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Abstract The cosmological backreaction proposal, which attempts to account for
observations without a primary dark energy source in the stress-energy tensor,
has been developed and discussed by means of different approaches. Here, we
focus on the concept of cosmological background solutions in order to develop a
framework to study different backreaction proposals.
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1 Backgrounds and backreactions

A cosmological background solution is a mean-field geometry of suitably aver-
aged Einstein equations, in which the average expansion is described by a single
scale factor. A cosmological background solution depends upon the spatial cur-
vature and the mass-energy content. Associated with the latter is a stress-energy
tensor that describes a fluid (or fluids) with equation(s) of state that satisfy local
energy conditions. For simplicity, we will assume that there is only one fluid, with
a local equation of state of pressureless matter.

If the universe were exactly homogeneous and isotropic, there would be a
unique background solution that describes the expansion history of every volume
element as well as observations made by any observer. In particular the back-
ground solution would be a Friedmann–Lemaı̂tre–Robertson–Walker (FLRW)
solution of the Einstein equations.
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In this paper we consider the more relevant case of an inhomogeneous uni-
verse, and consider the description of the evolution of such a universe by perturb-
ing about some cosmological background solution. The issue is which cosmologi-
cal background solution to perturb about to best describe the expansion history and
observables on our past light cone. This paper is a critical study of these issues.

We start by defining and elucidating several types of cosmological background
solutions focusing on energy/curvature content, dynamics and observations:1

Global Background Solution (GBS): a background solution with energy content
and spatial curvature that are the (particle) horizon-volume spatial averages of
the energy content and the spatial curvature of the inhomogeneous universe. The
other assumption is that the fluid equation of state is the local equation of state
of the fluid comprising the stress tensor. The GBS is therefore the usual FLRW
background, in particular it is not a function of position.

Averaged Background Solution (ABS): a background solution that describes the
evolution of the horizon volume of an inhomogeneous universe. The energy con-
tent and the curvature that generate the ABS are not necessarily related to the spa-
tial averages of the energy content and curvature of the spatial region considered.
In particular, the equation of state of the stress-energy tensor of the ABS, even
though is supposed to satisfy the dominant energy condition, need not be related
to the local one. The ABS may be obtained by averaging over the horizon volume
following, for example, the formalism introduced by Buchert [1]. The ABS is not
a function of position.

Phenomenological Background Solution (PBS): a background solution that
effectively describes the observations, that is, the data on the past light cone of an
observer. The energy content and curvature of the PBS are not necessarily related
to the spatial averages of the energy content and curvature of the observable uni-
verse. The equation of state of the stress-energy tensor of the PBS need not satisfy
any of the local energy conditions of the mass-energy content of the universe. The
relevant PBS may depend on the position of the observer and the redshift out to
which the observations are performed.

The standard approach consists of assuming that the three background solu-
tions coincide in the sense that they are perturbatively close to one other. In this
approach one describes the spacetime, the global dynamics, and the observations
by means of only one background solution, namely the GBS. Our purpose here is
a critical re-examination of this simplification.

The next step is to define what we mean by backreaction:

Backreaction: the situation in which the three backgrounds defined above do not
coincide.

We then have two possibilities for the backreaction:

Strong Backreaction: the GBS does not describe the expansion history, i.e., the
GBS and the ABS do not coincide. The ABS and the PBS may, or may not, coin-
cide.

Weak Backreaction: the GBS coincides with the ABS. The PBS, however, differs
from the GBS.

