
 

Asymptotic charges cannot be measured in finite time
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To study quantum gravity in asymptotically flat spacetimes, one would like to understand the algebra of
observables at null infinity. Here we show that the Bondi mass cannot be observed in finite retarded time,
and so is not contained in the algebra on any finite portion of Iþ. This follows immediately from recently
discovered asymptotic entropy bounds. We verify this explicitly, and we find that attempts to measure
a conserved charge at arbitrarily large radius in fixed retarded time are thwarted by quantum fluctuations.
We comment on the implications of our results to flat space holography and the BMS charges at Iþ.
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I. COMMUNICATION WITHOUT ENERGY?

Alice would like to send Bob a message. Alice lives on a
small, massive planet. Bob occupies a Dyson sphere of
large radius rB and negligible mass, which surrounds Alice
in an otherwise empty, asymptotically flat spacetime (see
Fig. 1). It would be simplest for Alice to send Bob a radio
signal, or some gravitational waves. Unfortunately, their
sleep schedules are out of sync, so that Bob would not be
awake when Alice’s signal arrives. Instead, they come up
with an ingenious protocol, which makes it unnecessary for
Bob to intercept any signal from Alice.
Their protocol is as follows. Long ago, before Bob

traveled to the Dyson sphere, Alice told Bob the mass M0

of her planet. She promised not to radiate any of it away
until the agreed time when the message is to be sent. That
fateful night, she radiates away a certain portion of the mass
of her planet. The radiation passes through Bob’s sphere
while he sleeps, without interacting, and is lost forever.
But when Bob wakes up, he measures the new Bondi

mass M of Alice’s planet. This can be done at arbitrary
distance, by measuring the surface integral that defines the
Bondi mass [see Eqs. (1) and (2) below].

Alice and Bob have agreed on a code, whereby the
possible values of M are binned into discrete intervals, and
each interval means a particular message. For example,

FIG. 1. If distant observer Bob could measure the Bondi mass of
Alice’s planet, then Bob could receive information from Alice,
without receiving energy. This would contradict recently proven
bounds on distant communication channel capacities. In our
example, Alice has radiated away some portion of her planet,
but Bob does not intercept this radiation (yellow arrows). Instead,
Bob later tries to measure howmuch mass is still left, in some fixed
amount of time δu, at arbitrarily large radius rB. We resolve the
contradiction by showing that quantum fluctuations ruin Bob’s
measurement. The Bondi mass cannot be observed in finite time.
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suppose that Alice’s planet has initial mass M0 ¼ 1024 kg,
and Bob is able to measure the final Bondi mass M to a
resolution of 1 kg. Then Alice can choose from among 1024

messages. Upon measuring M, Bob gains an amount
log 1024 of information, or about 80 bits.
Alice and Bob believe that their scheme will work, given

a sufficiently long but fixed, finite retarded time δu for
Bob to perform measurements after he wakes up, no matter
how big the Dyson sphere is. That is, it should succeed in
the limit as rB → ∞ at fixed retarded time u≡ t − r and
fixed δu (see Fig. 1).
The restriction to fixed u and δu at arbitrarily large rB is

very important to Bob, because he likes to finish all his
work before his midafternoon nap. It is also important to
many theorists, who wish to associate a Bondi mass (and
other charges) to a “cut,” or cross section, of future null
infinity Iþ, which lies at infinite r and is parametrized by u.
Of course, no measurement can be performed truly instan-
taneously, so Bob instead pursues the more modest goal of
measuring the Bondi mass in some finite retarded time
interval of length δu.
The formal definition of the Bondi mass is associated

with a constant-u cut of future null infinity, Iþ (see Fig. 2).
To make contact with this definition, we consider the limit
of a very large Dyson sphere, rB → ∞, at fixed retarded
time u0 in the metric

ds2 ¼ −
�
1 −

2mB

r

�
du2 − 2dudrþ r2dΩ2 þ � � � ð1Þ

The ellipsis indicates terms subleading in 1/r that we do not
need. Here mB is the Bondi mass aspect. Its integral over a
2-sphere cut of Iþ yields the Bondi mass,

M ¼ 1

4π

Z
S2
d2ΩmB: ð2Þ

To claim that an asymptotic observer can measure the Bondi
mass in finite time is to claim that M can be determined by
measurements in a distant region R in Fig. 2. Here R is
bounded on the inside by an arbitrarily large radius rB, and in
the past and future by the lightsheets u ¼ u0 � δu

2
.

