > = sa (0 fa^u i ' u2 ' t ^

w here f  sa tis fies  the hom ogeneous equation

f  (u7, u ' ) du7 du' 
f> J *  U 2> = / R J U l' u 2* U i> U 2> 1 ~  • <2 ' 1 8 )

J (u ;+ n 2)(u; - M 2 )

1  r  r 1 e[ H( z . v z 2 >J
Ra(u i / u 2,u 1Ju,2) = --------4 / v ( s 0)d s 0 /  dx

O/Ô  j  JO
(2.19)

The eigenvalue Eq. (2 .13 ) determ ines the exponent a as a function of t. F or  
fixed  values o f t such equations have a d iscre te  spectrum  o f eigenvalues.
Eq. (2 .1 3 ) is  identical with the correspon din g  result in potential scattering 
and co in c id es  with that obtained by extending the R egge results in relativistic 
th eory . The use o f the optica l theorem  gives fo r  the total c ro ss -s e c t io n :

a = f ( -M 2 -M2 )S a(0)' 1. (2 .20 )

The experim ental evidence fo r  the high energy total c ro s s -s e c t io n  indicates 
that the actual value o f a (0 ) is  not very  different from  1 .

3. THE M U LTIPERIPHERAL MODEL

We shall d iscu ss  in m ore  detail the physica l meaning of the ladder graphs 
treated  in the last section . This w ill enable us to gain a deeper understanding 
o f the s ign ifican ce o f the form ulae fo r  e lastic  scattering obtained and at the 
sam e tim e to d erive  a general m odel fo r  the inelastic p ro ce sse s  taking place 
at high energy.

W e shall con sid er the ladder graphs o f F ig . 1 and we explicitly  re fe r  to 
channel II appropriate to high energy low momentum tran sfer scattering. 
C onsider the am plitude cp in the forw ard  d irection  whose structure is  shown
in F ig . 2. In channel II, the am plitude cp is  just the absorptive part o f the full
amplitude $ so that the forw ard  elastic  amplitude

<p(s, 0, u, u) = A (s ,u ) (3.1)

is  related  to the total c r o s s -s e c t io n  by the w ell known optical relation:

A ( s 1 - v 2) = o T/ 2 q J s =  aT/s (3 .2 )

w here q= (1 /2 )^ /T -um2 is  the CM mom entum  of the incom ing p article .
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E q. (3.2) shows that if one m akes a m odel fo r  high-energy elastic scattering, 
one a lso  im p licitly  con stru cts  a m odel fo r  the different production p rocesses  
w hose usm  g ives r is e  to the total c r o s s -s e c t io n  appearing in Eq. (3.2). This 
is  quite c le a r  physica lly , sin ce we know that at high en ergy,elastic scattering 
is  essentia lly  shadow scattering so that the form  o f the d iffraction  peak 
depends essentia lly  on the m ultiple production p ro ce sse s  responsible fo r  the 
absorption . If one look s at the graph in F ig . 2 one sees that the production 
graphs giving r is e  to the d iffraction  pattern d iscu ssed  in the last section 
a re  the ones shown in F ig . 3. W e are th ere fore  led to a m odel fo r  multiple 
production  which is  the generalization  to very  high-energy of the peripheral 
m odel of C hew -Low , D re ll and Saltzm an. The external outgoing lines r e 
present groups of p a rtic les  w hose m ass distribution is  given by the spectral 
function v (s 0) which can be related to low energy c ro s s -s e c t io n s .

The absorptive am plitude A (s , u) is  obtained from  (s, u x, u 2, t) by making 
Ui = u2 and t = 0. So that in the high-energy lim it the energy fo r  A (s, u) is 
particu larly  sim ple (see F ig . 4):

Fig. 3

A (s ,u ) = —
16tt s

du' A & ü 1
l ' a .  z v  (U + H )

(3.3)

P'

Fig. 4
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So, by applying the usual factorization :

A (s , u) = s “ (0)f  (u) (3.4)

one obtains:

i p  pi poo ) dU
fa(u) = ------7 / v (s o ) dsO / x“ dx / du/---------2 ~ 2  * (3 .4 a )

16 ir3 J  Jo (u + h )
U* 1-x

E stim ates o f the exponent a using Eq. (3 .4 ) with a "potentia l" suggested by 
low -energy c r o s s -s e c t io n s  lead to values which are not inconsistent with 
the experim ental value a s  1.

Let us now d iscu ss  som e of the main trends o f high-energy co llis ion s  
which can be p red icted  on the basis  of the m ultiperipheral m odel. F irst of 
a ll, let us con sid er  the m ultiplicity of secon d aries . This w ill be proportional 
to the average num ber o f "b lu bs" in the graph o f F ig . 3 since the number 
o f p a rtic le s  com ing from  each blub is , in our m odel, constant. The evaluation 
o f the behaviour of such "blub m ultip licity" is  very easy. We w rite the "p o 
tentia l" in the fo rm

v (s 0)= X u (s 0) (3.5)

whfere u (s 0) is  norm alized  to + /u ( s 0) d s 0 = l.T h e n  we w rite the m ultipe
riph era l s e r ie s  exhibiting exp licitly  the X dependence

A (s )= ^ X nan(s) (3.6)

w here X"an/A  is  the probability  fo r  production o f n blubs. Thus the m ulti
p licity  can be w ritten as

z £  nXna (s)

< N > -X( ^ ) /A ' 7 ^ 7 r- Mx '  £ a  a (s)n' '

But now the forw ard  on -m a ss  shell amplitude is  (see E q.(3„4))

A (S lV ) =  C (X )saW (3.8)

w here the param eter X enters through the functions C (A ),a(X ), so that using 
Eq. (3.7) we get:

We have obtained the im portant result that the m ultiplicity o f secondaries 
grow s with the logarithm  o f the incom ing energy. This is  not inconsistent 
with experim ent, though the present data are  still too rough to distinguish 
betw een a logarith m ic o r  a slow  pow er ( ~  s1//4)behaviour.
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Let us now con sid er the average spectra  o f the produced p a rtic les . Let 
us fir s t  look  at the spectrum  o f that final line which is  d irectly  connected 
with the incident p a rtic le  (first line in the m ultiperipheral chain). The la b o 
ratory energy o f this system  (see  F ig . 1) is  given (in the high-energy lim it.) 
by:

E'= ( s  -  s')/2ß ■ (3.10)

The energy distribution o f th is particle  is  sim ply obtained by adding 
in the integrand on the r , u, s o f Eq. (3, 3) an extra 6 (E '-  (s -  s')/2n):

d a  d A (s -/u 2) — t  m s — - —dt' dE

m— 3 f y (  so ) dso1 Rir w167T

du 6 (E '- f  s - s ' ]  / 2 iu )A (s /,u ')

2 . s0* 
T*x

/ / 2 \2 (U +H )

(3.11)

and using the asym ptotic fo rm  (3.4) fo r  A:

^  y  /v (s  ) d s 0 / V d x  f  d~ f i ( e - l - x )  (3.12)
de 1 6 /  J +

w here

E
€ E

is  the ratio betw een the secondary energy E and the prim ary energy E= s/2n. 
So we have the very  sim ple resu lt:

( d 7 - ) /CTT= F <€ )- (3 -13)

The shape o f the energy specturm  o f the firs t  secondary is  com pletely in
dependent o f the value o f the prim ary energy. In particular the inelasticity,
i . e .  the fraction  o f energy taken by the firs t  secondary, is  independent on 
the prim ary  energy. The spectrum  we are studying is  particularly  easy to 
m easu re  when the incident partic le  is  distinguishable from  the secondary 
p ions. This is  the ca se  fo r  nucleon co llis io n s , which have been extensively 
studied either with a cce le ra to rs  o r  co sm ic  rays . The analysis of high-energy 
je ts  y ie ld s  that the average energy ca rr ied  away by the nucleon in the lab 
system  is  nearly  a constant fra ction  o f the incident energy, which is  just 
the p red iction  o f our m odel.
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It is  a lso  easy to  study the spectrum  o f secon daries , regard less  of their 
p osition  in the m ultiperipheral chain. We shall not report here the ca lcu 
lation  which does not o ffe r  any new difficu lty and only give the resu lts.

Let us ca ll k  L and k L the longitudinal and tran sverse  mom enta o f the 
secondary . If k  l «  E,the spectrum  can be written in 'the form

F(k2)dkL/ k L (3.14)

w here F(k|) is  a u n iversa l function independent both o f E a n d o fk L and strongly 
peaked fo r  sm all values o f k T. T hese  resu lts , especia lly  the separability of 
the tra n sverse  and longitudinal spectra , are  not inconsistent with present ex 
perim ental data.

4. CONCLUSIONS

W e w ish now to sum m arize brie fly  the different resu lts and their physi
ca l m eaning. We have d iscu ssed  the p red ictions fo r  the different high-energy 
p r o c e s s e s  obtained on the basis  o f the m ultiperpheral m odel. It has been 
p oss ib le  to sum the whole se r ie s  o f m ultiperipheral graphs by m eans of a 
lin ear integral equation fo r  the o ff-m a ss  shell absorptive amplitude cp(s, Uj, u2, t). 
The kernel o f this integral equation depends on the low -energy  amplitude 
v (so ) . The knowledge of this amplitude is  sufficient to allow the computation 
both o f the elastic  scattering and of m ultiple production. The on -m ass shell 
am plitude <p(s, - m 2, -M2, t) leads to the e lastic  d iffraction  c ro ss -s e c t io n s , 
w hile we can evaluate the average distributions o f particles  in m ultiple p ro 
duction on the basis  o f the forw ard  o ff -m a ss  shell amplitude cp(s, up u2, 0).

The asym ptotic behaviour o f the amplitude is  obtained by considering 
the h igh -en ergy  lim it of the in tegral equation. In this lim it, the integral 
equation shows a very  rem arkable  feature which is  independent of the sp e 
c if ic  fo rm  o f the am plitude A R. The kernel depends only on the ratio s '/s ,  
so that the equation is  invariant under the transform ation  s -» cs , s'-> c s '
T h is allow s us to fa cto r ize  the s dependence of the amplitude in the sim ple 
fo rm :

<p(s, u1, u 2,t )= s  u 2,t ) .  (4.1)

The p rob lem  is  then reduced to the solution o f an hom ogeneous integral 
equation fo r  f(u j, u2,t ) ,  w hose solution determ ines both the exponent a(t) 
and the eigenfunction f(u x, u2, t ) .  As already pointed out, both eigenvalues 
and eigenfunctions have a physica l meaning: the eigenvalue gives the w ell- 
known shrinking o f the d iffraction  peak, w hereas the eigenfunction is con 
nected with the average p rop erties  of m ultiple production. A  form  of the 
scatterin g  am plitude analogous to E q. (4.1) has been obtained by many people 
by adapting the resu lts  o f R egge in potential theory to h igh-energy scattering. 
This analogy can be understood by con siderin g  that the m ultiperipheral graphs 
observed  in the c ro sse d  channel are the re la tiv istic  analogues of the different 
iterations of the potential m odel used by R egge.
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The pred iction s obtained by m eans o f the m odel can be divided into two 
ca tegories :

(a) Many general trends of h igh-energy co llis ion s  depend only on the 
transform ation  property o f the integral equation which is  a consequence of 
the topology o f the m ultiperipheral graphs. T hese general trends do not 
in fact depend on any sp ecia l ch o ice  of the low -en ergy  amplitude v (s 0):

(b) The sp ecific  n um erica l answ ers (as, fo r  exam ple, the value of the 
total c r o s s -s e c t io n s )  do, o f  cou rse , depend on the ch oice  of v(so) and on 
the m anner in which v (s 0) is  continued off the m ass shell.

W e shall now sum m arize the different conclusions obtained on the basis 
o f the m ultiperipheral m odel including those which have not been discussed in 
th is paper.

(1) E lastic  amplitude

The h igh -energy behaviour of the scattering amplitude $(s, t) is

« j (s ,t )  = s ‘ i(0 C j(t) [ - cotg  (7r0j (t)/2 ) +i] (4.2)

fo r  sym m etric am plitudes under cross in g  s « S ,  as, fo r  instance, absolute 
e lastic  scattering, and

“j (')
®. ( s , t )= s  C.(t) [ tg (net. (t )/2 ) + i] (4.3)

fo r  antisym m etric am plitudes under the cross in g . We obtain d a /d t > 0. The 
exponent fo r  the charge exchange amplitude is  always sm aller than the one 
fo r  the purely  e lastic  one; E qs. (4.2) and (4.3) turn out to be independent 
of the scatterin g  p a rtic les , apart from  the value o f C (t). The C(t) can be 
fa cto r ize d  in such a m anner that the relation between different amplitudes 
(dom inated by the sam e pole) is  the follow ing:

* xy (s , t ) / * 2y(s . t) = ®xw (s . t ) / « zw(s . t)

w here x, y , z and w represent any kind o f p a rtic les .

(2) Inelastic scattering

The average p rop erties  o f inelastic scattering are a lso  very  sim ple and 
depend only on the general fo rm  of Eq. (4.4) The m ultiplicity grow s with 
the logarithm  o f the energy, and the inelasticity is energy independent. The 
sp ectra  o f the secondary p a rtic les  are given by

N(k) d4k= F (k2, k*5 d £ Tdk2(dkL/ k L)

fo r  kL «  the in itial energy. k L (kT and k L being the tran sverse  and longitudinal 
m om enta), w here F (k 2, k2T ) is  a universal function independent both of s and 
k[_, and strongly peaked fo r  k 2T 4  p 2.

T hese resu lts , esp ecia lly  the separability of the tran sverse  and longi
tudinal spectra , a re  not inconsistent with present experim ental data.
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ON THE EQUATION FOR THE REGGE TRAJECTORIES

It is  the purpose of th is lectu re  to d iscu ss in detail som e general 
m ethods which can be used to study the R egge tra je cto r ie s  both in non- 
re la tiv is t ic  and re la tiv is t ic  potential theory.

The equation fo r  the tra je c to r ie s  was d iscu ssed  in the Fubini lectures* 
on the basis  o f the asym ptotic lim it fo r  la rge  momentum tran sfer of the 
scattering amplitude. We shall show that an equation can be obtained by 
transform ing the usual Schroedinger equation into a form  which is  better 
suited to analytic continuation in the angular momentum variable.

The equation fo r  the tra je cto ry  obtained in th is manner is  in a form  
which is  a v e ry  good starting point fo r  actual evaluation of the tra jectory  
a {  s).

We shall f ir s t  introduce the very  sim ple resu lt which is  obtained in the 
weak coupling lim it and d iscu ss  its physical sign ificance. We shall then 
develop a general treatm ent o f those equations based on a convergent expan
sion o f the in tegral equation. Sim ilar resu lts are obtained in the fram ew ork 
o f the re la tiv is t ic  two body equation. In particu lar, study of the weak 
coupling lim it w ill be very  useful in ord er  to understand the physical reason 
o f the shrinking o f the d iffraction  peak in the fram ew ork o f the m ultiperi
pheral m odel.

1. ASYM PTOTIC LIMIT OF SCATTERING AMPLITUDE

We w ill r e ca ll b r ie fly  som e o f the resu lts  obtained in I.
The transition  m atrix  elem ent $ (k ,k 0 ) satisfying the equation

(1)

has been represen ted  into the form

(2)

w here s = k 2, u = k2 and t = - (k -k 0 )2, and our integral equation was derived

• Hereafter referred to as I.
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fo r  <p(u, s, t), by substituting (2) in (1). It was shown that in the asymptotic 
lim it, t->°o, the equation fo r  cp(u, s, t) admits solutions o f the form

cp(u, s, t) = taf a(u, s) (3)

w here f a (s, u) sa tisfies  the equation

, > f  Kg(u, u ') f q(u' s) du'
' ' J  ( u ' - s - i n )  (4)

with

1 ! I \ - 1 F I* \ A* I A Xa8 [u1- ux - t0x / ( l -  x)]
k(u' u ) " (2ff)3 J v (t0 )d t0 ^  dx {1 _ x)I/!

By using (2) and (3) the asym ptotic behaviour of $ (k , k0 ) was obtained:

t a(s) „i7ra(s)

®(u‘ S' t , = - i i n » J { s )  fa(u’ S)‘ (5)

This shows that the condition a ( s )  = SL g ives the poles  of the scattering am pli
tude, that is , a ( s )  gives a R egge tra jectory . The function a (s )  is  obtained 
from  the relation  betw een a  and s which must be satisfied  fo r  the hom o
geneous in tegral equation (4) in ord er  to have a solution. (N otice that in gen
era l fo r  each value o f s, Eq. (4) admits solutions fo r  severa l values o f a;  
this w ill g ive us sev era l R egge tra je cto r ie s .

It is  n ecessa ry  to know whether such a determ ination of a (s )  is  an exact 
one. In rep ly  to th is question we re ca ll that, accord ing  to JOST and PAIS 
[1], the scattering  amplitude can be expressed  into the form

3>(s,t) = N (s ,t ) /D (s ) (6)

and the po les  o f $ (s , t) are only given by the ze ros  of the denom inator D(s).
Eq. (6) shows that the asym ptotic lim it t ->*> m od ifies only the num erator
function N(s, t) leaving D (s) unchanged. The position  o f the poles w ill be 
th ere fore  unchanged so  that we expect that Eq. (4) together with

a { s) = £ and £ = in teger num ber (7)

leads to the exact values o f the en erg ies o f bound states o r  resonances. This 
fact w ill be d ire ct ly  checked in the follow ing arguments since we will show 
that fo r  a ( s) = £,  Eq. (4) co in cides  with the Schroedinger equation fo r  bound 
states o f angular m om entum  £.

2. THE SCHROEDINGER EQUATION FOR COM PLEX ANGULAR 
MOMENTUM

Let us con sid er the hom ogeneous integral equation fo r  a bound state

vnc k * -  _ L _  r v (k ,k / )y(k,/ k0 ) d V
-  (27r)3 J  ( k 'l -k g )  l '
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w here now k2 < 0.
F or  i  positive  integer we can put

T (k ,ko) = f , (k * )Y ? (k )  (9)

w here Y™ (k) is  a sph erica l harm onic, function o f the com ponent o f the ’ *ec- 
to r  k. By substituting (9) in (8) and with the definitions k2 = u, k/2 =u/ , k2 = s, 
we have:

1  f  d*k'6(k'2-u')y?(k')
) J [ ( k - k ') 2+ t 0 ] '■ 1

In o rd er  to tran sform  Eq. (10) into a m ore  m anageable form , we shall use 
the identity

1 «f  d V  g(k/2 -u ')Y 7  (k ') = m/. ' f  x d x e [u '- u x - t 0x / ( l - x ) ]
J  [(k -  k ')2+ t0 ] f [ ’  J  ( l - x ) ‘ /* [ u '- u x - t 0x /(l-x )]‘/* 1 ’

o

This identity can be proved  in the fo llow ing manner:

P d3k 'Y ? (k ')5 (k /2 -u ')  1 fT, , T, / • , ,J ~ Kk-k̂ P+tol -----  = 2* ^  11(U +ie > - I(U '  16 >1
w here

I(u/ ) = F ______d V Y ^ k ') ______ f  r _________dV Y ? ( kQ
' 1 J [ ( k - k ') 2+ t0 ] (k '2 - u ')  J J [k/2 -2 k -k 'x + t0x - u ' ( l - x ) ] 2

1

i f  dxS  [ (k1 -k x )2 +
d3k/Y ? (k

o

By introducing t = kx-k x  we have

[(k '-k x )2 +ux (1 - x) + t0 x - u 'f l -  x )]2

■ 4 » Y ; " ( k ) / d x » ' / (t2+A)2

because Y'J’ (kx) is an hom ogeneous polynom ial o f degree £ in the cartesian 
com ponents o f the v ector  kx. So we finally  obtain

p _________ dx x 1___________
Ifu^ = jr • YJHfk) J  j ux f i - x ) + t0x - u '( l - x )



368 R. STROFFOLINI

and by evaluating the jump a cro ss  the cut in u ' we have

l

ö-T  lim  [I(u' + ie) - H u '-ie )] = i r Y f (k )  f  „  ' UX ' t° x/ 1- g j ,  •2ffi £-*o 1 J  ( 1 - x )1/J [u '-u x  -  t0x /( l-x )]l/J
o

F inally introducing Eq. (11) into (10) we get

* / > 1 P /.  v T j  i f , t d x x f 0 [u '- ux- t o x / ( l  -  x) ] , , , %
f » (u' S) = (2^)3 J v(to)dto J du J dxx  (1:  x)l/ r ru, : - - , t 0x/(i-x)i'^  f«(u»s);

If one takes £ = a , Eq. (12) co in cides with Eq. (4) as we could have ex
pected  on the b a s is  o f the p reced ing argum ents. Looking at Eq. (12) on a 
d ifferent but essentia lly  equivalent point o f view  we see that this equation 
is  a good starting point fo r  analytic continuation in the angular momentum 
variab le . This continuation can indeed be ca rr ied  out fo r  all values of i f o r  
which integrations on the d ifferent variab les converge, i. e. fo r  Re £ > -  1.

Sum m arizing all the preced in g  d iscu ssions, we can say that Eq. (4) is 
the analytic continuation in £ o f Eq. (12).

3. THE WEAK COUPLING APPROXIMATION

Let us now d iscu ss b r ie fly  the sim ple relation  that is  obtained in the 
weak coupling lim it. We re ca ll that the kernel of Eq. (4) becom es singular 
tor  a  = -1  so  that we can have solutions only fo r  0’ > - l .  Let us try  to obtain 
the function « ( s )  in the lim it a-> -1 . It is  convenient to rew rite  the r. h. s. 
o f Eq. (4) in the fo llow ing way:

/ W  „ 3 ,

P , , f d(xa+1- l )  X (x ,u ,u ')  c % . .- J  J  (̂ TT) (u~sj f“(u' s)au

1 f  , , X(o, u , u ' ) ,  , , % , / , P , / P , (1 - x a+1) X (x, u, u ') r , /  ,
= +̂T J  du fa(u' s)'du + J du J dx " fa(u-s) •0

1 -XNow in the lim it a  + 1->0 the f ir s t  term  w ill dominate (we note that lim
a+i->o a + 1

= - ln x  which is  integrable in the interval (0, 1 )). T herefore  in this lim it our 
equation becom es:
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fa(u, s ) = r -~:T f  v(t0 ) dt0 f  fa (u'  s ) d u ' . (14)
(ff + 1)  (2j r)3 J J 4 u '(u '-s )

Eq. (14) could be sim ply obtained by taking in Eq. (4) the low er lim it on the
integration variab le  u ': u '+ t0x / ( l -  x) ->0. In this reduced equation the two 
variab les  u and u ' are com plete ly  decoupled so that we get the triv ia l solu 
tion  f a (u, s) independent from  u. As a consequence the function a (s )  can be
easily  evaluated: in fact we find that a (s )  is  given by

» b / v ( t o ) d t 0 / -

= -  1 +

(2 *r)3 J ^ P (u/ . s )

i J  v(t0 )dt0

8 7T2 \fs

fo r  Yukawa potential V (r) = g e '^  / r .  With our notation, v(t0 ) = (2ir)2 6{t0 - ß2 ), 
so that

a = -1 + i g /2  \Ts" . (15)

This m eans that a - * - l  in the weak coupling lim it g-»0.
The weak coupling lim it can be also calcu lated  by evaluating the asym p

totic lim it in the variab le  t o f each term  of the perturbation se r ie s  solution 
Eq. (1) and then sum m ing-up the se r ie s .

The asym ptotic behaviour o f the nth term  runs as follow s:

_L. gf-is-V“ (intr  ■
n - l  V2-/s /  t

If we sum -up the se r ie s  we have i

^g2V s _g^ .( 2-fs '

In th is way we a lso  obtain the weak coupling lim it Eq. (15).

4. THE SPEC TR AL METHOD OF SOLUTION

We now turn our attention to the general method o f solution o f Eq. (4). 
O bviously this equation could be re so lv ed  by the Fredholm  method. We p re 
fe r  to use a different m ethod which has the advantage of giving a convergent 
expansion fo r  the w ave-function , the con vergence  being due to the fact that 
higher ord er  te rm s depend only on sm all range e ffects .
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It is  convenient to in troduce the function tp (u) = tp(u)/(u + s); so we have:

0 0
(16)

g = / v(t0 ) dt„

cp(u) = J p( a)
(u+a) da (17)

so

(u + s) /  . da1 ’ J  (u + a)

(2 a-)^ 3  J  v{t0 )d t0 J  p(a') da'  J ^  _ ux _ t()X/ (1_ x )]i/2

g T-/J. \ j i  f  t /\ j /F  da 0[ax - a'-  t0x /( l -x ) ]
ff)3 J  v(t0 )dt„ J  p (a  )da  J  (1. x )^  [ax -  a7-  t0x /(l-x )]1/2 (u + ä)(25T)3

K(a a>)p(a>) ,
(u + a)

By decom posin g  ^  + ^  (u'+~5) in el em entary fractions we obtain

r _ p o
J (u + a)

a) da da 
(u + a) - 6 ( a - s )  J  ^  p(a')da'  da(a - s )

r i i  /  « » ■(a -  s) a ') p (a7) da7 (18)

In ord er  that this equation may be satisfied  it is sufficient that p(a) 
obeys.

p(a) = N i ( a - s )  + (a - s ) K(a, a ') p(a ')da ' (19)

with

N = ' /  7 f e f f p(a,)da/dä • (20)
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As a consequence of the definition of N, it fo llow s that

J '  p (a )da  = 0 (21)

T h ere fore  the equation

p( a) = « ( a - s ) + - ^ ^ J '  K(a, a ') p (a ')d a ' (22 )

with the condition

J '  p (a)da -  0 (23)

is  equivalent to the E qs. (19, 20).
Eq. (22) is  o f the V o lterra  type; this property  ensures that iterative 

solutions exist fo r  every  value o f the coupling constant g. The condition

D (a , g, s) = / p (a)da = 0 furn ishes an equation fo r  the determ ination of the

eigenvalues.
F o r .a  given value o f the coupling constant the condition D (o , g, s) = 0 

g ives an im p lic it  relation  betw een or and s from  which a (s )  can be ca lcu 
lated. M oreover, as a consequence of the property  o f the kernel K(a, a ') 
fo r  which K = 0 fo r  a > ( JaT + )2, we obtain the resu lt that n iterations
determ ine exactly  the fu n ction p (a ) fo r  a < (n i /t j  + •/s ) 2 .

T o  understand the physica l s ign ifican ce o f th is property  better, let us 
con sid er the wave function in coord inate space. F or  the s -sta te  we have

So our method o f solution corresp on d s in the coordinate space to the method 
o f L ap lace tran sform  used by MARTIN [2], and BERTOCCHI, CEOLIN and 
TONIN [3],

We see that the higher the o rd er  o f the term  in the expansion fo r  p(a), 
the sm aller  the radium  o f the sph erica l reg ion  within which such term  can 
influence sign ificantly  the evaluation o f the wave function. This shows 
that the good con vergence  o f  the iterative  se r ie s  depends essentially on the 
short range o f the potential V (r).

5. THE RELATIVISTIC EQUATION

* (r ) = f  e * - 1 f 0(k2 )d 3k = J  p(a) da J

We wish now to gen era lize  on the p reced ing d iscussion  and to take the 
ca se  o f the re la tiv is t ic  two body equation. The problem  o f the asymptotic
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lim it o f the scattering  amplitude has been treated in detail in I and follow s 
a path c lo se ly  para lle l to that o f the Schroedinger scattering theory [4, 5, 6]. 
We shall th ere fore  concentrate our attention on the problem  of deriving an 
in tegral equation fo r  the R egge tra jectory , which exhibits explicitly  the de
pendence on a  in a way analogous to Eq. (15). In this case such an equation 
w ill a lso  co in cide  with the one obtained by taking the asym ptotic lim it of the 
scattering amplitude. The re la tiv istic  equation fo r  a bound state reads:

2AM is  the total four m om entum , which, in the ce n tre -o f-m a ss  system , has 
the fo rm  (E, 0, 0, 0). Eq. (24) is  invariant under the three-dim ensional rota 
tion  group in the space orthogonal to the four vector  A M (i. e. the usual three- 
dim ensional space if  we stay in.the ce n tre -o f-m a ss  system ). T herefore  the 
wave function w ill be written by using the irredu cib le  representation o f the 
th ree-d im en sion a l rotation group, i. e. the usual spherica l harm onics, func
tion o f the three space com ponents o f the vector

which is  the p ro ject ion  o f q in the th ree-d im ensional space orthogonal to A 
(the tim e com ponent vanishes in the ce n tre -o f-m a ss  system ). We write

where £ and m represen t the usual quantum num ber of the angular m om en
tum. We introduce the definitions (A  + q)2 = -Uj and (A -q )2 = -u 2 ; so  we have

(24)

where

(25)

(27)

d V  Y 7 (q ') 
[ ( q - q ') 2 - s 0)]

(28)

Let us now study the in tegral in the r . h. s.

J(UW ) =  f  f r s j  M(A + q 0 2+u{] 6 [ ( A -q ') 2+u^] . (29)

It can be evaluated by using the identity
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(30)

J(u(, u2 ) = lim  J [I(uj+ ie i, u2 + ie 2 ) -  Itu'j- ie 1( u2 + ie2 )1
c2-*,0'€1~*0 L

-  [ I(u(+ ie i ,u 2 - ie 2 ) -  I(u (- ie j, u2 - ie 2 )l|

where

I (u { ,u 0 =  i / [ ( q . q, )2. So] [(^ q /)2 ^ / ]  [(A  - qO2 +u2 ] ' (31)

By param etrizing  we have

T, , , ,  i r .  r _______________d v y ^ t q 7)_______________
I(ul- u2 ) -  2 J  dzJ [q/2 + 2 (A -q 0 z  + A2+uz']2 [ ( q - q ') 2 - s 0 ] ( '

- l

where

u£ = u{ (1+ z ) /2  + u2 (1- z ) /2  .
I

Let us define q + zA  = k and q/ + zA  = k7. We have

T# , M i f ,  f ______________d ^ Y T V ) __________   . . . .
: (U1 'U2) -  2 J  dz J  [k '2 + A2( l  - Z 2 ) + u 'z ]2 [ ( k - k ') 2 - S 0 ] ' (33)

-1

N otice that from  the definition (26) it fo llow s that k7 = q .̂
By m eans o f another param etrization  we obtain

. , /* f  r d4k' Y,m(E'+kx)
I(ui»u2) = iJ d z J  dx(l -x)J ■

k/2 +k2 x ( l -  x) - s0x +  [u2 + A2 (1 - z 2 )] (1 - x ) j

1 1

° -  t W  / < ■ * / , « ,  + , a y , .  s ^ / U - ^ u t ^ ( l - z . ) ] - (34)
- l  0

We now have to obtain the function J(ui, u2 ). In ord er to take this step we 
rew rite  I(uj, u2 ) in the fo rm

l l

Kuf. u f) . j* Yy H ) /  dz /  |Ag , A, , (1. x)1 (35)
-1 0

where
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A z = A j(l + z ) /2  + A2 (1 - z ) /2 ,

A j  = -  u { -  (q + A ) 2 x  + s 0 x / ( 1 -  x)  = -  u^+UjxH s 0 x / ( l -  x )  , ( 36 )

A 2 = -  u2 -  ( q -  A ) 2 x + s 0x / ( 1 -  x)  = -  u2 + u 2 x  + s 0 x / ( l -  x ) ,

and we use the identity 

i

- i

______dz__________ _ 2 r _____________d2p_____________
[Az - A2 ( l - x ) ( l - z 2 ) ] '  VJ  [ (A '+ p P  + Ai] [ ( A '- p ) 2 + A2 ] (37)

where A/2 = - A2 ( l - x ) .  P is  a v e cto r  in a pseudo-E uclid ian  bi-d im ensional 
space.

This identity can be easily  checked by using a Feynman param etrization 
in ord er  to pass from  the right-hand side to the left-hand side of Eq. (37).
So we find that

i.

Jfu^ua') = 7rY™(q) J  d x x ' J  d2p 6 [(A / + p)2 + A J 6[(A ' - p ) 2 + A2 ] (38)

By substituting this expression  by Eq. (28) we obtain the equation for 
the function f u2 ):

ff (Ul’U2 > = K(Ul' U2 •Ul'* U21 (39)

where

K(u1,u2, u(,u2)=-t2^  J v (s 0 )ds0 J  x cdx J d2p 6[(A' +p)2 +ujx + s0x / ( l - x )  - u'J

• 6[(A -  p) +u2x + s0x / ( l -  x )-u 2 ] . (40)

If one takes i  = a  Eq. (39, 40) co in cides  with E qs. (18, 19) o f I. One may 
th ere fo re  easily  v er ify  that

J  d2q SKA'+pf+UjX + S o x /U -x J -u 'J  6[(A' - p)2+u2x +  s0x / ( l - x )  - u2 ]

_ i e [H (z , zu  z2 )]
= ?  H (z ,z i, z 2 ) <41>

w here the quantities which appear in the r . h. s. are defined by form ulas 
(14, 15) of I. T his, as in the case  o f potential scattering, con firm s the con 
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sis ten cy  o f the whole p roced u re  s in ce  the equation found in I determ ining the 
exponent a  co in c id es  fo r  a  = f  with the exact equation fo r  bound states.

6. THE WEAK COUPLING LIMIT FOR THE RELATIVISTIC EQUATION

Let us now d iscu ss  the behaviour o f the function « ( t )  fo r  a (t ) very  near 
to -1 . We rew rite  the kernel (40) in the form

l

K(ux, u2 , Uj', u2 ) = J  dx x"X(x, ut, u2, u/, u2 )
o

X(0, uls u2 , U j, u2' ) F t l

J (a  + 1)
l i  d X(x, ut, u2, u/, u j )

dx (42)

which exp licitly  shows that in the lim it a + l~*0 the dominant term  is  the firs t  
one on the r . h. s.

Actually,

X(0, u j.u g .u /, J  ds0 v (s0 ) ̂ f i ( W p ) 2 - u ^ - 5 ^ A - p ) 2 - u 2^ d 2p

so  that the kernel is  independent from  U! and u2 . T herefore  in the lim it 
ff + l^ O , the solution f  o f the equation (39) does not depend on ux and u2 .
The function a (t ) can be exp licitly  evaluated.

Now we have

® (t) + 1 = (S j*  I V (S °  ] dS° I [(A +p)2 + ß 2 ] [ (A -  p)2 +M 2 ]

F ( - £ t )  (43)167r2/u2 \ 4/j2y

w here 4A2 = -t  and w here

G2 = \  J v (s 0 )d s 0 (44)

and

oo

F( v )  = 2ß2f  [t/ (t/-4#is )]i/i ( t ' - t - i n )  (45)

This shows that or -» -l in the weak coupling lim it G2_>0. From  Eq. (45) one 
sees  that fo r  t<  4^2, F (t/4 ^ 2 ) is  rea l and is exp licitly  given by
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F(a) = [(1 -  a) [ a | ]"‘ ln [ ( 1 - a)l/j + ( | a |)'/2 ]; a = t /4 ß2 .

F or  t>  4/i2 , F(t/4/u2) b ecom es com plex  as it had to be expected on general 
grounds.

We now wish to v e r ify  that the expression  we have found fo r  a (t), by 
solving the asym ptotic in tegral equation, co in cides in the weak coupling 
lim it with the exp ression  which can be obtained by evaluating the asymptotic 
lim it s - » oo o f each term  o f the perturbative se r ie s  fo r  the absorptive part 
o f the scattering amplitude in the s channel and then summing the ser ies .
In fact the f ir s t  iteration  in Eq. (7) of I y ie ld s, by disregarding ut, u2,u<[, 
u2 ,t ,  s0 as com pared  to s:

<Pi(s, Ui> u2 , t) = j j ^ r ^ F (x ,u 1,u 2,t )

w here

F(x, Ul, u2 , t) = £  / v ( s 0 ) ds0 J v ( 4 ) ds j  f

[ (A -p )2+u2x + s0x / ( l - x ) + ju 2] 

and x = s g /s .  In the lim it s->oo, we have

F(x, Uj, u2, t ) = * F ( — V  -  ° 4—\ 4 ß 2 J  16ttm2s

By p roceed in g  in analogous way we have fo r  s->oo (for detail see [8])

<P„(s, U 1( ua,t )  -» cp“ (s, t)

G4 F
G2 F (4 ^

In s

16 up2 s
16 n2ß2
(n - 1]

N otice that each term  o f the perturbative se r ie s  has in the asymptotic 
lim it a c la ss ica l d iffraction  peak, i. e. a fa ctorized  s and t dependence.
A s the d iffraction  peak o f the nth term  is  [F (t /4^ 2) ]n, it is  narrow er than 
the preced ing one.

M oveover the weight o f the contribution o f the nth order term  increases 
with the energy as (In s )n"‘ . As a consequence o f the appearance of many 
different contributions to the absorptive amplitude, which have narrow er 
and n arrow er d iffraction  patterns, the total d iffraction  peak w ill have a con 
tinuous shrinking as the energy in creases. The asym ptotic behaviour of the
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absorption amplitude can be exp licite ly  evaluated by summing the ser ies  
£  <pn. We obtain

Thus we obtain when a = A (t)-1 , the expression  (43). The weak coupling lim it 
d iscu ssed  here is  very  analogous to the resu lts  obtained independently by 
LEE and SAWYER [9], LEVY [10], GELL-M AN N  and GOLBERGER [11], 
ARBUSOV et a l. [12],

In the ca se  o f strong coupling a spectra l method analogous to the one 
introduced fo r  the Schroedinger equation can a lso  be used in this case by 
m eans o f the "ansatz"

This leads to an integral equation fo r  p(a, b) whose kernel exhibits spectral 
p rop erties  s im ilar  to the one o f potential scattering (Eq. 22). However the 
tw o-d im ensional nature o f th is equation m akes all attempts o f practica l eval
uation hard and cum bersom e (for  detail see  [7]).

In conclusion , we have seen that the general method developed fo r  the 
Schroedinger equation has been easily  adapted to the re la tiv istic  case . We 
think that further investigation along those lines can lead to a very  useful 
too l fo r  the understanding o f the R egge tra je c to r ie s  in many cases  of physical 
in terest.
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1. INTRODUCTION

The general them e o f this paper is  fa ir ly  difficu lt to define, as it is  
m ade up o f b its and p ie ces  of inform ation which do not appear to have much 
in com m on. This illu strates fa ir ly  w ell the present situation in this branch 
o f ph ysics  ca lled , until recen tly , ph ysics  of elem entary p a rtic les . In con 
sequence, th is is  an attempt to  develop  a p icture of the evolution o f the ideas 
as they developed  during the past two y e a r s . The ord er  of presentation is 
th ere fo re  m ore  o r  le s s  h is to r ica l though not rig id ly  so . There w ill be no 
attempt to give a com plete  p icture o f the present situation, as this would be 
very  d u ll; an u p -to -d a te  report w ill appear in the P roceed in gs of the 1962 
High-Energy C onference  held in Geneva and the la ter  issu es o f the standard 
rev iew s.

Having thus set up the plan o f th is paper as being the h istorica l order, 
an exception  w ill be  m ade o f the com parison  between theory and experiment 
which w ill be postponed to the end. The general schem e is  th erefore  as f o l 
low s : T here w ill be f ir s t  a sum m ary o f the situation o f the theory before 
the introduction o f R egge p o le s . Then there w ill be an explanation o f how it 
cam e to a deadlock , with m ore  and m ore  paradoxes developing the im p oss i
bility  o f having stable p a rtic le s  o f spin greater than one and the im p ossib i
lity  o f having c r o s s -s e c t io n s  going to constants at infinite energy.

At that point, Chew had the idea o f generalizing certain  features of 
R egge’ s w ork  on potential theory  to the re la tiv istic  theory based upon the 
M andelstam  representation . Then a ll these paradoxes vanished.

Having thus form ulated  the b asic  hypothesis o f  Chew, which had p ra cti
ca lly  no lo g ica l support when it was fir s t  proposed , we shall d iscu ss the 
p ros  and con s fr o m  a m ere  th eoretica l standpoint, and finally , we shall ex 
am ine the p red iction s and the experim ental v er ifica tion s . By that tim e, the 
lo g ica l w eaknesses o f the theory  should have been sufficiently exposed and 
the rea d er  left w ondering why the m eager experim ental resu lts seem  to con 
firm  it so w ell.

2. THE PR E -R E G G E  DEADLOCK [1]

2 .1 . P re -R e g g e  postulates

In the sum m er o f 1960 the last w ord in elem entary particle  physics was 
the M andelstam  representation . It is  assum ed that it is  thoroughly fam iliar, 
how ever, it w ill be b r ie fly  gone ov er , if only to define the notation. To s im 
plify m atters, only spin z e io  p a rtic les  and practica lly  always equally m a s
sive  p a rtic le s , the m ass being taken as unit of m ass w ill be considered .

3 7 9
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F urtherm ore  h = 1, c  = 1. The b a sic  assum ptions are as fo l lo w s :
(a) The invariant am plitudes fo r  scattering o r  production, expressed  as 

functions o f the external m om enta, p o sse ss  the sam e analyticity properties 
as the fo rm a l sum of correspon d in g  Feynm an graphs, where all possib le 
interm ediate p a rtic les  are  taken into account, regard less  of whether they 
are  elem entary o r  com p osite . This is  at least true on one sheet (the "ph ysi
c a l"  sheet) o f  the Riemann su rface  thus defined (Landau).

(b) The discontinuities o f the am plitudes a cro ss  the cuts are given as 
certa in  (non-linear) functionals o f the am plitudes which generalize the physi
ca l unitarity condition (Cutkosky).

(c) In addition, the am plitudes behave at infinite values of the external 
m om entum  variab les no w orse  than polynom ials, at least in the physical 
sheet (M andelstam ).

T hese  three assum ptions are im plied  by the M andelstam representation. 
C onsider a w orld  w here there is  only one type of partic le . The scattering 
o f two pa rtic les  with m om enta p i and P2 into p articles  with momenta -p 3 and 
-p 4 depends only upon two variab les  .

The scatterin g  am plitude then, as a function o f s, t, u, is  analytic, (a), ex 
cept fo r  cuts at s, t o r  u rea l, g reater than 4. The jump a cross  the cut is  
then d irect ly  given by unitarity, without any Cutkosky generalization, (b), 
and the amplitude behaves at infinity in the (s, t, u) space at worst like a 
polynom ial, (c).

W e shall w rite  the M andelstam  representation

w here L, M, N are  som e in tegers and Is.t.u indicates the two term s obtained 
fro m  the term  w ritten just b e fo re  by c ir cu la r  perm utation o f (s ,t , u).

W e shall ca ll p (s ,t )  double sp ectra l function, pp(s) single spectra l func
tion o f degree  p and pp_ q coe ffic ien t o f the residual polynom ial of degree p+ q, 
(S trictly  speaking these "fun ctions" m ay be d istributions). A ll these quan
tit ies  are  linked together, and to the production amplitudes by an infinite 
set o f non -linear equations which exp ress the unitarity requirem ent.

If we con sid er a theory  with a m ore  com plicated  spectrum , i .  e. severa l 
types o f p a rtic le s , the num ber of independent am plitudes becom es very  large, 
a lso  the num ber o f sp ectra l functions and even the num ber of term s may 
in crea se  in ord er  to  include contributions fro m  com plex  singu larities. How
ever, we shall reason  only on the very  s im plified  ca se  just mentioned and 
shall hope that all we say gen era lizes  to m ore  com plicated  ca ses . In par

s=  (P1+P2)2»

t = ( p i  + p3)2. s +t +u= 4,

u = (p i + p4)2, p £ = l.

(1)
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t icu la r , we shall not con sid er  the question o f whether there are com plex 
singu larities o r  not, it being understood that com plex  singularities are only 
supposed to bring in m ore  te rm s . It is  often believed that the representation 
(1) and the representations o f an analogous type fo r  the other amplitudes, 
com bined with Cutkosky’ s ru les which insure unitarity, are  sufficient basis 
fo r  a dynam ical theory .

2 .2 . F irs t trou b les

Of cou rse , it is  very  d ifficu lt, even with fast com puters, to solve these 
equations expressin g  axiom s a, b and c even without insisting on quantitative 
p red iction s . The tendency until 1960 had been to try  and do everything fe a s i
b le  by using only functions of one v a r ia b le : the double spectra l functions 
w ere neglected  altogether (Cini, Fubini), and approxim ate system s of equa
tions involving single sp ectra l functions o f low est degree w ere solved (Chew, 
M andelstam ). By the sum m er of 1960, a ll calculations on this schem e had 
been ca rr ie d  out, at least a ll o f  those which did not lead to d ivergen ces. 
Mandelstam^has d escribed  how th is procedu re  worked and how one ran into 
great difficu lty as soon  as P -w ave  reson an ces entered the gam e. Thus people 
started to contem plate the double sp ectra l function, thinking that they might 
help som ehow . The ideas that they had at that tim e w ere fa irly  sim ple and 
they thought that a fa ir  m odel o f what a double spectra l function might look 
like w ere , fo r  exam ple, the double spectra l functions as they appear in 
Feynm an graphs, quite sm ooth and without much of a structure.

Something did not seem  to fit into this p icture very w ell, how ever, and 
that was the o ccu rren ce  o f stable p a rtic les  with high spins. Indeed, when
ever there is  a partic le  with spin j and m ass m, som e o f the am plitudes 
have a pole of the fo rm  Pj (co s  0 ) / (s -m 2) w here s is  an energy squared v a r i
able and cos  0 is  in general p roportional to a momentum tran sfer squared. 
Such a pole, th ere fore , fits  in the M andelstam representation (1), under 
the condition that M be not le s s  than j. This indicates that (1) is  valid only 
with subtractions at least up to a degree  equal to the highest spin of the 
stable interm ediate p a r tic le s . One might then wonder if this could not lead 
to very  la rge  c r o s s -s e c t io n s  at high energy, increasing polynom ially with 
the energy. But, o f cou rse , the experim ents, even with the m ost energetic 
co sm ic  rays, indicate that it is  not so , that the c ro ss -s e c t io n s  behave in 
a way consistent with a constant within the experim ental accu racy .

The m odel one had at that tim e fo r  scattering at high energy was that 
suggested by P om eran chu k : w henever the p articles  interact, they have no 
chance o f recom bining to scatter e lastica lly  because of the com petition of 
the many inelastic channels open at high energy. T h erefore , the scattering 
amplitude becom es purely absorptive and the elastic scattering is  sim ply 
d iffraction  scattering. At very  high en erg ies, this d iffraction  can be treated 
c la ss ica lly , given an absorption  coefficien t which re fle cts  the distribution 
o f m atter in the clouds o f v irtual p a rtic le s . One then gets a constant c r o s s -  
section , a constant d iffraction  scattering peak (m easured in momentum trans
fe r ) in the elastic  amplitude and a constant e lastic c r o s s -s e c t io n . This p ic 
ture was m ore  o r  le s s  in agreem ent with the experim ents which w ere not

*  These proceedings.
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very  p re c ise  and which, fo r  som e reason , w ere in general fitted by com 
parison  with c la ss ica l d iffraction  scattering by a uniform ly gray d isc , o r  
sphere, but never with a m ore  sophisticated distribution o f the absorption 
coe ffic ien t.

2 .3 . G ribov ’ s paradox

This p icture was shown by G ribov  to be inconsistent with the Mandelstam 
representation. The essen ce  o f G ribov ’ s idea was the follow ing : the mathe
m atica l expression  of Pom eranchuk’ s m odel is that the amplitude A (s, t) in 
the physica l region , fo r  large  positive s and sm all negative t has the asym p
totic form

w here f(t)determ in esth e shape of the d iffraction  pattern, and the factor s 
is  there to can ce l kinem atic coe ffic ien ts  in ord er  to have a constant total 
c r o s s -s e c t io n . f(t) in these c ircu m stances has the t-cu t o f the Mandelstam 
representation , and we assum e that this asym ptotic fo rm  is  valid fo r  t p o s i
tive , at least up to som e value greater than 4. Unitarity in the t channel 
reads, accord in g  to M andelstam :

A s is  the absorptive part o f A with respect to the s-channel. Substituting 
the asym ptotic fo rm  (2), taking into account that f(t) is  purely im aginary, 
i A s(s, t) ■ A (s , t ) :

The integration takes p lace in the hyperbola uj u2 < (t -4 ) /4 , asym ptotically 
and d iverges logarith m ica lly , except that the term  0 (s3/2)cuts o ff the inte
gration, thereby introducing a i n s  term  which we cannot calculate exactly 
as it involves non-asym ptotic reg ion s. W e th ere fore  have the behaviour 
p (s ,t )  ~ co n s t .s  In s|f(t) |2. This is  incom patible with p (s ,t) * s • Im f(t). We 
shall see la ter in a m uch m ore  transparent fashion the deep reasons fo r  
this paradox.

One may gen era lize  this reasoning and one finds that the paradox takes 
p lace fo r  any asym ptotic behaviour of the form

(2)

(3)

K(t; s, Sj, s2) = (t -4 )(s2 + s 2 + s| - 2 Sĵ  s2-2 s s x - 2 s s2) - 4 s s1 s2. (4)

(5)

Change v a ria b les , putting S! = u 1s1/ 2, s 2 = u2s 1/'2:

If s2dux du2 u1u2[f(t)|2
(6)
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A (s , t) a s“ in 0 (s) • f(t), (7)

if a is  rea l and Re ß ^ -1 .
G rib ov ’ s suggestion  was to take a * 1, ß < -1 , but this is  already a little 

d ifficu lt as it im p lies  c r o s s -s e c t io n s  which go to ze ro  at infinity and again, 
the prob lem  of how to accom m odate pa rtic les  with large spins stays there 
as the behaviour o f  the p o les  corresp on d s to a rea l and ß = 0.

2 .4 . Bound on the asym ptotic behaviour in the physical region

Another difficu lty a rose  in this connection, when the author proved that 
the c r o s s -s e c t io n s  in the fram ew ork of the M andelstam representation cannot 
in crea se  fa ster  at infinity than i n 2s . The intuitive basis fo r  the theorem  is 
the fo llow in g : con sid er the Pom eranchuk m odel c la ss ica lly . We may very 
w ell suppose that the absorption  coefficien t changes with energy. However, 
the distribution of m atter in the cloud of virtual particles  fa lls  off essentially 
exponentially, the range o f the exponential being given by the m ass o f the 
lightest virtual p a rtic le . T h ere fore , a ll we may expect is  an absorption c o 
efficien t o f the fo rm  g e _Kr where g may vary with energy. If the impact pa
ram eter b o f a co llis ion  is  such that g e "Kb « 1 ,  there is  practica lly  no e f 
fe c t . If g e _Kb >>1 there is  com plete  absorption. The c ro s s -s e c t io n  is  d e 
term ined  then by the value a o f the im pact param eter so that g e ‘ Ka^  1 or 
a =  ( l /K )ln g ,< jtot =  ff/K 2(ln g )2.E ven  if we assum e that g grow s polynom ially 
with the energy, a in crea ses  only logarithm ica lly  and the c ro s s -s e c t io n  
in crea ses  thus like the square of In s.

A  very  elegant derivation  of this theorem  was given by M artin. The 
only assum ption o f M artin is  that the Legendre polynom ial expansion of the 
amplitude con verges fo r  s > s 0 up to som e positive value t0 o f t and that, at 
that value o f t.the asym ptotic behaviour o f A (s, t) is  polynom ial in s. This 
is  autom atically guaranteed by the M andelstam  representation [1 ].The reason 
ing of M artin u ses the fact that the im aginary part o f partial waves is  p o s i
tive and bounded and that the Legendre polynom ials Pf (z) are positive in 
crea s in g  functions o f £ fo r  z rea l, z > 1. Let us then w rite the absorption 
part o f  the am plitude :

As (s, t) * £(2Ü + l ) Im  at(s) Pf (cos  0), (8)

()■$ Im a{ (s) ^ ^ s (s -4 ) , c o s  0 = 1 + 2 t / ( s -4 ) .  (9)

If one wants to m axim ize A s(s, 0), holding A s(s ,t0)fixed , as Pc [1 + 2 to/ (s -4)] 
is  an in creasing  function o f £ w hereas Pp(l) * 1, one has to take as sm all 
values o f £ as p oss ib le  :

Im  a{ (s) = 0 , £ > £0 and Im a,j(s) = N/s /( s -4 )  ; £ < £0.

The value o f £q is  determ ined by

<k
As( s , t 0) - L  ( 2 i  + lW s / ( s -4 )P f f l  + 2 to /(s -4 )]=  </S7Ti-4) (I?o+1+ P jt ).
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A ssum e that A s(s, to) x  C sa; Re a > 1. We use the follow ing estim ate 

P{ [1 + 2 t 0/( s -4 ) ] ~  I0( V 2 t 0/( s -4 )  (m odified B esse l function)

and th ere fore  :

P'fo = i Q>/( s -4 ) /8 t 0 1 ^  s/2t0/ ( s -4 ) .

We thus determ ine i 0 by

£0 N/( s -4 ) /2 t 0 I^ Q  ^/2t0/( s -4 )  = C s “

F o r  Re a  > 1 the solution o f this equation is  asym ptotically fo r  large s : 

£o ~  (a -  1) In s o r  : i 0 % (a- 1) s ^ 2 ln (s/JZ t0)

which gives

A (s , 0) 3 l f ( 2 i  + 1 ) n/ s / ( s - 4 )  ^  ^  (a -1 )2 sln 2(s /2 t0)

This corresp on d s to"the c la s s ica l p icture given above. One may also e s ti
m ate the asym ptotic behaviour o f the amplitude in the physical region, either 
at fixed  m om entum  tra n sfer , o r  at fixed  angle. The resu lts are the follow ing:

|a (s, t)|< M(t) s ln2s , t < 0, (10a)

|A(s, (s -4 )(c o s  0-l))| < N(0) s 3?4 ln 3/%  0 < 0 < n. (10b)

2. 5. Independence o f the single spectra l functions

An in teresting  question about the M andelstam representation was, b e 
sid es how many subtractions are  to be m ade, whether o r  not it was possib le  
to change the content o f the theory by making "more subtractions. This was 
very  in teresting  particu larly  in view  of the w ell-know n CDD ambiguity which 
a r ise s  when one tr ie s  to en force  unitarity on the single spectra l functions.
It cou ld  be that by m aking m ore  and m ore  subtractions, it becom es possib le  
to introduce m ore  and m ore  p a rtic les  with higher and higher spins into the 
theory by introducing CDD p oles , just as one may introduce m ore and m ore 
com plex  te rm s into a Lagrangian.

H ow ever,it is  p oss ib le  to show, using conditions (10), that this is  not 
so . The single sp ectra l functions of degree greater than one and a ll c o e f 
fic ien ts  o f the residual polynom ial o f degree  greater than z e ro  are com plete
ly  determ ined  by the double sp ectra l function and the conditions (10).

T o  m ake th is c le a r , suppose that there are  two different amplitudes 
with the sam e double sp ectra l function. T h e ir  d ifferen ce  sa tisfies (10), and 
is  exp ressed  by

M L

A A (s ,t ,u )  -  1C tP—  / \ ° ? (SAd? ' + P, t u + L t P s Q a  (11)P=0 TT J  (s '-s )(sM ) ‘ .'.u  p ^ o  p.q
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The idea is  now to prove  that a ll o f these term s must obey conditions (10) 
individually, in other w ords that there cannot be any cancellation  between 
different te rm s . The details o f the p roo f w ill not be d iscu ssed  but the prin 
c ip le s  w ill be outlined.

Let us take different d irection s in the (s, t, u) plane, corresponding to 
different values o f the angle 0, and show that an expression  like (11) cannot 
satisfy  (10b) fo r  3M + 2L + 1 different values of c o s  6 unless

Op(s) < C s 'P ^ ^ ln 3/^ ,

°p.q = 0 except ct00.

In that ca se , if s is  fixed  negative and t variab le , the largest term  which 
contributes to the asym ptotic behaviour is

t M rgM(s')ds'
J (s '-s )

This term  v io la tes  (10a) if M >  1 and th ere fore  must vanish on the negative 
rea l s axis and th ere fore  it vanishes everyw here by analytic continuation. 
Thus we prove  that M = 1 and L =  0 in Eq. (11).

In the sam e way, this method allow s in prin cip le  to com pute the single 
sp ectra l functions of degree grea ter  than one from  the double spectra l fu n c
tion . T h is is  in p ra ctice  very  difficu lt to ca rry  out because of the analytic 
continuation m entioned above.

Even in prin cip le , it appears very  difficu lt to prove that the partial 
w aves obtained by th is method w ill satisfy  unitarity. At any rate, it is  su f
fic ien tly  dem onstrated that p a rtic les  with spin greater than one cannot be 
elem entary, in the sense that one cannot introduce arbitrary  CDD poles 
fo r  the h igher w aves (j > 1) as there is  no N /D  equation in that ca se . In that 
sense, w e shall say that a ll p a rtic les  with spin greater than one are "dyna - 
m ic a l" . It is  in teresting to note that the condition just obtained looks quite 
s im ila r  to the o ld -fash ion  "ren orm a liza b ility " condition. The connection 
may be deeper in the sense that these two conditions both re flect the fact 
that, unless very  pecu lar cancellations take p lace, unitarity is  strongly 
v iolated  at high en erg ies  if  one in troduces a p r io r i high spin particles  into 
the th eory . Now the paradox is  com plete  : we have proved that the behaviour 
o f the amplitude in the physica l regions is  com pletely  different from  that 
in the "s p e c tr a l"  reg ion s : we have an upper bound in the physical region 
due to unitarity and we have a la rg e r  low er bound in the unphysical region 
as a resu lt o f po les  of p a rtic les  with high spin.

How this be re con ciled  with the analyticity p rop erties  ? There must 
be som e kind o f o sc illa t ion  of the amplitude in the spectra l region so that 
the d isp ers ion  in tegra ls expressin g  the amplitude in the physical region 
do not in fact behave at a ll like  th eir  integrands, but in crease  m ore slowly 
as a resu lt of cancellations inside the integral.

A  very  natural kind of function with just such a behaviour is , fo r  ex 
am ple :

A(s, t) = ß(t)s“(t) (12)
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w here o (t) is  rea l, le s s  than one fo r  t < 0, has a cut fo r  t > 4 and is  such 
that Re o (t) stays bounded in the cut plane ; ß(t) is  any function satisfying 
a d isp ersion  relation  in the cut t plane.

Such a function would indeed reso lv e  a ll paradoxes above. It may be 
shown (the reader may do this as an ex erc ise ) that the G ribov paradox, a l
though holding fo r  any rea l a,  ce a se s  to hold as soon as a is  n on -rea l. This 
is  p re c ise ly  the result o f the cancellations introduced by the oscilla tions 
d escrib ed  by phase [ s “ ^ ]  ■ Im a  Ins.

3. THE INTRODUCTION OF REGGE POLES

Having been com pelled  to con sid er am plitudes of the form  (12) Chew 
looked around and found R egge ’ s paper [2] which predicted  an asym ptotic 
behaviour o f p re c ise ly  this fo rm  in potential scattering with a momentum 
tra n sfer  and t energy variab le . This coin ciden ce  was very  striking because, 
to reach  the fo rm  (12) from  the re la tiv istic  theory, we constantly used the 
cro ss in g  sym m etry o r  equivalently, unitarity in all three channels, which 
is  very  sp ec ific  o f the re la tiv istic  th eory . On the other hand, one may argue 
that a fter a ll it is  not so surprising , as the unitarity equation reads much 
the sam e fo r  potential scattering sind fo r  the e lastic regions of the re la tiv is 
t ic  p rob lem . At any rate, it was very  intriguing, and still is , to see whether 
o r  not the R egge poles  have a lo g ica l p lace in the fram ew ork  o f S -m atrix  
th eory . It is  very  difficu lt now to expose as nobody yet has produced any
thing very  convincing.

Let m e start by d escrib in g  the way people agree to ch oose  the "b est" 
interpolation .

3 .1 . D efinition o f the partial-w ave amplitude

In the theory  o f scattering by superposition  of Yukawa potentials (see 
R egge ’ s lectures*) the amplitude a ( i ,q 2) has the follow ing p rop erties . It 
is  h olom orph ic fo r  Re £ > N. It d ecrea ses  exponentially with Re i  and in 
c re a s e s  at m ost like a polynom ial with Im £. F urtherm ore, it is  unitary 
a ll along the rea l ax is, even fo r  non -in teger points.

If we start from  the M andelstam  representation , we have a d ispersion  
relation  in co s  0, which we can w rite  as

We have exp ressed  now the amplitude A and its absorptive parts in cos  0, 
At , in term s o f q2 = (s -4 ) /4  and co s  0 = 1 +  2 t / ( s -4 ) .

The in tegra l extends on the rea l axis, som ew here outside o f [ -1 , +1). 
The partia l wave com puted fro m  this is ,fo r  integer i  :

A(q*. C O S e )  = ± c o s N e j  + Polynom ial. (13)

+ PN.j (c o s  0) . (14)

Let us com pute the partia l w aves fo r  i > N  only.

* These proceedings.
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Then we can integrate :

f +1 r o s N ß

V - i d cos  6 Pf (cos  e) xN(x -Tos e ) = Q« (x) (15)

w here Q{ (x) is  that L egendre function o f second kind which is  rea l fo r  x > l  
rea l and we get

af (q2) =  ̂Jdx Ai(q2> x)<^(x). (16)
This in tegra l con verges , as Q{ (x) l / (2 x )* +1 fo r  la rg e  x.

W e note at this point that equations (14) and (16) are  equivalent only fo r  
in teger values o f £ . F urtherm ore  we note that in genera l A t(q2, x) gives con 
tributions to  (16) fro m  the side o f x  > 1 and fro m  the side o f x <-1, thereby 
introducing te rm s which behave like e i,r8which do not satisfy our conditions. 
If how ever, we introduce the fo llow ing functions :

= v j ' d *  Q*(x) [ A t ( ^ x) ±  A t ( ^ . - X)], (17>
X>1

we get an asym ptotic behaviour in the half-p lane Re £ > N  which is  exactly 
what we w an t: polynom ial at m ost in Im £ ,  and exponentially decaying with 
Re £.  The ph ysica l a{ is  equal to either a+ o r  a‘  a ccord ing  to whether £ is 
even o r  odd.

Now we m ay introduce a theorem  [3] which is  very  useful fo r  the f o l 
low ing.

3 .2 . C arlson ’ s T heorem

Let f(z ) be regu lar and o f the fo rm  o (e alImz!+ßRez) in Re z > 0 ,  a and ß
rea l, a < w; let f(z ) ■ 0 fo r  z = 0, 1 , 2 . . .  Then f(z) is  identically ze ro .

P ro o f

W e can w rite  the Cauchy th eorem  (Re z > 0) fo r  the regu lar fu n ction :

e ẑf(z ) 1 r 0+1’c f(x)dx ^  |lmX|<?r-a,
sin 7r z 2 7rijo-ioo sin n x (x -z ) ‘ Re X < -ß .

Both s ides are analytic in the whole strip  | Im X | < n - a  and the equation holds 
th ere . But on the rea l X axis, the right hand side is  bounded; the left-hand 
side can only be bounded if  f(z ) = 0.

It is  c le a r  that this th eorem  guarantees the uniqueness o f the interpola
tion  a j that we have defined, w hich satis f ie s  very  com fortably  the conditions 
o f the th eorem , as Qf(x) ~  1 / (x + ^ x 2 -l)t+i f o r  la rge  £.

This th eorem  is  a lso  usefu l to  prove  that, fo r  the regions o f energy 
w here the partia l wave is  unitary (e lastic region ), the interpolations aj are 
unitary each on the rea l £ a x is . T o  show this fo r  a j, let us w rite i= 2z + 2N 
and b u ild :
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a.+2z+2N

f(z ) vanishes fo r  every  in teger value o f z , as at that.point ä{ takes on a physi
ca l value at an even angular m om entum . On the other hand f(z ) is regular 
and sa tis fies  C a rlson ’ s asym ptotic condition and is  th erefore  identically zero, 
aj sa tis fies  unitarity in the com plex  half-p lane everyw here in the sense that

The reason ing is  the sam e fo r  aj and leads to the sam e result.
The reader may show as an e x ce r c is e  that if one is  to take only one 

interpolation, valid  fo r  both even and odd partia l w aves, fo r  example 
(a++ a ') /2  + eln* (a+ - a ') /2 ,  C a r lson 's  theorem  does not apply any m ore  to prove 
unitarity and in fact the amplitude thus obtained is  not unitary in general.

W e have so fa r  established a num ber of p rop erties  which are quite in 
terestin g  in the sense that they rem ind us strongly of the potential scattering 
ca se . N otice a lso  that if one has the Schrödinger equation with an exchange 
potential, one obtains tw ice  the R egge behaviour: once with the even partial 
w aves and an e ffective  potential which is  the sum of the d irect and exchange 
parts, and once with the odd partia l waves with the d ifferen ce . Therefore 
in that ca se  one a lso  obtains two distinct interpolations a} and a"f with the 
sam e p rop erties .

3. 3. C onnection between asym ptotic behaviour in co s  0 and singularities
in the I - plane,

W e have not yet reached  the interesting part o f the i-p lan e, in the sense 
that we are  still on the right o f any R egge pole  (if there is  any) in the region 
w here E q .(17) con v erg es .

Indeed, if A  d isp lays a behaviour like (cos  Bf-, the integral (17) only 
con v erg es  fo r  Re S. > Re a .

If how ever A  (q2, c o s  8) ß(cp)IJC(q2 ) (cos  8) + 0 [(c o s  6)a']whereRear'< Rea» 
then w e may analytically continue the integral by w r itin g :

and continuing th is term  by its exact expression , and the rem ainder con 
v e rg e s  fu rth er to  Re £>  Re a 1. T h ere fore  we may again get Regge poles 
as a consequence o f the behaviour (12).

Incidentally, it might help to see what kind of singularities other asym p
totic  behaviours may lead to .C on sid er fo r  exam ple

a t -  = 2 1  -J ( s - 4 ) / s  a j ( a ^ f . (1 8 )

(1 9 )

A (q2, c o s  0) c o s a0 In8co s  6 + 0  [(co s  0)“ ’].

W rite
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the in tegra l being taken around a.  W e might as w ell rep lace  cos^ 0by I£(cos0) 
and in sert into (17) and (19) thus getting the leading singularity

{ß l/ß a+im i/U - af*1].

This singularity fo r  ß in teger negative b ecom es o f logarithm ic type. We 
may rem ark  then that the pow er in c o s  0 w ill determ ine the location  of the 
singularity, w hereas the nature o f the singularity w ill depend upon the depar
tu res fro m  a s im ple pow er behaviour. It is  th ere fo re  to be expected that 
any attempt to determ ine the nature of the singularity by using Eq. (17) is 
very  delica te  and it b e com es  dubious whether it does not at the same tim e 
determ ine the exact location  o f the singularity.

On the other hand, if  one knows by other ways that there are only poles, 
then the analytic continuation of Eq. (17) is  fa ir ly  p oss ib le  : identify the poles 
by the asym ptotic behaviour, and subtract them  out. This has been done in 
p ra ctica l ca lcu lations [4 ], in p articu lar in potential scattering [5] where one 
knows that there a re  only p o le s .

3 .4 .B a rda ck i's  method

R ecently , BARDACKI [6] has com pleted  som e very  interesting work 
which is  probably the fir s t  step tow ards a p roo f o f the existence o f Regge 
p o les  in re la tiv istic  S -m atrix  th eory . His basic idea is  the fo llow in g : we 
assum e that the ov era ll num ber o f subtractions fo r  the M andelstam r e p re 
sentation is  fin ite, N . T h ere fore , fo r  any q2, a j(q2) is  regu lar in the half 
plane Re i  > N. On the other hand, we have seen that fo r  s rea l and negative, 
the m axim um  pow er adm issib le  fo r  c o s  0 was one (unitarity in the crossed  
channel). It is  very  easy to see that, in fa ct , th is holds a lso  in an in fin i
tes im a l neighbourhood o f the negative s a x is . W e th ere fore  have another 
dom ain o f regu larity  s negative, Re i  > 1. W e may take the holom orphy enve
lope  o f these two dom ains which prov ides a la rg er  domain of holom orphy 
fo r  Q£(q2).

It turns out that the calcu lation  is  fa ir ly  tr iv ia l. If one m akes a con - 
fo rm a l m apping to  map the s-plane cut from  - oo to 0 and from  4 to + oo onto 
a s t r ip :

S * 2 + 2 sin  z , -1 <  Re z < 1.

We can alm ost use the tube th eorem , saying, not rigorou sly , that we have 
analyticity in the r e g io n :

- K R e z C l ,  Re i  > N,

Re z * - 1, Re i  > 1.

W e use the tube th eorem , taking the convex hull o f the base of the tu b e :

Re jC > (N + l)/2  + [(N -l) /2 ]R e  z , o r

Re t  > (N + l) /2  + [(N -l) /2 ]R e  arc  sin (s -2 ) /2 .  (20)
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This is  not quite r ig orou s  becau se Re z = -1 is  not a dom ain. H ow ever, it 
m ay be m ade r ig o ro u s . The extension o f the domain o f holom orphy stops 
there and one cannot go fu rth er. T here is , how ever, a way to extend the 
analytic p rop ertie s , but not holom orphy, only m erom orphy. This consists 
in taking exactly  into account the tw o-body unitarity as fa r  as it is  valid.
It is  known that Schw arz’ s re flection  princip le  allow s one to continue through 
the tw o-body  e lastic  cut analytically or , alternatively, to w rite down a func
tion  o f the partia l-w ave amplitude which does not have the tw o-body cut.

T o  be m ore  sp e c if ic , con sid er  the partia l wave at threshold copying 
E q. (17) in the fo rm

a.(q2) = f  Q (x )A t(q2, x)dx. (21)
1 A » 1 *

We should keep in mind that x  ■ 1 + t /2q2 . Only large  values o f x w ill con 
tribute near threshold . Below threshold , at q2= |q|2e i,r, A t(q2, x) is  real, 
and th ere fore  the phase o f as(q2) is  that of Qj(x) = Qe[l+ t/(2 |  q ^ e 1*)]. It is 
±  exp iir£. A bove threshold  q2 =| q|2, Q j(q2) is  unitary, so that Im l / fq ^ q 2)] 
=q/J 1 + q 2.T his g ives us the w hole set of ru les to continue a*(q2)around q = 0 
any num ber o f tim es . The construction  o f the function

Rg(q2) “ q2i/ at(q2) + 2i q2{+1/[  I + exp(2uri)]Jq2 + 1. (22)

so that it turns out to be rea l fo r  both q2 = ±| q|2 is  left to the reader. Further
m ore , it is  bounded at q2 = 0, because

at(q2) q2lJ \ (q 2, x) dt/t*+1, (Re £ > N).

It is  th ere fo re  regu lar at the orig in  as a function of q2.A t any rate it is  m e - 
rom orp h ic w h erever a ifq2) is .