1 New definitions will be marked in bold type throughout the paper.
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Summarizing, a strong backreaction deals with the non-commutativity between
averaging and going to the field equations (EoM), while a weak backreaction deals
with the non-commutativity between averaging and measuring (Obs). Epigram-
matically:

[〈· · · 〉, EoM] 6= 0 ⇒ ABS 6= GBS
[〈· · · 〉, Obs] 6= 0 ⇒ PBS 6= GBS

2 The global background solution and the FLRW assumption

In cosmology, one usually models the evolution and observables associated with
an inhomogeneous universe consisting of density ρ(x), three-curvature 3R(x),
and expansion rate H(x) by employing a FLRW model of density ρ = 〈ρ(x)〉,
and spatial curvature 3R = 〈3R〉 (where 〈· · · 〉 denotes some suitably defined spa-
tial average) and a fluid equation of state given by the local equation of state of
the fluid(s) comprising the stress-energy tensor. One then assumes that the expan-
sion history and cosmological observables are those obtained in the correspond-
ing FLRW model (the GBS). Inhomogeneities are thought of as developing in
this fixed GBS according to perturbation theory. In other words, it is implicitely
assumed that the GBS is the only relevant background solution and there are no
backreactions.

In this approach, inhomogeneities are, therefore, simply neglected: one
assumes that inhomogeneities will not affect this long-standing procedure with-
out actually providing a quantitative averaging method to demonstrate it. This
approach does not provide any guidance as to the scale upon which such mod-
els are supposed to be applicable, nor does it seriously examine the issues arising
when we consider the relations between descriptions of the universe at different
scales of inhomogeneity [2; 3; 4; 5].

It is usually stated that the above approach is justified by the cosmological
principle, which simply states that the universe is homogeneous and isotropic on
a sufficiently large scale. However, there is an unstated assumption implicit in
addition to the cosmological principle. We first state the assumption:

FLRW Assumption: in an inhomogeneous universe that satisfies the cosmo-
logical principle, the volume expansion and cosmological observables may be
described by perturbations of the GBS.

The FLRW assumption, of course, implies the absence of any backreaction.
In support of the FLRW assumption, it has been claimed [6; 7] that even in the
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presence of highly nonlinear density perturbations (δρ/ρ � 1) the metric for our
universe can everywhere be written as a perturbed conformal Newtonian metric of
the form

ds2 = a2(τ)
[
−(1+2ψ)dτ

2 +(1−2ψ)γi jdxidx j] , (1)

where dτ = dt/a is conformal time, γi j is a metric of a three-space of con-
stant curvature, and ψ satisfies the Newtonian conditions |ψ| � 1, |∂ψ/∂ t|2 �
a−2DiψDiψ , and

(
DiψD jψ

)2 �
(
DiD jψ

)
DiD jψ . The covariant derivative with

the metric γi j is denoted by Di. The usual statement is that in the dust case one
is allowed to use the perturbed conformal Newtonian metric either in the linear
regime (i.e., perturbations of every quantity being small) or in the weak-field
(Newtonian) regime.2 In other words, according to this, the GBS describes the
evolution of an inhomogeneous universe even in the presence of large inhomo-
geneities, and therefore there is no strong backreaction. The latter claim has indeed
been used as a “no-go” theorem against the backreaction proposal.

In the following we consider the case of a (on average) spatially-flat universe,
consisting only of dust, with no primary dark energy. The GBS is, therefore, the
Einstein–de Sitter (EdS) solution. According to the FLRW assumption, strength-
ened by the no-go argument, the EdS solution describes the global expansion and
the observables. If there would be a backreaction, the EdS global background
solution would not describe the expansion or the observables.

3 Peculiar velocities

In Ref. [8] we explored assumptions that could be relaxed in order to evade the
aforementioned no-go theorem. In that work we concentrated on one of the criteria
that defines the Newtonian regime, namely “velocities much smaller than light
relative to the Hubble flow” [6]. To appreciate the subtilties in this criterion, we
first must refine the concept of peculiar velocities.

A “peculiar” velocity is always defined with respect to the velocity of a back-
ground solution, i.e., a background Hubble flow. The subtilty is “which” Hubble
flow. We start by defining different peculiar velocities depending on which back-
ground is chosen as a reference:

Global Peculiar Velocities: velocities obtained after subtracting the Hubble flow
of the GBS.

