
J
H
E
P
0
4
(
2
0
1
5
)
1
3
8

Published for SISSA by Springer

Received: January 12, 2015

Revised: March 9, 2015

Accepted: March 25, 2015

Published: April 24, 2015

Static Q̄Q pair free energy and screening masses from

correlators of Polyakov loops: continuum extrapolated

lattice results at the QCD physical point
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1 Introduction

At high temperatures strongly interacting matter undergoes a transition where colorless

hadrons turn into a phase dominated by colored quarks and gluons, the quark gluon plasma

(QGP). Recently, lattice simulations have shown that this transition is a crossover [1] and

its characteristic temperature has also been determined [2–6]. Deconfinement properties of

the transition can be studied by infinitely heavy, static test charges. At zero temperature

a heavy quark and antiquark pair forms a bound state (quarkonium state), but above

the deconfinement temperature, color screening and collisions with the medium would

reduce the binding between the quark and the antiquark, eventually causing a dissociation.

As proposed by ref. [7], the behavior of quarkonia can signal deconfinement and QGP

production in heavy ion experiments. Moreover, the different melting temperatures of the

different states can be used as a thermometer, analogously to the spectral analysis of stellar

media in astrophysics, where the absence and presence of the different spectral lines is used

to determine the temperature.

In-medium quarkonium properties are characterized by the corresponding spectral

functions, studied in several works. However, extracting spectral functions from Euclidean

meson correlators (i.e. the analytic continuation of the correlator to real time) is a difficult,

ill-posed problem. Nevertheless, lattice studies of charmonium spectral functions using

the Maximum Entropy Method have been carried out on numerous occasions [8–19]. A

recent, detailed study of charmonium spectral functions in quenched QCD can be found

in [13]. Results regarding spectral functions with 2 flavours of dynamical quarks can be

found in refs. [14, 15]. A recent study of charmonium spectral functions in 2+1 flavour
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QCD is [16, 20]. Bottomonium spectral functions have also been studied with the help of

NRQCD [17–19].

Since the direct determination of the spectral function is difficult, one can study in-

medium properties of quarkonium using approximate potential models. There are nu-

merous proposals in the literature for lattice observables which can provide input to these

models. The so-called color singlet and color octet free energies have been proposed [21–25],

and studied on the lattice, but these are not gauge invariant, therefore extracting physical

information from them is not straightforward. There was also a suggestion about using the

analytic continuation of the Wilson-loop [26, 27], that, however, has similar problems as

the direct reconstruction of the spectral functions. Here, we calculate the gauge invariant

static quark-antiquark pair free energy, a non-perturbatively well defined quantity, that

carries information on the deconfinement properties of the QGP.

In the present paper we determine the free energy of a static quark-antiquark pair as

a function of their distance at various temperatures. We accomplish it by measuring the

Polyakov loop correlator [28], which gives the gauge invariant Q̄Q free energy1 as:

FQ̄Q(r) = −T lnC(r, T ) = −T ln

〈∑
x

TrL(x) TrL+(x + r)

〉
. (1.1)

In the above formula, x runs over all the lattice spatial sites, and the Polyakov loop, L(x),

is defined as the product of temporal link variables U4(x, x4) ∈ SU(3):2

L(x) =

Nt−1∏
x4=0

U4(x, x4), (1.2)

or in the continuum formulation, as a path ordered exponential of the integral of the gauge

fields:

Lcont(x) = Peig
∫ 1/T
0 A4(τ,x)dτ . (1.3)

The perturbative determination of the Polyakov loop correlators in the dimensionally re-

duced effective theory (EQCD3, which assumes the scale hierarchy T � 1
r ∼ mD) is in

ref. [29]. Here mD is the Debye mass. The NNLO perturbative determination of the

Polyakov loop correlator, assuming the scale hierarchy 1/r � T � mD � g2

r , can be found

in ref. [30]. Here it is argued, that the short distance behavior of the correlator, when
g2

rT � 1 is 1/r. To fit the correlation lengths in a lattice calculation, one needs the large r

behavior however, which is essentially non-perturbative, even at high temperatures. The

reason is simple: even in the weak coupling limit, at distances larger than (g2T )−1 the

physics of magnetic screening becomes dominant. From the 3D effective pure Yang-Mills

theory, valid in this regime, ref. [31] argued that at high temperature, the large distance

behavior of the correlator is exp(−mMr)/r, where mM is the magnetic screening mass.