Now if we assum e (which is  nearly rigorou s) that the rules fo r  c o m 
pletion o f m erom orphy dom ains are the sam e as fo r  holom orphy domains, 
we can play the sam e gam e as b e fore  except that the initial domain has a 
cut starting from  the firs t  inelastic threshold (som ew here between 4 and 16), 
say 16. Then we get, fo r  at (q2) the m erom orphy domain as defined by

R e (i)> (N + l) /2  + (N-1 ) /2  R e [a rc  s in (s -8 ) /8 ] .  (23)

W e see  c lea r ly  that we are  prevented from  going further only by our lack 
o f a b il ity : we do not know how to elim inate the further cuts on the real axis.
It is  con ce ivab le  that som eone who could  m aster the 4-body unitarity con 
dition could  ca rry  on the program m e up to the 6 -body cut, and so on. At 
any rate, it is  com fortin g  to see a domain o f m erom orphy which is  larger 
than the dom ain o f holom orphy, as this introduces a kind of p roof which 
depends very  little  on E q. (17) as fa r  as the nature of the singularities is 
con cern ed . H ow ever, it might very  w ell turn out that the 4-body cut in tro
duces other kinds o f singu larities in the i-p lan e and that the reason that 
potential scattering  has only p o les  is  p re c ise ly  the absence of inelastic con 
tributions. This is  of cou rse  an open question. If how ever, one makes ad hoc 
hypotheses on the in elastic contributions, fo r  exam ple, if one assum es [7] 
analyticity p rop erties  o f the absorption coefficien t rj(-£,qz), then it is possible
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to ca rry  out the reason ing with threshold  o f infinity, thus getting m ero  - 
m orphy fo r  Re £ > 1, but it looks a little  like assum ing what one wants to 
p rove . Another interesting try has been m ade recently  by MANDELSTAM 
[8 ] ,in which he studies a p rob lem  w here the kinem atics are re lativ istic, 
the potential energy independent and w here there are no inelastic p rocesses . 
He then su cceed s in prov ing  that fo r  a potential weak enough, the R egge- 
Som m erfeld -W atson  form ula  is  applicable down to Re I  = 0, without using 
the unitarity condition  in the c ro sse d  channel.

4. DISCUSSION OF CHEW'S HYPOTHESIS

We have seen in the last section  how one might think of establishing 
the existence  o f R egge poles  in S -m atrix  theory and that a long way still 
lie s  in front o f us. H ow ever, CHEW [9] was bold enough to overcom e this 
lack  of lo g ica l support and to assum e that the only singularities lying in 
the £ -plane are poles  and that the partia l waves w ere given even fo r  sm all 
£ by the analytic continuation o f  af (q2) as defined by [17],

Let us exam ine how this hypothesis so lves  and helps to understand the 
paradoxes encountered in the firs t  section .

G rib ov ’ s paradox is  now very  c le a r . We have seen that a behaviour 
of the form  c o s a0 lnö (cos  0) brings in a singularity in the £ -plane at i  = a, 
o f the kind {£ -a)'<s+1) . The content of G rib ov 's  paradox is  that no such sin 
gularity may lie  on the rea l ax is, w here af is  bounded by the unitarity con 
dition unless ß< -1 , whatever the rea l value of a js .  But, of cou rse , we 
assum e now that the Regge poles m ove and if  a (q2) is  the position of the pole, 
accord in g  to E q. (22) near the threshold  :

Ra(q2) = 2 iq 2ot+y [ l  + exp(2üra)] +qY.

The solution  o f th is equation, a,  m oves out o f the rea l axis just at threshold 
with an im aginary part [7] o f the ord er  o f q2ao+1, a 0 being a (q2= 0). This is 
exactly  what we need to avoid G rib ov 's  paradox.

S im ilarly , it is  now ea s ie r  to see through the com plexity of the 
dependence o f single sp ectra l functions upon the double spectra l functions. 
F o r  negative rea l s, the partia l w aves obtained without subtractions (£> 1) 
a re  indeed the analytic continuation from  the region  o f Re i > N. T herefore, 
if  this analytic continuation is  unique When one analytically continues them 
to p ositive  values of s, they a re  still the analytic continuation o f at as de
fined by E q. (17) and th ere fore  are unitary by virtue of Eq. (18). If there are 
only p o le s , the analytic continuation is  unique and th erefore  Chew’ s hypo
th esis  explains the kind o f m agic which takes p lace  here very  w ell. F urther
m ore , it m ay be m uch ea s ie r  to continue analytically in £ rather than in s, 
as the continuation path m ay be sh orter, and we have seen that the analytic 
continuation in £ is  rela tively  easy when there are only poles which one can 
separate out. If th is connection  is  true, we see  that the second part of Chewte 
hypothesis is  fo r ce d  upon us by unitarity in the c ro sse d  channels fo r  in ter
m ediate partia l w aves (2 I  <  N), and th ere fore  it is  very  natural to extend 
it to  the S and P -w a v es .
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4 .1 . P o ss ib le  range o f coupling constants

Let us m ake a little  ph ilosoph ical d ig ress ion  at this point which may 
illustrate the p oss ib le  depth o f Chew’ s hypothesis pretty w ell. Let us con 
s id er  that, as in potential theory , the stron ger the interactions are, the 
la rg e r  are the values o f angular m om enta o f R egge p o les . This is  of cou rse  
without p roo f o f any kind. If, how ever, one adm its this postulate as w ell 
as Chew’ s hypothesis, one is  faced  with the follow ing situation: the in ter
actions cannot be stron ger than they are  in the physica l w orld , as this would 
corresp on d  to  am plitudes in creasing  like  S“, a>  1 in the physical region, 
which con trad icts the unitarity condition. Chew ca lled  this circum stance 
"saturation  o f u n itarity". It seem s that the interactions in nature are "a s  
strong as p o ss ib le "  On the other hand, can they be w eaker ? Perhaps, but 
not vanishingly sm all, s in ce , accord in g  to C hew 's hypothesis, if one wants 
to  have one p a rtic le , one has to  bring at least one R egge pole up to ze ro .
The fr e e - f ie ld  theory  in particu lar does not satisfy  Chew’ s hypothesis, as 
its scattering am plitude has no poles  and th ere fore  no stable p a rtic les . It 
look s  thus as if there w as a fin ite  range o f in teractions p oss ib le . If one is  
very  op tim istic , one m ay even hope that there is  only one theory possib le  
by th is system , but this b ecom es  s c ien ce -fic tion .

4 .2 . A ccum ulation  of R egge po les

It has been pointed out by G ribov  and Pom eranchuk and independently 
by W ilson  that som etim es the R egge p o les  clu ster  around som e accumulation 
poin ts. They have used this fact to  d erive  a low er bound on the asym ptotic 
behaviour of c r o s s -s e c t io n s .

The f ir s t  ca se  [10] o f such an o ccu rren ce  is  essentia lly  kinem atic and 
a r ise s  [11] a lso  in potential scattering [5] .W e can easily  derive  it from  
E q. (22) in the neighbourhood of the threshold  q = 0. The equation of theRegge 
p o les  reads

Ra(q2) = 2 iq 2“ +y[l+exp(2 i7ra)]N/q2+ 1. (24)

T h is  equation has an infinite num ber o f solutions near = - £ :  this is  best seen 
by taking the logarithm  :

~1 + exp(2i7TQ')'
2iIn R(x(q ) + ln + i  ln [q2 + 1] = (2 a + l ) ln  q+2m i7T,

ln  R + ln f-T fa  + £)] = (2 a + 1) In q+2  m in + 0(a + i ) .  (25)

W e thus have an infinite num ber o f p o les  labeled  by m , going to roughly 
like  -1 /2  + 2 m iff /In  q, neglecting a fa cto r  o f the ord er  ln| lnq|.

T his resu lt leads to a p red iction  concern ing the behaviour of A(q2, c o s  6) 
fo r  q2= 0, c o s 6  oo : A (0, c o s 0 )  cannot fa ll o ff fa ster  than ( c o s 0 ) '1/2.It is 
to  be expected  that such a behaviour w ill take p lace at every threshold, at
i  = - I  fo r  tw o-body th resh olds, possib ly  at other values o f £ fo r  m any-body 
th resh olds, as it depends upon the p h ase-sp ace  threshold behaviour.
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A nother point o f accum ulation o f R egge po les  [10] is  a consequence of 
a very  sp ecia l feature o f re la tiv istic  theory , i . e .  the existence o f a double 
sp ectra l function at negative energy.

C onsider the partia l-w ave am plitude as defined by E q .(1 7 ).F o rq 2= 
near z e ro , a f(q2)h a s  a constant ph ase±  e1'r{,th a to fQ { (l + t /2 q 2).F o r q 2< - t 0/4 , 
a cut appears as a resu lt of the co in ciden ce  of the lim it o f integration 
Xq = 1 + to /2q2 with - 1, which is  a branch  point fo r  Qc .

The im aginary part o f b{ (q2) = q '2{Q {(q 2) above this cut is

, rx°
Im  b .(q 2 + ie ) = __ L_ / Im [At(q2+ ie , x  -  ie)Q { (x -  ic) e"1*1]. (26)

)T|q|2J
This is , in general

I m b {(q2 + ie) [m  At(q2+ ic,x -ie)R e[Q t(x -  ie)e"1,T{] dx

Wef  R e A t(q2+ic*x ' ie Îm lQ ^ x ’  ie )e ‘ i,r<!] dx

Im b {(q2) = ^ j - 2^T ptiU( q2, x) G4( x ) d x R e  A t(q2,x )P ( (-x )d x . (27)

w here p _ (q2, x) is  the sp ectra l function which lie s  in t > 0, u > 0, and where

Qi(x) =  Re Q f(x) , -1 < x < 1.

The second  term  is  very  quiet and, indeed, it is  an entire function o f i . I t  is 
the only one which ex ists  in potential scattering and its n ice analytic p r o 
perties  have been used by MANDELSTAM [8] in a recent study where he 
d e scr ib e s  a m odel o f re la tiv istic  theory which does not exhibit cross in g  
sym m etry . M andelstam  p rov es  there that Chew’ s hypothesis is  verified .

The f ir s t  term , how ever, is  not regu lar, but has the poles  o f Q f(-x ) 
which are  at every  negative in teger I .  In particu lar, the firs t  pole at £= -1 
is  very  unlikely to vanish, as its residue is

^ ^ t ,u ( q 2.x )d x .

T h is can be checked  in p ra ctice  by putting the prop er threshold behaviour 
o f pt u(q2, x)  in every  p articu lar ca se  o f in terest. Let us sim ply assum e that 
the residu e is,not z e r o . (In any ca se , a ll residues cannot be sim ultaneously 
z e r o , as th is would im ply pt u = 0, because o f the com pleteness of Legendre 
polynom ials which are  the residu es of Q f(-x ).

C onsider now the function

f(q2) = i i m ( i + l ) b ( q 2).-i 1

It has a n o n -ze ro  left-hand cut, but, if af (q2) is  m erom orph ic down to i  = -1 , 
at(q2) is  bounded by unitarity on the rea l positive q2 axis f(q2) = 0 there. This 
is  a con trad iction  and p roves  that at (q2) cannot be m erom orph ic along the 
rea l SL ax is down to t  = -1 .
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A  p oss ib le  explanation o f this phenom enon was furnished by G ribov.
A s S. goes to  -1 , the im portance o f the left-hand cut in crea ses . This has 
the effect in many instances o f pulling p o les  out o f the right hand cut ("bound 
sta tes") in o rd e r  to counteract the strong left-hand cut. G ribov  suggests 
that m ore  and m ore  o f these poles  com e  out as A -* -1 , until their residue 
d istribution  exactly  ca n ce ls  the left hand cut of f(q2) at the lim it £ = - l .T h is  
im p lies  an accum ulation  point o f R egge po les  around £ = -1 , each of which 
attains -1  only when q2 is  infin ite. N otice  that in potential scattering with 
a regu lar potential, the R egge poles go to negative in tegers at infinite en er
g ie s . If G rib ov ’ s m echanism  is  right, the o ccu rren ce  of the "th ird " spectral 
function would only m ean that an infinite num ber o f R egge poles reach  each 
negative in teger. O bviously th is reason ing only applies to the firs t  non
vanishing pole o f E q. (27), but it may be expected  that the result holds fo r  
a ll non-vanishing p o le s .

In sill ca se s , how ever, we see that it is  im possib le  fo r  the amplitude 
to fa ll o ff fa ste r  than l / s  as we must have a singularity at least at I  = -1 .
This should be experim entally  checked.

5. CONNECTION WITH THE PHYSICAL WORLD [12]

T here  a re  b a sica lly  two kinds o f im m ediate tests of the whole Regge 
pole  story . The f ir s t  approach con sists  in looking in one channel at the Regge 
p o les  o f the sam e channel going through physica l values o f the spin, o r  n ear
by, thus producing stable o r  unstable p a rtic le s . The second  approach con 
s is ts  in studying the asym ptotic behaviour o f the am plitudes in one physical 
region , thus getting in form ation  on the R egge po les  o f c ro sse d  channels.
It is  obvious that we cannot get com plete in form ation  on Regge poles by these 
m ethods, but we may get enough to decide whether o r  not the R egge poles 
have anything to do with nature.

5 .1 .F irs t  approach : ph ysica l £

C onsider a w ell defined channel, that is  a w ell-defined  set of quantum 
num bers, baryon  num ber, charge, parity, strangeness and isotop ic spin.
In th is channel, the S -m a trix  w ill be con sidered  expressib le  in term s of 
the total angular m om entum  j and any other set of variab les . We assum e 
that, as a function of j, it is  m erom orph ic down to Re j = 0 and that this 
analytic continuation furn ishes the right value o f the partial w aves.O f cou rse , 
we know already that even fo r  2 -body am plitudes, it is  not possib le  to define 
one am plitude, but rather two, accord in g  to Eq. (17). We thus assum e that 
these two are  enough and that every physical S -m atrix  elem ent is either 
equal to the value o f the interpolation  by the S+ m atrix o r  by the S" m atrix, 
it being understood that angular m om enta differing by two are related to 
the sam e in terpolation . The sign put in su perscrip t w ill be called , follow ing 
G ell-M ann, the signature.

In each channel, then, we may o rd er  a ll stable p articles  and all r e 
sonances a ccord in g  to th e ir  signature. Then we could expect these states 
to belong to the sam e R egge tra je cto ry , o r  at least to belong to a finite num
b er (sm a ller  than the num ber of states) o f R egge tra je c to r ie s . The first
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attempt in th is d irection  w as m ade by CHEW and FRAUTSCHI [9 ] .They made 
a diagram  o f a ll then known p a rtic les  with the squared m ass in abscissa  and 
the spin in ord inate. Only one pa ir o f p a rtic les  could be f it te d : the nucleon 
Pi/2 and the th ird  nucleon resonance F5/ 2.T h is  corresp on d s to an average 
slope Bar/9s o f 1 /50  m|. T his, quite rem arkably, fits  with a form ula of p o 
tential scatterin g  which e x p resses  Safas as Rzv/4 (2 a + l) , w here R av is  som e 
average  radius o f the wave function . If we take it to  be 1 /  2 m„, we get the 
resu lt. T h is, o f co u rse , should not be taken too  seriou sly  as we are in the 
re la tiv is t ic  reg ion . H ow ever, th is figure  o f l / 5 0 m 2 should be retained as 
we shall encounter it many tim es .

F o r  exam ple, the poss ib ility  has been m entioned at the 1962 Geneva 
C on ference  o f the existence  o f a resonance at 1920 MeV, B = 1 S= 0 ,1 = 3 /2 .
If the other quantum num bers turn out to be c o r re c t , this could correspon d  
to the sam e R egge pole  as the w ell-know n (3,3) reson an ce . In the sam e way, 
the excited  hyperon o f m ass 1815, which appears to have 1 = 0, could be 
the sam e pole  as the A. T hese two ca se s  would corresp on d  to an average 
9 a /9 s  o f 1 /5 0 m| in the sam e way."

T his is  about a ll the in form ation  we can get from  this firs t  point of 
view  and is  pretty m ea ger. H ow ever, the sp ectroscop y  o f h igh-energy r e 
sonances is  a sc ien ce  in fu ll b loom  and the num ber of pa irs associated  to 
the sam e R egge p o les  may in crea se  beyond expectation in a few y ea rs .

5. 2. Second approach : asym ptotic p rop erties  of c r o s s -s e c t io n s

The study o f the asym ptotic p rop erties  o f the c ro s s -s e c t io n s  at fixed 
m om entum  tra n sfer  as a function of the energy can a lso  help checking the 
R egge pole  hypothesis. This has to be done in a fa ir ly  indirect fashion, as 
we have seen that it is  very  d ifficu lt to determ ine from  the asym ptotic b e 
haviour whether one has to do with poles  o r  with other singu larities. How
ever, a num ber o f n on -tr iv ia l p red ictions can be made and checked against 
experim ent.

The total c r o s s -s e c t io n s , being given by the optica l theorem  as the 
im aginary part of the am plitude up to som e kinem atical fa ctor , are  a very 
convenient to o l. It should be p oss ib le  to exp ress them in the f o r m :

a tot( s ) ^  (l/s )E ß a (0 )P a K(0 ) ( l+ s /2 ) / (28)

the sum m ation being ca rr ie d  out ov er  a ll R egge poles having the appropriate 
quantum num bers, that is  the quantum num bers of the p articles  which could 
be exchanged in the scatterin g  p r o c e s s . At th is point a very  tem pting a s 
sum ption can be m ade, that o f fa ctoriza tion  [13].

The idea is  the fo llow in g . C onsider a m atrix  M, function o f som e para
m eters  [X ], If th is m atrix  is  m erom orph ic in [A.}; the poles are m ost likely 
to be sim ple and th e ir  res id u es  to be of rank one in the follow ing sense.

If we con sid er  the in verse  m atrix  N = M"1, Det N has a ze ro  at the pole 
and this z e r o  is  m ost likely  to be sim ple, i. e . we may vary the elem ents 
o f N by sm all amounts related  by only one condition and still keep a sim ple 
z e r o . If we wanted to keep a double z e ro , we could only vary the elem ents 
o f N by sm all amounts related  by 2 conditions and so on. If the ze ro  is  sim ple
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N has only one eigenvalue z e r o  and th ere fore  M has only one eigenvalue 
infinite o r , what is  the sam e, the rank o f the residue is  one.

If this is  accepted , then, we find that the S -m atrix , as expressed  as a
function o f com plex  j, is  m ost likely  to have residues which are of rank 
one.

T h is  im p lies  that the fa c to rs  ß in an expression  like (28) may be written 
as fo llo w s .

A ssum e that the reaction  under consideration  is  among p articles  a and h. 
Then w e h a v e :

M o >  = f $ ° >  • $ < » ■

This has very  strong experim ental im plications, fo r  exam ple, if we assum e 
that the leading term  in (28) corresp on d s to

ß l (0 )  = 1 ("Pom eranchuk p o le") (29)

which leads to constant c r o s s -s e c t io n s  at infinity, then

o’ tot (a+a) . fftot (b+b) = [crtot (a+b)]2. (30)

No such rela tion s has yet been experim entally checked, as they always n e
cessita te  targets  which are d ifficu lt to p repare . H ow ever, it is  possib le  
that in the future c r o s s -s e c t io n s  like <rtot ( tt +  it) might be m easured by som e 
in d irect way : extrapolation  o r  the like.

It should a lso  be p oss ib le  to go farther than that and estim ate the next 
term s of E q .(2 8 ). One gets into trouble h ere . Take, fo r  exam ple, the case  
of (p, p) and (p, p) and (p, p) scattering. The total c ro s s -s e c t io n s  look as if 
they w ere  going down slow ly tow ards their lim it, the d ifferen ce decreasing 
like S '0,5. H ow ever, <jpp is  m uch n earer to it than ctpp. This is  very  n ice and 
we hope that it could  be the influence o f the R egge pole o f the p resonance. 
H ow ever, th is p resonance (or the u resonance), because o f its quantum 
num bers, only contributes to  he d ifferen ce  app- p pp .T h e re fo re  one needs 
another, as yet unknown, R egge pole which has about the sam e a and ß and 
which has the p rop er quantum num bers so that it contributes to the sum
CTpp + a pp.

5. 3 .N on -forw ard  scattering

If this last pole  ex ists , one may wonder why it does not correspond  to 
any known p a rtic le . T h is is  a lso  true of the dominant ("Pom eranchuk") pole . 
In fa ct , the signature o f the Pom eranchuk pole  is  + and th erefore  it should 
go through 0 fo r  som e negative value of t w here a partic le  should appear. 
This has been investigated by G ell-M ann and, though not understood in full 
detail, the situation is  pretty w ell c la r ified .

The idea, which has been checked by G ell-M ann in a 3 -body m odel, is 
that fo r  every  in teger j, there a re  two different fam ilies  o f Legendre func
tions which b ecom e  com plete ly  independent. T here  are those with singula
r it ie s  and th ose without. The Legendre functions without singularities are
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connected with the representations o f the rotation group. The Others may 
a lso  be connected  with the rotation group, but they do not form  a basis fo r  
a representation  becau se o f th eir  s ingu larities.

A s a parenthesis, W igner has shown what the representations of the 
P o in ca re  group look  like  fo r  im aginary m a s s * . The d ifferen ce  lie s  in the 
fact that, fo r  im aginary m a ss , the relevant surface is  not a sphere, but 
a hyperboloid , and the conditions fo r  the absence o f singularities on the 
h yperboloid  are quite d ifferent from  those fo r  the absence o f singularities 
on a sphere.

F o r  exam ple I ,  a ll Legendre functions have singu larities on the sphere. 
When one fo llow s a R egge pole , as a function of i. and reaches an integer 
value of j, one expects the relevant "w ave functions", whatever that means 
p re c ise ly , either to  keep th eir  s in gu larities on the sphere, o r  to lo se  them . 
In the fir s t  ca se , one w ill not get any p a rtic le  o r  resonance with that spin 
and th is is  what happens in the ca se  of the "gh ost" o f the Pom eranchuk pole 
at j = 0. In the second ca se , it w ill furnish  an honest p a rtic le  which can be 
seen .

Thus, it is  getting fa ir ly  d ifficu lt to tra ce  the R egge poles in their own 
channel, one may m iss  them  fa ir ly  frequently . The behaviour indicated by 
E q. (12) A (s , t) = ß(t)A°W which leads to a d ifferentia l e lastic  c ro s s -s e c t io n  
o f the fo rm

dael(s , t ) /d t  «  |j3(t) |2s2[«<')-i3 (31)

has been experim entally  checked, o r  at least, that it is  not incom patible 
with experim ent.

5 .4 . C la ss ica l p icture o f h igh -energy scattering - the puzzle o f heavy nuclei

Equation (31) can be in terpreted  c la ss ica lly , as at very-high energies 
the wave length o f the p a rtic le s  is  m uch sm a ller  than any of the dim ensions 
involved in (31). It is  th ere fore  tem pting to do so . We m ay rew rite  (31), 
putting 2 9«/8t = a.

dcxel/d t  | ß (t) |2exp [ -a 111 In s ], (32)

The pattern is  that o f a shrinking d iffraction  peak. This correspon ds to an 
in creasin g  s ize  o f the target. H ow ever, the total c r o s s -s e c t io n  being con 
stant, we end up with a target which b low s up like a puff of sm oke, as the 
energy in crea ses , becom ing  b igger and thinner.

This is  a very  strik ing feature o f this whole analysis. One may start 
w ondering what happens when the target is  a heavy nucleus. It is known that 
the scattering  o f a high-energy proton  by ä heavy nucleus is essentially p ro 
portional to the area  of the nucleus, th ere fore  going like A2/3, and is  essen 
tia lly  constant up to co s m ic  ray en erg ies .

But what i f  a ll the nucleons inside the nucleus start blowing up, thus
becom ing  m ore  and m ore  transparent? G ell-M ann and Udgaonkar have p ro -

*  These proceedings.
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posed  such a m odel and they show that at very  high energies, the c r o s s -  
section  should be p roportional to A , rather than A 2/ 3, as there is  no s creen 
ing effect any m ore . The transition  of one set o f c r o s s -s e c t io n s  to the other 
should take p lace very  slow ly, as the in crea se  in s ize  of the nuclei, and 
fina lly , we end up with a c r o s s -s e c t io n  which tends tow ards its lim it as 
l / l n s ,  w hich leads to a cut in the i  -p lane.

A nother p ossib ility  is  interesting to investigate. Let us use the fa c 
toriza tion  hypothesis in equation (32). W e get fo r  the amplitude

A (s , t) = isß (a) (t)ßW (t)exp ^ |  |t|lns^ . (33)

W e now con s id er  that this is  pure d iffraction  scattering, which o ccu rs  with 
a very  weak absorption  over a large  su rface . We can th erefore  tr^ce back 
the absorption  density p(b) as a function o f the im pact param eter b : p(b) 
is  the two d im ensional F o u rr ie r  tran sform  o f A (s , t) as expressed  in term s 
of the tw o-d im ensiona l tra n sverse  mom entum  tra n sfer .

The product (31) is  tran sform ed  into a convolution by this F ou rr ier  
tra n sfo rm a tion :

p(b) = p ^ (b )  * p̂ b) (b) * (27r/a ln .s)exp (-b2/2 a l n  s). (34)

Now it seem s that th is way of w riting p (b) is  fa ir ly  natural and represents 
a part involving the target and only the target, a part involving the incident 
p a rtic le  and only it and a part involving the P om eram chuk pole and only it. 
A ll these parts could  be rep laced  by another of a s im ila r  nature and it would 
only d e scr ib e  another ph ysica l phenom enon.

The c la s s ic a l interpretation  o f (34) is  obvious : p(a) (b) and p(b)(b) r e 
p resen ts  the net probability  o f em itting o r  absorbing a Pom eranchuk pole 
at a p la ce  b, integrated along the line of flight, o f p a rtic les  a and b r e -  
pectively .

The exp ress ion  [?r/a In s] e x p [-b 2/2  a In s] is  the probability , again inte
grated along the line o f flight, fo r  a Pom eranchuk pole  em itted at the origin, 
to be absorbed  at a d istance b from  the orig in .

W e may a lso  think that in fact, all these probab ilities should be sp er i- 
ca lly  sym m etrica lly  d istr ibu ted ; it is  an easy m atter then to compute the 
3 -d im en sion a l d istributions out of the integrated ones (A bel’ s problem ).

In th is ca se , how ever, the puzzle of the heavy nuclei disappears, as 
only the Pom eranchuk pole blow s up and thins out. The screen ing effect 
still takes p la ce  inside p^and P(b)a n d  the c r o s s -s e c t io n  goes like A2/ 3, even 
asym p totica lly .

In con clu sion , one should bear in mind the amount o f guesses and con 
je ctu re s  which have been used in this whole study. This is  a very  unscienti
f ic  situation, in which the bases are  so fa r  away from  the prediction  of ex 
p erim ents that there is  no such thing as a d ecis ive  experim ent to test this 
o r  that b asic  postu late. It is  th ere fore  pretty fra il and it would be in many 
w ays a m ira c le  if  a ll th is is  s t ill true in 10 y e a rs  from  now.



HIGH-ENERGY PROPERTIES 3 9 9

R E F E R E N C E S

[1] CHEW, G. F ., ”S-matrix theory of strong interactions", Benjamin, New York.
[2] REGGE, T. . N u o v o  Cim. 18 (1960) 947.
[3] TITCHMARSH, E .C ., "Theory of function", Oxford (1939) 185.
[4] IGI, K ., University of California, Berkeley, preprint.
[5]AHMADRADCH, A ., BURKE, P. and TATE, C ., UCR. preprint.
[6] BARDACKI, K., University of Minnesota, preprint.
[7] BARUT, A. O. and ZWANZIGER, D., University of California, Berkeley, preprint,
18] MANDELSTAM, S.,  University of Birmingham, preprint.
[9] CHEW, G.F. and FRAUTSCHI, S ., Phys. Rev. Letters 7 (1961) 394; 8 (1962) 41.

[10] GRIBOV, V. N. and POMERANCHUK, L Y ., Inst, of Theor. and Exp. Riys., Moscow, preprint No. 91.
[11] WILSON, K ., private communication.
[12] COCCONI and DRELL, Gen. Conf. on High Energy Physics, to be published (1962).
[13] GELL-MANN, M ., ftiys. Rev. Letters 8 (1962) 263;

GRIBOV, V.N. and POMERANCHUK, L Y .. Zh. Exp. Theor. Phys. 42 (1962).





REGGE POLES AND STRIP APPROXIMATION

S. MANDELSTAM

DEPARTMENT OF M ATHEMATICAL PHYSICS, UNIVERSITY OF BIRMINGHAM, 
BIRMINGHAM, UNITED KINGDOM

1. INTRODUCTION

M y aim  in these le ctu res  is  to outline an approxim ation schem e for  
calcu lating scattering am plitudes in d ispersion  theory by the use of which 
one would hope to ov ercom e  the d ifficu lties associa ted  with previous approxi
m ation sch em es. At the mom ent a fu lly consistent set of equations has not 
been w ritten down, but it is hoped that the m ateria ls fo r  a solution of the 
p rob lem  are  at hand. We shall see , probably in the next lecture, that the 
concept o f "R egge p o le s "  w ill p lay an im portant part in the analysis. In fact, 
it was in this connection  that they w ere orig inally  introduced into elem entary 
p a rtic le  p h ysics .

F ir s t  let m e outline why we w ere unable to get consistent equations by 
the prev iou s approach, used fo r  instance by Chew and m e in the pion-pion 
p ro b le m [1], (This approach has a lso  been treated in a paper by CINI and 
FUBINI [2], One started with the dou b le-d ispers ion  representation  [3],

F o r  the purpose o f this lectu re  we have taken the ca se  of neutral sca lar 
p a rtic les  with equal m ass, when the variab les  s, t and u are related by the 
equation

We have not w ritten the subtraction term s explicitly , but it is understood 
that such term s may and in fact w ill be present. The essen ce  o f the old 
approach was to assum e that the scattering amplitude at low energies was 
dom inated by the nearest s ingu larities. A ccord in gly , one neglected term s 
w here "on e "  was la rge . In the fir s t  approxim ation, one neglected  con tri
butions which began at the inelastic threshold.

In p ion -p ion  scattering, this amounted to neglecting the double-spectral 
functions com pletely . The reason  is  that it is  im possib le  to draw a diagram 
w here the vir scattering, both in the s and t -  channels, took place through 
a tw o-p ion  interm ediate state. The p ro ce sse s  with the low est interm ediate 
states w ere in fact as in F ig . 1.

A  (s, t) = ^  I d s 'd t '
Ai3 ( s ' , f )  i 

( s '- s )  (t '- t )  + if
A 23 (u', t ')  

du 'dt' ------------------

(1)

s + t + u = 4(J2.

4 0 1
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Graphs for pion-pion scattering with the lowest intermediate state.

The fir s t  diagram  goes through a tw o-p ion  state in the s-channel but through 
a fou r-p ion  state in the t-channel, the second  through a fou r-p ion  state in 
the s-ch an n el but through a tw o-p ion  state in the t-channel. A ccordingly, 
the d ou b le -sp ectra l function starts at a high threshold in at least one of the 
variab les s and t, and must consequently be neglected.

We should em phasize that the neglect of the dou b le-spectra l function is 
purely  due to the absence o f a th ree-p ion  vertex. If there w ere a three-pion 
vertex , the follow ing p ro ce ss  (F ig. 2) would contribute, and the double-

-- i
\/  \

Fig. 2

Pion-pion scattering through a three-pion vertex

sp ectra l function could not be neglected  assail dou b le-spectra l functions are 
neglected , the representation  would con sist purely of subtraction term s, 
and would appear as fo llow s

m  l r  fs ( s ') d s ' i 2t f  f p ( s ') d s '
A (s ,  t) = -  \ ----- :-----7---- + -  P, (1+ ----- - j - R  ) \ -=y-;---- :---7TJ s ' - s )  n 1 & - 4/j2 J (s '-s )

+ cro sse d  term s + \ • (2)

. We have taken the ca se  o f two subtractions in the t-variab le , so  that there 
w ill be a constant term  and a term  linear in t. We have re -grou ped  them 
into a constant term  and a term  involving the fa ctor  [ l  + 2 t/(s-4 fJ2 )]
= 1 + 2 t /(s -4 f i2) as these term s corresp on d  to S- and P -w aves. Thus, if 
P -w a ves  are  im portant, as they are in p ra ctice  in n-n scattering, one would 
expect to have to p er fo rm  at least two subtractions in t. We have been a 
little  c a re le ss  in writing (2), as P -w aves cannot occu r  in neutral (pseudo) 
sca la r  p ion -p ion  scattering but, sin ce  we are rea lly  interested in charged 
pions we shall ignore th is.

When Chew and I attempted to solve the p roblem , we arrived  at singular 
in tegra l equations which did not have a unique solution. The difficulty was
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due to the fact that the diagram  (F ig. 3) represen ts the exchange o f a P -w ave 
pion  p a ir .

Now the exchange of a P -w ave system  corresp on d s to a very  singular p o 
tential. If one w ere solving the p rob lem  by any other method, the singularity 
would be rounded o ff by the fact that a com posite  system  such as a pion pair 
has an extension  in space . D ispersion  theory  operates in term s of t}ie 
S -m atrix , how ever, and concepts such as spatial extension do not enter 
d irectly  into the theory . In fact, in the s im plest approxim ation as Chew and
I treated  it, the exchange o f a com posite  system  is treated on exactly the 
sam e footing as the exchange o f an elem entary p a rtic le , and leads to singular 
equations.

The difficu lty  actually a r ise s  from  the fa ctor  1 + 2 t /(s -4 ^ 2) in the second 
term  o f (2), which approaches infinity with infinite t. Now, the function A 
(s ,t )  in addition to representing  d irect p ion -p ion  scattering, a lso  represents 
c ro s s e d  p ion -p ion  scattering, and now being the energy and s the momentum 
tra n sfer . The amplitude fo r  c ro s s e d  p ion -p ion  scattering then approaches 
infinity with the energy, and such a behaviour can lead one into con flict with 
the unitarity condition.

2. CALCULATION OF THE DOUBLE SPEC TR AL FUNCTION

In the fa ce  o f these d ifficu lties , a m uch m ore  am bitious approxim ation 
schem e was suggested independently by CHEW andFRAUTSCHI, M cCAULEY, 
TER-M ARTIROSYAN  and WILSON [3 ]. The p rop osa l was essentia lly  to ca lcu 
late a ll that one can with neglect o f m u lti-p a rtic le  states in the unitarity 
condition. Our next p rob lem  w ill th ere fore  be to investigate how the double- 
sp ectra l function m ay be calcu lated .

Let us suppose fo r  the m om ent that we know the double-spectralfunction  
A 23. In p ra ctice , we do not know it in advance, o f  cou rse , but must ca lcu 
late it by m eans o f an iteration  p roced u re . We m ay then re -w rite  (1) as

'XX

Fig. 3

Exchange of a P-wave pion pair.

( s ' - s )  (t ' - t )  + 1T
1

+ subtraction term s
involving s + X. (3)
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In this equation, the f ir s t  two integrals com e from  two sou rces :

(i) Substraction term s in t and u;
(ii) The secon d  term  of (1).

It is  shown in [ 1] how the latter term  can be written in the form  of the first 
two term s o f (3). If we have subtractions, the integrals in (3) w ill really  
have a m ore  com plicated  fo rm . This is  a lso  explained in [1]. Such com pli
cations a re  inessentia l and we shall ignore them h ere . We shall explicitly 
exclude m ore  than one subtraction in each variab le , how ever. F o r  the moment 
we are  in terested  in the calcu lation  o f A 13 and A 12 from  unitarity when V3 
and Y, are known. Later we shall have som ething to say on the iteration 
p roced u re  fo r  calcu lating V3 and V2. We shall form ulate a ll our equations in 
term s o f neutral p ion -p ion  scattering . G eneralization  to prob lem s with spin, 
isotop ic  spin and unequal m ass can be m ade, and they do not change the 
essen tia l features of the calcu lation .

F rom  (3), we can w rite  a d ispersion  rela tion  in the momentum transfer 
(for fixed  s ) :

where

1  f ° °  A3(s, t ')  1 r °  A 2 (s ,u ')
i  * ' 7F T T T "?  ,4)
4/i2 4/j2

1 o°o A i3 ( s ', t )
A 3 (s, t) = V3 (s , t) + — \ d s 1 (s , ,—  • (5a)

^4/i2

A 2 (s ,u ) = V2 (s, u) + j

We now insert (4) into the unitarity relation , so  as to obtain A, in term s of 
the sp ectra l functions A3, A 2 instead o f in term s o f A . The unitarity relation 
is

A ^ s , t) = g2 y 2W X i dZl J o  dq) A* 1 (z l )}  A  { s , t ( z z i -  V ( l -  z2) ( l -z ^ c o s tp }

(6)

JJa

00 Al2(s, u )  
ds'

'4/i2
( s ' - s ) (5b)

The notation should be fa ir ly  evident. The sym bol z denotes the cosine of the 
ongle o f scattering from  the in itial to the interm ediate state, and z i the cosine 
o f the angle from  the in itial to the final state. The sym bol 9 is  the azimuthal 
angle between the in itial and the interm ediate state, m easured from  the plane 
o f the in itial and the final state, and the integral is  thus over a ll interm ediate 
states. The cosin e  angle between the interm ediate and the final states w ill 
thus be
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z z i - V (1  - z 2) ( 1  - z2) c o s '? .

The variab le  z w ill be related  to the mom entum  transger t by the form ula

z = 1 + t /2 q 2 (7a)

while the exp ress ion s  t ( z j ) and t (zz, - V ( l -  z 2) ( l - - z f )  co s ? ) in (6) indicate 
that t is  to be exp ressed  in term s o f the cosin e  o f the angle o f scattering 
by the form ula

t ( z i )  = 2q2(zi -  1) (7b)

t  ( z z i -V ( l - iZ 2) (1 - z J) cos<P) = 2q2 (z z i -  V( 1- z 2) (1 - z f) c o s ?  - 1) (7c)

In a ll these form ulae , t is the c e n tre -o f-m a s s  momentum given by

q 2 = i  (s -  4h2) (8a)

and W the ce n tre -o f -m a s s  energy s i  .
At this point we shall f ir s t  s im plify  the calcu lations by assum ing that 

the second  term  o f (4) is  absent. We can then insert (4) into (6) and, on ex 

p ress in g  t ( z } ) and t (zz i - V ( l - z 2) ( l -  z 2) cos<P) by (7c), we a rrive  at the 
equation,

2tt j  poo A3 ( s , t ' )r 1 r 2«  i  r°° Ai
A i ( s , t )  = ------5—  \ dzi \ d<P — \ dt' —

3 2 ff2 W i J 0 * J, 2 t 1-4M2 t f -2q 2 (zl -  i)

pQO

* !  r
A3 (s ,t " )

4m2 t"  -  2q2 ( z z i - V ( l  -  z*) ( l - z j ( ) c o s (P -1) (9)

The integrations over z and'Pon the one hand, and t ; and t"  on the other 
hand, can now be interchanged. As the variab les  z and only occu r in the 
denom inators, the integrations over these can be perform ed . After ex 
p ress in g  z in term s o f t by (7a), the resu lt is

A l ŝ> t) = 327T3 qW J dCT' da" A 3( s , t ')  A 3(s, t " ) {K (q 2; t , t ' , t " ) } i

X log « ( q 2; t , t ' , t ' ' )  + {K (q 2, t . t ' . t " ) } *
a (q2; t , t ' , t " )  - {K (q 2, t . t ' . t ")}1  ( 10 )
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w here

K (q2 ;- t , t ',  t " )  = t2 + t ,2 + t ' '2 - 2 (tt' + tt" + t 't " )  - t t ' t "  / q 2 (11a)

a (q2, t, t ',  t " )  = t - t ’ - t "  - t ' t "  / 2q2 ( l ib )

Eq.(10) g iv e sA i in term s o f A 3. The equation as it stands is  not particularly 
u se fu l; how ever, it can easily  be rew ritten  as an equation fo r  A 13 in term s 
o f A3. T o see  th is, we ob serve  that

1 a (q2; t , t 1, t 11) + {K (q2 ; t , t ’ , t " ) } *
{K  (q2; t , t ' , t r' ) } i  ° g a (q2 ;t , t ',  t " )  -  {K (q 2 ; t , t ' , t " ) }  i

■ 2 !  —•J t" ' -t
1

{K (q2;t , t ' , t ' ' '  )}*' (12a)

w here the in tegra l is  taken over the region,.

(t"' )* > (t ')*  + (t " )*

( 12 b)
K > 0 .

Eq. (12) may be derived  by observing that the logarithm  is analytic except 
fo r  a cut along the rea l axis when the inequalities ( 1 2 b) are satisfied , the 
discontinuity a cro ss  the cut being 27TK~i . On substituting (12) into (10), we 
a rr iv e  at the equation

A ’  ( s , t )  = jr J  t - t  16 7r2qW I dt'd t'' {K  ( q 2; t ,  t ' , t " ) }  i

X A 3 ( ,s ,t ')  A3 ( s , t " )  (13a)

w here the in tegrals o f t' and t " ar > taken over the reg ion  fo r  which.

(tm )* > (t')* -Hft" ) 4
(13b)

K > 0 .

We can now com pare Eq. (13a) with the d ispersion  relation  fo r  Ai (s ,t )

1 f  A 13 (s, t ')  
Ä ! ( s . t ) = -  j  dt' "(t ~ t) ~  • (14)
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(The in tegra l over  A 23(s ,u ) does not contribute when the second term  o f (4) 
is  n eg lected ). F ro m  Eq. (14) we ob serve  at once that we can identify the in tegra l. 
over t ' and t "  in Eq. (13a) with Ai3 :

Al3 (M) = 1 6 jt2 qw j*dt'dt" {K (q 2; t , t ’ , t '') } i  A 3 ( M ') A 3 (s ,t " ) ,  (15)

fo r  (t)i > (t ' ) 4 + (t" ) 1  , K > 0

otherw ise

A i 3 (s , t )  = 0 ,

Eq. (14) is  the unitarity equation fo r  the d ou b le -sp ectra l function which we 
requ ire  [3].

We how have two equations,E qs.(5a) and (15),between  A3 and A 13. One is  
lin ear, the other quadratic. B ecause o f the lim itations on the range of inte
gration  in E q.(15) it turns out that one can obtain A 13 and A 3 without solving 
an in tegra l equation. To see how this can be done, we observe  that A i3(s, t) 
w ill be z e ro  if t < 4/u2. As the integration inE q.(15) is taken only over the 
reg ion  t  ̂ > t ' i +  t"  i, it fo llow s that

A 13 (s , t) = 0 , t <  16 m2 . (16a)

Thus, from  Eq. (5a)

A 3 (s, t) = V3 (s , t) j t<  16»2. (16b)

And A 3(s, t) w ill thus be known fo r  this range o f t.
Next, we ob serve  from  the inequality t i >  t 'i  + t " i  that, if  t < 36jj2, t' 

and t'* w ill both be le s s  than 16/j2 (since both are greater than 4p2 ). How
ever, A 3(s ,t )  is  known fo r  t < 16 n2, so  that A i3 (s ,t )  can be calculated for  
t < 36/li2. Using the d ispersion  relation  (4), A 3 (s ,t )  can then be calculated 
fo r  t < 36m2.

The p ro ce s s  o f using su cce ss iv e ly  E qs. (15) and (4) may now be continued 
indefin itely. In the next stage, fo r  instance, A 1 3 (s ,t )  can be calculated from  
E q.(15) fo r  t < <j4/j2 if A 3 (s, t) is  known fo r  t < 36/j2. A3(s ,t )  can then be 
ca lcu lated  fo r  t < 64p2 from  Eq. (4). We can thus construct the d ou b le -sp ectra l, 
function fo r  su cce ss iv e ly  la rg er  ranges o f t, and can reach  any given value 
o f t in a fin ite num ber o f steps. The elastic  unitarity and analyticity p rop er
ties  thus prov ide  us with a m eans o f calculating the double spectra l function.

We m ay rem ark  that a s im ila r  equation can be derived  fo r  calculating 
the double sp ectra l function fo r  a superposition  of Yakuwa potentials, as 
was shown by BLANKENBECLER, GOLDBERGER, KHURI and TREIMAN
[4]. T here are two d iffe ren ces :
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(i) The fa ctor  1/W  in Eq. 15 is absent and the num erical fa ctors  are 
d ifferent;

(ii) The function V (s ,t )  is known in advance. It depends on t alone and 
is  given  by

U ( , , %  <” >

w here U (t) is the potential. A superposition  of Yukawa potentials can always 
be written in the form  (17). In the potential ca se  the determ ination of the 
d ou b le -sp ectra l function prov ides a com plete  solution of the problem , in the 
re la tiv is t ic  case  it does not as V3 (s ,t )  is not known in advance and must 
be determ ined fro m  the solution. Because o f the s im ilar ities  between the 
equations fo r  the potential and re la tiv istic  th eories , CHEW and FRAUTSCHI
[5] have dubbed the function A 3 (s ,t )  a "gen era lized  potentia l". We should 
em phasize how ever, that the innocent-looking fa ctor  1/W  in the relativ istic 
case  is  su fficien t to destroy  the equivalence between the present method and 
any S ch roed in ger-like  equation, and one is  fo rce d  to so lve  the problem  using 
the p roced u re  just outlined.

We have thus fa r  sim p lified  the prob lem  by omitting the second  term  
in (2). When such a term  is present a s im ilar  procedu re  can be used, but 
the equations 'correspondingto (15) are  slightly m ore  com plicated. They are:

A is ( s ' t) = 16 tt2 qW [  I  d t'd t” {K  (q2; t, t 1, t" ) } i  A3 A 3(S’ t '')
R

■R dU'dU" { K ( q 2 , t ,u ',u " ) } i A f  ( s ,u ') A l ( s ,u " )  J ,  (18a)

A 12(S' U) = IsP q W  1  dt' du' {K (q2 ;u l V ,u » ) } l  [  A * ^  t ' )  A 2 (s, u")

+ A* (s ,u ')  A 3 ( s , t ')  ] .  (18b)

The su b -scr ip t R indicates that the in tegral is  to be taken only over the 1 egion 
fo r  which the last three argum ents jf  K riatisfy the inequality in Eq.(15).

We shall now outline v ery  b rie fly  the iteration procedu re  suggested by 
the authors nam ed at the beginning o f the lectu re  fo r  calculating V3 and V2. 
We shall not go into details, both because the schem e w ill probably be d is 
cu ssed  in other le ctu res , and a lso  because, as it stands at the mom ent, it 
does not appear to be fr e e  o f d ivergences and w ill probably have to be m odi
fied . The iteration  schem e is based on the cross in g  relation, which takes 
the fo rm  (for  neutral p ion -p ion  scattering)
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A 13 (s , t) = A 13 (t, s) = A 12 (s , t) = A i2(t, s) = A 23(s, t) = A 23(t, s). (19)

Now the function A 13 ca lcu lated  accord in g  to the iteration  procedu re  is c e r 
tainly not sym m etric  in its argum ents. We shall th ere fore  define

A i3 (s ,t )  -  A i3e l ( s , t )  + A 13ij j ( s , t )  (20a)

w here

A 13in (s, t) = A13el (t, s ) . (20b)

The p roced u re  outlined above g ives Aa3el ( s ,  t), and correspon ds to diagram s 
such as F ig . 4 (a). To maintain the cross in g  relation  one must then include

c a j

q ~ - -i o — a

(bj

Fig. 4

Elastic and inelastic contributions to pion-pion scattering

diagram s correspon d in g  to F ig . 4(b) as w ell, and they w ill correspon d  to the 
sp ectra l function A 13 in inelastic p r o c e s s e s  as they take into account to a 
certa in  extent, in fact, as w ill probab ly  be d iscu ssed  in F rautsch i’ s lectures, 
they are taken into account in the "ph ysica l approxim ation". F or  the moment, 
how ever, we sim ply  rem ark  that we must include them in order to maintain 
the cross in g  relation .
Thus, in the iteration  sch em e, we would define (from  Eq. (20b))

A ä ( i , l | - * Ö W .  <2 1 a >

a 5 L  ( « • » ) - a ,1? ; ! 1’ < » . " )■  <2 i b >

and, fro m  (19)

A  W  (t, u) = A ^ l )  (u, t) + A fo ^ J ft . s ) . (21c)

The quantities (s ,t )  and V2 (s, u) are  obtained by inserting A 13, A 12and 
A 23 in the d ispersion  relations fo r  A 3 and A 2
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+ subtraction term s, (22a)

+ subtraction term s. (22b)

One obtains the subtraction term s (if there are any) by solving the S- 
wave equations by the N /D  m ethod; the connection between the subtraction 
term s and the S -w aves is  outlined in [ 1 ]. The method given above can then 
be used to calcu late A d e l t e .  *) and A ^ g j^ s , t), and we thus have an iteration 
p roced u re  which p rov ides a solution o f the prob lem  on the assum ption that 
it con verges , o f  cou rse .

3. THE SCATTERING AMPLITUDE IN THE CASE OF SUBTRACTIONS.

In the prev iou s section  we d iscu ssed  the construction  of the double 
sp ectra l function A 13 and the single sp ectra l function A3 from  unitarity. (Of 
cou rse , in the gen era l ca se , we also calcu late A j2 and A2). We pointed out 
that, in the absence o f subtractions, one could now find the scattering am pli
tude sim ply  by using the d ispersion  relation  in the momentum transfer:

H ow ever, this is  only true if  there are no subtractions in the t dispersion  
relation . Now we want to d iscu ss the question: what happens if there are 
subtractions? Can we s t ill  get the scattering amplitude by this procedure, 
knowing A 13 and A 3?

Just fro m  ordinary, naive, com m on -or-g a rd en  d ispersion  theory, it 
does not look  as though we can. There are  no subtractions if A 3 -*• 0 as t -*  *>. 
fiow ever suppose we only have the weaker condition A3/t  —■ 0 as t —■ « . We 
then need one subtraction , and have to w rite the equation as

Now you see  that we don’t know the scattering amplitude if we know A3 -  we 
a lso  have to know A (s, t0 ). This doesn ’t depend on the momentum transfer 
or  the angle so it just corresp on d s  to the S-wave. T h ere fore , if we have one 
subtraction, it m eans that the S-waves are apparently not determ ined by the 
double sp ectra l function, but have to be calcu lated  separately - fo r  instance 
by the N /D  m ethod.

(23)

A (s ,  t) = A ( s , t 0) + dt'
A 3 ( s . t 1) 

( t ' - t 0)(t '-t ) (24)
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S im ilarly , if A  behaves like t at infinity, so  that only A /t2—"0, we need 
two subtractions and we have to calcu late both the S and P-w aves separately - 
they a re  not determ ined by the double sp ectra l function.

Now to answ er the question: how does A actually go to zero  in the problem  
o f in terest? We know what it does in perturbation theory. F o r  potential 
scattering in perturbation  theory, A (s ,t ) -* ’ 0 as t — °°, and in the relativ istic 
ca se  it goes to a constant. If the potential is  su fficiently  sm all, we can use 
perturbation  theory, and everything is  then (determ ined by the spectra l 
function A 3. H ow ever, suppose we in crea se  the strength of the potential, 
t i ll  we get an S-wave bound state. Then A w ill have a term  l / ( s  - sß ). which 
is constant as t -*■ »  . S im ilarly , if  we in crea se  the potential up to the point 
w here we get a bound P -state, then we w ill have a term

(1 + t /2 a 2) /(s  -  sB ). (25)

The num erator is  just the fir s t  L egendre polynom ial o f the scattering angle. 
And you see  that when the potential reach es this strength, A ■—«>, as t -* » ,  
and we need two subtractions. So, as one in creases  the strength of the p o 
tential, the asym ptotic behaviour gets w orse  and w orse  and, without any 
further in form ation  than we have a lready put in, one has to p erform  m ore 
and m ore  subtractions.

Now, th is, although it is  not obviously  wrong, does sound a bit paradoxi
ca l, becau se it would be funny if the double sp ectra l function determ ined 
everything until the potential reached  a certa in  strength, and then suddenly 
at this strength of the potential we lost inform ation and couldn ’t get the S- 
w aves from  the double sp ectra l function, and then when the potential reached 
another strength we lost still m ore  inform ation and couldn ’ t get the P-waves 
from  the sp ectra l functions, and so  on. I think that m ost people would con 
s id er  this a rather im plausible, although not n ecessa rily  ridiculous, situ
ation. Now this itse lf is not so  ser iou s , but we see that, in the re lativ istic 
ca se , once A — °° at infinite t, then in the c ro sse d  reaction  A -*  «  at infinite 
energy, and we get those trou b les I was speaking about yesterday. So for  
the re la tiv is t ic  ca se , it is v ita l to analyse this asym ptotic behaviour in m ore 
detail to  see  whether we can get rid  o f this trouble. As a matter of fact, 
that is  rea lly  why I am  going to the trouble o f doing a ll this com plicated 
p roced u re , instead o f using the s im p ler  p rocedu re  that we used in ea rlie r  
ca lcu lations.

The solution  to this p rob lem  of the asym ptotic behaviour was solved 
com plete ly  by REGGE [ 6] in the potential theory  - this is  where he com es 
into the p ictu re  - and he showed that one can, in fact, get rid  o f this paradox, 
and that it is  p oss ib le  to get the whole scattering amplitude from  the spectra l 
functions A 3 and A13, even in the ca se  w here we have subtractions.

As I have just said, the p rob lem  was orig inally  solved  by the potential 
theory, but it can a lso  be so lved  - and we get the sam e solution - fo r  the 
re la tiv istic  ca se  that I have just been d iscu ssing . What I have to say now 
w ill be adequate both fo r  the potential case  and the re la tiv istic  case . Now 
let m e be ca re fu l what we are in terested  in. We are interested  in the con 
struction  o f the double sp ectra l function and scattering amplitude from  the 
su cce ss iv e  p roced u re  which I outlined yesterday which m akes use of the
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e lastic  unitarity approxim ation. The question whether the exact scattering 
am plitude in fie ld  theory  has the p rop erties  that I am going to describe , is 
very  m uch m ore  com plicated , and we can only apply con jectures at the 
m om ent. You are certain ly  going to hear a lot m ore  about it in other lectures 
at this Sem inar. But fo r  the mom ent we are in terested  in the question of 
whether the functions constructed  accord ing to our approxim ation schem e 
have certain  asym ptotic p rop erties , because we want to use these asymptotic 
p rop erties  in solving these equations, and fo r  that we don’t need to apply 
con jectu res -  everything has now been proved.

The essen ce  o f the R egge analysis is to look  at everything in the com plex 
£ - plane, I  being the angular mom entum . So this is a new analytic continu
ation.

The only ph ysica l values of £ a re  the positive in tegers: at £ = 0, we have S- 
w aves, at Ü = 1 we have P -w aves, at I  = 2 D-waves, and so on. Now what

R egge showed was that this function A (s ,£ ) ,  which is equal to the S-wave 
at I  = 0, the P-wave at £ = 1, the D-wave at i  = 2, can be continued analyti
ca lly  both to n on -in tegra l and com plex  £ to the right o f the line Re I = 
A ctually, in potential theory, one can get to the left o f this line, but in field  
th eory  it seem s a bit d ifficu lt to do so, so  I think I w ill keep m y analysis 
to what happens to  the right o f this line Re£ = -£ . Our scattering amplitude 
is  m erom orph ic  in this region . T here m ay be po les  in the upper half plane, 
and these are  in fact the R egge poles  (F ig . 5).

We now want to use these p rop erties  to try  and get the asym ptotic be
haviour o f ou r scattering am plitude as a function of t, the momentum transfer. 
So let us use the ord inary  partia l wave expansion

What R egge did was to rep la ce  this sum by an integral over a contour like 
that in F ig . 4, o f  the follow ing expression

2

Fig. 5

The complex {-plane

A  (s, t) = e (2£ + 1) A j (s) P{ (z), z = l  + t /2 q 2. (26)

sin ( it )
(27)

c

H ere I  is not re s tr ic te d  to "an integer any m ore . The contour must not 
en close  any* o f the p o les  o f A (s ,£),  so that the only singularities of the inte
grand are given  by sin  (ir£ ) = 0 , which of cou rse  are just the positive integers.
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So evaluating the in tegra l by the residu e theorem , we get just the partial 
wave expansion. We put P{ ( -z )  instead of Pj (z) in order to can cel the a lter
nation o f sign  o f the residu es o f sin (ir£) betw een the even and odd integers.
(P{ (z) = ( - 1 )* P{ (z) fo r  in te g e r i ) .

The next thing one does is  to  deform  the contour o f integration until it 
goes  along the line R e£ = - 1 . H ow ever, in doing so  we have to c r o s s  these 
p o les  o f A (s ,ü ) ,  so  we must add

L ( 2 «  + 1) ß Pa (z ) /S in  ?ra. (28)

Now let m e ca ll the position s o f these p o les  o^, a2 and so  on, and the residues 
at each o f these po les  we w ill ca ll ß . a and ß w ill depend on the energy, so  
the equation becom es

1z )
A , % r (zi+ l)A t (s)P{ (-Z) r  (2an (s) + 1) ßn(s) Pan (s)
A (S ’ Z )=  J  01 ------ S ü T fri)--------------- + L  ------------Sin (iran (s'))----------

R e i  = - |  n
(29)

We can use this form ula  to find at once the asym ptotic behaviour o f A as 
a function o f z. The reason  is that we know that

P a ( z ) ~ z a > as z-*-oo.

Now in the f ir s t  (integral) term , the rea l part o f X is  - so  this part goes 
down like |z| at infinite z. So we w ill forget about that, sin ce it goes down 
v ery  n ice ly . Anything that goes to ze ro , we are not interested in. The pole 
term s, how ever, behave like z 8  as z -’ ® . In particu lar, the pole  that dom i
nates is  the one that has the la rgest rea l part. So the asym ptotic behaviour 
w ill be ~ z ai w here a j is the pole  furthest to the right.

T his g ives the resu lts  in p rin cip le , but in order rea lly  to be able to see 
what is going on, we have to know how the function a depends on s, so let me 
take the I  -p lane again. What norm ally  * happens is  that fo r  sufficiently large, 
negative values of the energy, the p o les  a ll lie  to the left o f the line R e i = 
so that we just do not see them ., A s the energy in crea ses , the poles m ove to 
the right along the rea l axis. Now it may happen that, at som e energy so< 4/i2, 
b e fo re  the threshold , one of the po les  p asses  through I  = 0. At that point 
the scattering amplitude becom es infinite, it th erefore  has a pole  as a function 
o f s, at s = so. At I  = 0, P = 1, so  the residue at the pole  does not involve the 
angle at a ll, and what we have is a bound S-state. As we continue to increase 
the energy, it may happen that, fo r  a v ery  strong potential, the pole actually 
p a sses  through I  = 1 b e fore  we reach  the threshold  s = 4/u2. Again we have 
a bound state, because sinCffü) b ecom es ze ro . How ever, the residue is now 
p roportion a l to P: (z), so  we have a bound P -state. In general we have bound 
states at those values o f s, fo r  which a (s) = a positive  integer.

*  In relativistic theory, when one solves the N‘/D equations, they will sometimes give poles with rather 
unphysical properties ("ghosts"), which may be due to the failure of the approximation theory, I will ignore 
these.
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Suppose that we have now got to the threshold  s = 4 m2. Then what happens 
as we continue to in crea se  s is  that the poles  m ove out into the com plex 
plane. They go a certa in  distance further to the right, but eventually com e 
back again, and when s is su fficiently  large  the poles  disappear to the left 
o f the line R e l  = -

■ REGGE POLES 
■

( 0 * 1  2

Re 1= -1 /2
\

Fig. 6

Trajectory of a Regge pole in the complex t -plane

Now fo r  positive  kinetic energy, seeing that the poles  are com plex, they 
never pass through a positive integer; so we don’t get bound states. However, 
it m ay happen, as in the case  I have drawn, that a pole passes near a positive 
integer. Then s in (jr i) w ill be very  sm all, and the scattering amplitude, a l
though it does not get infinite, gets very  large . So when the pole passes near
& = 1 we get not a P-w ave bound state but a P-wave resonance.

W ell one can draw this in a different way if one lik es: suppose one just 
p lots Re a against s (F ig. 7). The line at the bottom is  Re a = We don’ t 
know what is  going on below  th is. The v ertica l line is the threshold s = 4 /i2

Fig.T

A Regge trajectory: Re a as function of s



REGGE POLES AND STRIP APPROXIMATION 415

The points w here the curve passes  through integers are bound states to the 
left o f this line, and reson an ces to the right of it. These curves are som e
tim es ca lled  R egge tra je c to r ie s . F o r  potential scattering, we have an a 
fo r  each value o f the radial quantum num ber. A ll that the Regge tra jectory  
then does is  to interpolate between the known bound states, like a Bohr angu
la r  m om entum  plot turned sidew ays.

Let us turn back to this question o f how we can find the scattering am pli
tude from  the sp ectra l functions if we need subtractions, without introducing 
any optional quantities. We can do this, given the fact that the scattering 
amplitude sa tis fies  the Regge form ula. The reason  is the follow ing: we know 
the analytic p rop erties  o f Pa (-z )  in the z plane. It is analytic in z, except 
fo r  a cut along the rea l axis from  z = 1 onwards. The discontinuity a cross  
this cut is Pa (z) sin (to ). In particu lar fo r  a an integer, Pn (z) is analytic 
all the way, because this discontinuity is then equal to zero . If therefore 
the scattering amplitude sa tisfies  the R egge form ula, the spectra l function 
A 3, which is  the discontinuity as a function of z (or as a function of t, which 
is  the sam e thing), w ill satisfy  the form ula

A 3 (s, t) = A 3B(s , t) + Z (2 a (s) + l )ß n (s )  P a n(s) (z). (30)

The fir s t  term , which I w ill ca ll the background term , com es from  taking 
the discontinuity o f the integral. We can get the discontinuity of the pole 
term s from  the discontinuity o f Pan (z), because this is the only p lace in 
them  w here the mom entum  tran sfer is involved.

Now, rem em ber our p rob lem  is to ca lcu late A, given A3. We cannot do 
this by putting A 3 into the d ispersion  relation  fo r  A, because we have sub
traction s. H ow ever, the "background" term  goes down like t~ i. So, for 
the background term , we can find A from  A 3 by using the d ispersion  relation 
without subtractions. Now, if we know A 3 num erically , then we can separate 
it into R egge pole  term s and the "background" term  by equation (30), and 
find the a ’ s and ß ’ s of the R egge p ole  term s. This is p ra ctica l num erically 
[7]. And th ere fore  a ll one needs to do is to put the a ’ s and ß ’ s into Eq. m  
(29) and one has obtained the whole scattering amplitude from  the spectra l 
function without introducing any arb itrary  subtractions.

A ll right then, so  this is how we get over this apparent paradox of not 
being able to calcu late the scattering amplitude from  the spectra l functions. 
We see  that, once we know the R egge form ula, we can calculate the sca tter
ing am plitude from  the sp ectra l functions, even when we have lots of sub
traction s, and th ere fore  we do not lo se  inform ation when the asym ptotic 
behaviour gets w orse  and w orse , as we in crea se  the strength of the potential 
o r  the strength of the coupling. Now let us go on to the second point: can 
this get us over  our d ifficu lties o f bad asym ptotic behaviour, which gave us 
singular in tegra l equations in the prev iou s sch em e? Now you rem em ber that 
in the old m ethod we found that i f  we only had la rge  S-waves then things go 
like a constant at la rg e  t, which is a ll right, we do not mind that sort of 
behaviour. H ow ever, if we have large  P -w aves as w ell, then things go p ro 
portional to t at la rg e  t, and s im ila r ly , if we have large S, P and D“waves, 
then things go proportion a l to t 2. Now what we have in the Regge form ula 
is slightly  d ifferent. A ccord in g  to the R egge form ula, the asym ptotic b e 
haviour as t -*■ 00 depends on s. At those points where we have an S-wave
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bound state, a = 0, and the asym ptotic behaviour is  a constant just as before . 
S im ilarly , the asym ptotic behaviour is still proportional to t at a P-wave 
bound state. H ow ever, even if we have a P-wave resonance or bound state, 
the asym ptotic behaviour is  no longer proportional to t everyw here. Now 
you know that the trouble resu lted  from  the fact that, if the d irect reaction 
has a bad asym ptotic behaviour as a function of t, which does not m atter, 
then the c ro s s e d  reaction  would have a bad asym ptotic behaviour as a function 
o f the energy, which does m atter. H ow ever, the interchange o f s and t only 
takes us into the ph ysica l reg ion  of the c ro sse d  reaction  if s is  negative, 
because in the c ro s s e d  reaction  t is the energy, s the momentum transfer, 
and fo r  a p h ysica l reaction  the momentum tran sfer is always negative. The 
energy is always positive . So we only expect to get into trouble if we have 
a bad asym ptotic behaviour as t-*-oo, where s is negative. T herefore , in 
a R egge curve like F ig . 6, so  long as we keep a < 1 when s is negative, we 
would not expect to get into trouble, even though a >  1 when s is positive, so 
that we could  get P-wave reson an ces, and resonances o f any higher angular 
m om entum . So it is  this dependence of a on s which can probably get us 
over the d ifficu lty  that the old  procedu re  led  us into. And it is , as a matter 
o f fa ct, the equivalent of the spreading out of the wave function of a com posite 
system  in space that one gets if  one uses any method other than dispersion 
re la tion s.

I m ay say that the only way y can depend on s is if the spectra l function 
o s c illa te s . (In th is ca se  you observe  that the sp ectra l function does oscilla te , 
because we have t® (s), with a  com plex  fo r  positive s, and a number to a 
com p lex  pow er is an o sc illa to ry  function). This fo llow s from  the ordinary 
d isp ersion  relation  in the energy:

Now suppose fo r  a certa in  value o f s ',  A j had bad asym ptotic behaviour as 
a function o f t, sind suppose there w ere no oscilla tion s, so that there could 
be no cancella tion 'in  sign. Then, if one p erform s the integral, the expression  
on the left w ill have the sam e bad asym ptotic behaviour, whatever the value 
o f s . So, if  our sp ectra l function does not o scilla te , we cannot have an asym p
totic  behaviour as a function o f t which depends on s. However, if Ax does 
o sc illa te , th is bad asym ptotic behaviour m ay can ce l out in the d ispersion  
relation , and we can have the asym ptotic behaviour depending on s, which 
is  what does happen in the R egge form ula.

Now you m ay think that this construction  o f the sp ectra l function by 
the m ethod o f su cce ss iv e  approxim ations, and subsequently isolating these 
R egge p o le  term s to get a ’ s and ß ’ s,  is  som ething rather com plicated  How
ever, it has actually been ca rr ie d  out in m odel calcu lations by BURKE and 
TATE  [7] w ell, not fo r  the com plete re la tiv istic  ca se , but fo r  the re la tiv i
stic  case  w here they assum ed V 2,3 known, and they a lso  did it fo r  the p o 
tential ca se . The ca lcu lation  is alm ost the sam e, and doing it fo r  the p o 
tential ca se , they find that the resu lts agree with the d irect calculations 
o f the R egge tra je c to r ie s  from  the Schroedinger equation, which was made 
both by them and by LOVELACE at Im perial C ollege [8 ] . So it looks as 
if  this m ethod is  fea s ib le . H ow ever, at the mom ent one does not have a

(31)
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consistent set of in tegral equations fo r  the prob lem  [9]. The difficulty com es 
from  the fact that if  we have an input with R egge asym ptotic behaviour in s, 
and use the unitarity equation in the s channel, we obtain an output with 
s t ill w orse  asym ptotic behaviour. The situation has not been cla rified , that 
is  a ll I can say at the m om ent.

In ord er  to conclude th is lectu re , let m e now go on to the con jectures, 
which have not been made t i ll  now, that the exact scattering amplitude also has 
a R egge asym ptotic behaviour, and see what experim ental consequences that 
w ill lead  to .

We shall now use cross in g  sym m etry , so  that s and t are interchanged, 
and we shall assum e that A (s , t) behaves like ß (t) s a (t) as s - * » .  And we 
now con jectu re  that this is true o f the exact scattering amplitude, not only 
the scatterin g  am plitude which is  constructed  fr o m  the strip  approxim ation. 
Let us use this form ula  to analyse what happens in the d iffraction  peak region, 
w here s is  la rge  and t is  sm a ll and negative. This was firs t  done independent
ly, I think, by CHEW, by FRAUTSCHI, GELL-M AN N  and ZACHARIASEN, 
and by LOVELACE [ 1 0 ] . F irs t  o f aH, we shaH take it as an experim ental 
fact that the c r o s s -s e c t io n  is  constant fo r  large  values o f the energy.

It fo llow s from  the optica l theorem  that A (s, t) w ill go like s, as s - *  » ,  
at t = 0, which is  the forw ard  d irection . Such a resu lt does not fo llow  from  
the R egge analysis, one has to put this in. We thus observe  that a = 1 at 
t = 0, and we can rew rite  the R egge asym ptotic behaviour a s '

A ( s , t ) ~  i £ ( t ) s  e - l f t )  lo g s  (32)

r) is  a decreasin g  function o f t, so  that as we go into the physical region 
(negative t), the scattering amplitude fa lls  off, which is  what one expects 
it to  do. H ow ever, it does not fa ll o ff in the sam e way as one would expect 
in the optica l m odel, fo r  two reason s.

F irs t ly , it fo llow s from  the double d ispersion  relation  that n must be 
analytic near t = 0, so  we can put r] s s y t , and we see  that the scattering 
am plitude w ill go down exponentially as a function of t. In the optical m odel, 
i f  one assum es that the diffracting ob ject has a Yukavm shape, which is a 
reasonable  thing to do, the d iffraction  peak would go down much m ore slow ly 
than exponentiaHy, it would go down like an inverse pow er. E xperim entally 
one definitely finds an exponential type o f behaviour, rather than anything 
like an in verse  pow er behaviour.

The secon d  thing is that the width o f the d iffraction  peak depends on the 
energy, because you could say. that the width of the d iffraction  peak is e s 
sentia lly  that value o f t where A (s ,t )  reach es som e given value, and you see 
that the b igger the value of log  s, the le ss  distance you wiH have to go in t 
in ord er  to reach  any particu lar value. The width of the diffraction  peak 
th ere fore  shrinks logarith m ica lly  as the energy s is in creased . Now, if that 
was the only thing, one would not be so  su rprised , because a shrinking d if
fraction  peak corresp on d s to an in crease  in the s ize  of the diffracting object. 
The b igger the diffracting ob ject, the sm aller  the d iffraction  peak. So one 
cou ld  say that the p eriph era l reg ions of the nucleon w ere just getting m ore 
and m ore  effective  as the energy was being in creased . However, the thing 
that is  very  su rprising  from  any c la s s ica l sort o f analysis is that the total 
o r o s s -s e c t io n  is  rem aining constant at the sam e tim e, so not only is the
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nucleon getting b igger and b igger, but the inner part is  getting m ore and 
m ore  transparent at the sam e tim e, in order to keep the total c ro ss -s e c t io n  
constant. Such a feature is  in con flict with any sort of physica l visualization 
by m eans o f an optica l m odel, so  if  the R egge p ole  m odel is right then the 
optica l m od el is  wrong. And the experim entalists - I am not quite sure just 
under how m uch brain-w ashing - say they see a narrow ing of the diffraction 
peak [11]. That would th ere fore  mean that the optical m odel visualization 
is  bad, and that there is  an essentia l truth in this m ethod o f visualization.
It does not p rove  that the con jectu re  o f applying the Regge pole  form ula to 
the exact scattering amplitude is  n ecessa rily  right. F o r  instance, if the 
AM ATI-FUBINI-STANGHELLINI analysis [12] is  co r re c t , and there are 
R egge cuts, in addition to R egge po les , then I think one could still fit the 
resu lts  to present experim ents. So I would say that the experim ents show 
that a R egge form ula , o r  som ething of a s im ila r  sort which is rather m ore 
com plicated , is  c o r r e c t .