However, if this protocol succeeded, we would have a
paradox. Building on universal entropy bounds [1–6], it
was recently shown that communication from Alice to Bob
is constrained by a universal limit on the mutual informa-
tion that can be achieved [7].
In the limit as rB → ∞, the amount of information that can

be gained by Bob is of order Eδu, where E is the average
energy of the signal that is actually received by his detectors.
More precisely, the entropy in the detection region is
bounded by the modular energy K in the interval δu,

K ¼
Z

d2Ω
Z

u2ðΩÞ

u1ðΩÞ
dugðuÞT ðu;ΩÞ: ð3Þ

HereΩ is the angle on the sphere atIþ;T ¼ lim r2Tuu is the
energy flux arriving on Iþ per unit angle and unit retarded
time; and gðuÞ is a positive definite function. [For a free field,
gðuÞ ¼ ðu2−uÞðu−u1Þ

u2−u1
.] But K vanishes because T vanishes:

Bob receives no energy at all. He missed the radiation Alice
sent earlier, and by the time he measures the mass or charge,
there is no radiative flux at all. The entropy is closely related
to the Holevo quantity [7], which bounds the mutual
information between Alice and Bob. Hence, Bob cannot
learn anything from Alice in this protocol.
In light of this contradiction, it is natural to go back and ask

where the troublesome bound on communication [7] came
from. It was obtained [5,6] as a limit of the “quantumBousso
bound,”whichwas proven for free field theories in [3] and for
interacting theories in [4]. Ultimately, this entropy bound
arose from the conjecture [8,9] that the entropy in a region is
bounded by the cross-sectional area loss along a lightsheet
traversing the region, measured in Planck units. Here, the
lightsheet is a family of parallel light rays that pass through
the asymptotic region. Radiation focuses such light rays, and
the area they span contracts by an amount that remains fixed
in Planck units, as the location of the family is taken to
infinite distance. The curvature due to the Schwarzschild
metric of Alice’s planet also focuses the light rays (through a
shear term), but it is easy to check that the resulting area loss
goes to 0 as the lightsheet is taken off to null infinity.
Thus, Alice and Bob’s protocol must fail: it cannot be

possible to extract information by measuring a conserved

FIG. 2. Penrose diagram of the process we consider. The red
line represents Alice’s worldline. The yellow arrows are the
radiation emitted by Alice and reaching Iþ without interacting
with Bob (blue worldline) whose detectors are only on for a
retarded time interval δu.
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charge in fixed finite time at arbitrarily large distance. In
this paper, we show how it fails. We find that, in the limit as
rB → ∞ at fixed δu, quantum fluctuations dominate and
prevent Bob from measuring the conserved charge.1

This does not mean, of course, that it is impossible to
measure a conserved charge at great distances. It just
cannot be done in fixed finite time. As long as the duration
of the measurement scales as an appropriate positive power
of r, it is possible to determine the charge. But then the
measurement cannot be associated with a finite neighbor-
hood of a cut at future null infinity. Rather, the support of
any successful measurement must approach (at least) a
semi-infinite region of Iþ in the large r limit. Similar
comments apply to charges defined at spatial infinity, such
as the ADM mass. They are defined by taking r → ∞ at
fixed t rather than fixed u. Again the duration of the
measurement must scale as a positive power of r to control
fluctuations.
Outline In Sec. II we begin with warm-up problem: we

consider charge fluctuations near future null infinity in
massless QED. We turn to the gravitational case in Sec. III.
The Appendix contains details of our calculations.