This was confirmed by 2 flavour lattice simulations (using a somewhat heavy pion) in [32].

1More precisely, the excess free energy that we get when inserting two static test charges in the medium.
2In the literature, a factor of 1

Nc
is often included in the definition. Including this factor leads to a term

in the static quark free energy that is linear in temperature.
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We note here, that the Polyakov loop has a multiplicative UV divergence, or equiva-

lently, the free energy has an additive divergence, therefore renormalization of this quantity

is necessary. The renormalization prescription we adopt in this work will be treated in de-

tail in section 3.

A related problem is that for the gluon self-energy, perturbation theory breaks down at

the O(g2T ) order because of infrared divergences. This term contains contributions from

magnetic gluons. Therefore, the perturbative definition of the screening mass, as a pole

in the gluon propagator, is of limited use, since pertubation theory breaks down ([33]).

It is better to define the screening masses as inverse correlation lengths in appropriate

Euclidean correlators. In order to investigate the effect of electric and magnetic gluons

separately, one can use the symmetry of Euclidean time reflection [33], that we will call R.

The crucial property of magnetic versus electric gluon fields A4 and Ai is that under this

symmetry, one is intrinsically odd, while the other is even:

A4(τ,x)
R−→ −A4(−τ,x), Ai(τ,x)

R−→ Ai(−τ,x) . (1.4)

Under this symmetry the Polyakov loop transforms as L
R−→ L†. One can easily define

correlators that are even or odd under this symmetry, and thus receive contributions only

from the magnetic or electric sector, respectively [32, 33]:

LM ≡ (L+ L†)/2 (1.5)

LE ≡ (L− L†)/2. (1.6)

We can further decompose the Polyakov loop into C even and odd states, using A4
C−→ A∗4

and L
C−→ L∗ as:

LM± = (LM ± L∗M)/2 (1.7)

LE± = (LE ± L∗E)/2. (1.8)

Next, we note that TrLE+ = 0 = TrLM−, so the decomposition of the Polyakov loop

correlator to definite R and C symmetric operators contains two parts.3 We define the

magnetic correlation function as:

CM+(r, T ) ≡

〈∑
x

TrLM+(x) TrLM+(x + r)

〉
−

∣∣∣∣∣
〈∑

x

TrL(x)

〉∣∣∣∣∣
2

, (1.9)

and the electric correlator as:4

CE−(r, T ) ≡ −

〈∑
x

TrLE−(x) TrLE−(x + r)

〉
. (1.10)

3Note that the Polyakov loop correlator does not overlap with the R(C) = +(−) and R(C) = −(+)

sectors. To access these sectors, other operators are needed.
4Here our definition differs from that used in [32] in a sign.
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Figure 1. Number of the analyzed lattice configurations.

Then, from the exponential decay of these correlators, we can define the magnetic and

electric screening masses. Note that with our definition TrLM+ = Re TrL and TrLE− =

i Im TrL , and:

C(r, T )− C(r →∞, T ) = CM+(r, T ) + CE−(r, T ), (1.11)

from which it trivially follows that if the magnetic mass screening mass is lower than the

electric mass, we will have C(r, T )− C(r →∞, T ) asymptotic to CM+(r, T ) as r →∞, or

equivalently, the highest correlation length in C equal to that of CM+.