Averaged Peculiar Velocities: velocities obtained after subtracting the Hubble
flow of the ABS.

Phenomenological Peculiar Velocities: velocities obtained after subtracting the
Hubble flow of the PBS.

Phenomenological Peculiar Velocities are departures from the observed Hub-
ble flow predicted by the Phenomenological Background Solution. Observations

2 But note that already at second order in perturbation theory the spatial part of the metric
differs from the temporal part of the metric simply from terms quadratic in the peculiar velocities
(i.e., an effective anisotropic stress term is in the stress-energy tensor).
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Fig. 1 The time evolution of the scale factor for different FLRW solutions

tell us that Phenomenological Peculiar Velocities are small (in the sense of being
much less than c).

Global Peculiar Velocities, instead, are velocities relative to the Global Back-
ground Solution, and have nothing to do with anything that can be measured
as a local effect. Of course, in the usual approach the Phenomenological Back-
ground Solution coincides with the Global Background Solution, and therefore,
Phenomenological Peculiar Velocities and Global Peculiar Velocities coincide.

In Ref. [8] we found that one way to evade the no-go argument is to relax the
restriction that the global peculiar velocities must be small, while still demand-
ing small phenomenological peculiar velocities. Small phenomenological peculiar
velocities can be seen as a requirement coming from observational data. We see,
therefore, that the FLRW assumption asks for small global peculiar velocities. We
will see that this is a restriction on the dynamics of inhomogeneities, in particular,
voids.

We should, indeed, regard inhomogeneous regions as different FLRW models
characterized by a different local density and curvature, that is, as regions with
different and differently evolving expansion rates. If we do not restrict the differ-
ent patches to evolve close to the GBS, they will naturally develop large global
peculiar velocities because different FLRW solutions follow different evolutions
as sketched in Fig. 1, where we have plotted the evolution of the scale factor for
FLRW models with different curvature. It can happen that at some specific time,
due to initial conditions, all the inhomogeneous regions are close to some GBS.
This will be, however, a special moment because of the different evolution of the
patches. It will be more typical to have large departures from the GBS Hubble
flow, which will be manifest in a large ∆H(x) or in large global peculiar veloci-
ties that are the results of perturbing about the wrong background. The relevance
of the GBS may, therefore, be more fragile than previously appreciated, while
the relevance of PBS seems to be more robust (as can be seen by the success of
ΛCDM).

4 Observers

In the previous two Sections we focused on the influence of inhomogeneities in
the description of the spacetime of the universe. In this Section we now turn to
discuss the possibility that the GBS/ABS is not guaranteed to be able to describe
observations. This discussion applies to both the weak backreaction, in which case
GBS/ABS will mean GBS, and the strong backreaction, in which case GBS/ABS
will mean ABS because in this case the GBS does not describe any aspect of the
universe. We start by defining two types of observers.

Global Observer: is an observer comoving with the GBS/ABS Hubble flow.

Phenomenological Observer: is an observer comoving with the PBS Hubble
flow, that is, after subtracting any local peculiar velocity. This observer measures
the phenomenological background which is the only background directly related
to observations.
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The cosmological principle states that the universe is homogeneous and
isotropic on a sufficiently large scale. As pointed out above, the cosmological
principle, however, does not tell us how the large-scale homogeneity and isotropy
are connected to the description of the universe at smaller scales. In particular, it
does not deal with the observer: it does not follow from the cosmological princi-
ple that every phenomenological observer is equivalent independent of location,
neither that the global observer has anything to do with the phenomenological
observers.

The usual approach is the following. The Copernican principle states that phe-
nomenological observers do not occupy a privileged position in the universe. From
the Copernican principle, together with the observed isotropy of the universe (from
the CMB, for example), the cosmological principle follows. One then makes use
of the FLRW assumption, and every observation can be described by the GBS.
The success of the concordance model then verifies this reasoning a posteriori.