II. BONDI ELECTRIC CHARGE

In standard QED, the charged particles are massive. Here
we consider massless QED, as a closer analogue to the
above thought experiment where Alice uses a massless
field (gravitons) to radiate away part of her planet’s mass.
Translated to the setting of massless QED, the paradox
outlined above persists: Alice’s planet now starts out with
some nonzero charge Q0, and Alice reduces this charge to
Q by emitting massless charged particles. The charged
radiation crosses Bob’s sphere while he sleeps, so when he
later attempts to determine Q, he does so by measuring the
radial electric field Er integrated over his Dyson sphere,
and applying Gauss’s law,

Q ¼ r2B

I
ErðΩÞd2Ω; ð4Þ

where Ω is the solid angle on the sphere.
The fluctuation of the electric charge in some region,

hQ2i, can be computed by integrating the two-point
function of the timelike component of the current density,
hj0ðxÞj0ðyÞi. Note that Bob does not attempt to measure Q
by integration of a charge density over a volume. Bob has
access only to an asymptotic region, so naturally he would
try to measureQ by integrating the radial electric field over
the boundary of the volume. But by Gauss’s law, this is the

same operator. Here we find it easier to evaluate its
fluctuations using the volume form of the operator.
In any CFT, the two-point function is fixed by conformal

invariance. In flat space the Uð1Þ current two-point
function just takes the form [10],

hj0ðxÞj0ðyÞi ¼ κ
jΔ⃗j2 þ ðΔ0Þ2

Δ8
; ð5Þ

where Δ ¼ x − y, and the constant κ is theory dependent.
For massless Dirac fermions, the current and the propagator
are given by [11]

jμ ¼ ψ̄γμψ ; ð6Þ

hψ̄ðxÞψðyÞi ¼ −
i

2π2
γμðxμ − yμÞ
ðx − yÞ4 ; ð7Þ

which leads to κð1
2
Þ ¼ − 1

π4
. For comparison, in massless

scalar QED one has2

jμ ¼ iðϕ∂μϕ� − ϕ�∂μϕÞ; ð8Þ

hϕ�ðxÞϕðyÞi ¼ 1

4π2ðx − yÞ2 ; ð9Þ

which gives κð0Þ ¼ − 1
4π4

.
In the two-point functions (7) and (9), an iϵ prescription

must be specified. The choice

Δ0 → Δ0 − iϵ ð10Þ

allows for only non-negative energy states in the spectrum.
In the complex Δ0 plane this corresponds to a contour
prescription that cuts above both poles in Eq. (5). In what
follows, this prescription is implicit.
The total charge inside a spatial region V at the time tB of

Bob’s measurement is

Q½V� ¼
Z
V
d3xj0ðxÞ; ð11Þ

but as an operator this would have divergent fluctua-
tions. To obtain a well-defined operator, we smear over
a finite time,

1Astronomical determinations of mass are performed in the
opposite limit, δu ≫ rB, and so are unconstrained by our analysis.
For example, the mass of the Sun can be found by measuring the
period of Earth and applying Kepler’s third law. In such an
experiment one has rB ¼ 1 A:U: ≈ 8 min ≪ δu ∼ 1 year.

2This is the leading order result. Scalar QED is not really scale
invariant, due to the nontrivial renormalization group flow of the
couplings. Unlike a massless fermion field, ϕ can gain a mass by
renormalization. Even if one tunes the field to be massless, there
is still a logarithmic screening of the QED coupling constant as
we flow to the IR. However, since we find a power law divergence
for hQ2i at leading order, it does not seem possible that this
divergence can be removed by a logarithmic effect. Thus we
expect our qualitative conclusions to be the same for massless
scalar QED, as for the fermion.
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Q ¼
Z

dtQ½VðtÞ�wðtÞ: ð12Þ

The weight function wðtÞ is normalized so thatR
∞
−∞ wðtÞdt ¼ 1. It should peak in a finite time interval
of characteristic size δt, centered on tB; and it should
fall off rapidly outside this interval. Our choice,

wðtÞ ¼ δt
π

1

ðt − tBÞ2 þ δt2
; ð13Þ

facilitates the application of contour integration meth-
ods. Any other choice with a fast enough fall off should
lead to the same qualitative behavior.
For VðtÞ, we must choose the volume enclosed by Bob’s