As for the asymptotic form of these correlators, similar arguments apply as with the

full Polyakov loop correlator. In the high temperature limit the asymptotic behavior will

be dominated by a glueball mass in the 3D effective Yang-Mills theory [31, 33], but because

of the symmetry properties, the quantum numbers carried by the glueballs will be different.

We will therefore fit the ansatz:

CM+(r, T )
r→∞−−−→ KM(T )

e−mM(T )r

r
, (1.12)

CE−(r, T )
r→∞−−−→ KE(T )

e−mE(T )r

r
, (1.13)

to extract screening masses, noting that the ansatz in principle is only motivated at high

temperatures, where the effective field theory applies. Nevertheless we find that even close

to Tc the ansatz describes the large r tails of our lattice data well.

Note, that the correlation lengths (or screening masses) extracted this way are directly

related to the static Q̄Q free energy. Since as we will see mM < mE, the magnetic screening

mass determines the long distance behaviour of the free energy.

2 Simulation details

The simulations were performed by using the tree level Symanzik improved gauge, and

stout-improved staggered fermion action, that was used in [34]. We worked with physical

quark masses, and fixed them by reproducing the physical ratios mπ/fK and mK/fK [34].

Compared to our previous investigations of Polyakov loop correlators, reported in the

conference proceedings [35], here we used finer lattices, namely we carried out simulations

on Nt = 12 and 16 lattices as well as on Nt = 6, 8, 10 lattices. Our results were obtained

in the temperature range 150 MeV ≤ T ≤ 450 MeV. We use the same configurations as in

refs. [5] and [36]. Figure 1 summarizes our statistics.
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3 The gauge invariant free energy

3.1 Renormalization procedure and continuum extrapolation

After measuring the Polyakov loop correlator C(r, T ) at T = 1/(Nta) temperature, we

computed the unrenormalized free energy according to FQ̄Q = −T lnC(r, T ). The a(β)

function was taken from the line of constant physics, along which we kept the ratios of the

physical values of mπ, fK and mK fixed at zero temperature. Detailed description of the

determination of the line of constant physics can be found in ref. [36].

Approaching the continuum limit, the value of the unrenormalized free energy diverges.

In order to eliminate the additive divergence of the free energy renormalization is needed.

There are various proposals in the literature for this renormalization procedure. Earlier

works [22–24] matched the short distance behavior to the T = 0 static potential, but this

is ambiguous. A more precise definition is to require that the T = 0 potential (calculable

from the Wilson loop) vanishes at some distance [3, 35]. This would require a precise de-

termination of the potential at T = 0. Here, though, we use a renormalization procedure

based entirely on our T > 0 data, similarly to refs. [37] and [38]. The data contains a tem-

perature independent divergent part from the ground state energy. The difference between

the value of free energies at different temperatures is free of divergences. Accordingly, we

define the renormalized free energy as:

F ren
Q̄Q(r, β, T ;T0) = FQ̄Q(r, β, T )− FQ̄Q(r →∞, β, T0), (3.1)

with a fixed T0. This renormalization prescription corresponds to the choice that the free

energy at large distances goes to zero at T0, and is implemented in two steps.

Since the divergence in the free energy is independent of r, it is sufficient to remove

it in the r →∞ limit. This limit corresponds to twice the single heavy quark free energy.

Therefore in the first step we renormalize the single static quark free energy which satisfies:

2FQ(β, T ) = FQ̄Q(r →∞, β, T ) = −T log |〈TrL〉|2 . (3.2)

We define its renormalized counterpart as:

F ren
Q (β, T ;T0) = FQ(β, T )− FQ(β, T0). (3.3)

In the second step the full renormalized Q̄Q free energy can be written as:

F ren
Q̄Q(r, β, T ;T0) = F̃Q̄Q(r, β, T ) + 2F ren

Q (β, T ;T0), (3.4)

where

F̃Q̄Q(r, β, T ) = FQ̄Q(r, β, T )− FQ̄Q(r →∞, β, T ) = FQ̄Q(r, β, T )− 2FQ(β, T ), (3.5)

Note, that this second step of the renormalization procedure is completely straightfoward

to implement, at each simulation point in Nt and β we just subtract the asymptotic value

of the correlator. Doing the renormalization in two steps like this has a technical reason

that will be explained shortly.
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Figure 2. The smeared and unsmeared free energies at a given β and Nt, after the first step of the

renormalization procedure.