In doing the unitarity condition, obviously, different quantum numbers 
do not get m ixed  up, so we get different u n crossed  Regge tra jectories  a sso 
ciated  with different quantum num bers. In term s of the cro sse d  p rocess , 
w here the R egge asym ptotic behaviour is  in s, these correspond  to different 
quantum num bers being exchanged. Pure d iffraction  scattering can ’ t exchange 
any quantum num ber, so  the R egge tra jectory  which produces the diffraction 
scattering, and goes through the value 1 at t = 0, must have the quantum 
num bers o f the vacuum . G ell-M ann has ca lled  the ob ject that gets exchanged 
a Pom eranchon, because if this R egge tra je cto ry  dom inates, the Pom eran
chuk theorem  is  valid .

Now, o f cou rse , fo r  other kinds o f e lastic  scattering, there w ill be other 
tra je c to r ie s  [13] com ing below  this one, and GELL-M AN N, FRAUTSCHI 
and ZACHARIASEN [ 10] have proposed  experim ents to look  at these low er 
tra je c to r ie s , I do not think I need go  into them, because we are sure to hear 
a lot m ore  about that in further lectu res .

But let m e end by re fe rr in g  v ery  brie fly  to a further con jecture made 
by CHEW and FRAUTSCHI [ 10] that fits  in here. R em em ber, when we were 
speaking about the potential theory , I said that, in writing a ll these dis
p ers ion  rela tion s and double d ispersion  relations down, we might be p re 
pared  to  include the S-wave subtraction exp licitly . We do not want to include 
higher subtractions exp licitly , because that would give much trouble with 
the unitarity equation. Thus, in addition to these double d ispersion  term s, 
we cou ld  have term s like

which do not depend on t. If one w ere doing the calculation  in such a case, 
one would get a ll the angular mom entum  states other than the S-wave by 
integrating over the double sp ectra l function, but fo r  the S-wave one would 
conclude by p erform in g  an N /D  calcu lation  to find the function f. We thus 
ob serve  that the asym ptotic behaviour of the scattering amplitude consists 
o f a R egge term  t a (s ), com ing from  the double sp ectra l function, plus another 
term  which is  asym ptotica lly  just a constant. In the R egge term  the asym p
totic behaviour does depend on s, in this other term  it does not. The point 
is  that, when we do have a subtraction, there is extra inform ation which we

(33)
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can introduce. F o r  instance, we might put into the calcu lation  a pole 
a /( s  -  sp), with two constants. The constants a and sp h a v e  to be known 
beforehand, they are not given  to us by the theory . And if we put in the pole 
like th is, then in ord er  to  have consistency  at least in the approxim ation 
sch em es that have been tr ied  up t i ll  now we would have to do a subtraction 
in t. We would have to  calcu late  the S-waves by the N /D  technique, they would 
not be given from  the double sp ectra l function, and the asym ptotic behaviour 
w ould be given  by the sum o f  two te rm s, one which does depend on s and 
one which does n6t.

Now the question is often ra ised  whether there is  rea lly  a distinction 
betw een elem entary  p a rtic les  and non-elem entary  p a rtic les , and I do not 
think it is  one that one can rea lly  answ er definitely. There w ill probably 
always be con flicting  view s until We have a com plete  theory, and I rather 
think that, if we do ever get a com plete  theory , it is  not going to make any 
distinction  between elem entary  p a rtic les  and non-elem entary p a rtic les . But, 
if  we do not have a com plete  theory at the m om ent, there may be som e p a r
t ic le s  that one cannot get from  the calcu lations -  that one has to put in at 
the beginning - which p rov ision a lly  one would ca ll elem entary particles, 
and som e other p a rtic le s  which one can calcu late, which one would not ca ll 
elem entary p a rtic le s . And generally  one would expect to have to introduce 
the m a sses  and coupling constants fo r  elem entary p a rtic les , but to be able 
to  get the m asses  and coupling constants fo r  non-elem entary p articles  in 
p rin cip le  from  the ca lcu lations.

When we put in the subtraction term  from  the beginning, we actually 
have to put in the m ass sp  - the position  o f the pole  - and the coupling con 
stant a. So one m ay th ere fore  take the viewpoint that term s like this, where 
the asym ptotic behaviour does not depend on the energy, correspon d  to 
elem entary p a rtic le s , w hereas term s where the asym ptotic behaviour does 
depend on the energy corresp on d  to bound states. If we subtract P-waves 
or  higher angular m om entum  w aves, it is going to give us the old trouble 
again, and th ere fore , from  this way o f looking at it, we can only have S- 
wave elem entary  p a rtic le s , not P-wave and higher angular mom enta. In 
other w ords, we get the sam e resu lts  we get from  the renorm alization  theory 
studied by perturbation  m ethods. And this again fits  in with what I said about 
this s -dependence o f the asym ptotic behaviour corresponding to the spreading 
out of p a rtic les  in space, because the elem entary partic le , which one naively 
supposes at least to have som ething in the m iddle which is not spread out 
in space, does not have this s -dependence o f a in the asym ptotic behaviour. 
The p rop osa l m ade by Chew and F rautsch i is , in fact, that, even at the 
present m om ent, there a re  no p a rtic le s  that one has to put in and ca ll e le 
m entary, but that a ll p a rtic les  corresp on d  to 'the points where these Regge 
tra je c to r ie s  pass through the positive  in tegers, and a ll resonances to the 
points when they pass near the p ositive  in tegers. F a irly  detailed graphs 
have been drawn up with these R'egge tra je c to r ie s  fo r  a ll the different quantum 
num bers, and the various reson an ces have been put in. I think at the moment 
the num ber o f reson an ces is not yet so much greater than the number of 
quantum states that one would a scr ib e  m uch sign ificance to this fit, and I 
do not think that the authors cla im  that one should. But at least it is in ter
esting to see how, if we assum e that it is co r re c t , the various particles 
could  be fitted  into the R egge schem e.
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F o r  those o f you whose fam ily  keep on asking you what sort o f w ork you 
are  doing, there is  an a rtic le  by Chew, G ell-M ann and R osenfeld which is 
going to  appear in the Scien tific A m erican , so  you w ill be able to get them 
to read  that. T here, a ll these R egge tra je cto r ie s  are drawn in a nice co lou r
ed diagram .
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1. IN TR O D U C TIO N

Soon a fte r  the 30 G eV  m a ch in e  c a m e  in to  o p e ra t io n  the o n e -p io n  e x 
ch ange m o d e l [1] w as p r o p o s e d . It w a s the f i r s t  d y n a m ica l m o d e l w h ich  
p ro v id e d  s o m e  m ea n s o f  ex p la in in g  p h enom ena  o b s e r v e d  at th e se  h igh  e n e r 
g ie s  and it  h as even  been  exten d ed  up to c o s m ic  r a y  e n e r g ie s . In th is  ta lk  
the m a in  fe a tu re s  o f  the m o d e l w i ll  be  r e v ie w e d  and s o m e  o f  it s  lim ita t io n s  
and r e la t io n s h ip s  w ith  R e g g e  p o le s  w ill  be  d is c u s s e d .

2. M AIN F E A T U R E S  O F  TH E  M O D E L  AND IT S  L IM IT A T IO N S

T h e im p o r ta n ce  o f  o n e -p io n  exch a n ge  can  be  se e n  b y  c o n s id e r in g  p e r i 
p h e ra l c o l l is i o n s .  In a s e m i - c la s s i c a l  p ic tu re , the p e r ip h e r a l in te r a c t io n  
i s  a g la n cin g  c o l l is io n  w h ere  the in c id en t p a r t ic le  on ly  in te ra c ts  w ith  the 
ou te r  r e g io n  o f  the ta rg e t  and r e c e iv e s  a s m a ll  m om en tu m  t r a n s fe r .  In th is  
situation  the lo n g -r a n g e  f o r c e s  a r e  the m o s t  im p orta n t and in  s tro n g  in t e r 
a c t io n s  the o n e -p io n  exch a n ge  p r o v id e s  the lo n g e s t  ra n ge  f o r c e .  F u r t h e r 
m o r e , the p e r ip h e r a l c o l l is i o n s  s e e m  to  g iv e  a s ig n ifica n t fr a c t io n  o f  the 
to ta l c r o s s - s e c t io n .  T h is  i s  b e ca u s e  s tro n g  in te ra c t io n  c r o s s - s e c t i o n s  a r e .  
o f  o r d e r

w h ere  R i s  the p ion  C om pton  w avelen gth . C r o s s -s e c t i o n s  o f  su ch  la r g e  m agni
tude a re  s e n s it iv e  to  the o u te r  p a rts  o f  the ta rg e t  and th e r e fo r e  to  o n e -p io n  
exch a n ge . A n oth er  a ttra c t iv e  fe a tu re  i s  that o n e -p io n  exch a n ge  i s  r e la t iv e ly  
ea sy  to  a n a ly se  th e o r e t ic a lly .

T h e re  a re , h o w e v e r , a n u m b er  o f  l im ita t io n s  to  the a p p lica tio n  o f  th is  
m o d e l:

1) A  ra th e r  t r iv ia l  lim ita tio n  when e le c t r o m a g n e t ic  in te r a c t io n s  a re  a ls o  
p re se n t i s  that the C ou lom b  fo r c e  i s  o f  lo n g e r  ra n g e . T h is  g iv e s  a p o le  at 
z e r o  m om en tu m  t r a n s fe r  (F ig . 1) and s o  it i s  n e c e s s a r y  to  a v o id  the re s u lt in g  
peak  in  the fo rw a rd  d ir e c t io n . A t h igh e n e r g ie s  the C ou lom b  peak  i s  con fin 'ed  
to  a v e r y  s m a ll a n g les  and p r e s e n ts  no d if f icu lty  in  p r a c t ic e .

2) A  m o r e  im p orta n t lim ita tio n  is  due to  m u lt i -p a r t ic le  exch a n ge  c o n 
tr ib u tion s , w h ich  a re  a ls o  p re se n t. F o r  s m a ll m om en tu m  tr a n s fe r  the s in g le

• Text based on notes by A. P. Contagouris and G. C. Oades.
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Fig-1

Position of singularities m the complex t-plane

pion  p o le  m ay  dom in ate  the sca tte r in g , but f o r  la r g e r  m om en tu m  t r a n s fe r  
the tw o - and m o r e -p io n  exch a n ge  co n tr ib u tio n s  a r e  at a co m p a ra b le  d ista n c 
(F ig . 1) and th e re  is  no lo n g e r  any re a s o n  to  n e g le c t  them .

3) E ven  fo r  s m a ll m om en tu m  tr a n s fe r  the m u lt i-p a r t ic le  con tr ib u tion  
cou ld  be m o r e  im p orta n t i f  the d iscon tin u ity  a c r o s s  the cu t i s  la r g e  enough. 
In te r m s  o f  p o ten tia ls , the o n e -p io n  p o le  g iv e s  a te r m  o f  the fo r m

g e ' ^ / r  (1)

w h ile  the m u lt i-p a r t ic le  con tinuum  g iv e s :
00

f  gW)!*1; (2)
4mir2

if  g(ji2) is  la rg e  enough, th is term  can be m ore  im portant than (1). An ex 
am ple o f th is situation is  prov ided  by the d iffraction  peak in elastic  sca tter
ing. T o  study the d iffraction  peak it is  n ecessa ry  to con sid er the absorptive
part o f  the am plitude in the forw ard  d irection ; the optica l theorem  gives

Im f el (t = o) = L f  * p f  (3)
n n n n

w here f n is  the am plitude fo r  transition  between the in itial (o r  final) state 
and an in term ediate state n and p n is  the phase space fa cto r  associated  with 
th is state n . In term s o f  d iagram s Eq. (3) can be represented  as shownin 
F ig . 2.

Fig. 2

It is  seen  that at lea st two pions m ust be exchanged and th ere fore  d iffraction  
is  a ssocia ted  with a sh orter  range term . T here is  a la rge  contribution be 
cau se  a ll te rm s add coherently .

C onsider as an exam ple the p ro c e s s  p + p -* p. + n +  t+ , which has been 
studied by SELLER I and FERRARI [2, 3, 4] . A typical one-p ion  exchange 
d iagram  is  shown in F ig . 3.
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Fig-3

A one -pion exchange contribution to p + p -> p + & + ir+

T his d iagram  g ives a contribution to the c r o s s -s e c t io n  o f the form :

d a /d t a [g2 t /( t  -  m 2)2 ] a( n +p — tt+p ) . (4)

The fa c to r  t resu lts  from  the negative parity o f the pion. Other one-p ion  ex 
change d iagram s g ive s im ila r  term s and a lso  in terferen ce  contributions. 
S e lle r i and F e r r a r i com pared  the final exp ression  with experim ental data 
betw een  1 and 3 GeV; they found good  agreem ent provided  they introduced a 
o n e -p a ra m eter  cu t-o ff  fo r  la rge  m om entum  tran sfers . This is  certa in ly  a 
reason ab le  approach sin ce  the m odel is  not expected to be valid  at large  
m om entum  tra n s fe rs , as pointed out above.

The last exam ple was a p articu larly  favourable ca se , sin ce  the p ion - 
nucleon  coupling constant and the low -en erg y  c r o s s -s e c t io n  w ere known. In 
g en era l, le s s  in form ation  is available . In this ca se , certa in  tests  can be 
applied  to the experim en tal data to see if the m odel :is w orking. F irs t , there 
is  a sp e c if ic  p red iction  fo r  the m om entum  tran sfer variation  which should 
be sa tis fied  at least fo r  sm all m om entum  tra n sfe rs . A second  type o f test 
has been  p rop osed  by YANG and TREIMAN [5] . In the left-hand side of F ig .3 
con s id er  the fra m e  in which the incom ing proton  is at re st (p = 0). A spin 
z e ro  pion  with m om entum  q* is then sca ttered  on a stationary proton ; th ere 
fo r e  the fina l state should have azim uthal sym m etry  about q. If the data show 
an iso tro p ic  d istribution  fo r  rotation  o f the final 3-m om entum  about q , they 
a re  con sisten t with the exchange o f a single pion.

In a ca se  when a ll p rop osed  tests  are  satisfied  so that the valid ity  o f 
the m od el is  lik e ly , it is  p o ss ib le  to use the data in many ways. F o r  exam ple, 
in the ca se  o f p  + p - > p + n  + , the data could  be used to obtain the coupling
constant g if  the p ion -n u cleon  c r o s s -s e c t io n  is  known. A lternatively , i f  the 
coupling constant is  known, then the data could  be used to obtain <j( ir+p -» sr+p). 
It should be noted, how ever, that som e extrapolation  is  always required. 
E ith er the experim ental resu lts m ust be continued to the pion pole t = m2 so 
that p h y s ica l values fo r  a (*+p -* 7r+p) can be used; o r  e lse  the physica l values 
fo r  o(w +p-»7T+p) m ust be continued to the reg ion  t.^ 0 w here the experim ent 
p + p - » p + n + j r + is  conducted. A lso , note that the tests made on the data 
r e fe r  to n e ce ssa ry  but not su fficien t conditions fo r  the valid ity  o f  the m odel.

A s  has been a lready  s tre sse d , with in creasin g  m om entum  tran sfer c o r 
re ction s  b ecom e  n e ce ssa ry  even in favourable ca ses . FERRARI and SELLERI 
[3] continue the p h y s ica l it -  N c r o s s -s e c t io n  by use o f C hew -Low  theory; 
th is is  ju stified  s in ce  they are still in the reg ion  o f  the 3-3 resonance even
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fo r  la r g e r  t.. T hey a lso  in troduce [4] a pion form  factor Fff(t) and express 
the c r o s s -s e c t io n  in the form :

dff/dtoc g2F 2 (t) [ t / ( t - m 2)2 ] ct(tt+P — 7rHp)- (5)

Then they obtain Fir (t) by fitting the experim ental data.
O f co u rse , states with other quantum n um oers, such as p and u, can 

a lso  be exchanged. A s a f ir s t  approxim ation one "might hope to d escrib e  the 
scatterin g  as an exchange o f only a few such ob je cts , each being treated with 
a fo rm  fa c to r  as was pion exchange. F orm ula  (5) represen ts  the optim istic 
lim it in which on ly one ob ject , the pion. is  exchanged.

Suppose now that this p roced u re  is  applied at higher energies (^,2 G e V ) .  

F o r  s im p lic ity , co n s id e r  a ca se  w here only a pion and a p are exchanged.
The am plitude can then be represented  by

f  = P0(c o s  0t) Gff(t) + P ^ c o s  6t) G p(t) (6)

w here in te rm s o f  M andelstam  variab les

co s  = -  1 -  s /2 q ?  . (7)

The f ir s t  te rm  o f (6) is  due to the exchange o f a pion (spin zero ) and the s e c 
ond to that o f a p -  m eson  (spin one). Eq. (7) shows, then, that fo r  large s 
the asym ptotic contributions to the amplitude are correspon d in gly  ~  S° and 
~  s1 . To test these pred iction s  we can use the available data on proton - 
proton  scatterin g  in the reg ion  1 -4  G e V  (B rookhaven) and above 12 G e V  

(CERN) [6 ] . T hese  data are derived  from  experim ents in which fast outgoing 
proton s o f vary in g  energy E 1 are detected at fixed  angle fo r  a given incom ing 
proton  energy E. A  typ ica l c r o s s -s e c t io n  is  shown in Fig. 4. Apart from  the

d s

High energy proton-proton differential cross-section

e la stic  peak (1), a num ber o f other peaks are superim posed  on the inelastic 
continuum . The p osition s o f  these peaks seem  to be quite stable and are 
con sisten t with the in terpretation  that (2) corresp on d s to production o f the 
P 3/ 2, T  = 3/2 iso b a r , (3) to the H 3 /2 , T  = 1/2 isob a r  and (4) to the F 3/ 2i 
T  = 1/2 isob a r . Now, as the energy r is e s  fo r  fixed  (high) mom entum transfer, 
the m ost strik ing feature is  that the peak (2) d isappears quickly, while (3)
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and (4) d e cre a se  only slow ly. The ob served  d ecrea se  at Itl >  1 G e V 2 is  found 
to be c le a r ly  m ore  rapid than the p red iction s o f a on e-p ion  exchange m odel 
(asym ptoticbeh av iou r~  s°) [6 ], Exchange o f spin one (asym pt. beh aviou r~  s1) 
o r  any fin ite  num ber o f  h igher spin p a rtic le s  w ill on ly  m ake m atters w orse.

3. RELATIONSHIPS OF THE MODEL WITH REGGE POLES

An alternative way to handle the scattering is  provided  by the Regge 
pole  hypothesis, a ccord in g  to which R egge p o les  o f  spin Ji(t) are exchanged. 
T h is has the fo llow ing  features at high en erg ies :

(1) The m axim um  spin exchanged at each t is  fin ite, sin ce  the Regge 
p o le  is  a kind o f  bound state resu lting from  fo r c e s  o f finite range in the c r o s s 
ed channel. E xchange o f  the other, low er  spin, term s can be ignored at 
su ffic ien tly  high energy, leaving a s im ple exp ression  fo r  the amplitude grow 
ing as sJmax <*>.

(2) The spin o f each  R egge p o le  v a r ie s  with t, decreasin g  with in crea s 
ing m om entum  tra n sfe r  in the p h y s ica l reg ion  o f the p ro ce ss .

F rom  the s^W  grow th o f the am plitude it fo llow s that exchange o f a 
R egge pole  with spin J (t) con tributes to the d ifferen tia l c r o s s -s e c t io n  an 
asym ptotic term  o f  the form

, c 2 J(t) — 2

f  ■ r '*» <L*> • (8>

Now, the p ro ton -p ro ton  CERN experim ents above 12 G e V  establish  the follow 
ing upper lim it in the c r o s s -s e c t io n  fo r  production o f the 33 isobar:

(da/dft iab )33 < 0. 05 (da/dS2 lab) elastic.

If th is is  com bined  with E q .(8 ) and the p -p  scattering data at low er energies 
(< 4 G e V ) ,  the upper lim it Jm axW  fo r  the sPin o f the exchanged pole can be 
determ ined  [6] (F ig. 5)

The maximum exchanged spin consistent with 3-3 production and the Pomeianchuk Regge trajectory

It can be seen  now that the d ecrea se  o f J(t) fo r  in creasing  physica l 111 and 
the p o ss ib ility  o f  having J(t) < 0 at su fficien tly  high m om entum tran sfer m ay 
ea s ily  p rov id e  resu lts  com patib le  with Jm ax(t) o f  Fig. 4. This is c lea r ly  not
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possible if the amplitude A behaves asymptotically like ~  s° (exchange of a 
particle o f constant J(t) = 0), let alone if A ~  sn (n > 1 ).

The production of the second and third pion-nucleon isobar can be 
studies in the same spirit. In this case the results are compatible with a 
spin varying as Jp(t) o f Fig. 5. Notice that one pion exchange (J=0) does not 
dominate even at sm all 1 1 1 .

The d ifference in the spin of the exchanged Regge object for production 
o f the P 3/2 isobar and for  production of the D 3/2  o r  F 5/ 2 isobar can be easi
ly understood from  Fig. 6 . In the first case the isospin of the exchanged parti-

fig.6

Diagrams for the exchange of the leading Regge term in p-p T = 3/2 and T = 1/2 isobar production and
elastic scattering

cle has to be T = 1; in the case o f D3/ 2or  F5/ 2 production, as in the case of 
elastic scattering, T = 0 is also present and therefore the "Pomeranchuk"
(or "vacuum ") tra jectory  can be exchanged.

At this point a possible application of the D3/2 o r  F 5/ 2 production to future 
very  high energy accelerators may be mentioned. These accelerators will 
provide fast protons but their usefulness will be extended if collisions of the 
protons with a target produce a good secondary beam of fast pions. Cosmic 
ray data indicate the existence o f such events, but a m ore quantitative esti
mate is desirable. Now, the functions J(t) and f(t) o f formula (8 ) for D3/2 and 
F 5/2 isobar production can be determined at present machine energies; then 
the form ula can be extrapolated to very high energies. The calculation carried 
out in [ 6 ] along these lines indicates that a significant flux of pions with 
energy up to 2 /3  o f the original proton energy should be expected.

4. CONCLUSIONS

To sum m arize the situation in elastic or  nearly-elastic events at high 
energy: We have presented som e reasons why large momentum transfer 
events are better understood in term s o f Regge pole exchange than in terms 
o f exchange o f a few particles like the n and p. As stated earlier, there was 
no strong reason for  the one-pion to work in this region anyway. At low 
momentum transfer, if there is a Regge trajectory with higher J(t) than the 
pion tra jectory , then this w ill dominate the scattering at sufficiently high 
energy. If there is no higher trajectory, o r  at intermediate energies where 
the factor S * ^  is not yet dominant, exchange of the pion Regge trajectory 
can control the scattering. In this case there is a correspondence with the 
one-pion exchange m odel at low momentum transfer where Jn (t) ~  0 and.
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in fact, this correspondence is exact in the lim it t -*• m2n . From  the work 
o f S elleri and F errari, production of the 3-3 resonance in p - p scattering 
at 1 to 3 GeV is an example of this latter case.

Up to now, only a sm all class o f inelastic p rocesses  has been discussed. 
I shall c lose  with a few comments about our fragmentary understanding of 
m ore highly inelastic events. Many particle production, including energies 
above 30 BeV, has also been considered in term s of one-pion exchange. In 
p lace o f the pjr+ final state in Fig. 2, fo r  example, one allows all available 
final states for pir+ scattering to em erge from  the vertex on the left side.
The resulting sum over amplitudes and phase space has an effect equivalent 
to a single amplitude growing like ŝ - even though a spin zero particle was 
exchanged. In this way one recovers  the possibility mentioned earlier, that 
one-pion exchange may give an appreciable part of the total cross-section .

Fig. 7

One-pion exchange with many particle production

When one attempts to study the total cross-section , however, a problem  
arises. The factor s which has just been introduced has an effect sim ilar 
to that associated with a spin-one exchange, which is known in general to 
introduce divergences. In fact, when the contributions o f one-pion exchange 
term s are integrated over to obtain the total cross-section , it diverges loga
rithm ically and some cu t-off must be introduced. In the elastic case a p re 
c ise  form ula is  provided by the Regge pole hypothesis; as t falls below zero, 
J(t) decreases and the divergences are avoided in a natural way. In the in
elastic case the mechanism of the cu t-off is not understood but the data in
dicate the presence of strong damping at high momentum transfers so a cut
off is certainly present.

fig. 8

Multi-particle production resulting from one-pion exchange

One pion exchange with many particle production relates the amplitude 
fo r  high energy pp scattering, for example, to a product of amplitudes for 
high energy 7rp scattering (Fig. 7). A further step has been taken by AMATI 
et al. [7 ], GOEBE [8 ] ,  and by F. and a  SALZMAN [9 ], who break down 
the amplitude into the product of several one-pion exchange term s (Fig, 8 ).
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This step has the great advantage o f reducing a high energy amplitude to a 
product o f low energy amplitudes. It will be discussed in m ore detail in 
Fubini’ s lectures; a related approach which puts less  emphasis on pion ex
change is  presented in my lecture on highly inelastic processes.
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REGGE POLES AND DRELL’S PRODUCTION 
OF HIGH-ENERGY PARTICLES*

A. P. CONTOGOURIS 
NUCLEAR RESEARCH CENTRE "DEMOCRITOS", ATHENS, 

GREECE

About two years ago DRELL [1] proposed a simple mechanism for the 
production of collim ated beams of high-energy particles by photons. In the 
case of pion production, a photon of high-energy k incident, e. g . , on a nucleon 
target, produces an energetic pion of momentum q essentially in the forward 
direction. If, in the spirit of peripheral collisions, the process is approxi

mated by the one-pion exchange diagram (Fig. 1), the differential cross- 
section will be of the form

where -t  is the square of the invariant momentum transfer, ß the pion mass, 
0q the pion production angle and o^-j^k - uq) the total cross-section  for the 
process N +(virtual pion)-» (N particles) at energy k -u q. For small m o
mentum transfers the propagator 11 - m2|-1 is of the order of 1/m2 and this 
explains the importance of this diagram relative to others with more mas
sive intermediate states. For high-energy w ~  k »  ß and small angles

Therefore, most of the pions will be produced in a forward cone of opening

Fig. l

Diagrams for the general production amplitude y + N ->n + (n particles) 
and for the one-pion exchange contribution to this amplitude

dxrff~  e2q2 sin2 0 £ ct (k - to ) / ( t - ß 2)2} d3q
q  ir q (i)

(2)

0 « / j /w  .q  I q (3)

*  The present work was done in co-operation with T. KINOSHITA and F. HADJIOANNOU.
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F or  sm all |t|, the pion is  nearly  rea l and the approxim ation

seem s to be w ell ju stified . In this way and fo r  k = 25 GeV, 14, = 20 GeV, 6̂ , k 1° 
D re ll finds that his m odel enhances by a fa ctor o f 10 the predictions of 
the sta tistica l m odel fo r  pion production  by an incident proton beam on a 
hydrogen target. This is  not su rpris ing  because fo r  nucleon-initiated pro
c e s s e s , although one avoids the fine structure constant, the statistical model 
p red icts  that very  high-energy secon daries  em erge in only a very  sm all 
fraction  of the co llis io n s .

S im ilar m odels could  be used to make at least qualitative predictions 
fo r  the production  of en ergetic kaons or (anti- )baryons in the forw ard di
rection s (F ig . 2). F or  the last case  in particu lar we are far away from  the 
pole  o f the exchanged p a rtic le . H ow ever, the c r o s s -s e c t io n  fo r , e .g . ,  anti
neutron production  at k = 25 GeV, wq- 20 GeV and 0q ^ 3° is predicted  to be 
greater than that fo r  the sta tistica l m odel fo r  p -p  co llis ion s  by a factor of 
50.

Fig. 2

Diagrams for production of energetic charged kaons or 
antineutrons according to Drell's model

In the present w ork D re ll 's  production  is re-exam ined  under the as
sumption that the exchanged ob ject is not an elem entary particle  (i. e. a 
particle  o f constant spin), but a number o f R egge poles [2]. F or charged- 
pion production  the exchanged ob ject must have isospin  one. T herefore , 
among recogn ized  R egge tra je c to r ie s , the ir and the p are expected to con
tribute. Then, the amplitude for production  of pions by high-energy photons 
is  expected  to be of the form *

1  + exp [ -iira ]
A (t, COS 0, ) as b ( t ) ------- :---------------  P (-COS0 )'  1 f sin t o ,

1  - e x p [ - i 7ra ]
+ b 0( t ) ----------:----------— Pa ( - c o s 0 t ) (4)P' sin irap ap 1

*  In the present, simple-minded, treatment the asymptotic form of the amplitude is taken to be 
essentially the same as in potential scattering. In a better treatment, the amplitude, e .g ., for yN—>#N is at 
first analysed in its 4 invariant components; next, the partial wave analysis is carried out and finally the 
Sommerfeld-Watson transform is applied to each of the 4 partial wave series. Note that this procedure satis
fies gauge invariance in each step.
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where an = a„(t) and ap = « p(t) are the R egge tra je cto r ie s  corresponding to 
the pion  and the p, 1± exp ( - i  na) are fa ctors  taking into account the signature 
of the tra je c to r ie s  [3] and 0t is  the scattering single in the t-channel. At high 
energ ies

a a
Pa(cos 0t )~  (cos  0t ) ~ s  (5)

where s is  the square o f the total barycen tric  energy. T h ere fore , the asym p
totic fo rm  o f the amplitude is  expected to be

~  ^ (t) f s . \ a p )  gp(t) f s _  f  P(t)
sin  [itaJX)! 2] \ s 0 /  + co s  [7rapft ) /2 ]  Vs 0)  ^

H ere, s 0 is  an arb itrary  constant with dim ensions o f m ass squared. In the 
subsequent ca lcu la tion s, s o = 2M2, where M = nucleon m a ss , w ill be used; 
this is  strongly  suggested by a num ber of su ccess fu l fits to the experim ental 
data fo r  p -p  and 7 r - p  scatterin g .

F or  sm all 11| the p -tra je c to ry  seem s to lie  above the p ion -tra jectory  
(F ig. 3). In the range below  30 GeV, how ever, there are at least two reasons 
to expect that the m ain contribution to the production c ro s s -s e c t io n  com es 
from  the fir s t  term  o f E q. (6),

The Regge trajectories for the pion and p-meson

(a) It is  air(ß)= 0 and th ere fore , fo r  sm all |t| , the denom inator 
sin[7raT(t ) /2 ]  is  v e ry  sm all; in con trast, the denom inator co s (M p(t)/2 ) is 
o f o rd er  1 .

(b) The residu e function ßjr is essen tia lly  proportional to e X gnm;ßp
to g w X gpNN. Now, the analysis o f the iso v e cto r  part o f the nucleon e le ctro 
m agnetic fo rm -fa c to rs  indicates that gPNNis  sm aller than grNfjby one order 
o f magnitude. F urtherm ore , fo r  reason s presented at the end o f this lecture, 
the e ffective  coupling constant gyffpis very  sm all.

To make m ore  detailed statem ents about the relative im portance of 
the 7r and p contributions it w ill be assum ed that the structure o f ß n(t) and 
ßp(t) is  essen tia lly  that o f conventional fie ld  theory. In this ca se , the d if-
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ferentia l c r o s s -s e c t io n  fo r  the p ro ce ss  y  + p -> ir*+ (n p a rtic les ) through a 
p -p a r t ic le  exchange m ay be written fo r  high energies in the form :

d V V pkq3 sin2 6q [ap* „(k  - Uq) /(t  - m2)2]d3g (7)

with notation sim ila r  to that o f Eq. (1). Then, fo r  t^  -  g2ffp= e2 /4 ^2 and 
slopes o f the ir- and p -tr a je c to r ie s  equal to 1/50/k2 one finds:

if  ir and p have constant spins,

(8)
if  jrand p are Regge poles.

F or  sm all m om entum  tra n sfers  the follow ing conclusions are then readily 
derived , (a) In both ca ses , with in creasing  s the p -contribution  becom es 
m ore  and m ore  im portant; this is  easily  understood from  the fact that in 
both th eories  the p has a higher spin than the pion. (b) The value of s n eces
sary  fo r  dap = der,, is  much higher if the exchanged ob jects  are Regge poles 
rather than elem entary p a rtic les ; th is is  also reasonable because in the 
reg ion  of sm all |t |,the transform ation  o f the elem entary pion and p -m eson  
into R egge ob jects  redu ces the spin o f the p much m ore  than the spin of 
the pion (F ig. 3).

F or  the total c r o s s -s e c t io n  ffp*N there is  no experim ental inform ation 
at present * . T h ere fore , fo r  a rough calcu lation  o f the effect o f this trans
form ation , the p -con tribution  w ill be neglected. Inform ation about the pion 
R egge tra je cto ry  can be obtained from  [4]. In this work, the Brookhaven 
p -p  scattering data fo r  production o f the 3-3 p ion-nucleon  isobar have been 
analysed and a re la tive ly  unique determ ination of the ör,(t) was possib le . It 
is  found that, within experim ental e rro r

(t) = (t -  p )  X (0), - 0 . 4(GeV)2 § t  < 0 (9)

with slope:

1 /(35M2K * ; ( 0 ) £ 1 / ( 2 5 M2).

With (0) = 1 /(3 0 /n2 ) and fo r  k = 25 GeV, q = 20 GeV, 0q= 1, the D rell c r o s s -  
section  is  reduced  by a fa ctor  o f 8; the d ecrea se  is  due to the factor

(s/s0 .

In the case  o f production o f anti-neutrons with q = 20 GeV at an angle 
0q = 3° by photons of energy k = 25 GeV, use o f a straight line with slope

*  A calculation for y+N—>ir + N*, where N* is the T = J=3/2 pion-nucleon isobar, is now under way. 
In this case, information about can be obtained from the high-energy cross-section of the process
ir + N-»ir + N*.
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~  l /5 0 ^ 2 fo r  the nucleon R egge tra je cto ry  redu ces the D rell c ro ss -s e c t io n  
by a fa cto r  o f the ord er of 100. This is  because the distance of the nucleon 
pole  t = M 2 from  the physica l t is  great and th ere fore  a^(t)  is  significantly 
sm a ller  than the ph ysica l spin 5.

F o r  exchange o f R egge ob jects , the effective  angle opening of the 
forw ard  cone, in which the production  of energetic p a rtic les  takes place, 
w ill be  determ ined from  the fa ctor  (s /s o )aW rather than the propagator 
(t-m ?)’ 1. F or a given s one m ay, then, expect to have a significant flux of 
p ions fo r  t such that

F o r k  = 25 GeV and ioq = 20  G eV ; 0q = 0 .7 5 °  ~  fi /ioq, i . e .  o f  the sam e order 
o f  D rell production . F o r  anti-neutron production and the sam e k, uq: 0q
~£M /U q.

I w ill conclude with a short d iscussion  o f the magnitude o f the effective 
coupling constant g ynp. This quantity appears in the photoproduction o f pions 
on nucleons; th ere fore , one m ight expect to obtain som e inform ation about 
its  o rd er  o f m agnitude by analysing the experim ental data fo r  7 N - * 7rN. This 
was f ir s t  done by J. S. B A LL [5] and subsequently by a number of people 
[6, 7], The con clusion  is  that, under proper norm alization, g^irpis o f the 
ord er  o f e X/j /M . N otice  that th is value is in agreem ent with a perturbation 
calcu lation  in which the ( y -  3ir) coupling takes p lace through a nucleon-anti
nucleon loop  (F ig. 4, C ). The reason  that this coupling takes p lace through

a p a rtic le  loop  is  probably  connected with the prin cip le  o f m in im al-e lectro
m agnetic in teractions [8]. A ccord in g  to this, a photon can be d irectly  coupled 
only to a charged pa ir o f p a rtic le s . As a resu lt, elem entary couplings o f 
the fo rm  C i have to be excluded and the vertex  (7 -  3jt) has to be further 
analysed. H ow ever, any analysis o f the form  y->pion pair ->3 pions (as in 
C 3) is  excluded by G -parity  conservation . T h erefore , interm ediate pairs

(11)

w here 1 11  min is  the square o f the m inim um  momentum transfer (for an ine
la stic  p ro ce s s  |t|min  ̂0, in general). F or  pion production and with a pion 
R egge tra je cto ry  of slope  1/30/u2 it fo llow s that

0q ~  { 15/i2/kwq i n ( s / s 0)]1/2. (12)

Fig. 4

Diagrams for the (y-3ir) interaction; Cj is excluded by the hypothesis 
of minimal electromagnetic interactions,

C8 is excluded by G*invariance
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o f heavier p a rtic le s  (N-N or  k -k ) must be present. In this way, however, 
the e ffective  coupling constant is  reduced by (roughly) the ratioju /M , where 
M = m ass of interm ediate heavy particle .

F inally, the assertion  that the strength o f the vertex  (y - 3 i)  is  not an 
elem entary coupling constant (but can be calcu lated in term s of elem entary 
couplings, e. g. o f  the 7r-N and y -N  in teractions) is  also in agreem ent with 
the considerations o f M andelstam  and Chew in connection with quadrilinear 
products of arb itrary  fie ld s . A ccord in g  to these, the im possib ility  o f an 
arb itrary  constant (like gyn9) in the d ispersion  theoretica l approach coincides 
with the n on -ren orm alizab ility  o f the corresponding quadrilinear interaction. 
Now, the only lo ca l couplings fo r  the vertex  {y-3w) satisfying relativ istic 
invariance and all basic  sym m etry p rin cip les  are o f the derivative type

Sip 6 di 6Ü1

f g . e ^ A k —  —
^ V p  6 x X 6 x M 6 x V J

which are known to bo non -ren orm alizab le  and th erefore  shoula not introduce 
any new constants. In contrast, the (4 ;r)-vertex coupling \<j> , which is  r e -  
norm alizable , is  indeed known to introduce an arbitrary constant X in the 
7T-TT d ispersion  relations.
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I would like to d iscu ss  a m odel o f h igher resonances in the jtN scattering 
that has been w orked out extensively  in the past yea r, and fo r  which still 
fu rther w orks are  being done. In this m odel which I am about to d iscu ss, 
we con sid er the th ree -p a rtic le  interm ediate states N + 2jt in which the two 
pions are  strongly corre la ted  in the T = J = 1 state as an unstable particle 
we now ca ll the p m eson  [1, 2] .A s this new channel becom es energetically  open, 
the pN channel b ecom es coupled to the ttN channel. In fact the irN system  
can make a virtual transition  to the pN channel even below  the pN threshold. 
In our m odel, we assum e a strong coupling between the jtN and pN channels, 
eventually developing a resonance either above o r  below the pN threshold. 
This m odel is  very  s im ila r  to, but significantly different in one respect from , 
the m odel suggested by Dalitz and M iller  fo r  the Y*. The analogy of the 
D alitz -M ille r  m odel in our prob lem  would be to assum e a strong fo r ce  b e 
tween the p and N p a rtic les  to sustain a bound state which would be stable, 
w ere it not fo r  the "w eak" coupling between the pN and irN channels. In our 
m odel, how ever, it is  p re c ise ly  the coupling of the two channels that is  r e 
sponsible fo r  the reson an ce . T here  is  very  little , if any, d ifference between 
these two m odels phenom enologically , but at a deeper dynam ical level, there 
is  a d ifferen ce  in outlook.

The reason  that the m odel we are con siderin g  is  capable o f accounting 
fo r  the higher reson an ces is  seen as fo llow s . Let L j be the "orb ita l" 
angular mom entum  and the total angular mom entum o f the ttN system  and 
Ij the sam e fo r  the pN system . Note that there is  no change in the intrinsic 
parity in the reaction  N + it —* N + p. T h ere fore

jtN pN

h h

S l/2 S l/2 D l/2

P l/2 P l/2

P 3/2 P3/2 F 3/2

P3/2 S3/2 D 3/2

D5/2 D5/2 G 5/2

F 5/2 P5/2 F 5/2

Now as the pN channel becom es energetica lly  open, the I * 0 (Lj = D 3/ 2 , 
S1 / 2) state w ill be excited  fir s t , then the 1 = 1  (F5/ 2 , P3/ 2 . P1/ 2) state, and

4 3 7
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so on. Since the statistica l weight is  proportional to (2 J + 1), we expect 
that the firs t  resonance is  predom inantly in the state Lj = D3/2 and the second 
one in the Lj = F5/ 2 , I$/2 . P i/2 states, which of cou rse  agree with the e x 
perim ental findings. The isotop ic dependance is  determ ined by the specific 
"p r im a ry " interaction  we ch oose , and we w ill d iscu ss it when the appropri
ate mom ent com es.

Our form a l approach w ill be based on the unitarity and analyticity of 
the relevant am plitudes. Actually the analytic properties o f the production 
and th re e -p a rt ic le -to -th re e -p a rt ic le  scattering amplitudes are only scantly 
known, and we shall p roceed  by assum ing a particular diagram  as giving 
the main contribution to the left hand cuts of the production amplitude. On 
the unitarity relations o f the coupled p ro ce sse s , I shall rely heavily on the 
recent w ork of Ball, F ra z e r  and Nauenberg.

W h ile  f o r  the sca tte r in g  am plitude the unitarity  re la tion

T  - T * =  2 ff i  T  p T *  (1)

g iv e s  d ire c t ly  the d iscon tinu ity  a c r o s s  the right hand cut, th is  is  not the 
c a s e  in g en era l f o r  the p rod u ction  and 3 -p a r t i c le - t o - 3 -p a r t ic le  am plitu des. 
L et us denote by su b scr ip t 1 the 7tN channel, and by 2 the pN channel. Then 
v a r io u s  e lem en ts  o f  the T -m a t r ix  a re  defined  as

Tn  (s +) =sl2kQ J p j,7 m < jr (k ')N (p ')out| Jjj, (0) 17r(k) > s /2 u (p ),
_________  ______  out I , r

T21 ( s + ,  ct+) =N /4kj0k '0»,/q^/m <Jr(k')7r(k^)N(qO | (0) | jr(k )> ./2 k 0u(p), (2)

T22 ( s + ,  ct+', c t +)  = J T k ^ k ^ J ^ i  <V(kj) 7r (k2) N (q ')out | J* (0) | ir (k j i r  (k2f  >

X V 4 k 10k 20u (q ) .

In the above  d e fin ition s  o f the T -m a t r ix  e lem en ts , w e have d e lib era te ly  
con tra cted  the n u cleon  ra th er than the p ion  o p e r a to r s  so  as to  keep  the tw o
p ions in the b ra  o r  ket to g e th er . T o  sp ec ify  the k in em a tics  o f the rea ction s
it + N — > it + N, ir + N <— > ir + ir + N, and ir + ir + N <— > ir + ir + N w e need 
to  sp e c ify  2, 5 and 8 v a r ia b le s , r e s p e c t iv e ly . W e sp e c ify  the to ta l energy  
o f the sy stem  in the ce n tre  o f m a ss  w hich  is  com m on  in th ree  p r o c e s s e s  :

s = - (p + k )2 = - (p '+  k ')2 

= - (q + k a + k 2)2 = - (q ' + k 1' + k2' ) 2. (3)

F o r  th re e -p a r t ic le  sta tes , w e w ill denote by a the to ta l energy square 
o f the tw o p ion  sy stem  in its  own c . m . :

ct = - (kj + k2)2

a ' -  -  (k ' + k ' ) 2 . ‘ (4)
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T he oth er rem a in in g  v a r ia b le s  a re  a p p rop ria te ly  ch osen  an g les .
S u ppressin g  the angular v a r ia b le s , w e deduce  the d iscon tinu ity  o f the 

Ty a c r o s s  the re a l s -a x is ,  s ^.(m  + / j )2 as

E3 0 is  the th ree-particle  phase space integral including the integration over 
the continuous m ass variab le  a, and p2(s, cr) is  the phase space fa ctor  fo r  
the pN s y s te m :

A /s, ct) oc Pj(s; m.Jo) p^a;ß,ß) 6(-fs - m -n/ct) 6{o - 4/j2) 0 (s - (m +^)2).

E qs. ( 5) are derivable  (at least h euristica lly !) using the L . S .Z .fo rm a lis m . 
It must be em phasized that E qs. (5) are  not the unitarity relations, albeit 
they a re  intim ately related to the la tter. B efore  exhibiting the connection 
between those two, we wish to note the topo log ica l structure of the T2C2 in 
E qs. (5). F rom  the definition  o f T22 in Eq. (2), we see that

That is  to say, the "con n ected " amplitude excludes the disconnected group

T o get rid  of the com plicating  angular dependence in E qs. (5), it is con 
venient to decom pose  the am plitudes into partia l w aves. The decom position  
o f the e lastic  am plitude is  w ell-know n, so  I shall not elaborate upon this.

l / 2 i  [Tjj (s+) - T jj (s .)]  -  £ 2 I n  (s+)Pj (s) Tjj (s .)

+ Eao T12(s+jct+)p2(s , ct) T21(s_, ct.),

1 / 2 i [Tj2 (s+, cr) - T12(s_, ct)] -  E2 Tj j (s+)Pi (s )T j2(s .)

+ £ 3 0. T j2 (s +, cr+)p2 (s , ct) T22 (s. ,  ct.', ct), (5)

l / 2 i  [ T22 (s+,ct',ct) - T2c2 (s .,c t ',o ) = £ 2 T2i (s+, ct')pi (s) T12 (s_, cr)

+ £ 3.o"T2c2 (s+, ct', o" ) p2 (s , cr") T2c2 (s ., a", a) 

w here £ 2 is  the tw o-particle  phase epace integral fo r  fixed s :

and Pj (s) is  the phase space fa cto r  o f the >N system  :

T [ s - ( m  +/i)2]1/2[ s - ( m - / j ) 2] 1̂  
2s

0 (s - (m + a*)2) -

®22 =  ̂ " 0 *) ®>nr + (2 Tr )4 i  6 (q + kj + k2 -  q ' - k {- 1̂ ) . . .  T25

t 22 = ^ 2  - S « ( q  - q ')T„  .

in w hich the nucleon is  non-in teracting  (F ig. 1).
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------- -q -̂-------- --------  PION

--------  NUCLEON

Fig. 1

To decom pose  the production  amplitude T12 we fir s t  go to the 2 n centre-of- 
m ass system  and ch oose  the |--axis along the d irection  o f the q (see F ig. 2).

Fig. 2

In th is fram e, we p ro ject  out a particu lar angular momentum state I  
o f the 27r-system with the quantization axis along the |!-axis. Let £y be the 
p ro jection  o f £ onto the |--axis. Now we L oren tz-tran sform  the system  to 
the total cen tre of m a ss . Since the Lorentz transform ation  is along the 
T -axis with the ve locity  --------------

the p ro jection  £ j  rem ains invariant and acqu ires the ro le  of the helicity 
o f the 2 7T system . A s the tw o-pion system  is  now equivalent to a particle 
of m a ss  Ja, spin £, h elicity  £^ as fa r  as k inem atics is  concerned, the d e 
com position  into definite (J,jr) states fo llow s in the standard manner of Jacob 
and W ick . The th ree -p artic les  amplitude T22 may be decom posed  in a s im i
la r  m anner. If we assum e, as we shall do, that only one particu lar £ d om i
nates, and that the m ass-d istribu tion  in s/a is  sharply peaked near a = <j, , 
the p icture o f an unstable p article  can be naturally incorporated into our 
sch em e. F rom  now on we shall retain only the £ m 1 amplitudes in our con 
siderations.

Once the am plitudes Tjj a re  decom posed into partial w aves,the angular 
integrations in E qs. (5) can be perform ed  triv ia lly . F o r  given quantum num
b ers  J, n, we obtain

t {\ (s+)' - t £  (s .) = 2i T & s*) p, (s) t £ ( s _ )
(Vi m)*

+ 2i L [da  T $[s+, a+) P2(s , a) t £ ( s _ ,  ct_), (6)
4(1*

w here, fo r  £ = 1, a • 1, 2 o r  3 is  the polarization  index corresponding to 
two tra n sv erse , one longitudinal polarizations.

At this juncture let us c la r ify  the connection between the discontinuity 
Eq. (6) and the unitarity re la tion s. F o r  TJ2 , fo r  exam ple, the unitarity re la 
tion  a sserts  that (suppressing J, it .L , a hereafter)
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T12 (s+, o+) -  Tj* (s . ,  a.)  -  2 iT * (s )  pj(s) T12 (s ,a) + 2iJdo' T * (s, , o ' ) tr).(7)

W e assum e lij*(s, x, - - )  = Ty (s*, x* - - - ) ,  i. e., Ty are rea l analytic functions 
in the energy v a ria b les . W e are  unable to give a rigorou s, general proof 
fo r  th is, but this is  true in perturbation theory as fa r  as can be ascertained. 
Then we may w rite  E q. (7) as

[T 12(s+,<t;) -  T12(s_ , ct+)] + [ T 12<s _ ,cf+) -  T12( s .,<tJ ]

s 2 iT n (s - ie )  pj(s) Tn  (s + ie )+  2i J c t o 'T ^ s . ,  ai)p2(s, a) T22(s+, <j’+, a+). (8)

Now we note that

T12 (s, a+) - T12 (s , ar_) = 2 ie lS(0) sin 6(a) T12 (s_,crj

= 2 i J ia’(T22 - T2c2 ) p2(s, a') TJ2 (s . , a . ) . (9)

T h ere fore , E qs. (8) and (9) im ply the second (not written out) line of Eq. (6). 
What it m eans may becom e c le a re r  if you con sider a particu lar diagram  
(see F ig . 3).

i1
Fig. 3

When we con sid er the im aginary part, there are contributions from  parti
tions 2 and 3 o f the diagram  as vfell as that from  the partition 1 .In c o m 
puting the "a b sorp tiv e " part, how ever, the contributions from  2 and 3 should 
not be included (since a is  fixed). It may be further rem arked that the parti
tions 2 and 3 give r is e  to te rm s of the form

Jda'T 12{ s „  ex.) p2(s, a') T^ (s+, a ', a)

w here T22 is  the excluded disconnected part

t 'D -  t * t  c a22 ~ x22 ~ l 22-

So much fo r  the unitarity aspect o f the problem , let us now look  at the 
dynam ics. W e would like  to take into account the longest range " fo r c e "  that 
contributes to  the p ro ce ss  w + N <— > p + N. One-pion exchange is  possib le  
betw een the nucleon and the m eson  (see  F ig . 4).

p -M E S O N

Fig. 4
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In fact, the reason  why we have singled out the N + p interm ediate state, 
but neglected  other states such as N + u { n) is,that this is  the only state con 
sisting o f one nucleon and one unstable m eson  that can be reached from  the 
N + 7T state through one-pion exchange. The m atrix  elem ent fo r  F ig . 4 is

ü(q) ^u(p) ig  F „  (ct, • • •) (10)

w here t = - (p -q )2, and F „  is

F-  (ff’ ' ' 0  *  3 > J ^ 2  Sin 5(a) P1 (&V

When we make a partia l wave p ro jection  of (10)w e get two branch lines, one 
extending from  s = 0 to - oo, the other one between the two branch points s*, 
given by

s±(a) = m 2 +a/2 ± ^ l ( 4 m 2 - ß 2)[4ß2 -< j)]1/2 . 
iß

If we give a sm all positive  im aginary part to a : a -> a + irj, n> 0, and in 
c re a se  cr from  a certa in  sm all value, the branch points s^cr) m ove as in 
dicated in F ig . 5.

S' Ctf)<✓///
(m-u)* /  (m + ii)2

— r> -------------
** I e - I  p2

\\

Fig. 5

That is , the p ro jection  of the one-p ion  exchange amplitude develops an 
anom alous singularity at a = 2/j2( 1 + /Lt/2m), a com plex singularity ata= 4/j2. 
If, instead, we give a sm all im aginary part to a, the lo c i  o f the singularities 
in F ig . 5 a re  re flected  about the rea l ax is.

The am plitudes T  ̂ contain som e kinem atical cuts. We define the new set 
of am plitudes My by

Mii = 4  Tii jgj

w here the gj are fa cto rs  proportional to p fLl, p; being the magnitude of the 
channel m om entum , L j the low est channel orb ita l angular momentum (L t = L 
fo r  i ■ 1, Lj * I fo r  i = 2, w here L and I a re  defined as be fore ). On defining 
new quantities p!j (s), p^(s, ct) by
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P ^ s )  = g 1 P1 ( s ) ~  [p2L+1as s (m + u )2] ,

P^s.ff) = g2P2(s ,ff) ~  [ q (s ,a )21+1 as s (m + 2 /i)2] , 

we can w rite the discontinuity conditions, Eq. (6), in the form  

M j'ifsJ - MJ*(s_) = 2i M }"{s .)p i M n (s+)

+ 2i £ Jda  M*2(s_, a J p2(s, a) MI21(s+, a+) .

4 4 3

(11)

The fa cto rs  p̂ - and p\ exp ress the com bined effect o f the variation o f the 
available phase space and the centrifugal b a rr ie r . A s a consequence, the 
dominant energy dependence o f the am plitudes near thresholds is  rem oved 
fro m  Mjj : the My are approxim ately constant near the thresholds.

W e can now w rite  down the d ispersion  equations fo r  the My . The"input" 
am plitude B 21(s,cr) has a spectra l representation  of the form

.  W " )   ̂ - s' ' '
B2l(s* ”

' f* d s ' , , , , r  d s '
J  I T i  * J  F T I
s +

ß(s',a)

If we fix  the value o f cr below 2 /j2( i  + ß/2m),  we can w rite down the d is 
p ers ion  equation fo r  M 21(s, cr) :

fl©

M21(s,ct) = B ats , a) + l- j  M21(st') P l(s') Mn (s.')
(m+ji)2

(m+2fj)z
Let us now con sid er the analytic continuation o f Eq. (11) in the m ass cr. 

As we have seen, ,M21 w ill develop  an anom alous singularity, and we must 
deform  the contour in the second term  of (12) to avoid the intruding cut of 
M 21(s£, cr).

The am plitude M 2i{si, cr) in the integrand must be continued to the second 
sheet through the tw o-p a rtic le  unitarity cut:

M21(s+,cr) * MH(s_ ,ct)

= M21(s_, cr)[l + 2ip1 (s )M 11(s . ,a ) ] '1

p“ (s - ie) * p j(s +  ie) = - p j ( s - ic )  .

T h ere fo re  the continuation of Eq. (11) in a now g ives

1 r "  d s '
M21(s,ct) = B 21(s,ct) + -J

(m+M) 2 

(m+M)2 /
+ i  / -2 5 1  d isc M“ (s')Pi (s ')M “ (s '). (13)

7T J  S ' -  S 1 11
S+(0)
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One can show that M 21(s, c )  given by Eq. (13) does not satisfy the d iscon ti
nuity condition  in ct, nam ely

M„,.21(s,cr+) - ex.) = a ifJ c x J p fa J lv y s .c r J .-p M  = . (14)

Eq. (14) m eans that

d isc
a

M2i(s,(T + ig ) 1

f > + >̂ J ' " *
but because o f the unsym m etrica l (in the s-p lane) com plex anomalous singu
la rity , E q .( l3 )  gives

d isco
M 2i(s , a + ie) ds*■ i  r 

h . .
d s '

+i [ , i r j  s ' - s
(m+iJ) 2 

#  0.

disc M2i(s'*crt) 
c *>♦> 

’ l lr M 2i ( s ' c t - )  disc — — T—

p“ (s ')M n (s') 

Pl ( s o f t s ' )

Ball, F ra z e r  and Nauenberg noted that the diagram  shown in F ig .6 has 
a cut from  s+ to s-, corresponding to the nuclear line indicated by arrow 
on the m ass shell.

Fig. 6

The contribution from  the branch cut from  s + to s '  o f this diagram  can 
be shown to be

1
7rp (cr) /  Ä  « (b 7,a) p“  ( s O M ^ s 'J

dsj —  a{s', a) p1(s') M 11(s')
s '- s

When we add this term  to Eq. (13) and manipulate a little bit, we obtain

(m+io*

=  m  + — i—  r  a (s ')0)p1' (s ' ) m . , (so
f * > )  f i r A )  Q) S ' - s '

1 PS ^  d s '+ — . - — / —— « (s '.a J p ^ s 'J M (s ')  + unitary contributions. (15)
7rp(c7)f°„J s ' - s  i ii

(m+pi)2

By virtue o f the relations
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a * (s ,  a )  = - c t ( s*,or*), 

1 1
2ip(cr),

the am plitude M ^ s .c r )  sa tis fies  Eq. (15).
The above con sideration  may be understood better in term s of diagram s. 

C onsider, fo r  exam ple, a Cutkosky diagram  of F ig . 7 .

\

S f /
/

______

Fig. 7

The discontinuity in cr corresp on d s  to the partition of the diagram  along line 1, 
and th is m ust be w ritten in the fo rm  (see  Eq. 14)

2if„(cr)p(cr)M 12(s ,cr .).

T h ere fore , M ^ must include the 'diagram  shown in F ig . 8.

Fig. 8

In this m odel both the e lastic  amplitude Mn  and the 3 particle  amplitude 
M 22 a re  driven by the in elastic p ro ce ss , which in turn is generated by the 
one-p ion  exchange m echanism  and the unitarity. Schem atically the whole 
coupled p ro ce s s e s  can be shown as in F ig . 9 .

;x k = : x x x : +  x m x

= +'iO ::̂ +'iE 3 X^

Fig. 9

The n on -linear set o f equations (11) and (15) can be solved by the m atrix 
N /D  m ethod. Of cou rse  a slight m odification  is  n ecessary  to accom m odate 
the com plex  anom alous s ingu larities. An important result is  that, while 
individual elem ents Dy do have com plex  singularities, the determinant of 
D does not.



M oreover we observe  that

S = p '/2 D(s - iO D '^ s  + ielp’ 17'
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so that

ln det D ( s ! ) - ln  det D(s+) = ln det S = £ 6a (s)
a eigenchannels

and from  this and the fact that det D has only the norm al unitarity cut, the 
m ultichannel Levinson theorem  fo llow s :

E | 6 fl(m + M) -  öa (°o)^ -  7T (inbound "  ^c.D. Dj) •

Instead o f dem onstrating the N /D  solution, let us be content with the 
sem iphenom enological K -m atrix  solution, to glean the nature of the m ore 
elaborate solution. Let us adopt the m atrix  notation and w rite

M = K + iK  • p s* - M (16)

w here the row s and colum ns of the m atrices  are labelled by the d iscrete  chan
nel in deces i and the continuous a

and the m atrix  p is  diagonal

We w rite

m n  = Mn

m 12( s ,CT) = M ^fs.crJ f^V )

m 22(s, o', a) = f^(or') M22(s, o ', o ) ^ ( o )  .

Now we m ake an essentia l approxim ation that f^fa). is  sharply peaked at 
a = <jr, and, in the sp irit o f the steepest descent approxim ation,

ml2(s,(r) =* m12(s,or) =  m 12(s ) , e tc .

L ikew ise we define icy by rem oving the sharp dependance of Ky on the m ass 
distribution a. On defining the 3 partic le  fa ctor  pj1 corrected  fo r  the final 
interaction



(Vs-m)! 4

P2l(

We obtain a reduced 2 X 2  m atrix  relation between m and k ;

m n (s) = ku (s ) + i Kn (s)p\ (s )m n (s) + i kj2 (17)

In o rd e r  that the My satisfy  the relation, Eq. (12), it is  n ecessary  and 
sufficient that k be rea l sy m m etr ic ; the My can be written as

m = (1 - ip - • k) 1 k ,

the condition  fo r  resonance is

Re [det (1 - ijx - k )] = 0

or

0 = Re [1 + pi P2 (k12 k2i - * 1 1 *22) "" * ii  " * P2 *22  ̂ •

Now in the range (m + / u f < s <  (m +  s/ar)2Pi is  purely real, while p  ̂ is p re 
dominantly im aginary, so that E q . (18) reduces approxim ately to

I + I P 2 I *22 “  0 ■ (18 ^

A n ecessa ry  condition fo r  resonance below the pN  threshold is then
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A  detailed calcu lation  shows that k22 is  in fact negative both in the D3/2. and 
F5/2 states (T = 1 /2 ) fo r  the interaction  con sidered  (one-pion exchange), and 
the ratio o f the *22. in the T = 1/2 state to that in the T =3/2 is ^ 4  :l (s e e  F ig .10). 
Since | p 2| ^ ! p |2I+1 , we see that, assum ing k£° =; /cj^ .the D3/2 resonance 
lie s  below  the F5/2 resonance in the T = 1/2 channel.

A  crude calcu lation  made by Cook and m yse lf may be sum m arized in 
the fo llow ing  graph (F ig . 11).

1=0 1=1

' 0 i

Fig. 10
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VIENNA, AUSTRIA

1. INTRODUCTION

In these lectu res  I would like to talk on bound states and" resonances 
in quantum fie ld  theory  [1 ] . I w ill assum e that you are fam iliar with this 
prob lem  in potential scattering and w ill investigate s im ila r  prob lem s in field  
theory . The d ifficu lty  is  that the only system atic method o f calculation in 
fie ld  theory  is  the perturbation theory . If you look  at the analytical properties 
o f  single graphs the po les  and singu larities which correspon d  to bound states 
and reson an ces do not appear. T h ere fore  one has to do something better and 
I w ill con sid er a particu lar m odel,: the s o -ca lle d  ZACHARIASEN m odel [2] 
which is  essen tia lly  the sum m ing up o f the chain -d iagram s (Fig. la  and lb).

a) b) ,;i c)

Fig. la. lb - Fig. lc

Typical chain diagrams Typical ladder diagrams

In princip le  one could  think a lso  o f the sum m ing up o f ladder diagram s (Fig. 2). 
They are , how ever, m uch m ore  com plica ted  and we w ill at first consider 
the chain.

The sum m ing up o f the chain leads to a unitary S -m atrix  which is  by no 
m eans triv ia l, sin ce one has taken out only specia l types o f diagram s from  
the whole perturbation expansion. It a lso  sa tisfies  analytically, but not 
c  r o s  sing - sym m et r y .

The m odel can either be con sidered  as a p rescrip tion  to se lect a certain 
type o f diagram  in ord inary  perturbation theory, or in the fram ew ork of

*  Text based on notes, by K. Chad an, F. Hadjioannou, A.N. Mitra, H. Mitter, H. Pietschmann, 
T.K. Radha, E. van der Spuy.

4 5 1
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d isp ersion  theory, as a restr iction  on certa in  interm ediate states, o r  as 
the exact solution o f a Lagrangian fie ld  theory, in which the pairs o f particles 
form ing the bubble in F ig. la  o ccu r  as a fie ld  with continuous m ass spectrum  
[3 ] . The scattering amplitude T depends in this m odel only on one variable 
or , in other w ords, we are dealing only with the interaction  o f particles in 
a sp ecia l angular mom entum  state the mom ent o f which we take to be 0. The 
only possib le  ju stifica tion  o f the approxim ation, which this m odel represents, 
com es  from  the fie ld  th eoretic treatm ent o f  the m any-body problem , where 
the bubble-sum m ation  leads to physically  significant resu lts (plasma o s c il 
lations o f an e lectron  gas). We shall d iscu ss  it in som e detail since it r e 
fle c ts  severa l features which are con jectured  fo r  a fu ll-fledged  field theory.

2. THE SCATTERING AM PLITUDE . . '

In the m odel we have two particles, one represented by ip (solid line)
with m ass the other represented  by <j> (broken line) with m ass Mo, both 
with spin 0 (the generalization  to spin fo r  <p w ill be considered  later).
In the language o f a Lagrangian form alism  we have to con sider the in ter
action  term :

L ' = -X 0 ^ 4 + go <i> <P2 (1)

(note that a negative X 0 m eans attraction, a positive one repulsion) and have
to sum up the d iagram s shown in F ig. 2:

= X + >--< + + >-<x + X>~< + >~o~<

Hg. 2

T(s) -  X„ + XSA W X0 + + X, AW  A ,  . A j i A ;

A (s) is  an abbreviation  fo r  the divergent bubble; which is in co-ord inate 
sp a ce  the product of two sca la r  Feynm an propagators with the sam e argument. 
This product can be written as a weighted integral over single propagators 
[4 ]. In m om entum -space  this m eans:

00
. . .  f  W ds'

1

w hich is  logarith m ica lly  divergent. We extract the singular part by making 
one subtraction  as s = 0:

with s ' - s
16* (3), (4)
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00
C Wri  9 'A (s )  = A (0 ) + A ( s )  - A (0 ) = A (0 ) - s j  - r ^ 7 - T ) . (5)

1

A (0 ) = -B  is  an infinite constant and the rem aining integral is  convergant 
(note that B is pos itive ).

It can be seen im m ediately  that (2) is a geom etrica l s e r ie s  which can be 
sum m ed up to y ield :

T(s)  = [ X 0+ g<! / ( s  - / *2) ]  {  l - [ * 0 + g g / ( s  - / i j  )] A <6)

Introducing (5) this can  be written in the form :

T ( . )  = 1  /  [ 1 + i s  j  ] = X /  D ( . ) (7)

w here:

(8)

X= T(0)  = X0 / [ l  + B X 0 +g 2  / (XoM2o - g^) ]

R = '  Xg2o /Xo J #** = **? - So / V

The form  (7) shows exp licitly  that T —> X0 as s —> oo .

3. POLES OF T (s)

We now want to investigate the exp licit form  of T (s ), specia lly  its poles, 
which w ill g ive us in form ation  on bound states and reson a n ces . We th ere
fo r e  evaluate the in tegral occu rr in g  in U (s):

a  =  B f  < w i -  i / Bj  = 2 _ r r n  ^  i . +  / b / (b  -_ i )  

j  s (s - s) y s i . y s/(s - 1) (9)

fo r  s -oo A  2 -  In 2 |s|
s — 0 A  — | s(s  + 1[
s -*  1 A — 2 -iJT  y  s -  1 -  2(s -  1)
s — +oo A  — 2 -  In 2s -  iff .

It should be noticed , that fo r  s > 1, A  becom es com plex, since the denomina
to rs  have to be taken with sm a ll im aginary parts in order to exhibit"the
p rop erties  o f Feynm an propagators. The re a l part has a cusp fo r  s = 1.

We now d iscu ss the ze ro s  o f D and take fo r  granted, that a zero  fo r  
s < 0 m eans a ghost, fo r  0 < s < 1 m eans a bound state and fo r  s > 1 means
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ReA

Re A(s) ftom Eq. (9)

a reson an ce . We shall ca ll resonance everything where the phase shift goes 
through 90°. This w ill, how ever, be d iscu ssed  in m ore  detail later on. We 
f ir s t  con sid er  the ca se  w here there is no $ - f ie ld  and hence go = R = 0. It 
can be seen  from  the fir s t  part of Eq. (8) that, i f ^  is  to be finite, X0 must 
approach 0 from  negative values, i. e. fo r  B -^ o o w e  have to start with weak 
attractive interaction.

The situation fo r  negative X is  plotted in F ig . 4 fo r  two typical ca ses . Since 
R e D has a cusp at s = 1 there can be either no bound-state and no resonance 
(^■l) or one bound state and one resonance [̂ -2 )• This situation is fam iliar

Re 0

Fig. 4

a) Re D for go = 0 for two typical negative values of X. 
b) Phase-shift for the same cases

from  s-w ave  attractive potential scattering (for p -w aves the situation is 
d ifferent. T here one can have two resonances and one bound state). If X is 
b igger than ze ro , we w ill get a ghost and a resonance, as is seen from  F ig. 5. 
We w ill th ere fore  not con sid er this case .

The situation is  s im ila r  to potential scattering with weak attractive potential, 
w here the phase shift starts negative, unless a bound state has already been 
form ed , in which case  it changes its sign.
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Re D

Fig. 5

Re D for g0 =0 and positive Xfoccurrence of a ghost)

Another p oss ib ility  is R f  0, in which case  we a lso  restr ict "X< 0, (other
w ise we have again a ghost), which im plies a lso  R > 0 (com pare (8 )).Because 
o f the additional term  in D(s) the rea l part o f D has to change sign, since 
it eventually goes to - oo at s = m”2 . We have again plotted two typical cases 
(F ig . 6a). One gets either one resonance (^ i )  or  one bound state (^2 ) alone.

Re 0

Fig. 6a Fig. 6b

Re D for g0 = 0 for two typical negative values of X. Phase-shift for the same cases
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(or with two reson an ces), depending on the magnitude of £ .  (A i < X2 < 0 ). 
F inally  we investigate the connection with the phase shift

tg 6 (s) = (16 /X  ) . /  s (s  - 1) Re D (s). (10)

The correspon d in g  p lots are (4b) and (6b). The firs t  case  again resem bles 
potential scattering. In the second  case , we get a slight generalization  of 
the Levirisontheorem : in its usual form , it connects the number of bound 
states to phase shift d ifference, w hile 'here we have [5]

6(oo ) - 6 (0) = ff. (Number of bare pa rtic les  -
number of physica l p artic les ) (11)

w here ph ysica l p article  m eans a d iscrete  point in the m ass spectrum , ir r e s 
p ective  o f whether there is a bare p a rtic le  a ssocia ted  with this quantum num
b er  o r  not, i. e. a ll bound states are counted as physica l p artic les . This 
can easily  be seen  from  (4b) and (6b).

4. RENORM ALIZATION AND DEFINITION OF COUPLING CONSTANTS

At fir s t  we w ill d iscu ss the coupling constants attached to the bound 
states. We w ill use the usual definition, which states that the coupling con 
stant is the residu e of the corresponding pole of the T -m atrix .

We rew rite  T in the orig inal unsubtracted form

T (s) = X0 (s - M2 ) /  [s - Mo - A X0 (s - m2 ) ] = X0 (s - m2 ) /  D ( s ) . (12)

(A is the orig ina l exp ression  (3)).
Since we are  dealing with bound states o n ly / we suppose

D ( m2 ) = 0 foe 0 < M2 < 1 (13)

(this has to be con sidered  as the definition o f the physica l m assM ).
It is then better to do the subtraction at the point M2 so that we now have 

the infinite constant

B = - A (m2 ) —• + 00 (14)
(13) reads then

M2 - Mo + BA0 (ß 2 - Ji2 ) = o. (15)

We now subtract (15) from  the denom inator of (12) and obtain

00

D ( . ) - p (1, V D ( s > . ( s V | - j

(16)
00

= (s -M 2 )[ 1 + Aq (B +  (M2 -M 2 )I ]  + A 0 .(s - M2 ) ( fev~T^\J (s - s ) '
1
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where

T -  dA ^ 2 
d ß 2

= C W ds'
J (s'  -  M2 16^2 M2

arc t g v /V / ( l  - ß 2 )
~~7Wir r ^ - (17)

The lim iting  ca ses  are

I -  (2 /3 ) (1 /16  j 2 ) fo r  /j -*0

and

I -  1 /(3 2 * \/ 1 - M2 ) fo r  ju -  1.