Dyson sphere, which is a round ball centered at the origin.
Because its radius is much greater than the expected
support of the charge (Alice’s planet), hQi does not depend
on its precise choice. Thus we can allow for a time-
dependent radius, for example as

rðtÞ ¼ rB þ αðt − tBÞ: ð14Þ

Physically, this corresponds to the freedom to let Bob’s
Dyson sphere expand or contract during the measurement.3

This turns out to give Bob more freedom to suppress
fluctuations, but nevertheless we find that they diverge.
We are interested in the limit as Bob’s radius goes to

infinity along a light cone, rB ¼ tB þ uB → ∞, so that Q
becomes the Bondi charge. By an overall time shift, we
may set the fixed retarded time of Bob’s measurement to 0,
uB ¼ 0. We can then fix the retarded time duration of Bob’s
measurement, as the interval − δu

2
< u < δu

2
. That is, the

weight function (13) should have support when Bob’s
world tube (14) lies in this interval, but not outside it. To
this end we choose

δt ¼ δu
1 − α

: ð15Þ

Note that the proper time duration of Bob’s measurement is
then given by

δτ ¼ δu

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

1 − α

r
: ð16Þ

Intuitively, we might expect that fluctuations are more
suppressed for greater δτ, i.e., for Bob’s sphere expanding
at great velocity, α → 1. However, as we see this is not
sufficient to control the fluctuations as rB → ∞.

To evaluate hQ2i, we now write it as

hQ2i¼
Z

ddx
Z

ddΔwðx0Þwðy0Þθðx⃗Þθðx⃗−Δ⃗Þhj0ð0Þj0ðΔÞi;

ð17Þ

where θ ¼ 1 inside the volume V and θ ¼ 0 outside.
Here we summarize how this calculation goes. More

details can be found in the Appendix. The integral over d3x⃗
yields the volume of the intersection of two balls separated
by jΔ⃗j. By spherical symmetry, the integral over d3Δ⃗
reduces to a one-dimensional integral which we evaluate.
We subsequently perform the dx0 and dΔ0 integrations
using contour methods. Here one has to be careful to
choose a contour that properly avoids branch cuts. This
yields an expression for hQ2i as a function of rB, δt, and
thus via Eq. (15), of rB, δu; α.

hQ2i ¼ −κ
�
π2

ð1 − αÞ3r2B
3ðαþ 1Þδu2 þ

π2

6
log

�
4ð1 − αÞ3r2B
ðαþ 1Þδu2

��

−
κπ2

12ðα2 − 1Þ þOðr−1B Þ: ð18Þ

We can now take the limit rB → ∞. For α ¼ 0, we find
an expected area law divergence. For other choices of α,
it is possible to have hQ2i diverge slower than that. To
accomplish the goal of making hQ2i grow as slow as
possible with rB, the optimal choice of α satisfies

1 − αopt ∝

ffiffiffiffiffi
δu
rB

s
: ð19Þ

No choice of α can make hQ2i diverge slower than that,
and, in particular, no choice of α can make the charge
fluctuations finite when rB → ∞. For the optimal choice
above, the divergence goes as the fourth root of the area,

hQ2iopt ∼
ffiffiffiffiffi
rB
δu

r
: ð20Þ

The results above are for four-dimensional Minkowski
space, but the same analysis can be performed in any
dimension (though we have only been able to get analytic
results in even dimensions). Here we quote the results in
two4 and six dimensions,

hQ2iD¼2 ∝ log

�ðδu2 þ ð1 − αÞ4rB2Þ2
ð1 − α2Þ2δu4

�
ð21Þ

3One might worry that rðtÞ is negative for t < tB − rB
α . How-

ever, since this happens only at the tail of the weight function wðtÞ
[Eq. (13)], it does not affect our results. For example, the choice
rðtÞ ¼ rBð1 − α tanhðrBÞÞ þ αt tanhðtÞ, which has the same
behavior as Eq. (14) at large t and is nowhere negative, leads
to the same asymptotic behavior.