Let us also mention that this Polyakov loop correlator behaves similarly to baryon

correlators in imaginary time: at large values of r we can get negative values of C at some

configurations.5 For this reason, it is highly desirable to use gauge field smearing which

makes for a much better behavior at large r, at the expense of unphysical behavior at small

r. For this reason, we measured the correlators both without and with HYP smearing. We

expect that outside the smearing range (i.e. r ≥ 2a) the two correlators coincide. This

is supported by figure 2. Therefore we use the smeared correlators for r ≥ 2a and the

unsmeared ones for r < 2a.

3.1.1 Single heavy quark free energy

First, we discuss the implementation of the renormalization of the single heavy quark free

energy, equation (3.3). Notice that if we implemented the renormalization condition (3.1)

directly, then we would just need to subtract 2FQ(β, T0) from the unrenormalized free

energy, so at first sight it looks like we are doing some unnecessary rounds by doing this

in two steps. What we gain by this is that we can extend the temperature range, at which

we can do the continuum limit. To understand this statement let us look at figure 3 (left).

The dotted black symbols are bare values of 2FQ at given values of Nt and β. The colored

symbols are interpolations of these curves, in β to the value of β0 corresponding to the

temperature T0 at each Nt. If we take for example T0 = 200 MeV, corresponding to the

green line in the figure, this gives us 5 points from the curve FQ(β, T0). According to

equation (3.3) this is what we have to subtract from the bare free energy at this value of

β to get the renormalized single quark free energy. The disadvantage of the green curve, is

that the β range it covers is rather limited. So, if we want to be able to make a continuum

5Of course, the ensemble average should in principle be positive definite.
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Figure 3. Left: determining FQ(β, T0) for different values of T0 with interpolation. The bare

2FQ values for different values of Nt are the black symbols. The colored symbols correspond to

different fixed T0 values for each Nt. The colored lines are interpolations between these points in

β. Right: 2F ren
Q (T ;T0) values in the continuum, calculated for different values of T0. For the final

curve, all of the curves have been shifted to the position of the T0 = 200 MeV curve. The errors of

each piece decrease as we approach the corresponding T0. For the final curve, we used linear error

propagation, assuming independent errors. We also mention that calculating the continuum limit

of 2F ren
Q (T ;T0) without HYP smearing leads to results consistent with the one presented here.

limit from say the Nt = 8, 10, 12 lattices, the temperature range we can cover is rather

limited as well. The lowest temperature we will be able to do a continuum limit at will be

(6/8) × 200 MeV = 150 MeV, and the highest temperature will be (16/12) × 200 MeV =

266 MeV. To do a continuum limit at higher temperatures, we need the FQ(β, T0) curve at

higher values of β, and at first, it looks as like that would need runs at higher values of Nt.

This is not feasible, but there is a simple trick to extend the temperature range. Clearly,

if we call the continuum limit of the single quark free energy

F ren
Q (T ;T0) = lim

β→∞
F ren
Q (β, T ;T0), (3.6)

than, for any value of T :

F ren
Q (T ;T0)− F ren

Q (T ;T1) = F ren
Q (T1;T0) (3.7)

is just a number.6 We can use this fact to extend the temperature range of the continuum

limit by using different values of T0, that is different renormalization prescriptions, and

shift them together by the value of the r.h.s. of equ. (3.7). This is the procedure that we

will follow.