Defining now a new ren orm alized

X = X 0 /  | l  + [ b (m2 -M 2 )]  X 0 }  . ' (18)

We can w rite  T in a fo rm  which exhibits exp licitly  the singularity as w ell 
as the res id u e :

T (s ) = X (s -  ß2 ) / ( s - ß2) [ 1 + X (s -  ß2 )] . (19)

The ren orm a lized  coupling constant fo r  the bound state is , as already m en
tioned, defined by

H ence

T = g / ( s  - ß 2 ) if s —* ß 2.

g2 = X(m2 -~ß2) (21)

and one sees  that ß 2 can be exp ressed  in the sam e manner by the un
ren orm a lized  and ren orm alized  quantities

M2 - g o /^ o  =M2 -  g2 /X .

F rom  th is one can in fer sev era l in teresting  points. The firs t  provides 
us with lim its  fo r  g. We have

1 / g 2 = 1 +  ( 1 / g o )  [ & 2 - ^ o ) / ( M 2 - H 2 ) ]  > 1 .  . ( 2 2 )

In the case  o f a pure bound state the equality sign  is valid, (case w ill be 
shown below ), so  that in gen era l g2 is  not arb itrary  but restricted , its 
m axim um  value being f  , and is  attained fo r  a bound partic le . Furtherm ore 
X is  again re s tr ic te d  to be negative otherw ise T (s ) has a ro le  fo r  s < V 2 ^From 
(21) it then fo llow s that j32 > ß 2. A fter noticing these restriction s  on the r e 
n orm alized  quantities, we ask  whether the whole p rocedu re  is consistent.
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Im posing the condition  that a ll renorm alized  quantities (g, M, A) are finite 
and only B tends to infinity, we end up with a positive go tending to zero

go = g (1 - Ig  ) / ( l  - X B - Iqz )- 

and in addition we have

O'

Mo =M2 -  (g2 / X )+  (g2 / ^ 1 - Ig 2 ) /  (1 - * B - Ig 2 ,7 2

X 0 = A / ( l  - X B  - I q 2) —0 '
(23)

5. SPECIAL CASES

Let us con sid er som e sp ecia l lim iting ca ses  of the above: where either 
X-o o r  go = 0 . In both casesM 2 tends to infinity and the T m atrix  (19) in term s 
o f the p rop er  ren orm alized  quantities then reads as fo llow s:

T (s ) = g2 / (s - m" 1 + (s - M' 2 P d s 1W 1 1
J (s'  - M2 ) (s'  -  s)J j ■ (24)

A . Xq = 0 (andM2 = °°), that is L ' = gotitp2 and the renorm alized  m ass 
v a lu e d 2 w ill hence be that of an elem entary particle  of this fie ld . One finds:

1 /g2 = I (# 0 +  1/eS
and <25)

Mo ~ M2 + go B

so  that Mo tends to infinity as B tends to infinity. Thus we have to start with 
an infinite m ass Mo and use an infinite m ass renorm alization  to obtain the 
ph ysica l m a ss  M2 .

B. go = 0 or L ' = - X 0 ip 4 , so that we have no 0 fie ld  but have the possib ility  
o f bound states of the ^ fie ld  due to the point interaction. Now there is  no 
question o f m ass ren orm alization ; one finds:

g2 = l / I ( M ) .  (26)

F orm a lly  this has som e of the features of the previous case  with go —
This paradox need not be surprising  because if we consider the <j> propagator:

go /  (s - mo )

and let Mo tend to infinity with go , we can forget about the s dependence and 
go / ( s  - Mo) tends to X0 a constant and the propagator shrinks to a point which 
is  the presen t ca se . .

Now from  (26) and (17):
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jL2 ___ L_
4 n 4 irl (s)

' 6 ff fo r  M —' 0 +
(27)

7  1 -  M2 for

The f ir s t  ca se  is  that o f strong binding; in this lim it a strong coupling 
(g 2/ 4 ir = 6ff) is  obtained irre sp e ct iv e  of the coupling constant X 0 to start 
with. This m ay suggest that strong interactions a rise  because the participa
ting m eson s are com pound p a rtic le s .

The latter case  corresp on d s to the weak binding lim it. This lim it was 
a lso  studied in Landau’ s consideration  of elem entary quantum fie ld  theory
[ 6]. F rom  the consideration  of the coupling constant in relation to the a- 
sym ptotic behaviour o f the wave functions Landau deduced:

g2 / 4tt = 8 \/ 2e  (M j + M 2 ) (28)

where e represen ts  the binding energy and Mi, 2 are  the m asses. In our case 
M i = M 2 = I , e = 1 -M  so that we get exactly  the Landau form ula.

If we go to values of ß 2 > 1 the p a rtic le  becom es unstable; form ally , 
how ever, the form ulae apply a lso  in this case . D (s ) now develops an im agin
ary part and does not vanish in the ph ysica l sheet. (Com pare (7)).

The condition  fo r  a reson an ce at s = ß 2 now has to be defined as:

Re D (ß2 ) = 0, (29)

and consequently one only subtracts R e D (n 2 ), (com pare (16) for  the bound 
state). Hence the definition (14) fo r  the infinite constant B has to be changed 
to:

00 00

„  „  f  d s ' W n f  d s 'WB = Re \ —;------- s----- — = B —— —3-, (30)J s ' - ß 2 + le J s ' - ß 2 ’

and s im ila r ly  fo r  I(s ):

1 1

1(81 ■ I  131)
1 '

w here the ± ie shall indicate that one has to take the integration path once 
above and once below  the singularity and then average. (Which is a sort of 
generalization  o f the prin cipa l value fo r  higher pow ers of the denominator).

The coupling constant can now m ost conveniently be found by means o f 1

Re 1 /T  — (s - ß 2 )/g2 fo r  s — ß 2. [S2)

It has the follow ing sign ifican ce  in term s of the resonance width r  (com pare 
a lso  ( 10 )):
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Re (1 /T ) = (1 /16  Tr) V  (s - l ) / s  • cot ö = (1 /16  Tr) • /  (s - l ) / s  • (s - ß 2 )/T
(33)

which is a re la tiv istic  B reit -  W igner form ula.
Here

T = (g2 /16 TT) • /  (ß» - l ) / ß3. (34)

6. AN ALYTICAL PROPERTIES AND RIEMANNIAN SHEETS

Now we investigate the analytical p rop erties  o f T (s) and observe (one 
sees  easily  that Im T _1 (x + iy) f  0 unless y  = 0) that it has not poles in the 
com plex  s-p lan e  unless one continues through the branch-line s = 1 to « .E v e n  
this b ran ch -line  is  only a consequence o f the ch o ice  o f the v ariable s and one 
can get r id  o f it by con siderin g  T as a function o f g = / s - 1 which is half 
the mom entum  in the ce n tre -o f-m a ss  system .

00
16v2 _ 16tt2 _ r  d s 'v /l -  I / s '  s - R

T " A + S J . s ’ ( s ' - s )  + s -£ 2
1

= C - In -q- + q2- + , {35)
VI + q2 q - \/ 1 + q 2  q 2  + 1 -^2

where

C = 2 + 16ir2 /X (36)

is  a convenient abbreviation fo r  subsequent d iscussions and

R = - 167T2 g2 /Ji2X 0 .

The in tegral over s ' in (35) behaves like >/ s - 1 fo r  s~* 1 as can be seen 
from  (9) w hereas no such root is present in the second, q-dependent, part. 
The mapping o f the com plex  s-p lane into the com plex  q-plane is shown in 
F ig . 7. The c r o s s e s  are two com plex  conjugate points in the s-plane which 
are thus mapped into two points sym m etrica l with resp ect to the im aginary 
q -a x is .

F rom  (35) one can further obtain the relations'

T (s * )  = T * ( s ) ,  ’
T ( -q * )  = T * (q ) .  ^

/The fact that T (s) has no singu larities in the ph ysica l s-p lane means that 
there are no singu larities in the upper q -p lane; except fo r  possib le  bound- 
states which corresp on d  to poles  on the positive  im aginary q -ax is  between 
O and i.
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Fig*'7

Mapping of the complex s-plane in the complex q-plane

In the second  s -sh e e t (the low er half o f the q-plane) we have

(T n (S))-1 = ( T 1 (s))"1 + 2 » i / ( s -  l ) / s  (38)

or
T ( - q ) - l  = T (q )-1  + 2 J r iq / / l  +  q 2.

This m eans an additional cut from -ooto  0 in the second s -sh eet, c o r 
responding to a branch-line extending from  q = - i  to - i 00 in the low er half 
q -p lane. These singularities are shown in F ig s . 8 and 9.

s : -P L A N E s ^ -P L A N E

0 1 0 1

Fig. 8

Singularities in the s-plane

B ecause o f the logarithm ic ch aracter o f T _1 there are an infinite number 
o f additional R iem an"ian  sheets and the prob lem  thus a rises  how to continue 
to the variou s sheets. If, in the second s -sh eet, one does not c ro ss  the ad
ditional cut from  -oo to 0, one does not touch any cut in the q-plane and th ere
fo re  reach es the fir s t  sheet again by cross in g  the main cut from  1 to A 
p oss ib le  path of this type is  shown in F ig . 10a. On the other hand, by crossing  
the -°° -0  cut in s, one c r o s s e s  the q -cu t and hence steps down to the third 
s -sh ee t when one c r o s s e s  the main cut. (See F ig . 10b).
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q -P L A N E
i

____^ P O S S IB L E  BO U N D -STATE

W EAK

^ V P O L E
- i  / P O L E

STRONG i STRONG

Fig. 9

Singularities in the q-plane 

s-PLANE

m

Fig. 10a

Particular singularities in the s, q-planes 

s-PLANE

Fig. 10b

Particular singularities in the s, y-planes

7. SPECIAL CASES

As b e fore  we now con sider the two typical cases in the q-plane.
A. go = 0 and hence R = 0. (no $ -fie ld ).
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To find the po les  o f T(q) correspond ing  to bound states, and therefore 
lying on the im aginary axis, put:

q = ik .

A s can be seen from  (35), the condition fo r  such a pole  turns out to be

(  = 2 fo r  k = 1 
n  I k  2k  A k )
c = TrrW ' TT^W  arc tan TTTp  < <39>

/  2 ,rk  * i i 
(  T T k T ^ X - ^ -

Thes e two lim its  2 and -oo fo r  C corresp on d  resp ective ly  to X~* - 00 and 0", 
as the ca ses  o f very  strong and weak binding. T herefore  as we turn on the 
interaction , the pole  m oves from  q = - i  to +i, along the im aginary axis.

A s q 0 the S -m atrix  assum es the sim ple form :

S = (q + iC /t t ) / ( -  q + iC/n)

w here C now determ ines the scattering length.
F o r  q outside the domain - i  to  +i on the im aginary axis the pole would 

corresp on d  to a ghost, which could  occu r if X w ere not negative.
B. Xo = 0, R > 0 (p resence o f an elem entary partic le  corresponding to <j>). 
H ere one pole  m oves as b e fore  but just som ewhat displaced. We have now, 
how ever, two other po les  due to the last term  in (35) which equals R ( q 2  + 1) 

when ~ß2 tends to infinity. It turns out that the signs o f the im aginary parts 
o f the logarithm  and this latter term  are opposite only in the low er half 
plane and thus the additional poles  have to be located  there. They m ove as 
indicated in F ig . 9, correspond ing  to the <t> -p a rtic le  which becom es less  and 
le ss  stable when one turns on the interaction.

8. DISPERSION RELATION

B ecause of its analytic p rop erties  one has the sim ple d ispersion  relation 
fo r  T (s ) which has no left hand cut because our m odel has no cross in g  sym 
m etry:

I « )
1

It has been m entioned in the introduction that the d ispersion  relation  together 
with e la stic  unitarity p rov ides us with a different starting point fo r  our m odel.

9. PRO PAGATOR IN THE ZACHARIASEN MODEL

In the p rev iou s sections we investigated the S -m atrix  in the Zachariasen 
m odel. Now, I would like to investigate som e other fie ld  theoretica l quanti
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ties  like  the propagator and fo rm -fa c to r  in the sam e m odel. Now, one can 
m ake a com plete  fie ld  theory out o f the Zachariasen  m odel. T herefore, one 
w ould expect that those features of the propagator and fo rm -fa cto rs  which 
one cou ld  deduce from  general prin cip les o f fie ld  theory should also hold 
in the Z achariasen  m odel. H ow ever, there is  one feature in the Zachariasen 
m odel which v io la tes  the general prin cip les of fie ld  theory : there is  no 
cro ss in g  sym m etry  in the S -m atrix . This can be traced  back to a fa ilure of 
satisfy ing  the asym ptotic condition. H owever, this does not disturb our find
ing of the propagator and fo rm -fa c to rs ; and fo r  these quantities the m odel 
p rov id es  an interesting illustration  of various genera l con jectures and general 
th eorem s about the propagator and form  fa cto rs . B efore going to these 
quantities, let us make a short d igression  on the fa ilu re of the asym ptotic 
condition.

One can form ulate the Zachariasen  m odel in the follow ing way: one takes 
as the b a sic  diagram s o f the m odel shown in F ig. 11.

Fig-11

Basic diagrams

The p a irs  of p a rtic le s  can be represented  by a fie ld  with a continuous m ass 
d istribution . This corresp on d s to a quadratic Hamiltonian which can be dia
gon a lized  exactly . Now the question is why this fie ld  theory does not satisfy 
the asym ptotic condition. The reason  is that the p articles  always occu r in 
p a irs . T h ere fo re , a single partic le  cannot be p ro jected  out. This means 
that the s in g le -p a rtic le  states are  not coupled in the Zachariasen  m odel. Yet 
what we are  in terested  in is the scattering of these p articles  and there is 
no cross in g  sym m etry  in the S -m atrix  because of the lack  of the asym ptotic 
condition . If the asym ptotic condition w ere true one would have autom atically 
the c ro ss in g  sym m etry  as it is  obvious from  the definition of the S -m atrix  
in te rm s o f the asym ptotic fie ld s  in the L. S. Z . form alism .

B ecause of this a lso  we cannot trace  Regge pole tra je cto r ie s . We do 
not have any m om entum -transfer dependence in the S -m atrix  and therefore 
there is  only one angular mom entum involved.

To calcu late the propagator, let us start as in the old -fash ioned  way 
by sum m ing d iagram s. These are shown in F ig . 12.

— i— — i— o - O — i—

Fig. 12

Diagram for the propagator calculations

A ctually , a partia l sum m ation o f these ha~ been done a long tim e ago by 
Dyson who showed that the com plete unrenorm alized  propagator has the form :
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A u = 1 / (s - Mo + *)• (41)

ir is the p rop er  se lf-e n e rg y  part and is the sum  o f the d iagram s, represented 
in F ig . 13.

— O —  +  — •o o — +  - o o o -  +  -----

Fig. 13

Diagrams related to the proper self energy part

i. e . , the d iagram s which cannot be separated in two parts by cutting a dashc n 
line. This is  again a g eom etr ica l s e r ie s  and we can sum up the w hol3 ser ies  
We get:

r = g2 A / ( I  -\ A ),  (42)

and

A u = l / [ s  -ß l  + g2 A /  (1 -\A)1  = (1 - A oA )/[ (s -M ? ) ( l  - Ao A ) + g2 A ).
(43)

Let us now study the poles  and various other p rop erties  o f this propagator.
To do this we f ir s t  w rite  A u in the follow ing fo rm :

Au = [ l / ( s - M 2) ] [ l -  AoA+ (s - ß 2)/(s-ß2) - (s -  M2 ) / { s  -M2 )] / [ (s-M2 )/(s -M 2)

-  Ao A]

= l / ( s  - M2 ) + (M2 - M2 ) / ( s  -M 2 )A0 [(s -M o ) /A o (s  -ß Z) - A]

= l / ( s  -M 2 ) + (Mo - M2 ) / ( s  - V2)2 T ' 1 (s)A o. (44)

We see  th ere fore  that th is contains T (s ) and other known fa cto rs ; so  we know 
essen tia lly  the po les  of the propagator. They are identical with those of the 
T -m a tr ix . If we introduce the function D, introduced before , form ula II5), 
we get:

A u = l / ( s  -M 2 ) + (Mo - ß2 ) A /( s  -  M2 )(s -M 2 )A 0 D(s),
(45)

D(M2) = 1 .

This exp ress ion  is  va lid  prov ided  there is a stable particle  M2 < 1. There
fo r e , A u has a p ole  at s = ß2. One might think that there is a lso  one pole 
at s = ß, but this is  only apparent because T(m2) = 0. There is only one pole 
correspon d in g  to one stable p a rtic le  and we can ren orm alize  the expression  
accord in g  to the usual p rescr ip tion :

Au— ,Z3/(s - M2). (46)



466 W. THIRRING

This g iv es :

Z3 = (X/X0) [(Mo - )/(M2 - ß2 )] = 1 - lg2 = DfT2 ) (47)

w here I is  given by (17).
A s we have seen  b e fore , one has always

g2 < 1 / 1 .

except in the ca se  of a com pound p a rtic le  (go = 0). T herefore , we see that, 
in gen era l:

0 < Z 3 < 1,

which m eans that the theory  is a good fie ld  theory. The renorm alized  p r o 
pagator defined by:

A ^ Z a  (48)

is  given  by:

A ,  = U / ( s  - P 2 ) ] [ l / D ( ? ) l  + (m2 - M2 ) / { s  -M 2 )(s -M 2 ), (49)

or , in a better fo rm :

A f f= [1 /fs  -M 2 )] [1/DCs)] + [ l / ( s  -M 2 )] [ 1/D(M2) - 1/D(s) ] . (50)

As we shall see la ter, this last fo rm  of the renorm alized  propagator is ap
propria te  fo r  the introduction of the spectra l representation.

The value g2 = 1/1 is  obtained in the case  of a compound particle . In 
this ca se  Z 3 = 0-.

If one starts with Xo = 0 and go f 0, one gets:

I = g2 / g o -  (51)

A bound p a rtic le  can a lso  be con sidered  as the lim it where one has only go 
and Mo which m eans go / ( s  - Mo ) Xo .

Fig.13a

Diagrams related to j$/(s ) —* X0

In this lim it Z 3 = 0 and this is c lea r  if we rem em ber the physical significance 
o f Z 3. Let us assum e that there is a vacuum in the theory and apply to it
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the H eisenberg operator $ (0). This generates a state which we represent by 
1):

* (0 )|0> *  | 1 )

up to a norm alization  fa cto r . This state is  neither a physica l one-particle  
state nor a bare  on e -p a rtic le  state. Let us ca ll  it the undressed on e-particle  
state. Then Z3 is just the probability  on finding a ph ysica l on e-p artic le  state 
in the undressed  on e -p a rtic le  state. Now, this undressed  particle  is not an 
eigenstate o f the energy but has a m ass distribution and one can show that 
this m ass distribution is cen tred  around the bare m ass Mo • In fact, the bare 
m ass is  just the average o f this m ass distribution. H ow ever, the physical 
m a ss  is  M. If we keep M2 fixed  and let Mo 00, the probability  of finding the 
state ] I/ 1 in the state 1 1 ) b ecom es sm aller and sm aller and th erefore  Z3 —' 0 .

A s fa r  as the bound p a rtic le  is  concerned, one can a lso  argue in the 
follow ing way. If we start with go = 0, the fie ld  <t> is no longer coupled to the 
fie ld  ip and th ere fore  does not com e into the gam e. H ow ever, we can consider 
ip2 (pairs of p a rtic les ) instead o f '$ . In this way we can a lso  define a propa
gator of ip2 rather than o f <j> and see if it is p oss ib le  to define a reasonable 
ren orm alization  constant in this way. This m eans that we consider only the 
diagram s shown in F ig . 14.

O  +  O O  +  O C O  +

Fig. 14

Diagrams related to the case g 0 = 0

In this ca se  we find:

A U = A / (1 - X 0A) (52)

and again one can look  fo r  the po les  and define Z 3. We get:

Z 3 = g2 (53)

which is  no longer le s s  than unity. This fact is not in contradiction  with any 
fundamental p rin cip le  o f the Q .F . T . because the bound unity fo r  Z3 was 
derived  from  the canonical com m utation relations fo r  the fie ld  <j>. Now, ip2 
does not satisfy  s im ila r  canonica l com m utation relations and th erefore Z3 
is  no longer bounded by one.

10. SPE C TR A L REPRESENTATION OF THE PROPAGATOR

A fter this d igression  about Z 3, let us see what the spectra l rep resen 
tation of the propagator looks like. F irs t , because o f the analytic properties 
o f D (s), D ' 1 (s) can be w ritten in the form :
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D -l(s ) = 1 - g; d s ' (s-M2 )(s ' -M2)
s ' - s (s ' -M 2)2 ! D (s ’ )P ‘ (54)

By inserting this we get the sp ectra l representation  o f A ^ s ). This is of inter
est if  we want to see  what happens if  there is  no stable partic le  but only a 
reson an ce . The question is what happens to the p o le . In fact, one would con 
jectu re  the fo llow in g : in the ca se  o f one stable p a rtic le  the sp ectra l function 
looks like the cu rves  shown in F ig . 15.

Fig. 15 

Spectral function

If the p a rtic le  b ecom es unstable, then the continuum m oves down, goes below 
ß2 and the 6 -function  d isappears. H ow ever, a bump w ill be left on the contin
uum and the width of it w ill be related  to the lifetim e o f the unstable particle . 
That th is actually happens in our theory can be seen if we go back to T (s) and

A u = 1/(8-ß 2) + (ßi - ß2 ) T (s ) / (s  -ß 2)\0.

In th is fo rm  we see that what happens to the pole  in the propagator is 
exactly  the sam e that happens to  the pole  in T ( s ) ; the pole  m oves to the 
secon d  sheet o f the Riem ann su rface  (the unphysical sheet) and its effects 
show up by a strong peak in the sp ectra l function.

11. FO R M -FA C TO R S IN THE ZACHARIASEN MODEL 

The form  fa ctor  o f the pion is  defined by

F (s ) = <2ir \'i |o> = g<2ff | \[/2 |o>; 

A s shown in the d iagram  one has

(55)

+ A + = Tcs)

This is v e ry  c lo se ly  related  to the S -m atrix . In fact, if we stick  to F (s),the 
follow ing p ie ces
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F (s ) | A  + Ä  = T (s). 

we reprodu ce  the T -m a tr ix . In other w ords, we have

F (s ) [  Ao + go /( s  - Mo )] = g T  (s). (56)

T h ere fore

F (s ) = g T (s ) /X 0 (s - n l ) = g T (s)(s  - A  )/(s-M 2 ). (57)

R em em bering that T(p2 ) = 0, the last equation shows that the poles  of F (s) 
are just those o f T (s ). F rom  this fact im m ediately one draws the conclusion  
that, if there is  a resonance, it m anifests a lso  in the fo rm -fa c to r ; i . e .  a 
bump on the sp ectra l representation  o f F (s ).

12. MORE REALISTIC MODELS

T ill now we have w orked only with sca lar p a rtic les . This means that 
we can get only an S-w ave resonance. Indeed this summing of the bubbles 
g ives  just the S-w ave dominant solution o f Chew and M andelstam . But we 
know that such a resonance has not been found in nature. To get a p-w ave 
resonance one can try  to gen era lize  the theory. F or  instance, one can p r o 
duce a p -w ave  resonance by introducing a vector  p article .

Another generalization  is to assum e that 0 correspon ds to nucleons and 
see  whether one can produce a bound-state o f nucleon-antinucleonby summing 
up the chain diagram s shown in F ig . 16.

Fig. 16

Chain diagrams to be summed when ♦ corresponds to nucleons

In both cases* one m eets with d ivergences. In fact, the degree of 
d ivergency is  in crea sed  by one com pared  to the sim ple case  we had before. 
W hereas we had b e fo re  one infinite constant, here everything diverges by 
one pow er m ore  and th ere fore  everything is m ore  ambiguous in the m odel.
In fact, if is  a sp inor, the calcu lations go m ore  or le ss  in the same way 
as b e fo re . F o r  instance, if  we have a 75 interaction  we have to take the trace  
around the bubbles. In this ca se  the square root we had before goes to

W— > (1 /4  Tr2) \ f  1 -  1/s (s + 1/4) (58)



470 W. TfflRRING

T h ere fore , the expression  I d iverges logarithm ica lly . If we use a cu t-o ff A, 
then

I ~  log A .

This has been done by Nambu who gets

g 2 = 2* / F / v ' “ log  A .

If we identify the bound ob ject with the pion, we obtain the pion nucleon 
coupling constant. A ctually, it turns out that the sam e kind of form ula also 
holds if  we sum up not the bubbles but the ladder diagram s shown in F ig. 17.

Fig. 17 

Ladder diagrams

H ow ever, this is a m ore  difficu lt prob lem  and what one can do is to sum 
this up in the extrem e re la tiv istic  lim it where the m asses involved are neg
lected  com pared  with m om ents which are involved. In fact, one uses the 
B ethe-Salpeter equation which has a very  sim ple sp ectra l representation in 
the re la tiv is t ic  lim it.

The p rob lem  o f finding whether or not the pion is com posed  o f nucleon- 
antinucleon can be so lved  in the follow ing way. As we have seen before , there 
is  a distinction  in our theory  between the case  where there is an elem entary 
p a rtic le  behind it and the ca se  where there is  no elem entary particle  behind 
it. This just goes via the Levinson theorem . In particu lar, if we have no 
bare  p a rtic le , then we can have fo r  R eT _1 a behaviour like F ig . 4.

If there is a bare p a rtic le , R e T ' 1 has a behaviour s im ilar to F ig . 6 .
If there is  an additional reson an ce then the phase shift goes back to 90° as 
shown in Fig. 4b.

So, what one can do is to ca lcu late the phase-sh ift supposing the pion 
is  a com posite  p a rtic le . Then one looks w here the phase-sh ift goes to 90° 
and sees  whether one can find it experim entally. This sounds nice theoretica l
ly , but in p ra ctice  it does not seem  feasib le .

If we sum the chain d iagram s, after obtaining the renorm alization  con 
stant and the m ass o f the pion the rest is  then cut o ff independent and finite.
So one can calcu late the p lace  where the ph ase-sh ift goes to 90° and the width 
o f it if  we ca ll it a resonance. N um erically, it turns out that the m ass is :

M = 2 Mp + 940 MeV.

Mp is the m ass o f the proton  and the width is  450 MeV. This means a very 
broad S-w ave nucleon-antinucleon  resonance. This is physically  very  hard
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to observe  because in th is energy reg ion  the S-w ave c ro s s -s e c t io n  is very 
sm all and a lso  there are inelastic channels and they w ill obscure the picture 
further.

Let us now m ake som e rem arks about the influence o f the inelastic 
channels on the whole structure of the theory. F or  sim plicity , let us assume 
fir s t  that go = 0 and keep only the d irect coupling. We assum e that there are 
two kinds o f p a rtic le s :

A -p a rtic le  : -------  m ass \
B -p a rtic le  : ------  m ass m

The in teractions are of the type shown in F ig . 18,

X X
Fig. 18 

Types of interactions

and the b asic  diagram s are those shown in F ig . 19,
and s im ila r ly  fo r  the exchange scattering T AB and fo r  T 8b. N ow , we are

Taa = X + XX + XX
Fig. 19 

Basic diagrams

dealing once again with g eom etr ica l s e r ie s  which can be summed up rather 
easily . If we use m atrix  notations (2 X 2  m a trices) then the coupling could 
be w ritten in the form :

/  AA

xX A BA

and A , the sum of the bubbles:

A a  =  O  +  O O  +  O O O  +

a b =  o  +  O O  +  O O O  +*

AB

LBB

(60)

fe,- v + ( X
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in the fo rm :

0 A

0

) (61)
B

Then, the T -m a tr ix  is  given  by:

T = X + X A T. (62)

A is  diagonal, but X has non-diagonal elem ents, so  that T is non-diagonal. 
We can ea sily  so lve  this equation and the solution is :

Again, we have a rather s im ple expression  fo r  the T -m a tr ix  and the analysis 
goes as b e fore .

This m odel in itse lf is interesting to study, fo r  instance, the cusps in 
one c r o s s -s e c t io n  at the threshold  o f a secon d  channel.

Let m e make a last rem ark  as to wftat happens to the Levinson theorem  
if  we have a tw o-chännel reaction . F or  instance, let us suppose that the 
diagram  shown in F ig . 20

corresp on d s  to the annihilation o f nucleon-antinucleon into two pions and let 
us assum e that we have a lso  these kinds o f inelastic contributions. How does 
this change our conclusion  that the phase-sh ift goes back at 90" at certain 
energy? It turns out that in this m odel the Levinson theorem  still holds in 
an analogous fo rm  to the ca se  we had b e fore . H ere, however, the phase- 
shifts are  com plex  but the re a l part goes back to 90°. So what one has to do 
is  to look  at R e6 and see if it goes back to 90°. P ractica lly , this is very  
difficu lt because the elastic  c r o s s -s e c t io n  is a sm all part o f ff total • If there 
w ere a sm all bump in o 'elastic it w ill be overshadow ed by o inelastic •

One can say that, in p rin cip le , in the fram ew ork  of fie ld  theory there 
m ay be an exact c r ite r io n  to distinguish whether a partic le  is elem entary 
o r  com posite . H ow ever, in p ra ctice , it w ill take quite a long tim e until one 
can rea lly  make this test experim entally.

13. GENERALIZATION TO MORE REALISTIC CASES

T - l  = X -l -A . (63)

Fig. 20

Diagram corresponding to nucleon-antinucleon annihilation into two pions

Up to now we have been confined to the Zachariasen m odel which neglects 
the cross in g  sym m etry  as w ell as the contribution from  the inelastic channels. 
T o in corporate cross in g  sym m etry  a lso  we have to include the left hand out
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so that the gen era l d ispersion  relation fo r  the partia l wave scattering 
amplitude T (s) reads as

I -oo 4 m 2 J

w here + ie indicates that we are  integrating above the rea l axis. The low er 
lim it o f  integration 4ß2 indicates the physical threshold (as we had in the 
Zachariasen  m odel). However, superim posed  on it we w ill have inelastic 
thresholds corresponding  to branch cuts starting at s . The unitarity con 
dition in the fo rm  we had so  far holds only in the e lastic region , i. e. s-, <
< s < 4M2 ,

Im T (s  + ie) = p (s + ie) |T |2 (65)

w here p, the phase space fa cto r  is  given by

P (s) = \/ (s - 4/u2) /s  (66)

Above the inelastic threshold  the situation becom es m ore  com plicated  and
has been dealt with by B. L ee (see his lecture  notes). We th erefore  confine
ou rselves to the reg ion  below  production  threshold . C f. a lso  [9 ] . In writing 
the d ispersion  relation  (64), we have assum ed certain  analyticity properties 
which we have not proved . But this fo llow s in particu lar from  the Mandelstam 
representation , and we shall not bother about it here. Again T is considered  
only as a function of s which holds fo r  any partia l wave amplitude. However 
the unitarity relation  (65) holds only fo r  S waves but the generalization  can 
easily  be done. The relations (37) fo llow  from  the d ispersion  relation (64). 
The analytical continuation through the branch cut in the S plane extensively 
dealt with in lectu re  II can be done only between 4n2 and s; . p (s) has two 
branch points at s = 4yu2and s = 0, and as before  we locate the branch cut 
fr o m -o o  to 0 and 4ju 2 to  + m . It then fo llow s p (s) = -  [p(s)] * since in this 
reg ion  p (s) is purely  im aginary.

F rom  (65) we obtain

I m T -1  (s + ie) = -Im  T (s + i e ) / | t |2 = -p (s  + ie) = p (s - ie) (67)

and th ere fore  get the analytic continuation to the second sheet o f the inverse 
amplitude.

T f 1 (s + ie) = T j1 (s - ie) + 2 ip  (s - ie) = TjJ1 (s - ie) (68)

or if we invert this relation  (68 ) we obtain

Tj, = T , / ( I  + 2ip T , ). (69)

Again we see  there m ay be poles  in the second sheet due to the vanishing of
the denom inator in (69)
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(i. e . ) 1 + 2 i p  T  = 0

and these poles  corresp on d  to resonances. The location of the branch cuts 
in the s and q plane are given in F ig . 21.

'i LEFT HAND C

INELASTIC
THRESHOLD

q-PLANEs-P LA N E

Fig. 21

Location of branch cuts in the s and q-plane

Concluding this section , we list a few form ulae decom posing T into d ispersive 
and absorptive parts [ 10 ] :

and inverting we get

T = d + ip  a 

T jj = d - ip a

a T T n

d = T j j  ( 1  + i p T ) .

(70)

(71)

The advantage o f this decom position  is that even in the s plane the elastic 
branch cut is absorbed  into the phase space factor p (s).

In p articu lar in the e lastic  region

(i. e. ) 
we have

4 /j2 < s < Sj

a = ± I m  T (72)

d = R eT .

The partia l wave S m atrix  now takes the sim ple form

S = l + 2 i p T j  = T j / T jj= T (q)/T (-q). (73)

C om paring (69) with (73) we see that the resonances correspond  to the zeros 
o f the S m atrix  (See a lso  [11])
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We w ill now investigate whether the sam e resonances show up in the 
fo rm  fa cto rs  a lso . We w ill distinguish the two ca ses  with and without anoma
lous threshold .

A. No anom alous threshold

The g raph ica l representation  fo r  the form  factor is  shown in F ig . 22 
w here the so lid  line represen ts  the p article  whose scattering we have con -

i s

14. FORM FACTORS

Graphical representation of the form factor

sid ered  b e fore . The connection  between the scattering amplitude and the 
form  fa cto r  can be seen from  F ig . 23

I
i
i

Fig. 23

Decomposition of the form factor

w here we have decom posed  the bubble taking out the low est interm ediate 
state. This im m ediately  im plies that there is  a branch cut starting at 4/^2 . 
Hence we obtain
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F (s )  = 1 + Im F (s ' + i p  
s ' ( s '  - s)

4ß2

This form ula  again im plies the analyticity and boundedness properties of 
F (s ) which is  a lso  norm alized  to unity at s = 0.

T o apply the d ispersion  relation  (74) we requ ire  som e explicit statements 
about the im aginary part o f F (s ). In the Zachariasen  m odel we saw that it 
is  d irectly  related  to the scattering amplitude. We w ill now show that a 
s im ilar  relation  holds a lso  h ere . By the general Lehmann - Symanzik- Z im - 
m erm ann technique [ 1 2 ] .

F (s ) is  related  to <ir j j  | ir> o r  to < 0 |j 12?r fn > .  Applying the tim e 
re v e rsa l operation  (assum ing the current j has definite properties  under 
th is operation) we obtain

F (s )~ < 0 | j| 2 * in> = [ < 0 | j | 2 j ^ ] * .  (75)

Since the in - and out- states are related  by the S -m atrix  and since < 0 | j*  
is  a state o f definite angular mom entum  (im plying a diagonalized S-m atrix) 
we obtain

F (s ) = F * (s) e 215 (76)

which leads to

Im F = sin  6 e ' id F =  pT*F. (77)

B ecause o f the sim ple diagonalization o f the S -m atrix  this holds only in the 
e lastic  reg ion . A ll quantities in (77) have to be taken on the upper lip of 
the branch cut and because of (68 ) and (69) we have

Im F = pFT  /  (1 + 2ipT). (78)

Since we now know the im aginary part of F , we can continue F analytically 
into the second  sheet by

F u = F j  -  2ilm  F j  = F ( l - 2 i p T * )  (79)

and becau se o f (78) and the unitarity of the S -m atrix  we end up with

Fjj = F j / ( I  + 2ipT). (80)

T h ere fore  in the secon d  sheet F has the sam e poles  as T, corresponding 
to the sam e reson an ces.

S im ilar considerations can be made in the q-plane.
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B. ANOMALOUS THRESHOLDS [13]

In this m ore  com plicated  case  we have to con sider a specia l contribution 
to the graph of F ig . 22 which leads to the anom alous branch point (F ig. 24). 
This is  the fo rm  fa cto r  of the p a rtic le  m and as a physica l exam ple we con 
sid er  the fo rm  fa ctor  of the £ ;  il e. m— > it, M<— >A andm <— > £ .

Fig. 24

Graph, leading to anomalous branch point

The anom alous thresholds appear only fo r  sp ecia l relations among the 
m a sses  M, m and ß and to investigate this prob lem  we firs t  con sider the 
diagram  in F ig . 25,

Fig. 35

Scattering diagram, leading to anomalous threshold

where the four v e cto rs  p i and qi are  related  by energy-m om entum  co n se r 
vation.

We ch oose  the usual three invariant variab les

s = (qi + q 2)2 
1  = (p i + q j 2 
t = (Pl + Q2 )2

(81)
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In the c e n tre -o f -m a s s  system  the energy-m om entum  v ecto rs  are given by

qi =

pi

(  -  )  « ■  (  -  )V - a l  '  V a l  '
(82)

- v/q2 + ß2 /'R “  \
(  ^  )  P 2 '  (  - r  }q

and the follow ing relations hold:

s = 4 (q 12 + juZ ) = 4 (q 2 + m 2)
t = -q 2 -  q12 + 2qqJ cos  6 (83)
T = -q 2 -  q12 -  2 q j c o s 0

w here 0 is the scattering angle. _
In the usual way, the p o les  corresp on d  to t or t = M 2. However, if we 

p ro je c t  out a partia l wave in the s-channel, that is

l
T f (s) = j "  dr)Pje(r? )T (sJi7) r j = c o s 6  (84)

-l

the pole  is converted  into a bran ch -line  with the end points corresponding 
to cos  0 = ± 1. F rom  (83) we thus get the branch points at

( q ± q ' ) 2 = - M 2 . (85)

Solving (83) and (85) we get

. m 2 + M2 - m2 ,nn
q ' a ~ ± 1 --------2M --------- (86)

or

S = - (M  + m)2}  {r n 2 -  (M -M )2}  = g(m 2 ) (87)

w here g is , of cou rse , a function of M and/n a lso . If we plot it, however, 
as a function o f m 2, we obtain the location  o f the branch-points as shown 
in F ig . 26.
The points (M + ß)2 and (M - ß)2 corresp on d  to £and A respectively ,becom ing 
instable with the decay p r o ce s s e s  £ — A + ?r and A -*-E+jr . Between these
two points a ll p a rtic les  a re  stable. We can now draw the branch-cuts in the 
q '-p la n e  fo r  two typ ica l ca ses  (F ig. 27).
w h e r e  th e  tw o  b r a n c h - l in e s  a p p r o a c h  e a c h  o th e r  w hen  m 2 = M2~+n2 . It is  
c l e a r  h ow  th is  lo o k s  in  th e  s -p la n e  f o r  m 2 = M2 + ß2 th e  le f t  b r a n c h  cu t o f  the 
f i r s t  and  s e c o n d  s h e e t  m e e t  e a c h  o th e r  at th e  th r e s h o ld  o f  th e r ig h t-h a n d



COMPOUND PARTICLE MODELS

Fig. 26

g(m2) -  Eq.( 87)- as a function of m2.

Fig. 27

Branch-cuts in q' -plane for two typical cases

cut. F o r  m 2 > M +ju2 the low er branch point m oves out into the physical 
sheet, leading to an anom alous threshold . The situation is indicated in F ig. 28.

s-P LA N E

ANOMALOUS THRESHOLO 

........ „

c

' / / / / / / / / / / / / / /  
t , y r  s;

Fig. 28

Anomalous threshold in the s-plane
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F o r  the form  fa ctor  the situation is entirely  s im ilar except there is no 
left-hand cut in the physica l sheet.

We th ere fore  have to m odify the low er lim it o f the integral in equation 
(74) from  4/n2 to g(m 2 ).

It is  w ell-know n that in the configuration space a d ispersion  relation  
corresp on d s just to the superposition  of Yukawa potentials. (In the cen tre- 
o f-m a ss  system ).

g
Hence g(m 2 ) p rov ides us with the Yukawa potential o f longest range, given by

e'W^g
4?r | x |

w here |x| -fg can be ca lcu lated  from  (87) to be

|x|/g = |x] • 2 (M +ß)/M \ /2 eM (j/(M  + /j) = 2 r 2eM 

w here e is the binding energy, defined by

m = M + ß -  e

and r e is the rela tive  co -ord in a te , say o f the A  ir system  form ing the e. M r 
is the reduced  m ass. We th ere fore  conclude, that physically  an anomalous 
threshold  corresp on d s to a spreading of the compound system  which is 
greater then the Compton w ave-length  o f the partic les  into which it can decay 
virtually .

15. CONCLUSION

We have been considering  only a particu lar m odel and a slight extension, 
where one rem oves  som e o f the restr ic tion s . It is , o f cou rse , to be hoped 
that a ll this can one day d irectly  be deduced from  axiom atic fie ld  theory, 
but up to now it was not p oss ib le , and one has to be content to illustrate the 
situation by sim ple exam ples. N evertheless, these exam ples show that the 
situation in fie ld  theory ties  on d irectly  to the situation one has in potential 
scattering.
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1. INTRODUCTION

N owadays protons o f en erg ies  up to 30 GeV are available with a c c e le r 
a tors  and th e ir  in teractions have been investigated in con siderab le  detail.
At h igher en erg ies  co s m ic  rays p rov ide in form ation  on high energy phe
nom ena. By the term  "v e ry  high energy phenom ena" one usually m eans those 
phenom ena w hich take p lace  in in teractions o f co sm ic  rays o f very  high en er
g ie s , h igher than the energy reached  by existing a cce le ra to rs .

Many features o f very  high energy phenomena defined as above are not 
alw ays ch a ra cte r is t ic  o f very  high energy in teractions but are rather c lose ly  
connected  with those which are seen  in the G eV reg ion . This is  because the 
en erg ies  o f p a rtic les  participating in an interaction  may turn out to be rather 
low  in an appropriate coord inate system . T h ere fore  the knowledge obtained 
at a cce le ra to r  en erg ies  is  indispensable in understanding very  high energy 
phenom ena.

In p ra ctice , how ever, the attitude tow ards the study of very  high energy 
phenom ena with co sm ic  rays is  con siderab ly  different from  that with a c 
ce le ra to rs . T h is  is  due m ainly to the fact that events to be obtained with 
co sm ic  ra y s  are so  few  that one has inevitably to restr ict on eself to quali
tative understanding. This is  on one hand a drawback o f co sm ic  ray research , 
but on the other hand it is  an advantage in introducing rather brave im agina
tion , which may play the ro le  o f a patro l to find prob lem s to be investigated 
m o re  quantitatively.

M oreov er , there is  an im portant d iffe ren ce  in technical p rob lem s; with 
a c ce le ra to rs  the energy and the intensity o f incident pa rtic les  are w ell known, 
w h ereas with co sm ic  rays , their determ ination is  the central part o f ex 
p erim ent. Much p ro g re ss  has been made in the technique o f determ ining 
the energy o f a p a rtic le  in co sm ic  rays, and its resu lts are now found to 
be u sefu l in the observation  o f secondary p a rtic les  produced by a beam  from  
an a cce le ra to r .

E xperim ental in form ation  on high energy interactions in co sm ic  rays 
is  m ost d irectly  obtained by observ in g  jet show ers with photographic plates. 
The term in ology  w idely used fo r  very  high energy phenomena stem s m ostly 
fro m  that defined by PO W ELL and his co lla b ora tors  [1] in th eir  cou rse  of 
study with photographic p la tes . W e th ere fore  begin with defining such techn i
ca l te rm s in con junction  with the descrip tion  o f ch aracteristic  phenomena 
to be ob serv ed . If the energy g oes  still higher, one can hardly observe  the 
p rim ary  p a rtic le s  which initiate the in teractions, because they are very 
few , but one m ay ob serv e  secondary p a rtic les  with a detector covering a 
la rg e  a rea . Since an u ltra -h igh  energy p a rtic le  produces an enorm ous num
b er  o f p a rtic le s  in su cce ss iv e  in teractions and these pa rtic les  are scattered
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o v er  a la rg e  area, a d etector  to observe  them  is  able to catch prim ary p a r
t ic le s  fa lling  on th is area . A  bundle of such p a rtic les  is  ca lled  the extensive 
a ir  show er (EAS), because it is  a show er developed in the atm osphere and 
the la tera l d istribution  o f p a rtic les  contained therein  extends as fa r  as 1 km. 
In teractions at en erg ies  higher than 1015 eV  can now be studied only 
through EAS. Som e d iscu ss ion s  are, th ere fore , added on the properties 
o f EAS in connection  with in teractions at u ltra-high  en erg ies.

One o f the m ost ch a ra cte r is t ic  features o f very  high energy interactions 
has been regarded  as the m ultiple production o f p a rtic le s . A s this has not 
been ea sily  d escr ib ed  in te rm s o f conventional quantum fie ld  theory, various 
m ethods have been put forw ard  on the b a sis  o f approxim ate treatm ents of 
quantum fie ld  theory  and by analogy to hydrodynam ics and therm odynam ics. 
T hese  th eor ie s  a re  so instructive in their ways of thinking that they may be 
regarded  as Im plying the future developm ent of high energy theory .H ow ever, 
a num ber o f c r it ic a l opin ions have been ra ised  rather strongly against these 
th e o r ie s . At the present stage, it seem s to be im portant to keep the open 
minded attitude and to d istinguish between those which are essentia l and 
those which are  not.

A m ore  sound way o f attacking very  high energy phenomena has been 
brought into fashion  in recent y e a rs . T his is to assum e a m odel on the basis 
o f essen tia l points extracted  from  experim ent. Once a particu lar m odel is 
adopted, there hold sim ple kinem atical relations and through them a number 
o f w ell-de fin ed  quantities inherent to the m odel are obtained by a carefu l 
analysis o f experim ent. Som e o f these quantities can be related to those 
which are  found in an a cce le ra to r  energy region  and they may be put in a 
fram ew ork  of the present high energy theory.

Our d iscu ssion s  in this lectu re  w ill proceed  along the line described  
above. T w o prev iou s a rtic le s  by ROZENTHAL and CERNAVSKY [2] and 
by KOBA and TAKAGI [4] published in 1954 and 1959 respectively  w ill 
be repeatedly re fe rre d  to without m entioning the authors. Unlike these p rev i
ous rev iew s we purposely  m inim ize r e fe re n ce s ; only those which help the 
re a d e r 's  understanding and som e of the latest ones are co llected .

2. QUANTITIES OBSERVED BY EXPERIMENT

High energy events ch aracterized  by m ultiple production have been ob 
serv ed  by m eans o f counter hodoscopes, cloud cham bers and photographic 
p lates, and a lso  ind irectly  through extensive a ir  show ers, particularly  the 
photons, nucleons and m uons of high en erg ies  therein . Among th em ,ob ser
vations with photographic plates are m ost d irect and fru itfu l and one usually 
u ses the term in ology  inherent in photographic observations.

2 .1 . C la ss ifica tion  o f produced p articles

In a photographic em ulsion  the m ultiple p a rtic les  produced at a high 
energy in teraction  look  like a show er em erging from  a point at which the 
in teraction  is  regarded  to have taken p lace . The p a rtic les  produced are 
divided into two groups accord in g  to their appearance; one con sists  of c o l 
lim ated  thin tra ck s  and the other o f grey  and black tracks which are le ss  
a n iso trop ic . P a r tic le s  belonging to the fo rm e r  group are ca lled  shower
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p a rtic le s , which are of re la tiv is t ic  en erg ies and which con sist mainly of 
ch arged  p ions, w hereas those belonging to the latter are ca lled  heavy p a r 
t ic le s  which are o f n on -re la tiv is tic  en erg ies and which consist m ostly o f 
protons aris in g  from  the d isintegration  of a target nucleus. The num bers 
o f p a rtic le s  o f the resp ective  groups are designated by ns and Nh. N orm ally 
one ch a ra cte r izes  a jet show er by Nh + nSiX>w here x stands fo r  p, n o r a  
indicating that the prim ary  partic le  is  charged, neutral o r  ana -p a rtic le .
F o r  exam ple, an event o f  2 + 16p m eans that Nh = 2 , ns = 16 and the prim ary 
p a rtic le  is  charged, probably a proton . ns g ives one a rough idea of the multi
p licity  while Nh indicates the approxim ate num ber o f nucleons taking part 
in the in teraction . If Nh is  la rge , say la rg er  than three, one regards the 
event as due to m ultiple co llis io n s  with nucleons in a target nucleus, so that 
fea tures o f the co llis io n  with a single nucleon are m ore  o r  le s s  m asked. C on
sequently, one is  m ore  in terested  in events o f sm all Nh which may be due 
to the c o ll is io n s  with hydrogen  n u cle i o r  to the p eriph era l co llis ion s  with 
heavy n u cle i.

If the incident energy is  as high as 1013 eV  o r  higher, even the head-on 
co llis io n  with a heavy nucleus often g ives sm all Nh and revea ls  essentia l 
features of the co llis io n  with a single nucleon . At such a high energy most 
o f the show er p a rtic le s  are em itted within a narrow  cone like a jet. In m ost 
ca se s  the show er p a rtic le s  can be d istinctly  divided into two groups, one 
belonging to a very  narrow  cone and the other to a diffuse con e . They may 
be resp ectiv e ly  regarded  as p a rtic le s  em itted in forw ard  and backward d irec 
tions in the cen tre  o f m a ss  system .

In addition to charged  p a rtic les .on e  often ob serv es  cascade show ers 
initiated by high energy photons which are  regarded  as the decay products 
o f neutral p ion s. The observation  o f cascade show ers is  an advantage in 
identifying p ions am ong secon dary  p a rtic les , w hereas charged p articles  
may contain  kaons and baryons in addition to p ions. These p a rtic les , heavier 
than p ions, are  co lle c t iv e ly  ca lled  X -p a r t ic le s . N eutral pa rtic les  which do 
not im m ediately  decay are X -p a r t ic le s . The neutral X -p a r tic le s  produced 
by a p rim ary  co llis io n  can be detected by observ in g  secondary charged parti
c le s , though they are som etim es confused with those produced by u n cor
related  neutral p a r tic le s . O bserving ns and the num ber of neutral pions, 
n(ffO), and assum ing the ch arge independence fo r  the production o f pions, 
n(7T°) = (■fjnfjr*), one can derive  the num ber o f charged X -p a rtic le s  as

n(X±) = ns -  nfir*) = ns -  2 n ( 2. 1)  

The re la tive  abundances thus obtained are roughly -

n(?r±) :n(?r°) :n (X ±) :n (X °) ~  1 : 1 /2  : 1 /4  : 1 /4 , (2 .2 )

nearly  independent of energy fo r  the nucleon -nucleon  co llis io n s  above 10 GeV. 
By experim ents with a cce le ra to rs , m ost of the X -p a rt ic le s  are found to be 
kaons and so m ay be at h igher en erg ies . Since the positive-negative ratio 
o f kaons is  la rg e  at a cce le ra to r  en erg ies , few  kaons are produced in pa irs 
but m ost o f them are  associa ted  with the production  o f hyperons. Indeed,
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the re la tive  abundances o f secondary p a rtic les  produced by proton -proton  
co llis io n s  at about 30 GeV are found to be

n(7T+) :n (K + ) : n (K ‘ ) : n(p) ~  1 : 0.15 : 0.05 : 0.01. (2 . 3 )

If th is ratio  w ere  to hold a lso  at high en erg ies , we would expect a con s id er
able num ber o f hyperons am ong X -p a r t ic le s .

2 .2 . D eterm ination  of energy

Only in a few  ca se s  can the energy of an incident particle  in cosm ic rays 
be determ ined by its m agnetic rigidity o r  by m ultiple scattering. In most 
ca se s  the p rim ary  energy has to be deduced from  m easurable quantities, 
say, the angles o f em iss ion  of secondary p a rtic les , with fu ll use o f k ine- 
m atica l re la tion s . This approach is  re liab le  only when the secondary p arti
c le s  a re  num erous and they are  em itted sym m etrica lly  in forw ard  and back
w ard  d irect ion s  in the cen tre -o f-m a ss  system  (CMS). In fact, the sym m etric 
nature is  v e r ifie d  in m ost ca se s  and asym m etric  events are usually ascribed  
to the in co r re c t  assignm ent o f CMS by regarding the p ion -nucleon  o r  the 
nuc.leon-nucleus co ll is io n s  as the nucleon -nucleon  ones, although the asym 
m etr ic  production  m ay be p oss ib le  a lso  by the nucleon -nucleon  co llis ion .

L et us con s id er  a c o ll is io n  o f two p a rtic le s , A and B, with respective  
m a sses  MA and M B, In the laboratory  system  (LS) A is  an incident particle  
o f total energy E A and m om entum  Pa , w hereas B is  a target particle  at rest.
Ea and PA fo rm  a 4-m om entum  PA = (EA, Pa ) and its absolute square is  ex 
p re sse d  as

Pa • Pa = - P2 p M*. (2 .4 )

w here the light ve locity  c is  put equal to unity as usual. Evaluating the abso 
lute square o f the sum o f two 4 -v e c to r s , (PA + PB) • (PA + P b ), which is  in 
variant under the L orentz transform ation , one in CMS and the other in LS, 
w e obtain

(PA + PB) • (Pa + Pb > = 0 $  + Eb )2 = (Ea + M b)2 -P a, (2 . 5)

w here the a ster isk  in d icates a quantity in CMS.
Noting that the m om entum  o f the total system  vanishes and the en er

gy th ereo f is  E* = E * + Eg, the velocity , ßc , and the Lorentz factor,
Yc= (1 -  ßc)"*» fo r  the Lorentz transform ation  between CMS and LS are given
by

PA = ß cT cE* Ea + Mg = 7 c E*. (2 .6 )

Thus we obtain -

ß c = Pa / ( E a+ Mg), 7c = (EA+ Mg) (2 E AMB +M * + M |)-i. (2 .7 )

At ex trem ely  high en erg ies , EA>> MA, MB, these are reduced to
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ß c - 1’ Yc — (e A /  2 MB) 4 (2 . 8)

S ince the dependence on M A b ecom es weak as energy in crea ses , the m ass 
o f an incident p a rtic le  does not m uch affect k inem atical re lations. On the 
other hand the target m ass is  so im portant that the possib ility  o f the c o l 
l is io n  with a c lu ster  o f nucleons has to be exam ined cautiously . M oreover, 
the m ultiple co llis io n s  with nucleons in a target nucleus bring about c o m 
plex ity .

A s a resu lt of the co llis io n  many p a rtic le s  are produced, one of which 
is  em itted at angle 0 with energy E and m om entum  P . E and P may be e x 
p re sse d  as .

E = -yM, P  = ß'y M, (2 .9)

w here M ind icates the m ass o f the em itted p a rtic le . A ccord in g  to the Lorentz 
tran sform ation  the energy and the em iss ion  angle in LS are given resp ective 
ly  by

Y = YcY* U + ß cß *  co s  0*), (2 .10)

tan 0 = — / o a . (2 . 1 1 )Yc (cos  e * + ß c / ß * )

w here the a sterisk  again indicates the correspon din g  quantities in CMS. The 
tra n sv erse  m om entum  defined by :

Px = P s in 0  = P*sin0* (2 .12)

is  invariant under the Lorentz transform ation  and is , th ere fore , found to 
be a usefu l quantity fo r  d escrib in g  high energy co llis io n s .

It must be noted fro m  (2 .11 ) that the angle of em ission  in LS is  lim ited  
fo r  ß * < ß c  as

[(y2 - 7*2) / (y2 -  1)]1/2^  cos0< : 1 fo r  ß * < ß c , (2. 13)

while any angle is  allow ed fo r  ß*^ßc . If ß*< ßc holds fo r  any secondary p arti
c le , th ere fo re , a ll p a rtic le s  in CMS are em itted forw ard . This seem s to be 
the ca se  at incident en erg ies  above 1011  eV . Then the energy of a particle  
takes double values f o r  given 0 :

7* (0) = { 7 * ± ßc [7*2 - 7c f1 '  ßc cos2 °)1* } / yc (x - ß? cos2 °)

fo r  ß *  <  ß c . (2 .14)

T his ca u ses  som e am biguity in analysing high energy je ts .
The en ergy-angular d istribution  in LS, f(E , 0)dE dfi, where dH is the 

so lid  angle elem ent, is  related  to that in CMS, f*(E * 0v)dE* dn* by taking 
account o f an invariant relation
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d P /E  = P 2 dP dn /dE  = PdE dQ = P* dE*dQ* (2 .15)

as

f(E , 0) = f* (E *  0*) dE*dn*/dE d^ = f¥(E*,0*) P /P * . (2 .16)

Since f(E , 0) has two branches correspon d in g  to the double values of y± (0), 
it is  con siderab ly  com plicated  to obtain explicit fo rm s of the energy and the 
angular distributions in LS. In som e specia l ca ses , how ever, sim pler r e la 
tions can be obtained.

(i) F -p lo t . If ß*is not too  sm all so that 1 + (ßc /ß * )cos  0*^ 0 , 0 is an in
crea s in g  function o f 0*. T h ere fore , one can find the integrated angular 
d istribution  function in LS uniquely correspond ing  to that in CMS :

8

F { 0 ) = J d fi

F  (0) is  proportion a l to the num ber o f p a rtic le s  em itted at angles sm aller 
than 0 and a lso  to that at angles sm a ller  than 0* in CMS. If the angular d istr i
bution in CMS is  iso tro p ic , the last exp ression  o f (2 .17 ) sim ply gives the 
solid  angle which is  proportion a l to 1 -  c o s  6* x sin2 (0* /2 ). If F (0) is  norm al
ized  so that F (ir) = 1, we have

F (0) = sin2 (0*/2) o r  F (6 ) / [ 1  - F (0)] = tan2 (0 7 2 ) . (2 .18)

J d E f (E , 0 ) = J df2* fd E ^ f^ E *  0*). (2.17)

T his is  now com pared  with (2 .1 1 ). T h is is  rew ritten as 

•y2 tan2 02 = tan2 (8*/2){l/[1+(ßc / ß* - 1 ) /2  c o s 2 (0* /2 )] }2

* F ( 0 ) / [ 1 - F ( 0 ) ]  . (2 .19)

The last exp ress ion  com es  out if ß* Ä  ßc. P lotting F / ( l - F )  against tang in 
the lo g - lo g  sca le , one obtains a straight line with slope two, but with a slight 
deviation due to the fa cto r  in the square bracket in (2.19)

2 log  ta n 0 = - 2 lo g  yc + log F(&) 
1 - ( 0 ) 2 log 1 + (0c / 3 * - D

2 c o s 2 (6*/2) (2 . 20 )

A  deviation from  the straight line indicates the p resen ce  of anisotropy. F or 
exam ple, if p a rtic les  are concentrated in forw ard  and backward d irections, 
F (0) is  constant within a certa in  interval o f 0 and the curve thus plotted 
sp lits  into two parts. This method o f obtaining the angular distribution in 
CMS is  ca lled  the F -p lo t and was firs t  applied by DULLER and W A LK ER [3] 
in th eir  analysis o f  h igh -energy interactions observed  with a cloud cham ber.

An exam ple o f the F -p lo t  is  shown in F ig . 1. The jet shower of 2 +16p 
con s is ts  o f a narrow  cone and eight show er pa rtic les  o f considerable e m is 
sion  angles. This is  revea led  in the F -p lo t  as the separation into two branches, 
one represen tin g  forw ard  and the other backward partic les  in CMS.
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log -

log  tan 8

Fig. 1

F-plot of a 2 + 16p event, observed by P. L. Jain, Fhys. Rev. 125 (1962) 679

(ii) M edian angle m ethod. At the m edian angle of the angular d istribu - 
tion  in LS, d{, we have F (0$) =\ and

tanöi = ß*/ßc7c *  1 / v  (2 .21)

T h is  m ight be regarded  as a d irect method fo r  obtaining the incident energy, 
but in p ra ctice  the ch o ice  of the median angle is  not always fr e e  from  am bi
guity. It is  rather d ifficu lt to determ ine the m edian angle from  a conven
tional plot o f the angular d istribution . The median angle determ ined from  the 
symmetry point o f the F -p lo t  seem s to be m ore  re lia b le .

(iii) L o g -ta n 0 p lo t . Since (2 .19) holds fo r  each outgoing particle  d esig 
nated with su ffix  i, points o f log  tanOj may be plotted on a horizontal line.
The d istribution  o f these points shows the angular distribution in CMS through 
log  tan 0i = - log  7C + lo g  tan 6?/2 - log  [ 1  + (ßc / ß f - l )/2  c o s 2(0* /2 )]. (2 . 2 2 )
If the last te rm  is  neg lig ib le  com pared  with the others, the angular d istribu 
tion  sym m etric  in forw ard  and backward d irection s in CMS resu lts in the 
sym m etric  d istribu tion . H ence the cen tre  of m ass of the distribution o f log  
tan 0i g ives  the L orentz fa c to r  by re fe ren ce  to the angles of em ission  o f N 
p a rtic le s  observed  as ; n

- l o g 7c = ( l /N )| l lo g t a n 0 1 + l o g C J (2 .23)

sin ce  ^ log  tan (0*/2) van ishes owing to sym m etry . An energy independent 
te rm  lo g  C rep resen ts  e ffe c ts  of the other te rm s and C *  1.4 is  found e x 
perim entally . T h is m ethod has been used extensively since its use by 
CASTAGNOLI et a l. [5].

A  m easu re  o f the angular d istribution  m ay be obtained from  the d isp e r 
sion  o f lo g  tan 0i as (6 )

a =<^(log tan 0 - log  tan d?y$ (2 .24)

F o r  an iso trop ic  d istribution  a = 0.39 and a in crea ses  as the angular d is tr i
bution b ecom es  a n iso trop ic . In o rd er  to obtain the shape of the angular d is tr i
bution, one has to ca lcu la te  h igher o rd e r  m om ents. The fourth moment is  
requ ired  fo r  exam ining whether the distribution con sists  of two peaks o r  
not.
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-U - 3  - 2  - 1  0
lo g  ta n  e

Fig. 2

Log-tan plot of an event obtained by R.G. Glassei, D.M. Hashkin and M. Schein, Phys. Rev. 9£ (1955) 1555, 
and analysed by K. Niu, Nuovo Cimento 10 (1958) 994

A  typ ica l exam ple o f the lo g -ta n  0 plot is  shown in F ig . 2. In the jet 
show er of 7C ?» 10 0 , 15 secondary p articles  are c lea r ly  separated into two 
groups.

(iv) Energy determ ination based on the f ir e -b a ll  m ethod. Both the 
F -p lo t  and the log -ta n  plot suggest the concentration  of secondary particles 
in the forw ard  and backw ard d irection s. This ch a ra cteristic  feature may 
be in terpreted  in such a way that two lum ps are fo rm ed  by a high-energy 
co llis io n  and they subsequently decay into many secondary pa rtic les  with 
rather low en erg ies  in the resp ective  co -ord in a te  system  o f the lum ps. These 
lum ps m ay be regarded  as highly excited  states o r  f ir e -b a lls  [6 ].

If the f i r e -b a l l  m odel is  taken seriou sly , one may evaluate yc by going 
one step fu rth er. S ince forw ard  and backward partic les  are supposed to be 
w ell separated, the sum m ation o f (2 . 2 2 ) is  now taken separately fo r  each 
g ro u p :

- log  7 f = ( l /n f ) ^ f log  tan 0. - ( l /n f ) L  log  tan ( 0̂ /2 ),

- i o g T b 3 ( 1 /n,,) U l o g  tan 0: - ( l /n b) E  log  tan (0J /2 ),
j<b j<b

w here 0+is  the angle of em ission  in the system  o f a f ir e -b a ll . If particles 
are em itted iso trop ica lly  from  the fir e -b a ll , the last term s in the re sp e c 
tive  equations vanish.

F ro m  this one obtains

Tc = V^VVb • (2 .25)

The va lues o f yr thus obtained a re  found to be in essentia l agreem ent with 
those by (2. 23), as they should be.

(v) E nergy d issipated  by secondary p a r tic le s . The m ethods described
above are  based on the angular distribution  o f charged pa rtic les  produced,
but nearly  one th ird  of secondary  p a rtic les  are neutral and they may carry
away a significant part o f the incident energy. A num ber o f events have thus 
fa r  been found, such that a single neutral p a rtic le  p o sse sse s  an energy far 
g rea ter  than o th ers . In such ca ses , the prim ary  energy estim ated by r e fe r 
ence to charged  secondary p a rtic les  may be in e r ro r , even in the ord er of 
m agnitude. In fa ct, there have been those ca ses  in which the energy of a 
secondary p a rtic le  determ ined by its  interaction  is  found to be greater than 
the p rim ary  energy estim ated by one of the above m ethods.

The energy o f a charged  secondary p article  may be obtained by a d irect 
m easurem ent o f the p rop ertie s  of its  track , say, the scattering of grains 
fo rm ed  by the p a rtic le , i f  its  energy is  low and the track  is  long enough fo r
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the sca tterin g  m easurem ent. In m ost ca ses , how ever, one is  not so lucky 
as to obtain such tra ck s , and m oreov er , even if  such track s are obtained, 
the en erg ies  ca rr ie d  away by th ese p a rtic les  ord inarily  con sist in a m inor 
portion  of the tota l energy available fo r  a ll secondary p a rtic les .

A m ong secon dary  p a r tic le s  a nuclear active p a rtic le  of long lifetim e 
m ay produ ce  a n uclear in teraction . If it is  charged, its energy is roughly 
estim ated fro m  its angle o f em ission , as w ü l be described  in Section 2 .4 , 
and th is is  com pared  with an energy estim ate based on the secondary in ter
action . T h is com p arison  ch eck s the re liab ility  o f the prim ary energy e s t i
m ated by the above m eans. F o r  neutral p a rtic les , the secondary interactions 
p rov id e  not only the so le  method of obtaining their energies but a lso  a means 
o f knowing th e ir  ex isten ce .

S h ort-lived  p a rtic le s  usually decay b e fo re  their in teractions. This is 
the ca se  f o r  neutral p ions. A neutral pion decays into two photons which 
subsequently produce e lectron  pa irs  and eventually develop into cascade 
sh ow ers. The num ber o f e lectron s  contained in a very  high energy cascade 
showfer is  so la rge  that the show er may be detected  by visual inspection of 
photographic em ulsions o r  sensitive X -r a y  film s  through which the shower 
has penetrated. The energy o f a neutral pion is  estim ated by re feren ce  to 
the p rop ertie s  of the ca sca d e  show er and high energy e lectro-m agn etic  in ter
actions ; an observation  o f neutral pions has an advantage over that of charged 
p a rtic le s  becau se  o f the feasib ility  of th eir  energy determ ination. The methods 
o f energy determ ination w ill be d escr ib ed  in the next su b -section .

2. 3. D eterm ination o f en erg ies  o f neutral pions and photons

The neutral pion decays into two photons with a probability of 99% and 
into a photon and a pa ir of e lectron s  with a probability  of about l% .T h e  angle 
betw een the photons is  given by

62i = m ^ c2 (E jE a)* = (m ^cZ/E ,,) (Vn + l/Vn), n = Ex /E 2, (2.26)

w here m , and E„ a re  the m ass and the energy of the neutral pion and E j and 
E 2 are the en erg ies  of re sp ectiv e  photons. A ccord in g  to (2 . 26), the pion 
energy can be determ ined  in p rin cip le  by m easuring either the energies of the 
resp ectiv e  photons o r  th e ir  ratio and the angle between the two photons. In 
p ra ctice , how ever, these m easurem ents are not always easy.

(i) E m ulsion  ch am ber. Let us con sid er  an exam ple in which E„= 1012eV
and n = 1. Then Q̂y *  I «4 *  lO-'4 resu lts in the separation  of only after 
tra v ers in g  the m ean con vers ion  length, about 3 cm  in ordinary nuclear em ul
sions-T he separation  of 4ju is  slightly grea ter  than the m inim um  detectable 
d istance but is  as la rg e  as the m ean la tera l scattering of the conversion  
e lectron s  to be su ffered  in one cascad e  length. Since the mean la tera l spread 
o f e le ctron s  is  a lso  in verse ly  p roportion a l to energy, it is  usually difficult 
to  distinguish two ca sca d e  show ers aris in g  from  the decay photons. M ore 
ov er , sev era l charged  p a rtic le s  faH in this region , so that the position  of 
the p a ir  crea tion  is  d ifficu lt to  ob serv e .

It is , th e re fo re , advisable to  use a light m ateria l such as graphite as 
a show er p rod u cer , through which decay photons penetrate without con v er-
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sion , and to put a heavy con verter  such as lead underneath, so that the pair 
crea tion  takes p lace  a fter the photons are sufficiently separated from  each 
other. The w hole apparatus thus con sists  of carbon  la yers  as the producers 
o f n uclear c o llis io n s , lead  plates fo r  developing cascade show ers and nuclear 
em ulsions sandwiched between them . This apparatus is  ca lled  the em ulsion 
cham ber and is  extensively  used fo r  the study o f je ts  [7].

Having obtained the separated cascade show ers, one can determ ine the 
en erg ies  of photons initiating these show ers by re feren ce  to the cascade 
theory  [8 ], On account o f the th eoretica l accu racy  o f the cascade theory and 
the experim ental feasib ility  of picking up e lectron  track s, it is  recom m ended 
to count only those e lectron  track s which are located  near the shower core , 
say within 50ß, and which are consequently o f high en erg ies . The number 
o f such e lectron  tra ck s  against the thickness of m atter gives a shower transi
tion  cu rve  to be com pared  with the th eoretica l one fo r  a given initial energy. 
E j and E2 thus obtained are substituted in (2 .2 6 ), giving the opening angle 
92y T h is is  com pared  with the observed  value of 02y, thus giving a check 
o f the p roced u re  o f energy determ ination.

In applying the ca sca d e  theory one has to keep the follow ing rem ark in 
m ind. A s the energy of an e lectron  in crea ses , the e le c tr ic  fie ld  of the e le c 
tron  b ecom es  so strong, due to the re la tiv istic  e ffect, that it can interact 
with atom s ly ing  nearby, while it undergoes the radiative transition . The 
m odulation effect caused by the nearby atom s cuts down the transition proba 
bility  in the sam e way as in the narrow ing effect o f the resonance. C onse
quently the m ean distance fo r  brem sstrahlung and pair creation  in creases 
with the energy of an e lectron  o r  a photon, depending on the density of a 
m edium  and the energy distribution o f secondary p a rtic le s . T his is  called  
the LANDAU-POM ERANCHUK effect [9] and has to be taken into account 
fo r  en erg ies  higher than 1013 eV in a dense m edium . T here are som e ex 
am ples which might be regarded  as anom alous if the above effect w ere not 
taken into account. In such events one o f the decay photons initiates a c a s 
cade show er a fter severa l cascade units and the developm ent o f the c a s 
cade is  slow  com pared  with the ordinary one. H ow ever, this is  found to be 
in reasonable  agreem ent with what is  expected from  the Landau-Pomeranchuk 
e ffect.