4Since QED is confining in two dimensions, one cannot give
the two-dimensional result the same interpretation as in higher
dimensions.
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hQ2iD¼6 ∝
ð1 − αÞ6rB4
ðαþ 1Þ2δu4 þOðrB2Þ: ð22Þ

We see that for constant α, we always get an area law
hQ2iD ∼ ðrBδuÞD−2. The optimal choice of α is always given
by Eq. (19) for any D; this yields

hQ2ioptD ∼ rðD−2Þ/4
B ∼ δτD−2: ð23Þ

This divergence thwarts Bob’s plans of measuring the
charge and thus prevents him from receiving Alice’s
message. Since no information is transmitted, the apparent
paradox described in the previous section is resolved.

III. BONDI MASS

In the previous section we showed that, due to quantum
fluctuations, the Bondi electric charge cannot be measured
in a finite interval of Iþ. Here we repeat this analysis, but
for the Bondi mass. For concreteness, we consider a
massless scalar field nonminimally coupled to gravity.
However, since the two-point function of T00 is completely
fixed (up to a multiplicative factor) in any scale-invariant
theory with a stress tensor, our conclusions apply equally
well to spinors, gauge fields, and interacting fixed points.
The action and stress-energy tensor for a nonminimally

coupled scalar are given by

S ¼ −
1

2

Z
d4

ffiffiffiffiffiffi
−g

p ðDμϕDμϕþ ξRϕ2Þ; ð24Þ

and

Tαβ ¼ ð1 − 2ξÞDαϕDβϕþ
�
2ξ −

1

2

�
DμϕDμϕgαβ

þ 2ξgαβϕD2ϕ − 2ξϕDαDβϕ: ð25Þ

Using this stress-energy tensor and hϕð0ÞϕðΔÞi ¼ 1
Δ2,

we get

hT00ðxÞT00ðyÞi¼ 8ð30ξ2−10ξþ1Þ3Δ⃗
4þ10Δ2

0Δ⃗
2þ3Δ4

0

ðΔ2
0− Δ⃗2Þ6

:

ð26Þ

Using the same smearing as in the previous section, we can
now calculate the fluctuations of the energy,

hM2i¼
Z
d4x

Z
d4Δwðx0Þwðy0Þθðx⃗Þθðx⃗−Δ⃗ÞhT00ðxÞT00ðyÞi;

ð27Þ

by performing the same integrals as in the QED case, the
details of which are relegated to the Appendix.

As in the Uð1Þ case, we choose to evaluate the operator
and its fluctuations as a volume integral, not a surface
integral. This is now more subtle, because strictly the Bondi
mass is defined only as a surface integral over a family of
topological 2 spheres fSαg that approach a cut S of null
infinity [12],

M ¼ − lim
Sα→S

1

8π

Z
Sα

εabcd∇cζd; ð28Þ

where ζa is an asymptotic time translation Killing vector
field. Here we work in a perturbative limit, where back-
reaction in the bulk is small. Then an approximate Gauss
law still holds, and the Bondi mass can also computed as a
volume integral

M ¼
Z
Σ̃
d3xT00 ð29Þ

over the portion Σ̃ of a Cauchy surface Σ enclosed by S.
Moreover, we can reach arbitrarily large M even in the
perturbative regime, by considering matter of low density
spread over a large region. Hence we expect that our result
for the fluctuations of M will be general.
We find

hM2i¼ 8ð30ξ2−10ξþ1Þπ2ðα2δu2þ4ð1−αÞ4rB2Þ3

×

�
ð1−αÞ4ð3α2þ1ÞrB2− ðα2−5Þδu

2

4

�
× ð15ð1−αÞðαþ1Þ3δu4ðδu2þ4ð1−αÞ4rB2Þ3Þ−1:

ð30Þ

For α ¼ 0 this gives

hM2i ¼ 8ð30ξ2 − 10ξþ 1Þ 16π
2r6Bð5δu2 þ 4r2BÞ

15δu4ðδu2 þ 4r2BÞ3
: ð31Þ

Once again, it is possible to tame this divergence by a better
choice of α. The optimal value remains αopt ∝ 1 − ðrBδuÞ−1/2,
which gives

hM2iopt ¼ ð30ξ2 − 10ξþ 1Þ25/2π2
30δu5/2

ffiffiffiffiffi
rB

p þO

�
1

r1/2B

�
: ð32Þ

We therefore see that the Bondi energy also has
unbounded fluctuations as we approach finite intervals
of null infinity.