To implement equation (3.3), we first calculate FQ(β,Nt) or equivalently FQ̄Q(r →
∞, β,Nt) from equation (3.2). Then at each Nt we interpolate to the β value correspond-

ing to the temperature T0, giving us some points of the function FQ(β, T0). Finally, we

interpolate these FQ(β, T0) points in β, obtaining the final curve we can use for the renor-

malization. This procedure is illustrated on figure 3 (left). When doing this interpolation

6This statement is only true in the continuum. At finite lattice spacing there is also a lattice spacing

dependent artifact in this difference.
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we take into account the error on the data points of FQ(β,Nt) via the jacknife method.

The statistical errors of the single quark free energy are very small, meaning that the in-

terpolation method gives a comparable error to the final interpolated value. We estimate

the systematic error of the interpolations by constructing different interpolations. For in-

terpolations of the FQ(β,Nt) curves we use linear and cubic spline interpolations (for each

value of Nt), and for the interpolation of FQ(β, T0) we use different polynomial interpo-

lations (order 1, 2), cubic spline and barycentric rational function interpolation. In total

this means 25 × 4 = 128 different interpolations, than for interpolating the bare FQ we

use spline and linear interpolations, so for the final renormalized values we have in total

128×2 = 256 different interpolations. All interpolations are taken to have the same weight.

We use the median of this as the estimate, and the symmetric median centered 68% as the

1σ systematic error estimate [39]. The statistical and systematic errors turn out to be of

the same order, and are than added in quadrature.

After doing this procedure, the β range in which we can interpolate the FQ(β, T0) curve

is limited, therefore, the temperature range where we can do the continuum extrapolation

is limited. To extend the temperature range where we can calculate the single heavy

quark free energy, we use the fact that the single heavy quark free energies at different

temperatures differ only by an additive constant in the continuum. Therefore we use

different values of T0 to do the continuum extrapolation, and shift all those curves to

the position of the 200 MeV curve. We used 5 different values of T0, namely, 170 MeV,

200 MeV, 240 MeV, 320 MeV, and 390 MeV. The results of this analysis can be found in

figure 3 (right).

For the continuum limits, we use the Nt = 8, 10, 12 lattices, that are available at all

temperatures. We use the Nt = 16 lattice to estimate the systematic error of the continuum

extrapolation, where it is available. If:

d1 = |cont. lim.(8, 10, 12)| − |cont. lim.(8, 10, 12, 16)|
d2 = |cont. lim.(8, 10, 12)| − |cont. lim.(10, 12, 16)| ,

then the systematic error of the continuum extrapolation is taken to be max (d1, d2). Where

the Nt = 16 lattices are not available, we approximate the relative systematic error by the

average of the systematic errors at the parameter values where we had the Nt = 16 lattices

available. This corresponds to an error level of approximately 10%. The systematic and

statistical errors of the continuum extrapolations are then added in quadrature. The linear

fits of the continuum limit extrapolations all have good values of χ2.

Finally, we mention that the determination of the continuum limit of the Polyakov loop,

or equivalently, the single static quark free energy is already available in the literature. For

two recent determinations of the Polyakov loop see refs. [5, 40]. The difference is that here

we take the continuum limit at significantly higher temperatures.

3.1.2 Heavy Q̄Q pair free energy

Next, we turn to the determination of F̃Q̄Q defined in equation (3.5). This quantity is UV

finite, and goes to 0 as r →∞. Similarly to the single quark free energy, the determination

– 8 –
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of F̃Q̄Q at a given value of T and r requires two interpolations. At first we are given F̃Q̄Q at

several values of T , at each T we have a different value of the lattice spacing. If we want to

know the value of F̃Q̄Q at (T, r) = (T ∗, r∗) at some value of Nt, first we do an interpolation

in the r direction to the value r∗ at each given T , then we do an interpolation in the T

direction, where the node points for the interpolations are the interpolants in the previous

step. The statistical error than can be estimated by constructing these interpolations to

every jacknife sample. For systematic error estimation we try different interpolations in

the r and T directions. In the r direction we have: polynomials of order 1, 2, 3, . . . , 7 and

a cubic spline, in the T direction we have polynomials of order 1, 2, 3 and cubic spline.