(ii) O bservation  o f e le ctron  p a irs . In som e ca se s  individual e lectron  
p a irs  can be ob serv ed . The energy of a photon initiating the pair may be 
obtained by the d irect m easurem ent of the energies of the pair e lectrons 
o r  by the opening angle at low en erg ies , while such m ethods are not ap
p licab le  at high en erg ies . If the energy of a photon is as high as 1012 eV, 
a pa ir o f e le ctron s  a re  so  c lo s e  that the e le c tr ic  fie ld s  o f the two electrons 
g ive r is e  to an in terferen ce  effect that dim inishes the ionization probab i
lity  in com p arison  with the s im ple sum o f the ionization probabilities due 
to two independent e le c tron s . This m ay be ca lled  the CUDAKOV effect, as 
a quantitative analysis o f this effect was firs t  made by him [10]. The d im i
nution in the grain  density can be seen in the first severa l hundred m icrons 
of the tracks of a pa ir of e lectron s .

(iii) C a lo r im e te r . An opposite extrem e to the above is  the ca lorim etric  
m ethod [ 1 1 ], by w hich the tota l energy o f e lectron s  dissipated fo r  ionization
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is  m easured  with an ion ization  cham ber o r  a scin tilla tor. The C erenkov 
d etector  may a lso  be regarded  as a ca lo r im eter , because the total track  
length of e lectron s  m easured  therewith is proportional to the total energy 
d issipated .

It m ust be noted that in the ca lo r im etr ic  method one often observes 
the energy dissipated by all secondary p a rtic les  produced by a high energy 
in teraction  rather than the energy o f a cascad e  show er alone. T h erefore , 
the ca lo r im e te r  is  better used fo r  the purpose d escribed  in Section 2. 2. (v).

(iv) E lectron  num ber. The num ber o f e lectron s at a given age o f c a s 
cade show er is  a unique function of the prim ary energy. The age of a shower 
can be obtained, in p rin cip le , from  the la tera l distribution of e lectron s. 
H ence, the observation  o f e lectron s  at one section  of a show er would make 
it p oss ib le  to deduce the prim ary  energy. This method was applied fo r  o b 
taining the p rim ary  energy of an EAS, but it could give only the ord er  of 
m agnitude becau se the EAS is  a resu lt of com plicated  nuclear and e le c tro 
m agnetic p r o c e s s e s . Even in a pure e lectron ic  cascade the num ber of e le c 
tron s and the la tera l d istribution are so  sensitive to the energies of e lectrons 
to be observed  that these quantities alone can hardly give a re liab le  value 
o f the prim ary  energy. N evertheless, the num ber o f e lectron s is a useful 
quantity to give a rough idea o f the prim ary  energy.

2 .4 . T ra n sverse  mom entum

Am ong variou s p rop erties  o f secondary pa rtic les  the tran sverse  m o 
mentum is  one o f the m ost im portant quantities, because it is  invariant under 
the Lorentz transform ation  on the one hand and is  nearly independent of 
p rim ary  and secondary en erg ies  on the other hand, as was firs t noticed 
by NISHIMURA [7J.

O bserving  neutral pions produced by cosm ic  rays with the em ulsion 
cham ber d escr ib ed  in Section  2.3. (i), the tra n sverse  m om enta of neutral 
pions w ere  found to b e  confined in a narrow  range fo r  prim ary energies of 
1012 to  1014 eV and secondary energ ies of 5 X 1010 eV to 3 X 1012 eV . The 
d istribution  o f tra n sv erse  m om enta, Ej. has a peak at about 400 M eV /c  and 
does not extend beyond 800 M e V /c . In nearly the sam e energy region  the 
tra n sv erse  m om enta of charged p a rtic les  w ere observed  by em ulsion stacks 
and th eir  d istribution  was in essentia l agreem ent with that of neutral pions, 
although sev era l p a rtic le s  w ere found to have P j greater than 1 G eV /c  [12]. 
The average  values o f the tra n sv erse  m om enta thus obtained are

<PT\ o  = 325 ± 20 M e V /c , <PT / ‘charge55 520 ± ^ 0  M e V /c . (2. 27)

The sam e feature was observed  a lso  at a cce le ra to r  en erg ies* .O b serv in g  
the p roton -p roton  co llis io n s  at 23 GeV with a hydrogen bubble cham ber, the 
tra n sv erse  m om entum  distribution  was found to be p ractica lly  independent 
o f the kind of the secondary p a rtic le s  and to be expressed  as (13):

*  A slow increase o f P-pwith energy was reported at the International Conference on High Energy Physics, 
Geneva, 1962.
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f(Px )27rPx dPT = exp(-Px /P 0) 2ttPt dPT, (2 .28)

with

<PX>  = 2P0 = 340 M e V /c . (2 .29)

The fact that the tra n sverse  mom entum is sm all and is practica lly  in 
dependent of other p rop erties  prov ides useful m eans of analysing very high 
energy phenom ena. F irs t ly , an approxim ate value of the longitudinal m o 
mentum and consequently the absolute value of momentum of a secondary 
p a rtic le  can be obtained from  its angle of em ission , 9, as ,

PL = PT cot 0 % PT /0  sb P, (2 . 30)

in which the last two exp ress ion s  hold fo r  sm all 0. Since P in creases with 
prim ary  energy, while PT rem ains constant, the energy im parted to second
ary p a rtic le s  tends to be concentrated into the longitudinal m ode as the p r i 
m ary energy in crea ses .

Secondly, the mom entum  distribution can be connected with the angular 
d istribution  in a sim ple way. Since the tran sverse  momentum distribution 
is  independent of prim ary  energy and of longitudinal m om entum , (2 . 28) can 
be fa ctored  out in the m om entum  - angle distribution a s :

f(P T )2  7rPT dPx . g(PL /P E )dPL,

w here PE is a sca lin g  fa cto r  which depends on prim ary energy E and g(F{,/PE), 
is  the m om entum  distribution integrated over angles.

Taking into account (2. 30) and the solid  angle elem ent

dfi = 2 7rsin0 d6 % 2 7rPT dPT/PL ,

we can exp ress  the mom entum  - angle distribution as ,

f(pT )2 ^ p T dPT . g ( | r ) dPL = f ( W  ^ ) g ( ^ ) 2 p E dPL da- (2 - 31)

T his im p lies  that the m om entum  distribution at one angle can predict that 
at other angles by re fe ren ce  to the functional form  of f. The functional form  
o f g(PL /P E ) can be obtained by m easuring the m om enta of all secondary 
p a rtic le s  ir re sp e c t iv e  o f th eir  angles. T h erefore , an observation  either 
at a given angle o r  without regard  to em ission  angles is  sufficient fo r  ob 
taining the m om entum  - angle distribution, provided that the distribution 
o f tra n sv erse  m om enta is  known.

T h ird ly , the sm alln ess o f tra n sverse  mom entum  allow s one to regard 
the w hole co llis io n  p ro c e s s  as one-d im ensional. In the firs t approxim ation 
the tra n sv erse  com ponents of m om enta taking part in the co llis ion  p rocess  
are neg lected . Then kinem atical relations are considerably  sim plified , as 
w ill be  shown in the fo llow ing  su b -section .
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2 .5 . M om entum  tra n sfer

The absolute square o f 4-m om entum  tran sfer  is  also an important in 
variant quantity. In the coH ision

A + B — »  A' + B' + (i ) f + (j)b,

w here A ' and B ' are  resp ectiv e ly  regarded  as the re co il  p articles  of A and
B, and (i)f and (j)b the p a rtic le s  produced in the forw ard  and backward d i
rection s  in CMS resp ectiv e ly , the 4 -m om entum  tran sfer is defined by

* A  = ? A  -  E a ' '  £ f h -  *B  -  ? 8  - ?B ' - £ b P j-  (2 -32)

The 4 -m om entum  changes of the incident pa rtic les  are written as

^ a = Pa - Pa'. A b = PB - P b'. (2 - 33)

By re fe re n ce  to LS the absolute square o f A'b is  obtained as

A'ß,. A g '  = - 2Mg(EB/-M B), (2.34)

which is  p roportional to the kinetic energy o f the r e c o il  particle  B'. It is 
a lso  convenient to introduce

Pf “ Z I P ,  . P b = H P . -  (2-35)- 1 i<f  1 ~  j < b ~ J

If the produced  p a rtic les  fo rm  two f ir e -b a lls , their m asses are given by

^ = P f . Pf . M 2b = Pb . Pb . (2 .36)

If th is is  not the ca se , and Wb should be understood as the absolute values 
o f Pf and Pb r e s p e c t iv e ly .

The conservation  o f energy leads to A a + A B = 0. In the sym m etric c o l 
lis ion , we have in CMS A a + A B = 0. In this ca se , th ere fore , the tim e co m 
ponents o f A A and A B vanish in CMS. This resu lts in ;

— A* ^A = .̂B * A B = " A A • ^  B = ■ ^A ‘ A A 5  ~ • (2 .37)

U tilizing (2. 37), (2. 34) and (2. 36), we obtain from  (2. 32)

-A2 = - 2MB(E b - Mb) + f l lg -  2 A g . P b

= 2 (E b - Mb ) (Eb - Mb ) + m b - Tp b\ Pfe. (2 .38)

Since a ll quantities in the last exp ression s are those o f relatively  low energy 
p a rtic le s  em itted in a wide angular region , they may be m easured rather 
ea s ily , thus provid ing a m eans to  evaluate the 4 -m om entum  tran sfer. In ci- 
d .ntally, the r e c o i l  nucleon  o f kinetic energy Eg - Mb is  usually identified 
with a g re , track  em itted at a la rg e  angle, and the value of (-A'g . A B)v*is 
thus estim ated by NIU [6 ] to  be o f the o rd er  of a few G e V /c .
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A nother m ethod o f obtaining the value o f A2 is  to  r e fe r  to the square 
° f  + 5 , = Afe :

-A 2 + W b -  2 Sß#. Pb*=  A j i .  A B, = -  2M B(E ; -  M B).

On account o f the sm alln ess of the tra n sverse  momentum, A B . can be 
approxim ated as APj* w here P* = |Pb |. Thus we obtain

A «  (P * 2+ + 2MB(Eg - Mb)V*- f *  (2 . 39)

If Pb*?is  m uch grea ter  than other term s in the 'ight hand side, A is  further 
approxim ated as ;

A<* [ m 2 + 2Mß (E ' - Mb) ] /2 P * .  (2.39')

This im p lies  that A is  a rather sm all quantity. H ow ever, this relation is 
not too  usefu l, becau se  Pb* therein  is  not d irectly  m easured.

The th ird  m ethod seem s to be m ost d irectly  connected with experim ent. 
On account o f the energy-m om entum  conservation , A Aand A B defined in 
(2 .32 ) are related  as A a + A b = 0. T h ere fore , (2 .37) may be expressed 
as.

-A2 -  - A a . A ß = Aa . A3 - AAjAB| = A2 - A ,2

w here A, = AA) = - Ab0 is  the tim e component of A and A = Aa = - AB.
D enoting the longitudinal and tran sverse  com ponents of A as A L and 

A j  re sp ectiv e ly , we can exp ress the 4 -m om entum  tran sfer as

A2 = ABo -  Aal AgL - Aat Abt

= (AAo - Aa l ) (Agt +AB,, ) +A| (2 .3 7 ')

In the f ir s t  te rm  of the th ird  expression , the energ ies and m om enta of s e 
condary p a rtic le s  appear in the fo llow ing com binations :

Ei - PiL -  (p*L + Pi*T + M fj1/2 - PiL «  Pi! + M f/2  PiL 

= (PiT / 2)  ( i  + M,2/ ^ )  tan 6, ,

E J + ^L  +  PjT + M f V 2 + P L * 2 P j L ^  + M | / 2 P L

= 2 Pjx

H ere we have assum ed that a ll secondary pa rtic les  have such high energies 
that PL » P T, M . On account of that Px is  independent of particle  and energy 
(2 .37 ') is  thus exp ressed  as :
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In LS the angle o f em ission  is  so sm all that the term  containing tan Öj -can 
be neglected  in com parison  with cot 0 j . Quantities concerning two collid ing 
p a rtic le s  may also be n eg lig ib le . A| can be approxim ated as

A2 »  n ^ .P 2 ,

w here ni and nj represent the num bers o f secondary p a rtic les  in the re s p e c 
tive grou ps. F inally  we obtain an approxim ate expression  o f A? as

A2 =  P 2 (1 + M i/P 2 ) tan 61 ) (5 cot 6. ) + n ^ ]  (2. 40)

The right hand side contains only those quantities which can be d irectly  ob 
served .

The exp ress ion  (2 .40) depends on how the two groups are divided. In 
the sym m etric  ca se  the value of A2 thus obtained should reach  a m inimum. 
This p rov id es a method of separating the forw ard  and backward groups, inde
pendent o f the F -p lo t  and of the log -tan  plot [14]. The value o f A thus d e 
rived  is  found to d istribute around 1 G e V /c .

In obtaining the value o f A from  (2. 40), one has to keep in mind that 
one usually ob serv es  either charged partic les  o r  neutral p ions. T herefore , 
not a ll secondary p a rtic les  are included in evaluating the right hand side 
o f (2 .40)i. Since a large  contribution to £ tan 0j £ cot 0j com es from  a parti
c le  o f the sm allest 0j and one o f the largest 0j , the absence of such particles  
cau ses A to be unterestim ated.

2 .6 . M ultiplicity and inelasticity

The above d iscu ssion s  indicate that p rop erties  o f individual events can 
hardly be determ ined with sufficient reliab ility  but may be obtained only 
sta tistica lly . Thus one can speak about a certain  property of the high energy 
in teraction  in a rather w ide energy range. P rop erties  nearly independent o f 
energy, such as the tra n sverse  m om enta and the ratio of secondary particle^  
m ay be obtained with m ore  reliab ility  than those dependent on energy.

One of the m ost im portant energy dependent properties  is the m ulti
p licity  of secondary p a rtic les , m ost of which are pions. O bservations with 
photographic em ulsions g ive us a m ultip licity  law :

n ~  1.8 El/*, (2.41)

w here the p rim ary  energy EA is  m easured in GeV. A s em phasized above, 
not only EA m eans an average value but a lso  n is  obtained as an average 
m ultip licity  o f observed  values o f n which are subject to considerable  fluctu
ations, say An ~  0.5 n. Although the ^ -pow er law (2 .41) has been widely 
accepted  because o f the reputable theory of FERM I [15], it m erely  expresses 
a gen era l trend valid  fo r  coa rse -g ra in ed  observations. M ore detailed ana
ly se s  cla im  the | -pow er law below  100 GeV or  the stepw ise in crease of m ulti
p lic ity . N evertheless , (2. 41) is  found at least to be a good em pirica l law,
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provided  that EA is  taken as an average value of prim ary energies ranging 
ov er  a fa cto r  o f one hundred o r  so.

In determ ining the m ultip licity , one usually re fe rs  either to the number 
o f charged  p a rtic le s  o r  to that of neutral p ions. Knowing the relative abun
dances o f these secondary p a rtic les , one can obtain the total number of s e c 
ondary p a rtic le s .

A  rather slow  in crea se  o f the m ultip licity  with energy seem s to hold 
even at en erg ies  higher than 1014 eV, at which the EAS is  the main source 
o f in form ation . One o f its consequences is  the d ivision  o f an incident energy 
into many p a rtic le s , so  that no single p article  has a great energy com parable 
to the incident one. O therw ise a neutral pion of large energy would produce 
a huge ca sca d e  show er with its m axim um  at a low altitude. Since the altitude 
at which an EAS has the maxim um  size  is  rather high and is  not sensitive 
to the p rim ary  energy, the energy of a single neutral pion in creases  only 
very  slow ly o r  may le v e l o ff as the prim ary energy in crea ses .

If th is w ere to hold fo r  any secondary p article , the energy of an EAS 
transported  to sea  le v e l would be much sm aller than that which we observe . 
M oreov er , there is  an indication  that nuclear active partic les  of considerable 
en erg ies  are contained in an EAS even at sea lev e l. This suggests that a 
substantial part o f the incident energy is  ca rr ie d  away by a nuclear active 
p a rtic le , p oss ib ly  a nucleon having survived after a nuclear co llis ion . This 
m eans that the nuclear co llis io n  at ultra-high energies is  rather elastic, 
in spite o f the fact that many pa rtic les  are created  by this co llis ion . This 
tendency is  observed  at energ ies below 1014 eV with photographic em ulsions 
and is  found to hold even at a cce le ra to r  en erg ies .

The quantity which rep resen ts  the elastic  nature is  ca lled  the inelasticity, 
defined by the ratio o f the energy im parted to all secondary particles  but 
the d ire ct  descendants o f the incident p a rtic les  to the energy available fo r  
the production  of the secondary p articles

K = (£ E f  + E  E * )/(E *  + E ’  - Ma - Mb). (2.42)

In the sym m etric  co llis ion  we can w rite

K = (E t - E* ) /(E t  - M a) = (E* - E* ) / (E* - M „) (2.42')

The value o f K fluctuates fro m  one event to another, say from  0.01 to 1, but 
in m ost ca se s  lie s  between 0.1 and 0.8. The average value is found as about 
■| nearly  independent of energy, but cla im  is  often ra ised  against the energy 
independence.

3. VARIOUS TH EO RETICAL ASPECTS

It has o cca sion a lly  been thought that the m ultiple production may reveal 
novel features ch a ra cte r is t ic  to a future theory which w ill be valid beyond 
the applicability  o f quantum fie ld  theory . In spite of much effort towards 
th is d irection , no indication has yet been found to prove the evidence definite
ly  against the present theory, although no satisfactory  explanation of ob 
served  phenom ena can be given within the fram ew ork of the existing theory.
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Both th ose who are in favour o f p reserv in g  the present theory and those 
who are not, seem  to agree on a point of view that any future theory must 
have som e corresp on d en ce  to the present one, quantum field  theory . As 
is  w ell known, quantum fie ld  theory has c la ss ica l correspon dence  in two 
re s p e c ts ; one is  a wave p icture and the other is  a particle  p icture. A future 
theory might com e out o f the corresp on d en ce  of either of these c la ss ica l 
p ictu res without going through quantum field  theory . Putting aside the p rob 
lem  o f future th eory , we d e scr ib e  here various theoretica l aspects which 
seem  to show up at least one aspect of the truth.

T hese  aspects  may be c la ss ifie d  into three, being based on wave,quan
tum and p a rtic le  p ictu res . In quantum theory wave and partic le  are mutually 
com plem entary  co n ce p ts ; in other w ords, the phase o f a wave and the num
b er  o f p a rtic le s  cannot be sim ultaneously determ ined. If the phase is  w ell 
defined and does not change in the cou rse  of in teractions, one can no longer 
speak o f the num ber o f p a rtic le s . In such a case  the particle  p icture is  of little 
use and one d escr ib e s  the system  o f interest ir. term s of the wave picture.
In the opposite  ca se , the phase co rre la tion  is  so strong that the system  con 
cern ed  m ay be d escr ib ed  as the average ov er  phase values. Consequently 
one m ay speak o f p a rtic le . In quantum theory an interaction  resu lts in a 
fin ite value o f phase change and many waves of different phase values turn 
into a p a rtic le  due to the in terferen ce  o f these phases. Thus p articles  are 
created  through an in teraction .

T h ese  three p ictu res are c lo se ly  related  to each other and no theory 
in sists  on one p icture a lone. Both the wave and particle  p ictures can be r e 
garded as extrem e ca se s  o f the quantum p ic tu re ; hence three pictures are 
d ifferentiated  only by the point o f em phasis. Keeping this rem ark in mind, 
we c la ss ify  variou s aspects into these three p ictures if possib le  and in ter
m ediate ones if  not p oss ib le .

3 .1 . W ave picture

The d escrip tion  o f a system  in term s of linear fie lds  brings about a 
tr iv ia l resu lt. Som e sort o f non -linearity  is  n ecessa ry  fo r  causing the change 
o f an am plitude. The am plitude a fter a co llis io n  is  obtained by solving the 
wave equation o f n on -linearity , and its F ou rier  tran sform  f(p) gives one 
the num ber o f p a rtic les  with m om entum  p” in dp as

n (p ) dp = f (p )2 d p /E , (3 .1 )

w here E is  the total energy correspon din g  to p. Although the relation (2 .1 ) 
is  based  on quantum theory , a p roced u re  o f getting f (p) is  entirely c la ss ica l. 
The quantum nature is  im plied  in the interpretation that n (p) is  a mean p arti
c le  density around which an actual one fluctuates.

Since the n on -lin ear equation is  fam ilia r  in hydrodynam ics, hydro- 
dynam ical term in ology  is  often used in the m ultiple production . A large 
am plitude corresp on d in g  to many p a rtic les  may be regarded as due to a 
shock w ave which is  associa ted  with a fin ite value o f amplitude in hydro
dynam ics. M athem atically, how ever, any non-linearity  does not always 
give r is e  to the shock w ave. The shock wave takes place fo r  a qu asi-linear
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equation in which the n on-linearity  appears in a term  of the highest d eriva 
tive , such as the transport term  in the E uler equation of m otion, but not fo r  
a se m i-lin e a r  equation in which the coe ffic ien t o f the highest derivative term  
is  a constant o r  a kpown function. The latter is the case  in the non-linearity 
aris in g  from  the F erm i in teraction  of four fie ld s . N evertheless, the sem i- 
linearity  m ay be resp on sib le  fo r  the m ultiple production, because energy 
is  d istributed into many m odes by sem i-lin ea r  coupling. F or  exam ple, a 
se m i-lin e a r  equation o  ß2<p - gqfi = 0 resu lts in the 1 /p  spectrum  of p r o 
duced p a rtic le s .

T urbu lence is  another concept often used. The non-linearity of the tran
sport term  in hydrodynam ics is  known to give r is e  to turbulence and the 
K o lm og oro ff spectrum  o f turbulence is  taken as analogy to the energy sp e c 
trum  o f created  p a rtic le s . In hydrodynam ics, how ever, an energy contained 
in a turbulent unit in crea ses  with wave length, in contrast to the inverse 
relation  between energy and wave length in quantum m echan ics. This shows 
that a hydrodynam ical interpretation  is  no m ore  than analogy and m erely  
helps o n e 's  intuition.

A  seriou s  attempt at a non -linear wave theory has been made by 
HEISENBERG [16]. His theory starts with a Lagrangian:

L  =-f ' 4 [1 +^4{(3<p/3Xi;)2 + m2 ®2}]1/2. (3 .2 )

w here ß is  the pion m ass and ^a constant with the dim ension of length in 
u n itso f c = b = l . I f  i is  sm all, (3 .2 .)is  reduced to the conventional Lagrangian 
fo r  the K lein -G ordon  p a rtic le . Since two co llid in g  p articles  at a high energy 
can be regarded  as very  thin d is cs  in the cen tre-o f-m ass system , the whole 
p ro ce s s  may be approxim ated by the one-d im ensional expansion, starting 
fro m  a thin d isc  resu lting from  the crash  of two particles.Thenthe wave 
function <p is  exp ressed  as a function of s = t2 -x 2 and obeys the equation

4 d /d s  (s <p') + ß2 ®= 8 / 4s(q>')2 (® + ß2v)/(l +l4ß2y2) (3 .3 )

The n on -lin ear term  cau ses the energy dissipation at high momenta, so 
that the spectrum  is  expressed  as d p /p 2 fo r  large  p. At low p, however, 
the dissipation  is  unappreciable and a wave behaves like fre e  expansion.
In the low  energy region , w here the spectrum  is  given approxim ate by dp/p, 
a substantial part of energy is  contained below a c r it ica l energy pc. C on
sequently the m ultip licity  is  given fo r  a prim ary energy E* in CMS by

n ~  (E*/pc ) fn(Tpc/ß). (3 .4 )

Since pc is  not m uch la rg e r  than ß, m ost o f the p articles  are emitted with 
low  en erg ies  and consequently with low tran sverse  mom enta.

The pow er spectrum  derived  above is  analogous to that obtained fo r  
iso trop ic  turbu lence. The reason  fo r  obtaining the pow er spectrum  is s im i
la r  in both ca se s , the energy flow ing from  sm all p to large p in hydrody
n am ics, w hereas from  la rg e  p to sm all p in pion f ie ld ; one should not re - 
gard the turbulent pion fluid as m ore  than analogy.



VERY HIGH-ENERGY PHENOMENA 5 03

The m ultip licity  (3 .4 ) depends too strongly on the incident energy and 
the in elasticity  can hardly be taken into account. H eisenberg tried  to get 
rid  o f these defects with the aid of an ad hoc assum ption not inherent in his 
wave fie ld  th eory . If one regards the pion cloud around a nucleon as a d isc, 
in which the pion fie ld  strength d ecrea ses  as exp(-/Jr) as the radial distance 
r in cre a se s . H ence the m om entum  exchanged fo r  an im pact param eter r may 
be reduced to p A exp(-pr). Now exp(-pr) may exhibit the inelasticity and 
E* in (3 .4 ) may have to be rep laced  by p* exp(-jur). Although a cr it ica l 
argum ent is  ra ised  against this reasoning [2 ], this should be regarded as 
a m ere  argument of p lausibility  som ehow like the hydrodynam ical analogy.

The ch a ra cte r is t ic  feature o f H eisenberg ’ s theory seem s to lie  in that 
the energy contained in high frequency com ponents d issipates into low f r e 
quency com ponents and then the w aves th ereof fly  away. Until one com es 
to the last stage, the phase of a wave sustains its initial value but its am pli
tude changes due to the n on -linearity . This may be interpreted in term s 
of quantum theory in the fo llow ing  way. Due to a sudden co llis ion , m ost of 
the energy is  exchanged between high frequency com ponents and low f r e 
quency w aves are knocked-out keeping th eir  fo rm s . A strong interaction 
betw een w aves resu lts  in d istributing an energy concentrated in a few c o m 
ponents ov er  many com ponents, so that m ost of the com ponents eventually 
p o s s e s s  low freq u en cies . T h is leads to the quantum p icture described  in 
what fo llow s .

3 .2 . Quantum picture

A  quantum m echan ica l theory o f m ultiple production as described  just 
above was w orked out by M IYAZIM A and TOMONAGA [17] with their in ter
m ediate coupling th eory . In this theory are introduced the inertia which 
su p resses  the excitation  of high frequency com ponents and the damping effect 
which is  resp on sib le  fo r  dissipating energy contained therein . Hence a nu
cleon  excited  by a co llis io n  is  d e -excited  by emitting pions stepw ise to low er 
le v e ls , thus leading to the m ultiple production. This p ro ce ss  is  analogous 
to the radiation of very  low energy photons by a charged particle  deflected 
in a Coulom b fie ld .

The radiative p ro ce s s  resu lts in the w ell-know n in fra -red  d ivergence, 
if  it is  treated  by the low est o rd er  perturbation but gives a convergent result 
if  a ll h igher o rd er  te rm s are  taken into account. The higher ord er effect 
can be ca lcu lated  if the r e c o il  o f the radiating partic le  is  neglected. The 
sam e p roced u re  is  applicable to the pion production but each term  does not 
su ffer  from  the in fra -red  d ivergence owing to the finite pion m ass. Along 
this line LEWIS, OPPENHEIMER and WOUTHUYSEN [18] worked out a th eo
ry o f the m ultiple production essentia lly  based on perturbation th eory . Putting 
the square of a m atrix  fo r  one pion production as A , the probability of em it
ting n p ions is  given by

W„ oc | (A n/n l3)n i (dpi/E i ) ~ ( A p 2)n/n 1., (3 .5 )

w here p is  the m axim um  mom entum  o f pions em itted. The probability  reaches 
a m axim um  a t :



504 S. HAYAKAWA

n S  (A p )2/ 3 a (K E |)2 /3  oc E a 1/3. (3 .6 )

in which the second relation  is  obtained on account of p  oc EA.
The quantum m echanical treatm ent above is  based on the follow ing a s 

sum ptions : (i) The co llis io n  tim e is so short that the scattering o f two c o l 
liding nucleons and the em iss ion  of pions can be separated, (ii) The momenta 
o f both rea l and virtual pions are so sm all that the re co il e ffect of nucleons 
is  n eg lig ib le . T hese assum ptions result in the angular distribution essen tia l
ly dependent on nucleon -nucleon  scattering and the m ultiplicity determ ined 
by the phase space volu m e. Since scattered  nucleons carry  away m ost of 
the in itial angular m om entum , the angular distribution of pions in the centre- 
o f-m ass system  is  rather iso trop ic . In such a case  the whole phase space 
is  nearly  equally occu p ied , thus leading to the Ea1 3̂ law given in (3 .6 ) . If, 
how ever, the p eriph era l co llis io n  is e ffective , the result is much different 
from  the pred iction  o f the orig ina l form  o f the Low theory but may be m ore 
o r  le s s  s im ila r  to the brem sstrahlung by electrom agnetic interactions.

Although we have ca lled  the above theory as quantum m echanical, this 
neglects a ch a ra cte r is t ic  point o f quantum theory, that is , the interference 
e ffect. If the in terferen ce  is  taken into account, each pion cannot be treated 
independently but the corre la tion  of em ission  p ro ce sse s  becom es im portant. 
In the lim it o f extrem ely  strong corre la tion ,p ions created  would behave as 
if  they form ed  a cloud  o r  a f ir e -b a ll  and the num ber o f p articles  could be 
defined by taking the average over phase.

3 .3 . P a rtic le  p icture

The p a rtic le  p icture is  thus based on the strong interaction between 
created  p ions. T his has led  FERM I [15] to assum e the therm odynam ical 
equilibrium  of pions in a volum e ft. The total energy, 2E*, contained in f2 
is  distributed over many m odes accord ing  to the Planck law and consequently 
the energy density is  given by the Stefan-Boltzm ann law as

H ere T corresp on d s  to the tem perature in units of the Boltzmann constant 
being equal to unity and may represent the average energy of a pion. Hence 
the m ost probable  num ber of pions produced is

w here M is  the nucleon m ass and Q0 3X1 energy independent volum e, we obtain 
the m ultip licity  la w ,

2 E * /ft oc T4. (3 .7)

noc E */T oc o t 3oc E *3/ 4Q 1/4. (3.8)

Taking fi as the L oren tz-con tracted  v o lu m e :

n = (M /E *) o 0 (3 .9 )

(3 .1 0 )

the w ell-know n \ pow er law .
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The therm odynam ical theory may be com pared with the quantum m ech a
n ica l theory  in the fo llow ing way. The squared m atrix  elem ent A /E  in (3. 5) 
is  now p roportion a l to Q/V, the probability  of finding a particle  in Q, where
V is  the n orm alization  volu m e. In obtaining the m ost probable m ultiplicity, 
how ever, there a r ise s  a d ifferen ce  between these tw o. The d ifferen ce  c o r 
responds to that between the R ayleigh -Jeans law and the Planck law of rad ia 
tion.

In the application  of the Planck law the assum ptions are im plicitly  made 
that the density of pions is w ell defined and the pions are fre e . The latter 
assum ption might be regarded  as contradicting the condition of therm al equi
libriu m , accord in g  to which a sufficient amount of energy should be ex 
changed betw eeh p a rtic le s . H ow ever, this is not always a contradiction , 
because there m ay be such an interaction  between p articles  that g ives a 
la rg e  co llis io n  c r o s s -s e c t io n  but a sm all value of potential energy. The first 
assum ption seem s to be subject to seriou s cr it ic is m  because the particle  
density of boson s is  known to be not positive  definite and the thickness of 
Q is sm a ller  than the wave length of a partic le  with energy T . These points 
are related  to an u nsatisfactory  consequence of th is theory, which is  a large 
value o f the tra n sverse  mom entum  o f about T in disagreem ent with the ob 
served  value. M oreover, there is  no room  to introduce the inelasticity in 
F e r m i's  theory .

The fir s t  of these two disadvantages may be avoided by assum ing the 
lo ca l equilibrium  alone. LANDAU [19] thus introduced m a croscop ic  quanti
ties  as functions of space and tim e co -o rd in a tes . The introduction of the 
v e loc ity  fie ld , the energy density and the p ressu re  allows one to construct 
a fluid dynam ics o f ord inary  fo rm  but the conservation  of the particle  num 
b er , becau se the p a rtic le  density, cannot be introduced m a croscop ica lly . The 
behaviour of the fluid may be d escribed  in term s of the N avier-Stokes equa
tion, the continuity condition  o f energy-m om entum  flow  and the equation of 
state which re la tes  the lo ca l p ressu re  p to the energy density e as :

The equation o f state resu lts from  the black body radiation with vanishing 
ch em ica l potential. On the sam e footing, th ere fore , the lo ca l tem perature T 
and the entropy density s can be defined and they are related as :

Now we can draw a picture o f a whole co llis ion  p ro ce ss  as fo llow s. The 
co llis io n  o f two nucleons fo rm s  a fluid of d isc shape with thickness A , in 
which the fluid is  heated to a high tem perature as in F e rm i's  theory due to - 
a shock wave originated by a violent im pact.H ence the initial values of the 
tem perature and the energy density e0 are essentially the sam e in F erm i's  
ca se . T h erea fter the fluid expands in the d irection  o f im pact and the energy 
density d e cre a se s  as

p = e /3 . (3 .11)

e oc T4, s oc T 3. (3.12)

w here t  = ln (t /A ) and 0 = ln [(t - x )/A ], This indicates that the energy is
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concentrated near the front and the maximum of entropy density also lies  
there, though the latter is  le s s  concentrated. Since the entropy is  turned 
out to  be proportional to the num ber of p a rtic les , this results in that a sm all 
num ber of p a rtic le s  are em itted with large  energy. In addition to the one
dim ensional expansion,the la tera l expansion takes place due to the p ressu re . 
H ow ever, the p ressu re  given by (3 .11) is  rather weak, so that the tran s
v e r s e  m om entum  is  expected to be sm all.

In the cou rse  of the expansion the entropy seem s to change very little, 
becau se the transport mean fr e e  path is  so short in a high density fluid of 
strong in teraction s that the dissipation  o f energy is  negligib le. T herefore , 
the in itial value o f entropy is  kept essentia lly  constant, until the mean free  
path b ecom es  as la rge  as the dim ension o f the fluid expanded. When the 
fluid rea ch es  th is stage, fluid elem ents can fly away as fragm ents and each 
fragm ent can be regarded as a fre e  partic le . Thus one can define the particle 
num ber. Since this is  proportional to the entropy, the m ultiplicity may be 
evaluated by re fe ren ce  to the initial value of entropy as

n of S = s  Q «  r ^  n  = E * 3 /4Q 1/4 oc E * 1/Z- (3 14)0 a  ̂ ' •

This is  identical with the m ultip licity  law given by (3 .10 ).
Since the p a rtic le  can be defined only in the final stage, its p rop erti3S

are determ ined 'by  conditions therein . Since the longitudinal fjuid velocity
is  much la rg e r  than the tra n sverse  one and the tem perature is low enough 
to give a sm all therm al v e locity , p articles  are emitted preferentia lly  in 
forw ard  and backward d irect ion s . The tem perature can be estim ated on 
account o f the sm alln ess of the tran sverse  momentum as low as n, where p 
is  the pion m a ss . The sam e value can a lso  be in ferred  from  the pion-kaon 
ratio, because the num ber of p articles  with m ass M emitted at tem perature T 
w ill be proportion a l to M3/,2e x p (-M /T ). A s has been seen above, Landau’ s 
theory  seem s to explain the essentia l features of the m ultiple production 
but not the in elasticity .

The m ost strik ing su cce ss  of Landau’ s theory seem s to lie  in such a 
resp ect that it is  able to account fo r  the sm all tran sverse  momentum and 
consequently the angular distribution peaked in forw ard and backward d i
rection s , though h istor ica lly  N ishim ura ’ s idea on the sm allness of tran s
v e rse  m om enta was m otivated by Landau's th eory . The peaked distribution 
in the hydrodynam ical theory of Landau stem s from  the concentration of 
energy near the fron ts  o f an expanding fluid. If this is  idealized, the two 
front parts may be regarded  as f ir e -b a lls , each of which looks like a parti
c le  of la rge  m ass.

3 .4 . F ir e -b a ll  m odel

P r io r  to Landau's theory , a f ir e -b a ll  m odel was proposed by TAKAGI 
[20] as a m odification  o f F e rm i’ s theory. The co llis ion  of two nucleons does 
not lead to the form ation  o f one f ir e -b a ll , but leaves each nucleon excited 
to energy Wt, which subsequently decays into p ions. Then F erm i’ s theory 
is  applied to each f ir e -b a ll  and consequently the m ultiplicity and the average 
energy o f em itted pions in the f ir e -b a ll  system  are given respectively  b y :
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n ~ 2  m 3/ 4, T ~  7H.1/4 (3.15)

in which the dependence com es out of an energy independent volume 
Even in a com plete ly  in elastic  co llis io n , th ere fore , this gives a m ultiplicity 
law n oc E* 3,/4 oc E j/8 , d ifferent from  F e rm i’ s, and sm all but weakly energy 
dependent tra n sv erse  m om enta.

C arefu l analyses of experim ents suggested the indication fo r  the tw o- 
fire -b a ll m odel [6 ], in which two f ir e -b a lls  fly  out with considerable  energy
of translation . If only two f ir e -b a lls  are  produced with m ass 7TL and energy
7 ^ containing an incident nucleon in each o f them, there holds

E * = 7cM = (3 .16)

If the m om entum  tra n sfer  is  sm all and independent o f the incident energy, 
a straight forw ard  calcu lation  gives :

7 * x 7  'iTL « 7 1/ 2 i (3 .17)f c c

If the final tem perature is  independent of the f ir e -b a ll  m ass as in the ca se  
of Landau’ s theory , the y^2 m ultip licity  law is  obtained and the transverse 
m om enta are as sm all as T .

The e lasticity  of the co llis io n  can be taken into account by letting an 
incident nucleon fly  away without being am algam ated in the f ir e -b a ll . In this 
ca se , too , the sam e assum ptions as above give an essentia lly  identical result. 
The in elasticity  is  given by .

K = 7 ^ / ( 7 c - DM , (3 .18)

which is  independent of the incident energy.
A m ore  recent analysis o f experim ents has suggested that not only the 

num ber o f f i r e -b a lls  produced may be two, four o r  six  but also 77Tr~2M and 
7 * has d iscre te  values [21], Then^(3.16.) is  m odified as

7CM = L 7 * 2M + re co il  energy (3 .19)

with 7 * a; 1.5, 7* ^  7.5 and 7 * ~ 2 5  and so forth . If this is taken fo r  granted, 
there exist threshold  energ ies fo r  the production  o f two, four and six  f i r e 
ba lls  at

7C( 1 ) * 4 ,  7c (2) »  19, 7c (3) ~  69. (3 .20)

If the average energy o f pions em itted from  a f ir e -b a ll  is  about 2m, the m ulti
p lic ity  jum ps at resp ectiv e  thresholds to 2(M/m), 4(M/m), 6 (M/m) and so forth. 
If one takes the m ultip licity  averaged over  a wide energy range, this would
corresp on d  to the y^2 law fo r  yc > 5, while it may w ell be approxim ated by
the 7C law at low  en erg ies . C orresponding to the stepw ise in crease in the 
energy im parted to p ions, the inelasticity  d ecrea ses  to the threshold energy 
at which new f ir e -b a lls  begin  to be created  as :
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K = £ 2 M t */(7c -1 )M . (3.21)

This g ives a m ultip licity  law expressed  as

n S 2K(M/*i) {? i f )  (7  - 1), (3.22)i i c

which is  consistent with the one observed  by KANEKO and OKAZAKI [22].
In th eir  analysis it has been shown that both n and K fluctuate considerably
but n /K  does not. If one p lots n /K  against the incident energy, therefore, 
one can find a cu rve  connecting the plotted experim ental points rather m ore 
easily  than in the n - -y p lo t .

4 . CONSEQUENCES OF FIR E -B A LL MODELS

A s brie fly  d iscu ssed  in Section 3 .4 ., the f ir e  ball m odel can be described  
by sim p le  k inem atical relations, so that its consequences are readily p re 
d ictab le . By com p arison  with experim ental resu lts one can examine how 
good a p articu lar m odel is . Depending on the experim ental data on which 
they are  based and a lso  on the way o f analysing the data, a number of authors 
have proposed  a variety  o f-fire  ball m odels. These may be c lass ified  into 
two g rou p s ; one may be ca lled  the tw o -fire -b a ll m odel proposed by three 
groups of authors in re fe ren ce  [6 ] independently, and the other the m u lti-fire 
b a ll m odel by HASEGAWA [21]. E xperim ental evidences fo r  o r  against these 
m odels w ill be d iscu ssed  in m ore  detail.

4 .1 . T w o -fire -b a ll m odel

The tw o -fire -b a ll m odel is based on the essentia l equality of transverse 
and longitudinal m om enta of secondary p articles  in appropriate co -ord inate 
system s which fly  away forw ard  and backward in CMS with nearly equal 
speed. It is  quite natural to interpret this in such a way that pions produced 
by a c o llis io n  fo rm  two lum ps that fly  away in opposite d irections and sub
sequently decay into many p ions. Such a lump may be regarded as a particle  
o f short life -t im e . Then the d iscu ssions given in Section 2. 5 are valid with 
7ftf and tfTOb independent of the m om enta of produced p articles .

The angle of em ission  of a fire  ball may be defined by

l Or* i 0-̂log  tan 0, =  fTf E log  tan 0t , lo g  tan — = jj E log  tan (4 .1 )
f & { &

The d iscu ssion s  in Section 2 .2  , (iii) and (iv) y ie ld  :

The L orentz fa cto r  in the cen tre-o f-m ass system  is given, analogous to the 
derivation  of (2. 23 ), as

* ______1_____1 - tan2(pf /2 ) s , ' tan 9i _ tan ef \
Tf ~  tan (j* ~  2 ta n (0f* / 2 ) 2 ytanf0 tan 0i ) ’

thus being expressed  only by observab le  quantities.

¥
7f = 1 /tan  6C, = tan ~  /tan 0f = l /ta n  0X
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Having obtained the fire -b a ll system , one can derive the longitudinal 
m om enta of secondary p a rtic les  in this system . -In F ig . 3 the distribution 
of the longitudinal m om enta are com pared with that of transverse mom enta.

10r

0.1 0.2 0.3
PT (GeV/cJ

0.4

Fig. 3

Distribution of transverse and longitudinal momenta in the fire ball system, analysed by K. NIU [6]

T hese two mom entum  com ponents are all sm all, so that low energy pions 
are em itted nearly  isotrop ica lly  from  the fire -b a ll. This seem s to suggest 
that the pion em ission  is  analogous to the therm al radiation of a hot sphere. 
In fa ct , the energy spectrum  of the pions in the fire -b a ll system  is w ell r e 
presented  by the Planck law with tem perature of the order of n, although

Fig. 4

Normalized integral energy spectrum of produced pions, given by K. Niu, Proc. Moscow Conf. on Cosmic Rays,
I (1959) 240. Curves represent the Planck law for temperatures shown in the figure

the energy spectrum  appears to be a little  fla tter fo r  the highest energy 
evenx indicated by X, as shown in F ig .,4. T h ere fore , the m ass of a fire  ball 
can be given by

(4.3)
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The m a ss  o f the fire -b a ll can be related to the momentum transfer by 
(2 .3 9 ')  as ■

A *  [U] + 2 MB (Eg M 8 )] / 2 P * ^ m f / 2 y * )  + M b (E^ - M B) / 7 f f ttf (4 .4 )

Since A lie s  around 1 G e V /c  nearly independent of energy, as briefly  m en
tioned in Section 3 ,4  , and the last term  in (4 .4 )  is relatively sm all at high 
en erg ies , th is would indicate W* x y f , provided that 7Kf and yf are inde
pendent of A. A ctually , how ever, the independence seem s to hold only for 
sm all Wf and 7 * , as can be seen in F ig . 5. At large Vt{ and y*, it may be
seen that JTOf oc A and 7 * oc 1/A  resp ective ly . It seem s m ore likely to be

constant, which m eans the independence of the fire -b a ll energy in

lOOr
m

I00r
*7

. 1 ;  **

4 “tfc
■ A o

1
la)

1
lb)

Fig. 5

Dependences of the fire ball mass and its energy on the momentum transfer

CMS upon A and 7  . If this is  the case , the inelasticity  w ill have to decrease 
with in creasin g  energy. Such a trend could hardly be incorporated with v a r i
ous observed  fa cts  in co sm ic  rays . Since the tw o-fire -b a ll m odel is based 
m ainly on experim ental data fo r  prim ary energies between 101 1  eV ar;d l0 1 3 e\£ 
d iscu ssion s  on the energy dependence w ill need m ore  data covering a wider 
range of en erg ies .

4 .2 . M u lti-fire -b a ll m odel

The m u lti-fire -b a ll m odel has been proposed  by HASEGAWA [21] on the 
basis  of m ore  than one hundred je ts . Although they include many events of 
la rg e  the forw ard  and backward groups can be assigned in most of the 
ca ses  except seven . Some typ ica l exam ples of the log -tan  plots are shown 
in F ig . 6 . By inspection  of the log -tan  plots one can assign  not only two groups
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Fig. 6

Examples of log -tan plots. Fire balls are identified by horizontal bars and their Lorentz factors
are shown unterneath :

(a) J. Duthi, C. Fisher, P. H. Fowler, A. Kaddours, D. H. Perkins and K. Pinkau, Proc. Moscow 
Conf, on.Cosmic Rays I (1959) 35 

(f>). (c) A. G. Barkow, B. Chamney, D. H. Hashkin, P. L. Jain, E. Lohrman, M. W. Tencher and 
M. Schein, Phys. Rev. 122 (1961) 617

but a lso  fou r groups. In a few ca ses  six  groups may be seen, but they are 
either produced by ana partic le  o r  associa ted  with a considerable  number 
o f heavy tra ck s , so that they could be due to plural co llis ion s  in nuclei.

In o rd er  to see the reality  of four groups, the F -p lo ts  are made for 
resp ectiv e  groups, as shown by an exam ple in F ig . 7. F rom  the d iscussions 
given in Section 2.2 (iv), there holds a relation fo r  the k-th fire -b a ll :

L log  (7 k tan Oj) % L log  tan (0^ / 2 ).

10

F
1-F

0.1

H ............. -
log tan 0 

Fig. 7

(4 .5 )

F-p ots for four fire-balls in event (c) given in Fig. 6. Particles from respective fire-balls are distinguished by 
different marks, Q •, A,  x with increasing 0
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w here 0j* is  the em ission  angle of the i-th  particle  in the rest system  of the 
k -th  f ire -b a ll . Since (2. 18) holds fo r  tan (0 ^ /2 ), the F -p lot is  possib le  fo r  
those p a rtic les  which are supposed to belong to the k-th fire -ba ll. F ig. 7 indi
ca tes  that the F -p lo ts  o f four groups are w ell in agreem ent with each other. 
Even if the F -p lo ts  are made fo r  all possib le  fire -b a lls  produced in different 
events, plotted points are concentrated along a curve, as shown in F ig . 8 .
The F -p lo t  shown h ere is much steeper than that expected fo r  the isotrop ic 
d istribution and may indicate a sin 20 + distribution in the fire -ba ll system .

Fig. 8

F-plots for fire balls produced in different events. Curves indicate the theoretical distributions, 
sin2 (e K)d(cos e 1̂ ), for Bc/df = 1.1 and 1. 3. Dotted line shows the isotropic distribution

for 0c/3f = 1.

H ow ever, som e caution is  n ecessary , because the velocity  of particles 
em itted in the fire -b a ll system  is not high enough fo r  neglecting the square 
bracket fa cto r  in (2. 19 ). Indeed, a slight change of ßc /ß + gives r ise  to a 
con sid erab le  shift of the expected curve fo r  large 0 , but not fo r  sm all 0 . 
Since m ost o f plotted points lie  low er than the isotrop ic  line at sm all 0, one 
m ay be allow ed to conclude that the probability fo r  particles  emitted along 
the d irection  o f flight of a fire -b a ll is relatively  low . It may be worth while 
rem ark ing that the an isotrop ic distribution indicates a non-vanishing spin 
o f the fire -b a ll .
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log y c tan 8; —
“ I-1— I I I TT I-------

Fig. 9

Distribution of yc tan 0j and tan 0 ^ , based on 18 events in each of which four fire-balls are identified, 
Smooth curves are the distributions excepted for the sin2 $( law

The ex istence  o f fou r fire -b a lls  is illustrated in F ig . 9 by the log  yc tan 0 
plot fo r  a ll secondary p a rtic les  observed  in 18 such events. In the Figure 
p a rtic le s  belonging to the backward fire -b a lls  are superposed by turning 
over th e ir  lo g  Yc tan 0 distribution with respect to the median point. The 
d istribution  is  found to con sist of two peaks reasonably separated from  one 
another. In the sam e F igure the log  yK tan 0K distribution of f ire  balls is shown, 
in the sam e m anner. This con sists  of two evidently separated parts. From  
th eir re sp ectiv e  parts the mean values of yK can be obtained.

The log  yc tan 0 distributions of partic les  em itted from  such representa
tive  fire -b a lls  are  shown by two cu rves based on the sin 20+ law. Again one 
can see the fa ir  agreem ent between expected and observed  distributions.
Since the d istribution based on the sin 20+ law is  narrow er than that on the 
iso trop ic  law , the separation o f two peaks would not be so distinct on the 
la tter assum ption.

If the m u lt i-fire -b a ll m odel is  taken fo r  granted, there follow  a number 
o f in teresting  con sequ ences.

(i) The m ass of a fire -b a ll . If fire -b a lls  are assigned as above, the num
b er  of tra ck s  em itted fro m  a fire -b a ll can be m easured. The distribution 
o f track  num bers is  lim ited  in a rather narrow  range and is strongly peaked 
at about fou r, as shown in F ig . 10. On the basis of 377 fire -b a lls  observed, 
the average num ber o f track s and the standard deviation are shown by

n f (charged) = 4.1 ± 1.2. (4 .6 )

The d istribution  is  found to be independent of prim ary energy, the d irection
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n , (CHARGED) No. OF CHARGED PARTICLES EMITTED 
FROM A FIRE BALL

Fig. 10

Distribution of the numbers of tracks emitted from 377 fire balls

of fire -b a lls  and the ve locity  th ereo f. Including neutrical p a rtic les , we may 
regard  the average num ber of p a rtic les  em itted from  a fire -ba ll,

- <n£> 6 , (4 .6 ')

as a ch a ra cte r is t ic  feature o f the fire -b a ll.
T his leads us to the m ass value o f a f i r e -b a l l .

2 (4 .7 )

w here M„ is  the nucleon m ass, on account of the average pion energy of 
about 2 M , in the fire -b a ll system . This suggests that the fire -b a ll in the 
m u lti-f ire -b a ll m odel is  m ore  like a particle  than a strongly coupled system  
in the tw o -fire -b a ll m odel. This may be con sidered  as an excited state which 
behaves like  a nucleon-antinucleon  system  or  an excited state of a boson,

(ii) The v e lo c it ie s  o f f ir e -b a lls . The Lorentz factor of a fire -b a ll given 
in (4 .2 .) can be reduced, on account o f :



to
tan(0*/2) = tan[(7r + 0*)/2]= - cot(0b*/2),

7*  = (1 / 2 7C) [c o t  (0 * /2 ) + cot (Q*/2)] = 1 /2 Tc (Tf + 7b) (4 .8 )
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fo r  a pa ir of sym m etric  fire -baU s. If yf/yc is  obtained in CMS, th erefore, 
y* = 7 * can be calcu lated  from  (4. 8 ) with y( 7b = y£.

* 10

* 8

h — - 
Fig. 11

Correlation between the Lorents factors of fire-balls and primary particles

In F ig . 11 the co rre la tion  between yf / yc and yc is  shown fo r  forw ard 
fire -baU s. It may be seen that the distribution  o f points con sists  of three 
g ro u p s :

Group I 

Group II 

Group III

yshc ^ .2 
7f/yc ~  10 

y{ h c Z 30

3,

20,
> 5,

> 20 , (4 .9 )

Events with two fire -b a lls  are  all found to belong to Group I, while those 
with fou r fire -b a lls  are  such ca ses  in which slow fire -b a lls  belong to Group I 
and fast ones to G roup II. Group III con sists  of those events which seem  to 
have s ix  f i r e -b a l ls ; in such an event three pa irs of fire -b a lls  belong to three 
resp ectiv e  groups.

The separation  .into these groups can be seen from  F ig . 12, in which 
the d istribution of yf /yc is  shown. Two distinct peaks are found to correspond  
to G roups I and II, but the existence*of Group III is  as obscure as the e x 
istence  o f events of six  f ire -b a lls . F rom  this the average Lorentz factors 
o f fire -b a lls  in resp ective  groups are obtained as

< t f >  % 1-5. 45, (4 .1 0 )

the last one being not definite yet.
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“i—i—r i i i 11 fi/fr ~i—i—i i i" i 11— 
100

Fig. 12

Distribution of the Lorentz factors of-fire balls 

The threshold  en erg ies fo r  producing two and four fire -b a lls  with energies 
*are  2 Mn ^ y , being given in (4 .10.), are obtained as 

y (threshold) *  4, 2 0 , .............. (4 .11)

i(4. 10) and (4. 11) are in good agreem ent with the observed  y{ - yc relation 
s h o w n in F ig . i l  and (4 .9 ) .

The above analysis shows that the velocity  of a fire -b a ll has d iscrete  
values and the transition  from  two to four fire -b a lls  takes p lace at a threshold 
energy, at which the average m ultiplicity a lso jumps from  12 to 24.

(iii) In e lastic ity . A d irect consequence of (i) and (ii) is  the energy d e 
pendence of in elasticity . The definition of inelasticity  given in (2.42’ ) is  now 
w ritten a s .

K =  ( T  7 * .  2 M J /2  (Tc - 1 ) Mn = :E .2 1— 7 
Kct rK / ( x  - 1 ),* (4 .12)

w here the sum m ation in the last expression  runs only over forw ard fire 
ba lls  and is  re s tr ic te d  by (4 .1 1 ). Since 7^ is  constant, the value of K d e 
cre a s e s  with in creasin g  prim ary  energy until it reaches a threshold of p r o 
ducing m ore  fire -b a lls . This trend can be seen 'from  F ig . 13.
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Fig. 13

Energy dependence of inelasticity

The energy dependence of K resu lts in highly elastic co llis ion s  slightly 
below  the threshold  and in highly inelastic ones slightly above it. T herefore, 
the accum ulation o f nucleons with severa l hundred GeV and the deficiency 
o f them at about 1011  eV are expected in co sm ic  rays in the low atm osphere, 
provided  that the c r o s s -s e c t io n s  are independent of energy, but no such 
evidence has yet been observed .

(iv) M omentum tra n sfer . Since we know that both and 7* are constant, 
the m a ss  of a fire -b a ll given  in (2.39.) is  related to momentum transfer as

flip = A2 + 2 A P* - A (4. 13)

in the ca se  of two fire -b a lls , again neglecting the tran sverse  momentum 
o f a f ir e  ba ll.

If fou r fire -b a lls  a re  producfed, we can introduce another momentum 
tra n sfer  equal to the d ifferen ce  o f 4 -m om enta of two fire -b a lls  produced 
in the sam e d irection  :

£ f =  l i  - (4 - 14)

In defining A f  as in ( 4 . 1 4 )  we may assum e that the fire -b a lls  are form ed 
by p ion -p ion  in teractions, as shown in F ig . 14.

Then there holds :

A f = A + Pj . (4 .15)

By rep lacing  A  by A f , we get the sam e result as in (4 .1 3 ):

'fll2 3 A2 + 2 A P* - A2 /  (4.16)

where A2 = - A f. A f.
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Diagrams for the 4-fire-ball model

C oncerning the second vertex  from  which P2 com es out, we have 

A'. A' - 2 £ 2 . £ f - £ { .  A f  

= A 2 - 2 (E *E * - P*.T%) + 2 A * p 7 -  A 2 (4.17)

E lim inating A 2 on account of (4 .16 ), we obtain

M\ + m 2= - 2 7* 7 * (1 -ß *  ß*) . + A2 - A 2 (4.170

+ 2A(ßty*2 M 2+ß*y*m,1).
2

A' in (4. 13) and (4. 17) can be expressed  as a function of inelasticity K, 
defined in (2 .42 ’ ). In the approxim ation of high incident energy and sm all 
tra n sv erse  m om enta :

A 2 = ( i f  - PAV  - (E* - EaT)2 *  (E* - Ey  M2JE*a E*.

= [K2/  (1 - K)] [(1 - 1 / 7c)2/ (1 + K /7c] M 2 (4. 18)

This indicates that the value of A; is  of the order of MA, unless the c o l 
lis ion  is  extrem ely  in e lastic . F o r  sm all K, the momentum transfer A' is 
essen tia lly  proportion a l to inelasticity . If K d ecrea ses  with increasing en er
gy, as w as indicated by (4. 12), A' also d ecrea ses  nearly inversely  p rop or
tional to  7C. If the c r o s s -s e c t io n  d ecrea ses  with increasing A', the c r o s s -  
section  tim es  in elasticity  is  a quantity slow ly varying with energy. If this 
is  the ca se , the energy spectrum  of nuclear active particles  behaves sm ooth
ly , as is  currently  believed .

C om paring (4 .13 ) and (4 .1 6 ), one may conclude that A f is  of the same 
o rd er  o f magnitude as A', because the m ass and the velocity  of a fire -ba ll 
is  the sam e fo r  the production of two fire  balls and fo r  that of four fire -ba lls . 
N eglecting  A  ̂ -  d 2 in (4 .1 7 ), we can easily  see that properties  (i) and (ii) 
a re  explained fro m  (4 .16 ) and (4. 17) fo r  A ~  Mn. In fact, the distribution 
o f A obtained by m eans o f (2 .40) indicates this feature, as shown in F ig . 15.
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Fig-,15 .
Distribution of 4-momentum transfer. The value of a  is obtained from the minimum value of (2. 41)

The above con siderations allow us to d iscu ss the ch a racteristic  features 
o f the f ir e  ball m odel further in detail. F rom  (4. 13), (4 .16) and (4 .17) we 
see that the production  o f fire -b a lls  is  possib ly  only fo r  A greater than a 
certa in  c r it ic a l value. The incident momentum could be shared by an out
going nucleon, a fire -b a ll and the tran sferred  m om entum . In the tw o -fire 
ba ll m odel the firs t  one re ce iv es  a constant fraction  and the momentum of 
ttie second one in crea ses  as 7 I/'2. Ik the m u lti-fire -b a ll m odel the momentum 
o f the outgoing nucleon in crea ses  with incident energy because of the d e 
c re a se  of in elasticity , w hereas the other two are kept constant.H ow ever, 
th is trend cannot continue to higher energy in the m u lti-fire  ball m odel. At 
a certa in  value of the incident energy, new fire -b a lls  are created . Since 
they have la rge  m om enta, the value of A does not appreciably change but 
s till l ie s  near Mn. Sum m arizing the above, we may express the m ost r e 
m arkable feature of the m u lti-fire -b a ll m odel in such a way that the squared 
4 -m om entum  o f any internal line is  o f the ord er  of -M 2, while that of any 
external line is  of the ord er  of +M2,.

W hether the high energy pion is  produced through an excited baryon 
o r  indicates som ething new can be judged by observing its tran sverse  m o 
mentum . One experim ent [23] suggests a low value consistent with (2. 27), 
w hereas the other [24] c la im s a higher value. It is too early to draw any 
con clu sion , but this is  an exceedingly interesting problem  fo r  the future 
investigation .

5. REMARKS ON COLLISIONS ABOVE 1014 eV

Although little  d irect evidence has.been available fo r  nuclear in tera c
tions above IQ14 eV , there seem s to be som e indication that som e new fe a 
tures appear in th is extrem ely  high energy region . We have seen from  F ig . 4 
that the energy spectrum  o f produced p a rtic les  b ecom es flatter as the energy 
o f an incident p a rtic le  in cre a se s . In a few 10*® eV events observed  with a 
la rge  em ulsion cham ber, it has been found that a single neutral pion has 
a much grea ter  energy than other secondary p a rtic les  [23]. S im ilar events 
have a lso  been observed  with an a ir  show er detector [24],

Such high energy p a rtic les  cannot be the m em bers produced from  a 
fire -b a ll, because o f th eir  very  high longitudinal m om enta. They may belong 
to a new fire-baH  of m uch higher speed than others, as this m otivated the
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m u lt i-fire -b a ll m odel of Hasegawa. It is  how ever rather plausible to assume 
that they are  the decay products of excited baryons [23]; an incident nucleon 
is  le ft after the co llis ion  in a state not only of high translational energy but 
a lso  of som e excited  energy, as has been seen from  the resonances recently 
ver ified  by experim ents with a cce le ra tors . The im portance of the hyperons 
and the excited  baryons with high translational energies has been suggested 
by PETERS [25] independently of the above d irect evidence but on the basis 
o f other ev idence, such as the hyperon production rate and the resonances 
in the a cce le ra to r  energy region  as w ell as the high energy part of the 
spectrum  in co sm ic  rays .
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A MODEL FOR HIGH-ENERGY NUCLEON-NUCLEUS 
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1. E XPE R IM E N TA L FAC TS IN V ER Y HIGH ENERGY NUCLEON-NUCLEUS
COLLISIONS

I would lik e  to te l l you b r ie fly  about som e in teresting experim ental facts 
ob serv ed  in v e ry  high energy nucleon -n ucleu s co llis io n s . Then, I want to 
p resen t you som e  single  th eore tica l m odel aim ing at a p lausib le  explanation 
o f  the m entioned experim ental data. By v e ry  high energy I mean the region  
extending fro m  highest a cce le ra to r  en erg ies  o f ~  10 GeV to the not too rare  
co s m ic  ray  energy  o f, say, ~105 GeV. A typ ica l high energy nucleon -nucleus 
co ll is io n  can be distinguished from  m ore  elem entary  nucleon -nucleon  o r  pion 
nucleon  co llis io n s  by the p resen ce  o f  a num ber o f b lack  tracks o f n on -re la ti
v is t ic  p a rtic le s . What the em ulsion  peop le  actually see  is  drawn schem ati
ca lly  on F ig. 1.

Fig. 1

Typical high energy niicleon-nucleus collision

T he th ick  b la ck  lin es  r e fe r  to n on -re la tiv is tic  p a rtic le s , the dotted lines 
r e fe r  to re la tiv is t ic  p a rtic le s . At high en erg ies  o f the incident partic le  the 
re la t iv is t ic  secon d a ries  are em itted in a rather narrow  cone w hereas the 
n o n -re la tiv is t ic  ones are d istributed a lm ost iso trop ica lly . (Throughout this 
paper, I am  alw ays speaking o f  the situation in the labora tory  system ). M ajor 
part o f  n o n -re la tiv is t ic  p a rtic le s  form in g  black  tracks con sists  o f  nucleons 
w hereas the re la tiv is t ic  p a rtic le s  are  m ainly m esons. H ow ever, the ex p eri
m entalists have found a lso  h eav ier fragm ents o f  nuclear m atter among the 
p a r tic le s  resp on s ib le  fo r  b lack  tracks. Som e num ber o f light nuclei d, t, He, 
L i, B e, etc. cou ld  be identified. T here is  no evidence fo r  the existence o f 
such heavy fragm ents am ong the re la tiv is t ic  p a rtic les . T hese strik ing d if fe r 
en ces betw een the stru ctu res o f re la tiv is t ic  and the n on -re la tiv is tic  parts o f 
se con d a rie s  em itted in the sam e co llis io n  im ply com plete ly  d ifferent m echa
n ism s fo r  these two phenomena.

In fa ct one can explain these d iffe ren ces  by assum ing two distinct 
stages o f the v ery  high energy n ucleon -nucleus co llis ion . The fir s t  stage,

521



522 J. WE RLE

whic.h m ay be  ca lled  "knock  o ff " , con s is ts  o f a single o r  a few  e le 
m entary c o llis io n s  betw een the incident nucleon and those nucleons of 
the nucleus which just happen to stand in its way. Some secondary pion - 
nucleon  co llis io n s  m ay be a lso  resp on sib le  fo r  the structure of the r e la 
t iv is tic  cone. It seem s that in m any ca se s  the p rop erties  o f the narrow  jets 
o f re la t iv is t ic  p a rtic le s  em erging  from  high energy nucleon -nucleus c o l
lis io n s  a re  v e ry  s im ila r  to those em itted in nucleon -nucleon  co llis ion s . I 
shall not speak o f  the p rop ertie s  o f re la tiv is t ic  p a rtic le s  since this has a l
ready been  done in som e detail by P ro f. Hayakawa. I w ill be m ainly con 
cern ed  with the struck  nucleus o r  rather with what rem ained o f  it a fter knock
ing o ff  the re la tiv is t ic  jets.

H ere , the situation can depend v e ry  m uch on the energy o f the incident 
nucleon , s ize  o f the struck  nucleus, im pact param eter and so on. E. g. at 
lo w e r  incident en erg ies  the scattering o r  em ission  angles can be large  
enough to start in the nucleus an in ternuclear cascade which can blow  o ff a. 
great p ortion  o f  the nucleus. F o r  h igher en erg ies  it is  rather justified  to , 
assum e that the on ly resu lt o f  the firs t  "knock  o ff"  stage is , as fa r  as the 
stru ck  nucleus is  con cern ed , a hole o r  a tunnel bored  through the nucleus 
by  the incident nucleon  and the re la tiv is t ic  secon daries. The existence o f 
such a tunnel, in which (F ig. 2) the sm a lle r  opening angle the g rea ter  is  the 
incident en ergy  can be ju stified  by sm all binding energy o f the nucleons in 
the nucleus in com p a rison  to the v ery  la rg e  energy o f the incident nucleon

INCIDENT
NUCLEON
O

Fig. 2 

Tunnel mechanism

and a lso  by the v e ry  short duration o f  the "knock  o ff"  stage. The rem aining 
r e c o i l  nucleus with a whole bored  through it is , o f cou rse , highly excited.
The excita tion  en ergy  is  qu ickly red istributed  accord in g  to the law s o f sta
t is t ica l th erm odynam ics (as it is  believed ). The excitation  energy is  usually 
high enough to ju stify  the u se  o f  the s im ple sta tistica l m odel o f  the nucleus 
by F e rm i and to ch a ra cte r ize  th is excited  p ie ce  o f nuclear m atter by som e 
tem perature  T. The secon d  stage o f the p r o c e s s  which is  supposed to be 
resp on s ib le  fo r  the om iss ion  o f  n on -re la tiv is tic  p a rtic les  con s is ts  o f the 
red istribu tion ' o f  energy  t ill som e kind o f therm odynam ic equilibrium  ch a ra c
te r ized  by the tem perature T is  reached. This stage ends with the evapo
ration  o f som e num ber o f nucleons o r  h eav ier fragm ents which ca rry  o ff the 
e x ce s s  o f  en ergy  and allow  the rem aining nucleus to com e to som e m etastable 
o r  even stable state. I should like  to point out that there are substantial d if
fe re n ce s  betw een the use o f  the sta tistica l m odel fo r  the excited  nucleus and 
th ose applications o f it to e lem entary  nucleon -nucleon  co llis io n  which w ere 
d e scr ib e d  by P ro f. Hayakawa.
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U sing the sim p le  s ta tistica l m odel o f the nucleus w hose state is  ch a ra c
te r ize d  by a v e ry  sm a ll num ber o f  pa ra m eters  like  tem perature and total 
m a ss  we can m ake certa in  pred iction s. If this m odel is  c o r r e c t  one should 
expect is o tro p ic  em iss ion  o f  evaporated p a rtic le s  in the rest system  o f the 
r e c o i l  nucleus ir re sp e c t iv e  o f th eir  m ass and energy. We can a lso  calcu late 
the en ergy  d istribu tion  o f p a r tic le s  o f  given  m ass as w ell as the frequency 
o f  em itting p a rtic le s  with d ifferen t m a sses  prov ided  that the value o f  the 
excita tion  tem perature  T  is  known and roughly the sam e fo r  a ll ca ses  under 
con sideration . The resu lt o f such estim ations done with som e reasonable 
assum ptions about the value o f  T show s that fo r  exam ple the frequency  o f 
e m iss ion  should drop  qu ick ly with the in creasin g  m ass o f  the em itted p a rti
c le s .

How do these p red iction s  com p a re  with the experim ent? If one con sid ers  
the angular d istribu tion  o f  a ll b lack  track s without trying to distinguish their 
m a sses  one finds roughly is o tro p ic  d istribution  in the rest system  o f the 
r e c o i l  nucleus. In the la b ora tory  system , there is , o f  cou rse , som e tendency 
fo r  the forw ard  em iss ion , which can be understood as a purely  kinem atic 
e ffe c t  o f  the fin ite r e c o il  mom entum . In other w ords during the firs t  stage 
o f  boring the tunnel through the nucleus som e amout o f lin ea r m om entum 
m ust be tra n sfe rred  to the nucleus. It seem s how ever, that som etim es the 
experim en ta l va lues o f  this r e c o il  m om entum  which are n ecessa ry  to obtain 
is o tro p ic  d istribu tion  o f  b lack  tra ck s  exceed  sign ificantly  the th eoretica lly  
expected  lim its . T h is is , how ever, not a v e ry  ser iou s  d isagreem ent.

M ore  in terestin g  phenom ena com e  into light i f  we start to differentiate 
the em itted n on -re la tiv is tic  p a r tic le s  record in g  to th eir  m ass and energy.
It has been  found by se v e ra l la b ora tor ie s  that the num ber o f  heavier fra g 
m ents defin itely  exceed s  the values found from  the sim ple statistica l m odel 
o f  evaporation. T h ere  is  a lso  som e definite e x ce ss  o f energy ca rr ied  o ff by 
these h ea v ier  fragm ents when com pared  with the values expected on the basis 
o f  the sta tistica l m odel by F erm i. The third in teresting deviation from  the 
s ta tistica l m odel is  the angular d istribu tion  o f  the h eavier fragm ents which 
ind icates p re feren tia l e m iss ion  into the forw ard  hem isphere with a maxim um  
at som e angles 0/0  but rather with 20° < 6 < 80°.

W e have, th ere fo re  to explain three deviations from  the statistica l m odel 
o f  the n o n -re la tiv is t ic  p a rtic le s  em iss ion  in h igh-energy nucleon-nucleus 
co llis io n s :

a) e x ce ss  in num ber o f h ea v ier  fragm ents,
b) e x ce s s  in energy  o f  h eav ier  fragm ents,
c) p re feren tia l angle o f em iss ion  0 / 0 .