However, the only truly direct consequence of the success of the concordance
model is that the isotropic and homogeneous Λ CDM model is a good phenomeno-
logical fit to the real inhomogeneous universe, but this does not imply that a pri-
mary source of dark energy exists, but only that it exists as far as the phenomeno-
logical fit is concerned. For example, it is not straightforward that the universe is
locally accelerating in the usual sense.

We therefore reconsider the latter approach in order to have principles closer
to the “unprocessed” observations. We choose the cosmological principle as more
fundamental than the Copernican principle, and we define a new type of cosmo-
logical principle:

Bare Cosmological Principle: the universe is homogeneous and isotropic on a
sufficiently large scale.

Equivalently, the bare cosmological principle states that it is possible to
describe the universe by means of a mean-field approach, that is, within our def-
initions, that the Averaged Background Solution becomes, at the horizon scale,
insensitive to the scale of averaging: in other words, it is possible to describe the
inhomogeneous universe by means of a suitable cosmological background solu-
tion (but not necessarily the FLRW/GBS).

From the observed isotropy (in agreement with the bare cosmological prin-
ciple) together with the observational success of the concordance model we can
then state a new Copernican Principle:

Bare Copernican Principle: every observer can describe the universe by means
of a mean-field description, that is, it is possible to describe observations in the
inhomogeneous universe by means of a suitable spherically-symmetric cosmolog-
ical background solution (but not necessarily the GBS/ABS) which is the Phe-
nomenological Background Solution, even though differently located observers
may have different PBSs.

We have therefore at least two different situations where (1) every phenomeno-
logical observer sees the same PBS and (2) every phenomenological observer sees
a different PBS.
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Fig. 2 Sketch of an exact swiss-cheese model

5 Examples and discussion

In this Section we will discuss the concepts introduced so far by means of concrete
examples. It will be clarifying to consider, among others, swiss-cheese models
made of dust, which we now briefly introduce.

By swiss-cheese model we will mean the general setup in which spherically
symmetric Lemaı̂tre–Tolman–Bondi (LTB) metrics [9; 10; 11] (the holes) are
embedded in the EdS metric (the cheese). Assuming a dust equation of state, the
Einstein equations for the LTB model can be solved to obtain the dynamical equa-
tion

ȧ2(r, t)
a2(r, t)

=
8πG

3
ρ̂(r, t)− k(r)

a2(r, t)
, (2)

where ρ̂(r, t) is the (euclidean) averaged density up to the shell r and the curvature
term k(r) can be interpreted as the total energy of the shell, which is given by its
kinetic energy plus its potential energy due to the total (euclidean) mass up to the
shell r (see Ref. [11] from more details).

Equation (2) is the generalization of the Friedmann equation for a homo-
geneous and isotropic universe to a spherically symmetric inhomogeneous uni-
verse. To recover the usual Friedmann equation we replace a(r, t), ρ̂(r, t), k(r) by
a(t), ρ(t),±1 or 0. From Eq. (2) it follows that every shell r̄ can be thought as a
different FLRW universe of density ρ̂(r̄, t) and curvature k(r̄). Indeed, if the LTB
model does not undergo shell crossing (see Ref. [12]), each shell evolves inde-
pendently of the others. Spherical symmetry severely restricts the dynamics of the
shells. Equation (2) shows that, in a spherically symmetric system, the dynamics
of the shell r depends only on the total mass within and does not depend on the
mass outside. This clearly shows how density inhomogeneities are averaged out
with respect to the dynamics of the shells.

In order to have an exact swiss cheese it is necessary to avoid any superposition
among the holes (as sketched in Fig. 2). Moreover, the LTB solution of each hole
has to match the EdS metric of the cheese at the boundary of the hole at r = rh.
This means that ρ̂(rh, t) = ρ(t) and k(rh) = 0 as it is clear from Eq. (2). As for the
density, this implies that if there is an underdensity, there must be a compensating
overdensity (see Ref. [13; 14] for more details).