This is in total 4 × 8 = 32 different interpolations. Just as before, we use the median of

these values as the estimate, and the symmetric median centered 68% as the 1σ systematic

error estimate. Like in the case of the single heavy quark free energies, the statistical and

systematic errors turn out to be of the same order, and are then added in quadrature.

Next, we do the continuum extrapolation. Here we also take a similar approach as

in the previous subsection. For the continuum extrapolations, we use the Nt = 8, 10, 12

lattices, that are available at all temperatures. We use the Nt = 16 lattice to estimate

the systematic error of the continuum extrapolation, exactly like before. Also, where the

Nt = 16 lattices are not available, we estimate the systematic error, as in the previous

section, by the average of the systematic error at the points where we do have Nt = 16

lattices (approximately 7%). The linear fits of the continuum limit extrapolations all have

good values of χ2. Figure 5 shows a few examples of continuum extrapolations at various

temperatures and distances.

Next, we add the values of 2FQ, determined in the previous subsection, and visible in

figure 3 to the free energy values to obtain the final results in figure 4 (errors are added in

quadrature). Note, that the Nt = 6 lattices were only used in the whole analysis to extend

the β range of the renormalization condition for the single quark free energy.

4 Magnetic and electric screening masses

We continue with the discussion of the electric and magnetic screening masses obtained

from the correlators (1.9) and (1.10). For this analysis we only use lattices above the

(pseudo)critical temperature, since that is the physically interesting range for screening.

Next, we mention that for this analysis, we only use the data with HYP smearing, since

we are especially interested in the large r behavior. Before going on to the actual fitting

procedure of the screening masses let us first illustrate some simple relations, with the raw

lattice data of the electric and magnetic correlators. First is that the electric screening mass

is larger than the magnetic one. This can be seen on figure 6. The next observation is that

the screening masses in both channels are approximately proportional to the temperature.

This can be seen on figure 7. Both of these facts are expected to hold at high temperatures,

but these lattice results suggest that they hold at lower temperatures as well.

4.1 Correlated fitting of screening masses and continuum extrapolation

Next, we turn to the actual determination of the screening masses. So far there has been

one determination of electric and magnetic screening masses on the lattice using the non-

– 9 –
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is temperature independent.
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Figure 5. Cut-off effects in the free energy. On the left, we see an illustration of the continuum

extrapolation of the renormalized single heavy quark free energy, with T0 = 200 MeV, at different

temperature values. As can be seen from a closer inspection of this figure, the cut-off error in this

quantity, at these lattice spacings is approximately 5–10%. On the right, we can see a continuum

extrapolation of F̃Q̄Q(r, β, T ) = FQ̄Q(r, β, T ) − FQ̄Q(r → ∞, β, T ) at T = 300 MeV, for different

values of r. Cut-off effects have a similar magnitude here as well.

perturbative definition given by ref. [33]. That study used 2 flavours of Wilson fermions

with a somewhat heavy pion, and did not attempt a continuum extrapolation [32].

The basic strategy of the determination of the screening masses is as follows: first we

perform fits using the ansatz (1.12) and (1.13) at finite lattice spacing, then we carry out

a continuum extrapolation of the screening masses. We first discuss the fitting procedure.

Since the masses are expected to be proportional to the temperature, the natural distance

unit in this problem is rT , so we give limits on the range of the fits in these units. For the
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Figure 7. Illustrating that the screening masses are approximately proportional to the temperature.