IV. DISCUSSION

We argued that entropy bounds preclude gauge charges
from being well-defined quantum observables on cuts or
finite intervals of Iþ. We confirmed this by showing that
unbounded fluctuations preclude a measurement of the
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electric charge or the Bondi mass, in finite time at
arbitrarily large radius.5

It is important to emphasize the quantum nature of these
results. BothM andQ are good classical observables near a
cut of Iþ. This follows directly from Eq. (4), and from the
analogous surface integral for the Bondi mass, Eq. (28).
Both expressions are gauge invariant and require no data
extrinsic to the near-cut region R for their evaluation. This
contrasts with certain other quantities appearing in the
Bondi metric expansion, Eq. (1), which are prohibited by
the equivalence principle from being observable already at
the classical level [6,15].
Let us try to gain some intuition for the divergence of

hQ2i and hM2i that we found. To understand the physical
origin of the fluctuations, suppose, for simplicity, that Bob
remains at fixed radius throughout his measurement, so that
α ¼ 0 and δu ¼ δt ¼ δτ. Consider Q as a surface integral
over Er, rather than a volume integral. An observation
restricted to a finite time interval leads to approximately
thermal quantum noise of characteristic energy 1/δτ. This
noise arises in the region causally accessible to the
observer; here, this would be a shell of width δt around
the sphere rB. Since rB ≫ δτ, there will be a large number
N ∼ r2B/δτ

2 of “cells” just inside and outside of Bob’s
sphere. Each cell contains Oð1Þ quanta of any massless
field the detectors couple to, which includes the charges.
This contributes to Er an additional field strength of order
1/δτ2 and random sign. The contribution to Q from one
cell, in Eq. (4), is thus of order �1. The fluctuations
in different cells are uncorrelated, so the total fluctuation of
Q is given by hQ2i1/2 ∼ ffiffiffiffi

N
p

∼ rB/δτ. This agrees with
Eq. (18) for this special case, α ¼ 0.6

Note that neither infrared nor ultraviolet physics alone
can explain the divergent fluctuations of Q and M. Rather,
they arise from a combination of both. The fixed duration
δu of Bob’s measurement sets a characteristic ultraviolet
energy scale for the fluctuations. The infrared effect comes
from taking the limit as rB → ∞, which creates an ever
larger region over which those fluctuations can contribute.
Our work lends some insight on the structure of operator

algebras of gauge theories and gravity when quantizing at
Iþ. We emphasize that the paradox noted in Sec. I would
arise for any quantity associated to a subset of Iþ that is not
tied to energy flux arriving in that subset. For example, the
BMS group at Iþ yields an infinite set of supertranslation
charges [16], which essentially correspond to the Bondi
mass aspect (whose integral yields the Bondi mass)
[17–20]. We thus find that these supertranslation charges

are not observable in a neighborhood of any cut of Iþ in the
quantum theory.7

The absence of such observables also has potential
significance for understanding the holographic principle.
There has been considerable interest in trying to construct a
holographic theory dual to asymptotically flat spacetimes
(see [21–23] for recent examples). By analogy to
AdS/CFT, one expects that such a putative holographic
dual should be defined on the conformal boundary of the
spacetime, and that limits of bulk observables that are
defined as they approach Iþ should correspond to local
operators in the putative boundary theory. Since we have
shown that conserved charges are not in fact well-defined
operators on any finite portion of Iþ, we expect that no
such operators should exist in a dual boundary theory
either.
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APPENDIX: CALCULATION OF hQ2i AND hM2i
In this appendix we describe in more detail the calcu-

lations of hQ2i described in Sec. II and of hM2i described
in Sec. III.
For the QED calculation, we start with Eq. (17). Inserting

the expression for the current two-point function, Eq. (5),
and evaluating the d3x⃗ integral, we get

hQ2i¼ κ

Z
dx0dΔ04π2dΔ

ðΔ2þðΔ0Þ2ÞVolðr1ðtÞ;r2ðtÞ;ΔÞ
ðΔ2− ðΔ0Þ2Þ2

×wðx0Þwðx0−Δ0Þ: ðA1Þ

Note that here Δ ¼ jΔ⃗j, whereas in the main text Δ denoted
a four vector.