2. TH EORETICAL EXPLAN ATION

B efo re  going o v e r  to the p roposed  th eoretica l explanation o f these facts
I should like  to s tre ss  that the experim enta l situation is  by no m eans tran s
parent. In spite o f  the fact that the fir s t  d is co v e ry  o f these deviations was 
m ade by P erk in s quite long ago the existing sta tistics  o f such events is still 
not su fficien t to te l l us what a re  the angular and energy d istributions o f non- 
re la t iv is t ic  p a rtic le s  at d ifferen t but fixed en erg ies  o i the indicent nucleon.
W e a lso  do not know v e ry  much about the dependence o f these functions on
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the type o f  the struck  nucleus, m ass o f  the fragm ent etc. To have a m ore  
transparent p ictu re  one should have much m ore  num erous statistics o f events 
d ifferen tia ted  accord in g  to: 1 ) energy o f the incident nucleon E j, 2 ) type o f the 
stru ck  nucleus A , 3) m ass o f the em itted fragm ent M f, 4 ) excitation  energy 
e o f  the r e c o il  nucleus, 5) energy o f the em itted fragm ent Ef, 6) angle o f 
em iss ion  0f etc , etc. In the present experim ental situation data re ferrin g  
to quite d ifferen t values o f the above experim ental param eters are being 
put together which m akes the th eoretica l analysis quite d ifficu lt and obscu res  
the whole p icture. In spite o f the fact that we may wait a long tim e fo r  m ore 
transparent experim ental data we can extract a lready now som e important 
resu lts  and try  to make a theory  which would be able to make som e p r e 
d ictions.

Although the figu res  given by sev era l la b ora tor ies  are  varying and can
not be s im p ly  com pared  fo r  reason s stated above it seem s that the very  ex 
isten ce  o f  the three deviations is beyond doubt and requ ires  som e theoretica l 
explanation. One m ay f ir s t  think that becau se o f these deviations one must 
r e je c t  the s im p le  sta tistica l m odel com pletely . H ow ever, it seem s that it 
w orks rather reason ab ly  w ell as fa r  as em ission  o f nucleons is  concerned. 
T h ere fo re , it w ill be rather better to look  fo r  som e additional m echanism  
which would be ch ie fly  resp on sib le  fo r  the em ission  o f h eavier fragm ents 
with the ob served  p rop erties . In other w ords we shall assum e that between 
the v e ry  quick "knock  o ff "  stage and the com paratively  slow  evaporation 
stage d escr ib in g  the e m iss io n .o f m ost nucleons we have to do with som e 
p r o c e s s  which im m ediately  fo llow s the "knock  o ff "  stage and cea ses  to work 
b e fo re  the evaporation  takes p lace. We m ay ca ll this interm ediate stage 
fragm entation. Thus we have to distinguish probably  not two but three stages:

1 ) knock o ff o f  the re la tiv istic  p a rtic le s ,
2 ) fragm entation  o f the r e c o il  nucleus,
3) red istribu tion  o f  energy and evaporation  o f  the r e c o il  nucleus.

Just the second  stage would be respon sib le  fo r  the creation  o f m ost heav
ie r  fragm ents with rather sm all contribution to the em ission  o f  nucleons 
d e scr ib e d  ch ie fly  by the sta tistica l evaporation  m odel. To produce heavier 
fragm en ts with ob serv ed  e x ce s s  en erg ies  and em itted at som e preferen tia l 
angles we need som e long range fo r c e s  which would be able to act coherently  
upon la r g e r  p ie ce s  o f  the nucleus without destroying the bounds between the 
nucleons in the em itted fragm ents.

The f ir s t  thought is  to make the in ternuclear cascade respon sib le  fo r  
th is phenom enon. H ow ever, the in ternuclear cascad e  o f angles wide enough 
can evolve  on ly at low er  incident en erg ies  E j, It would not w ork in the high 
en ergy  reg ion  w here there cannot be other cascad e  apart from  the narrow  
je ts  o f  re la t iv is t ic 1 p a rtic le s . But even at low  en erg ies  one m ay rather expect 
that the in tern u clear ca sca d e  has the tendency o f  breaking everything into 
single  nucleons than to act coherently  upon la rg e r  p ie ces  o f nuclear matter. 
C alcu lations basing on the in ternuclear cascad e  as a p oss ib le  m echanism  o f 
fragm entation  show that we cannot fit the experim ental data unless we assum e 
the ex isten ce  o f som e new long range fo rce s .

L et us, th ere fo re , start from  another point. Let us look  fo r  a possib le  
sou rce  o f  long range fo r c e s  in the nucleon -nucleus scattering. (By "long 
ran ge" I m ean here a rarrge exceeding sev era l tim es the w ell known range



— o f  n uclear fo r ce s ) . It seem s to m e that such a p oss ib ility  ex ists  due to the „ 
p ecu lia r  behaviour o f  the m eson  fie ld  accom panying a n on-un iform ly  moving 
nucleon.

L et us con s id er  the equation fo r  the m eson  fie ld  cp created  by som e given 
sou rce  p(x, t)

(□ -jU 2) cp {x, t) = - 4.irp(% t). (1)

If the sou rce  function is  tim e independent (static) the solution we are usually 
in terested  in can be obtained by m eans o f the static G reens function

g o f ö x * )  = 1 IT-ö T ' | 1 exp{-u|x"-5ff}. (2 )

F o r  the ca se  o f point sou rce  we obtain the w ell known Yukawa potential with
w ell defined range o f fo r c e s  equal to jj ;

In the m ore  gen era l ca se  o f tim e dependent sou rces  one can so lve  the 
equation (1) by m eans o f s im ila r  G reen ’ s functions if  one w rites P and cp 
in the fo rm  o f  F o u rr ie r  integrals-
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p{x ,  t) = J  p(x ,  u j e i ^ d u ,
-  mC 

+ «O

cp(5£t) =J  cpfx-, u)eiu,tdu,

and a fter inserting  into ( 1 ) com p a res  the coe ffic ien ts  at the sam e frequ en cies . 
One obtains in this way

[A -(n 2-  u2)] cp (x,u) = - 47r p ( x » .  ( 1 • a)

The sp h er ica lly  sy m m etric  G reen ’ s function fo r  this equation has the form  
s im ila r  to ( 2 ) but the exponential is  changed

gw(x,x") = l i r -T 'f ’ exp^ 2 -  u 2 !T-T'|}. (3)

One m ust,of c o u r s e .b e  ca re fu l with taking the p rop er  sign o f  the square root 
in (3). We see  that fo r  u 2 in crea sin g  from  0 to ß% the range o f fo r c e s  tran s
m itted by the u com ponent o f the sou rce  is in creasing  from  the minimum
static value -I to infin ity. F o r  w2 > ß 2 we have to do with wave type solutions 
becau se in  ^his reg ion  \/(j2 u2 is  im aginary. This correspon ds, o f cou rse , 
to the p resen ce  o f  re a l m esons propagated in  a ccordan ce  with the G reen ’ s 
function |x-x'| _1exp ik | x -x ') . The com plete  solution o f the equation (1) can 
be now put into the fo rm

cp(x^t) = f f d u d g x '  p(x7u>)eiu)t e  ^  ~ M21X ~X I (4)

\lT-x'  i
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W e see that the com ponents o f the sou rce  corresponding  to given frequency u> 
a re  m ultiplied by exponential fa cto rs  o f a range in creasing  rapidly with in 
creasin g ! u|. The form ula  (4) is  quite gen era l and valid  fo r  any kind o f  sou rces . 
H ow ever, one cannot say m uch m ore  about the general case  since the result 
o f the integration  o v e r  J ,i . e . the in terferen ce  effect between different u’ s, 
cannot be predicted  in  the general ca se . One m ay, how ever, expect that in 
som e ca se s  we m ay be able to observe  a rea lis tic  in crea se  in the range of 
the m eson ic fie ld .

Let us com e  back to the ca se  of high energy nucleon -nucleus co llis ion .
I am  suggesting that the fragm entation stage is  the resu lt o f the coherent 
action  o f the m eson ic fie ld  accom panying the incident nucleon and distorted 
by its  c o llis io n s  with the other nucleons in  the tunnel. The question im m edi
ately  a r ise s : can this d istorted  m eson ic fie ld  have the proper range and shape 
n e ce ssa ry  to d e scr ib e  the experim ental data? The answ er is  not easy as the 
resu lt o f the ca lcu lation  m ay depend in a very  cru c ia l way on the assum ptions 
about p ,i. e. on the tim e developm ent o f the "knock  o ff"  stage.

In o rd e r  to see i f  there is  any chance o f d escrib in g  the qualitative fea 
tu res o f the fragm entation stage we have made in W arsaw som e sim ple a s 
sum ptions about p trying, how ever, to fit the fre e  param eters to the experi
m ental m ateria l in p ossess ion  o f the W arsaw  cosm ic  ray  group. Thus we 
have assum ed that due to high en erg ies the nucleon can be w eü  loca lized  
and correspon d in g ly  one can ju stify  the use o f the "c la s s ic a l"  sou rce  func
tion

p(xT t) ~  63(T - f ( t))

with som e p rescr ib ed  law o f m otion given by the function ^ (t ) .  We have 
assum ed that the m otion o f the incident nucleon is  uniform  up to the point of 
the co ll is io n  uniform ly  d ecelerated  during the passage through the nucleus 
and again uniform  a fter leaving the nucleus. The plot o f the assum ed nucleon 
v e lo c ity  is  on F ig . 3.

Fig. 3

Assumed velocity versus time plot

The fr e e  param eters like in itial and final v e loc it ies , duration o f the 
co llis io n  (resulting from  the assum ed s ize  o f the nucleus and central charac
te r  o f the co llis ion ) w ere taken from  the experim ental set up. Kaniowski, a 
student from  W arsaw, has m ade prelim inary  calcu lations looking just fo r  the 
shape o f the m eson ic fie ld  accom panying such a uniform ly decelerated nucle
on at a tim e shortly  be fore  it leaves the nucleus. The result o f these ca lcu 
lations seem s to be v ery  encouraging. F ig . 4 shows the schem atic plot of the
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Fig. 4

Schem atic plot o f  the shape o f the curves y  = const, as a function o (z  and the distance tt from the z-axis

shape o f the c u rves (actually su rfaces) <p = const as function o f z and the 
d istance r = \/x2 + v2 from  the z ax is. On the right the corresponding plot 
fo r  uniform  m otion is  shown. F o r  uniform ly decelerated  m otion we have 
found that the m eson  fie ld  gets d istorted  into the right d irection .

In fact som e kind o f shock  wave is  crea ted . The "w in gs" o f this shock 
w ave extend as far as 4 -5  fe rm is . F o r  the assum ed values o f  the free  pa
ra m e te rs  the angle 0f = 26. 5° which fits  quite w ell to the experim ental value 
o f  the W arsaw  c o s m ic  ra y  group  o f  ~ 3 0° . Of cou rse , these resu lts  are  very  
p re lim in a ry . We a re  now doing m ore  elaborate ca lcu lation  on an e lectron ic  
com p u ter aim ing at a m ore  detailed  knowledge o f the shape, tim e develop 
m ent o f the shock  w ave, the energy ca rr ie d  by its  "w in gs" etc . Unfortunately, 
I have not got the resu lt o f  these m ore  extensive ca lcu lation  as yet.
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I. INTRODUCTION

R ecently som e p ro g re ss  has been made tow ards understanding the prop 
erties  of co sm ic  ray events in term s of p rop erties  o f strong interactions 
at low er  en erg ies . F o r  exam ple, the on e-p ion  exchange m odel was applied

'y~yxvr f t tt \

Fig* 1

A highly inelastic event leading to several "clum ps'’ by means o f repeated one-pion exchange

to p eriph era l co llis ion s  and then generalized  by the SALZRIANs [1] , 
GOEBEL [2] and AM ATI et a l. [3 ] to a repeated one-p ion  exchange m odel 
which leads to severa l "c lu m p s" o f p articles  in the final state (F ig . l ) .  In 
this genera lized  approach a very  high energy p ro ce ss  is reduced to a product 
o f fa c to rs , each representing production o f one of the clum ps at much low er 
energy where the interactions are better understood.

M eanwhile e lastic  proton -proton  scattering [4] at a cce lera tor  energies 
has been found to d ecrea se  exponentially with increasing momentum transfer 
| t| . O ver part o f the range o f experim ents, esp ecia lly  at | t| < 1 (GeV)2, 
the observed  behaviour m ay be explained by the exchange o f a single dominant 
R egge pole  [5 -8 ] , but the exponential fa llo ff p ers ists  at la rg er  [ t| where 
the detailed m echanism  is  not understood.

In the presen t approach we shall assum e, without attempting to under
stand the underlying reason s o r  fo rm a lism , that the exponential damping 
o f la rg e  m om entum  tra n sfers  is  a general ch aracteristic  of high-energy 
am plitudes. The rate o f damping w ill betaken from  the existing elastic proton- 
proton resu lts [4] and applied to in elastic p + p and n + p events. We also 
em ploy a breakdown into low -energy clum ps as in the w ork o f the SALZMANs
[1] , GOEBEL [2] and AM ATI et a l. [3] , whose approach and results we 
follow  in m any re sp e cts . No restr ic ition  is  made to one-p ion  exchange be
tween clum ps, how ever.

O bserved  features [9, 10], such as " f ire b a lls "  and constant transverse 
m om entum  o f secondary particles, com e out in a natural way, with reasonable 
m agnitudes. The relation  o f these prop erties  o f co sm ic  rays to sm all m om en-

5 2 9
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tum tra n sfers  has already been  noticed by cosm ic  ray experts [ 1 0 ] , so the 
present approach se rv es  esp ecia lly  to em phasize that momentum transfers 
are com parably  sm all at m achine energies and at higher en erg ies . One result’ 
o f the present approach is  that a definite conception o f the fireba ll, as d is
tinguished from  individual p a rtic le s , em erg es . This p icture will be discussed 
in detail, e sp ec ia lly  in the energy region  103 -  105 GeV where m ost o f the 
data on fireb a lls  has been obtained.

II. THE ASSUMPTION ON MOMENTUM TRANSFER DEPENDENCE

At -1  (G eV)2< t < 0, e la stic  p roton -proton  scattering d ecreases exponent
ia lly  with increasing  | t| and the width o f the exponential peak d ecreases 
slow ly  as the energy r is e s . The data are consistent with the form ula [5, 8]

where s is  the square o f the cen tre o f m ass energy, M is  the nucleon m ass, 
and a (t) is  the spin o f the dominant R egge tra jectory , r is in g  from  about 
a = 0 at t = -1  (GeV)2 to  a = 1 at t = 0 .

At la rg e r  -t , a (t) seem s to stabilize in the region  0.5 < a < 0, with 
la rge  e r r o r s . If this is  true,the fa ctor  exp [ - 2  |t | a 'ln (s /2 M 2)] decreases 
no further; n everth eless  da /d t still fa lls  with in creasing  -t at approxim ately 
the rate 10t/ M* = exp[ 2.3 t /M 2] , rather independent o f energy [4] . The 
reason  fo r  this behaviour is  not known.

Our assum ption w ill be that any high-energy amplitude d ecreases at 
least as fast as exp [ 1.1 t /M 2] . T h is-is  taken d irectly  from  the square 
root o f  the e lastic  p roton -proton  c r o s s -s e c t io n . If (II. 1) is  appropriate, the 
am plitude m ay d ecrea se  faster. F o r  the dominant inelastic p ro cesses , how
ev er , a sim ple kinem atic analysis shows that the reactions are not in the 
asym ptotic reg ion  w here (II. 1) is  valid.

A ctually  there are two momentum tran sfers  in e lastic scattering, the 
"d ire c t"  tra n sfe r  t and the "exchange" tran sfer u. They are related by the 
constraint s + t + u = L M2. The distance to the nearest singularity (t = u2 
at sm all 11) is  th ere fore  the sam e in either variab le ; |t - u 2| = [u  - EM 2 
+ u2 + s j .  Thus our assum ption can be form ulated m ore  generally: in 
each  variab le  the am plitude fa lls  o ff exponentially as the distance of the 
variab le  from  the n earest singularity in crea ses . Naturally it is  m ost con 
venient to use t at sm all ] t] , fo r  then the nearest singularity lies  at a sm all 
m a ss  fixed  independently o f s. In the inelastic case  where many momentum 
tra n sfe rs  can be defined, we shall again find it convenient to use a sm all 
one.

in . HOW LARGE ARE THE CLUMPS?

T o appreciate  the e ffect of the assum ption made in Section II, consider 
F ig . 2 fo r  the reaction  A + B -» C + D, where C and D are arb itrary  clum ps

f  (t) e OLD
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R g . 2

The reaction A + B - »  C + D

o f pa rtic les  with en erg ies  M 3 and M 4 resp ective ly  in their own centres o f 
m ass. Define s = (pi + P2 f  and t = (P3 - p j )2 in the usual way. In the centre- 
o f-m a ss  system  o f the entire reaction , C and D each em erge with momentum 
Pt tra n sverse  to the in itia l d irection  o f m otion. The relation  between t and 
pT is  given by

t =  -p 2 M j +  m J -  M2 ] 2 - [M 2 + » £  - M 2 - M 2 + 2p2 ]2}

(HI-1 )

One sees  that -t  grow s d irectly  with p| . Thus our assum ption of exp [1 .1 /M 2] 
fa llo ff im p lies  exp [-1 . 1 p | /M 2] fa llo ff with increasing transverse m o
mentum. In fact, from  (III. 1) it is c lea r  that the experim ental absence 
o f large  p t d irectly  im p lies  that la rge  111 are absent. The momentum trans
fe r  is  som ewhat le s s  sensitive to the m asses  o f clum ps at high energy s, 
and the exponential fa llo ff tends to r e s tr ic t  the m asses only when they grow 
at least as fast as M 2 M2 ~  s.

B efore d iscu ssing  further the dynam ical lim itation on clum p size , we 
need to agree on a definite way to assign  the various particles  in a co m 
plicated final state to clum ps.s C onsider the ce n tre -o f-m a ss  fram e fo r  the 
reaction  A + B -» many p a rtic les . Now clum p C w ill be defined to consist 
o f a ll p a rtic les  which go forw ard  in the centre o f m ass, and clum p D w ill 
be defined to con sist o f a ll p a rtic les  which go backward. This definition 
y ie lds a re la tive ly  sm all m om entum  tran sfer and co in cides with the natural 
experim ental d iv ision  into forw ard  and backward groups.

T here a re  various ways to ca tegorize  the exchange that o ccu rs  between 
(A, C) and (B, D) in F ig . 2. It can be d escribed  as a one-p ion  exchange, plus 
a tw o-p ion  exchange, plus an NN exchange, and so forth. Or it can be de
scr ib ed  as the exchange o f 'a  su ccess ion  o f Regge poles. In any case  the co m 
plete amplitude fa cto rs  into a product o f term s:

(1) The amplitude fo r  A + exchanged ob ject E -» C. (Of cou rse , the 
amplitude m ust be continued from  the physica l square m ass of E to a 
negative square m a s s .)

(2) A fa ctor  involving only E.
(3) The amplitude fo r  B + E -» D.
The next step  is  to  take amplitude (1) o r  (3) and again break the final 

state into two groups o f p a rtic les . F o r  exam ple (F ig. 3) in the ce n tre -o f-  
m ass o f (1) we include forw ard -m ov in g  pa rtic les  in group 5, with energy x 
Mg in its  own rest fram e, and backw ard-m oving pa rtic les  in group 6 .

T here a re  now four groups o f p a rtic les  in the final state, and these 
groups could  be sub-d ivided  further to the point w here each clum p contains
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Fig. 3

Breakdown o f A + B - » C + D  into 4 clumps

only one p a rtic le . But we shall ca r ry  the subdivision only down to the point 
where each  clum p contains a couple o f GeV. At this point it is  possib le  to 
make som e qualitative estim ate of what w ill happen without reducing the 
energy further, and our assum ption on exponential damping o f large m om en
tum tra n sfers  cannot be used at low er en erg ies . The question then is : how 
many subdivisions are requ ired  before  each clum p is  reduced to a couple 
o f  GeV ? If there w ere no dynam ical restr iction s , the energ ies M 3 and M 4 
o f clum ps C and D in their own rest fram es could take up all the available 
cen tre -o f-m a ss  energy  Js, leaving no relative kinetic energy fo r  the clum ps. 
In th is case  many subdivisions would be requ ired  to reduce the clum ps to low 
m a sses . H ow ever, M § M l would then grow  as s 2 and -t  would grow  as 
s, and here the dynam ical assum ption o f section  II which damps large  m o
mentum tra n sfers  b ecom es  relevant.

C onsider fir s t  A + B -* C + D (F ig . 2). The cro ss -s e c t io n  can be ex
p ressed  in term s o f the cross-section s  aAec(t; M § )fo r  A + E-^C [E has m 2 = t] 
and fo r  B + E->D by a slightly m odified  form  o f the Salzman r e 
lation  [1 ] :

a t 8 M 2 8 M f  2(2 ^ 2" m 2"  K e c ^ ^ M 3] F (s , t, s , .  s2)[ a BED (t; M ^ M * ]
(HI. 2)

w here pu, is  the m om entum  o f A in the lab [r e s t  fram e of B ], q c is  the 
m om entum  o f A in  the cen tre o f m ass o f the reaction  A + E -* C, and qB 
is  the m om entum  o f B in the cen tre o f m ass o f B + E -> D. The factor F(t) 
r e fe r s  to the system  exchanged; it is  (t -m 2 ) ' 2 in one-p ion  exchange and 
exponentially decreasin g  in our ca se . At high en erg ies , with M j and M 2 
fixed , (III.2) s im p lifies  to

3 3ct m 2m 2

3 t a M 2 9 M 2 = 2 (2  7T )3  S 2 c t a e c F c t  bed- (m -3 )

The c ro ss -s e c t io n s  crAEC and a  BED are expected to rem ain approxim ately 
constant as M§ and M| resp ectiv e ly  in crea se . Our method is  too weak to 
understand the t dependence o f <jaec a BED or the dependence of F on s, s : 
and S2, but provided  none o f these fa ctors  in crea se  exponentially, it is  c lear  
that large  ] t| a re  restra ined  by F ~  exp (-2 .3  11| ), and this is  sufficient
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to estab lish  that M f M|<L s M * 2 where M * is  o f o rd er  1 G eV *. The next 
step is  to  break  clum p C down into subgroups with m asses  M s and Mg . The 
cen tre -o f-m ass  energy squared fo r  the reaction  A + E -»C  is  M§ , and the 
lim itation  on m om entum  tra n sfer  leads in this ca se  to M| Mg £  M§ M*2. 
S im ilarly  the breakdown o f clum p D leads to M f Mg < M| M * 2. A ltogether 
one has M sM öM tM s < M *3 s* .

F o r  exam ple, i f  the lap energy o f a p roton -proton  co llis io n  is  104GeV, 
then s = 2 X 104 GeV2 and M 5M 6M 7M 8 <  1.4 X 100 X M *3. If we take M *2 
= (2 .3 ) '1 G eV2(the value fo r  which exp [ - 2 .3  ) t] ] becom es exp (- l) ] ,th e n  
M 5M 6M 7M 8 40 G eV4. In ca se  each  split was sym m etric , M 5 = Mg = M 7 
= M8^,2.5 GeV and all 4 clum ps have reached the low -energy region  where 
one can make p lausible gu esses about them without further reductions. Of 
cou rse  n on -sym m etric  sp lits  are  a lso  allowed, and in extrem e ca ses  la rg er  
clum ps would requ ire  m ore  than two su ccess iv e  reductions at 104 GeV.

IV . FIREBALLS

Let us d iscu ss  in  m ore  detail the 4 clum ps obtained in proton -proton  
reaction s  at lab en erg ies  o f 104 GeV. Although we have only obtained a 
m axim um  size,th e experim ents suggest that this m axim um  size  is  about 
n orm al; and we shall confine the d iscu ssion  to the ca se  where the maximum 
is  attained without attempting to d is co v e r  why it is  usually attained. In the 
cen tre  o f  m ass one w ill see  a fast clum p m oving forw ard  along the original 
d irection  o f A (rem em ber that pj- must be sm all fo r  a clum p) and another 
m oving backward along the orig in a l d irection  o f C, each follow ed by a slow er 
clum p m oving along the sam e line (F ig. 4).

A -----► ----- B

-«------© ••-© ©-► ®-----►

Fig.4

Motion o f  clumps in centre o f  mass o f reaction A + B —> C + D

The damping o f la rge  mom entum  tra n sfers  between clum ps suggests 
the dom inance o f  long-range fo r c e s , and on this basis  one expects that sy s 
tem s o f baryon num ber ze ro  w ill norm ally  be exchanged between the clum ps. 
Each o f the two fast clum ps (5 and 8) then ca r r ie s  baryon num ber one since 
the incom ing p a rtic les  A and C w ere baryons, and the two slow  clum ps (6 
and 7) ca rry  baryon num ber ze ro . In a ccordan ce  with cosm ic  ray term in olo
gy the clum ps with baryon num ber one w ill be ca lled  nucleon isob a rs , and 
the clum ps with baryon num ber z e ro  w ill be ca lled  " f ir e b a lls " .

How m any fireb a lls  are  there in gen era l?  We have adopted the procedure 
o f subdividing until reduced  scattering  events are obtained, each at a r e l 

*  It might be objected that, as -t becomes very large and far from the nearest singularity at positive 
t = jj! , it may approach the nearest singularity at negative t -  £M f -  s -  p«, and the cross-section may rise 
again. This possibility is excluded by the definition o f  t as (p 0 -  p^)2 where pc  and pa are both in the for
ward hemisphere in the centre o f  mass.
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atively low  energy. B ecause o f the low  energies involved, each of these 
scatterin gs produces a re la tive ly  isotrop ig  final state in its own centre o f 
m a ss , though still peaked som ewhat forw ard  and backward. It is  these re la 
tive ly  iso trop ic  final states which are ca lled  nucleon isobars or fireba lls . 
Now as the overall' energy o f the reaction  is  in creased , the ce n tre -o f-m a ss  
energy o f each " f ir e b a ll"  and " is o b a r"  slow ly  in crea ses , and each o f them 
becom es m ore  strongly  peaked forw ard  and backward. Above som e clump 
m a ss , o f ord er  5 GeV fo r  the clum ps with nucleon num ber one and perhaps 
low er fo r  the fire b a lls , it b ecom es meaningful to sp lit the clump again into 
its forw ard  and backward com ponents, each o f which has a m ass between 
1 and 2 GeV and is  re la tive ly  iso trop ic  again. In sum m ary the m ass o f f ir e 
ball always lie s  betw een extrem es of o rd er 1 and 5 GeV, and as the overa ll 
energy o f the reaction  in crea ses  fireb a lls  sw ell into dumbbell shapes and 
divide rather than grow  beyond their p rop er s ize s  [11] . The p rocess  is 
illustrated  in F ig . 5*.

-— o * o  o—*■ o----- ►
e2 > e,

-----------C O  — C O  C O —  C O ----------------►

e3> e2
•«--------- O •«— O -«-0 . 0  O  o— .o—-O-----------►

F ig .5

The growth o f  clumps along the original direction o f  motion in the centre o f  mass, as the energy increases

Although the num ber o f fireb a lls  in crea ses  with energy, the in crease 
is  slow . A t 30' GeV lab energy, p roton -proton  scattering leads to two " i s o 
b a rs "  and no fire b a lls . At 104 GeV lab energy two fireba lls  have also devel
oped. At 108 GeV a sym m etric  sp lit-up  leads to 6 fireba lls , each with a m ass 
o f about 2.3 GeV. In general n clum ps are obtained with repeated applica
tions o f the form ula

leading to

M 2 M 2/ M * 2 = s (IV .l)
6 4*

(M2M 2/M * 2) '(M 2 /  M *2 ) = s
1  2 ,  <IV -2 > 
J[Mi /  (M* ) n 1 = s 

i = l

*It should be mentioned, however, that there is some evidence for fireballs emitting secondaries into 
a disk pattern peaked perpendicular to the incom ing direction, rather than into a dumbbell paitem (e .g .  
Ref.[10]). Further evidence on this point should be o f  great importance for the consistency o f  the multiple 
fireball picture.
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where each  of the M ; is a fireb a ll or  isob a r  m ass, not greater than 5 GeV. 
Taking an average square m ass fo r  the fireb a lls  and isob a rs , one finds

n= -[In  (s /M * 2)] /[ ln  (M2 /M * 2 )] (IV .3)
\ *

so  the m ultip licity  o f iso trop ic  clum ps in crea ses  as In s.
A sym m etric  as w ell as sym m etric  sp lit-ups o ccu r , since only the com 

bination M$ M f  enters into E q. (III. 1) when M'§ and M| are each much 
g rea ter  than 1 G eV 2. The asym m etry is  esp ecia lly  noticeable when it occu rs 
in the fir s t  sp lit-u p , leading to a depletion o f secon daries  in one hem isphere 
in the centre o f m ass. Suppose this happens at 10 4 GeV lab energy, and 
M 2 is  la rge  while M 2 is  only a few  G eV 2. Then in the backward hem i
sphere a nuclear isob a r , o r  perhaps only a single nucleon em erges, while 
in the forw ard  hem isphere M| = M *2 s /M  f  can be split into 4  clum ps if 
M.\ = 1 GeV1 (single  nucleon), o r  3 to 4  clum ps if  M| = severa l G eV 2 
(nucleon isob a r). The general nature of the derivation  showing that fireba ll 
m u ltip licity  r is e s  as In s ensures that asym m etric sp lit-u ps lead to s im ilar 
m u ltip licities .

F rom  the foregoin g  descrip tion  it is  c le a r  that the nucleon isobars and 
fireb a lls  have a s im ila r  orig in  in the present m odel. The m asses o f f ir e 
ba lls  and isob a rs  are su fficiently  low  relative to the nucleon m ass, however, 
to lead to certa in  d iffe ren ces , and one o f these is the m ultiplicity of particles 
em itted from  the fireb a ll o r  isob a r . C onsider the m ass 2.5 GeV, fo r  exam ple. 
A  state with this m ass and baryon num ber one is expected to contain one 
nucleon and one or two p ions. A state with this m ass and baryon number 
z e ro  is  expected to contain three o r  four p a rtic les  which are m ost likely 
ir, p , u o r  n. The decajr o f the p , u or n then leads to a final state with 
about s ix  p ions. This is  what happens, fo r  exam ple, in the final state of 
pp annihilation. Thus the fireb a lls  produce pions much m ore  cop iously  than 
the nucleon is o b a rs . F o r  an incident lab energy o f 104 GeV each isobar 
em its one o r  two pions and each fireb a ll about s ix , o r  a total o f about 15 
p ions.

The logarith m ic growth with s o f fireb a ll and clump m ultiplicity Eq.
(IV .3) indicates that p a rtic le  m ultip licity  in crea ses  as In s at large s where 
the fireb a ll p icture  is  applicable [3] , s in ce  an average fireb a ll em its about 
the sam e num ber o f p a rtic les  whatever the orig inal s is . A ctually the rate 
o f in crea se  in pp scatterin g  from  30 GeV to 104 GeV in the lab is  somewhat 
enhanced because the two fireb a lls  which appear in this energy region  p ro 
vide m ore  p artie les  than the two "nucleon  is o b a rs "  which w ere already 
present at 30 G eV . F or  exam ple, we expect the total number of p a rtic les ,
N, to in crea se  from  about 5 to 17 as the energy r is e s  from  30 GeV (2 nucle
on is o b a rs ) to 104 GeV (15 pions + 2 nucleons) w hereas the form  N = a In s  
would give a r is e  from  about 5 to 13 in this in terval. This makes our p red ic 
tions fa ir ly  com patible with the data even though the observed  m ultiplicity 
is  traditionally  represen ted  as grow ing at a rate N ~  s 4 over much o f this 
reg ion  [9, 10] .

Everything that has been said fo r  p roton -proton  scattering would also 
hold fo r  p ion -p ion  scatterin g , with one o f the outside nucleon isobars r e -
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placed  by a fireb a ll. As a by-produ ct at 30 GeV where only two clum ps are 
typ ica lly  fo rm ed , one expects a somewhat higher partic le  m ultiplicity in 
7T N reactions than in NN reactions because one o f the clum ps contains only 
pions in the fo rm er  ca se .

Since events o f a rb itra r ily  high energy reduce to products o f events 
at severa l GeV, m ost o f the secon daries are p ion s, and K m esons and 
baryons w ill be produced  in ra tios  s im ilar  to those found at a few  GeV.

V . TRANSVERSE MOMENTA

One o f the m ost persisten t phenomena in high-energy and cosm ic-ra y  
ph ysics  involves the tran sverse  momentum distribution  o f inelastic second
a r ie s : fo r  any incident energy, the distribution is  peaked around px ~  0 . 4  

G e V /c . At a cce le ra tor  energies the tail o f large p t  has a lso  been studied 
quantitatively [1 2 ] and is  found to fa ll o ff exponentially, consistent with 
exp ( - p t / 0 . 2 )  |pT in G eV /c] .

The k inem atical dependence o f t on p 2 (Eq. III .l) , together with ex
ponential damping o f la rge  1 1 | , damps the tran sverse  momentum o f each 
clum p as exp (-2 .3  p 2 ). A s a consequence each fireba ll or  nucleon isobar 
m oves approxim ately along the line o f flight o f the p articles  which initiated 
the reaction . Then the tran sverse  momentum o f pach p article  has a com 
ponent due to the m otion o f its clum p (shared among severa l p articles  and 
th ere fore  sm all), plus the m otion o f the p a rtic le  relative to the clump centre 
o f m a ss . The la ter contribution re fe r s  to a reaction  of only a few GeV, so 
the tra n sverse  mom entum  o f individual p a rtic les  redu ces approxim ately 
to the low -energy  figure no m atter what the incom ing energy is . Large trans
v e rse  m om enta are strongly  dam ped by dynam ical fa ctors , and further 
damped at a few  GeV by com petition  among the pa rtic les  in a clump for  phase 
space .

What does this m odel have to say about the tran sverse  mom enta of d if
ferent kinds o f secon d a ries : jt, K, N ? D istinctions can appear only in the 
last stage where a clum p is  broken down into severa l p a rtic les , and this 
involves reaction s at a few  GeV. H ere the dynam ical damping o f c r o s s -  
sections a,t la rg e  m om entum tran sfer is  probably o f order (t - M2 ) ’ 2, where 
M is  the exchanged m ass, rather than exponential. The exchanged m ass 
is  grea ter  fo r  production  o f K*s and baryons than fo r  pion production, so 
the dynam ical damping o f la rge  pr relative to sm all pt may be weaker for 
K*s and baryons. T here are a lso  phase space factors  to con sider, and these 
strongly  inhibit the tra n sverse  momentum o f any partic le  from  becom ing 
v ery  la rg e , e sp ecia lly  in the fireb a lls  because they have m ore  particles 
than the "n ucleon  is o b a r s " . At a cce le ra to r  energies pp scattering does not 
yet produ ce  fire b a lls , and the strange p a rtic les  which requ ire  a large  m ass 
exchange m ay w ell have la rg e r  px than pions have.

VI. INELASTICITY

A s a m easure o f the d istribution o f energy in the final states, co sm ic - 
ray  ph ysicists  [9 ,1 0 ]  define the in elasticity  K
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£  _ C e n tre -o f-m a ss  energy o f secon daries  ^  ^
C e n tre -o f-m a ss  energy o f in itial state

The "se co n d a r ie s "  are defined as all p a rtic les  in the final state except for 
the fastest p a rtic le  in each hem isphere.

Let us firs t  con sid er  the contribution o f a fireb a ll to K, in the energy 
ränge where there are only two fireb a lls . In section  III the relation 
M §M|Mf Mf ~ M ^ 6s w as-established fo r  this energy range. A particu larly  low 
in elasticity  is  found when the reaction  is  sym m etric  in the centre of m ass 
[M s = M 8, M 6 = M 7] and the "n ucleon  isob a r" is  sim ply one nucleon [M 5 
= M], Then the fireb a ll m ass Mß is proportional to s^, as com pared with the 
total cen tre -o f-m ass energy s *, so  the in elasticity  K can fall o ff as rapidly 
as s^ i f  the fireb a ll m oves only slow ly in the ce n tre -o f-m a ss  fram e (a p os 
s ib ility  which is  consistent with our conditions). L arger inelasticities are 
a lso  p oss ib le , esp ecia lly  when the nucleon isobar is  la rg er  and em its pions. 
The resu lt depends som ewhat on the detection m ethod; fo r  exam ple, only 
charged secon d aries  may be detected, and then the question is  whether the 
fast nucleon isobar in the lab em its m ore  than one charged partic le . If it 
does, the in elasticity  can ea sily  be 0.5 o r  greater. At somewhat higher 
energ ies where 4 fireb a lls  appear, the in elasticity  can be low  if  the original 
fireb a lls  have grown la rge  and split in two, or la rge  if the original nucleon 
isob a r has grown and split in two [11] . At all en erg ies , then, the inelasticity  
w ill have a broad spread. The average is  essentia lly  con trolled  by the fr a c 
tion o f energy the fastest nucleon isobar shares with pions that get counted 
as " s e c o n d a r ie s " . The com position  o f the nucleon isobar is not very  energy- 
dependent, so  the average should be approxim ately energy-independent [3] . 
The inelasticity  fo r  1r N events should behave s im ila r ly , but the average 
should be higher because there are m ore  fast pions.

VII. REGGE POLES
The author began this study o f highly inelastic events with the hope that 

exchange o f a dominant R egge tra je cto ry  would lead to a sim ple form ula 
like  (II.I). This w orked in the case  o f e lastic  or nearly  elastic scattering 
[5 -8 ]  , where the amplitude at fixed t and large  s was dominated by a term  
proportional t o P a (cos  0t ) ~  (cos  8 t ) a. A s s in creased , co s  0t grew  as

cos  6 t = -1  -2  s /  (t -  4 M 2) , (V II.1)

taking equal m asses  as an exam ple, and the amplitude grew  as s a. Now 
i f  all four m a sses  are unequal in the p ro ce s s  A + B -» C + D, (V II.1) is 
rep laced  by

cosQ  = - ( t 2 + t ( 2 s  - Mi - M2 - M32 - M4 ) + (Mi - M3 ) (M 2 - M4 )} 

sjt - (M1 - M3 )'“ Jt - (Mj  + Mg F sft - (M2 - M4)V t-(M 2+M

(VII. 2)
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We are in terested  in the co sm ic -ra y  ca se  d iscu ssed  in the previous sections, 
where M| M| = M *2 s and Mlt M 2 can be neglected , leaving

cos  0, ~ -2  t s /  M2 M 2 ------2 t /M * 2 . (VU.3)

at la rge  s and fixed  t. So cos  0t does not in crease  with s, and (II. 1) cannot 
be used.

N evertheless it would be desirable  to have a R egge pole  form alism  ap
p lica b le  to highly inelastic events; it might help to put the very  sim ple con 
siderations o f the preceding sections on a m ore  adequate b a sis . The author 
does not know how to do this but would like to ca ll attention to a few  p rob 
lem s which com e up [13] .

T o  begin  with, r e c a ll  the one-p ion  exchange m odel fo r  A + B -»C  + D. 
The am plitude is  written as the product of

(a) the am plitude fo r  A + exchanged jt - » C,
(b) the pion propagator,
(c) the am plitude fo r  B + Jr -> D.
So fa r  the unknown amplitude fo r  A + B -» C + D has sim ply been reduced 

to a product o f unknown am plitudes. The next step is  to calcu late A + v -» C, 
which is  done by expressin g  this amplitude as another one-p ion  exchange.
The p ro c e s s  is repeated  until one has a product o f low -energy amplitudes. 
The incom ing ob jects  in these am plitudes (except fo r  the originell particles 
A  and B) have spin zero , and their m asses a re  in many cases  continued 
from  t = m2 to negative t.

Now if the pion lie s  on a R egge tra jectory , the one-p ion  exchange p r o c e 
dure s t ill applies fo r  t = m 2 , and a natural extension is  to exchange the pion 
R egge tra je cto ry  (or to be m ore  com plete, the sum over a ll tra jectories ) 
at t /  mr2 . The orig inal amplitude can s t i ll  be fa ctored  [14, 15] into the p rod 
ucts o f (a) the amplitude fo r  A + exchanged tra je cto ry  E -*C , (b) a term  
involving only the R egge pole , (c) the amplitude fo r  B + E - » D. Let us assum e 
that the am plitude fo r  A + E -* C, fo r  exam ple, can be expressed  in term s 
o f another R egge p o le  exchange. One again obtains a product o f low -energy 
am plitudes. This tim e the incom ing ob jects  in the low -energy amplitudes 
(except fo r  A and B) are R egge p o les  which not only have m asses continued 
to m2 = t w here t m ay be negative, but a lso  have spins continued to non- 
in teger values which vary  with t. In order to construct a theory o f repeated 
R egge p ole  exchange, then, it w ill be n ecessa ry  to construct a theory of 
am plitudes in which som e o f the external ob jects  are  R egge p o les .

Suppose that a ll this can be done, and con sider the case  where s /m | M 4 
grow s and cos  0t b ecom es la rg e . The exchange o f a R egge pole with 
<*1 (t) betw een clum ps C and D g ives a factor

(ll±S-.\W  ; (VII.4)
VM§Mf /

the exchange o f a p o le  with aj(t') between clum ps 5 and 6 (F ig. 3) g ives a 
fa cto r  (-2 t ’ M §/M | M|) “  , and so  forth . The firs t  factor (VII.4) con 
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tributes to F in the Salzm an form ula  (III.2), which may however contain 
further dependence on t, M§ = S j , and M f = s 2. We would like to end with 
the point that until this further dependence is  known one has no idea whether 
the highest a dom inates even the contribution to da /d t from  large cos  9C, 
fo r  dcr/dt involves an integration f f  dM§ dM| and the fa ctor  (VII.4) sup
p re sse s  la rge  M| and M| when it favours large  s.
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HIGH-ENERGY QUANTUM ELECTRODYNAMICS
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In this paper "quantum electrod yn am ics" (QED) w ill be used in the sense 
o f a c lo sed  theory o f poin t-like  photons and e le ctron s . Muons could then 
easily  be included. We make the usual assum ption that the perturbation ex 
pansion o f  renorm alized  QED g ives at least an asym ptotic expression  o f 
the exact theory, i . e .  that the sum ov er  a few term s in the beginning o f the 
perturbation se r ie s  is  a good approxim ation o f the exact theory.

We expect QED in this sense to break down at sm all distances!, i . e .  
at la rge  mom entum tra n sfers , because o f structure effects resulting from  
other kinds o f interaction , p rim a rily  the interactions o f the electrom agnetic 
fie ld  with the current o f strongly interacting p a rtic le s . This w ill first show 
up as vacuum  polarization  through m eson s. On the other hand we have no 
reason  to believe  that the fundamental theory o f electrodynam ics, i . e .  the 
theory  o f a m a ss less  v e c to r  field  interacting with a conserved  current, will 
break down.

We shall d iscu ss  methods fo r  summing part o f the perturbation expansion 
fo r  QED:

(i) Summation o f a certain  c la ss  o f  Feynman diagram s, the infrared 
divergent diagram s;

(ii) Summation to all o r d e r s 'In a  o f a certain  c la ss  of term s that are 
dominant at high m om entum tran sfers , at least in the low est orders 
o f the perturbation expansion (term s o f the kind [a ln(q2 /m 2 )]n where 
q is the mom entum  transfer).

A  com bination o f the two types o f summation gives a very  accurate expression  
fo r  the quantity to be calcu lated .

The resu lt thus obtained may be useful if very  accurate high-energy 
experim ents can be p erform ed  in the future, in o rd er  to investigate at what 
d istances structure e ffects  show up. One m ay a lso  hope that it w ill somehow 
turn out to be p oss ib le  to include structure e ffects  (through form  factors) 
in the sum m ation proced u re .

We shall d iscu ss  the follow ing top ics here:
(a) The im portance o f the m echanism  o f low -en ergy  radiation;
(b) The sum m ation (i);
(c) The renorm alization  group which, together with a result in (a), will 

be used to p erform ;
(d) The sum m ation (ii);
(e) Com bination o f (i) and (ii) and the consequences.
(a) When one tr ie s  to investigate h igh -energy QED one finds oneself 

in the som ewhat paradoxica l situation that one has to understand the m echa
n ism  o f low -en erg y  radiation b e fore  one can get any results fo r  the high- 
energy p r o c e s s e s . This is, however, not so surprising  fo r  the follow ing reason.

5 4 3
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The e lectron  m ass should be negligible at high en erg ies . Let us therefore 
put m = 0 in the evaluation o f c losed  e lectron  loop s . Then we obtain infrared 
d ivergen ces v ery  s im ila r  to those that o ccu r  as a result of the zero m ass 
o f the photon. The d ivergen ces thus obtained cancel when multiple creation 
o f soft m a ss le ss  e lectron  p a irs  is  taken into account, just as the photon 
d ivergen ces can ce l when m ultiple photon em ission  is  taken into account. The 
m echanism  o f this cancellation  has been dem onstrated in a paper by NAKANISHI 
[5] . Eq. (3 .7 ) in N akanishi's paper says that the degree o f d ivergence of 
a diagram  does not exceed  D where

D = 2n + n ' + 1 - Av (1)

kj are independent integration variables (j = 1, 2, . .. ,v) (soft-particle
momenta)
n = the num ber o f boson  propagators containing only k j’ s.
n1 = the num ber o f  ferm ion  propagators containing only k j’ s.
1 = the num ber o f propagators o f the type

[(p + E cjk j)2 + m 2 - ie] ” 1 , where p2 + m 2 = 0.

F rom  this fo llow s that the only in frared divergent diagram s are those in 
which the soft pa rtic les  are connected with external electron  lin es. Hence 
se lf-en erg y  d iagram s fo r  photons o ff the m ass shell do not lead to infrared
d ivergen ces in the lim it o f vanishing e lectron  m ass. This fact will be used
la ter  on.

(b) L et M be the invariant amplitude o f a p ro ce ss  | i > ->| f > in which
r  e lectron s  (and positrons) with m om enta P i, . . . . pc and charges , ___ .,Q ,
participate:

< f | S - l [ i > =  6(Pf - P j)M  . (2)

Let us define e i . . . . ,  er such that ei = 1(-1) if  the ith particle  is outgoing 
(in com in g ).

In general M contains in frared d iv erg en ces . But if  we take into account 
that along with our b asic  p ro ce ss  | i>  _ » | f  > soft photons may be emitted 
such that their total energy does not exceed  a certain  value AE, we shall 
obtain a finite resu lt. We assum e that

A E /q  < < 1, (3)

where q is  a typ ica l energy in the p ro ce s s . (We shall assum e that if we have
a high-energy p ro ce ss , q is  the momentum tra n sfer  and all momenta pj are
o f the sam e o rd e r  o f magnitude as q. This can usually be achieved fo r  non
forw ard  scattering  with an isotop ic AE in the c . m . s . ) .  We may thenneglect 
r e co il e ffects  from  the soft photons. Let

M (k j, ex ; . . . ;  k m , e m) (4)

be the invariant amplitude fo r  em ission  o f m  soft photons (with momenta
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kj and polarization s ej) along with the p ro ce ss  | i > _» | f > . Then the physical
ly  in teresting quantity is

P (AE) = L
m = 0 L/ d 3 k j . . . d 3 kn

AE m
d x6(E  k:„ - x)

j = l 1

X £ | M (k !, el5 km, e m )|2. 
pol

(5 )

H ere a sm all fictitious photon m ass X has been introduced. It is understood 
that the lim it X -> 0 is to be taken in the final resu lt. The x -in tegra l guarantees 
thatEkjo  ̂ A E . The fa ctor  1 /m ! a r ises  from  the loosening o f an ordering 
restr iction  o f the kind

-  *20 ä • • • * k m0 • (6)“■lO
We shall now exhibit the X -dependence and the kj -dependence o f M (k j, 

e i l km > em ). We are  interested  only in the singular (logarithm ic) X- 
dependence and we neglect term s in kj leading to lin ear A E -dependence. Then 
it is  su fficient to con sid er only the coupling o f  soft photons to external e le c 
tron- l in e s .

Now let n soft photons (with m om enta and polarizations k j, ej) be coupled 
to the ith external e lectron  line (F ig . 1). Evaluation o f this gives fo r  Ci = 1 
(ü(Pi)Mi = M)

(eQ )" V  q(p )X_Jl_ - m )7 J> Oft - m ). . (ift  - m) *
* x)L  tP l,2kil- Rl[2(kjl +kj2 ) f t ] . . .  [2(kjl + . . . + k j n)pi ]Mi

perm 
(jj..- ■ > jn)

jj] UeQ iPft' ) £  (kjj- Pi)t(kji + kj, )r  ] . ..  [ (kj, + .. . + kjn >pi] ^
perm

When ej is  included the resu lt is

(7 )

(8)

which m eans that the photons are em itted independently o f each other by the 
ith external e lectron  line and that the em ission  o f the jth photon is  (except 
fo r  photon fa ctors ) connected with a fa ctor
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(ieQi pi^j) /  (kj- ei p i). (9)
Adding the p oss ib ilit ie s  fo r  em ission  from  all external electron  lines we 
get the em ission  fa ctor  fo r  one soft photon:

( 2tt)2 s î (kj), k j « * 0 ,
where

sfl(k) =

1

I 2QiPi*iie _____________
(2?r)t L, k2 + 2k-eIpi 

i = 1

(10)

(11)

When photon fa ctors , i ( 2 7 t )e ^  (21^) 2 fo r  a rea l and i(27r) 4 (k2 + X2 ) 1 
fo r  a virtual photon, are included we get the em ission  factor

(i/V 2kj0 )ej-s(kj) (12)

fo r  a rea l soft photon ch aracterized  by kj, ej, whereas a virtual soft photon 
g ives a fa ctor

' i s / i ? T il ? s(k )' s ( ' k| • <13>
soft

region

Summation ov er  a ll p oss ib le  num bers o f soft virtual photons gives the result

00

I
c=o

_ L _l\2l
1 d4k

s (k )- s ( - k )J = e x p [ - ^ r j r i ? ^ | J s (k )s( -k ) j .  (14)
soft soft

region region

The com binatoria l fa ctor  (£ [2 { ) " 1 has the follow ing orig in . The virtual photons 
have been treated as if  they w ere distinguishable and as if  their em ission 
and absorption  w ere distinguishable p ro ce s s e s . A s a resu lt o f this in [ . .  , ] f 
each diagram  has been counted Ü ! 2 { tim es.

The exp ression  (14) contains the whole in frared contribution from  virtual 
photons. If the integration is  extended o v e r  the whole k-space then (14) 
changes only by a finite fa cto r . Hence we can define the "non -in frared  in
variant am plitude" M (finite when X-» 0) through

where
M = e'*A M (15)

(16)

The amplitude fo r  em ission  of m  soft photons , e j; . . . ;  k m, e m) 
is  obtained from  M through m ultiplication by m em ission  fa ctors  (12):

M fc  , ei • . . . .  km ,e ,

Using the sum rule ^  e^e" = g MI/ we get

_ ttY is(k j)-ej
■> i i j t t s t

-iA m (17J

E j M (k x , e^ .. .;Jcm , er
pol )i2 =n

i = i
—  s(k j)-s* (k j)

■]0
; M  A} I Ml 2 (18)



HIGH-ENERGY QUANTUM ELECTRODYNAMICS 5 4 7

which inserted  in (5) g ives (we introduce the F ou rier  transform  fo r  the 6- 
function)

oo AE oo

P(AE) . . ,d 3kmJ dx ^ J d y e ^ l ^ »  '

m = 0  I ii;I ^ AE 0
kjo = V k| + X.2

1
X  n  2 k T „ s ( k j ) - s " ( k i )

j = r

j-Re{A} I jyjl 2

where

AE

m = 0 1 k |s AE
k0 = f k r +~kr

P(AE) = b e G(AE) I M l2

s(k)-s* (k)elyk°

AE

b = W  dx / iyx

G(AE) = lim  
\-»o

exp 
k,

Pd3k
I 2k0

Ik i-A  E

J~s(k)-s*(k)(eiyk° -1)

e '^ W  ]M I2

(19)

~ , 2ko Mk^AE

s(k)-s* (k) - Re {A}

k„ = Vk2 + >J

(20)

We have put X = 0 in b, because b is  finite in this lim it. If one substitutes 
x -> x  A E j y -» y /A E j k -» k A E  and rem em bers s(k)ockö1 in the soft region 
then AE b ecom es rep laced  by 1 in the expression  fo r  b . Hence b is  indepen
dent o f AE and the whole A E -dependence is  contained in G(AE).

D etails o f the evaluation o f b and G(AE) can be obtained from  R efs . [4] 
and [12] . Let us on ly state the resu lts here:

= e"yG /F (l  + G ) = 1 - (tt2 /12 )G 2 + . . . ;  y = E uler’ s const.

where
G(AE) _  . A „  , -G Be -  (A E /g ) e

(21)
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We see  that G is  L orentz-invariant and that the dependence on the coordinate 
system  (in which AE is  isotrop ic) is  contained entirely  in B.

In the high-energy lim it term s o f o rd er  m2 /q 2 can be neglected. Then

C ~  j j l n  q2 /m 2 - r  -  Qjln

1 £  i ■< j £  r

j (23)

B "V  [ r '  ' Z * * * ?  Re|fdxh^ P l-x .-qe»B ^  - _

A word about renorm alization : The virtual soft photons contribute only 
to the spurious charge renorm alization . H ow ever, by a suitable gauge trans
form ation ’, one can achieve Z = 1 fo r  this renorm alization , and a gauge 
transform ation  does not e ffect the interaction o f the external line current 
Sjj (k) with soft photons, since k-s(k) vanishes fo r  soft k (see E q . ( l l ) ) .  The 
above d iscu ssion  is  th ere fore  done in the renorm alized  theory.

(c) We are going to make use of the fact that QED is  a renorm alizable 
theory . We shall derive  som e equations that express the two kinds o f charge 
renorm alization  in a convenient way. Let us use q as momentum variable 
and X as norm alization  momentum (X2 > 0, sp a ce -l ik e * ). We shall consider 
the function d0 (q2 /m 2, ) which o ccu rs  in the photon propagation function
(e0 is  the observed  e lectron  charge)

t v  m  ■ * * ’ ( g , .  -  <«>

and an unspecified  renorm alization  function X0 (q2/m 2J ejj). Let us introduce 
the general functions d(q2 /X 2, m 2/X 2 , e2 ) and X (q2 /X 2 , m2 /X 2, e2 ) norm a
lized  in the follow ing way:

d ( l ,  m 2 /X 2, e2) = 1 ,
(25)

X ( l ,  m 2 /X2 , e2) = 1 .

The ord inary  functions d0 and X 0 are obtained in the lim it o f zero  X2 :

l im d (q 2 /X 2 , m 2 /X 2, e2 ) = d 0(q2 /m 2, e2)
X ~*° (26)
lim X (q 2 /X 2 , m 2 /X 2, e2 ) = X 0(q2 /m 2 , eg ).
x.z_>o

Under renorm alization , d, e2 and X  have the follow ing transform ation p ro 
p erties  s

*  This condition ensures real charge renormalization (see Eq. (29)).
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d(q2 / x 2, m 2 / x l ,  e | ) = Z 3 d(q2 /X f ,  m 2 /X 2 , e f ) ,

e2 = Z 3 1 e2 , (27)

X (q2 /X l ,  m 2 /x | , e\) = Z 'X (q 2 /X ? , m 2 /X2 , e?)

where the renorm alization  constants Z 3 and Z 1 do not depend on q2, and Z 1 
is  a com bination o f Z 3 and Z  o f the type Z 3 Zb o r  Z 3 1 z|b .

We can elim inate Z 3 and Z 1 in (27) and use (25) to obtain the functional 
equations:

e2 = e2 d(X2 /X 2 , m 2 /X 2 , e2 ), (28)

X fa2 /X2 m 2 />2 e2 ) = m!  J ep  ./X 2 , m /X 2 , e2 ) x (x I /x F , m2 /x L  e l l

In the lim it X2 -» 0 with q2 /X 2 = x, m 2 /X 2 = y and ef = e2 we obtain

e 2 = e § d ( l /y , eg ), (29)

F rom  (28) the follow ing L ie  d ifferentia l equations are obta ined ;

9 d(x, y, e2 ) _ d(x, y, e:.2 \ r
3 x

3 lnX (x, y, e2 ) _ 1. 
3 x x

x

3

y / x - e2 d(x, y, e2))
1 = 1  (30)

^ l n X ( | ,  y /x , e2 d(x, y, e2))
v j  e = 1

The fir s t  E q .(30 ) is  obtained by substituting in (28) q2 /x f  = x, m2 /X 2 = y, 
X i/X f = t and e2 = e2 . In the resulting equation

d(x, y, e2 ) = d(t, y, e2 )d (^ , e2 d(t, y, e2))

one then takes the partia l derivative with respect to x and sets t = x . The 
f ir s t  E q .(30 ) resu lts . The second equation is  obtained in the same way. 

Inserting (29) in (30) and changing x /y  into x, we get

3 dn (x, eg ) = dn(x, eg)
3 x x 3 ?

d(£, l /x ,  e2 d0 (x, el))
5 = 1 ( 3 1 )

31nXn(x, e&) _ J. 
3 x x 9 ?

ln X (f ,  l / x ,  e2 d0 (x, e g ))
5 = 1
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(d) F rom  the concluding com m ent in (a) it fo llow s that d(x, y, e2) is 
independent o f y fo r  x h 1 »  y, i. e . q2 X2 »  m2 . The corresponding is 
true a lso  fo r  X (x , y , e2 ) provided the perturbation expansion of X0 (q2 /m 2Je§) 
fo r  la rge  q2 /m 2 can be written in the form *

eo

X 0 (q2 /  m2 , eg) = ̂ T Cy eg1 (in (32)

i,j = 0

i . e .  provided that

- i n  ^  (33)Tr m2

is  the e ffective  expansion param eter ** o fX o (q 2 /m 2 , e2). The p roo f that 
X (x , y, e2 ) cea ses  to depend on y fo r  x i l  >>  y when (32) is  fu lfilled will 
be om itted here but w ill be given in a la ter paper [31] .

Now (29) and (31) can be sim plified  by om ission  of the second variable 
in d and X  and we get

d(x, eg) = ,
0 d0 ( l /y ,  eg)

e2 = egd0( l /y ,  eg), (34)
,2 1

and

X (x, e2 ) = e8-!x 0 (i/y>  eg)

e j » .

8 lnX 0(x, eg) _ 1 
9 x  x 0(egdo (x, eg)),

(35)

where

cp(z) = 

ip( z) =

1 = 1 

I = 1
(36)

F o r  constant eg we can w rite (35) in the form

*  Feynman diagrams lead to Spence functions which for large arguments behave like integer powers o f 
logarithms.

Fbr a discussion o f  the expansion parameter in QED see Ref. [11] . If Nakamshi*s result mentioned in
(a) is applied one obtains (33) instead o f (o/jr)ln4^s(q2/m 2).
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, ,  _ dzd In x = — 7—. , z(p(z)

z = egd0 (x, eg), (37)

d ln X o (x , eg) = ^ j ^ ( z )

and integrate

e jd 0(x, e „ ), r dzln x I  , z<P(z) '
eo2do(l. e») 2 2

eodoCx. ej) (38)

ln X 0(x, eg) = ln X 0( l ,  eg) + J  ^ 7 ) ^ z
e|dt(l.e|)

w hich ,accord ing to (34),g ives fo r  d and X

e 2d(x, e 2)
, P dzln x  =

/ ztp(z) '

e 2d(x. e 2)

ln X (x , e2) J
(39)

If the follow ing perturbation expansions are used fo r  the integrands in (38)

2 ■
i = 0

(4 0 )

l/(z)
= 3 > ‘ 'zcp(z __

i= o

the integration y ields

ln x  = -a 0 e j 2 [ (d (x ) ) '1 - (d ( l ) ) - 1 ] + a i[ ln d (x )  - ln d (l)]
oo

+ Z  [ d̂ ( x , ,n  ■ ( d ( i ) ) n ] ' ( 4 i )
n= 1

CO

ln X (x ) = ln X ( l )  +ß0 [lnd (x) - ln d (l ) ]  ef>[(d(x))n- - (d (l))n],

where x »  1 and e§ lnx «  4tt2 .

n= 1
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H ere the notation d(x) and X(x) has been used instead o f d0 (x, e<)) andX0 (x / Cq). 
The form ulae (41) give us im proved perturbation expansions

d(q2 /m 2 ) = E e g n d<n> (eg lnq2 /in 2 ),
(42)

X (q2 /m 2 ) =nE X ®  (egIn q2 /m 2)

with an e ffective  expansion param eter o f o rd e r  or instead o f  (a/jr)ln(q2 /m 2). 
The ca lcu lations o f radiative co rre ction s  fo r  la rge  q2 /m 2 are now reduced 
to the determ ination  o f the constants (t0 . « 1 » • • • and ß0, ßi, . . .  that ap
p eared  in (40). The knowledge o f a0, ai, aa an d ß 0> ßi, ßa is
su fficien t fo r  the determ ination  o f d̂ 0) , d(1) , . . . ,  d(n> and X(°>, X ^ ,  . . . ,  
X<a) .

In p ra ctice , when X(q2 / m 2 ) is  the S m atrix  elem ent fo r  a p ro ce ss  with 
high m om entum  tra n sfe r  q2 , one usually knows only the fir s t  o rd er  radiative 
co rre c t io n s , i . e .  one knows only ß0 . So one can derive  only X0 (eo lnq2 /m 2). 
F rom  (41) we get i f  we approxim ate d (l )  by 1

d W t f / m ^ M l - f e ^ n ^ f 1 ,<xq m
(43)

X <0) (q2 /m 2) = X ( l ) ( l  - ■ ^ - e g l n i ) '60 .
UQ 111

We have thus p erform ed  a sum m ation ov er  the "m axim ally  logarithm ic 
te r m s " . The expression  fo r  d ^  (q 2 /m 2) was obtained in this way by 
BOGOLIUBOV and SHIRKÖV [8 ] .

(e) The sum m ation proced u re  o f (b) and (d) can now be com bined. We 
assum e that in the e .m .s .  the conditions

m  <<  AE <<  q
(44)

A p ( 8 ,  <P) i 

AE

are fu lfilled , where Ap(0, cp) is  the mom entum resolution  in the d irection  
(0, (p). L et cr0 be the c r o s s -s e c t io n  to low est o rd e r  in a o f a p rocess  satisfy 
ing (44), and cri the c r o s s -s e c t io n  with first o rd er  radiative correction s  in
cluded :

01 =0r°{1 + f (Clljl̂ r +C2)ln̂ f +C3hî  +C4 + 0(ir) }‘(45)

H ere c j ,  c 2 , C3 and c4 a re  quantities o f  o rd e r  unity. They are in general 
functions o f  A p /A E  and P i/q  (p, being the m om enta o f  the particles  partici
pating in the p r o c e s s ) .

We take X  to be the ratio between the exact c r o s s -s e c t io n  and the c r o s s -  
section  to low est o rd e r  in a s

X  = a / a 0 .. (46)
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Com bining the sum m ation ov er  soft photon e ffects  with the summation over 
m axim ally  logarith m ic term s and inserting the value o f a0,

a0 =l2n2, (47)

we a rr iv e  at the follow ing form ula :

<*0 .0  +i C4) eXP{[K°lln̂ r + C0  ' 3ci(ln(1 - ft ln‘

l n ^  - 3cs l n ( l+ = - In—^ 3tt m

+ o ( ^  ln -9^\JT m
(48)

This form ula a lso  contains the com bined em ission  o f photons and electron  
p a irs  with a total energy le s s  than A E. F o r  details o f derivation and in ter
pretation  o f (48) see R ef. [13] .

One in teresting consequence o f  the sum m ation procedu re  in (d) is  that 
m axim ally  logarith m ic term s in radiative co rre ction s  to electrom agnetic 
scattering c r o s s -s e c t io n s  appear only in one-photon exchange. Calculations 
o f  f ir s t  o rd e r  radiative co rre c t io n s  show that only vertex  diagram s and 
vacuum  polarization  diagram s contribute term s o f the type (a/jr)ln(q2 /m 2). 
Thus in te rm s o f d iagram s we have (F ig . 2) with logarithm ic a ccu racy  to 
o rd e r  a2 (we can use an in frared  cu t-o ff which gets replaced by AE in the 
exp ress ion  fo r  the c r o s s -s e c t io n ) , i . e .  within this accu racy  only one-photon

Fig-2

exchange con tributes. But i f  a sum m ation o v e r  m axim ally  logarithm ic term s 
is  p erform ed  a ccord in g  to (43), it is  c le a r  that F ig . 2 still holds after this 
sum m ation. Thus the co rre c t io n  because o f the exchange o f n photons with 
n t  2 does not contribute any m axim ally  logarithm ic te rm s. It is  at m ost 
o f the re la tive  o rd er  o f magnitude

(a/ir)[o’/ff)ln (q2/m 2) f  ‘  2 , (49)

One has,however, to be care fu l in the neighbourhood o f m axim al momentum
tra n sfer  (backw ard scattering in the c . m . s . )  because in this region the two-
photon exchange contributes term s which in the lim it m = 0 have a singular 
angle dependence.
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SOFT-PHOTON CONTRIBUTION TO ELECTRO
DYNAMICAL CROSS-SECTIONS AT VERY 

HIGH ENERGIES
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ITALY

The aim  o f this paper is  to d iscu ss som e ch a ra cteristic  features o f the 
in frared  d ivergen ce  phenom ena such as the soft photon contribution to the 
radiative co rre ct io n s  in the dom ain o f very  high en erg ies . The d iscussion  
w ill p roced e  as fo llow s: a typ ica l e lectrodynam ic p ro ce ss  such as the 
e le ctron -p os itron  annihilation into photons w ill be con sidered  and the results 
o f a com plete  perturbation calcu lation  o f o rd er  »3 w ill be d iscussed  b rie fly . 
Then an attempt w ill be made to gen eralize  the rather interesting suggestions 
deriving from  that calcu lation  to every  ord er  o f a.

ERIKSSON, in his lectu re  [5] , has explained what is  meant by infrared 
d ivergen ce  and how the soft photon contribution w orks in its elim ination.
L et us b r ie fly  r e ca ll and apply those considerations to the annihilation p ro ce ss .

Let us try  to calcu late  the h igher o rd er  co rre ction s  in a to the Born 
approxim ation represented  by the sim ple graph in F ig . 1.

Fig.l

A s is  w ell known, the relevant co rre ction s  are obtained by inserting 
one internal photon line into the above skeleton graph in all possib le  w ays. 
This situation is  shown in F ig . 2 in term s o f Feynm ann's d iagram s. (Ob
v iou sly  there are as many as graphs deriving from  the exchange o f the two 
final photons k i * k2 .)
A ll these term s d iverge  when we integrate ov er  the energy o f the virtual 
photon down to the lim it ze ro  and we find som ething like this:

f d u / u .o 1
In o rd e r  to avoid this d ivergence we regu larize  the above integrals by a s 
crib ing  a fic tiou s , n on -zero  m ass A to the photon so that we finally get the 
A-dependent (but Lorentz-invariant) result:

do,/“ 3) = dCT0Ca2) {1  + (a I ir) [F(-y) In (A /m ) + ^ ( 7 , 6 )]} (1)

5 5 5
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where du,/“ 3) is  the d ifferentia l c ro s s -s e c t io n  fo r  the annihilation p rocess  
co rre cte d  by virtual photons and da0 “̂ 2* is  the corresponding quantity ca lcu 
lated in B orn  approxim ation 7  = e+/m , and 0 is the scattering angle. Note

the iso trop ic  coe ffic ien t F(-y) o f the A dependent part. This fact can be 
easily  understood by d irect inspection  o f the Feynm ann's graphs but we will 
not go into the details h ere .

Equation (1) is  not a physica lly  meaningful result owing to the A de
pendence. In o rd e r  to rem ove it, the consideration  is made that a scattering 
p ro ce ss  (in a broad sense) can be never con sidered  as purely e lastic . In 
our case , fo r  instance, we cannot ensure experim entally that the annihi
lation o f the pa ir leads to a final state with two photons only. In fact there 
is  always an in elastic contribution because o f the em ission  o f som e supple
m entary rea l photons. They are not detected if their total energy is le ss  
than an upper lim it A E  which can be taken as the resolving pow er o f the 
experim ent. H ow ever, although not experim entally distinguishable from  the 
fundamental p ro ce ss , this sort o f background effect cannot be om itted. So 
we have to add the c r o s s -s e c t io n  fo r  the em ission  o f one additive photon 
(to a 3 o rder), with an energy under the threshold o f detection AE, to 
Eq. (1). It is  p oss ib le  to elim inate the in frared  divergence, taking into 
account that the em ission  probability  of soft photons d iverges in the lim it

0. U sually the proced u re  follow ed in the calcu lation  is  to consider the 
in elastic contribution from  rea l soft photons whose energy is  le s s  than a 
given quantity A «  m , in a particu lar re fe ren ce  fram e.

In this way we get the c ro s s -s e c t io n  fo r  annihilation into three photons, 
one o f which with energy g A  «  m

In ord er to calcu late  E q. (2) we have taken into account only the in fra 
red  part o f the above c r o s s -s e c t io n  that correspon ds to the soft photon 
em ission  from  external e lectron  lines only. This causes the appearing of 
a contribution only 7  dependent.

In the C .M .S . system  we get

Fig. 2

dcrso^ 3) = da0(“ 2) (* /» )  [F(y) ln(2A/A) + q>(7 )]

= dcr0<a,> (q'/tt) [F (7 ) ln (A /yA )+ 9 (7 )]. (2)

<p (y) = 2 In2 (2 7 ) - 7t2/ 3 , 

F (7) = 2[2 1n(27)- 1] .
(3)

By com bination o f E qs. (1) and (2) we get the A independent result
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dofv +s“ 3) = d o b  '  1 + ^  < P (T ) +  F ( - y )  .In ^  +  f x ( 7 , 0 ) j  j - (4 )

W hile the introduction o f soft photons only is  su fficient to cancel out the 
in frared  d ivergen ce  it is  not en tirely  re a lis t ic . In fact at high energies the 
actual reso lv in g  pow er A E  o f the experim ental dev ice  does not fu lfill the 
condition  A  E «  m and gen era lly  has an angular dependence. So in order 
to com p are  the th eoretica l ca lcu lations with the experim ental resu lts one 
ought a lso  to take into account the photons (not detected) in the range A->AE. 
They are usually ca lled  hard photons. If we want a resu lt independent o f AE 
we can go to the lim it o f  no reso lv in g  pow er by allow ing the energy o f the 
additive photon to rea ch  the m axim um  value given by the conservation  law s. 
In so  doing the total co rre c t io n  is  the sum  o f the virtual plus the inelastic 
part and we might ca ll it a radiative co rre ct io n  in a broader sense.

Going back to our particu lar p r o c e s s  this pattern o f thought gives as a 
final resu lt the c r o s s -s e c t io n  fo r  annihilation o f a pa ir into two and three 
photons up to a3 o rd er.