Thanks to the matching, an observer outside the holes will not feel the presence
of the holes as far as local physics is concerned (this does not apply to global quan-
tities, such the luminosity-distance–redshift relation for example). So the cheese
is evolving as an EdS universe while the holes evolve differently. Independent of
how many holes we put in, we will still have an exact solution of the Einstein
equations. Again, this is due to spherical symmetry. We can imagine placing holes
in order to satisfy the bare cosmological principle. We therefore see that, by con-
struction, in an exact swiss-cheese model the scale factor of the ABS evolves as
the one of the EdS model, which describes the evolution of the swiss-cheese on
scales larger than any spherical hole. In other words, in this special case, a cheese-
only model and the swiss-cheese model have the same volume evolution in spite
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of the inhomogeneities. This tells us that the swiss-cheese model is just by con-
struction the wrong model to study the impact of inhomogeneities on the ABS,
that is, to study strong backreaction.

The swiss-cheese model is, however, a useful toy model with which to study
the GBS and the PBS. In the following we will discuss some swiss-cheese models
together with other examples found in the literature. As we will see, the back-
reaction proposal can act through different ways. We would like to stress that
a combination of the possible effects might be necessary to explain away dark
energy.

5.1 The GBS does not describe the spacetime

As we have seen, independently of the inhomogeneities, in swiss-cheese models
the ABS evolves as the EdS model. Moreover, the curvature inside the holes is
small (quadratic in hole-radius/Hubble-radius) as far as metric quantities are con-
cerned, and so EdS and swiss cheese share almost the same average density. It
appears, therefore, natural to perturbe around the EdS model and identify it as the
GBS. Yet, until a suitable averaging procedure is carried out (see, for example,
Ref. [15]), it is not possible to state that the GBS, within our definitions, is the
EdS. It is not excluded that the actual GBS for a swiss-cheese model is not a per-
turbation of EdS. However, in the spirit of the no-go argument that states the ABS
and GBS coincide, it is reasonable to choose the EdS model as the background to
perturb from in Eq. (1).

In Ref. [8], we found an example of a model [16] that fits the luminosity dis-
tance and the position of the first CMB peak, but evades the no-go argument. The
observer is located at the center of a Gpc-scale underdensity which mimics a tem-
poral variation of the Hubble parameter. We found large global peculiar velocities,
which can be generally expressed as:

vGPV ' R ·HGBS ·
∆H

HGBS
. (3)

This can be understood to show that to the global peculiar velocities, vGPV, con-
tribute the physical size of the inhomogeneity, R, the magnitude of the global
background Hubble parameter, HGBS, and the fractional departure of the expan-
sion of the inhomogeneous region from the global background Hubble parameter,
∆H/HGBS.

We stress again the importance of not assuming a priori small global pecu-
liar velocities. Otherwise, we fall into a circular reasoning in which we assume
as a starting point that the GBS describes the spacetime, and hence the absence
of strong backreaction. If indeed inhomogeneities alone explain the concordance
model, then there will be large global peculiar velocities with respect to the
GBS/EdS-model which would be a wrong background.
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Fig. 3 The luminosity distance as a function of redshift for an observer looking through the
holes of the swiss-cheese universe of Ref. [13; 14], together with the GBS/EdS and ΛCDM
curves. Rather than H0dL(z), we show the usual difference in the distance modulus compared to
the empty model

5.2 The PBS differs from the GBS

In this Section we will consider three examples which will help understanding
how the PBS can differ from the GBS: a swiss-cheese model, a meatball model
and a two-scale model.