5The study of fluctuation of electric charge (in finite regions)
dates back to the early days of QED (see e.g. [13,14]).

6It would be nice to extend this heuristic argument to the
optimal case, when Bob is expanding outward during the meas-
urement according to Eq. (19). But using Eq. (16), the above
argument would appear to imply hQ2i ∼ r2B/δτ

2 ∼ ðrB/δuÞ3/2, in
conflict with Eq. (20).

7We established that a certain operator Ô does not belong to
the algebra of observables by showing that hÔ2i ¼ ∞. This is not
a perfect criterion, since there are contrived examples of ob-
servables in quantum mechanics with hÔ2i ¼ ∞ but well-defined
spectrum. However, we do expect all reasonable operators to
have finite fluctuations.
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The radii, as functions of time, are specified by

r1ðtÞ ¼ rB þ αðt − tBÞ;
r2ðtÞ ¼ rB þ αðt − Δ0 − tBÞ; ðA2Þ

wðtÞ is given in Eq. (13) and Volðr1; r2;ΔÞ is the volume
of the intersection of two spheres of radii r1 and r2 whose
centers are separated a distance Δ. Explicitly, the volume
formula is

Volðr1; r2;ΔÞ ¼
πð−Δþ r1 þ r2Þ2ðΔ2 − 3ðr12 þ r22Þ þ 2Δðr1 þ r2Þ þ 6r1r2Þ

12Δ
; ðA3Þ

for jr1 − r2j ≤ Δ ≤ r1 þ r2. ForΔ > r1 þ r2, the spheres do not intersect, and so Volðr1; r2;ΔÞ ¼ 0. ForΔ < jr1 − r2j, one
ball is inside the other and so Volðr1; r2;ΔÞ ¼ 4

3
πminðr1; r2Þ3. Evaluating the Δ integral in Eq. (A1), we get

hQ2i¼ 16π6κ

15

Z
dx0dΔ0

r13r23ð−5ðΔ0Þ4þ2ðΔ0Þ2ðr12þ r22Þþ3ðr12− r22Þ2Þ
ðΔ0þ r1− r2Þ3ðΔ0þ r1þ r2Þ3ð−Δ0þ r1− r2Þ3ð−Δ0þ r1þ r2Þ3

δt2/π2

ðδt2þx02Þðδt2þðx0− ðΔ0Þ2ÞÞ :

ðA4Þ

We now choose contours to evaluate, in turn, the Δ0 and
the x0 integrals. Keep inmind that at this step the expressions
for r1 and r2, Eq. (A2), need to be explicitly inserted. Seen as
a function on the complex Δ0 plane, the integrand in
Eq. (A4) has four branch points, all on the real axis, and

two simple poles, at Δ0 ¼ x0 � iδt. We choose a contour
that goes along the real axis, with infinitesimal deformations
around the branch points to avoid them, and then close along
a semicircle on the upper half-plane (see Fig. 3). This
contour picks up a residue at Δ0 ¼ x0 þ iδt, thus yielding

hQ2i ¼
Z

dx0
−π4δtκð8ððα−1ÞrBþiδtαÞððα−1ÞrB−αx0Þð−ðα2−1Þδt2−2iδtðx0−ðα−1ÞαrBÞþðα−1Þð2ðα−1Þr2B−2αrBx0þðαþ1Þðx0Þ2ÞÞ