The c r o s s -s e c t io n  fo r  annihilation o f a pair into three hard photons 
(with energies la rg e r  than A ) is

It is  v e r ified  that G(7 ) = FCy) so  the com bination o f E qs. (5) and (4) 
g ives

In Eq. (6 ) <p, gu f t represen t the soft photon, the virtual photon and 
the hard photon contribution to the total co rre ction  ö, respectively . (R eally 
this d ivision  is  rather arb itrary  and not unique depending on the used 
regu larization  proced u re  and not invariant owing to the not covariant d e fi
nition o f soft photons. )

F or  com putational reason s it is  s im p ler to d iscu ss  the integrated c o r 
rection  6(7 )■= /dS26(7 , 0 ) , • o r  the total c r o s s -s e c t io n  fo r  annihilation into 
photons up ta  a 3 o rd er .

In th is ca se  it is  p oss ib le  to w rite the final resu lt in the extrem e 
re la tiv is t ic  ca se

dCThiri3> = d<T0(Qf/ w)[G(7 > In (iry/A) + gt (7 , 9)] . (5)

dff(«s> = da-oU + ^/jrJtcp (7) + fi(7 , 0 ) + gi(7 , 6 )]) 

= dff0{ l  + 6 (7 , 0 )}. (6)

a = ct0 {1  + (a/n) [«p(-y) + f(7 ) + g(7 )]} = tr0{ 1  + 6(7 ) } . (7 )

CTo =(?rr8 / 272 ) [ 2 1 n (2 7 ) -  1], (8)

6(7) = ( a / 12ir) 81n2(27)-  21n(27) +47T2 - 13 + 11 - 5JT2
(9)21n(2y)-l J'

7 » 1  (C .M .S . energy).
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The relevant point in Eq. (9) is  the ln (2y) behaviour o f the total c o r 
rection . If in order to understand its orig in  we p erform  the usual division 
betw een virtual soft and hard photon contribution, we find in the C. M. S . :

^v+a =ffo (1+  (a/12?r)[81n2(27 )+  221n(2y) + . . .  + F (7 )ln (A /m 7 )]}

ahacd = ct0( « / 127t) [ -  24 ln(2-y) + . . .  F(7 )ln (m 7 /A )] .

so  that we can a scr ib e  the ln 2(2y) contribution to the virtual plus soft photon 
part. Hard photons do not contribute to the dominant behaviour in the very  
high energy case , so that, from  this point o f v iew , we can forget their ex 
isten ce . To get a further insight into the ln 2(2y) derivation , let us go back 
to-the differentiell c r o s s -s e c t io n  o f E q. (4):

d o v+s = dcr0{ l  +ßv+s (7 , 0.A )} .

Some general p rev ision s can be m ade on the high energy behaviour o f 6V+S .
A quite general theorem  by ERIKSSON and PETERMANN [2] states that 
fo r  large  values o f the mom entum  tran sfer (in the C. M. S . ), q2»  m 2, 6V+S 
behaves at m ost like (ar/7r)ln(q2/m 2) to o rd er aa. M ore p rec ise ly , the first 
correction  can be written in the form

6 v+s = (o/ir) [ c 1 ln(q2/m 2) ln (A /E ) + c2 ln(q2/m 2)+  c 3 ln (A /E )+  c n].

The validity o f the Peterm ann theorem  can also be verified  in our ca s e . This 
m eans that, being the soft photon part iso trop ic  and always ^  ln2(2 7 ), the 
contribution o f the virtual photon fo r  la rg e  momentum transfer is  such as 
to com pensate those ln2(2 7 ) te rm s. Let us look  at another boundary condition, 
the region  o f sm all m om entum tran sfer, where

Q2 = (P i " k±)2 = - m 2 + 2 m 2y 2 (1 -ß cos  0 ) ~  m 2 7 2 0 

or q2 m 2 , 0 1 / 7 .

In this situation we find that the virtual photon contribution is  sm all (no In2 
(2 7 ) te rm s) so  that there is  no m ore  com pensation and the In2 (2 7 ) from  
the soft part is  s t ill present and dominant. The subsequent integration and 
the addition o f th£ hard photons do not can cel the In2 (2 7 ).

O bviously these a re  considerations whose validity is lim ited to the ex 
p lic it  a3 ca lcu lation . Let us try  to gen era lize  those resu lts : let us consider, 
fo r  instance, the an situation (c r o s s -s e c t io n  to o  n+2 o rd er ). The correction
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Fig. 4

is  the resu lt o f n virtual photons, n - 1  v irtua l+  one soft, . . . .  n soft photons. 
We can make the follow ing assum ption based  on the ideas o f our previous 
calcu lation : if we lim it ou rse lves  to the sm all momentum transfer region  
(in S. C. M. ) the v irtual photon contribution is sm all, i. e. not of the an ln 2n 
(2 y) type but at m ost o f a " ln 2n-i (2 7 ) type. So the relevant term  in the 
asym ptotic lim it com es p ra ctica lly  from  the graph with n soft photons. In 
this way the resu lt is obtained at one and looks like

This is only s rough evaluation but it can give an idea of the philosophy 
we shall fo llow . O bviously a m ore  rigorou s  derivation is p oss ib le .

T o this purpose we w ill use in a slightly m odified  form  the general 
resu lt by ERIKSSON [3  ]. That is

w here the sym bols are those of E riksson  except A which is defined as

It is  in frared  divergent but we can regu larize  it with the fictitious photon 
m ass A.. F u rth erm ore , the gen era l theory  o f in frared  divergences allows 
us to say that the dependence o f A  can ce l out with (m / A)c . Eq. (12) is a 
c o r r e c t  resu lt, though a not covariant one, owing to the presence of A . 
Let us con sid er the annihilation ca se  w here an explicit calculation  g ives:

dCT(m-z) ~  ( l / m ! ) [ cP(7 ) + F  (7 ) In (A /m 7 )]n (10)

corresponding  to the graph in F ig . 3. 
If we sum up, using Eq. (3):

00

d a  ~  da ( a /ir)n

dcr0 e T  fn 2(2r) (ä/my) (4a/ir) In (2y) (ID

(12)

(for a fu ll understanding o f the notations see [3],
j M 12 is the squared m atrix  elem ent co rre c te d  by a ll the virtual photons.
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A  = (2a/ir) ln2 (2y),

B = (4a /jr)ln  (2y), ( 1 3 )

C = (4 e /ff)ln  [2y).

Note again the ch a ra cteristic  isotropy  o f the soft photon part fo r  the 
annihilation p r o c e s s . Thus the angular dependence is  contained in |m|2. If 
we assum e the valid ity  o f the E riksson  and Peterm ann theorem  fo r  q2 »  m 2 
(d~ir/z), |m)2 has to behave like e " 2“ ^ 1,1 W  in order to com pensate the 
soft photon part. What happens fo r  q2~  0 ? If we put

(m / A ) c |m|2 = |m0|2 X (p i, k i) ,  

our assum ption is  that fo r  q2-^ 0 , X (pj , k j ) goes to a constant or, m ore

Fig. 5

generally , it behaves in a s im ple logarithm ic and not a (log )2 m anner. In 
this way, neglecting a ll the logarithm ic term s, the resu lt is

der ~  dff0 e (2<x/lr) ln2 <2?> ( A / m y )  ( 4 a / i r )  ln(2y)

which is  Eq. (11). So our gen era l conclusion  is that it is p oss ib le  in forw ard  
annihilation to d iscrim in ate  in a very  c lea r  out way between the virtual 
and soft photon contribution. R eally  this resu lt may seem  a rather academ ic 
one owing to the A term . So our perturbative resu lt could lead us to another 
hypothesis, i. e. that the hard photons do not contribute In2 (2 y) term s. 
Consequently we elim inate the A dependence by adding the hard photons 
while the dominant behaviour rem ains s till

der ~  dffo e(2ot/,Äln2(2T') (14)

with da forw ard  (or n early  forw ard ) c r o s s -s e c t io n  fo r  annihilation into 
photons.

It is  n ecessa ry  to find out if  our hypotheses are verified . The problem  
is not difficu lt fo r  the virtual photon contribution. We a ll know that there 
are two c la ss e s  o f diagram s which contribute to M. They can be represented 
by the redu cib le  graphs typ ified  by F ig . 4 and the irredu cib le  ones typified 
by F ig . 5. Though many photons exchange, as in F ig. 6 .
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Fig. 6

As long as we confine ou rse lves  to the logarithm ic term s, it is possib le  
to show by d irect inspection^*) o f the m atrix  elem ents to every  order o f a, 
that our firs t  hypothesis w orks v ery  w ell fo r  both c la sse s , that is

|m|2 (m /A  )c -» |Mo|2.
qz-»o

So Eq. (11) is  co r re c t .

The hard photon part is  m ore  com plicated  to hand. The prob lem  is 
under study and we hope to be able to prove  that Eq. (14) is a lso  true soon.

R E F E R E N C E S

[ 1 ]  ANDREASSI, G . ,  CALUCCI, G .. CAZZOLA, P ., FURLAN, G. and PERESSUTTI, G ., to be published 
in Phys. Rev.

[ 2 ]  ERIKSSON, K.E. and PETERMAN, A . ,  Phys. Rev. Letters 5 (1960) 444
[ 3 ]  ERIKSSON, K .E ., Nuovo Cim . 19 (1961) 1010.
[ 4 ]  SUDAKOV, V .V .,  JETP 3, (1956) 65.
[ 5 ]  ERIKSSON, K .E ., these proceedings.

*  By using for instance, the method o f  SUDAKOV [4 ].





INFRARED DIVERGENCE PHENOMENA, 
HIGH-ENERGY PROCESSES, 

AND REGGE POLES

S. FRAUTSCHI 
NEWMAN LABORATORY OF NUCIEAR STUDIES, 

CORNELL UNIVERSITY, ITH AC A , N . Y . ,
UNITED STATES OP AMERICA

1. INTRODUCTION

In frared  d ivergen ce  phenom ena are  a lready w ell known fro m  se m i- 
c la s s ic a l  argum ents. F o r  exam ple, suppose an e lectron  in m otion is  d e 
fle c te d  due to its in teraction  with a potential, th e  L oren tz -con tra cted  p rop er 
fie ld  o f the e lectron  w ill be  a ltered  by the co llis io n , and the change in the 
p ro p e r  fie ld  w ill be  em itted as e lectrom agn etic  radiation . F o r  sufficiently  
long w avelengths (k R  < < 1, w h ere k is  the w ave num ber and R is  a dim ension 
o f the sca tterin g  reg ion ), the radiation can be calcu lated without knowledge 
o f the deta ils  o f the tra je c to ry  in the scatterin g  reg ion . It depends only on 
the in itia l and fina l m om enta o f the e lectron  and the d irection  in which the 
radiation  is  ob serv ed  (assum ing the e lectron  su ffers  no tim e delay in the 
sca tterin g  reg ion ). A s is  w e ll known, the energy em itted p er  unit frequency 
is  constant in this lim it. M aking the tran scrip tion  to the photon descrip tion , 
it is  c le a r  that the num ber o f photons em itted p er unit frequency range is  
in v erse ly  p rop ortion a l to the frequ en cy ; i. e . ,  the photon spectrum  is  of 
the fo rm  d k /k , w hich d iv erg es  as k — 0. This is  the in frared  d ivergen ce
fo r  r e a l photons.

T he angular d istribu tion  can a lso  be understood by the s e m ic la ss ica l 
argum ent. In the extrem e re la tiv is t ic  lim it, the p rop er fie ld s  w ill be Lorentz - 
con tracted  in a sm all reg ion  near the plane perpendicu lar to the d irection  
o f m otion  o f the ch arge  and m oving along with the ch arge . T his leads to a 
stron g  peaking o f the radiation  p a ra lle l either to the incident o r  final d i
re ction  o f m otion .

T he essen tia l idea  f o r  understanding the p rob lem s posed  by in frared  
d iv erg en ces  w as introduced by BLOCK and NORDSIECK [1] in 1937. They 
pointed out that in any p ra ctica l experim ent involving charged p a rtic les  it 
is  im p oss ib le  to sp ecify  com plete ly  the final state o f the system . Because 
individual photons can be em itted with a rb itra rily  sm all en erg ies , it is  a l
w ays p o ss ib le  that som e photons w ill escape detection . In fact, they showed 
that the probab ility  that only a fin ite num ber o f photons w ill escape detection  
is  p r e c is e ly  z e r o ; th is is  due to the in frared  d ivergen ce  associa ted  with soft 
v irtu a l photons. On the other hand, when the c ro ss -s e c t io n  is  sum m ed over  
a ll fin a l states com patib le  with the detection  arrangem ent, including all 
p o ss ib le  undetected photons, a nonvanishing result is  obtained. In fact, the 
ob serv ed  c r o s s -s e c t io n  is  v ery  nearly  the c ro ss -s e c t io n  that would be o b 
tained if  a ll rad iative c o r re c t io n s  w ere  ign ored . T h is is  the w ell known 
can cella tion  betw een the rea l and virtual in frared  d ivergen ces.
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2. SEMICLASSICAL PHENOMENA, HIGH-ENERGY PROCESSES AND REGGE 
POLES

Now I want to begin  by d escrib in g  how these sem ic la ss ica l phenomena 
em erge  fr o m  quantum electrod yn a m ics . A  w ell-de fin ed  separation  into in 
fra re d  te rm s  and "s h o r te r  w avelength" te rm s can be m ade, and the in frared 
te rm s  ca lcu lated  exp licitly  to a ll o rd e rs . This in frared  term s turn out to 
have sp ec ia l s ign ifican ce  in high energy p ro ce s s e s , and among other things 
they contain  a R egge -  like behaviour. Up to the d iscu ssion  of the Regge b e 
haviour, 1 shall fo llow  the paper o f YENNIE, FRAUTSCHI and SUURA [2] , 
w h ere re fe re n ce s  to som e o f the alternative treatm ents o f the subject [3] 
can be found.

F ig .l

A representation o f  the matrix element Mfl.

Fig. 2

Some o f  the ways in which an additional virtual photon can be inserted in Fig. 1

Consider a process  in which an electron scatters from  a state of 4- 
momentum p into one of p\ Let Mg be the m atrix element corresponding to 
any set of Feynman diagrams (Fig. 1. ) .  Add one virtual photon to M 0, in 
the manner indicated in F ig . 2. That part of the contribution which diverges
at sm all k can be represented by Mj o B where B is  the gauge-invariant
expression

B -  1 f  d k f  2p,ti - k „  2pn - k[) V  .J.
(2 tt) 3 J  k 2 - X2 \ 2P: k -  k2 2p. k - k V

and X. is  a fictitious photon m ass. At sm all k the integral has the form  dk/k, 
characteristic of the infrared divergence.

Now add a second virtual photon in the same way - inserting it only into 
the outside lines of the previous diagrams. Symmetrize the two virtual pho
tons, introducing a factor 5 ! to prevent double counting. One obtains M #
(a B )2 /2  ! plus other term s. Some of these other term s also have an in
frared divergence, but a careful check reveals that they cancel when all 
other ways of introducing two virtual photons into M  ̂ are considered [2 ] .  
The same property is  found in higher orders, so the addition of arbitrary 
numbers of virtual photons to Mj yields the series
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Mo E (<*B)a /(n  !) = Mo exp (a B) (2)
n=  0

plus te rm s  M ' which have no in frared  d ivergen ce . W e can p roceed  to treat 
M* in the sam e way as M q, and eventually we find that the entire m atrix 
elem ent has a com m on  fa c to r  exp {a B ) .

S ince in frared  e ffects  are "lon g  ran ge", it is  not surprising  that the 
corresp on d in g  Feynm an diagram s involve v irtual photons em itted from  ex 
tern a l e lectron  lin es {F ig . 3). T h is p rov id es e lectron  propagators which are 
nearly  rea l at sm all k and can spread fa r  out into space . The exponential 
fo r m  (2) is  a lso  reason ab le . E m ission  and absorption  of low energy, low 
m om entum  photons do not appreciably  disturb the m otion o f the e lectron ; 
th is m eans that such photons are  em itted and absorbed independently, r e 
sulting in a P o isson  d istribution  (or B )n / ( n ! ) .

A typical infrared diagram involving several virtual photons.

Equation (2) leads to  a c ro ss -s e c t io n  dcr0 , proportional to exp (2 a B ). 
W e must add to th is c ro ss -s e c t io n  the c ro ss -s e c t io n  fo r  em ission  o f an unde 
tected  rea l photon, with energy bounded by Kmin o rd er  to escape detection. 
The in frared  te rm s are  associa ted  with d iagram s in which the rea l photon

k

J L l

Fig-4

An additional real photon, inserted into M 0 in these ways, gives an infrared-divergent contribution.

is  em itted fro m  the external lines (F ig . 4), and one obtains essentially
2 a B da0 w here 2 a B is  given by a product o f phase space and squared- 
m atrix  elem ent:

S  j -  r d 3 k /&_ Pm_\2

■ 8?r2 Jo (k2 + X2 y  p'. k '  p.kj (3)

(for  co rre c t io n  fa c to rs  aris in g  fro m  a m ore  ca re fu l treatm ent of energy 
conservation , see R ef. [2]).
At sm all k the in tegra l again has the fo rm  d k /k . At high energy, where 
|p | ~  E , etc , w e see  that the photon tends to em erge  along the in itial o r  
fina l e le c tron  d irect ion , as expected  fr o m  the s e m ic la ss ica l argument.

T he c r o s s -s e c t io n  fo r  em iss ion  o f two undetected rea l photons must 
a lso  be added. A s in the ca se  o f v irtua l photons, th is g ives (2 a B f  (2 !)  *
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d a 0 , p lus te rm s  w hich have no in frared  d ivergen ce . The sum  ov er  a ll un
d etected  re a l photons g ives

d a „ L(2 a B )n / ( n ! )  = dor„ exp (2 a B) (4)
n= 0

and the o b serv ed  c r o s s -s e c t io n  is  proportion a l to  exp 2 a (B + B ).
It is  w e ll known, and can easily  be v er ified  exp licitly  fro m  E qs ( i )  and

(3), that the in frared  d ivergen ce  in  the low est o rd er  rea l and virtual photon 
rad ia tive  co rre c t io n s  2 a (B + B ) can ce l, leaving a ̂ finite resu lt. Since the 
h igh er o rd e r  in frared  te rm s sim ply ra ise  2 a (B + B ) to an exponential, 
the can ce lla tion  holds in a ll o r d e r s . One a lso  finds that B approaches -  oo 
as A. -*■ 0, ensuring that the c r o s s -s e c t io n  fo r  em ission  o f no undetected 
rea l photons van ishes.

An attractive fea tu re  o f th ese resu lts  is  that the fa cto r  exp 2 a (B + B ) 
is  known in general, independent o f the details o f sh ort-ran ge  interactions 
in  the m atrix  e lem ent. In the ca se  o f e lectron  scattering from  a nuclear 
ta rg et, f o r  exam ple, exp 2 a (B + B ) has the sam e fo rm  whether the target 
is  le ft in its  ground state o r  an excited  state.

A nother in terestin g  aspect o f the in frared  fa c to r  can be seen from  its 
fo r m  at la rg e  e lectron  en erg ies  and mom entum  tra n sfers  (E > >m , E '> > m ,2 
p .p '> >  m2). If E /K m is  la rg e  the leading (double logarithm ) term  is

exp - (a /f f )  In (2 p .p ' /m  ) In (E E '/K 2m) . (5)

H ere  the sm a ll denom inators w hich allow  the v irtual p a rtic le s  in in frared  
te rm s  to tra v e l fa r  out fr o m  the target have been integrated over to  give 
la rg e  loga rith m ic fa c to r s . Shorter wavelength photons are  associa ted  with 
at m ost one sm all denom inator, and give at m ost single logarith m s. Thus 
the in fra red  te rm s  tend to p rov id e  the dominant radiative c o rre c t io n  at high 
energy.

T h is  resu lt m eans that w hile the pow er o f a p rov id es a good index to the 
s iz e  of a rad iative c o rre c t io n , the "ra n g e " o f the co rre c t io n  should also 
r e ce iv e  som e  attention; lon g -ra n g e  e ffects  should be treated with specia l 
ca re .

C on sid er, f o r  exam ple, c o rre c t io n s  of o rd er  a to e le c tron -e le ctron  
sca tter in g . TSAI [4] has con sid ered  a clashing beam  arrangem ent in which 
the two sca ttered  e le c tro n s  a re  detected  in co in ciden ce  with good angular 
reso lu tion  A 6 but v irtually  no energy resolu tion  (A E  ~ E ) .  It is  c le a r  that 
i f  a photon is  em itted p a ra lle l to e ither final e lectron , Km is  then of o rd er  E . 
H ow ever, if  it is  em itted perpen dicu lar to the d irection  o f the fina l e lectron s, 
K m is  m uch sm a ller  and is  determ ined by the angular resolu tion  ( AE ~  E A 6 ). 
Thus Kn/6 ) has a v e ry  stron g  angular dependence. An in co rre ct  treatm ent of 
th is angular dependence w ould change the double log  term  (5) by severa l 
p e r  cent; the experim ental energy resolu tion  has to be treated carefu lly  
b e fo re  it b e co m e s  w orth  w hile to ca lcu late  sh orter  range co rre ct io n s  o f the 
sam e o r d e r  in a but with no logarithm s,

A  n u m erica l exam ple w ill illu strate  the related  point that a 2ln 4term s 
can  be at lea st as im portant as sh orte r  range te rm s o f  o rd e r  If E is  500 
M eV , K ' = 5 M eV , E ' ~  500 M eV , p. p* = E 2, then the a 2ln 4 term  obtained 
by expanding (5) con tribu tes + 3%.
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A nother aspect o f  the in frared  term s can be seen by recasting  them as 
functions o f  the 4 -  m om entum  tra n sfe r  t = (p -p ')2 = 2m 2 - 2p. p '. The virtual 
photon fa c to r  exp (2 a B) behaves like  a fo rm  fa c to r  fo r  e lectron  scattering 
and depends on ly  on t. But the rea l photon fa cto r  exp (2 a B) in troduces en er
gy  dependence as w e ll (we le t E = E ' now fo r  s im p lic ity ), and (5) has the 
form :

Since the d ifferen tia l c r o s s -s e c t io n  is  proportion a l to this exponential^5. a) 
re se m b le s  the form ula

d a /d t ~  E 2I(t)’ 2 (6)

ex p ress in g  the exchange o f  a R egge p ole  with spin J(t) at high en erg ies  [5 ],

p' p 

Fig. 5

F ig .3 as seen in the t channel.

Do we expect to find a state o f spin J(t) in the t channel? C onsider F ig. 5, 
a typ ica l in frared  d iagram  as seen in the t channel where the incom ing parti
c le s  a re  an e le ctron  with 4 - m om entum  and a positron  with - p '. The Fig. 
is  obv iou sly  a lad d er d iagram  with m ultiple exchange o f photons. It would 
not be su rp ris in g  if  such d iagram s gave som e hint of the B ohr o r  positronium  
states which c lu s te r  just below  threshold  at t = 4m2. The angular m om enta 
o f the positron ium  states (ignoring decay into photons) in crea se  through the 
in tegers  fro m  J = 0 to J = 00 as threshold  is  approached, accord in g  to the 
B ohr form ula

S2/ 2 m = ( - M c2 f f 2 /2 (n +  J + 1)2 (7)

w here /i is  the reduced  m ass and gt the m om entum  of the e lectron  in the 
ce n tre -o f-m a ss . It is  known [ 6] that a R egge pole  with spin J(t) interpolates 
sm ooth ly  betw een the in teger J, s till follow ing Eq. (7), fo r  each n. The 
R egge p o le  with highest J at each  energy le v e l corresp on d s  to n = 0, and 
with the sp ecia liza tion s  n = m /2 , c = 1, 4qt2= t - 4m2, appropriate to our 
ca se , one finds fr o m  (7):

J(t) = -  1 + m a// t o 2 - t. (8)

B e fo re  the in frared  fa c to r  is  com pared  with this result it must be r e 
ca lcu lated , s in ce  the fo r m (5 .a ) is  valid  on ly at la rg e  |t]. (Note that even the
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threshold  fo r  the t channel is  wrong in ( 5 .a). One finds that near t = 4m2 
the leading te rm  in the in frared  fa cto r  is

exp ' 2  a m In
V4m? -  t Kj, ■ ( * - )

2m  a

v W  -t

(9)

The oth er fa c to rs  in the c r o s s -s e c t io n  g ive  much sm a ller  pow ers o f energy, 
which are  n early  constant in the region  o f the B ohr leve ls . Thus when a 
c r o s s -s e c t io n  containing the in frared  fa cto r  (9) is  interpreted  accord ing  to 
the R egge fo rm  d a /d t  ~  E 27(0-2  ̂ it g ives essen tia lly  the B ohr tra je cto ry  (8) 
at t ~  4 m2 to within a constant o f o rd e r  one.

3. CONCLUSION

In con clu sion  I should m ention sev era l p ecu lia r  features:
(1) Although the in frared  fa c to r  essen tia lly  contains the pow er a s s o 

ciated  with the Bohr tra je cto ry , it does not contain the po les  a sso - 
cia ted  with the Bohr le v e ls . A fter  a ll, we have only taken the 
low est o r d e r  radiative co rre ct io n , which has no bound state p o les , 
and ra ised  it to an exponential, which does not introduce further 
s in gu larities . A  fu lle r  treatm ent o f the scattering would be required 
to obtain the p o les  [7 ],

(2) Eq. (5b) can a lternatively  be written in a form  appropriate fo r  large
|t|,

exp
fZm2_ 
'  m

- 2a
(5. b)

giving a pow er w hose rate o f variation  depends on the experim ental 
energy  resolution .

(3) The p ow er o f lab energy in (9) can be identified with 2J(t)-2 , where 
J(t) r e fe r s  to the B ohr tra je cto ry , only if  K m is  energy-independent 
in the la b ora tory .
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INTRODUCTION

The two subjects on which I shall talk, e+ e" collid ing beam  experim ents 
and pp annihilation into leptons, though pertaining to quite d ifferent ex p eri
m ental p ro je c ts , have a com m on th eoretica l background that m akes it con 
venient to d iscu ss  them together.

E le ctron -p os itron  co llid in g  beam s constitute the largest p ro ject now 
under developm ent at the F ra sca ti National L aboratory . A fir s t  part of the 
p ro je ct , the construction  of a sm all ring (ca lled  AdA fron ) the Italian Anello 
di A ccum ulazion e) has now been com pleted , and the relevant experim ents 
(e+e ‘  annihilations at en erg ies  up to ~450 M eV in the ce n tre -o f-m a ss  s y s 
tem ) a re  being ca rr ie d  out using fo r  the in jection  the linear a cce le ra to r  at 
O rsay.

The second  but m ore  am bitious part of the p ro je ct  con sists  in the d e 
velopm ent of one o r  m ore  la rg e r  storage r in gs, up to energies o f ~ 1 .5  GeV 
fo r  each of the two co llid in g  beam s ( i . e .  3 GeV total ce n tre -o f-m a ss  energy). 
T his second  part o f the p ro je c t  is  ca lled  Adone (Adone is  the Italian fo r  
"A d on is" but can a lso  mean " la rg e r  A dA ").

The pp annihilation experim ents a re  being ca rr ied  out on the proton- 
synchrotron  of the European Organization fo r  N uclear R esearch  (CERN) 
by C on versi, F a rley , M üller and Z ich ich i, using an intense beam  of anti
proton s.

THE FRASCATI STORAGE RING PROJECT

A d escrip tion  o f AdA can be found in a paper presented by TOUSCHEK 
at the CERN C onference on high en erg ies  in 1961 [1] , and a lso  in a note 
by BERNARDINI, C O R A ZZA , GHIGO and TOUSCHEK [2] . The Adone p ro ject 
is  d iscu ssed  by AMMAN, BERNARDINI, G ATTO , GHIGO and TOUSCHEK 
in a p relim in ary  fo rm  [3] and, at a m ore  advanced stage, by AM M AN , 
BASSETTI, BERNARDINI, C O R A ZZA , MASSAROTTI, MANGO,PELLEGRINI, 
PLACIDI, PUGLIGI and T A ZZIO L I [4] .

The use o f storage rings w as f ir s t  proposed  by O ’NEILL [5 ] , and an 
experim ent on e le c tro n -e le c tro n  co llid in g  beam s is  being ca rr ied  out at 
Stanford.

A  storage ring p ro je c t  like Adone con sists  roughly of an in jector (to
gether with an in jection  system ), a doughnut kept at high vacuum, a magnet 
and a rad iofrequency system . The in jector  in Adone wiU be a high-energy 
lin ear a cce le ra to r  fo r  e lectron s  and positron s . Its energy depends on the 
energy that one wants to attain in the storage ring and must a lso  be large 
if a la rge  positron  intensity is  needed. F o r  instance, it is intended in Adone

5 6 9
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to use a lin ear a cce le ra to r  of ~500 MeV fo r  a ring of 750 M eV, and a linear 
a cce le ra to r  o f ~800 M eV fo r  a ring o f 1. 5 G eV . The e lectrons and positrons, 
a fter being acce lera ted  by the lin ear a cce lera tor , a re  in jected, in many 
pu lses, through an optical system  into the doughnut. During the accum ul
ation tim e the m agnetic fie ld  is kept constant. Then it is  varied  until the 
beam s reach  the d es ired  final energy. The energy variation  is  provided by 
the radiofrequency system , w hose main purpose is  to com pensate fo r  the 
energy lo s s e s  due to radiation. The stored  e lectron s and positrons circu late 
on the sam e orb it in opposite d irection s and one can look at their annihilation 
products when they co llid e . In spite o f the high vacuum, co llis ion s  a lso  occu r 
with the residual gas in the doughnut, and this e ffect contributes to produce 
the "fin ite  l i fe -t im e "  of the beam , which can how ever be made of the order 
o f ten hours o r  m ore  by going to re latively  high vacuum (~ 1 0 '9to r).E lectron - 
positron  co llis io n s  take p lace  only in a few reg ion s of the doughnut, as a 
resu lt of fact that the e lectron s  and positrons p roceed  grouped in packets, 
w hose total num ber is  given by the ratio of the radiofrequency to the beam 
frequ en cy . If the c r o s s -s e c t io n  fo r  a given type of event is  a, the number 
o f events p er second that one ob serv es  w ill be Lo w here L depends on the 
ch a ra cte r is t ics  o f the ring and is  ca lled  lum inosity . The lum inosity L is 
exp ressed  by a sim ple form ula  in term s of the param eters o f the ring, and 
it is  essen tia lly  p roportional to the product s+ s- of the positron  and electron  
tran sverse  densities (densities on a surface tran sverse  to the beam d ir e c 
tion). T hese densities cannot unfortunately be made a rb itrarily  high. Their 
values are lim ited  up to w hich depends on the so -ca lle d  space-ch arge
e ffe c ts . In fact, the fo r c e  acting on one e lectron  (or positron) in the beam 
is  a lso  dependent on the action  of the other e lectrons and positrons. F or

Fig. 1

Perturbation theory cross-section (or e +,* e ' - » 2 )
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and o rd e r  o f magnitude, smax is  expected  in Adone to be o f the ord er  of 
101 1  -1 0 12 p a rtic les  per  cm2 . The c r o s s -s e c t io n s  in perturbation theory 
d ecrea se  rapidly with energy. In F ig . 1, we report the perturbation theory 
c r o s s -s e c t io n s  fo r  e+ + 'e '->  2y. In F ig . 2,we report the perturbation theory

D IF F E R E N T IA L  C R O S S - S E C T IO N  F O R  e++ e - e ++e"

Fig. 2

Differential cross-section fo r e + + e - * e + + e

c r o s s -s e c t io n s  fo r  e+ + e~~* e+ + e , and in F ig . 3, we have plotted the p e r 
turbation theory c r o s s -s e c t io n  fo r  e+ + e" -» p + p~, together with the p e r 
turbation theory c r o s s -s e c t io n s  fo r  e+ + e’ -» it* + if, e+ + e* -» p + p, and 
e+ + e‘ -»K  + K . The perturbation theory c r o s s -s e c t io n s  fo r  these last three 
reaction s m ay w ell be w rong by o rd e rs  o f magnitude, since any effect of 
strong in teractions is  en tirely  n eg lected . In F ig . 3, the c r o s s -s e c t io n s  are 
plotted against E /m , w here 2E = total c e n tre -o f-m a s s  energy and m is  the 
m a ss  of the final p a rtic le  produced (p-m eson , pion, K -m eson , nucleon).
In F ig . 4 ,the perturbation  theory c r o s s -s e c t io n  is  a lso  reported  fo r  the mode 
o f annihilation e+ + e’  -» B + B, w here B is  a vecto r  m eson, on the assum p
tion that it has no anom alous m om ent. In spite of the general unreliability 
o f perturbation  theory estim ates, esp ecia lly  when strong interacting particles 
a re  produced, it is  safe to requ ire  that the lum inosity L be of the ord er  of 
1 0 33cm 2 per  hour in o rd er  to have a vast range o f experim ental uses and 
a reasonably fast counting rate. T o attain such a lum inosity one needs a 
la rg e  current intensity. If one defines the intensity as the ratio between the 
total charge o f the beam  and the revolution  period ,the required values are 
about 100 m A  fo r  both p ositrons and e lectron s .

POSSIBLE EXPERIM ENTS WITH COLLIDING BEAMS OF ELECTRONS AND 
POSITRONS

T h eoretica l d iscu ssion s  of e lectron -p ositron  collid ing beam experim ents 
have already been given, A general d iscu ssion  w ill not be given in these
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Total cross-sections in perturbation theory where 2E = total centre-of-mass energy and 
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notes, and I shall r e fe r  to previous papers [ 6] . I shall only mention here 
a few  general points that have been examined

1. T ests  o f quantum electrodynam ics
The reactions e+ + e‘  -* 2y, e+ + e’  -» e+ + e" and e+ + e ' -» + y.~ can

conveniently be used to test quantum electrodynam ics at sm all distances 
(the last equation w ill a lso  test the muon structure). A reliab le  calculation 
of the radiative co rre c t io n s  is  essentia l fo r  the interpretation o f the above 
rea ction s . C alcu lations of the radiative co rre ction s  have been ca rr ied  out 
at F ra sca ti and at T r ieste  by Da PRATO, MOSCO and PUTZOLU [7, 8] and 
by BUDINI and FURLAN [9] .

F ollow in g  the conventional way of m odifying electrodynam ics one finds 
that at a beam  energy as low  as E = 250 MeV ( i .e .  500 MeV total ce n tre -o f-  
m ass energy) a m easurem ent of e+ + e‘ -> 2y with a 7% accu racy  carried  
out at 60° -  90° can test e lectrodynam ics up to distances of ~ 0 . 2 fe rm i. A 
m easurem ent of e+ + e‘ -> e+ + e" around 90° at an energy E ~300 MeV with 
a 1 0 % accu ra cy  is  su fficient to test e lectrodynam ics up to distances o f ~ 0 . 1  
fe rm i. S im ilarly , a m easurem ent with a 10% accu racy  of e+ + e’ p + p 
at E ~300 M eV would a lso  test e lectrodynam ics (o r  muon structure) to ~ 0 . 1 
fe rm i. T ests  of e lectrodynam ics can a lso  be conveniently ca rr ied  out with 
m ore  com plicated  reactions such as e+ + e" -» p + p + y which are still 
easily  detectable but have low counting rates.

2. Annihilation into strong interacting partic les

The relevant poss ib ility  o ffered  by such experim ents is that of m easu r
ing the e lectrom agn etic  fo rm  fa cto rs  of strong interacting p articles  fo r  
tim e -lik e  values of the m om entum  tran sfer . A s long as the reaction  goes 
through the one-photon channel, pa irs o f z e ro -sp in  bosons are produced in 
p states and pa irs  of spin 1 /2  ferm ion s in 3S 1 and 3D1 states. A s a general 
rem ark  let m e s tre ss  one point which is  pecu liar to e+ - e experim ents 
and m akes their interpretation  m ore  d irect than fo r  the corresponding 
e lectron -sca tter in g  experim ents. In an e lectron -sca tter in g  experim ent, such 
as e++ p"-* e + p, at a given energy the fo rm  fa cto rs  are taken fo r  different 
values of their argum ent correspon d in g  to each different scattering angle.
On the other hand, in an annihilation experim ent such as e+ + e" -» p + p, 
at a given energy the fo rm  fa cto rs  are taken at one given value of their argu 
ment correspon din g  to the energy in the experim ent. A s a result of this, 
angular distributions are pred icted  at m ost up to one param eter (in e + e -» 
p + p it is  the ratio of the m agnetic to the ch a rg e -fo rm -fa c to r ) and there is 
no need at a ll fo r  good angular resolu tion s. I shall not expand here on the 
top ic of annihilation into strong interacting p a rtic les , especia lly  as som e 
of the aspects of the d iscu ssion  w ill reappear among the specia l topics I am 
going to d iscu ss  in these notes.

3. Annihilation into pa irs  of v e c to r  m esons

U nless som e damping due to rapidly decreasin g  form  fa ctors  or to other 
p oss ib le  m echanism s o ccu rs , the m ode of annihilation



5 7 4 R. GATTO

e+ + e‘  -> B + B ,

w here B and B are suggested m oderately  weakly interacting vector  bosons, 
is  expected to be a dominant one. Its c r o s s -s e c t io n  in perturbation theory, 
on the assum ption of no anom alous m agnetic mom ent o r  e lectr ic  quadrupole 
m om ent, is  reported  in F ig . 4. Com paring this with the other perturbation 
theory  resu lts , one sees  that annihilation into vecto r  m esons might w ell be 
rather frequent, in spite o f the many uncertainties of the electrom agnetic 
p rop erties  of this p a rtic le . If neutral interm ediate vector  m esons exist they 
would a lso  appear as reson an ces, fo r  instance in e+ + e' -» B°->ß + /u". We 
have calcu lated  that such resonant interaction , if it existed, even after aver
aging ov er  the experim ental energy resolution , could very  well com pete 
with the d irect e lectrom agn etic p ro ce ss .

F o r  further considerations we again re fe r  to the published papers quoted 
in re fe ren ce  [ 6] .

In the follow ing I shall only d iscu ss  a few  points on the subject of e+ - e" 
co llid in g  beam s that have been c la r ifie d  by recent developm ents. Then I 
shall talk m ostly  of p + p annihilation experim ents.

THE ONE-PHOTON CHANNEL

In this section  I shall b rie fly  review  the main theoretica l notions fo r  
the analysis o f a reaction

e+ + e’  -» finai state ( 1 )

assum ing that it m ainly p roceed s  through a graph of the kind shown in Fig..5.

Fig. 5

I shall a lso  d iscu ss  som e aspects o f the problem  of radiative correction s  
to such a graph. The S -m atrix  elem ent fo r  reaction  (1), assum ed to proceed  
through a graph shown in F ig . 5, can be written in the form

<f|s|e+ e' > = [v% u) < f| j„ (0) | 0 )  6 (q+ + q. -  qf) (2 )

w here f denotes the final state o f total 4 -m om entum  q f, k = q++ q. is the 
4-m om entum  of the virtual "photon, q+ and q_ are the e+ and e’  momentum
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resp ective ly , v and u are D irac spinors and j„  is  the electrom agnetic current 
op era tor . In the ce n tre -o f -m a s s  system , which is  indeed the laboratory 
system  in collid in g  beam  experim ents, one has

k 2 = (q+ + q j 2 = - 4 E 2 (3)

w here E is  the energy of e+ (o r  of e ). The electrom agnetic current j (x) 
has to satisfy  a conservation  equation 6jv(x)/6xv = 0 from  which

k„<f! j„(0)| 0 > = 0 . (4)

In the ce n tre -o f -m a s s  system  E q .(4 ) takes the form

k4 < f| j„ (0 )| 0 >  = 2 iE  < f| j4 (0)|0> = 0. (5)

Thus if  we define
_3n_

Jv = (2ir) 2 < f| j„ (0 )| 0 >  (6)
3n

w here we have introduced a fa ctor  (2ir)T fo r  norm alization purposes and where 
the num ber o f the final partic les) we conclude from  Eq. (5) that in the cen tre- 
o f-m a ss  system  Jv - (7 ,0 ) w here J is  a three-d im en sion a l vector . The vector 
—)  •—> ->(S) —>(V)
J can a lso  be decom posed  as J = J + J w here the su perscrip ts S and V 
re fe r  resp ective ly  to sca la r  o r  v e c to r  in iso top ic -sp in  space. It thus follow s 
that the final state m ust have the fo llow ing quantum num bers: total angular 
m om entum  J = 1, parity P = -1 , charge conjugation num ber C = -1 , is o 
topic spin T = 0 o r  1. F ro m  the S -m atrix  elem ent con sidered  in E q .(2 ) and 
fro m  Eq. (6 ) it fo llow s that the total c r o s s -s e c t io n  fo r  unpolarized initial 
and final p a rtic les  is  given by

=  ^ S E * “ / ( d 3 f i ) . - ( d 3 f n ) M E f 2 E ) J 3 ( | f ) T n m E R m  ( 7 )

w here a = e2/4ir = 1/137, fi is  the mom entum  o f the final ith particle ,
TJ!nn= 1 / 2  ( i ^  - 6mn) w here i is  a unit v e c to r  pointing along the d irection  o f the 
incom ing positron  and R mn = -J mJn • The summation £  is  over the final spin 
state. f

When radiative co rre c t io n s  are included one must add to the graph of 
F ig . 5 other graphs such as those shown in F ig s . 6 and 7.

The graph shown in F ig . 7 cannot be exp ressed  in term s o f the vertex in 
dicated indicated in F ig . 8 (suitably m odified  fo r  the inclusion of radiative 
c o rre c t io n s ).
F o r  the tw o-photon channel m ost o f the general considerations valid fo r  
the one-photon channel (such as its typ ica l selection  ru les) do not apply.
The dominant contribution from  the tw o-photon channel is  expected to arise
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I
Fig. 6

I
Fig. 7

Fig. 8

from  its in terference  with one-photon graph shown in F ig . 5. This in ter
fe ren ce  is  of o rd er  e in the c r o s s -s e c t io n . At this point there is  a very 
sim ple and general resu lt that can be useful fo r  the interpretation of the 
experim ents. F o r  an experim ent which does not distinguish between a final 
state and its charge conjugate (such as a total c r o s s -s e c t io n  m easurem ent, 
o r  any m easurem ent which treats sym m etrica lly  the produced charged 
p a rtic les ) such an in terferen ce  term , between the one-photon graph of F ig .5 
and the tw o-photon graph of F ig . 8 , does not contribute. Such a theorem  is 
a general consequence of ch arge-con jugation  invariance and can be proved 
in many w ays. A sim ple p ro o f is  the fo llow ing. C onsider a transition from  
the in itial state i to a final state f .  W e ca ll SA that part of the S -m atrix  c o r 
responding to the one-photon channel and Sb that part corresponding to the 
tw o-photon channel. The in terferen ce  term  we are considering between the 
one-photon and the tw o-photon channel is  o f the fo rm

are  se lected  by the experim ent. We assum e that the set o f states f is in
variant under charge conjugation. So we can w rite

(9)

w here S is  the charge conjugation op era tor . Next we note that if we split 
| i )> into a part even under t? and a part odd under 8
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|i> = [ i+ > + |i->, (10)

we have Sß | i)> = SB | i+ >̂ and SA| i)> = SA | i_)>. Thus Eq. (8 ) can be written
as

Re < i.| SAPf SB| i+ > = Re < i - I ^ P ,  SB̂  | i+> 

= Re < i.| SAPf SB| i+> = 0 ( ID

which shows the vanishing o f such in terference  term  on the assum ption that 
Pf is  even under # . T h ere fo re , con siderations , valid fo r  the one-photon 
channel hold including term s e® as long as only sym m etric experim ents 
a re  p erform ed .

Still on the subject o f radiative co rre ct io n s  there is  another feature of 
e le ctron -p os itron  co llid in g  beam s which d eserv es  to be m entioned. The ex 
ploration  of the lim its  of valid ity of quantum electrodynam ics can be carried  
out rigorou sly  only up to en erg ies  such that the virtual e ffects  o f interacting 
p a rtic les  can be neglected . A s soon as the breakdown e ffects  to be observed  
becom e of the sam e o r d e r  as the e ffects  resulting fro m  virtual strong in ter
acting p a rtic les  a much m ore  com plicated  th eoretica l analysis is  required, 
w hich does not have, so fa r , the degree  o f the typical re liab ility  of ca lcu l
ation with e lectrod yn am ics. In co llid in g  beam  experim ents the virtual effects 
o f strong interacting p a rtic les  com e in such a fo rm  that they are related to 
total c r o s s -s e c t io n  m easurem ents ca rr ie d  out with the sam e collid ing beam 
system . T here is  th ere fore , in this resp ect, no need fo r  a theoretica l treat
ment o f strong in teractions. Let us con sid er the m odification  to the photon 
propagator aris in g  from  virtual strong interacting p a rtic le s . The m odified 
photon propagator can be w ritten as

In E q .(13 ), is  the current op era tor and the sum is extended over all physi
ca l states with total four-m om entum  p = k. The photon propagator in E q .(12) 
is  defined as

1 /,_2\ _ 6»v . k\ v  -  kuku n(o) - n(k2) - irn (k2)
Hij/ (k ) -  k 2 _ ie k 2 k 2 - iek 2 - ie (12)

w here

2

n(k2) = - - g -  £ <o|j (0 )| z> < z| j f0)|0 > 
3K k v v

z
(13)

and

(14)

Ö j„ ( x - x ' )  = i < 0 | p [ A M( x ) A „ ( * ) ] | 0 > (15)
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w here P is  the ch ron olog ica l product and A,j is  the electrom agnetic fie ld . 
F orm a lly  E q .(12) cannot be w ritten as

l ^ f k V - ^ + f *  f "  d a n  (-a )
* W k > k2 k2 JJ0 a (k2 + a - ie) ' ( }

It is  easy to see that the experim entally m easured c ro s s -s e c t io n s  fo r  p r o 
c e s s e s  e+ + e" -» y F w here F denotes a group of final states, is d irectly  
related to the contribution to E q .(13 ) from  the group o f state F among the 
states on which the sum m ation is  extended. In this way one can calculate 
the m odifications of the photon propagator resulting from  virtual strong 
interacting p a rtic les , d irectly  from  m easured values o f c ro ss -s e c t io n s .

Let us note that in Eq. (13) the m atrix  elem ents 0 1 j„(0 ) | z )> of the 
current j y are proportional to Jv as defined from  E q .(6 ). In fact, the total 
c r o s s -s e c t io n  fo r  annihilations leading to the final states F , can be written, 
in the c e n tre -o f-m a s s  system , as

i27rfa <0| Jm(0)|Z > < Z |j„ (0)|0>. (17)16 E 4 mnp=k

This is again Eq. (7) in a d ifferent notation. The sum occuring  in E q.(13) 
is  slightly different from  that in Eq. (17). In E q .(13) there o ccu rs  a scalar 
product of the two m atrix  elem ents o f j „ ,  while in Eq. (17) the two spaces 
indices m and n are d ifferent. H ow ever one can use gauge invariance to 
relate  the two exp ress ion s . One has

(2 tt)3 < o I (0) I z ><  z I j„(0) I 0 > = n F (k2) (kMk„ - k 26̂ „) ( 1 8 )
Pz=k

2 2 w here FIp (k ) denotes the contribution to Ü (k ) from  the group of in ter
m ediate states F . If we substitute E q .(18 ) into Eq. (17), we obtain the direct 
connection we w ere looking fo r , nam ely

ar (E) = (jr2 a /E 2 )n F (-4 E 2 ) . (19)

In E q. (16) fo r  Dj}y (k2) we can now substitute IIF ( -4 E 2) from  Eq. (19) to get
a form a l expression  fo r  the photon propagator m odified fo r  the virtual con 
tribution of the states F

«a, kpk^-N 2 r “  EdE <rF (E)
w i B jV  <2 0 >

In Eq. (20) ctf is at least of o rd er  o 2 so that the m odifications are usually 
very  sm all. In som e exceptional ca ses , how ever, they becom e rather b ig . 
Such a situation o c cu rs , fo r  instance, at energies corresponding to the u° 
m a ss . The c r o s s -s e c t io n  ctf (E) fo r  p ro ce sse s  that go through a u° in ter
m ediate state is very  sharply peaked around the u° m ass. The p rocesses  
that can go through u° are those in which the final isotopic spin is zero,apart
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from  iso top ic -sp in  m ixing e ffects  that a re  indeed quite large (see the d is 
cussion  of such resonant contributions in the next section ). The effect of 
v irtual u brings about noticeable m odifications a lso  in p ro ce sse s  such as 
e+ + e” -» e+ + e" o r  e+ + e" -» p+ + ß~ in which no strong interacting particles 
are  present in both in itial and final state. Such e ffects  becom e difficult to 
detect in experim ents with rough energy resolution , but they becom e very 
apparent as soon as the energy resolution  is  o f the sam e ord er as the l i fe 
tim e of the resonant state. Such a situation is  probably rea lizable  with e+ - e" 
co llid in g  beam s, w here it should be p oss ib le  to reach  energy resolutions 
of the o rd e r  o f 100 keV without very  great techn ical d ifficu lties [10,11] .

THE RESONANT CONTRIBUTION FROM  p° AND u°

W e have seen that states with J = 1, P = -1 , C = -1 , T = 0 or 1, can 
be coupled to e+ e" in the one-photon channel. The v ecto r  m esons p° and 
u>° that have recen tly  been d iscovered  have the right quantum numbers to 
couple in the one-photon channel. They may give r ise  to resonant con tr i
butions through graphs of the general kind as shown in F ig . 9.

Fig. 9

R ecently there has been som e inform ation about the couplings o f p° and u°. 
One is  thus able to estim ate the c r o s s -s e c t io n s  fo r  p ro ce sse s  going through 
interm ediate p° and u °. I shall f ir s t  review  here the general strategy that 
one fo llow s to determ ine the couplings of p°and u°. Of cou rse  much of the 
w ork is based on th eoretica l m odels (m ainly on the so -ca lle d  p-dominant 
m odel by G ell-M ann) and th ere fore  som e of the conclusion  may w ell turn 
out to be not very  accu ra te . We believe, how ever, that the qualitative feat
u res of such an approach are  essen tia lly  right and that the main conclusions 
that we d erive  (such as the a lm ost unbelievably large values of the c r o s s -  
section s through interm ediate u °) a re  essentia lly  independent of the m odel. 
In re fe ren ce  [12] are  listed  som e of the papers that are relevant fo r  the 
prob lem  of the determ ination o f the couplings of p° and u°. I shall now d e s 
cr ib e , without going into details, the strategy that leads to a determination 
o f the coupling constants.
( 1 ) u°-> 7r+ + 7T_ + 7T° decay.

In the p-dom inant m od el one d escr ib es  such a decay through the graph 
shown in F ig . 10. One needs th ere fore  two coupling constants: fw and 
Tpirn •
( 2 ) p -» 7r + 7T decay
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Fig. 10

The width r f o r  the decay which is  shown in F ig . 11, is expressed in term s 
of yptlI . Inserting fo r  r  a value ~100 MeV one gets

W 4" - 1/ 2 - (21)

f  \
n\ 

F ig .11

(3) P ion fo rm  fa ctor

The y - p coupling constant is  ca lled  em 2p /  2 yp , where mp is the p -m ass .
T o  determ ine yf , one w rites down the expression  fo r  the pion form  as given 
in term s of the graph shown in F ig . 12:

e F (k 2) = (em2p / y? ) [ 1 / (mp2 + k2)]  .

/TT,'

Fig. 12

F ro m  F(0) = 1, one gets

Vir ly? = 1 • (22)

F rom  (21) and (22) one has

Tp2 / 4tt — 1 /2 . (23)

It should be noted that one would a lso  derive  the relation y pNN /y p = 1 from
the nucleon iso v e c to r  fo rm  fa cto r , by a s im ila r  p rocedu re . In general, as
stressed  by G ell-M ann and Sakurai, it is  requ ired  that the coupling of p be 
un iversa l: ypmr = 7 ^ =  YpKK .
(4) u -» w + y decay
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- f pu5TT emp

Fig. 13

F or this decay mode (Fig. 13), one still needs . y p is known by Eq.(23). 
However, the branching ratio between u -» w° + y  and w -» Sir can already 
be predicted at this stage.
(5) jt° -» y  + y  decay

r
Fig. 14

The coupling constant y -  u is defined as em ^/2 yu (see Fig. 14). One needs 
yuj and From  unitary symmetry one has

= yp • (24)

This is the reason why the factor J3 was inserted in the definition of the 
cj - y  coupling constant. Then inserting a value for the jt° lifetim e one deter
mines fupir. Inserting r„ ~  3 eV, one finds f ^ ,  and, from  such a value and 
from  Eq. (21), one derives

ru -  0 .4  MeV. (25)

The determination of the coupling constants is now com plete. For in
stance, one can compute the rate for u  -» it  +  it  through the decay shown 
in Fig. 15., fo r  u -> e+ + e" (or / /  + f f  ) through the decay shown in Fig. 16

Fig. 1 5  Fig. 16

and for sim ilar decay modes for  p.  We recall that two main assumptions 
have been made: the p-dominant model and unitary symmetry, in obtaining 
E q.(24). The colliding beam experiments, that I am going to describe, will 
provide a check of such assumptions.
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Let us first consider the contribution from  p° intermediate states. The
reaction e+ + e" -» 7r+ + tt" can go through p° excitation and consequent de
cay. The resonant cross-section  is

crr + s — 3.4 X 10‘ 31cm 2 . (26)

To com pare it with a typical colliding beam cross-section , we consider 
e+ + e" -» / /  + /j", the cross-section  of which is

a =  ( l / 3 ) a W ,  (27)

as soon as the energy is such that one can neglect the /j-m ass. The cross- 
section (26) is about 1. 7 times larger than that for annihilation into 2(j at 
the same energy.

One may also wonder whether the contribution of intermediate p° states 
can becom e important in the electrom agnetic processes e+ + e‘  -» e+ + e" 
and e+ + e" -» (? + f i ' . In fact, by a rough estimate one can convince one
self that this will not be the casfe. A detailed calculation was carried out 
by BROWN and COLOGERO showing that the effects are negligible [13] .

Now let us consider the contribution from  u° intermediate states. The 
very important feature here is the very narrow width of u°. We have estim 
ated that it should be of the order of 0 .4  MeV, according to Eq. (25). The 
energy resolution with e+ + e" colliding beams may easily be pushed down 
to a small fraction of a MeV. Under such conditions the u° will show up in 
a very apparent way, and its will in fact originate the dominant contributions 
to the cross-section s  at energies around its rest m ass. We consider the 
following three processes

e+ + e’  - » to0-» ir* + 7r + 7 r°, (28)

e+ + e" -» u°-> 7T° + y ,  (29)

e+ + e -* ir* + ir , (30)

all proceeding through intermediate u°. Making use of the information de
rived before on the couplings of u° , we get fo r  the total cross-sections of 
the reactions (28), (29) and (30), at the resonant energy:

CTr (37r) = 7 X 10’ 29 cm 2, (31)

<Tr (3r°Y)= 4 X 10' 30 cm 2, (32)
o

CTr (2jr) = 0 .8 X 10 cm . (33)

These values of the cross-section s are almost unbelievably large. We com 
pare them with the cross-section  for e+ + e" -> + ß~ as given by the fo r 
mula a (2 ß )— 1/3 7ra 2 X2. Note however that this formula does not hold at 
an energy near the u° m ass, just because there is also an amplitude a ris 
ing from  e+ + e~-> + pi~ which interferes with the purely electro dy



ELECTRON COLLIDING BEAMS 583

namic amplitude for e+ + e" -* p* + p~, as discussed in the previous section. 
These two amplitudes are of the same order of magnitude. We find that: 
ffr (3tt), as given by Eq. (31), is 39.0 times larger than 1/3 ?ra2 X2; ar (7r°7 ) 
is 22 times larger; crr (2tt) is 4. 7 times larger. It may also be relevant to 
stress that e+ + e"-> ir° + y  is of higher electromagnetic order than e+ + e"-> 
p+ + p ' . In fact, the processes (28), (29) and (30) are of order e4, e6 and 
e8 respectively. The decay of u° in (29) occurs in fact by violating isotopic - 
spin selection rules since the isospin of u is T = 0 and that of the final state 
must be T = 1. This illustrates how peculiar the situation becom es at that 
energy. Again, we want to stress the interest of an observation of the inter
ference effect of e + e -» u°-> p + p with the lowest order electromagnetic 
amplitude.

PROTON -ANTIPROTON ANNIHILATION INTO LEPTONS AND INTO VEC
TOR MESONS

I shall talk now on an experiment which is closely related to the collid 
ing beam experiments we have been discussing, and which is being carried 
out at CERN by CONVERSI, FARLEY, MÜLLER and ZICHICHI [14] . The 
experiment consists in measuring the cross-section  for:

p + p e+ + e” . (34)

The possibility of measuring the cross-section s  for

p + p -* ß* + ß ' (35)

and

p + p -* B + B, (36)

where B is the suggested intermediate vector boson, is also being examined 
by the same group. These experiments were discussed in detail in a paper 
by ZICHICHI, BERMAN, CABIBBO and GATTO [15].

Let us first discuss the p + p -» e+ + e* process. It goes through the 
graph shown in Fig. 17 and is essentially the inverse process of e+ + e’ ->

e+\ / e~

F

Fig. 17

p + p . Any consideration valid for e+ + e'-> p + p also applies, with the 
relevant changes, to p + p -» e+ + e . The proton electromagnetic vertex 
is explored in the experiment for  timelike values of the momentum trans
fer . In the equal notations the proton electromagnetic vertex is given by
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ü tp H ^  (k2) ^  + [F2 (k2 )/2M ]a(Ji; ky }u (p ) 

where we have defined

(37)

V = - y v ylt),
F 1 (0) = e
F2 (0 ) = e /jp .

In F ig. 18 we consider, the real k2 axis where k = q+ + q. is the virtual - 
photon momentum, and indicate the physical region of the electron-proton 
scattering experiments (k2 )• 0 ), the physical region for e+ + e’  -» p + p or 
p + p -» e+ + e’  (k2<̂ - 4M2), and the absorptive region (k2<̂ - 4/u2). The 
form  factors are com plex only in the absorptive region.

ABSORPTIVE REGION

'/////////////////,
e+ + e~ — p +  p e + p — e + p K

or
p + p — e++e~

k 2= . 2 k 2= 0

Fig. 18

The cross-section  for the process (34) is given in the centre-of-m ass sys
tem by

dg (pp->e+e~) _ jj_ a 
d (cos 0C) = 8 E /E 2 - M 2

IFj + Fj I (1 + cos l + l f F 1 + f F 2 |2sin ec

(38)
where Fj and F2 are taken at k2 = - 4E2, E being the p energy in the centre- 
of-m ass system and 0C the centre-of-m ass angle. With the form  factors 
Gĵ  = F1 + F2 and G2 = F1 + (E /M )2 F2 , Eq. (38) can be written as

dcr(pp -> e+e~ 
d(cos 0C)

JL a
8 E n/E2-M 2

i i 2 /  M \ 2 i i 2|Gj| (1 + cos 0c) + h g  ) |G2| sin 0 C (39)

Num erical estimates of what the cross-section  might be have very little 
value since nothing is known on the form  factors in the timelike region. For 
example, we can consider two models:
(i) pointlike proton model
In this case F2 = e and F2 = 1. 79 e;

(ii) extrapolation of a fit to spacelike experiments [16]
In this m odel, we have the following form  factors:

Fj = e [1 -  1 .18  k2/  (k2 + 30M2)] and F2 = 1.79 e [1 -  1. 59kz/(k 2 + 30/i2)]
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1 6 -  IN UNITS OF 0 .7 5 x 1 0 "3 ’ c m 2

i.

8

0 E /MI 2 3 10

Fig. 19

Total cross-section for p + p - » e + + e in units o f 0 .75X10"*1 cm :

In Fig. 19 we have reported the values which one obtains in this way for 
CTtor (pp -» e +e '  ), in units of 0. 75X10 cm 2 . The upper curve 1 is for point
like proton with ßp = 1. 79, the lower curve 2 is for model (ii).

With luck, from  the angular distribution, one may measure | Gj f  and 
| G2 | . However, in the physical region of the experiment the form  factors 
are com plex. This fact produces a polarization effect that does not occur in 
electron-proton scattering, in the physical region of which the form  factors 
are real. Suppose you can dispose of polarized antiproton beams. If they 
collide on unpolarized protons and annihilate into e+ + e ' , the cross-section  
is not the same for all cp, but there is an azimuthal effect, depending on the 
cosine of the angle that the normal to the production plane form s with the 
antiproton polarization vector. This effect is proportional, of course, to 
the sine of the phase difference between the two form  factors Fj and F2 
(or Gj and G2). The cross-section  is given by

where P is the antiproton polarization vector and n the normal to the pro
duction plane. If the experiment is, instead, carried out with unpolarized 
antiprotons on a polarized-proton target, Eq. (40) holds again, except for 
changing the + sign into a - sign (this follows in general from  the TCP 
theorem). If we write

the experiment would inform us on sin(6j - 62). However, some independent 
knowledge on the phases can be gained by the use of dispersion relations. It 
is  clear that dispersion relations, giving an equation connecting the real part 
to the imaginary part of a form  factor, can also be interpreted as giving a 
connection of the phase to the modulus. In fact an equation, such as

Gi = iGile«*» ; 

G2 = IG2 I ei6? , (42)

(41)



can also be interpreted as an integral equation for the phase 6 (k2), once 
| G(k2) | is known:

| 0 ( f  < « . . ( » !  - i p  (44,

Eq. (44) has inconvenient mathematical features. A most convenient way of 
using such an information has been suggested by FREUND and KUMMER [17]. 
Consider a function f(z) = |f(z) |exp[i6 (z)] which (a) is analytic in the cut plane 
z (Fig. 20), the cut going from  a to oo; (b) has no complex zeros; and (c) 
satisfies f(z*) = f*(z).
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* < > < * >  ■ ; ’ £  * 9 ^ -  <«>

a

Fig. 20

Suppose you know jf(z) | on the whole real axis. Because of the condi
tion (c), |f(z) | has no discontinuity; in fact |f(x+ie)|- | f(x-ie)|= |f(x + ie )| - 
|f*(x + ie) | = 0 .

What can be said on 6 (z)? To this purpose we consider log + (z) = 
log |f(z) | + i 6 (z). We use a subtracted Cauchy relation (z0 is the point of 
subtraction), taking the contour indicated in Fig. 21. We have explicitly

used our restriction (b) on the zeros of f(z). Taking now z and z0 real, 
and assuming that the integral on the c irc le  can be neglected, we obtain

logf(x) - lo g f (x 0) = ----------X •6 v ' s v o/ 2 n  J -»  (x' + ie - x) (x' + ie -x0)

Now we use the identity

( x " Xo) (x '  - x + i e )  ' ( x ' - x o  + i e )  = X̂ - ^ P  ( X/ . x)  ' ( x / - x 0)

and, by separating the real part from  the imaginary part, we find
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6 (x) - &(x0) = - P r °°log |f(xO |dx/ 

J .«  ( * ' -  X )  (x '-  x0 )
(45)

which is our desired equation, and also

log |f(x)|-log |f(x0)| x - xo p  f * "° StxQdx'
2 IT Jq ( x '-x )  ( x ' - x 0)I (46)

Let us apply Eq. (45) to Gj = |Gx | exp(i6x). It is convenient to subtract at 
k2 = 0. We obtain

How can one use Eq. (47)? Let us split the integration region into three parts:

In the first region one can insert the measured values of G2(k2) (from p+p  -» 
e++e- or e+ + e- -» p + p). In the second one can only makeguesses;fortunately 
resonances seem to dominate in that region. In the third region one again 
inserts experimental values (from e+p-> e + p). The guesses are not quite 
arbitrary. In fact one must find 6 (k2) such that: (a) it must be real away 
from  the absorptive region, i. e. for all k2 - 4̂ i2; (b) 62 (k2) - 62(k2) must fit 
the values measured in the polarization experiment described before.

In the expressions (38) and (39) term s of the order (me/M)2, where me 
is the electron mass and M is the nucleon mass have safely been neglected. 
If one wants to take into account the muon m ass in the process p+p->ju++ju', 
one has simply to introduce a factor ß  ̂ (velocity of final ß in the centre-of- 
m ass system) in front of Eq. (38) or (39) and make the following substitution

(47)

( l+ c o s 20c) -» (2 - ß2 sin2 0C) , 

sin2 6c -> (1 - (32 cos2 9c) .

For the total cross-section s  one then finds

ot (p p -> ^ )  = 1 g 
crt (pp ->e e) 2 M= f  (3 - ß2) = 1 -

This branching ratio is  almost exactly equal to one. More important than 
these kinematic corrections are the radiative corrections. Their calcula-
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tion is being carried  out at Frascati. For the evaluation of them, the r e 
mark we made before concerning the interference effects between the two- 
photon and the one-photon channels com es out to be very relevant and sim 
plifying. The 2/j versus 2e ratio in pp annihilation offers a very suitable 
way of measuring a possible high-energy breakdown of electrodynamics or 
a possible muon structure. The momentum transfers are always larger 
than 2M and they are the largest so far considered in such experiments. 
Furthermore, they are tim e-like and thus they provide essentially different 
information that provided space-like experiments.

The last topic I am going to review here is the mode of annihilation 
p + p -» B + B where B is a vector meson as suggested for mediating weak 
interactions.

Fig. 2 2

The process occurs through graph shown in Fig. 22. The most general 
form  of the electrom agnetic vertex, for a spin-one boson is, on invariance 
grounds

Jji = Gf2 (e je  2) p̂  + (G j +ß G2 + e G 3) [(e jq ) e2(J _ (^aQ.) 1

+ e G3 mg2 [ (qej) (qe2) - 1/2 q2 (49)

where p is the difference of the final four-momenta of B and B, ej and e2
are the polarization vectors of B and B, ms is the mass of B, fi + e is a 
possible anomalous magnetic moment of B and 2e a possible anomalous 
e lectric quadrupole moment. The form  factors Gj, G2 and G3 depend on 
the squared momentum transfer q2 .

We also define the bilinear combinations

R = (l/2 )| G 1 +MG2 + eG 3 |2 (E /m B)2,

S = (1/2) |G1 + 2 (E /m B)2 eG 3 |2 + ( l /4 )G 1 + 2 (E /m B)2 M G2 f .

The general expression for the cross-section  is given, in the centre- 
o f-m ass system,

"  d f S l P  Z l A  ®  { R(A + B) + SA + (S - R) (B - A) cos2e j  , (50)

2
6 T (BB) = H p ^ s (2A + B) (2R + S). (51)

In Eqs. (50) and (51) 0b is the velocity of B; A = (1 /2) |Fx + F2 |2 and
B = (1/2) I (M /E) Fj + (E/M ) F2 |2 are exactly the same combinations of the 
nucleon form  factors which determine the angular distribution of p+p->e++ e '.
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Similarly, 2A + B also determines the total cross-section  for p+p-> 
e+ + e". One thus finds for the ratio of BB annihilation to e+e ' annihilation

b = CTt (pp-*BB)/fft (pp-»e+e-) = (2R + S)- (52)

Eq. (52) holds in the most general case, and is still valid if the anti
protons are at rest.

If B has no anomalous moments and constant form  factors, b is simply: 
b = ßg [(3 /4) + (E /m B) 2 ]. In Fig. 23 this branching ratio is reported versus 
E /m [. Of course E must always be larger than the nucleon mass. One 
sees that annihilation into a pair of intermediate mesons is favoured with 
respect to annihilation into e+e- or ß+i<r already for a centre-of-m ass energy 
larger than I. 5 mg, provided B has no anomalous electromagnetic proper
ties. In Fig. 23 we have also reported b for /j = +1 and ß = - 1, e = 0 and 
constant form  factors. Once B is produced according to Eq. (36) it will

Branching ratio versus E/m g

decay rapidly (in about 10"17s) into its disintegration products (2ir, 3ir, ir +K, 
ß + v , e + v, e tc .). The annihilation events will exhibit definite angular
correlations and in some cases they will be of the kind:

p + p -»  B ++ B '-*  {ß+v\  + (tt+jt),

p + p-> B++ B '-»  (ß + v )  + (e + v),

p + p-> B ++B '->  (K° + 7r i  + (tt'+tt0) etc. ,

which should allow the identification of B. Branching ratios among the vari
ous decay modes of B have recently been discussed by BERNSTEIN and 
FEINBERG [18].

To show that Eq. (49) is the most general form  of the vertex JM we note 
that there are four independent four-vectors-, out of which Jß must be formed. 
They are q =pi+p2, p =Pi - p2, ej and e2, where p2 and p2 are the final m o
menta of B and B. It can easily be checked that

P2 + q2 = - 4 m |
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and so, one can form  the following independent scalars 

q2, (ej-k), (e2 -k), and (er  e2).

Then, observing that must be linear in both and e2 , one can write in 
general:

= % [a(k2 )(e ie 2 )+b(k 2 ) (e 1k)(e2 k)]

+ PM [ c(q2 ) (eie2) + d(q2 ) (exq) (e2 q) ]

+ e1(J (e2k) e(k2) + e 2(J (ejk)f(k2) .

One has now to impose:
J,, = 0

which gives
Q(k2) = 0,

b(k2 ) k2 + c(k2 ) + f(k2 ) = 0 .

However, JM when p - » -p  and e1 -»e2 (because of charge conjugation
invariance). Therefore e = - f  and consequently also b = 0. Using all these 
conditions and by a redefinition of the form  factors one gets the general 
expression ( 4 9 )  given above.
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1. IN T R O D U C T IO N

These lectures w ill be devoted to a review of som e open questions in 
the theory o f the weak interactions, in particular such questions which stem 
from  our ignorance about their high energy behaviour. I shall not discuss 
many of the better established facts about weak interactions which can be 
found in various survey articles [1 -8 ] . I shall further confine m yself to a 
few selected  topics in the theory of leptonic phenomena. An attempt will be 
made to concentrate on such problem s which are least obscured by guesses 
about the high energy behaviour of strong interactions and the corresponding 
fo rm  factors . In this spirit we shall discuss some reactions (such as weak 
lepton-lepton scattering) which are rather outlandish from  an immediate 
practica l point of view. However, the theoretical study of such processes 
is  especia lly  suited to bring out some of the most interesting general ques
tions in weak interaction theory.

Quite recently strong evidence has been found [9] for the fact that the 
neutrino (v  ̂) which accom panies the p* in jr+ -decay is distinct from  the neu
trino (ve ) which accom panies the positron in ß* -decay. and ve have the 
same helicity (negative; left-handed). The probable upper limit on the mass 
o f the Vp is  about 5 electron m asses [10]. (The limit on the ve -m ass is 104 
tim es sm aller). In what follow s we neglect any consequences of a possibly 
finite v  ̂ -m ass. (It would be surprising if this m ass were non-zero). Thus 
we assum e fo r  both kinds of neutrinos the invariance under the transform a
tion K+ —- p* + ve . As a result, neutrinos can have no (induced) magnetic 
moment. However, there does exist a non-vanishing electric charge form  
factor fo r  neutrinos [1 1 ].