In Ref. [13; 14], we have studied the propagation of light in a swiss-cheese
universe. In that case global peculiar velocities were small enough to have a New-
tonian description [17], that is, the GBS/EdS-model describes perturbatively the
spacetime. We found, however, a sizeable weak backreaction caused by the evo-
lution of inhomogeneities, in particular voids. The setup was of an observer in
the cheese looking through a chain of holes. The observer was, therefore, a global
observer not in a special position, but the observables differed from those calcu-
lated in the GBS as shown in Fig. 3.

The effect of the inhomogeneities on the observables we have found can be
imputed to lensing effects as discussed in Ref. [18; 19; 20]. It has been argued
in Ref. [17; 18] that the results found in Ref. [13; 14] converge to the EdS result
once an angular average is considered: in Ref. [13; 14] the observer was, indeed,
only looking through the center of the holes. However, the swiss cheese studied
in Ref. [13; 14] is not suitable for statistical averaging. Because of the setup a
photon always hits a surrounding overdensity before and after passing through
an underdensity: the lensing probability distribution function (PDF) is therefore
bound to not give a large net effect as also shown by Ref. [21]. In order to study the
PDF it is necessary to focus on a model that allows photons to miss overdensities,
like, for example, the meatball model of Ref. [22; 23] (see also the lattice model
of Ref. [24]): in this case, even with randomly placed meatballs, an observer can
indeed observe a PBS different from the GBS. The advantage of swiss-cheese
models based on LTB solutions is instead in their ability to describe the local
spacetime. We now see that the direction through voids of Ref. [13; 14] can be
seen as a representative one: the photons we observe have likely travelled more
through voids than through structures (see also Ref. [25; 26; 27]).

The fractal bubble model of Ref. [28; 29; 30] and the two-scale model of
Ref. [31] focus on the two relevant cosmological scales of the late universe: voids
that dominate the volume and structures, in the form of filaments and walls, that
surround the voids. In contrast to swiss-cheese models, a compensation among
perturbations is not demanded, the two scales evolve indeed independently. More-
over, the fractal bubble model takes into account the differences in proper time
between observers within voids and observers within structures with the result that
the PBS (for an observer within a structure) is found different from the ABS. In
particular, the PBS exhibits apparent acceleration, while the ABS does not. This is
shown by means of a Buchert average, which also shows that PBS and ABS differ
from FLRW solutions and in particular from the GBS.
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Fig. 4 Density profile (dashed line) and radial expansion rate (dotted line). The model exhibits
a large variance around the average EdS values

Fig. 5 The luminosity distance as a function of redshift for an observer in an underdense region,
in a region with parameter close to the GBS/EdS-model and in an overdense region. Rather than
H0dL(z), we show the usual difference in the distance modulus compared to the empty model

5.3 Different PBSs for different phenomenological observers

In the previous section we have seen examples of models that feature a PBS dif-
ferent form the ABS/GBS. We will now discuss two possible mechanisms that can
make the PBS differ for different phenomenological observers.

The first concerns the dressing of cosmological parameters for observers using
an FLRW bias to describe observations. As explained by Ref. [15; 32], once we
have Buchert averaged a given model, we still have to consider how the geometri-
cal inhomogeneities dress the fiducial FLRW density parameters of volume effects
due to the differences between the smoothed FLRW volume and the actual volume
of the inhomogeneous region considered. Furthermore, Ref. [15; 32] found that the
spatial curvature is also dressed by curvature backreaction effects which encode
the deviation of the averaged scalar curvature from a constant curvature model.
The dressing of the parameters, therefore, not only makes the PBS depart from
the ABS, but also links different PBSs to different phenomenological observers.

As a second example we will consider a specific LTB toy model with a sinu-
soidal density profile3 and we focus on a region of it far from the center. This
model belongs to the class of onion models [33; 34] and, similarly to swiss-cheese
models, is matched to the GBS/EdS-model in between every oscillations. The
size of the inhomogeneities is around 80 Mpc and the cosmological principle is
respected. We show in Fig. 4 a plot of the present-time density and radial expan-
sion rate which is defined as Hr = Ṙ′/R′ where R = r a(r, t). In this model the
GBS/EdS-model describes perturbatively the spacetime and there are no sizeable
effects on the propagation of light. We would therefore expect that global and
phenomenological observer coincide.