ðα−1Þðαþ1Þðδtðαþ1Þ−iðα−1Þð2rB−x0ÞÞðδtðα−1Þ−ið2ðα−1ÞrB−ðαþ1Þx0ÞÞ Þ
12π3ðδt − ix0Þ3ðδtþ ix0Þ

−
ðδt − ix0Þ2 logððδt2þð−2ðα−1ÞrBþαðx0−iδtÞÞ2−2iδtx0−ðx0Þ2Þ2

ðα2−1Þ2ðx0þiδtÞ4 Þ
12π3ðδt − ix0Þ3ðδtþ ix0Þ : ðA5Þ

Looking at the integrand above as a function of x0 on the complex plane we see that the branch points, in the limit of
interest (α → 1−), do not lie above the real line. Thus, the same contour prescription can be used to evaluate the x0 integral,
which now picks up a residue only at the simple pole at x0 ¼ iδt. Doing so, and using Eq. (15) to replace δt to δu, gives

κπ2
−α2ðα2−2Þδu4þ8ðα−1Þ4δu2rB2− ð1−α2Þδu2ðδu2þ4ðα−1Þ4rB2Þ logððδu

2þ4ðα−1Þ4rB2Þ2
ðα2−1Þ2δu4 Þþ16ðα−1Þ8rB4

12ðα−1Þðαþ1Þδu2ðδu2þ4ðα−1Þ4rB2Þ
: ðA6Þ

FIG. 3. In the Δ0 integral (left diagram), the contour avoids the branch points on the real axis and picks up a residue at the simple pole
at Δ0 ¼ x0 þ iδt. In the x0 integral (right diagram), a similar contour is used. It now picks up a residue at the simple pole at x0 ¼ iδt.
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The series expansion of this at large rB gives the result in
Eq. (18). We have also checked that this agrees with the
result of numerically integrating Eq. (A4).
The calculation of energy fluctuation in the null infinity

limit parallels the calculation above. For concreteness, let
us consider a scalar field, and take as our starting point
Eq. (27). Inserting Eq. (26), and evaluating the d3x⃗ integral,
we get

hM2i ¼
Z

dx0dΔ04π2dΔVolðr1; r2;ΔÞ8ð30ξ2 − 10ξþ 1Þ

×
3Δ⃗4 þ 10Δ2

0Δ⃗
2 þ 3Δ4

0

ðΔ2
0 − Δ⃗2Þ6

wðx0ÞwðΔ0Þ: ðA7Þ

Evaluating the Δ integral gives

hM2i ¼ −
ð30ξ2 − 10ξþ 1Þ128δt2r13r23ð−5ðΔ0Þ4 þ 2ðΔ0Þ2ðr12 þ r22Þ þ 3ðr12 − r22Þ2Þ

15ðδt2 þ ðx0Þ2Þðδt2 þ ðx0 − Δ0Þ2Þð−Δ0 þ r1 − r2Þ3ð−Δ0 þ r1 þ r2Þ3ðΔ0 þ r1 − r2Þ3ðΔ0 þ r1 þ r2Þ3
: ðA8Þ

Following the same contour prescription as before (see Fig. 3), the Δ0 integral picks up the residue at Δ0 ¼ tþ ia and
evaluates to

hM2i¼ 128ð30ξ2−10ξþ1Þπδtððα−1ÞrBþ iδtαÞ3ð−αrBþ rBþαx0Þ3
15ðα−1Þ3ðαþ1Þ3ðδt− ix0Þ5ðδtþ ix0Þðδtðαþ1Þ− iðα−1Þð2rB−x0ÞÞ3ðδtðα−1Þ− ið2ðα−1ÞrB− ðαþ1Þx0ÞÞ3
× ½ð3α4þ2α2−5Þδt2þ2iδtðð3α4þ5Þx0−2αð3α3−3α2þα−1ÞrBÞ
− ðα−1Þð4ð3α3−3α2þα−1Þr2B−4ð3α3þαÞrBx0þð3α3þ3α2þ5αþ5Þðx0Þ2Þ�: ðA9Þ

A similar contour can be used for the x0 integral now, which picks up a residue at t ¼ ia, and gives the answer in Eq. (30).
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