E arlier it had been noted as a theoretical possibility [12] that in strange 
particle decays the and i/e might change roles (so that Ku2 decay would 
be K+ —■ p + + ^e). There is experimental evidence against this interchange 
[9], In the following we assume throughout that there exist two distinct neu
trinos and that in sill p rocesses  p* is paired with vu , e+ with ve .

There exists a body o f evidence [7, 8 ] in support of the so-called  p - e  
universality. P r io r  to the two-neutrino discovery this principle could be 
stated as a substitutional invariance p *~ e  in all interactions; u and e are 
identically coupled and d iffer only in their m ass. Now we must add: if we 
interchange p and e, the same need be done for i/M and i/e . If one believes 
that the p - e  d ifference is a secular effect of some interaction, then it would 
be hard to believe that there would not also exist non-secular p - e  d istinc
tions. About this subject the last word has not been spoken by any means.
It is  going to b;e one of the main experimental problem s for  the future to find
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out how well this universality works in high energy leptonic p rocesses. How
ever, fo r  the purposes of the present lectures, p - e  universality will be de
fined in the way just mentioned.

In Sec.H  we consider pure leptonic p rocesses , such as p -decay and 
lepton-lepton scattering. The difficulties of the high frequency behaviour 
of the Ferm i-in teractions treated in lowest order are discussed as well as 
their m odification if there exist intermediate vector bosons. Sec.HI is de
voted to a discussion  of general aspects of weak radiative effects. Here 
the fam ous question is: If higher order corrections are small why is this 
so? A  b rie f d iscussion  is  given of the high versus low cut off alternatives 
and of the difficulties connected with a power series expansion of these c o r 
rections. It is  recalled that these problem s present themselves whether or 
not there exist intermediate vector bosons.

In the now past one-neutrino days some prim e examples fo r  the d is 
cussion o f higher order weak effects were the p rocesses  p— ey  , 3e, etc.
With the advent of the two neutrinos these questions are now happily solved - 
they don’ t exist to any order. But also in the two-neutrino theory there r e 
main reactions of interest fo r  the study of higher order problem s, in partic
ular som e of those which cannot occu r in lowest order and yet are not 
strictly forbidden. Such p rocesses  are mentioned in Sec.IV , devoted to 
som e speculations about invariance groups fo r  lepton problem s which may 
be relevant to higher order weak effects.

In Sec. V we review the general structure of the heavy particle currents 
as they enter in the weak interactions with particular reference to C P -in - 
variance and to a | A ?  | = 1 rule for  the strangeness conserving processes. 
Finally we discuss in Sec. VI the principle of loca l action of lepton currents 
which may be of interest fo r  an experimental exploration of weak radiative 
correction s .

The general spirit of what follows is to take the higher order weak 
effects seriously . This is not done because one can guarantee that they will 
produce observable effects in the foreseeable future (although one cannot 
assert the opposite either). Rather, the recent developments have served 
to bring to focus long known theoretical questions which now seem m ore 
immediate than before. Some of these questions may turn out to be ultra
violet herrings - like som e of the problem s posed in the early days of quan
tum electrodynam ics. But even a proof of this would mean a distinct ad
vance.

The topics to be discussed are all in the domain of high energy leptonic 
interactions. It is  essential to  the reasoning that one can isolate one dynam
ical factor, the lepton current, which can be studied independently of strong 
interaction effects. An approach of this kind cannot be followed for high 
energy non-leptonic interactions and this is the theoretical reason why such 
phenomena have not attracted much attention. The experimental reason is, 
of course, that one deals with tremendous background problem s. In a sense 
the first experiments in this area have already been done [13]. At one time 
it was interesting to go below the associated production thresholds and see if 
single production is at all appreciable. We can now look upon such attempts 
as non-leptonic weak interaction experim ents. However, since that time 
the nature of the problem s has changed. From  the theoretical weak inter
action point of view, associated production thresholds do no longer form  a
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particular point of interest (but from  the experimental side the question will 
get progressively  harder if one passes these thresholds). It is well to state, 
in the face  of the experimental com plexities, som e qualitative questions one 
would like to ask. What about the AS = 1 and | &T | = j  rules at high ener
gies? What about the interesting parity properties found in E-decays, are 
they just low energy dynamical accidents or is  something m ore subtle going 
on [14]? The hyperon and -decays, being all of the two-body kind, give 
us a sm all number of "points" about non leptonic weak interactions but not , 
distributions as in the 3-body leptonic decays. T -decays give distributions 
of low Q-value only. It may well becom e necessary fo r  the understanding 
of the non-leptonic weak interactions to face also the intricacies of high 
energy reactions in this domain.

It is appropriate to reca ll that several of the problem s here discussed 
are "o ld " ones in the tim e scale of modern theoretical physics. Thus al- 
reacty in 1936, Heisenberg noted [15] that the n-th order weak interactions 
behave in the high energy region as (momentum )211 . This led him to specu
late on the existence of a universal length [16]. I am told [17] that these 
considerations created a great stir when they were first presented at a 
Copenhagen Conference of that tim e. The first calculations on "weak" ra 
diative correction s also w ere made in the m id-th irties. They were attempts 
to describe nuclear fo rces  by lepton pairs [18]. These early explorations 
w ere all in the spirit of high cut offs (in the sense explained in Sec. III). A lso 
the earliest calculation on high energy effects with low cut offs dates from  
this tim e, namely a study of the j3-decay of fast protons with momentum 
transfer to a Coulomb field  [19].

We have learned a lot m o r e  physics since then, but the high energy b e 
haviour of weak interactions no doubt still has to yield  most of its secrets.

I am indebted to D r. G. Feinberg for stimulating discussions on many 
of the questions discussed here.

2. PURE LEPTONIC PROCESSES

These are the phenomena where to our knowledge strong interactions 
do not enter. An example is p -decay. F or this p rocess the effective inter
action is

Leff = - J  j(xM)*(x)j(xe)(x) + h .c . ,

j(xH (x) = J. (x)7x(l + 7S b { (x), I  = (2.1)

f  denotes hermitian conjugate. We put ti = c = 1 throughout. stands for
e or  p .  We introduce from  the start the distinction between and ve . (2.1)
gives a good account of the decay p ~ *e + ve + vu with G ~  1 0 '5 m'p̂ tol,.
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This coupling im plies also the existence of the reactions

z7e + e” -*■ vn + p ~  (2 . 2 )

Vß + e" — i/e + P~ (2.3)

and of the adjoint reactions ve + e+ — + p +, vu + e + i/e + p * . These
. reactions are in accord  with two conservation principles.

(1) The conservation of leptons;
(2) The conservation of p -number [20].
These are additive laws fo r  quantum numbers which may be assigned 

as follow s:

Particle Lepton number p -number

e" 1 0

Ve. 1 0

P~ 1 1

vu 1 1

The quantum numbers fo r  the corresponding anti-particles have opposite 
sign. An example of a forbidden reaction is

ve + e ” —*-1/(1 + p~ . (2.4)

Remark. As long as weak interactions are treated only to lowest order, it 
is  not wrong but a bit silly to introduce quantum numbers; what is allowed 
and what not is read off directly from  the (effective) coupling. However, 
there has'developed recently some interest in the possible observable higher 
order effects of weak interactions (see Sec. HI). In this more general situa
tion quantum numbers are helpful. Reaction (2. 4) cannot go to any order in 
weak interactions.

We consider the cross-section s  da  ̂ and der,, fo r  the reaction (2.2) and 
(2.3) respectively. Let k and k be the initial and final 3-momentum re s 
pectively in the centre-of-momentum system and 0 the scattering angle. We 
have

du. = (G2 /ir) [kr-2/u>* (k' + uM)] (kcos 9 + ue ) (k’cos 6 + ) d cos 9 , (2. 5)

da„ = (G2 /?r) [(k' + u M)/we ] k ' 2 d cos  9, (2.6)

where u)e = (k2 + m l)1/ 2 , = (k12 + m 2 )1/ 2 . v -  and ^-scattering are there
fore  different. This is  due to a (V, A) interference effect as we shall see 
later in m ore detail. This interference vanishes in the forward direction, 
doTj (0  = 0 ) = da,, (0  = 0 ).

Eq. (2. 6 ) shows that the scattering (2. 3) goes via J = 0 only. The uni
tarity lim it fo r  total J = 0 scattering here is 7r /2k2 . The Ferm i coupling
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(1 ) therefore cannot possibly be correct [6 ] when we surpass this limit which 
is reached (neglect m e and m M) for

k = {tt2 / 8G2 )V< ~  300 GeV (2.7)

corresponding to cr ~  G ~  10_ss cm 2 .
What damps the cross-section  at these extremely high energies? E ffec

tively it must be a mechanism which introduces some non locality. There 
are two suggestions which by no means mutually exclude each other; both 
of them may well be necessary to get a consistent picture.

(1) The Ferm i interactions damp them selves. Because the cro ss - 
sections get so large at ultra high energies there is no reason to confine 
oneself to first order calculations, if one takes (2 . 1 ) seriously as a field 
theory coupling at such energies. The higher order term s will now also 
becom e important and one will guess largely on dimensional grounds at a 
damping factor [11] ~ (1 + G 2 k*)_1.

(2) The damping com es about by a physical mechanism that shows how 
the interaction (2 . 1 ) in itself is only an approximate description of the state 
of affairs which (no doubt) holds well at low frequencies. A natural guess 
here is  [ 2 1 , 2 2 ] that the effective weak interaction (2 . 1 ) is brought about by 
the coupling of the lepton current to an intermediate charged boson field Wx

L = - gW * (j(x ' + j(xM) ) + h .c .  (2 . 8 )

G is then related to  the dim ensionless coupling constant g and to the boson 
m ass m by

G2 //2  = g 2 /m2 . (2.9)

Continuing to neglect lepton m asses, the differential cross-section  (2.6) is 
now damped by a factor [l+2m ”2 k2 (1+cos 0)] 2. We have therefore the high 
energy lim it

av ~ G 2 m2 ~ g 2 /m 2 . (2.10)

(Note that this expression blows up for  m -*• 0 (for fixed g). This is as it 
should be -  it is like the infrared catastrophe in electron-electron  scattering 
treated to lowest order with neglect of the influence of soft radiation em is
sion).

It should be noted that the expression (2.10) contains contributions from  
all J -values, not just from  J = 0. If one projects out the J * 0 part of the 
amplitude in question to calculate the J = 0 scattering cross-section  or0, the 
result is

a0 ~ (G m 2/k 2)lg2 k /m  . (2.11)

This shows that it is not enough to take the intermediate boson effect to low 
est approximation in order to avoid the conflict with unitarity at all energies 
[23]. If one now also takes into account self-dam ping one finds [23] a ~ G m 2 
k"2 lg _1 g -2  and that the partial wave amplitudes decrease fast enough.
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The interaction (2 .8 ) obviously satisfies the conservations of leptons 
and p -num ber. (2 .4 ) rem ains forbidden. A new consequence of (2.8) is a 
second ord er (in g) coupling of the (e, ve ) current to itself and likewise for 
(/j, Vj,). It follow s that the reactions (2. 2) and

V& + e~ -*■ ve + e" (2 . 1 2 )

should have the same cross-section s  ~  g4, apart from  lepton m ass effects. 
The F erm i interaction (2.1) allows the reaction (2.12) to happen as a higher 
order effect only, so there this equality does not hold.

The cross -section s  involved here are presumably always 4 . 1 0 '33cm 2 
and much sm aller at low energies. It w ill be hard to observe them. But 
their study has taught us something about the high frequency behaviour of 
the weak interactions under conditions unobscured by strong coupling e f
fects . By this the following is meant. If we study the scattering v e + p 
p + e", say, using a point interaction of the F erm i type, then we would 
also get a cro ss -se ctio n  ~k2 at high energies. However, the existence of 
strong couplings im plies that the effective interaction for this process is 
certainly not a loca l interaction, as we shall d iscuss in considerable detail 
(Section V). Unlike the pure leptonic p rocesses , we cannot use reactions 
involving strongly interacting particles to infer that unavoidably something 
new has to happen with weak interactions at high frequencies.

3. WEAK RADIATIVE CORRECTIONS

Higher order effects due to weak interactions are of interest because 
two opposing trends are at work. On the one hand we get higher powers of 
G which tend to make these effects insignificant. On the other hand, we saw 
in Sec. II that the loca l F erm i couplings are quite singular at high frequen
c ie s . (We leave the intermediate boson idea aside for a little while.) In the 
calculation of weak radiative corrections we meet of course integrations 
over all virtual frequencies and the question arises if high momentum con
tributions could perhaps be significant even though higher powers of G enter.

As an example, consider the corrections to the reaction (2 .2 ). Note 
first of all that the order of the lowest non vanishing correction  depends on 
the presence or  absence of the self couplings of the (e, Ve.) current and of 
the (w, vv ) current which we discussed in relation with E q .(2 .8 ). (The ex is
tence of such self couplings can of course be considered also in the absence 
of W -fields.) If these couplings are present, the lowest corrections are a 
result of the graphs in F ig. 1. As a result the ratio of the correction  term 
to the leading term  in the cross-section  is proportional to the dimensionless 
quantity GA2 , where A is a cut off momentum. If there is no self-coupling, 
the lowest correction  is due to the graph in F ig. 2. In this case the ratio 
just mentioned is proportional to (GA2)2. Similar consequences of self coup
ling effects enter in many problem s [24].

In any case, we are faced with the important question, what should be 
our guess fo r  the magnitude of GA2, that is fo r  the cut off. In a future theory 
this cut off must of course be connected with real physics. The interesting
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Fig. 1

Lowest corrections to (2. 2) in the presence o f  iepton current self-coupling.

Fig. 2

Lowest corrections to (2 . 2) in the absence o f lepton current self-coupling.

thing is  that which ever way we shall eventually get out of the dilemma som e
thing new happens.

(a) The cut off is low - weak radiative corrections are small. In other 
words, weak interactions are indeed weak at all frequencies, much weaker 
than electrom agnetic effects. Thus the guess is now that GA2 «  e2 or

This characteristic energy is much low er than the "breakdown energy" (2. 7) 
which we discussed earlier . Thus if we believe all weak radiative c o r r e c 
tions to be small, the physical mechanism which causes the cut off must set 
in long before we com e close  to the unitarity conflict discussed in Sec. II.

(b) The cut off is high. Now the interest lies  in the possibility that 
weak radiative corrections might show up directly.

- Whether or  not these corrections will turn out to be observable, it does 
not seem  sensible to treat them by a series expansion in G because higher 
powers in G are connected with increasing degrees of singularity. For ex
ample, the self-dam ping effect of F erm i interactions mentioned after Eq.
(2. 7) would look silly  if expanded in G2.

Actually, there are som e indications that the cut off is low, namely the 
sm allness of the K° - K° m ass difference and the present lim its on the ex is
tence of parity non-conserving nuclear interactions [25]. It should be r e 
m em bered, however, that in such cases the cut off due to strong interaction 
form  factors may play an important role too. The example of lepton-lepton 
scattering is just so interesting because of the absence of strong interaction 
effects, but they are also pretty unrealistic for  practical purposes. In Sec. 
VI we shall com e back to the question how one may attempt to detect phe
nomena due to weak radiative corrections which cannot be confused with 
strong coupling effects.

Under any circum stances the weak radiative corrections pose interest
ing theoretical problem s. If they are small, why are they sm all? Are they

A £  30 GeV. (3.1)
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uniform ly sm all in very high energy (real) phenomena? In these notes we 
keep an open mind about these questions. As we go along we will mention 
at tim es some item s which bear on these corrections.

We saw in Sec. II that an intermediate vector boson field (if it exists) 
provides a m echanism  to damp to lowest order the cross-section  for  r e 
actions like (2 .2 ) and (2 .3 ). However, it does not follow by any means that 
the weak radiative correction s are small as well. The qualitative reason is 
the follow ing. The propagator for  a virtual vector boson is given by

- i (6mw + m ‘ 2 q Mq „)/(q 2 + m2 - i e )  .

Here qu is  the four momentum transferred to the W -particle. When we ca l
culate the cro ss -se ctio n  for  (2.3) to lowest order this propagator is sand
wiched between free  lepton spinors and the application of the Dirac equation 
to those spinors shows that the term  m '2 q(Jqu gives a contribution ~ m em um " 2 
(which we actually neglected earlier). Thus in this case the propagator con
tributes a factor ~ k ~2 to the m atrix element, as we saw earlier.

If the propagator is not taken between free particle states, its order 
may be (momentum )0 rather than (momentum)-2, unless some angular aver
aging (or a renorm alization argument) reduces the order. Thus the ques
tion of weak radiative corrections remains critica l even in the presence of 
a vector boson fie ld .

In the language of field  theoiy we can summarize the situation as fo l 
low s. The four F erm i interaction is unrenorm alizable, but so is the theory 
of a charged m assive spin 1 field . (For a neutral field of this kind it was 
shown that the theory is renorm alizable [26 ].) Whether or not there are W - 
fie lds, the theoretical, study of weak radiative corrections is therefore 
important. In fact, they prom ise to be far m ore interesting than the e le c 
trom agnetic corrections (for spin 0 and 1 / 2  interactions) just because the 
latter are much less  singular. It has recently been shown by Lee [27] for 
electrom agnetic interactions of charged m assive vector mesons how one 
may attempt to obtain finite results by summing up the most singular parts 
of the higher order effects, assuming that there exists a finite limit as an 
effective cut off tends to oo.

4. LEPTONIC SPIN

If we are only interested in pi-decay, it is possible to write down a more 
general interaction than E q .(2 .8 ), namely we could couple the electron- and 
H -currents with distinct constants ge and ĝ  respectively, for in/u-decay 
only the product enters. The equality ge =g(J = g means that we have 
chosen an interaction which satisfies n -e  universality (see Sec. I).

Actually, the recent d iscovery of the distinction between i/e and in
vites speculation about the existence of some sort of "spin" for leptons - in 
som e ways sim ilar to the isotopic spin fo r  strongly interacting particles.
In such an approach one may attempt to look upon the p -e  universality oper
ation (see Sec. I) as a d iscrete element o f some rotation group. Such a group 
can certainly m anifest itse lf only where it makes sense to neglect th e /i-e  
m ass d ifference (or correct fo r  it only in the kinematics). This may not be 
such a bad approximation in certain high energy neutrino experiments.
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It may be somewhat early to pursue this subject at great length. It is 
another of those questions which would becom e of considerable interest if 
higher ord er weak effects were to be relevant in practice. Nevertheless, 
let us briefly  state the general nature of the problem . There are two ways 
of approach which one may contemplate.

1. One groups the particles in term s of two "sp in ors" as follows [28]:

There is a Pauli-type spin operator £ acting on these spinors. The eigen
values + 1 , - 1  o f £ 3 re fer  to the upper and low er components of the spinors 
respectively. Consider structures of the type ipe% ipt, tp̂. (For a while 
we neglect all ordinary spin factors, etc ..) It is evident that we need the 1- 
and 2 -com ponents of these vectors in J -space to construct the currents j ^  
and j ^  . If we wish to im pose a rotational invariance with respect to this 
space, it follow s that we should also necessarily  have to reckon with the 
occu rren ce of neutral lepton currents. And if we couple the lepton currents 
to the currents of the strongly interacting particles so as to describe ß-decay, 
7T-decay, hyperon and K -deeays etc. , we run therefore into the problem 
that no neutral leptonic decays of strongly interacting particles seem to 
exist. To be m ore precise , there is no evidence for the presence of neutral 
currents in strangeness changing leptonic decays [29] . F or strangeness 
conserving decays it could easily be possible for neutral lepton currents 
to exist and yet to escape detection [30] . (ifi -*■ e+ + e ‘  by this mechanism 
would be masked by electrom agnetic processes, ir° —• v + V is hopeless.)

It does not seem fruitful, therefore, to introduce a £ -space invariance 
in the manner described. Note further that electrom agnetic interactions 
also violate this invariance. A lso one has to neglect the e- and then-m ass 
com pletely to be able to rotate at all.

2. One groups the particles as follows [23] :

'Pi “ (jti), ’Pv ” (4.2)

There is a spin p, the "leptonic" acting on these spinors and p3 = +1, -1 
again refers to the upper and low er components respectively. We observe 
the following:
(a) Rotational sym m etry in p -space  can be upheld if we neglect the ß - e  mass 
difference.
(b) The conservation of leptons is a consequence of the gauge invariance of 
the first kind in leptonic spin space. This gauge group together with the 
leptonic spin group form s the group U(2). The ß -number introduced in Sec. II 
is the relevant eigenvalue of 4 (1 -p3). ß - e  universality follows as the con
sequence o f the invariance under the unitary operation S = ip 2 (which is
the analogue for  this space of the charge conjugation operation).
(c) To construct the currents jj^  + jjM we need the combination tpi tpv which 
is a sca lar in leptonic spin space. No neutral lepton currents are necessary.
(d) To get the electrom agnetic interactions we need ipt i//{ which is also a 
sca lar in this space. Electrom agnetism  respects leptonic spin.
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(e) If we couple a ^ „-structure to the strongly interacting particle current, 
the latter should be scalar too with respect to leptonic spin. Thus one can 
consider all strongly interacting particles individually asleptonic spin scalars. 
(The situation would be m ore com plex in this respect if i/e and interchanged 
in strangeness violating decays, but as we said in the introduction, we assume 
that this interchange does not take place. Note further that the use of (4. 1) 
would also necessitate to assign to the heavy particles a leptonic kind of 
quantum num ber.)

We give one example o f the consequences of leptonic spin invariance 
in pure leptonic p rocesses . Until further notice (to be given shortly) we 
neglect all electrom agnetic effects. It was noted in Sec. II that in lowest 
ord er the reactions (2. 2 ) and (2. 1 2 ) have equal cross-section s (apart from  
the/u -e m ass difference effects). Call these cross-section s  <ja and ab re 
spectively. Next note that the reaction

vtj + e" — v,j + e ' (4,3)

is  forbidden to lowest non vanishing order. But it is not forbidden rigorously 
as it satisfies conservation of leptons and of p -number. See Fig. 3a for a 
typical graph. Let crc denote the cross-section  of this last reaction.

Fig. 3a

Reaction (4*3) as a second order weak effect«

If leptonic spin conservation applies, there exists a triangular inequality 
between <ra , ub and crc namely [23]

~\fc  ̂ +Vöc" (4.4)

This is  proved by the same methods as are used in isotopic spin discussions 
o f nucleon-nucleon (and anti-nucleon) scattering.

It is also possible to apply related considerations to reactions involving 
heavy particles, for example to i7̂  + p — I  + J  + I  + n, where L -  e or ß and 
where such I -com binations are chosen that conserve m-number.

It w ill be clear from  these examples that it may well take a long.time 
before we will have proof of the validity of leptonic spin or  related ideas. 
Perhaps m ore important than this invariance itself is the question what breaks 
it. What causes th e ^ -e  m ass difference? Here we cannot hide our ignorance 
behind strong interactions, as is often done with such abandon for the heavy 
particle m ass differences. The/u-e difference is in fact our strongest present 
clue for  the existence o f something new at high frequencies [31 ]. Something 
clearly  eludes us here.
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In the previous discussion one point has emerged that is m ore general 
than leptonic spin itself, namely the possibility that higher order weak inter
actions might manifest them selves through processes  that are forbidden 
if  weak interactions are taken to lowest order only. A class of such phe
nomena are those where a neutral lepton pair is produced. It is clear that 
if  we only insist on conservation of leptons and of p -num ber, it is possible 
to have higher ord er p rocesses  of the kind

A - B  + ß* +ß- , (4.5)
A — B + e+ + e‘ , (4.6) ■
A - B  + i/e + i/c , (4.7)
A -* B + Vp + i/j,. (4.8)

(Leptonic spin will relate rather than forbid such reactions.) Thus higher order 
weak interactions generate effective neutral lepton currents even if we assume 
that such currents do not appear in the prim itive interactions.

An example o f a reaction with a charged lepton pair is Kg -*• ß* + ß~. 
This conceivable but not observed decay is just the one used earlier to find 
bounds on the coupling strength of a neutral lepton current. It can now also 
be used to set additional bounds on the cut o ff (see Sec. Ill) fo r  weak radiative 
effects in strangeness changing processes.

Examples of neutrino pair production are K+ ~^7T+ + vE + Pe or  tt+ + vß 
+ vn . (These would be hard to entangle from  K+ -*• it* + 2y without subsequent 
conversion .) In the spirit of Sec. Ill these reactions are mentioned here 
because their slow rate may be a further reflection o f the cut off mechanism 
o f the weak interactions.

We now ask what is the influence of electrom agnetic effects on Eqs.
(4 ,3  - 8 ). The following should be observed:
(1) The reaction (4. 3) can go as a first order weak interaction provided we 
use a virtual photon. The mechanism is shown in Fig, 3b. This is the type 
o f graph associated with the e lectric  neutrino form  factor. A lso the reaction 
(2. 12) gets a sim ilar contribution. As electrom agnetism  respects leptonic 
spin, the relation (4. 4) remains valid.

Reaction (4 .3 ) as a first order weak effect generated by the neutrino form factor.
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(2) A lso the reaction K 2 ß + + ß~ can proceed as a first order weak (non-
leptonic) p rocess , namely [32] — 2y + n " .
This reaction, if ever found, does therefore not necessarily  constitute evi
dence fo r  (prim itive) neutral lepton currents.
(3) Reactions like K + -*■ tt+ + y e + i7e can also go as a first order weak process 
via the e lectr ic  neutrino form  factor, namely K+ — it* + y, y —■ ve + v e . (The 
first stage is  allowed as a virtual p rocess only.)

Finally we note that there is another way o f introducing a m-quantum 
number [33] , namely a "ß -parity" instead of the p -number introduced in 
Sec. IL The ju-parity rules are incompatible with leptonic spin.

5. THE STRUCTURE OF HEAVY PARTICLE CURRENTS

It is  assumed in all current theories that the effective interaction for 
leptonic p rocesses  involving strongly interacting particles is of the form :

% e ( f  = - I  M  +  J x ’  M  +  ^

Jx(x) is the effective heavy particle current. The ^-notation is as in Eq. (2. 1). 
(5. 1) is in accordance with|j-e universality. J\ contains one part which 
re fers  to strangeness conserving p rocesses  (AS * 0) and a part for which 
AS = 1. We like to think that J\ does not have a AS * 2 part even though the 
direct evidence for  this is m eagre where leptonic p rocesses  are concerned.

Jx contains bilinear baryon term s and bilinear meson term s (also linear 
m eson term s). The general form  of one of the baryon term s is, as it appears

in J x :B 1 OxB2, in : <1x^ 2  ®i j (5.2)

where

0\  = 74°XT4

and where the m ost general form  of the vector operator Ox is [34]

° x " V T tTx(gv + SA75) + ( ' g ' - - ^ K f v + ^

+ ( Ä " x + 9 ^ ) ( h v + h A 7 5 ) 1 '  (5*3)

Therefore

° *  <  ■») + - a irW * - f Ü> ]

- ( ^ + . g ^ ) ( h v - hAT5)] . (5.4)

The choice o f (Bx, B2) pairs is first of all dictated by charge conservation.
F or AS = O we can take (Bx, B2) = (n, p), (£°, £+), (E‘ , E°) etc. , for AS * 1,
(B i, B2) = (A, p), (L~ n), etc. The six quantities gv , . . . . ,  hA are invariant 
operators, that is , they are functions of the Q  operator (space-tim e), or 
equivalently o f the invariant momentum transfer (momentum space). As we
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are discussing an effective interaction, these six functions must therefore 
be considered to describe the results of the iteration of all strong inter
actions. They are the unknown form  factors or  structure functions. We have 
a set o f six  such functions for each (B j, B2) pair. High energy leptonic 
reactions will largely  be a gathering of information about the behaviour of 
the structure functions for large momentum transfers.

S im ilar considerations apply to those meson term s which are bilinear 
in the K - and jr-fields [35] . Let us further assume that the K -particles are 
pseudoscalar, as is now pretty definite.

Then the m eson term s have definite parity (they are all vector structures) 
and their general form  is, as they appear

Thus, fo r  example, the AS * 1 current contains (K, tt° ) term s (K is the field 
o f the charged K particles ) which involve the two structure functions of Kjj 
decay. At present, the only d irect experimental information on structure 
functions outside the non-relativistic domain stems in fact from  the various 
K £s m odels. It has been found that these functions vary quite slowly over 
the range covered by the spectra [36] .

Form  factors have been studied extensively within the framework of 
dispersion  theory. We shall not review these calculations here, but rather 
concentrate on some general properties of structure functions. As we 
shall see presently, the number o f independent structure functions becom es 
constrained when certain invariance arguments are used. Therefore, high 
energy experim ents may provide tests of the validity in the high energy range 
of the sym m etries in question. Before we discuss these problem s, we first 
make two general rem arks.

(1) The h-functions. These appear in conjunction with the sum of right 
and left derivatives which is the total derivative of the bilinear form  on hand. 
By partial integration we can throw the total derivative over on the lepton 
term s. It follow s from  the application of the lepton Dirac equation that in 
any leptonic p rocess  the h-term s give contributions proportional to the lepton 
m ass. Chances are therefore much better to observe such term s in / j -  than 
in e -p ro ce sse s . Generally, the neglect of the lepton m ass in any given process 
im plies that we ignore the role o f h-functions. This is true for all baryon 
and all m eson term s in (5. 1). From  Eqs. (5. 5 -  7) we see that wherever
it is  appropriate to neglect lepton m asses, the effective meson current in
volves one single form  factor only. This circum stance is of particular interest 
for  Ke3 -decay , for example [37] .

(2) The f-functions. These appear together with the difference of right 
and left derivative. In the non-relativistic lim it we retain only 9 /8  x4-term s 
which give contributions proportional to the heavy particle mass in question. 
The best known example is ß -decay, AS = 0 where we have:

in Jx : M1 O xM2, in J* : rixM2 OxM1, (5 .5 )

where

(5.7)

(5.6)
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Gv = gv(q2 = 0) - 2mfv(q2 « 0) = 1 0 '5 m ‘ 2 , (5.9)

Ga = - g A(q2 = 0) * 1 , 2  Gv. (5.10)

Gv and GA are the Ferm i and G am ow -Teller constants respectively, q2 is
the invariant momentum transfer. F or | As| * 1 ß -decays, the non-rela
tiv istic approximation may not be so good. F or the e-m ode in A-decay we 
have momentum transfers up to 175 MeV, for example [38) .

Next we consider som e invariance arguments.
(a) CP-invariance. It is a sufficient condition for CPT-invariance that 

we have a loca l theory invariant under the proper Lorentz group. Of course, 
the loca l property refers to prim itive interactions and not to the effective 
interaction under discussion. The experimental situation with regard to 
CPT invariance has been discussed elsewhere [39] and it has been noted 
that m ore experiments are needed to verify  its validity. We assume that 
C PT-invariance holds so that C P- and T-invariance imply each other [40] . 
We ask for  the im plications of CP-invariance.

Under the CP-transform ation

(CP) : ( x ) ~  j (xf)*(x). (5.11)

F or the heavy particle current we have

( o  •

(P) : — - 1 X . for  both H  and (—).
X X

It follow s that CP-invariance im plies that:

(CP) : all f, g, h-functions are real, (5.14)

This is true for  all baryon and meson term s.
(b) | AT | ■ 1 fo r  AS = 0. Next we consider isotopic spin arguments for 

which we must treat AS = 0 and 1 separately. This subsection is exclusively 
devoted to AS « 0 currents. We inquire about the behaviour of these currents 
under the charge sym m etry operation. This was first done by WEINBERG [411.

To begin with we note that in such AS ^ 0  processes as neutron ß -decay 
and it-decay we have A T 3 = 1 and also | AT | = 1. One can imagine nuclear 
ß -decays in which | AT | could take different values, say 2. A current bi
linear in nucleons cannot produce such a change, but there are other currents 
which could give such an effect, namely those bilinear in £*s or  in ir’ s. It
is most econom ical to assume that such currents are not there [42] . This
is the origin  of the | AT | = 1 rule which, it should be stressed, is a stronger 
statement than just the exclusion of | AT | f  1 term s in AS = 0 currents.
| AT* | = 1 rule. Not only do J and J* (for  AS = 0) each behave as components 
o f an isovector, but they transform  as components of the same isovector 
with the same phase relations as those which occur in the strong interactions.

(B j, B2) * (n, p) : Ox = Tx (Gv - Ga Y 5 ), (N. R. ) (5.8)

(5.12)

(5.13)
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Thus J and J* are isotopically related to each other (witn suitable con
ventions) in the same way as ir+ and ir~, not as ir+ and -ir~ o r  as a complex 
mixture of both. It should be noted that distinctions of this kind only make 
physical sense if the phase relations between ir+ and n~ (and likewise between 
other particle pairs related by charge symmetry) have been defined by another 
part o f the interaction. In the present case the phase relations are of course 
defined by the strong interactions them selves. The weak couplings compatible 
with the | AT | = 1 rule are the first class couplings in the sense of WEINBERG
[41] . _

The |^A T | =1 rule has consequences of two kinds. F irst, the fact that 
other | AT| values than 1 are to be excluded affects specifically  those terms 
in the currents which are bilinear in E, o r  in ir, or in K. The pure E-part 
o f Jx is o f the general form

(E,E) : E°OxE+ + e ‘ O'xE0. (5.15)

and our restriction  means that

0 X = - 0 ' X. (5.16)

Eq. (5. 16) s im ilarly applies to irir- and to KK-term s.
Secondly, the specific connection between J and J* implied by the | AT|=1 

rule has two kinds of consequences. F irst, for all baryon and meson terms 
we have

0\ * O x. (5.17)

Hence

| AT | « 1 : gA, g y , f v , hA are real, (5.18)
f A, hy are imaginary.

Next, consider the E A -term s in J x which are of the general form :

£ ' OxA + ÄO'xE+. (5.19)

Each of these term^ separately behaves like an isovector. Because of the
conditions on phase relations we have (com pare with the strong E A ir coup
lin g !)

(EA) : 0'X = 0 X. (5.20)

E qs-(5. 17) and (5. 20) imply that, apart from  phase space corrections [43J

R(E* —■ A + e" + iO /R(£+ ^ A +  e+ + v) = 1. (5.21)

Other consequences of the | AT | = 1 rule are to be found in inelastic neutrino 
p rocesses . Consider for example [22] :
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V j + p - ' i  + P + 7 T + ( R l  )

v t + n I  + n + jt+ (R j) (5.22)

vt  + P  - ~ j T + p  + ir° ( R 3 )

The sym bols in brackets denote the respective rates. The rule implies trian
gular inequalities like

+ Y 2R3 > V r ^ ,  etc. (5.25

It should be pointed out that the | AT | = 1 rule may be considered as a 
condition on prim itive leptonic weak interactions because strong interactions 
respect the rule. It is clear that the rule is violated by electrom agnetic 
correction s (and weak radiative corrections). These have therefore tacitly 
been ignored in the foregoing.

(c) Combined CP-invariance and | AT | '  1, AS = 0. If both require
ments are im posed it follows from  Eqs.(5. 14) and (5. 18) that

fA = hv = 0 (5. 24)

for  all oaryon and meson term s.
A consequence of hv = 0  is the absence of an induced scalar term  in 

^-aboorption  by a nucleon.
^d)_Conserved vector current, [21] AS * 0. In this theory, CP-invariance 

and I AT | = 1 are incorporated. The basic idea is that the V -part of 
j f ,  (AS * 0) are proportional to the T3 = +1, -1  components respectively 
o f the isotop ic spin current. This has two consequences. (1) These V -cu r- 
rents are conserved if we neglect electrom agnetic effects. This explains 
the equality to a good approximation of the Ferm i-constant in ß -decay and 
the p -decay  constant (absence of renormalization effects). It is easily veri
fied that our V -currents satisfy 3 J X /9 x x = 0 and likewise for J*v as long 
as we neglect m ass differences within any isotopic multiplet, because we 
may use (5. 24). (We may apply the free particle wave equation to all field 
operators occurring in Jx, J?-) Therefore, the fact that the V-current is 
conserved does not im pose restrictions on the form  factors stronger than 
the consequences o f the (weaker) requirements of combined CP-invariance 
and the | AT | = 1 rule. (2) The V -parts in question have V -structure functions 
which are proportional to those structure functions which occu r in the T3 = 0 
part o f the isotopic spin current. That is, they are proportional to the c o r 
responding electrom agnetic isotopic vector form  factors.

F or  the nucleon, fo r  example, we have two form  factors f v and gv (see 
also Eq, (5. 24)) and the conserved current theory says that these can be 
expressed as follows (m = nucleon mass):

gv = Gv [ f q + (ßp -  Mn )F m 1 ,
(5.25)

fv  = [G v /2 m ] (ßp -  jjn )Fm.

Fq and Fm are the isotopic vector electrom agnetic form  factors for charge
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and magnetic moment, norm alized to unity at q2 = 0. p p and ßa are the proton 
and neutron moments in units e/2m . Thus Eq. (5. 25) allows us to use the 
inform ation on the nucleon electrom agnetic form  factors in high energy lepton 
experim ents [44] , In particular, if we neglect the lepton m ass, we deal 
with only three form  factors in the reaction v + nucleon - » I  + nucleon, namely 
fy j  Sv ar*d Sa« The first two are determined from  high energy electron- 
nucleon scattering via Eq. (5. 25), if the conserved current idea is correct. 
There rem ains gA as the only unknown structure function.

Another example where the proportionality to electrom agnetic form  
factors is useful is the decay 7r‘  _*’ 7r° + e" + ve which goes entirely via the 
V -cu rren t This is practica lly  a zero momentum transfer p rocess  so that 
the proportionality fo r  the corresponding fv , see Eq. (5. 6 ) ,is as G v /s/2 to e. 
S im ilarly fo r  K° - " K ’  + e+ + v£ [45 ].

(e) Isotopic spin properties, | AS j =1. It has been suggested [46] that 
the | AT | = l / 2  rule fo r  non-leptonic p rocesses  should also apply to leptonic 
reactions AS = 1. This rule im plies the validity of the rule [21] AS/AQ = +1 
(but not v ice  versa) and the latter seem s to be violated [47] . There are 
certain theoretical ideas [48]__which involve leptonic AS = 1 couplings which 
are not exclusively of the | AT | = 1 / 2  type, but these fall outside the scope 
of the present survey and we shall not discuss them here.

(f) "O verall current x  current coupling".- It has been suggested [21] that' 
all weak p rocesses , leptonic and non-leptonic, follow from  an effective inter
action of the structure current tim es current. (In this scheme there appear 
also non-leptonic neutral currents.) The validity of this scheme (som etim es 
called universal Ferm i interaction scheme) is tied to the applicability of
a | AT | = 1 / 2  rule to both non-leptonic and leptonic interactions. In view 
o f the preceding rem arks it is not tim ely to discuss such proposals at the 
present stage o f developments.

(g) Prim itive interactions. We have exclusively dealt with effective 
interactions. One may ask about the structure of the prim itive couplings 
which effectively lead to the currents here discussed. Suppose for example 
that we start from  a theory with trilinear loca l couplings. Then the conserved 
vector current proposition im plies that the prim itive V -current for  AS ■ 0 is

i ^ [ p 7 Xn + S °  S ‘ + ’V§~(E0 y xZ' -  £+ y xZ ° ) + ( ^  - ^ ~ ) 7r°

j f  J T

'9  xx. 9 xx '
So far, the study of such "b asic" interactions has not yielded any useful 
results. Still, Eq. (5. 26) is at least interesting to look at, and to remind 
us that we are in need of arguments about the relative magnitude of the various 
term s in a current.

6. LOCAL ACTION OF LEPTON CURRENTS

+ K ( ~  - - ^ - ) K 0] . (5.26)

A s we discussed in Section V, the most general form  of the term s which 
enter in the heavy particle current is an operator of the type Ox or Öx sand
wiched between free fields. The finite distance character of these operators 
is the mathematical expression of the smearing out effects typical for strong 
coupling form  factors. On the other hand, the lepton currents which appear
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in (5. 1) are loca l, see their definition Eq. (2. 1), This expresses the absence 
o f strong interactions for  leptons. This point structure of ĵ £) (x) in Eqs. (2. 1) 
and (5. 1) is called the loca l action of lepton currents.

Schem atically, the situation for  a reaction of the type [49]

v + T —F + I  (6.1)

is therefore as indicated in Fig. 4. The box represents the effects of strong 
interactions. T and F are attached at different points but the lepton pair

The loca l action of lepton currents.

em erges at one point. The same picture applies, of course, also to decay 
reactions of the type

T — F + v + I  ■ (6.2)

In Section III we surveyed some of the interesting theoretical questions
connected with weak radiative corrections. In Eqs. (4. 5 - 8 )  examples were
given of reactions which are possible only via such higher order mechanisms 
if  no neutral lepton currents exist. We now observe that if the weak radiative 
corrections play any observable role , deviations from  the local action of 
lepton currents would be one possible way to find this out [50] .

Consider for  example the reactions

+ p ~*n + / + (6.3)

+ n —p + I  . (6.4)

The character of the weak radiative corrections depends on the presence 
o r  absence of neutral lepton currents. If they are present (or absent) the 
low est order corrections are as in Fig. 5 (or Fig. 6 ). (As was mentioned

Fig. 5

Lowest weak radiative correction to (6 .3 ) in the presence o f  a neutral lepton current.
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v n v

Lowest weak radiative corrections to (6. 3) in the absence o f  a neutral lepton current.

in Section III one should not conclude from  this that in the latter case the 
corrections are n ecessarily  sm aller than in the form er. ) In either case 
the leptons em erge from  different points and we have an effective non-local 
action of the lepton current.

In order to judge whether non-local effects of this kind are present it 
is  necessary to find out first what loca l action im plies in practice. Before 
we turn to this question it seem s worthwhile to observe the following.

(1) If deviations from  loca l action are to turn up at all it is to be ex
pected that the effect will be m ore manifest at high energies. In principle 
one can raise the question already for  neutron ß -decay  but there, of course, 
one can not get much dynamical information anyway because the phase space 
is so small. The situation is m ore favourable for KC3 decays (and hyperon 
ß -decays). The loca l action problem  was first raised in a study of these 
m odes [37] . Still, evenhere the momentum transfers are not very high. (The 
same is true for reactions (4. 5 - 8 ).)  Thus, high energy lepton reactions 
are the best place to look for such effects.

(2) If deviations from  loca l action are ever found it will be of particular 
interest to know if they satisfy n -e  universality.

(3) A lso in the intermediate boson theories do we have the assumption 
of lo ca l action so that the whole question is independent of the existence of 
these bosons. To avoid confusion we note that in pure leptonic p rocesses 
(Section II) an intermediate boson produces to lowest order a non-locality 
between two lepton pairs only [ 51] , but not between the m em bers of each 
pair.

(4) The loca l action problem  can be raised independently of strong inter
action form  factors.

(5) The problem  is  also independent of the existence of neutral lepton 
currents. If the latter were to exist (which at the moment does not look 
plausible) one would certainly assume that they were loca l to lowest order, 
on the same grounds as for  the charged lepton currents.

(6 ) It is a hard question whether weak radiative corrections are the 
only conceivable source for possible deviations from  locality.

(7) The first high energy neutrino experiment has shown [9] that a sizeable 
fraction of the events is inelastic. It is therefore of interest to look for such 
im plications of loca l action which are valid also if F in Eq. (6. 1) represents 
an assem bly of strongly interacting particles [52] .

To get the results in their sim plest form  the choice of a co-ordinate system 
and of the variables in that system  are important. We shall always work 
in the rest system  of T. The various energy-momentum four vectors will 
be denoted as follows. = (0, in^,) for T, P x = (pJ, i u) f o r £ , Px =(^u, ipu)
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for  v and = (p, iE) for  F. Whenever F is an assem bly of particles, P 2 = -m 2 
is to be considered [52] as an independent variable along with p = [P] .
W w ill be either the differential cross -section  for (6. 1) or the decay d istri
bution for  (6. 2 ), in either case summed over the lepton spin and over all 
intrinsic variables o f F and T. Finally 0 will be the angle between p" and "p. 
Theorem  I [53] . Apart from  a given kinematic factor, the local action of 
the lepton current im plies that W is a quadratic function in each of the three 
variables cos  0 , w and p„:

K W (p, m, cos  0) = a 0 (p, m) + ay (p, m )cos 6 + a 2 (p, m )cos2 0, (6.5)

K W (p, m, u) = ß0 (p, m) + (p, m)u + ß2 (p, m)u2 , (6.6)

K"W "(p, m, ) = Y0 (p, m) + yi (p, m)p„ + 72(p, m)p2 . (6.7)

Here the K*s denote the kinematic factors. The coefficients a , ß, and y
depend on p and m only.

The proof of one of these relations im plies that the other two hold as 
well because of [54] :

p = ± (m2 + m2 -/ j 2 -  2m0 E )/2(m 0 - E + p  cos 0), u = + p̂  + mg - E.(6. 8 )

We derive Eq. (6. 6 ). The transition probability for the reactions (6. 1) 
and (6. 2 ) are found by taking the appropriate matrix element of the space 
integral of (5. 1 ). Average the absolute square of the matrix element over 
the lepton spin. Because the lepton current is local, it follows that this 
average is of the form  A«ß Pa P&. Apart from  a kinematic factor p; 1 ,
Agß depends on the heavy particle variables only and after performing all 
averages described above Aaß depends on P and P° only. The dependence, 
on the ( I a) )  variables is therefore as follows. Either we get term s con
taining P„ P „  which are independent of u; o r  else we have to multiply each 
o f the two factors:

P§ Pa = ± m0(E + u - m0),

V o <6 - 9 )
P a Pa = ±  1 / 2 [ 2m 0 w + m  -  mg -  ß2 ] 

with either of the factors;

P<2 P a  = -m 0u , Pa P* = m 0 (m0 - u - E) + l /2 (m 2 +  ß 2 -  m|).

Under any circum stance we therefore get a quadratic function in un The 
scalar coefficients still depend on the residual independent heavy particle 
variables p and m, This proves Eq. (6 . 6 ).

The proof of these relations evidently does not depend on the validity 
of CP-invariance nor on any of the | AT | -ru les for  weak interactions. It 
has been shown [52] that if one considers the reactions (6. 1) and (6. 2) with 
specified lepton helicity, one obtains an expression with five structure 
functions [55] .
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It should be noted that there exists one unavoidable deviation from  local 
action, due to the electrom agnetic coupling of I  with either T or F or  both 
[56] . This effect should be small, especially at high energies.

F or the "e lastic" p rocesses  (6. 3) sind (6. 4) it is of course possible to 
express the coefficients in Eqs. (6. 5 - 7) in term s of the nucleon structure 
functions, using Eqs. (5. 1 - 4 )  with (Bj , B2) = (p, n). Eq. (6. 6 ) then takes 
the following explicit form  [53] :

da = [ß2 (p)u2 + ßi(p)w + ß0 (p)] (md3 p )/[ 47r2wEpl)dEtot ] (6.10)

where the three structure functions ß are given by [57]

( l/2 )ß 2 = | g A| 2 + | gv -  2mfv |2 + 2m(E - m)(| fv | 2 + | fA | 2),
(6 . 1 1 )

(1 /2)ßi = (E - m)| gA ±.gv| 2 - (m2 / 2m)(| gA | 2 + | gv| 2)

+ 2m(E - m -  p 2 /2m)[ (E + m)| fv | 2 + (E - m)| fA | 2 -  2Refygv ]

-H 2 R e[h *gv - (E + m )f* hv - (E -  m)f* hA ] (6.12)

ß0 = (E - m)(E -  m -  p 2 / 2m)| gA ± gv | 2 + m(E - m + p 2 /2m)

(| gA I 2 - I gv| 2) - [2m2(E - m) + {n2 /2m ) (3E - m) - p* / 4m]

£(E + m)| fv| + (E - m)( fA | 2 - 2Ref*gvj + (/j2 /2 )(E  - m + p 2 /2m)

[(E + m )(hv| 2 + (E - m) I hA I 2]

- h2(E - m )Re [h^gv + h ^gA -  (E + m )f*h v - (E -  m )fJhAj 

+ (u4/2m )Re [h^gv -  h^gA -  (E + m )f$hv - (E -  m)fXhAj (6.13)

In E qs.(6 . 12 -  13) the upper and low er signs refer to the reactions (6 . 4) and
( 6. 3) respectively. It follow s from  Eq. (6 . 11) that the difference da  ̂ - doj; 
is  (apart from  a kinematic factor) a linear function in 10. This difference 
depends on one combination o f structure functions only, namely the V -A  
interference effect Reg* gy . This is the same type o f effect which we en
countered in the com parison o f Eqs. (2. 5) and (2. 6 ). It can be shown from  
quite general considerations that in these instances the differences between 
neutrino and anti-neutrino reactions must be due to interference between 
structure functions related to term s in the current of opposite parity [58] . 
The expressions fo r  the ß ’ s sim plify if both CP-invariance and the | AT| = 1 
rule hold, on account of Eq, (5. 24).

Eq. (6. 7) takes the following form  fo r  the reactions (6. 3 -  4). Replace 
in Eq. (6. 10) the square bracket by y 2 (p)p^ + 71 (p)py + 7o(p) with

72 (P) = 02  (P). 71 (P) * 2(m - E )ßi(p) +ß 0 (p)

72 (p) = (m -  E) 2 ß2 (p) + (m - E) ß j (p) + ß0 (p).
(6 .14)
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This form  is well suited to perform  averages over a (known) incident neutrino 
spectrum  for  fixed p. A fter having done this, one can find one relation for 
fixed p between the three 7 *s. The theorem  im plies that there should in 
general exist a linear relation between four such measurements (that is, 
done with four distinct spectra).

Equations sim ilar to (6.10 - 14) can also be written down [59] fo r  the 
reactions v + nucleon -* hyperon + 1 .

Finally we examine the structures which arise when deviations from  
loca l action due to weak radiative effects are taken seriously. We shall main
tain the view that the prim itive interaction is due to a loca l lepton current 
o f the (V, A) type coupled to something else (be it a boson field or  a heavy 
particle current).

When we take into account only those non-local effects induced by the 
strong interactions in the heavy particle current, then it follows from  Lorentz 
invariance and from  the just mentioned structure of the prim itive interaction 
that the effective interaction is of the form : (V, A) heavy particle source 
x (V, A) lepton source. This is no longer true if the weak radiative corrections 
are included as well. It is instructive to distinguish between two general 
cla sses  of such radiative effects.

(a) Lepton-lepton weak radiative corrections. These are schematically 
indicated in Fig. 7. A lepton pair is produced in point interaction with the

General structure o f  lepton-lepton weak radiative corrections.

heavy particle source. The leptons then interact weakly with each other.
In this special case the general interaction is  still of the general form  (5. 1) 
where Jx is still the general current discussed in Section V. But j ^  (x)
is- now no longer given by Eq. (2.1). Instead, we must also admit the presence
of induced leptonic term s. Thus j ^  is now of the form :

= l 0 xv , (6.15)

where is  given by Eq. (5. 3) with structure functions g, f, h appropriate
to induced weak effects. However, we have assumed throughout that all 
basic neutrino reactions are o f the two-com ponent type. Hence the primitive 
interaction is invariant under the 75 -transform ation:

v ' ~ 75v > T>' ~ -^75 (6.16)

and so, therefore, is the effective interaction. It follows that

(l>v) : gA ~ gv,  f A ~ fv . hA = hv. (6.17)
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Let us next look at the expression  (6. 15) in the zero lepton mass approxi
mation which at high momentum transfers is certainly good for electrons 
and is not bad for  y-m esons. In this approximation we have the additional 
invariance for

= 7 5  L  l = - I y 5- (6.18)

W henever Eq. (6 . 18) applies we have

hA = hv = f A = fv = 0. (6.19)

The only structure function which then remains is gv which may now depend 
on the invariant momentum transfer. This does not change the situation 
insofar as the dependence on the individual four momenta p“ and p^ is con
cerned. Thus the arguments used in the proof o f Theorem  I apply here too. 
Theorem  II. In the zero lepton m ass approximation the equations (6. 5 - 7 )  
o f the loca l action theorem  are also valid if lepton-lepton weak radiative 
correction s are included.

(b) Lepton-heavy particle weak radiative corrections. These involve 
combinations o f interactions between either v o r  I  and F or T. One example 
is  drawn in Fig. 8 . The effective interaction now contains in general the 
following kinds of term s:

A lepton-heavy particle weak radiative correction*

ifit) Scalar term s o f the form

S (x ) i ( l  + y 6 ) v +  h .c . ( 6 . 2 0 )

where S is  a sca lar /p seudosca lar function of the heavy particle fields. In 
Eq. (6. 20) the strict 7 5 -invariance (6. 16) has been taken into account. A
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sca lar structure function originating from  the lepton part of (6. 16) ma> he 
thought to be absorbed in S. It follow s from  Eq, (6 . 18) that the induced terms 
(6. 2 0 ) are zero in the zero  lepton m ass approximation.

(ß) V ector term s. Their discussion is  identical with the one given above 
for  lepton-lepton corrections.

(7 ) T ensor term s in the effective interaction o f the form

V  M /lg i-c ,« , + fTT„(9^- - + hTTf ( g ^  ITx^1 (1 + T5>1' (6 ’ 21)

with three lepton structure functions gx , f T, h T. JM„ is a heavy particle 
tensor source. Note that the hT -term s can be brought to the form  (V, A) 
x(V, A) by a partial integration, so for this term  Theorem II applies forth
with. M oreover, in the zero lepton mass approximation the g-term  goes 
to zero as well, so that in this case only the fx -term s survive. If we now 
decom pose into its irreducible parts, its trace term does not contribute 
for zero lepton mass.

(6) In the same way one can discuss tensors of higher rank. In the zero 
lepton m ass approximation we thus find that the effective interaction can be 
written generally as:

+ 75 )v + Di/(1 + 75 )v + y^D „D p (1 + 75 )v+ . .  . +h.c.
T  T  (6 - 22)where Df, = gjjj- - ^  . We have = 0, Jßvp = Jppv , J^p = 0 etc. Each

successive term  raises by two the maximum power o f cos 0 , or u, o r  pj. 
which appears in the differential cross-section  for any process  of the type 
(6. 1).
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INTRODUCTION

An attractive feature com mon to all present theories of weak inter
actions is the assumption that they result from  the coupling (either direct 
or via intermediate bosons) of vector-axia l vector currents. The V -A  coup
ling o f leptonic currents and baryonic currents conserving strangeness suc
cessfu lly  explains the characteristic properties of ß-decay, 7r-decay and 
M-decay. On the other hand, the leptonic decay modes of K -m esons provide 
the best source of information on the nature of the currents carrying 
strangeness. From  one learns that there must exist an axial-vector
current carrying strangeness; further, if  the leptonic weak interaction is 
universal, one can explain the absence of the K e2 mode by excluding a pseu
d o -sca la r interaction. From  and K e3 decay one can obtain information 
on sca lar, vector and tensor coupling of strangeness non-conserving cu r
rents with leptons. In recent experiments on K«3  decay [1, 2] a good fitting 
o f the pion spectrum  was obtained with a constant vector form  factor. A l
though regarding this result as strong evidence of pure vector coupling, one 
might still argue that other possibilities, such as a mixture of vector and 
tensor couplings with energy-dependent form  factors, are not excluded.

I shall d iscuss here, in the first place, som e properties of the transi
tion amplitudes which are independent of the structure of form  factors. They 
provide a test of universality and a criterion  for unambiguous determina
tion of the nature of the weak interaction involved in these processes . Second
ly, I shall d iscuss the structure o f form  factors, by means of dispersion 
relations and introducing explicitly the effect of the K*-resonance in the 
K jt - inter action.

1. NATURE OF INTERACTION

The basic assumption involved in this discussion is that the lepton pair 
is loca lly  produced through an interaction containing no derivative coupling 
(Fig. 1).
1.1. Kinematics

The kinematical configuration of the decay products depends on two scalar 
variables. I choose them as the total energy W of the lepton pair in its centre- 
of-m ass system  and the angle a between the direction of the neutrino and 
pion in that system . The advantage of this choice of variables will soon be-

619
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F ig .l 

K -> t  + f + v

«S

P' » p K ir

Fig. 2

K -decay kinematics in the centre-of-mass system o f  the lepton pair

com e apparent (Fig. 2). These variables are related to the energies 
E„, Ec, E„ for decay at rest by

W 2 = m 2 + m 2 - 2 m „E  , (1)K 7T K 7T

cos o' = [ (E { - E v)W2 - m 2(m K- E „ ) ] /(W 2 - m2) P l . (2)

The range of values of W 2 is independent of cos a : [mf2, (m K -  m ^)2].

1.2. Dynamics

The general form  of the matrix element is

mI = (4 PKOPiro )1< >rl J> ) l K > “ l 0“ u „ = 1Il ^ IuI,. <3)

^ ^ 7 * *  + g LP“ ) + ^ g T ^ P KV -  (4)K K K

The index I in (3) stands for the isospin of the current. The g 's  are form  
factors that, following our basic assumption, depend only on the pion energy
E,r. They are real if  time reversal invariance holds.
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1.3. Transition rate [3] 

1dT . • p (s, cos a) -^JL (1 - — ) ds d cos a, 
(4jt m  )3 m  '  s
'  K K

m K

( 5 )

(6)

2
where s = W and

f 0 = (1 / 2 ) (gv - gv. ) + (1 / 2 ) (gv + gy) (m£ - m^ ) /  s
(?)

fi gV + •

One can write

dT 1
1 2---------- =7~A---------------------rr (a 0(s) + /2  a ,(s ) cos a + a 2(s) cos 2a ). (8 )ds d cos a (47r m r1 u 1

1.4. Universality

I shall first draw attention to the coefficient

2
which depends on the lepton m ass only through the factor (1 - ) 3 . Hence
i f  the couplings with muons and electrons are identical, then [3]

(s - m /V 3 a^ (s) e (s - m^) ' 3 a2e (s) . (9)

The verification  o f this identity provides a test of the universality of the 
weak interaction, independent of the structure and nature of form  factors.

1.5. Angular correlation

The sim ple structure of the angular correlation  (8 ) stems from  the factthat 
in its centre of m ass system  the lepton pair is produced in the singlet state 
for sca lar coupling g s and f 0 and in a triplet for vector f l and tensor g T.
In K e3) i f  the electron  m ass is neglected, the spins would be parallel and
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anti-parallel, respectively , for vector and tensor coupling (sz = 1 and s z = 0 ). 
The advantage of our choice of variables is that the simple angular corre la 
tion is  preserved  after integration over the pion energy or any part of the 
pion spectrum . This angular correlation  is particularly suitable for the 
identification of the type o f coupling. We give in Table I a summary 
o f values of X 1>2 = a i 2 /  ao f ° r  ^ e 3 decay when the electron mass is neg
lected  [3] in the angular correlation

(dT /d  cos a ) ~  1 + J~2 X x cos a + X 2 cos 2a. (10)

TABLE I

VALUE OF X IN THE ANGULAR CORRELATION 

(dT /d  c o s  o ) ~ l  + \/~2 X j  c o s  a + X 2 c o s  2a f o r  Kg3 d e c a y

V s T (VS) (VT) (ST)

*1 0 0 0 0 0 * 0

-1 0 1 <0 1 0 >0

The absolute value o f X is always less than or equal to one. By m easur
ing this angular correlation  one obtains clear-cu t discrim ination of the type 
o f coupling. In particular for pure vector coupling (dT /d  cos a ) ~ s i n 2 a .

1 .6 . Kg3 decay

In K e3 decay the contribution to the transition rate of term s that depend 
on the electron m ass is practica lly  negligible. The expressions for the pion 
and electron spectrum  are greatly sim plified by neglecting the electron 
m ass.

(a) Pion spectrum

= (4 P̂mK)3' ( s l g sl2 +y t | s p*lgTl2 ^ p * l fi l2)- {11)

Since at the low er end of the pion spectrum  p 2̂ = 0 and at the upper end s = 0, 
these factors are expected to dominate the pion spectrum, giving specific 
features for  each type of coupling. However, I would like to point out that 
a mixture of tensor and vector coupling cannot be distinguished from  pure 
vector when the energy dependence of the form  factors is taken into account.

A determination o f the ir° spectrum  in Ke3 decay was carried  out by 
BROWN et a l. [2] . They m easured the angular correlation  of the two 7 -rays 
from  the decay of ir° produced in Kg3 decay at rest. The frequency dis-
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Fig-3

+ ,
Ke g decay at rest

tribution o f events as a function o fu  = co s e c  (0 / 2 ) is related to the pion 
spectrum  by

„  , , P u . . 1 dT
F (u) =J u u2 P;  dE; d E' (12)

1 2 2 2where W¥ = '2m'K (m s+  m* - m|) is the maximum pion energy. Using for 
(dT /dE n) the expression given by (11) with constant form  factors, they ob
tained a rem arkably good fitting taking gs = gx = 0. One can also determine 
d irectly  (dT/cLE*) in term s o f F(u). Multiplying (12) by l /J u 2 - E n2 and 
integrating between E „ and W„, one obtains, after interchanging the order 
o f integrations on the right,

Wff F(u)du = £  Ü -  d E >C  J AUjQU ± r  —J = 2 J P ; dE'ff ff

Hence*

JL_ dT_ 2 d  f ” F(u)du 2 r  » E „ d /F f t Q V
Ptt vd E vJ  Vu2 - E$ * J  /uÖ .  E 2 du \ u J

Eir

This expression  may be useful in analysing a sim ilar experiment for KM3. 
The pion spectrum  for  pure vector coupling in Ke 3 decay is as shown in 
F ig . 4. The shape o f the spectrum  determines the vector form  factor fi(s)

Fig. 4

Pion spectrum for pure vector coupling in Ke g decay
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which was found to be constant within experimental e rrors .
(b)E lectron  spectrum
Some definite predictions can be made about the electron spectrum if 

one assum es pure vector coupling [3,4] .
Let us introduce the variables

n = E (1 - E /m K),

(14)

w = 2 E (W£ - E )/(m  - 2 E ),

where We = (1 /2  m K) (m | - m 2) is the maximum value of the electron energy 
E; w is  positive in the physical region, vanishes at both ends of the spectrum 
(E = 0, E = We ) and has a maximum at E0 = •§ (m K~ m 7r) = MeV. The
electron  energy is a double-valued function of w:

E = | (W + w ± [ ( W  - w ) 2 - m 2]*) -

Throughout this discussion  the electron m ass is being neglected. For pure 
vector coupling the spectrum dT/drj of r) is given by

2 m j(W
4 — - yz— -— r* [  (w - —  ) I fi(s )|  d s  (15)dr) (4 7rmK)3 J K 2 m K

o

which is  an increasing function of w. Hence the maximum of the spectrum 
is at the energy Eo. i .e .  r\ = We /  2, independently of the structure of the form 
factor (Fig. 5). F or any combination (VS) or (VT) one can show that the maxi
mum would be at a higher energy. If dT/dr) is plotted against w,the two 
branches, corresponding to energies E < E0 and E > E 0,w ill coincide for 
pure vector coupling (Fig. 6); for any combination (VS) or (VT) the first 
branch always rem ains-below  the second one.

The common shape of the two branches in Fig. 6 depends on the structure 
of the vector form  factor fi (s). One can show that

l f / c \ l 2 (4 7 m K )3 d2 ( d T \
 ̂ 1 * 2 mx dw 5 \dr)/ w = s/2it>k’

Since the form  factor depends only on the second derivative of the electron 
spectrum , this spectrum  does not provide a good determination of fi(s). 
Conversely, one can conclude that the electron spectrum is not very sensitive 
to the structure o f the vector form  factor.
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F ig .5 F ig .6

i) spectrum for pure V -coupling Ke3 decay plot for V -coupling

dT
Maximum o f —  at t) = 112 MeV 

dt)

Maximum value o f  r)= 122 MeV

1.7. Polarization

We have seen that from  Ke3 decay one can obtain the vector form  factor 
f l(s ) , but f 0 (s) has to be determined from  K ^3 decay. Here besides the energy

R g . 7

Energy dependence o f  longitudinal polarization o f  muons

spectra and angular correlation  one has another source of information, 
namely, the longitudinal polarization of muons. In Fig. 7 this polarization 
is  given for  pure vector coupling and constant form  factors, for different 
values of the ratio ? = (gv - g y ) /(g v + gv>-

2. FORM FACTORS

I turn now to our second topic, an investigation of the structure of form 
factors. I restr ic t m yself to vector form  factors.

One starts with the assumption that
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f + = gv + Sy = *1 and f - = Sy ‘

are analytic functions of s with a cut from  (m K+ m ^)2 to + oo . The dis
continuity a cross  this cut is given by the absorptive part of the matrix e le 
ment (4 pff0 Pko (  o| JaJ k y  . One can then write^ dispersion relations for 
f + and f _ which might require subtractions, depending on the behaviour 
at infinity. I shall assume that the dispersion relation for f + needs one sub
traction and that for f. no subtraction [5] . A ccording to this assumption, 
f . is entirely induced by strong interactions. One can show that the contribu
tion to the absorptive amplitude o f nucleon-anti-hyperon intermediate states 
is  com patible with this assumption [5] . Another possible justification is to 
invoke som e higher sym m etry in strong interactions which would ensure 
the conservation o f the current. Suppose that there is a higher symmetry 
in the strong interactions connected with the conservation of a current carry 
ing strangeness. In the level where this possible underlying symmetry holds, 
the m asses of non-strange and strange particles within the same multiplet 
would be equal, in particular the kaon and pion m asses. In order to get 
the m ass splitting som e interactions have to be introduced that break sym 
m etry. However, the existence of such higher symmetry would still lead 
to som e definite consequences. When the interactions that break the sym m e
try  are turned on and thra m ass differences are thereby introduced,the cu r
rent carrying strangeness is no longer conserved. However, "in the limit 
where the m ass differences within a multiplet are neglected, the current 
is  conserved. In this lim it the divergence of the current is zero". One 
speaks then o f a partially conserved current. Now the matrix element of 
the divergence o f the current between the states of a kaon'and a pion is  given
by

(4pffoPKo)i -6“<^|jaW |K >= ^ I M m J -  m ') +  s f .]  e'^PK-P.) (17)
K '

ty n
and this must be zero  when (mK - ) -» 0, which im plies that

lim  f. (s) = 0 .
(m K - nijl-tO (18)

But at sufficiently high energies the mass differences can be neglected; 
therefore condition (18) leads to

lim  f_ (s) = 0, (19)
s «

which is the assumption we have made. Therefore this assumption holds 
in a theory where there exists an underlying sym m etry of strong interactions
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that ensures the conservation of a current carrying strangeness. However, 
one should point out that from  (19) the existence of a partially conserved cur
rent does not follow  necessarily . A slightly different version of a partially 
conserved current hypothesis was proposed by BERNSTEIN and WEINBERG 
[5a] . They require the vanishing of (17) as s -> oo. This requirement is 
stronger than (18).

Now we have the dispersion  relations:

The form  factor f + corresponds to the state of the Kir system  with J = 1

by unitarity. Now I shall take into account in Im f only the contribution from  
the low est m assive intermediate state, which is a Kir -state, and neglect 
the contributions from  states of higher m asses. In this way the relations 
(20), together with unitarity, becom e linear integral equations, which can 
be solved in term s of S and P wave Ktt-phase shifts [5] ; f +depends only 
on 6i and f 0 on 60 . One knows about the K7r-interaction that it has a re so 
nance K* at W = 888 MeV with a width F 50 MeV in the state I = i ,  J = 0 
or J = 1. The effect of the width is negligible in the region of energies we 
are interested in (0 < s < (mx - m ), and one can replace the resonant 
phase shift by a step function 0 (s - the other phase shift will be
neglected. The results of our calculations are equivalent to the Feynman 
diagram s shown in F ig. 8.

oo

(mK + ny)'
(20)oo

and f0 = ^ (f . + EK ~ mn f +) to the state with J = 0. Thus f . is coupled to f +

v

+

Fig. 8

One obtains [6] :

f  (s) = f  (0),+ +
2 2 

f  _ (s) = mK ~ X f+ (0),
m|* - s

(21)

(22)
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The param eter X m easures the influence of K* in the decay. The effect 
of an intermediate, vector boson would be the same as of a vector K* with 
X = 1. The above expressions should then be m odified in the following way:

2 2 2

f (s) -  f  (s) ; f_(s) -> f (s) - f  ( s ) ™ * - - ? »  (23)
m '  s M2 - s

where M is the m ass of the vector boson which has to be greater than the 
kaon m ass M > m ^

3. EXPERIMENTAL RESULTS

The experimental value for the branching ratio (K 3 /K e3 ) is [7] R = 
0.96 ± 0.15. Assum ing universal vector interaction with constant form  fac
tors, the branching ratio is given in term s of £ = f_/ f+ by [8]

R = 0.651 + 0.126 ? + 0.019 ? 2 (24)

which gives two possible values for ?:

C = 1.85 ± 0 .8and § = -8.15 ± 0.85.

In order to decide between the two solutions the muon spectrum was m eas
ured by two different groups, BROWN et al. [7] and DOBBS et al. [9 ]. Unfortu
nately their data are incompatible. The first group obtains the best fit with 
C = 1.46 while the second one found f  = -9 . The pion spectrum in K^g might 
provide a better determination of f .

In addition to the branching ratio one knows from  the JCe 3 experiment 
[2 , 7] that f+(s) has very little energy dependence. It was found that

« 4  f+'( 0 ) / f +(0) = 0.45 ± 0.56. (25)

Let us com pare these results with the theoretical predictions. If the spin 
of K* is one then one, obtains

m* f^ (0 )/f '(0 )  = -m 2/(m 2K - m^) = -1.1 (26)

even if  there exists an intermediate vector boson. Then

mK2 f '( 0 ) /f+(0) = -1 .1  (f_ (0 )/f+(0) ). (27)
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Taking into account (25) one can see that the value ? = -9 is inconsistent 
with this result. The other value ? = 1.46 is barely compatible.

For scalar K* all the energy dependence of f+(s) would come from  the 
intermediate vector boson and is consistent with (25).

Another theoretical prediction valid in the absence of an intermediate 
vector boson is

m Kf-(°)/f -(°)' = (m K / m K*)2 = ° -3 (28)

for both values of the K *  spin.
It should be pointed out that these predictions can be made only in so 

far as neglecting the contributions to the dispersion integrals of higher mass 
intermediate states is actually justified.

A last point I want to make very briefly  is concerned with the isospin 
of the current. So far we have been dealing with a I = 1/2 current. There 
is now evidence for a mixture of I = 1/2 and 1 = 3/2 currents. Then the form 
factors for K +, K x and K2 decay will not be the same. However, if the as
sumptions we have made hold for both currents and there exists no sizeable 
Kir-interaction in the 1 = 3 / 2 ,  S and P states, then the structure of the 
form  factors remain unchanged; in particular, one still obtains the relations 
(26) and (2 8) for all three decays.
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