Since the x axis of this plot is rT , if one assumes a Yukawa form of the correlator, than the slopes

of these curves are just mM/T and mE/T respectively. The fact that the graphs are approximately

parallel straight lines suggests that these ansatzes are approximately correct, and that the masses

are approximately proportional to the temperature.

correct determination of the screening masses, special care is needed in the choice of the

fit interval. To find the proper minimum rT value of the fits, we use hypothesis testing,

similar to that in ref. [41]. If the fits are good, than the value of χ2, defined as:

χ2 =
∑
i,j

(Cfit
i − Cdata

i )C−1
ij (Cfit

j − Cdata
j ), (4.1)

should have a χ2 distribution, with the appropriate degrees of freedom. Here Cij is the
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Correlator type (rT )min (rT )max Pr (KS, uniform)

Magnetic 0.43 0.9 0.007

Magnetic 0.45 0.9 0.016

Magnetic 0.465 0.9 0.30

Magnetic 0.5 0.9 0.38

Magnetic 0.61 0.9 0.96

Electric 0.3 0.65 3 · 10−7

Electric 0.32 0.65 0.018

Electric 0.35 0.65 0.31

Electric 0.43 0.65 0.94

Table 1. Hypothesis testing, using fits at all values of Nt = 8, 10, 12 and all values of β. This

means 33 sampled values in total, with fixed values of the low range of the fit (rT )min. One can see

a rather sharp increase in the probabilities for the magnetic correlator at (rT )min = 0.465 and for

the electric correlator at (rT )min = 0.35. This table justifies our choice for the ranges of (rT )min

values used in our systematic error estimation.

covariance matrix. In this case the quantity

Q =

∫ ∞
χ2

(
Probability density of χ2

)
(x)dx, (4.2)

should have a uniform distribution on [0, 1]. If we fix the range of all the fits in rT units,

each fit (at some value of Nt and β) gives one pick from a supposed uniform distribution in

Q. This is equivalent to having multiple picks from the same uniform distribution. We will

test this hypothesis with a Kolmogorov-Smirnov test for the uniform distribution. Here

one determines the maximum value of the absolute difference between the expected and

measured cumulative probability distributions. This is then used to define a significance

level or probability that the measured distribution can indeed be one originating from the

expected uniform distribution. These probabilities are listed in table 1. We will only use

value of (rT )min where the Kolmogorov probability is at least 0.3. This test tells us, that

for systematic error estimation, we will have, for the magnetic correlator (rT )min going

from 0.465 to 0.61, and for the electric correlator we have (rT )min going from 0.35 to 0.43.7

At this point we mention that for the continuum limit we will not use the Nt = 16

lattices, because the mass fits there have huge error bars. Nevertheless, when the continuum

limit is done, we will see that the values of the masses at the Nt = 16 lattices are consistent

with the continuum estimates. Also, if we use them, we get the same results, because they

do not give a contribution to the continuum limit, due to the big errors.

7(rT )max was fixed on both cases. Increasing (rT )max results in a less precise covariance matrix and cor-

respondingly, somewhat worse χ2 values, but consistent screening masses. For example, if for the magnetic

correlator we choose (rT )max = 1 instead of 0.9, the final value of the Kolmogorov-Smirnov probability in

table 1 will not be 96%, but 38% instead. Nevertheless the growing trend in the probabilities will be the

same. Also, we will get the same results within uncertainties.
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Now that we have estimated the proper rT range of the fits, we go on to the fitting

of the masses. The results of the fits at different values of Nt can be seen in figure 8.

The systematic errors come from changing the lower limit of the fit, in the case of the

magnetic correlator, from (rT )min = 0.465 to (rT )min = 0.61, and in the case of the electric

correlator, from (rT )min = 0.35 to (rT )min = 0.43. The results coming from different values

of (rT )min are weighted using the Akaike Information Criterion(AIC) [42]. The median of

the weighted histogram gives the central value, and the central 68% the systematic error

estimate. Note that using the Q values as weights or uniform weights gives a very similar

result. The statistical error comes from a jacknife analysis with 20 jacknife samples. The

two errors turn out to be of similar magnitude (with the statistical error being somewhat

bigger) and are then added in quadrature.