The point we want to make is that the global observer is meaningful, that
is, he says something about the phenomenological observer only if the inhomo-
geneities are at the linear order. When they become nonlinear, the phenomenolog-
ical observer might be different from the global observer. In Fig. 4 we see indeed
that the average EdS expansion rate does not say anything about the local expan-
sion rate because the variance is so large. As a result, the luminosity distance is
observer-dependent as shown in Fig. 5 where we compare the luminosity distance
measured by an observer in an underdense region, in an overdense region and in
a region with parameter close to the GBS/EdS-model. This scenario is usually
named Hubble bubble scenario in order to stress the fact that, in order to fit the

3 We present here a model similar to the one discussed in Ref. [33], Chapter 3.
More precisely, the initial density and curvature are ρ(r, t̄)=ρGBS(t̄)

(
1+0.3cos 2πλ

r

)
and

E(r)=0.8
( 1

2 HGBS(t̄)2a(t̄)2r2−GM(r)/a(t̄)r
)
. The initial time t̄ corresponds to z ' 1.9 and

λ ' 83.5Mpc. Moreover, M(r)= 4π

3 ρ̂(r, t̄)a(t̄)3r3 and k(r)= −2E(r)/r2.
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luminosity distance, the observer has to live in a bubble with a larger expansion
rate. In this setup, the average over all the phenomenological observers gives the
global observer who sees the EdS luminosity distance, but, again, the variance is
too big for the average to be meaningful. In other words, even if the GBS describes
perturbatively the spacetime, it does not give the PBS of the phenomenological
observers.

6 An observable backreaction

As a final point, we now focus on the PBS which encapsulates the desideratum to
be tied to observational data, that is, to fit observations by a model [4; 14; 15; 32;
35]. We stress again that the ABS, instead, is not directly related to observations.

Fitting along the light-cone is actually what is done by the concordance
ΛCDM model, which happens to be a good fit to observational data. We there-
fore define:

Observable Backreaction: the effect of the evolution of inhomogeneities that
leads the PBS to have an expansion history and curvature different from those
deduced from the corresponding local quantities.

The idea is that the former is close to that of a Λ CDM model whereas locally
we are dealing with a dust model. Moreover, the trigger is the evolution of large-
scale structures which became nonlinear recently, exactly when a primary dark
energy is supposed to start dominating the energy content of the universe and
causing acceleration. The coincidence problem is not, therefore, a problem any-
more, but a trigger event.

We can now understand why we used the term “backreaction” for the weak
backreaction while usually it is reserved for strong backreaction only. Indeed, as
discussed in the examples of the previous Section, it is possible that weak backre-
action can observationally mimic strong backreaction, in the sense that both can
give PBS qualitatively different from the GBS. Therefore, it might not be possi-
ble to distinguish between weak and strong backreaction and hence the reason to
focus only on observable backreaction.

Summarizing, the observable backreaction is only concerned with the “end
result,” which is the only result physically meaningful: its definition, indeed, does
not mention GBS or ABS. The distinction made by introducing strong backre-
action [1; 28; 31; 36; 37; 38; 39; 40; 41; 42; 43; 44] and weak backreaction
[13; 14; 16; 20; 45; 46; 47; 48; 49; 50; 51; 52; 53; 54] is indeed useful to lay a
framework and separate the possible sources of backreaction we have in a model,
but we need to keep in mind that only the PBS matters. If there is no dark energy,
indeed, we should not, and maybe we can not, be concerned with which of the
backreactions is responsible for the observations.

Finally, we point out that, even if the backreaction proposal is not able to
explain away dark energy and an other physical cause is needed, it still is of inter-
est within the precision cosmology we will be facing in the future.
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