Next, we fit linear functions to all screening masses at all values of Nt, and use these

to do a continuum extrapolation from the Nt = 8, 10, 12 lattices. Taking into account the

errors of the linear fits, all χ2 values of the continuum limits are very good. The continuum

limit, in addition to the statistical error, also has a systematic error estimated, from doing

a 2 point linear extrapolation from the Nt = 12, 10 lattices, and taking the difference of

the extrapolated value from fitted value to the Nt = 8, 10, 12 lattices.8 The statistical and

systematic errors are added in quadrature. The continuum limits of the screening masses

can be seen in figure 9.

It is somewhat suprising that the screening mass normalized by the temperature, even

close to Tc is only weakly temperature dependent. It is also surprising that the Yukawa

ansatz used for the fits, although only motivated at higher temperatures, still describes the

data at T just above Tc. In order to demonstrate this we include here the reduced χ2 values

of the fits at the lowest temperatures used in the study. For the magnetic masses, when

fitting with (rT )min = 0.465 and (rT )max = 0.9 we get at the lowest temperatures (different

at the different Nt values, but around 160 MeV in each case) χ2/Ndof = 1.23, 1.28, 1.19 for

Nt = 8, 10, 12, respectively. For the electric masses, when fitting with (rT )min = 0.35 and

(rT )max = 0.65 we obtain: χ2/Ndof = 0.80, 1.16, 0.86 for Nt = 8, 10, 12, respectively.

4.2 Comparison with the literature

We finish this section by comparing our results to those from earlier approximations in the

literature. For comparison let us use our results at T = 300 MeV ≈ 2Tc. Here we have:

• This work: 2+1 flavour lattice QCD at the physical point after continuum extrapo-

lation:

mE/T = 7.31(25) mM/T = 4.48(9)

mE/mM = 1.63(8) .

8In the previous section, we used the Nt = 16 lattices for systematic error estimation, here however, we

do not use them since they do not improve the statistical accuracy of the continuum limits.
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Figure 8. The fitted values of electric and magnetic screening masses at the different values of Nt.
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Figure 9. The continuum extrapolations of the screening masses and the ratio of the screening

masses. For the ratio mE/mM we also included different estimates from the literature: lattice results

from ref. [32], dimensionally reduced 3D effective field theory results at T = 2Tc from ref. [43], and

results from N = 4 SYM plasma with AdS/CFT from ref. [44].

• Ref. [32]: 2 flavour lattice QCD with Wilson quarks, a somewhat heavy pion mπ/mρ=

0.65, no continuum extrapolation

mE/T = 13.0(11) mM/T = 5.8(2)

mE/mM = 2.3(3) .
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• From table 1 of ref. [44]: N = 4 SYM, large Nc limit, AdS/CFT

mE/T = 16.05 mM/T = 7.34

mE/mM = 2.19 .

• From figure 3 of ref. [43]: dimensionally reduced 3D effective theory, Nf = 2 massless

quarks

mE/T = 7.0(3) mM/T = 3.9(2)

mE/mM = 1.79(17) .

• From figure 3 of ref. [43]: dimensionally reduced 3D effective theory, Nf = 3 massless

quarks

mE/T = 7.9(4) mM/T = 4.5(2)

mE/mM = 1.76(17) .

We note, that our results are closest to the results from dimensionally reduced effective

field theory. This can also be seen in figure 9 (right).

5 Conclusions

In this paper we have determined the renormalized static quark-antiquark free energies in

the continuum limit. We introduced a two step renormalization procedure using only the

finite temperature results. The low radius part of the free energies tended to the same

curve, corresponding to the expectation that at small distances, the physics is temperature

independent. We also calculated the magnetic and electric screening masses, from the real

and imaginary parts of the Polyakov loop respectively. As expected, both of these masses

approximately scale with the temperature as m ∝ T , with mM < mE, therefore, magnetic

contributions dominating at high distances. The values we got for the screening masses

are close to the values from dimensionally reduced effective field theory.
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